Graduate Thesis Or Dissertation
 

Response of soil microbial communities to physical and chemical disturbances: implications for soil quality and land use sustainability

Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/tt44pq14k

Descriptions

Attribute NameValues
Creator
Abstract
  • The objectives of this thesis were to evaluate the responses of soil microbial communities to physical and chemical disturbances, and associate these responses with soil functional stability and changes in soil quality. The first study consisted of application of heat shocks (HS) to soils with contrasting land use history to evaluate differences in the stability of soil enzymes (laccase, cellulase and fluorescein diacetate hydrolysis) and microbial community composition as determined by phospholipid fatty acid (PLFA) analysis. The conversion of land use from forest to agriculture resulted in a new microbial community that was less functionally stable. Loss of stability was indicated by the reduced resilience of laccase and cellulase activities in the agricultural soil, which suggested a less diverse community of microorganisms capable of producing these enzymes. The second study examined changes in microbial community composition and diversity that occurred across a gradient of soil disturbance. Disturbances were simulated by tillage events applied at different intensities to a 12-year-old fallow area. These treatments caused degradation of several soil physico-chemical properties, and alterations in microbial structure based on PLFA and terminal restriction fragment length polymorphism (T-RFLP) analyses, and in metabolic potential based on community level physiological profiles (CLPPs). Multivariate ordination of soil properties revealed the formation of a linear gradient of soil degradation that was significantly correlated with CLPPs, but not with T-RFLP and PLFA profiles. Nevertheless, changes observed in microbial community structure were significantly associated with decreases in soil organic C and field hydraulic conductivity. The third study demonstrated that undisturbed forest soils from western Oregon express an equilibrium between soil organic matter and biochemical properties. A model fitted through multiple regression analysis showed that phosphatase activity and microbial biomass were able to explain 97% of the soil organic C in these soils. This equilibrium was disrupted when a soil from an old-growth site was submitted to chemical stresses (Cu addition or pH alteration) and physical disturbances (wet-dry or freeze-thaw cycles). The magnitude of this disruption was consistently expressed by the ratio between soil C predicted by the model (Cp), and soil C that was measured (Cm). This ratio is proposed as biochemically-based index of soil quality.
License
Resource Type
Date Available
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Committee Member
Academic Affiliation
Non-Academic Affiliation
Subject
Rights Statement
Publisher
Peer Reviewed
Language
File Format
File Extent
  • 1795167 bytes
Replaces

Relationships

Parents:

This work has no parents.

In Collection:

Items