Using 4-D imaging of the zebrafish model to observe pharma a therapeutic drug on glioblastoma Sophie Means¹, John Gamble², Leah Wehmas³, and Julie Greenw ¹Department of Integrated Biology ²Department of Biochemistry and Biophysics ³Department of Environmental and **Experimental Outline** Results **Glioblastoma Multiform** *Hypothesis:* treatment with 6.25µM LY294002 and 0.5% DMSO Type of aggressive brain cancer will reduce glioblastoma cell invasion in the brain Five year survival rate of 4.70% microenvironment, as well as create a morphed cell shape. Not often detected until it's in the later stages when m/hr *Procedure:* the symptoms appear Zebrafish are injected with glioblastoma cells. Surgery is not an effective option due to invasion and nhihitor 1 5-

- proliferation of glioblastoma cells outside of the tumor mass before and after surgery

Why the Zebrafish Model?

- Transparent body
- Organism size
- Short assay period
- Little media required
- No adaptive immune system for 28 dpf
- Vertebrate anatomy and brain
- microenvironment

Therapeutic Inhibitor LY294002

- Phosphoinositide 3-kinase (PI3K) is involved in increased proliferation of glioblastoma cells.
- The compound LY294002 is thought to act as a potential therapeutic inhibitor, preventing PI3K from functioning.

SCIENCE

- CBTRUS. Central Brain Tumor Registry of the United States. 2012. Statistical
- Report: Primary brain tumors in the united states (2004-2008)
- Ren et al. Oncology Reports. 2012; 28(3): 943-948.

Average Minimum Velo of Glioblastoma Cel **8.25 hours** ←Embryo Media ←6.25 µM LY29 **Average Mea H** 10 **Before Inhibit** ---Embryo

Conclusion

- Glioblastoma cells t LY294002 move at a hours.
- The compound LY29 concentration or lor get significant resul
- A control with 0.5% is necessary for futu
- The zebrafish will b imaging in future ex time required for th

Acknowledgements:

- SURE Science Scholarship
- Dr. Julie Greenwood
- CGRB Oregon State Univer
- Award number 1337774 Acquisition of Confocal a

codynamics of	
vood ² Molecular Toxicology	
ocity IIs 100 40 20 0 Inhibitor 8.25-15 hours 94002 • Embryo Media - 6.25 μM LY294002 tor Inhibitor 1.5- Inhibitor 8.25- 8.25 hours 1.5- Inhibitor 8.25- 8.25 hours 1.5- Inhibitor 8.25- 8.25 hours 1.5- Inhibitor 8.25- 8.25 hours 1.5- Inhibitor 8.25- 15 hours • Media - 6.25 μM LY294002	
treated and not treated with a decreased velocity after fifteen 94002 will be used in higher nger duration before imaging to lts in future experiments. 6 DMSO in regular embryo media ure experiments. 9 placed in the compound before xperiments to determine optimal ne compound to become effective.	
ersity from the National Science Foundation, MRI: nd Two-Photon Excitation Microscope.	

Oregon State