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Infrastructure systems are a critical component supporting today’s modern society.  From 

power grids to traffic networks, we rely on these systems to perform as intended, despite 

the various sources of uncertainty present in their operation.  Designing for system 

robustness can help mitigate the impact of failures caused by unexpected events.  

However, this poses a challenge as the distributed topology and complex heterogeneous 

nature of infrastructure systems causes unanticipated behavior when subjected to a single 

failure event.  In addition, infrastructure systems often require multiple individuals (i.e., 

humans) to control nominal operation, as well as minimize performance loss due to 

failures.  This human in-the-loop system interaction further increases complexity when 

designing these systems.  This dissertation presents a concept-stage framework for robust 

infrastructure system design that explores emergent behavior due to network topology, 

subsystem interactions, and the impact of human behavior driving these interactions.  

Motivated by historical failures in the North American Power Grid, several case studies 

are presented that illustrate the methods.  First, subsystem/system interactions are 



 

 

modeled by examining user preferences for sustainable building designs, capturing how 

energy conservation mandates influence system-level robustness.  Next, system topology 

is optimized, which minimizes performance losses from cascading failures, expanding the 

model.  Finally, the impact of human decision-making within an infrastructure system is 

incorporated, to further increase robustness.  In summary, this research demonstrates a 

concept-stage design framework for creating robust infrastructure systems by minimizing 

performance variability due to uncertain events and user behavior. 
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Design of Robust Infrastructure Systems Incorporating User Behavior 

CHAPTER 1: INTRODUCTION 

1.1 Overview 

This dissertation presents a concept-stage framework for infrastructure system design that 

explores emergent behavior due to subsystem interactions, and the impact of “human in-

the-loop” behavior driving these interactions.  Because of the heterogeneous topology 

inherent in infrastructure systems, a single initiating failure event can propagate 

throughout the network uncontrollably, resulting in either severely degraded performance 

or complete failure.  This issue is addressed directly by exploring a robust design strategy 

to mitigate performance reduction due to cascading failure.  Current literature identifies 

two distinct paths for considering cascading system failure: network analysis and physics 

based modeling.  However, each approach has limitations in the infrastructure systems 

domain.  Network analysis performance metrics (e.g., node degree, centrality measures) 

can be too far abstracted from the systems they represent to accurately predict behavior.  

Conversely, physics based models rely on calculations from component level 

interactions, which may be infeasible to represent when addressing scalability.  

Specifically, there is a gap in concept-stage infrastructure system design for capturing 

elements of both network analysis and physics based modeling, which allows flexibility 

across multiple domains.  This research presents several case studies motivated by 

historical reliability issues with the North American power grid (NAPG).  However, the 
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applications of the framework developed extend beyond the test cases applied, and are 

intended to explore other infrastructure system objectives. 

1.2 Dissertation Organization 

This dissertation is presented in accordance with the Manuscript Document Format 

option.  It is organized into a number of chapters; three of which the manuscripts have 

been submitted as journal articles.  Chapter 2 provides a broad background of the 

literature relating to the framework developed, which includes highlights such as 

cascading failures and optimization of complex systems, robust design, and human in-

the-loop design.  Chapter 4 was submitted to the Journal of Energy and Buildings in 

April 2014 and introduces user preferences for sustainable building design.  Chapter 5 

outlines a robust optimization strategy for infrastructure system design and was 

submitted to the Journal of Mechanical Design in December 2014.  Chapter 6 evaluates 

the impact of human in-the-loop decision-making in robust design and was submitted to 

the IEEE Transactions on Power Systems in May 2014.  Finally, the dissertation’s 

collective conclusion is discussed in Chapter 7, along with future work pertaining to each 

journal article submission. 

1.3 Intellectual Merit 

The focus of this research is to create a concept-stage framework that links together 

several key attributes of infrastructure system design including topology, human 

interaction, and robustness.  The Intellectual Merit is to formalize a hybrid approach that 
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integrates robust design techniques with system specific network analysis to enable novel 

design strategies for robustness in infrastructure systems.  This approach characterizes 

robustness as the ability of a system to operate in a degraded state, minimizing resultant 

performance variability due to cascading failure effects.  The research presented aims to 

quantify the impact of operator (i.e., human) decision making at both the subsystem and 

system level.  This outcome is achieved by examining both post occupancy energy usage 

in commercial buildings (i.e. subsystem level), and operator control decisions during a 

failure event (i.e., system level).  This dissertation provides a framework for concept-

stage complex infrastructure design decisions by identifying critical trade offs between 

network topology, system robustness, and operator influence.    

1.4 Broader Impacts 

The Broader Impact of this dissertation includes the addition of novel strategies for 

designing and optimizing infrastructure systems, which are applicable across multiple 

domains.  Promoting system robustness by mitigating performance variability after a 

cascading failure could provide a significant advantage over existing methods during the 

early design phase.  Incorporating robustness as a design objective will increase the 

knowledge of a system’s invariability to uncertain failure events, and allow designers to 

make informed decisions that extend beyond cost.  In addition, the case studies presented 

provide a rich environment for collaboration opportunities because of the large breadth of 

current research topics in the field of concept-stage system design.  This collaboration 

will further refine the framework presented, drawing from various interdisciplinary 

backgrounds.  Speaking to the case studies presented, the framework developed will aid 
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in the design of reliable power grid networks, specifically when designing topology to 

meet the needs of an increasingly distributed society.  The success of this research will 

also benefit a combination of regional and national electrical utility providers, as well as 

the various stakeholders affected by sustainable building mandates.   

1.5 Motivation 

The framework presented in this dissertation is motivated by the overarching challenge of 

understanding, and subsequently designing infrastructure systems.  Catastrophic failures 

such as the Blackout of 2003 and the Deepwater Horizon disaster of 2010 highlight their 

vulnerability, and support the need for research of high-level system interactions and 

design strategies to mitigate failure events.  This is of particular interest in early design, 

as infrastructure systems are often operated near maximum capacity.  For example, data 

provided by the North American Electric Reliability Council (NERC) shows that the 

frequency of large-scale propagating blackouts in the North American Power Grid 

(NAPG) has not decreased over the past 25 years [1, 2].  In addition, both of these case 

studies illustrate the consequences of cascading failures due to operator (i.e., human) 

decisions made during an emergency failure event [3, 4].  In the Deepwater Horizon case, 

the National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling 

report acknowledges a combination of cascading mechanical, electrical, and decision 

based failures ultimately leading to the oil rig explosion [5].  This research illustrates 

progress toward an end goal of understanding concept-stage design trade offs between 

complex system performance, robustness, and the impact of human in-the-loop 

interactions.  
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1.6 Nomenclature and Terminology 

Domain specific nomenclature and technical terms are used repeatedly throughout this 

research, and are presented in the context of infrastructure system design.  Additionally, 

related terms often used in other system engineering domains (e.g., failure resilience, 

failure resistance) are included for completeness.  While some definitions may vary in 

different contexts, these terms will be used as defined in Table 1.1 and 1.2 throughout the 

dissertation. 
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Table 1.1 Relevant terminologies used throughout this work 

Term Definition 

Complex System A system composed of multiple, interacting 
subsystems. 

Complex Infrastructure System A complex system characterized by its 
distributed topology. 

Degraded System A system operating successfully at a reduced 
performance level. 

Emergent Behavior Behavior that exists when multiple different 
behaviors interact with one another. 

Failure Event A single unintended failure within a system. 

Failure Resilience The ability of a system to recover to the 
original intended operation after a failure. 

Failure Resistance A system that can operate in a degraded state, 
but not recover from a failure 

Human In-the-Loop Human interaction required to operate a 
system.  

Model The representation of key behaviors or 
functions of an abstract system. 

Operator 
A required human component of a complex 
system whose actions can influence emergent 
system behavior.  

Reliability The probability of a system to perform as 
intended. 

Robustness A system’s invariability to uncertain failure 
events. 

Simulation The imitation of the operation of a real-world 
process or system over time. 
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Table 1.2 Nomenclature used throughout this work 

𝐶! network performance  

𝑛!  number of generation nodes 

𝑛! number of demand nodes  

𝑛!!  number of generation units able to supply flow to distribution vertex 

𝐸 average network path efficiency 

𝐺 interaction matrix 

ϵ!" network path efficiency 

𝑖 row node in an adjacency matrix 

𝑗 column node in an adjacency matrix 

𝑁 number of elements in a specific row or column of an adjacency matrix 

𝑒!" value of an adjacency matrix element 

𝑁! number of generation nodes 

𝑁! number of demand populations 

𝐶!"# transmission line cost 

𝐴 adjacency matrix 

𝐿!" unit length between all pairs of nodes 

𝐶!×!
!"#$%! cost per  unit length 

𝐿!"#$ amount of power flowing through an arc 
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𝐷! demand that has to be satisfied by the shortest path 𝑖 

𝐿!"# maximum power that can flow through an individual arc 

𝛼 arc factor of safety 

𝐷! resultant demand that is satisfied after a failure has occurred 

𝐷! 
average of resultant demand values that are satisfied after a failure has 
occurred 

𝐿!"#$   (𝑡) initial arc load at a given time 𝑡  

𝑡 instantaneous time associated with an arc load 

𝑁!"#$ number of disconnected components of a network 

𝜎!!
!  expected demand variance 

𝑂𝑏𝑗! objective function value 

𝐼𝐸𝐸𝐸14! objective value from the original IEEE 14 test bus 

𝑃𝐹!"## penalty function for disconnectivity 

𝑃 
probability a solution will be selected for the continuation of the 
simulated annealing algorithm 

𝐴! initial adjacency matrix in simulated annealing algorithm 

𝐴! solution obtained by perturbing the adjacency matrix 𝐴! 

𝑁!" number of objective functions in simulated annealing algorithm 

𝑇 temperature at each iteration of the simulated annealing algorithm 

𝐶!×!
!"#_!"#$%! cost of interconnection arc 
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CHAPTER 2: LITERATURE REVIEW AND RELATED WORK 

This chapter presents a general overview of existing literature pertinent to the three 

elements of the Design Framework developed for this dissertation (Figure 2.1).  This 

framework will expand the knowledge base of infrastructure system design, considering 

interactions over a large breadth of system and subsystems components.  Much of this 

information is repeated in upcoming chapters in order to keep the manuscripts as close to 

the original, submitted copy of the journal articles.  The information is included here for 

completeness and ease of reference. 

 

Figure 2.1: Elements of literature review 

2.1 Sustainable Building Design 

As building standards such as LEED become more complex, designers must explore a 

greater breadth of feasible solutions for meeting these requirements.  In addition to 

LEED, more complex certifications such as the Living Building Challenge (LBC) have 



 

 

10 

additional requirements such as net-zero energy and water [6].  To achieve a net-zero 

requirement, each building subsystem (e.g., energy collection, water collection, and 

heating, ventilation, air conditioning (HVAC)), as well as their interactions, must be 

considered [7].  By shifting the traditional architectural building design paradigm from a 

top-down approach to an integrated approach, these system interactions can be better 

evaluated and subsequently optimized.  This integrated optimal design methodology is 

often found in aerospace, automobile, and other complex systems [8-10]. 

 Current literature shows various techniques that have been explored to achieve 

optimized solutions for complete building designs.  Geyer proposed a methodology using 

multidisciplinary grammars to optimize building components by linking qualitative 

design characteristics with a quantitative analysis [11, 12].  Wang et al. use a genetic 

algorithm to determine floor shape in buildings for optimizing envelope-related design 

variables such as window-to-wall ratios and shading, which were then linked to life-cycle 

cost measures [13, 14].  Christensen et al. examine a component selection driven process 

where minimum required values are calculated to achieve net-zero energy such as 

insulation, glass type, and foundation insulation [15].  This type of multi-objective 

optimization approach can lead to a wide selection of feasible designs [16].  A sensitivity 

analysis by Heiselberg et al. showed that HVAC systems are the primary energy 

consumers in sustainable buildings, with lighting having the next greatest effect [17]. 

 Beyond building mechanical system optimization, there have been various research 

paths exploring the social, economic, and environmental effects of sustainable building 

design.  For example, the five categories for sustainable design outlined to achieve LEED 

certification include Sustainable Sites, Water Efficiency, Energy and Atmosphere, 
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Material and Resources, and Indoor Environmental Quality (IEQ).  These categories are 

highly quantifiable, with the exception of IEQ, which contains subjective attributes such 

as interior lighting, presence of sunlight, and thermal comfort [18].  During the schematic 

design of the Oregon Sustainability Center (OSC), user preferences and building 

interactions were considered for quantification of energy consumption [7, 19].  Building 

users are playing a more prominent role in modern building design as literature has 

shown measurable effects on individuals’ well-being, productivity, and creativity as a 

result of their indoor environment [20-22].  Reinhart et al. have examined differences in 

static versus dynamic daylight performance metrics using existing several daylight 

simulation programs, but do not arrive at a clear metric to quantify these effects [23].  

Similar research using Sensor Placement Optimization Tool (SPOT) software was used to 

create discrete building geometries to achieve energy efficient building designs, although 

quality of daylight designs do not involve the building user [24].  

 One concern not typically addressed in sustainable building design when designing 

for IEQ is user productivity.  Literature shows employee performance is tied to various 

metrics, including their response to indoor environments such as temperature and 

lighting.  For example, Jensen et al. examine a Bayesian Network approach to comparing 

various effects of thermal environment on the mental performance of office workers, 

suggesting employee performance is increased with thermal sensation, or how an 

individual feels with respect to his or her environment [25].  Positive effects of natural 

lighting in the workplace have also been linked to various performance metrics such as 

well-being, ability to perform, motivation, job satisfaction, and technical competence 

[26].  While this correlation has been assumed for some time, Juslén has quantified these 
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metrics by conducting field studies on lighting preferences in the industrial workplace 

and employee productivity [27, 28].  This research outlined a productivity unit increase 

based on workplace metrics associated with lighting relationships including visual 

performance, visual comfort, visual ambience, and job satisfaction.  In an effort to 

quantify productivity in terms of financial gain for an organization, Hunter and Schmidt 

developed a utility function including reduced labor costs and overhead [29]. 

2.2 User Preferences for Indoor Environmental Quality 

Individuals can be affected by their indoor environment, responding to changes in 

lighting, temperature, and workspace geometry [25, 26].  LEED has recognized this 

importance by awarding 17 points (out of 100 possible) to their metric for Indoor 

Environmental Quality (IEQ) [30].  LEED’s IEQ includes several indoor design attributes 

including amount of lighting, temperature, air quality, and aesthetic design.   

 A survey of existing literature shows a long history of positive effects of lighting 

on individuals in different workplace environments [31, 32].  Romm and Browning 

presented several case studies where increased lighting in an existing workspace resulted 

in lower absenteeism, lower productions errors, and higher productivity [33].  This work 

also reported on new construction buildings, including a Lockheed facility claiming 15% 

rise in production, and 15% decrease in absenteeism due to architectural natural lighting 

features throughout the building.  Research by Day et al. relate the attributes of building 

lighting design, in terms of natural lighting, to user satisfaction, health, and occupancy 

[34].  Hua et al. examine post-occupancy response to lighting conditions in a LEED Gold 

certified laboratory building [35].  This research combined illuminance measurements on 
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work plane surfaces with rating surveys of long-term occupants, to determine overall user 

satisfaction of the building. 

 Related research has explored user preferences based on product attributes, as well 

as sociodemographic groups.  This is done through human appraisal experiments, 

designed using a Design of Experiments (DOE) methodology.  These methods have been 

refined over several decades by statisticians, and have recently been refined to include 

specific methods for preference modeling [36, 37].  Chen et al. outlined a method to 

observe the effect of differing values, of a factor, or user-based attributes, on a response 

variable [38].  For example, multiple design alternatives can be presented to a customer 

or product user, and a corresponding rating response can be chosen, ultimately resulting 

in a single design preference.  Individual factor levels and combinations (or interactions) 

are then identified which will define a design alternative.  Hoyle et al. provide a case 

study of this method, using human appraisal data for automobile seating ergonomics [39].  

In this work, both Blocked and Split-Plot statistical analysis are used to capture 

significant attributes of customer design preferences [40].  Based on the significant 

factors, a predictive model for customer seating preferences is created, and compared to 

the actual preference data collected.     

2.3 Latent Variable Modeling for System Design 

In order to accurately quantify a subjective quantity such as IEQ, latent variable modeling 

can be used.  The term latent variable refers to a variable that cannot be observed 

directly, but is a function of other related variables that are more easily quantified.  

Previous work by Everitt and Loehlin identifies the ability to capture an individual’s 
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attitude toward a specific design through the use of a psychometric survey [41, 42].  Chen 

et al. have further developed this work, outlining a method identifying user preference 

indicators, based on specific product attributes [38].  In this work, a case study is 

presented based on data from J.D. Power’s Vehicle Quality Survey, where consumer 

attitudes on various automobiles were collected, and presented as examples of preference 

indicators regarding specific vehicle attributes.  This methodology can be extended to 

understand building users’ workspace preferences, based on attributes of existing LEED 

certified buildings. 

 In the context of sustainable building design, product (building) attributes will be 

defined as characteristics of the indoor building environment (e.g., temperature, number 

of windows, workspace geometry).  These indicators define an individual’s attitude or 

preference toward design characteristics present in LEED designs or architecture.  The 

latent variables can then used to capture these preferences, quantifying a variable that is 

typically unobservable.  Figure 2.2 displays the latent variable model as it pertains to 

building indoor environment. 

 

Figure 2.2: Latent variable model for sustainable building design case study 
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2.4 Robust Design 

While there are many methods contributing to failure propagation and reliability in 

complex systems, these approaches are typically hardware driven and do not address the 

formalized concept of robustness, and how infrastructure systems can be designed for 

invariability to uncertain failure events [43-51].  In addition, it is difficult to scale 

component level failure propagation methods to represent large and distributed networks 

in terms of computational efficiency.  In the context of this research, robust design is 

defined as the insensitivity to failure due to uncertain events from both internal and 

external sources [52].  

 Historically, robust design has been used in manufacturing to minimize unintended 

consequences (variability) from uncontrollable environmental effects [53].  Expanding on 

Taguchi’s fundamental methods [53], Chang et al. have scaled these principles to 

complex systems where multiple subsystems must be optimized independently with 

limited knowledge of other system design parameters [54].  This work outlines the need 

for an optimization approach accounting for system-level physical and intangible noises 

that are out of the designer’s control.  Robust design provides a strategy for designing 

systems robust to uncertain events, without the need to understand or reduce these events.   

 The primary issue, however, is creating designs that are robust to the various types 

of failures and uncertainty present in complex and largely distributed systems.  Many 

system failures occur as a result of external occurrences such as extreme weather 

conditions, and predicting the effects of these events is challenging, specifically due to 

cascading failures resulting from a single initiating event.  Examining the system 



 

 

16 

topology as a means of increasing design robustness builds on existing approaches, 

expanding current methods into infrastructure systems, discussed next. 

2.5 Network Theory and Topological Graph Models 

Based on the distributed nature of many complex infrastructure systems, understanding 

topological effects is important when designing for system robustness.  Current literature 

addresses the importance of considering topology in network analysis, often drawing 

from social network theory where networks are represented mathematically, often with an 

adjacency matrix [55-57].  To address network relationships, several performance indices 

are studied in the literature, which can be primarily categorized into three major classes: 

reachability measures, vitality measures, and flow measures.  For example, Kinney et al. 

model a power grid network with an adjacency matrix, where each node represents either 

a generation or demand component in a network, and arcs connecting the nodes represent 

connectivity [57].  In this work, failures are examined by removal of a single node, which 

triggers an overload cascade in the network.  Similar methods are used by Leonardo and 

Vemuru, where connectivity loss C!, measures network performance [58]: 

 

𝐶! = 1−
1
n!

n!!

n!

!!

!

 
(2.1) 

 

where n! is the number of generation nodes, n!  is the number of demand nodes at the 

unperturbed network state, and n!!  is the number of generation units able to supply flow 
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to distribution (demand) vertex i after disruptions take place.  Subsequent averaging is 

done over every demand node i of the network. 

 Another method by Ash and Newth examines the optimization of complex 

networks with respect to the average efficiency of the network [59].  Average efficiency 

E  was first introduced by Crucitti et al. and is among the vitality measures, and can be 

calculated as follows [60]: 

 

E G =
1

N N− 1 ϵ!"
!!!∈!

 (2.2) 

 

where ϵ!" denotes the efficiency of the most efficient path between i and j. In this 

definition, the undirected graph (G) is an  N×N adjacency matrix of (e!"), where 

0 < e!" ≤ 1 if there is an arc between node i and node j, otherwise e!" = 0. 

 While these types of topological measures provide valuable information about a 

specific network, it is important to recognize that these mathematical models are 

abstractions of infrastructure systems, and may result in misleading information.  Hines et 

al. have explored this issue, comparatively evaluating topological metrics within the same 

system to predict failure magnitudes in standard test cases [56].  Their work concluded 

that while exclusively using topological measures can provide general information about 

a system’s reliability, they can be misleading due to the level of abstraction and should be 

used in conjunction with a physics-based model. 
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2.6 Human In-the-Loop Considerations for Infrastructure System 

Design 

Minimizing the impact of cascading failure within an infrastructure system is of 

particular interest, as the distributed topology makes these systems highly vulnerable to 

propagating failures stemming from a single initiating event.  The Blackout of 2003 

highlights this vulnerability, where over 45 million people in the Northeast U.S. and 

Canada lost power due to uncontrollable cascading outages [4, 61].  Beyond hardware 

and software failures, communication deficiencies between regions was a contributing 

factor in the Blackout [1, 62].  Since the cascading outage took place over approximately 

7 hours, independent regions struggled to obtain operational information from adjacent 

utilities, forcing system operators to make poor, uninformed decisions to protect their 

local network.  Typical power system protection practices to avoid cascading can include 

load shedding or intentional islanding [63].  This lack of a comprehensive 

communication system throughout the NAPG interconnections is primarily a function of 

federal deregulation policies [64].  From an engineering design perspective, considering 

the impact of “human in-the-loop” decision making within an existing network could 

potentially mitigate the system level impact of cascading failure. 

 The Deepwater Horizon disaster of 2010 also illustrates the consequences of 

cascading failures due to operator decisions made during an emergency failure event [3].  

While news media publications primarily focused on the system’s shear ram barrier as 

the primary source of failure, the National Commission on the BP Deepwater Horizon Oil 

Spill and Offshore Drilling report acknowledges a combination of cascading mechanical, 
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electrical, and decision based failures ultimately leading to the oil rig explosion [5].  

Venkatasubramanian also examines the Deepwater Horizon incident, and addresses the 

broader perspective of the potential fragility of all complex engineered systems, 

empathizing the need to understand the commonalities and differences in these types of 

failures, in order to better design and control such systems in the future [65].   

 While many cascading system failures begin as a result of external occurrences 

such as extreme environmental conditions (e.g., excessive well bore pressure on the 

Deepwater Horizon, above normal summer temperature in the Northeast U.S.), case 

studies show that human in-the-loop decision-making has the potential to affect the 

resultant system outcome [66].  The overarching challenge of infrastructure system 

design is to understand system level interactions, and how an agent (or set of agents) can 

impact the subsequent emergent system behavior. 

 Watt’s examines this concept from a sociology perspective, citing parallels to 

engineered systems [67].  In this work, he postulates that individuals in a population 

exhibit herd-like behavior because they are making decisions based on the actions of 

other individuals rather than relying on their own information about the problem.  This is 

a concern in agent based control strategies for complex systems, as agents must make 

decisions based on information about both their local and global network.  Hines and 

Talukdar examine this relationship by developing a method to create a social network of 

autonomous agents to solve a global control problem with limited communication 

abilities [68].  This approach uses distributed model predictive control and cooperation to 

minimize cascading failure in an IEEE test bus.  However, it requires an agent to be 

present at each location (i.e., node) of the system.  This solution is not economically 
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efficient, or even possible in many infrastructure systems.  Other approaches also draw 

from social network analysis, where reliability indicators rely heavily on high-level 

system abstractions [45, 55, 69].   

 Alternatively, decision based design strategies have also been examined for 

estimating agent decision-making behavior in complex systems.  Sha and Panchal have 

explored this concept comparing the benefits between generalized preferential 

attachment, a statistical regression-based approach, and multinomial-logit choice 

modeling [70].  Both multinomial and nested logit models have been used extensively to 

predict individual’s decisions in a variety of domains including sociology, economics, 

and civil engineering (e.g., traffic networks) [71].  The barrier to using these methods in 

early design is the reliance on historical behavior required to generate a utility function 

capable of predicting behavior.      
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CHAPTER 3: DISSERTATION OBJECTIVES 

The three primary research objectives contributing to the Dissertation Framework are 

identified in this chapter.  The journal manuscripts presented in subsequent chapters meet 

these objectives. 

3.1 Capturing User Preferences for Sustainable Building Design 

The first research objective is to understand the demand population (i.e., human) impact 

on a case study of the North American Power Grid (NAPG), and examined this 

interaction at the subsystem level.  This is achieved by exploring specific design 

strategies for sustainable building mandates, in an effort to understand user preferences 

for these designs.  The economic, environmental, and social impacts of these strategies 

are addressed in terms of understanding user preferences for specific building attributes.  

This research will help bridge the gap between design optimization objectives (e.g., 

energy conservation) at the system level, and user preferences for sustainable building 

designs at the subsystem level which could contribute to these objectives.  By 

understanding the trade offs between user preferences, sustainable building mandates, 

and post occupancy behavior, designers can create repeatable designs that impact system 

level optimization objectives.  A structural equation model (SEM) is used to estimate 

causal relations between the sustainable building attributes and stated/revealed 

preferences that drive user behavior.  This objective contributes to the understanding of 

post occupancy user preferences for sustainable building design strategies, as well as 

their impact on high-level power system optimization objectives. 
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3.2 Formulate a Robust Topology Optimization Approach for Complex 

Infrastructure System Design 

This objective focuses on mitigating the impact of cascading failure in infrastructure 

systems, creating robust designs.  This work integrates robust topology optimization with 

network analysis in order to minimize system performance losses due failure propagation 

stemming from a single initiating event.  This novel approach presents design trade offs 

between performance and performance variability (i.e., robustness) of a degraded 

complex system, after failure has occurred.  Using this method, infrastructure system 

designs can be created that account for uncertain failure events (e.g., natural disasters) 

often affecting highly distributed networks.  Specifically, this research incorporates 

system specific stochastic failures, and recognizes the importance of a system to meet 

minimum acceptable performance requirements in a degraded capacity. From a 

theoretical perspective, the impact of this objective is to provide an understanding of how 

topological network configurations influence system performance after a cascading 

failure. 

3.3 Evaluate the Impact of Human In-the-Loop Decision Making in 

Robust Design 

This objective is critical when designing infrastructure systems as operators (i.e., 

humans) can inadvertently make decisions during a cascading failure event that 

negatively impacts the resulting system performance.  Topology constraints and design 

solutions from Objective 3.2 are used as a building block to identify critical locations for 
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system operators, as well their domain specific control strategies.  This work will 

consider the stochastic nature of human decision-making within an infrastructure system, 

and provide insight to how these decisions can affect performance losses due to 

uncontrollable cascading.  From a theoretical perspective, the impact of this objective is 

to provide an evaluation of how to create robust designs that account for internal human 

decisions intended to control emergent system behavior. 
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CHAPTER 4: QUANTIFICATION OF INDOOR ENVIRONMENTAL 

QUALITY IN SUSTAINABLE BUILDING DESIGNS USING 

STRUCTURAL EQUATION MODELING 
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4.1 Abstract 

This paper presents an experimental design framework for quantifying Indoor 

Environmental Quality in sustainable buildings, by estimating causal relations between 

design attributes, and both the stated and revealed post occupancy user preferences.  In 

this research, a combination of statistical data and qualitative assumptions are used to 

formulate a structural equation model (SEM) to determine a subsequent latent construct 

between variables.  The SEM is comprised of fixed attributes, observed variables, and 

latent variables, and is designed to evaluate postulated significant correlations between 

each.  Results show that quantifying relationships among user preferences and built 

environment attributes will allow designers to consider and incorporate characteristics in 

early design that support these correlations. 

4.2 Introduction 

Sustainable building mandates such as the U.S. Green Building Council’s (USGBC) 

Leadership in Energy and Environmental and Design (LEED) are becoming increasingly 

prevalent as strategies for resource conservation in commercial buildings [72].  With 

commercial buildings consuming 19% of total energy demand in the United States, 

sustainable design practices are a creditable consideration for energy reduction [73].  

Many commercial institutions, such as universities, have declared all future new 

construction buildings will meet minimum LEED standards in an effort to reduce energy 

use and limit their overall environmental footprint.  While this may be a viable energy 

conservation strategy for academic institutions with sufficient funding, additional costs 
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above traditional commercial buildings are a primary barrier for many sustainable 

building design projects [74]. 

 In addition to LEED, more complex certifications such as the Living Building 

Challenge (LBC) have additional requirements such as net-zero energy and water [6].  To 

achieve a net-zero requirement, each building subsystem (e.g., energy collection, water 

collection, and heating, ventilation, air conditioning (HVAC)), as well as their 

interactions, must be considered [7].  By shifting the traditional architectural building 

design paradigm from a top-down approach to an integrated approach, these system 

interactions can be better evaluated.  This integrated design methodology is often found 

in aerospace, automobile, and other complex systems where optimal designs are required 

[8-10].  By applying optimization methods typically used in complex system design to 

sustainable building strategies, designers can explore important subsystem trade-offs.  

These trade-offs can then be evaluated, and the best design selected based on project 

requirements (e.g., LEED certification, cost) and designer preferences. 

 One approach to mitigate the additional costs associated with sustainable building 

design is to consider post occupancy user interactions within the built environment.  The 

literature has shown that individuals can respond positively to various characteristics of 

their indoor environment, citing qualitative preferences for lighting, temperature, and 

workspace geometry [25, 26].  In industrial manufacturing environments, these 

preferences have been linked to motivation, job satisfaction, and technical competence 

[34].  The USGBC has recognized the value of designing for these preferences by 

awarding 17 points (out of 100 possible) to a metric described as Indoor Environmental 

Quality (IEQ), toward their LEED certification [30].  Currently, LEED’s IEQ mandate 
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includes 15 metrics, however, they are primarily focused on material selection and 

environmental control strategies.  In addition, this standard does not directly address the 

long-term post occupancy effect of a building design on its users.  By quantifying the 

benefit of an individual’s indoor environmental response to sustainable buildings, the 

building attributes can be replicated, supporting engineering design.  Specifically, if an 

individual’s cumulative positive response to their environment resulted in behavioral 

changes, such as increased productivity, this productivity increase could offset additional 

costs incurred in meeting sustainable building standards. 

 The approach presented in this paper focuses on understanding the impacts of 

sustainable building design on an individual’s stated and revealed preferences for the 

built environment, and how each of these preferences affect post occupancy behavior.  

Brownstone et al. observed the importance of capturing both of these metrics as 

consumers’ stated preferences don’t always align with their actual choices [75].  By 

understanding the sustainable building design characteristics that drive user preferences, 

and the effect these designs have on their behavior, designers can incorporate building 

characteristics that support these correlations. 

4.3 Background 

As building standards such as LEED and LBC become more complex, designers must 

explore a greater breadth of feasible solutions for meeting these requirements.  Building 

users are playing a more prominent role in modern building design as literature has 

shown measurable effects on individuals’ well-being, productivity, and creativity as a 

result of their indoor environment [20-22].  During the schematic design of the Oregon 
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Sustainability Center for example, user preferences and building interactions were 

considered for quantification of energy consumption [7, 19].  As previously discussed, 

LEED’s rating for Indoor Environmental Quality (IEQ) assigns a point system based on 

metrics potentially influencing a user’s response to his or her environment.  Unlike other 

LEED categories such as Water Efficiency, satisfying the IEQ requirement does not result 

in a quantifiable resource reduction (e.g., water, energy, cost).  

 The literature regarding the effect of indoor environment on a user’s behavior has 

shown various methods attempting to quantify this relationship.  Positive behavioral 

changes such as decreased absenteeism, and increased employee efficiency and 

productivity have been recognized.  Jensen et al. examine a Bayesian Network approach 

comparing various effects of thermal environment on the performance of office workers 

[25].  This work explores causal relationships between temperature related variables and 

subsequent mental performance of workers.  These included indicators such as air 

velocity, thermal sensation, individual clothing type, and ventilation type.  In addition to 

temperature, effects of natural lighting in the workplace have also been linked to various 

performance metrics such as well-being, ability to perform, motivation, job satisfaction, 

and technical competence.  Research by Juslén has quantified a productivity unit increase 

based on workplace metrics associated with lighting relationships including visual 

performance, visual comfort, visual ambience, and job satisfaction [27].  Figure 4.1 

displays a graph summarizing several historic studies mapping interior lighting levels 

(illuminance) with employee productivity. 
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Figure 4.1: Employee productivity as a function of illuminance level in an industrial 
manufacturing setting [27] 

 

 Understanding a user’s response to their indoor environment is beneficial, 

specifically in terms of climate and lighting, as these factors contribute heavily to energy 

usage.  A sensitivity analysis performed by Heiselberg et al. shows lighting and HVAC 

systems are the two single highest users of energy in commercial buildings, and should 

be a primary concern during sustainable building design [17].  By designing lighting and 

HVAC systems with the building user in mind, trade-offs could be explored between 

energy efficiency and increases in productivity.   

 While productivity is often defined in terms of a ratio of total output per unit of 

input, it can also be evaluated in terms of reduced labor costs.  It is inferred that there is 

an inverse relationship between employee productivity and salary per hour, postulating 

that if an employee on a fixed salary has a greater productivity than expected, he or she 

 15

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Illuminance change effect for productivity. The dotted lines show the results of the 
individual tests (Ruffer, 1925 and 1927; Schneider, 1938; Goldstern and Putnoky, 1931; 
Bitterli, 1955; Stenzel, 1962a and 1962b; Crouch, 1967; Lindner, 1975; Carlton, 1980) and 
the solid curve shows the calculated average slopes (29 cases) [I]. 
 
 
The lighting preferences of office workers have been studied actively during recent decades 
(for example, Begemann et al., 1997; Maniccia et al., 1999; Escuyer and Fontoynont, 2001; 
Moore et al., 2003; Love, 1998; Boyce, 1980; Jennigs et al., 2000; Veitch and Newsham, 
2000). However, so far the research has neglected to study the lighting preferences of the 
industrial workers using long-term field studies. Industrial work and the industrial 
environment are quite different from office work and its environment. The degree of freedom 
in industrial work is often less than in office work, and the working environment in industry 
might be more noisy. From the lighting point of view, the main difference is perhaps daylight 
contribution. In offices, light coming from windows can from time to time provide vertical 
illuminances of more than 1000 lux (Aries, 2005), while, in industry, daylight is often totally 
missing or is delivered via skylights. 
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has a lower net cost (CNE) to the organization [76].  These relationships are defined in Eq. 

4.1 and 4.2:  

 

𝑃𝐼 = 𝑃! + (𝑃! ∗ 𝑃!) (4.1) 

 

𝐶𝑁𝐸 =
𝑆𝑎𝑙𝑎𝑟𝑦
ℎ𝑟
𝑃𝐼  

(4.2) 

 

where PI is the Employee Productivity Index, PE is the Expected Productivity Value, PC is 

the Change in Productivity, and CNE is Net Employee Cost ($/hr).  Hunter and Schmidt 

proposed a similar metric for productivity increase using meta-analysis, indicating it 

correlates to a reduction in both labor costs and overhead [29].  In their method, assigning 

different savings coefficients for labor and general overhead costs compounded financial 

gains.  Figure 4.2 supports this approach displaying cost comparisons between various 

building expenses, citing salary as the largest annual expense [77].  

 In addition to productivity, this research aims to explore both stated and revealed 

user preferences for design attributes commonly used in LEED buildings.  This is done 

through human appraisal experiments, designed using a Design of Experiments (DOE) 

methodology.  These methods have been refined over several decades by statisticians, and 

have recently been refined to include specific methods for preference modeling [36, 37].  

Chen et al. have outlined a method to observe the effect of differing values of a factor, or 

user-based attributes, on a response variable [38].  
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Figure 4.2: Cost comparison of post occupancy building expenses [77] 

  

For example, multiple design alternatives can be presented to a customer or product user, 

and a corresponding rating response can be chosen, ultimately resulting in a single design 

preference. Individual factor levels and combinations (or interactions) are then identified 

which will define a design alternative.  Hoyle et al. provide a case study of this method, 

using human appraisal data for automobile seating ergonomics [39].  In this work, both 

Blocked and Split-Plot statistical analysis are used to capture significant attributes of 

customer design preferences [40].  Based on the significant factors, a model for customer 

seating preferences is created, and compared to the actual preference data collected.     

 Since LEED buildings are based on energy efficiency design mandates, typical 

design qualities include passive energy savings features such as large window-to-wall 

ratio, passive air ventilation, and an open floor plan.  These architectural attributes 

consequently end up satisfying constraints for energy efficiency, but do not actively 

contribute to improving the workspace preferences that LEED’s IEQ metric attempts to 
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capture.  However, research by Fisk corroborates LEED design strategies, suggesting that 

energy efficiency and IEQ are not mutually exclusive, since many sustainable buildings 

address both considerations [78].       

 Existing literature shows a long history of positive effects of lighting on individuals 

in different workplace environments [31, 32].  Romm and Browning have presented 

several case studies where increased lighting in an existing workspace resulted in lower 

absenteeism, lower productions errors, and higher productivity [33].  This work also 

reported on new construction buildings, including a Lockheed facility claiming 15% rise 

in production, and 15% decrease in absenteeism due to architectural natural lighting 

features throughout the building.  Research by Day et al. relate the attributes of building 

lighting design, in terms of natural lighting, to user satisfaction, health, and occupancy 

[34].  Hua et al. examine post-occupancy response to lighting conditions in a LEED Gold 

certified laboratory building [35].  This research combineds illuminance measurements 

on work plane surfaces with rating surveys of long-term occupants, to determine overall 

user satisfaction of the building. 

4.4 Contributions 

This paper presents a novel approach to sustainable building design that identifies key 

relationships between user preferences and building design characteristics (e.g. LEED 

mandates).  A framework is developed for quantifying IEQ in sustainable buildings by 

estimating the causal relations between design attributes and both the stated and revealed 

user preferences for these designs.  The metrics in this framework are based on post-

occupancy user preferences for the indoor environment of sustainable buildings (e.g., 
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LEED certified).  Structural equation modeling (SEM) is used to evaluate postulated 

significant correlations between fixed attributes, observed variables, and latent variables.  

Within this model, latent variables uncovered in the statistical analysis represent 

emergent preferences resultant of a building’s indoor environment.  This approach will 

enable designers to explore tradeoffs between fixed costs, operational costs, and cost 

savings due to sustainable building mandates. 

 The stated preference metric employs a psychometric survey designed for building 

users who frequently occupy LEED buildings on a university campus.  This survey 

evaluates building preference information from frequent users, including studying and 

socializing habits, temperature, and lighting.  For this research, the survey was 

administered to university students who were familiar with the buildings selected.  A 

statistical factor analysis was performed resulting in multiple distinct factors, or latent 

variables, correlating building attributes with user preference indicators.  This analysis 

resulted in the identification of latent variables pertaining to Personal Building 

Preference, Building Design, and Building Usability.   

 The revealed user preference metric aims to validate these stated preferences by 

capturing the relationship between user occupancy and lighting levels in LEED certified 

buildings.  This experimental procedure concurrently measures illuminance and number 

of occupants in a public workspace over a given period of time.  This is accomplished 

with time-lapse photography, light meters, and data loggers.  A generalized linear model 

identifies significant individual treatment effects, as well as treatment interactions.  A 

nested split-plot design technique is utilized to mitigate randomization restrictions from 

collecting data over multiple days.  The analysis of this experiment results in a statistical 
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numerical interpretation between illuminance and occupancy, while evaluating the effects 

of experimental restrictions and noise. 

 The approach presented in this paper directly addresses deficiencies in how 

sustainable building mandates identify design characteristics that measurably influence 

user preferences.  Specifically, existing IEQ metrics do not accurately capture the 

building design attributes that drive post occupancy user preferences for the built 

environment,.  Quantifying the impact of sustainable building attributes on these user 

preferences will allow designers to trade off IEQ with other performance metrics (e.g., 

energy use, cost, environmental impact) when creating optimal building designs. 

4.5 Methods for Quantifying User Preferences 

4.5.1 Structural Equation Modeling and Latent Variables 

This research aims to understand post occupancy user preferences for sustainable 

buildings, and how these preferences are influenced by the building designs.  The 

motivation for this work comes from literature citing positive relationships between users 

and their indoor environments, specifically physical characteristics such as natural 

lighting, temperature, and design geometry [20, 78].  As sustainable mandates become 

more prevalent as a means to reduce energy consumption, novel design strategies must be 

applied to satisfy user requirements.  One technique, behavior modification, has been 

explored as a method for reducing energy demand within a building [79].  A barrier to 

this strategy is the inability of the designer to accurately quantify potential energy savings 

from user behavior based solely on building characteristics or attributes.  Subjectivity 
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about what affects an individual’s behavior makes it difficult to create repeatable designs 

that rely on users to meet energy demand requirements.  The following framework was 

developed to help designers understand user preferences of existing sustainable buildings, 

so future design decisions can be made considering attributes preferred by post-

occupancy users. 

 In this paper, a structural equation modeling (SEM) approach is explored as a 

viable strategy for understanding the effects of sustainable building mandates on building 

users.  This approach estimates causal relations by combining different types of 

performance metrics including empirical measurements, categorical survey evaluations, 

and causal assumptions.  SEM strategies are primarily used in sociology and medicine 

where a combination of several observed variables are needed to assess the nature of a 

latent variable construct [80].  The term latent variable refers to a variable that cannot be 

observed directly, but is a function of other related variables that are more easily 

quantified.  Wheaton et al. originally formulated this approach based on a need to 

determine an underlying “true score” variable that measured two or more points in time 

[81].  A primary function of SEM is the ability to correlate a combination of fixed 

attributes, observed variables, and latent variables [82].  This approach is slowly gaining 

momentum in the design community, specifically when trying to identify driving 

customer preferences for product design.  Hoyle et al. use utility theory to extract design 

preferences from individuals by analyzing product attributes, sociodemographic factors, 

and customer survey responses [39].  The importance of customer feedback is described 

in previous work by Everitt and Loehlin, identifying the ability to capture an individual’s 

attitude toward a specific design through the use of a psychometric survey [41, 42].  Chen 
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et al. have further developed this work, outlining a method identifying user preference 

indicators, based on specific product attributes [38].  In their work, a case study is 

presented based on data from J.D. Power’s Vehicle Quality Survey, where consumer 

attitudes on various automobiles were collected, and presented as examples of preference 

indicators regarding specific vehicle attributes.   

 In the context of sustainable building design, latent variables for stated customer 

preferences are formulated by statistically combining building attributes with associated 

indicators that describe user preferences.  Building attributes are defined as 

characteristics of the indoor building environment (e.g., lighting, temperature, number of 

windows, amenities).  The indicators will be defined as an individual’s attitude, or 

preference, toward design characteristics present in existing sustainable building 

architecture.  The latent variables are then used to capture these preferences, quantifying 

a variable that is typically unobservable.  Figure 4.3 displays the latent variable model as 

it pertains to building indoor environment or usability. 

 

Figure 4.3: Latent variable model for indoor environmental quality (IEQ) 

 

 The method presented in this paper expands the application of existing approaches 

cited in the literature, attempting to understand the complex relationship between 

sustainable building design mandates and an individual’s response to these indoor 
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environments.  The flexibility of SEM will be used to quantify these responses by 

correlating relationships between building attributes, psychometric survey responses, and 

empirically determined revealed preferences. 

4.5.2 Structural Equation Model Development 

A model was constructed using fundamental SEM principles originally outlined by 

Wheaton et al., applying them in the context of quantifying subjective building design 

performance metrics such as IEQ [81].  This approach is unique, specifically due to its 

applications for sustainable building design.  In this research, key latent performance 

metrics are identified by statistically correlating sustainable building design attributes, 

individual preferences for these designs, and subsequent interactions between the two.  

First, an initial path diagram was constructed displaying the conceptual ideas behind the 

actual situation (Figure 4.4).  This diagram includes four primary components relative to 

the model including categorical variables (taken from a psychometric survey), empirical 

data (collected within a LEED certified building), explanatory observed variables 

(building attributes such as window to wall ratio or LEED certification - i.e., fixed 

covariates), and latent variables (as described in Figure 4.3).   
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Figure 4.4: Hypothetical path diagram displaying conceptual model relationships 

  

 The one-way arrows between each variable represent a postulated significant 

correlation between one variable and another.  The first component captures the latent 

building characteristics as identified from the stated preference survey data.  These 

characteristics represent user’s opinions about post occupancy building attributes.  While 

the survey questions for this research are tailored for the built environment, this approach 

is applicable across various design disciplines.  The second component incorporates the 

empirical revealed preference data, which aims to validate the individual’s stated 

preferences.  This is done by experimentally identifying which elements of sustainable 

building design drive occupancy.  The third component is the addition of the explanatory 

observed variables, or fixed covariates. These variables provide additional information 

about the model landscape, reducing the estimation uncertainty for the latent variables 

[80].  For example, the presence of a LEED certification in a building provides important 

context for architectural attributes.  Finally, latent variable relationships are added to the 
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model for both the categorical survey data, as well as the empirical data.  For the stated 

preference survey, these are defined from the factor analysis as outlined in Table 4.1.  For 

the empirical data, latent variables are incorporated based on results from the ANOVA 

analysis (Figure 4.6).  This variable represents the statistical correlations between 

building occupancy and the associated independent variables.  It is predicted that these 

latent variables from each data set can then be used to identify a higher-level latent 

variable that is directly influenced by each.  This resulting relationship is the key 

component to identifying a meaningful correlation between data types.  The measurement 

equation for the predicted path diagram is defined by Eq. 4.3: 
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 (4.3) 

 

where 𝑠!…! are the factored results of the categorical survey questions, 𝑒!,!  are 

empirically sampled variables, 𝑐!,! are fixed covariates influencing both of these 

variables.  In addition, 𝑐!,! are fixed covariates influencing the latent variables 

𝐿𝑉!, 𝐿𝑉!, 𝐿𝑉! directly, 𝑎!!!!" are regression coefficients, β1 and β2 are the factor scores 

relating 𝐿𝑉! to 𝐿𝑉! and 𝐿𝑉!, 𝜆!!!!" relate the latent variables to each of the observed 

variables, and 𝜖!…! are the error terms.  
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4.5.3 Psychometric Stated Preference Survey 

Based on relationships identified from the hypothetical path diagram, a psychometric 

survey was developed to elicit a preference for various sustainable building design 

attributes by frequent users.  This survey is based on a seven point Likert scale, 

commonly used for quantitatively evaluating social attitudes [83].  The Likert scale is a 

bipolar scale, containing a neutral preference option, indicating the respondent does not 

have an opinion on (or is unfamiliar with) the content of the questions [84]. 

 The overall goal of this survey is to determine which architectural attributes of 

LEED certified buildings are preferred by frequent users.  The buildings were chosen 

based on several characteristics such as departmental usage, age, presence of public 

workspace, and geometry.  The primary common feature among the buildings is a public 

atrium where students can study or socialize.  The atriums share similar stylistic 

construction features including use of natural lighting, high ceilings, open floor plan, and 

plentiful seating.  In addition, each space has a coffee shop with a selection of food and 

beverages.  To obtain a point of reference on which buildings are being evaluated, 

respondents are asked to identify which building they are the most familiar with at the 

beginning of the survey. 

 This survey was developed to be self-administered, and distributed to university 

students during a course in which they were enrolled.  The questions were tailored around 

an individual’s potential preference for certain building attributes, primarily related to 

both of their studying and socializing habits.  These attributes included features such as 

lighting, temperature, presence of windows, amenities, and workspace features.  The 

questions were further divided to investigate an individual’s specific attitude toward how 
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they interact within the common workspace of the building, and which attributes 

contribute to this usage.  The first question asks how often the respondent uses the 

building they selected, and is the only question not using the seven point Likert scale.  

This gives the researchers a baseline for occupant frequency.  The survey contains 21 

questions, and was administered to 213 students to obtain a quality data set [84].  Extra 

credit course points were not issued to students agreeing the participate [85].  The 

finalized questions submitted to the Institutional Review Board (IRB) can be seen in the 

Appendix [86].  

 To interpret the results of the preference survey, a factor analysis was performed.  

The purpose of factor analysis is to describe the covariance relationships among many 

random variables in terms of a few underlying, but unobservable, random quantities 

called factors [87].  In the context of this research, the random (latent) variables are 

unobservable variables such as IEQ, while the measurable quantities are indicators such 

as lighting type.  The factor analysis model is shown in Eq. 4.4: 

 

𝑋! − 𝜇! = 𝑙!!𝐹! + 𝑙!"𝐹!+. . . 𝑙!!𝐹! + 𝜀! (4.4) 

𝑋! − 𝜇! = 𝑙!"𝐹! + 𝑙!!𝐹!+. . . 𝑙!!𝐹! + 𝜀!  

𝑋! − 𝜇! = 𝑙!!𝐹! + 𝑙!!𝐹!+. . . 𝑙!"𝐹! + 𝜀!  

 

where: 

Xi = observable (latent) random variable 

µi = mean of latent variable   

lij = loading of the ith variable on the jth factor 
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Fj = jth common factor 

ε = ith specific factor (error) 

 

 While there are different methods of factor analysis estimation, the Maximum 

Likelihood Method for parameter estimation is used since the log-likelihood is additive as 

opposed to multiplicative [87].  This method assumes factors F and specific factors ε  are 

normally distributed.  To perform the estimation, the statistical software STATA is used 

[88].  The output result is shown in Table 4.1.   

Table 4.1: Output formatting for the factor analysis output 

Variable Factor 1 Factor 2 …… Factor m 

X1 loading 11 loading 12 …… loading 1m 

X2 loading 21 loading 22 …… loading 2m 

: : : …… loading 3m 

Xp loading p1 loading p2 …… loading pm 

 

 To determine an accurate number of latent variables, the factored correlation matrix 

is examined, and the convention of selecting factors based on eigenvalues greater than 

one is used [42].  In order to assist with the intrepretation of factor loading, a factor 

rotation is performed to position the orthogonal axis where variables load highly [41].  

This oblique rotation is nonrigid, leading to a new axis that passes through the most 

prominent loading clusters [87].  The Varimax rotation, developed by Kaiser, is used 

based on its ease of loading interpretation [89].  A graphical representation of this method  

is shown in Figure 4.5, displaying an orthogonal rotation in two dimensions, where x1 
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and y1 are factors, and the angle of rotation between the original axis m and a new axis n 

is θm,n [90]. 

 

Figure 4.5: Orthogonal rotation diagram [90] 

 

4.5.4 Experimental Design for Revealed Preference 

As a way to observe an individual’s actual, or revealed preferences for sustainable 

building indoor environments, an experiment was designed to correlate workspace 

occupancy as a function of available lighting, or illuminance.  This hypothesis is based on 

the assumption that a user will choose to occupy a publicly accessible workspace based 

on specific design attributes, such as increased lighting levels due to large window-to-

wall ratios (WWR), often present in LEED architectures [91].  While workspace 

occupancy cannot directly infer causation between a building design and a user’s 

preference for this design, it can be used as an indicator to learn more about the 

relationship.  By identifying a significant relationship between illuminance and 

occupancy in sustainable buildings, the interaction between building users and their 

angle between the original axis and the new one: rm,n = cos θm,n. For example
the rotation illustrated in Figure 1 will be characterized by the following matrix:

R =

[

cos θ1,1 cos θ1,2

cos θ2,1 cos θ2,2

]

=

[

cos θ1,1 − sin θ1,1

sin θ1,1 cos θ1,1

]

, (2)

with a value of θ1,1 = 15 degrees. A rotation matrix has the important property
of being orthonormal because it corresponds to a matrix of direction cosines and
therefore RT R = I.

θ

x
y

y

x1

1

2
2

1,1

θ2,2

θ1,2

θ2,1

Figure 1: An orthogonal rotation in 2 dimensions. The angle of rotation between
an old axis m and a new axis n is denoted by θm,n.

Varimax

Varimax, which was developed by Kaiser (1958), is indubitably the most
popular rotation method by far. For varimax a simple solution means that each
factor has a small number of large loadings and a large number of zero (or small)
loadings. This simplifies the interpretation because, after a varimax rotation,
each original variable tends to be associated with one (or a small number) of
factors, and each factor represents only a small number of variables. In addition,
the factors can often be interpreted from the opposition of few variables with
positive loadings to few variables with negative loadings.

Formally varimax searches for a rotation (i.e., a linear combination) of
the original factors such that the variance of the loadings is maximized, which
amounts to maximizing

V =
∑

(

q2

j,ℓ − q̄2

j,ℓ

)2
, (3)

3
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environment can be further understood.  This information can be used when attempting to 

understand design trade-offs between user preferences, energy efficiency, and cost.  In 

this research, the workspaces being evaluated are LEED certified buildings on a 

university campus, each of which contain an open floor plan common atrium.  Since 

these common workspaces are public, occupancy is based on a user’s decision whether or 

not to use the area for studying, socialization, or the area’s amenities. 

 To measure illuminance, a light meter equipped with a data logger was placed at 

work plane level, in the atrium seating area.  Although there are minor changes in 

illuminance with increasing distance from the exterior windows, these will not be 

considered in this experiment.  To measure occupancy, a time-lapse digital camera was 

placed at one end of the atrium, with the ability to capture an image of all users 

occupying the workspace.  Both the light meter and the camera concurrently collected 

measurements every 15 minutes from 6:00am to 6:00pm, Monday through Friday.  The 

total number of occupants present in the images collected were recorded with the 

corresponding time of day and illuminance measurements. 

 Data measurements are taken in different buildings, and randomization restrictions 

are incorporated in the analysis.  Since the goal of this experiment is not to compare 

buildings against one another, blocking is utilized to address effects on individual 

building occupancy.  In addition, the experiment is conducted during the academic school 

year, so there is a concern that student schedules could drive occupancy changes.  To 

mitigate these issues, a nested split-plot design is used to analyze the data.  A detailed 

layout can be seen in Figure 4.6.   
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Figure 4.6: Nested split-plot design layout 

  

This concept is helpful when there are two levels of randomization restrictions within a 

block [92].  In this design, the experiment is identically performed, Monday through 

Friday, in each of the buildings.  This gives a total of five replicates in each building.  

The time-lapse camera captured occupancy, with images being recorded every 15 

minutes, from 6:00 am until 6:00 pm.  Illuminance levels are recorded simultaneously 

during the same time period.  The resulting data is then organized in groups of six 

categorical time ranges, with illuminance being measured empirically.  Based on initial 

illuminance testing in each of the buildings, lighting values range from 20 – 4000 lux, 

depending on local weather conditions.  Time ranges are grouped as 6:00 am – 8:00 am, 

Time
Day Range 1 2 3 4 5 6 1 2 3 4 5 6

1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2
. . . . . . . . . . . .
η η η η η η η η η η η η

1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2
. . . . . . . . . . . .
η η η η η η η η η η η η

1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2
. . . . . . . . . . . .
η η η η η η η η η η η η

1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2
. . . . . . . . . . . .
η η η η η η η η η η η η

1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2
. . . . . . . . . . . .
η η η η η η η η η η η η

Wednesday Illuminance

Thursday Illuminance

Friday Illuminance

Building 1 Building 2

Monday Illuminance

Tuesday Illuminance
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8:00 am – 10:00 am, 10:00 am – 12:00 pm, 12:00 pm – 2:00 pm, 2:00 pm – 4:00 pm, and 

4:00 pm – 6:00 pm. 

 To analyze the data, the statistical program StatGraphics is used [93].  The primary 

relationship of interest is occupancy as a function of illuminance, however confounding 

factors from each building, day of the week, and time of day are also examined.   

4.6 LEED Certified Building Case Study 

To illustrate an application of the methodology described above, a LEED certified 

building case study is presented.  The initial data acquisition and subsequent analysis is 

included for both the stated and revealed user preferences. 

4.6.1 Stated User Preferences 

Incorporating the analysis from the psychometric survey is the next step for creating the 

SEM.  This survey was conducted with 213 engineering students, and distributed over 

three different junior level mechanical engineering design courses.  The buildings chosen 

for the survey were LEED certified new construction, used frequently in by engineering 

students.  The survey results were manually entered in STATA, where a factor analysis 

estimation was performed.  Based on the eigenvalues of the factored correlation matrix, 

three factors were determined to be significant.  To aid in the interpretation of values for 

factor loading, a Varimax rotation was performed.  Table 4.2 displays the variable 

indicator descriptions, resulting factors (latent variables), and corresponding factor 

loadings.  For clarity, only loadings with an absolute value > 0.3 are shown. 
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 Beginning with Factor 1, the positively loaded variables are associated with 

frequency of use, studying preference, socializing preference, availability of amenities, 

work speed, use for homework, perceived popularity, and “green” construction.  From 

this data it can be suggested that this factor reflects a latent variable of Personal Building 

Preference, where an individual prefers attributes associated with a familiar workspace 

where they can work productively, while still interacting socially and having access to 

amenities.   

 Factor 2 contains all positive loadings including lighting quality, temperature 

quality, seating quality, architecture quality, use of windows and color preference.  This 

latent variable can be described as Building Design.  Factor loadings infer general 

positive building preferences for specific architectural features, indicating the user 

recognizes their importance.  The loadings also indicate users prefer comfortable seating, 

presence of natural light, and a comfortable temperature. 

 Factor 3 was positively loaded for preferences pertaining to importance of lighting, 

importance of temperature, traditional workspace (desk instead of couch), quiet 

environment, fresh air importance, and color preference.  This factor can be associated 

with Building Usability.  For this factor, stated user preferences described a practical 

workspace with specific requirements.  These individuals indicate a preference to work in 

a practical, productive environment, free from distractions. 
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Table 4.2: Factor loadings for stated user preferences 

Indicator 

Description 

Factor 1 Factor 2 Factor 3 

Personal Building Building Building 

Preference Design Usability 

Frequency of  Use  0.5364     

Studying Preference   0.8009      

Socialize Preference  0.5012     

Lighting Quality    0.6976   

Temperature Quality    0.4129   

Seating Quality    0.3892   

Architecture Quality    0.4064   

Availability of Amenities  0.3565     

Use of Windows   0.4868    

Work Speed  0.6642     

Use for Homework  0.7771     

Perceived Popularity  0.5573     

Importance of Lighting     0.5689  

How Others Use Space       

Environment Familiarity       

Importance of 

Temperature      0.3562 

Traditional Workplace      0.4689 

Quiet Environment      0.3783 

Fresh Air Importance      0.3411 

"Green" Construction  0.3167     

Color Preference   0.3978  0.3125  

 

 Based on this analysis, each latent variable describes a distinct workspace attribute 

that would otherwise be difficult to quantify on its own.  These three factors are imported 

into the SEM, representing empirical input variables for the model.  By extracting distinct 
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user requirements from stated preferences, latent variable analysis can help designers 

tailor building attributes for specific workspace objectives. 

4.6.2 Empirical Evidence for Revealed User Preferences 

The last step in creating the SEM is the incorporation of the empirical data.  For this 

analysis, data was collected at two buildings on the Oregon State University campus.  

Both are LEED Gold certified new construction, and used for engineering.  These 

buildings were selected based on several common design characteristics including 

frequency of engineering student use, presence of an atrium style public workspace, 

amenities (coffee shop), open seating area, and window to wall ratio over 0.30.  For 

research consistency, both the psychometric survey and data collection referenced the 

same buildings.  Occupancy was captured using time-lapse images, and manually 

extracting by count the current number of occupants during a designated time frame.  

Figures 4.7a and 4.7b respectively display images from both Buildings 1 and 2. 

 First, a cursory linear regression analysis of the raw occupancy and illuminance 

data was performed to gain an understanding of the relationship between these two 

variables.  Based on these results, a logarithmic transformation was applied to the 

illuminance values, and a square root transformation was performed to occupancy values 

to stabilize the variance [92].  Figure 4.8 displays the results of the linear regression 

analysis of these elements, for both Building 1 and 2.  Since these data sets have not been 

normalized, the range of occupancy values are different.  This is because the total 

occupancy for Building 1 is greater than Building 2. 
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Figure 4.7a: LEED certified Building 1 workspace 

 

 

Figure 4.7b: LEED certified Building 2 workspace 

  

Next, a generalized linear model was created in StatGraphics to determine the statistical 

significance between illuminance and occupancy.  In addition to the empirical data 

collected, this also model also incorporates the categorical effects of time range and day 

of week to address randomization restrictions.To capture potential external effects due to 

scheduling, interactions between each variable were also considered during the analysis.  

Based on the results shown in Table 4.3, statistically significant effects (based on a p-
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value ≤ 0.05) on occupancy are time range, the building, and illuminance.  Significant 

interactions include every two and three factor interactions between each variable with 

the exception of the interaction between illuminance and building.  This reinforces the 

hypothesis that occupancy is truly a function of sustainable building design 

characteristics, and not a specific building itself. 

 

 

Figure 4.8: Square-root of occupancy versus log transformed illuminance 

  

Based on this analysis, user occupancy in each LEED certified building varies 

significantly as a function of lighting level.  This relationship occurs in both buildings, 

independently of potential confounding factors such as student class schedules or day of 

the week.  From these results, design variables for illuminance and time of day are 

incorporated into the SEM. 
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Table 4.3: ANOVA results for revealed preferences 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Ratio P-Value 

Time Range 7238.37	   5	   1447.6700	   41.6100	   0.0000	  

Day of Week 161.988	   4	   40.4969	   1.1600	   0.3252	  

Building 3218.81	   1	   3218.8100	   92.5100	   0.0000	  

Illuminance 169.938	   1	   169.9380	   4.8800	   0.0271	  

Time Range*Day of Week 1220.92	   20	   61.0459	   1.7500	   0.0212	  

Time Range*Building 1548.63	   5	   309.7270	   8.9000	   0.0000	  

Time Range*Illuminance 2817.29	   5	   563.4590	   16.1900	   0.0000	  

Day of Week*Building 354.939	   4	   88.7347	   2.5500	   0.0378	  

Day of Week*Illuminance 388.742	   4	   97.1855	   2.7900	   0.0252	  

Illuminance*Building 129.708	   1	   129.7080	   3.7300	   0.0535	  

Time Range*Day of 

Week*Building 
2027.81	   20	   101.3900	   2.9100	   0.0000	  

Time Range*Day of 

Week*Illuminance 
1644.99	   20	   82.2494	   2.3600	   0.0007	  

Day of Week*Building*Illuminance 741.099	   4	   185.2750	   5.3200	   0.0003	  

Time Range*Building*Illuminance 1095.01	   5	   219.0010	   6.2900	   0.0000	  

Residual 35071.8	   1008	   34.7935	  
  

Total (corrected) 233777	   1007	  
   

 

4.7 Structural Equation Model Results 

Based on the results of each independent data analysis from the psychometric survey and 

the empirical data, a SEM was constructed within the R computing environment [94]  

After many iterations stemming from the initial path diagram hypothesis, the resulting 

diagram is shown in Figure 4.9.   
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Figure 4.9: Evaluated structural equation model 

  

In this model, the three factors resulting from the categorical variable (survey) analysis 

are represented as indicators corresponding directly to a top-level latent variable which 

can be represented explicitly as Indoor Environmental Quality (IEQ).  In addition, IEQ is 

also predicted by an independent latent variable characterized as User Behavior.  This 

variable describes post occupancy user response to specific building design attributes, 

and includes indicators for lighting levels, the unique design of a specific building, and 

the time range a building is used.  After performing the analysis in R, the results of this 

model are statically supportive of the path diagram (Table 4.4).   
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Table 4.4: Structural equation model fit comparison 

SEM Performance Experimental Acceptance 

Metric Value Value 

Goodness-of-Fit 0.99236 > 0.90 

Adjusted Goodness-of-

Fit 0.98568 > 0.90 

RMSEA 0.02688 < 0.10 

Non-Normed Fit 0.92672 > 0.90 

 

 The most relevant metric to validate this case is the Root Mean Squared Error 

Approximation (RMSEA) index, which is significantly below the acceptance value of 

0.10 [95].  This measure indicates how accurately the model describes the correlations 

within the data using optimal model parameters.  Both Goodness-of-Fit and Adjusted 

Goodness-of-Fit indices are well above the acceptance level of 0.90, describing the 

model’s ability to recreate observed variances between observations.  The Non-Normed-

Fit index, which has an acceptable value above 0.90, suggests that further refinements 

could be used to improve model fit, specifically the inclusion of additional latent variable 

indicators [95].  In addition, increasing the size of the input data sets will also increase 

model fit. 

 Based on this cursory analysis, the impact of various building design attributes 

(Figure 4.3) on user preferences can be used to quantify IEQ.  It is demonstrated in this 

case study that illuminance affects post occupancy building usage, however additional 

work is needed to validate the use of IEQ as a performance metric.  For example, IEQ 

could now be incorporated into a building optimization objective function, and could be 

traded off with other environmental considerations (e.g., heat loss, energy use). 
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4.8 Conclusions and Future Work 

As sustainable building mandates such as LEED and LBC become more prevalent, 

designers must look for novel solutions to meet design requirements, while maintaining 

cost expectations.  This paper presents a novel approach for quantifying the U.S. Green 

Building’s performance metric of IEQ, by estimating causal relations between design 

attributes, and both the stated and revealed user preferences for these buildings.  

Understanding an individual’s preferences for sustainable design characteristics could 

lead to repeatable designs that would offset additional costs required to meet these 

mandates.  The experimental design framework presented could be implemented in 

design optimization strategies, examining trade-offs between building standards, users, 

and cost.  Sustainable building design costs could be mitigated by recognizing the 

relationship between building designs, and user behavior (e.g., occupational productivity, 

energy usage) as a result of these designs. 

 A key benefit of this approach is flexibility, allowing it to be applied to design 

problems across multiple disciplines where user and product interaction, and subsequent 

behavior are influenced heavily by the design characteristics.  For example, existing 

hybrid-electric vehicles only account for a small portion of the automotive market.  This 

is because their design only appeals to a narrow segment of the population due to 

personal preferences, despite comparable functionality within their class (e.g., mid-size 

sedan, SUV).  Understanding which design attributes drive latent preferences in hybrid-

electric vehicles could expand their market share, resulting in reduced natural resource 

consumption. 
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 While the approach developed for this paper shows merit, additional research is 

needed to increase accuracy.  In the LEED building case study presented, additional 

empirical measurements could be included such as indoor temperature, humidity, and air 

quality.  In addition, the input data size should be increased by including measurements 

from additional LEED buildings to verify consistency.  Finally, LEED buildings and 

users outside of a university campus could be analyzed to address any biases present in 

an academic institution. 
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5.1 Abstract 

Optimizing the topology of complex infrastructure systems can minimize the impact of 

cascading failures due to an initiating failure event.  This paper presents a novel approach 

for the concept-stage design of complex infrastructure systems by integrating physics 

based modeling with network analysis to increase system robustness.  This approach 

focuses on system performance after cascading has occurred, and examines design trade-

offs of the resultant (or degraded) system state.  In this research, robustness is defined as 

the invariability of system performance due to uncertain failure events.  Where a robust 

network has the ability to meet minimum performance requirements despite the impact of 

cascading failures.  This research is motivated by catastrophic complex infrastructure 

system failures such as the August 13th Blackout of 2003, highlighting the vulnerability 

of systems such as the North American Power Grid (NAPG).  A mathematical model was 

developed based on the IEEE 14 test bus using an adjacency matrix, and uncertain failure 

events are simulated by removing a network connection.  Performance degradation is 

iteratively calculated as failures propagate throughout the system, and robustness 

represents the lack of performance variability over multiple cascading failure scenarios.  

The overarching goal of this research is to understand key system design trade-offs 

between robustness, performance objectives, and cost.  In addition, optimizing network 

topologies to mitigate performance loss during concept-stage design will enable system 

robustness. 
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5.2 Introduction 

Current literature shows many existing approaches available to understand the effects of 

failure propagation in complex infrastructure systems.  However, as these systems 

become increasingly heterogeneous and distributed (e.g., smart grids, electronic data 

networks, transportation networks), they become more susceptible to failures despite 

continued advances in system specific technology [56, 59, 96].  Since complex 

infrastructure systems operate in highly stochastic environments, it is not cost-effective 

(or even possible) to design for total immunity to uncertain failure events.  Alternatively, 

this research asserts that systems must be designed for system robustness by 

incorporating the effects of fault propagation into optimization objectives, evaluating the 

performance of the resultant degraded system state.   

 This strategy of optimizing for degraded performance is applicable over a wide 

range of complex infrastructure systems.  In a traffic network for example, if a bridge 

between two densely populated regions is unavailable due to a vehicle accident, 

commuters will automatically begin taking the next fastest (or shortest path) alternative 

route.  To avoid subsequent vehicle accidents, the traffic network must be able to support 

increased commuter volume without exceeding the intended route capacity.  

Alternatively, designing for system robustness is equally important in infrastructure 

systems with less tangible material flows such as energy (e.g., power grid) or information 

(e.g., communication network).  Imagine a network of Unmanned Aerial Vehicles 

(UAVs) that must gather information, and successfully transfer it to each other at a 

desired bandwidth.  If a single UAV is unable to transmit data due to unexpected failures, 
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the remaining vehicles must still be capable of accurately communicating system level 

information, even at a reduced rate [97].    

 This paper introduces a concept-stage topology optimization approach for the 

robust design of complex infrastructure systems.  The IEEE-14 power system test case is 

used to demonstrate their vulnerability.  For example, if a single transmission line is 

broken due to a falling tree, the existing power is immediately redistributed, potentially 

triggering a cascading failure.  The primary goal of this research is to facilitate an 

understanding between design trade-offs in system performance and robustness.  For 

example, if the system optimization objectives were purely performance driven, a 

traditional optimization approach would suffice.  Conversely, if the optimization 

objectives also contained the need for invariant performance with respect to all potential 

failure scenarios, a robust design strategy could be implemented.  Robust optimization 

examines trade-offs between performance and robustness, considering the impact of 

uncertain failure events. 

5.3 Background 

Robustness is typically defined in literature as the ability of a system to behave as 

intended, despite the effects of uncertainty from both internal and external sources [53, 

98].  While the effects of uncertainty on a system can be accurately predicted in some 

applications (e.g., manufacturing), it is difficult to characterize this behavior in complex 

infrastructure systems, especially as they become increasingly large and distributed.  In 

addition, systems optimized for performance are particularly susceptible to failures due to 

uncertainty as they are finely tuned to meet a specific objective (or set of objectives) 
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without considering failure.  For example, a single initiating failure can propagate 

throughout a power system uncontrollably, resulting in severely degraded performance or 

complete failure.  To understand these cascading issues, current methods have employed 

graph theory and network analysis for evaluating emergent behavior [55, 96].  However, 

performance metrics such as node degree and centrality measures are too far abstracted 

from actual infrastructure systems to accurately model the impact of cascading failures.  

Specifically, there is no provision to incorporate robustness into complex infrastructure 

system design to mitigate the effects of cascading failures due to uncertain events. 

5.3.1 Robust Design 

While there are various methods contributing to the design of complex infrastructure 

systems, many approaches are typically focused exclusively on network analysis or 

modeling component interactions, and do not address the formalized concept of 

robustness [43-51].  Historically, robust design has been used in manufacturing to 

minimize unintended consequences (variability) from uncontrollable environmental 

effects [53].  Expanding on Taguchi’s fundamental methods [53], Chang et al. have 

scaled these principles to design complex systems where multiple subsystems must be 

optimized independently with limited knowledge of other system design parameters [54].  

This work outlines the need for an optimization approach accounting for system-level 

physical and intangible noises that are out of the designer’s control.  Incorporating 

robustness into a system model allows the designer to capture uncertainty, without the 

need to understand or reduce the source.   
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 The primary issue, however, is creating designs that are robust to the various types 

of uncertain failures common in highly distributed systems.  Many failures occur as a 

result of external occurrences such as extreme weather conditions, and predicting the 

impact of cascading failures resulting from a single initiating event is challenging.  

Examining the system topology as a means of increasing design robustness builds on 

existing approaches, expanding current methods into complex infrastructure systems, 

discussed next. 

5.3.2 Network Theory and Topological Graph Models 

Based on the distributed nature of many complex infrastructure systems, understanding 

topological effects is important when designing for topological robustness.  Current 

literature addresses the importance of considering topology in network optimization, 

often drawing from network theory where networks are represented mathematically, 

often with an adjacency matrix [55-57].  Several network performance indices are studied 

in the literature, which can be primarily categorized into three major classes: reachability 

measures, vitality measures, and flow measures.  For example, Kinney et al. model the 

power grid with an adjacency matrix, where each node represents either a generation or 

demand component in a network, and arcs connecting the nodes represent connectivity 

[57].  In this work, failures are examined by removal of a single node, which triggers an 

overload cascade in the network.  Similar methods are used by Leonardo and Vemuru, 

where connectivity loss C!, measures network performance (Eq. 5.1) [58]: 
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𝐶! = 1−
1
𝑛!

𝑛!!

𝑛!

!!

!!!

 
(5.1) 

 

where 𝑛!  is the number of generation nodes, 𝑛!  is the number of demand nodes at the 

unperturbed network state, and 𝑛!!  is the number of generation units able to supply flow 

to distribution (demand) vertex 𝑖 after disruptions take place.  Subsequent averaging is 

done over every demand node 𝑖 of the network. 

 Another method by Ash and Newth examines the optimization of complex 

networks with respect to the average efficiency of the network [59].  Average efficiency 

E  was first introduced by Crucitti et al. and is among the vitality measures, and can be 

calculated in Eq. 5.2 [60]: 

 

𝐸 𝐺 =
1

𝑁 𝑁 − 1 𝜖!"
!!!∈!

 (5.2) 

 

where 𝜖!" denotes the efficiency of the most efficient path between 𝑖 and 𝑗. In this 

definition, the undirected graph (𝐺) is an 𝑁×𝑁 adjacency matrix of (𝑒!"), where 

0 < 𝑒!" ≤ 1 if there is an arc between node 𝑖 and node 𝑗, otherwise 𝑒!" = 0. 

 While these types of topological measures provide valuable information, it is 

important to recognize that these mathematical models are abstractions of complex 

infrastructure systems, and may result in misleading information.  Hines et al. have 

explored these issues, comparatively evaluating topological metrics within the same 

system to predict failure magnitudes in standard test cases [56].  Their work concluded 
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that while exclusively using topological measures can provide general information about 

a system’s robustness, they can be misleading due to the level of abstraction and should 

be used in conjunction with a physics-based model. 

5.4 Contributions 

Current literature in complex infrastructure systems provides several approaches for 

robust design; however, a gap exists between the two primary research paths identified 

above.  A generalized approach is needed to couple contextual robust design strategies at 

the component level (i.e., minimizing performance variability), and topological strategies 

at the network level (i.e., maximizing connectivity).  This is a challenge since both of 

these approaches are mutually exclusive, and each evaluates system robustness at 

different resolutions of abstraction.  For example, component level models are based on 

physical system properties (e.g., voltage), and network models rely on topology 

relationships (e.g., node degree).  In addition, most current methods focus on failure 

prevention, instead of the ability of a system to successfully operate in a degraded state.  

Since most failures occur due to uncertain events, minimizing the degraded performance 

variability is essential for creating predictable and robust designs.  

 The research presented in this paper integrates contextual robust optimization with 

network analysis to minimize the performance variability of cascading failures.  A key 

benefit is the use of both physics-based parameters and topological relationships to create 

a balanced system abstraction.  This novel approach presents design trade-offs between 

performance and performance variability of a degraded infrastructure system, after 

failure has occurred.  Using this method, network topologies can be designed that are 
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robust to uncertain events (e.g., natural disasters) often affecting highly distributed 

systems.  Specifically, this research recognizes stochastic failure events, and accounts for 

the ability to meet specified requirements, as well as considering cost.   

 The method presented minimizes the impact of cascading failures through topology 

design, and optimizes for both performance and performance variability.  Motivated by 

the North American Power Grid (NAPG) case study, a mathematical representation of the 

IEEE 14 test case is created using an adjacency matrix, where system attributes for power 

generation, regional demand, and system topology are included [99].  The result is an 

optimization topology model that suggests alternative power grid network designs based 

on user data for power generation and demand requirements.  Topology optimization is 

performed with two search algorithms (i.e., genetic algorithm, multi-objective simulated 

annealing).  Scalability is addressed by applying the method to a simulated system 

composed of three IEEE 14 test bus networks.  Specific power systems applications to 

this approach include microgrid design and existing systems re-works. 

5.4 Motivation Case Study – The North American Power Grid 

Large-scale cascading failures within the North American Power Grid (NAPG) have 

remained constant over the past few decades, and there is a need to increase the 

robustness of these types of complex infrastructure systems [1, 61, 62].  Organizations 

such as the North American Electric Reliability Council, Edison Electric Institute, and the 

Electric Power Research Institute (EPRI) attribute this issue to Federal reorganization and 

deregulation of the NAPG, citing growing discontinuity between transmission and 

distribution systems [64].  Major system failures such as the Blackout of 2003 highlight 
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the vulnerability of the NAPG, and support the need for strategies to minimize the impact 

of uncertain failure events [4].  Cascading hardware failures are primarily responsible for 

system blackouts; however, communication deficiencies also contributed to significant 

performance loss during the Blackout [61].  Although there have been significant 

advances in power grid reliability and optimization methods, data provided by the North 

American Electric Reliability Council (NERC) shows that the frequency of blackouts has 

not decreased over the past 25 years [2].  Since the NAPG was originally constructed ad 

hoc based on sprawling population and increasing demand, topology optimization was 

not a primary consideration [100]. 

5.4.1 Power Grid Optimization 

The field of power grid optimization encompasses a vast array of strategies for achieving 

system objectives.  Currently, probabilistic risk assessment (PRA) methods are 

considered a best practice for evaluating the types of faults that ultimately lead to system 

failures, causing measureable system blackouts.  The Long Island Power Authority uses a 

PRA tool, developed by EPRI, to determine likelihood and magnitude of occurrences 

within their local power system [101].  One issue, however, is the localization of the 

failure analysis, as this software does not account for propagating failures that occur over 

multiple utilities, or the optimal design of the power grid with respect to system-level 

objectives.  Understanding subsystem relationships on a system level creates a challenge 

for researchers in developing computer simulation models that effectively capture 

significant interactions among these components.   
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 Most uncertain events that trigger power system failures are natural occurrences 

such as hurricanes, ice storms, and lightning.  Although wind and rain accounted for 

31.4% of blackouts between 1984-2006, equipment failure was the second greatest 

source of failure accounting for 19.9% of events [1].  Several accepted hardware 

solutions have been developed to respond to failure such as the Flexible AC 

Transmission System (FACTS), introduced by Hingorani [102].  This technology enables 

the control of power flow on Alternating Current (AC) transmission lines to optimize 

loading [103].  Lininger et al. have incorporated the FACTS device into a computer 

simulation using a Maximum Flow algorithm to detect failure types in various outage 

scenarios [47].  Similar research by Carrers et al. has led to a computer model to replicate 

power outages due to line outages or losses due to excessive load limits [45].  Pinar et al. 

have also addressed power grid vulnerability by outlining optimization strategies for 

power line failure prevention [104].  Pahwa et al. have examined system failure modes by 

simulating a power grid within a standard network such as the IEEE 300 bus to examine 

cascading system failures [96].  Mitigation strategies to reduce failures include targeted 

range-based load reductions and intentional islanding [63]. 

 Examining and modeling system failure due to cascading faults is an area of 

research intended to predict the probability of outages across regions.  Talukdar et al. 

have focused on power grid failure predictions addressing partial functionality of a grid 

after a failure event, instead of attempting to find a solution to prevent them [105].  This 

methodology addresses system uncertainty from dynamic periods of change due to 

intended switching operations designed to bring systems back online.  Fairley comments 

on this methodology, supporting the premise that failure is a byproduct of such a large 
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complex system and research in mathematical modeling for failure management, instead 

of elimination, should be a primary strategy for increased robustness [4].   

5.4.2 Power System Parameter Design 

Applying Taguchi’s Parameter Design approach to power systems design illustrates the 

different sources of uncertainty effect system response (Figure 5.1) [52, 53].  In this 

approach, the system control factors are elements that can be varied within the system, 

and noise factors are environmental elements that cannot be controlled.  When addressing 

potential initiating events for fault propagation, both types of factors can be considered.  

Failures from external events are addressed in the context of Type 1 (Parameter) robust 

design, which minimizes performance loss from external noise (e.g., weather).  Type II 

(Tolerance) robust design reduces performance losses due to uncertainty from internal 

control variables within the system (e.g., topology).   

 

Figure 5.1: Parameter diagram for the NAPG 
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 Lewis et al. combine both Type I and Type II robust design principles and apply 

them to complex systems, in an effort to address uncertainty from both internal and 

external environment [106].  The goal of Lewis’ formulation is to meet performance 

requirements, while minimizing the variation about the mean.  Figure 5.2 outlines this 

relationship, displaying how the performance-based optimized solution may exist at the 

boundary of an objective, where variability is greatest [52, 106].  The objective value of 

the robust solution is slightly higher, although with less performance variation.  Complex 

infrastructure systems can benefit from applying this method, as uncertainties from both 

sources are present.  However, further research is needed to understand how this 

application of contextual robust design can benefit complex infrastructure systems, 

discussed next. 

 

Figure 5.2: Visual interpretation between the performance-based and robust solution 
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5.5 Methodology 

5.5.1 IEEE 14 Test Bus System 

The IEEE14 test bus system (Figure 5.3) used for this method consists of 2 power 

generation stations, and 12 demand connections [99].  Since transmission line capacities 

are a function physical topology, line lengths were utilized as calculated by the Power 

Systems Engineering Research Center [107].  This is an important system attribute as line 

lengths directly drive connectivity costs.  Nominal demand node power requirements 

were also used from the IEEE 14 test bus.  

 

Figure 5.3: IEEE 14 test bus system [99] 

 

5.5.2 Topology Relationships 

The IEEE-14 test bus is created in MatLab, represented by an 𝑁×  𝑁  adjacency matrix, 

where 𝑁 = 𝑁! + 𝑁!.  𝑁! represents the number of generation nodes and 𝑁! represents 

the number of demand population nodes.  An initial network topology is created 
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randomly, constrained by the fixed node locations from the IEEE-14 test bus.  This 

network topology is then tested for connectivity, as we are assuming each demand 

population must be serviced (connected) to the network to satisfy nominal performance 

requirements.   

 An algorithm based on a Monte Carlo breadth first search is used to check the 

connectivity of the network.  Since the goal of this work is to minimize the performance 

impact of uncertain failure events, it is not assumed that greater system connectivity leads 

to greater robustness.  In addition, it is not economical to incorporate line redundancy 

between each connection due to transmission line costs.  Eq. 5.3 describes the 

relationship between transmission line cost with respect to length. 

𝐶!"# =    𝐶!"
!"#$%! ∗ 𝐿!"𝐴!"

!

!!!

  
!

!!!

 
(5.3) 

 

where 𝐴!! is the adjacency matrix, 𝐿!! represents the length in units between all pairs of 

nodes, and 𝐶!!
!"#$%! is the length cost between all pairs of nodes.   

5.5.2 Physics Based Properties 

In the IEEE-14 test bus, generation and demand nodes each have an associated load (in 

MW) that must be satisfied to perform nominally.  Power generation values are based on 

energy production at that node, and demand values are derived from the total power 

required to service a given area.  It is assumed that, if connected, power can flow 

unaffected between both types of nodes.   
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 In this model, each line has a maximum available capacity for power 

transportation, and an associated line load based on the number of nodes which it is 

transporting power.  Line load (𝐿!"#$) is the amount of power flowing through a line, 

assuming the load always travels through the shortest path available from a generation 

node to a demand node.  This is calculated based on the number of shortest path (SP) 

connections, and the magnitude of the demand nodes serviced by at least one generation 

node (Eq. 5.4). 

𝐿!"#$ =    𝐷!

!"

!!!

 
(5.4) 

where 𝐷! is the demand that has to be satisfied by the shortest path 𝑖.  Line capacity 

(𝐿!"#) is defined as the maximum power (in MW) that can flow through an individual 

line before a failure occurs, based on a fixed parameter factor of safety (𝛼) (Eq. 5.5). 

𝐿!"# = 1+ 𝛼 ∗ 𝐿!"#$ (5.5) 

 

Connectivity relationships are based on previous research by Kirk, where Dijkstra’s 

algorithm is used to determine the shortest path distances between generation and 

demand nodes, which are used to calculate the loads on the connection lines [27]. 

 Uncertain failure events are modeled by randomly removing a single line from a 

given topology.  This is an iterative process where 𝐿!"#$   (𝑡) is the initial line load at time 

𝑡, and its value is based on the demand node values associated with it.  In this model, 

power generation is unlimited, and multiple generators can satisfy a single node demand.  

Since the remaining lines must support the load from the failure, load redistribution may 
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cause other lines to exceed capacity, initiating a cascading failure.  𝐷! is the remaining 

demand being satisfied after cascading failure occurs, and the system is operating at a 

degraded steady state.  Arc removal is performed 10 times randomly (without 

replacement) for a single topology design.  Expected Demand (𝐷!) is calculated based on 

the average of resultant demand for each of the 10 failure scenarios (Eq. 5.6). 

 

𝐷! =
𝐷!!…!"
10  

(5.6) 

 

A process flow diagram for this model is shown in Figure 5.4 

 

Figure 5.4 Process flow diagram for cascading failure model 
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For specific applications, arcs will be removed according to the distribution of failure 

events anticipated based upon historic data using a Monte Carlo simulation approach.  

For example, complex infrastructure systems are typically reliable, and failures can be 

minimal or non-existent for long periods.  To help identify the likelihood of failure events 

in the NAPG, Figure 5.5 displays failure occurrences over a one-year period.  Future 

work will include a goodness-of-fit test based on multiple years of reliability data. 

 

Figure 5.5: Annual failure occurrence data for the NAPG (2009) 

5.6 Implementation 

5.6.1 Multi-Objective Optimization 

The optimization objective developed is based on the ability of a degraded system to 

predictably satisfy performance requirements after a cascading failure has occurred.  

Robustness is incorporated into the objective by considering the variation of Expected 

Demand (DE) in the solution (Eq. 5.7). 
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find 𝐴 (5.7) 

minimize  

𝑓! = 𝐶!"#(𝐴)  

𝑓! = −𝐷!(𝐴)  

𝑓! = 𝜎!!
! (𝐴)  

subject to  

ℎ!:  𝑁!"#$ − 1 = 0  

ℎ!:𝐴 = {0,1}!×!  

 

where 𝐴 and 𝑁!"#$ respectively represent the adjacency matrix and the number of 

disconnected components of the network, and  𝜎!!
!  is the Expected Demand variance.  

The optimization objective is calculated using two search algorithms. 

5.6.2 Optimization #1: Genetic Algorithm 

First, a genetic algorithm (GA) was used within the MatLab Optimization Toolbox [108].  

Since Expected Demand Variability is part of the objective function, values were 

normalized so the GA could evaluate solutions on the same scale.  Values were 

calculated for Cost, Expected Demand, and Expected Demand Variability from the 

original IEEE 14 topology configuration.  These nominal values were included in the 

fitness function for each objective (Eq. 5.8).  In addition, a penalty function was used to 

penalize solutions in which the grid is disconnected.  This was included to ensure 

network connectivity after a cascading failure.  The resulting objective is stated as: 

 



 

 

76 

𝑓 𝑥 =
𝑂𝑏𝑗!

𝐼𝐸𝐸𝐸14!
+ 𝑃𝐹!"## 

(5.8) 

 

where the 𝑂𝑏𝑗! is the value of the objective functions, 𝐼𝐸𝐸𝐸14! is the calculated 

objective value from the original IEEE 14 test bus, and 𝑃𝐹!"##is the penalty function for 

disconnectivity.  This penalty function represents one element of network theory 

incorporated into the approach, differentiating it from traditional robust design 

approaches. 

 Each solution is represented with the help of the network adjacency matrix.  Since 

the network is undirected, only the upper triangle of this matrix is considered.  This 

triangle is converted to a long bit-string in order to use the matrix as an input to the GA 

toolbox of MatLab.  Details of the GA are as follows: 

• Population = 400 

• Mutation Probability = 5% 

• Crossover Probability = 90% 

• Elitism = 10 % 

• Selection Method: Roulette Wheel 

 

5.6.3 Optimization #2: Multi-Objective Simulated Annealing Algorithm 

Next, a multi-objective simulated annealing (SA) algorithm was implemented as an 

alternative to the GA to potentially increase computational efficiency.  SA is a search 

algorithm that starts with an initial solution and seeks for possible improvements within 

its neighborhood [109].  SA avoids getting trapped in local optima by accepting 

deteriorated solutions, in addition to improved solutions, with a probability less than one.  
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This acceptance probability is controlled by the ‘annealing temperature’, and decreases as 

the temperature drops in the course of the annealing process.  Czyzżak and Jaszkiewicz 

developed Pareto simulated annealing (PSA) to adopt this search for the multi-objective 

optimization problems [110].  This search is conceptually identical to the single-objective 

SA but, instead of using one candidate to represent the final solution, PSA uses a set of 

interacting solutions at each iteration [111].  This set is called the generating set and is 

similar to the concept of population in genetic algorithms. 

 Since the evaluation of individual solutions in this research is a time-consuming 

process, using a population of solutions at each iteration of the algorithm drastically 

decreases its efficiency.  For this work, SA was performed that perturbs an individual 

solution at each iteration, instead of using a generating set.  If the perturbed solution is 

not dominated by its preceding solutions, it enters the non-dominated set of Pareto fronts 

and this set gets updated accordingly.  The next seed of SA is selected randomly from the 

updated set of Pareto fronts.  If the perturbed solution is dominated by at least one of its 

preceding solutions, it will not enter the Pareto front set, but it will still be selected for the 

continuation of the algorithm with the following probability (Eq. 5.9): 

 

𝑃 𝐴! ,𝐴! ,𝑇 = min  {1, exp
𝑓! 𝐴! − 𝑓! 𝐴!

!!"
!!!

𝑇 } 
(5.9) 

 

where the adjacency matrix 𝐴! is the solution obtained by perturbing the adjacency 

matrix 𝐴!, 𝑁!" is the total number of objective functions, and 𝑇 is the temperature at each 

iteration.  Details of SA algorithm are as follows: 
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• Initial Temperature = 1000 

• Stop Temperature = 1e-6 

• Cooling Rate = 0.95 

 

5.7 IEEE 14 Optimization Results 

5.7.1 Genetic Algorithm 

The resulting plot of Pareto optimal solutions is displayed in Figure 5.6.  In this plot, 

design values are normalized with respect to the performance of the original IEEE 14 

network topology.  Tradeoffs between each optimization objective are explored within 

this design space, and an optimal solution is found.  The population of the Pareto frontier 

is sparse due to the finite number of solutions in the IEEE 14 network.  However, it can 

be seen that with a decrease in Cost, the ability to satisfy Expected Demand after a 

cascading failure decreases, and Expected Demand Variability increases.  

 

Figure 5.6: Normalized Pareto solutions for the IEEE 14 test bus network using the GA 
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 To illustrate the impact of adding robustness to the objective function, a 

performance based optimization solution was executed, with the removal of Expected 

Demand Variability.  In this version of the solution, only Cost and Expected Demand are 

considered, and variance is ignored.  All existing constraints remained, and the 

normalized fitness function values are still based on the original IEEE 14 solution.  A 

comparative results summary from selected Pareto solutions is shown in Table 5.1  

 

Table 5.1: Objective function results for the original, performance optimized, and robust 
optimized topology of the IEEE 14 test bus using a GA 

IEEE 14  

Network (GA) 
Network 

Cost 

Expected 

Demand 

Expected 

Demand 

Variance 

Network 

Lines 

Avg. 

Node Deg. 

Max. 

Node 

Deg. 

Original 1212 182 5738 18 2.6 4 

Performance Opt. 660 224 769 17 2.4 6 

Robust Opt. 666 235 235 18 2.6 5 

 

The performance-based solution is the least expensive (660), with an Expected Demand 

Variance of 769.  However, the robust solution is only slightly more expensive (666), and 

the variance is reduced by over one third.  This is due to both the addition of a single line, 

and a robust optimized topology.  The original IEEE 14 network Cost is the highest, most 

likely since the network was physically constructed based on both population demand 

and geography. 

 In terms of network topology, the robust design (Figure 5.7a) consists of 18 

transmission lines, versus 17 in the performance-based solution (Fig. 5.7b).  Each 

network is fully connected, with no disconnected demand nodes or sub-networks.  The 
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generation nodes (node marked G) of the robust solution each have 3 and 5 degrees of 

connectivity respectively, versus 3 and 4 degrees respectively for the non-robust solution.  

The non-robust network configuration is a direct result of the Variability objective being 

removed, where the optimal solution focuses exclusively on meeting performance 

objectives Cost and Expected Demand.  Also, the average node degrees for each solution 

are similar, typically suggesting a close level of performance in traditional social network 

analysis [55].  However, since Variability is decreased significantly, this infers there are 

other factors also contributing to system robustness.  

 

 
  

Figure 5.7a: Robust 

optimized network 

topology using GA 

Figure 5.7b: Performance 

Optimized network topology 

using GA 

 

Figure 5.7c: IEEE 14 

original network topology 

 

 It should be noted that neither model (robust or performance based) currently 

accounts for physical geographical constraints between nodes (e.g., mountains, rivers, 

preservation areas), and assumes the shortest path is always available.  However, the 

original IEEE 14 network is constrained by the physical distances between nodes, which 
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were originally constructed around such topology restrictions.  To increase model 

fidelity, these types of geographic constraints can be added for specific applications by 

penalizing node connections representing various topological features. 

5.7.2 Simulated Annealing Results 

The simulation was run again using a multi-objective SA algorithm.  The Pareto optimal 

solutions are displayed in Figure 5.8, where the SA algorithm provides a larger breadth of 

solutions over the GA.  The results of SA follow a more traditional Pareto frontier than 

GA, clearly displaying trade offs between each objective.   

 

 

Figure 5.8: Pareto solutions for the IEEE 14 test bus network using multi-objective SA 

 

Table 5.2 displays the comparative results summary based on selected Pareto solutions 

from the original, performance optimized, and robust optimized solution.   
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Table 5.2: Objective function results for the original, performance optimized, and robust 
optimized topology of the IEEE 14 test bus using SA 

 IEEE 14  

Network (SA) 
Network 

Cost 

Expected 

Demand 

Expected 

Demand 

Variance 

Network 

Lines 

Average 

Node Deg. 

Max. 

Node 

Deg. 

Original 1212 182 5738 18 2.6 4 

Performance 

Opt. 629 183 9380 13 1.9 4 

Robust Opt. 1991 237 0 25 3.6 5 

 

It can be seen that the robust design is the most expensive solution, specifically because 

of the total number of network connections.  Consequently, the robust design also has the 

largest average node degree, as well as the largest maximum node degree.  In the Pareto 

solution selected, the Expected Demand Variance converges to zero, indicating this 

design is always able to satisfy Expected Demand at the same rate (237) after cascading 

failure has occurred.  This robust solution is over three times the cost of the performance-

based solution, allowing the designer to explore multiple tradeoffs between Cost 

performance and solution variability.  While the intent of this paper is not to compare 

local search algorithms, the SA algorithm provides a more intuitively logical solution for 

a network of this size over the GA.  This could be a function of system attributes such as 

the limited number of discrete solutions, where the SA algorithm is more likely to 

converge on a global optimum over the GA [112].  Topological relationships can be seen 

for the performance-based and robust solutions in Figures 5.9a, 5.9b, and 5.9c. 
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Figure 5.9a: Robust 

optimized network topology 

using SA 

Figure 5.9b: Performance 

optimized network 

topology using SA 

Figure 5.9c: IEEE 14 

original network topology 

 

5.7 Scalability to Larger Systems 

While the IEEE 14 test bus results show promise, scalability was addressed next to 

examine the method’s applicability to larger systems.  Several strategies were explored 

based on literature in complex systems design.  First, a “brute force” approach was 

considered, which would take advantage of modern parallel computing strategies.  For 

example, the simulation could be performed in an off site computing environment such as 

the Amazon Elastic Compute Cloud (Amazon EC2) [113].  Next, small world networks 

were explored as a means of representing the various interconnections of the NAPG, and 

the links between them [55].  Collaborative optimization was also considered as a way to 

concurrently optimize several subnetworks within a master network model.  This 

approach has been used previously in complex systems as a way to simultaneously 

optimize a system by placing constraints (typically resource limits) on each subsystem 

design [114, 115].  The drawback of this method is the risk of over-specifying or 

constraining the design, greatly limiting the possibility of novel solutions.  This 

information lead to the exploration of a distributed analysis approach, where the master 
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network was decomposed into various subnetworks based on an identifiable structure of 

node clustering [116, 117].  These subnetworks are then partitioned and simultaneously 

optimized independently. 

 Based on a literature review of the four methods discussed above, elements from 

each were utilized to develop a supplemental method for addressing system scalability.   

5.7.1 Network Decomposition 

One limitation of this work the use of a Monte Carlo simulation to find all possible 

shortest paths in a given network.  While this is sufficient for the IEEE 14 test bus, the 

search time will grow exponentially for larger systems.  To address this issue, a matrix 

decomposition approach was developed to supplement the method presented in Section 

5.5.  This supplement identifies subnetworks within the master network, enabling the 

algorithm to decompose the system into subnetworks and individually determine the 

shortest paths.  Once the subnetworks are identified, the parallel computing function in 

MatLab is utilized to calculate all of the shortest paths from generation to destination 

nodes.   

 This technique is based on the modularity properties of small world networks, as 

the subnetworks represent regions (or interconnections) of the power grid [55].  In the 

NAPG, high voltage transmission lines transport power between each region.  Figures 

5.10 and 5.11 display a visual representation of both the subnetwork relationship and the 

corresponding adjacency matrix (upper triangular) considered for this method.  This 

visualization represents a scenario with three subnetworks and three interconnection lines 

between each. 
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Figure 5.10: Visualization of subnetwork and master network relationship 

Figure 5.11: Adjacency matrix representing subnetworks and interconnections 
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5.7.2 3-IEEE 14 Test Bus System 

For this case study, three IEEE 14 Test Buses (3-IEEE 14) were composed into a single 

adjacency matrix (𝐴!"×!"), and three lines were made available to connect each 

subnetworks (for a maximum of 9 interconnection lines).  All system performance 

metrics (e.g., line length, capacity, load) from the single IEEE 14 test bus remained the 

same,  Interconnection Line Cost (𝐶!×!
!"#_!"#$%!) was based on a fixed interconnection line 

length of 483 km.  This distance is a function of the longest line of the IEEE 14 test bus, 

and was chosen to penalize the algorithm for selecting solutions where demand was 

satisfied by transporting power between subnetworks. 

 The updated 3-IEEE 14 model is evaluated using the multi-objective SA for both 

the performance-based optimization and the robust optimization.  Figure 5.12 displays 

the Pareto frontier of design objective solutions, allowing a designer to select a specific 

solution based on their risk attitude [118-121].   

 

 

Figure 5.12: Pareto solutions for 3-IEEE-14 network using multi-objective SA 
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 For example, a risk neutral engineer may be willing to accept a slightly higher cost, 

for a significant decrease in performance variability.  However, a risk adverse engineer is 

willing to significantly increase design cost by almost completely eliminating variability.  

Table 5.3 displays the results comparison between the performance-based solution, a low 

risk aversion robust solution, a moderate risk aversion robust solution, and a high risk 

aversion robust solution.  The high risk aversion robust solution resulted in over three 

times the cost of the deterministic solution, similar to the results of the single IEEE 14 

using SA.  Expected Demand Variability converges to one in the high risk aversion 

solution, indicating the ability of this network design to consistently satisfy Expected 

Demand at approximately the same value, regardless of which arc is removed from the 

network. 

 Figures 5.13a, 5.13b, 5.13c, and 5.13d display the topology results of the 

performance-based solution, the low risk aversion robust solution, the moderate risk 

aversion robust solution, and the high risk aversion robust solution respectively.  The 

performance-based solution can be characterized as a sparse network, while the three 

robust designs provide a solution with at least one redundant arc between nodes.   
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Table 5.3: Objective function results for performance optimized, low risk aversion, 
moderate risk aversion, and high risk aversion robust optimization topology of the  

3-IEEE 14 test bus using SA 

3-IEEE 14  

Network (SA) 
Network 

Cost 

Expected 

Demand 

Expected 

Demand 

Variance 

Network 

Connections 

Average 

Node 

Deg. 

Max. 

Node Deg. 

Performance Opt. 3753 689 250 41 2.0 5 

Robust Opt.  

Low Risk Aversion 
3960 702 125 42 2.0 5 

Robust Opt. 

Moderate Risk 

Aversion 

6194 708 12 43 2.0 5 

Robust  

Optimization:  

High Risk Aversion 

13272 712 1 51 2.4 7 

 

 However, the average node degrees and maximum node degrees are similar for 

each solution, indicating traditional network analysis performance metrics (e.g., node 

degree) may not always indicate system robustness [59, 122].  The moderate risk 

aversion and the high risk aversion robust design also utilize at least two of the three 

available lines between subnetworks.  This topology solution illustrates the importance of 

maintaining interconnection lines between regions, so power can be transported from one 

subnetwork to another after a cascading failure event.   
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Figure 5.13a: Performance-based 

optimization of the 3-IEEE 14 network 

using SA algorithm 

 

Figure 5.13b: Low risk aversion robust 

optimization of the 3-IEEE 14 network 

using SA algorithm 
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Figure 5.13c: Moderate risk aversion robust 

optimization of the 3-IEEE 14 network 

using SA algorithm 

 

Figure 5.13d: High risk aversion robust 

optimization of the 3-IEEE 14 network 

using SA algorithm 

 

5.8 Conclusions and Future Work 

This paper presents a novel approach for the robust optimization of complex 

infrastructure systems by capturing the impact of cascading failure when evaluating 

system performance.  As infrastructure systems operate in highly stochastic 

environments, they must be designed for robustness by minimizing performance 

variability in the resultant degraded system state.  A mathematical model was created that 

integrates physics-based modeling and network analysis to iteratively test various 

network topology designs against uncertain failure events.  Quantifying the behavior of 

cascading failures in complex infrastructure systems is a key contribution, as well as 
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identifying important design tradeoffs between performance and robustness for early 

design.   

 Both the single IEEE 14 test bus and the 3-IEEE 14 test bus case studies 

demonstrated the effectiveness of the approach presented, comparing objective values 

between the original network, the performance-based optimized network, and the robust 

optimized network.  These case studies highlight the significance of considering 

subsystem/system topology when optimizing complex infrastructure systems, and 

examine the influence of cascading failures from one subsystem to another.  

 One challenge in this research is the ability to validate the method as an accurate 

abstraction for modern complex infrastructure systems.  While the case studies presented 

show merit, scaling the method to a larger network will assist in determining the solution 

accuracy.  Future work will include modeling of synthetic (e.g., IEEE RTS-96) and real 

size (e.g., Poland) power grid networks, and comparing the results of this approach to 

other solutions in the literature.   

 Despite these concerns, this research contributes measurably to the field of 

complex infrastructure system design by directly addressing the fundamental issue of 

uncontrollable cascading failures due to existing topological configurations.  Designing 

for robustness increases the predictability of failure effects by incorporating uncertainty 

into a system model, and optimizing for degraded performance variability.  In addition, 

the hybrid approach presented captures important topological performance metrics from 

network analysis, while maintaining critical physical relationships necessary to accurately 

model a system.  Incorporating key system characteristics from each of these design 

strategies will provide higher fidelity system abstractions than existing network analysis 
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approaches, and alternatively allow higher computational efficiency and scalability over 

exclusively physics based simulations.  Future work will focus on the continued 

validation of the approach presented by comparatively analyzing case study results 

between this and other methods for complex infrastructure system design.  Specifically, 

there is additional research required to formulate increasingly accurate system model 

abstractions, capturing optimal trade offs between physical properties, simulation 

assumptions, and topological relationships.  By understanding the effects of these trade 

offs, designers can create context specific simulations that balance accuracy, efficiency, 

and scalability. 

5.9 Acknowledgements 

The authors would like to acknowledge the support of the University of Alabama in 

Huntsville Systems Engineering Consortium through NASA Marshall funding under 

grant SUB2012-052. 

 

 

  



 

 

93 

CHAPTER 6: EVALUATING THE IMPACT OF HUMAN IN-THE-

LOOP DECISION MAKING IN ROBUST DESIGN 

 

 

 

 

 

 

Joseph R. Piacenza, Mir Abbas Bozorgirad, Eduardo Cotilla-Sanchez, Christopher 

Hoyle, Irem Y. Tumer 

 

 

 

Conference: Hawaii International Conference on System Sciences 

Address: http://www.hicss.hawaii.edu 

Submitted: June 2014 

 

Journal: IEEE Transactions on Power Systems 

Address: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=59  

Submitted: June 2014 



 

 

94 

6.1 Abstract 

Robust design strategies are becoming increasingly relevant in complex system design to 

minimize the impact of uncertainty in system performance due to uncontrollable external 

failure events.  This paper presents a novel approach for the robust design of complex 

infrastructure systems by capturing the impact of human decision-making during a 

cascading failure.  System performance and performance variability are evaluated based 

on the resulting (i.e., degraded) system state.  This work is motivated by historical system 

failures such as the 2003 North American blackout and the 2010 Deepwater Horizon 

disaster, where human in-the-loop decision making significantly contributed to 

uncontrollable failure propagation.  A simulation is presented using the IEEE-118 test 

case to provide an understanding of how this approach can be used to model the impact 

of human decisions on system reliability.  The results of this study illustrate the 

importance of capturing these decisions when evaluating system level trade offs, 

supporting robust design. 

6.2 Introduction and Motivation 

As the demand for reliable complex infrastructure systems (e.g., power grids, satellite 

networks) becomes increasingly critical, designers are looking for computational 

approaches to evaluate designs.  An advantage of computational design strategies is the 

ability for designers to explore key performance trade offs early in the design phase, 

when design modifications are less costly [123].  This is of particular interest in complex 

infrastructure systems, as the network topology is typically heterogeneous and distributed 
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in nature, resulting in a system that is vulnerable to cascading failure due to a single 

initiating event.  

 Significant barriers exist to creating accurate models of complex infrastructure 

systems including subsystem interactions (e.g., mechanical, electrical), environmental 

uncertainty, distributed topology, emergent behavior, and human interactions [60, 106, 

124].  While each of these detriments to system performance has been explored 

extensively independent of domain, addressing them concurrently within a highly non-

linear and heterogeneous complex system creates a challenge for system designers.   

 Control strategies can be implemented into the design of these systems (e.g., circuit 

breaker, relay) to mitigate critical component failures, although the inherent system 

complexity provides a barrier for designers to identify (and account for) predominant 

failure scenarios.  Leveraging the input of human agents (i.e., system operators) is also a 

solution for failure resolution; however, it is difficult to identify and evaluate the impact 

of their role in the system.  For example, key considerations include agent location, 

number of agents, and agent control variables.  Since agents also have the ability to exert 

free will during an “emergency” decision making scenario, their range of control and 

position within the system must be constrained.   

 Minimizing the impact of cascading failure within a system is of particular interest, 

as the distributed topology makes these systems highly vulnerable to propagating failures 

stemming from a single initiating event.  The Blackout of 2003 highlights the 

vulnerability of existing infrastructure systems such as the North American Power Grid 

(NAPG), where over 45 million people in the Northeast U.S. and Canada lost power due 

to uncontrollable cascading outages [4, 61].  Beyond hardware and software failures, 
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communication deficiencies between regions were a contributing factor to the Blackout 

[1, 62].  Since the cascading outage took place over approximately 7 hours, independent 

regions struggled to obtain operational information from adjacent utilities, forcing system 

operators to make poor, uninformed decisions to protect their local network.  This lack of 

a comprehensive communication system throughout the NAPG interconnections is 

primarily a function of federal deregulation policies [64].  From an engineering design 

perspective, considering the impact of “human in-the-loop” decision making within an 

existing network could potentially mitigate the system level impact of cascading failures. 

 The Deepwater Horizon disaster of 2010 also illustrates the consequences of 

cascading failures due to operator decisions made during an emergency failure event [3]. 

The National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling 

report acknowledges a combination of cascading mechanical, electrical, and decision 

based failures ultimately leading to the oil rig explosion [5].  Venkatasubramanian 

examines the Deepwater Horizon incident, and addresses the broader perspective of the 

potential fragility of all complex engineered systems, empathizing the need to understand 

the commonalities and differences in these types of failures, in order to better design and 

control such systems in the future [65].   

 This paper presents a novel approach for the robust design of complex 

infrastructure systems by examining the system level impact of human decision-making 

during a failure event.  Robustness is modeled as the invariability of the resultant steady 

state system performance, after a cascading failure has occurred.  This approach suggests 

that designers can capture and analyze the impact of human in-the-loop interactions 

within complex systems to evaluate system robustness. 
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6.3 Background 

Robustness is defined in complex systems literature as the ability of a system to behave 

as intended, despite the effects of uncertainty from both internal and external sources [53, 

98].  External sources of uncertainty (i.e., noise factors) are typically represented as 

variations in the environment that influence intended system performance, while internal 

sources (i.e., noise factors) can include subsystem performance variations and human 

decisions (Figure 6.1).  For this work, human decision making is represented as a control 

factor (as opposed to a noise factor), since operators are strategically placed during 

system design.  Therefore, human decisions can be optimized to improve system 

robustness.  In complex infrastructure systems, a single initiating fault (e.g., mechanical, 

electrical, communication) can propagate throughout the network uncontrollably, 

resulting in severely degraded performance or complete failure.  This is of particular 

interest, as complex infrastructure systems are often designed with a low factor of safety. 

 

  

Figure 6.1: Parameter diagram for complex infrastructure systems 
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 To understand cascading, current methods have employed both agent-based and 

social network analysis for predicting emergent system behavior [55, 96, 97, 125].  

However, agent-based and network theory performance metrics (e.g., agent evaluation 

functions, node degree, centrality) focus heavily on system scalability and are too far 

abstracted from actual complex system behavior to accurately assess the impact of 

cascading failures when creating reliable designs.  

 Currently, there is no approach to incorporate robustness into complex 

infrastructure system design to minimize the impact of cascading failures due both to 

internal and external sources of uncertainty.  Examining the impact of human in-the-loop 

decision-making as a means of increasing design robustness builds on existing 

approaches, expanding current methods into complex infrastructure systems, discussed 

next. 

6.3.1 Robust Design in Complex Networks 

 While there are many methods to analyze failure propagation and reliability in complex 

systems, these approaches are typically hardware driven.  Also, they do not address the 

formalized concept of robustness, and how infrastructure systems can be designed to 

minimize system failures [43-51, 54, 69].  The primary issue, however, is creating 

designs that are robust to the various types of failures and uncertainties present in 

complex and largely distributed infrastructures.  Examining the network topology can 

help minimize the impact of cascading failures, especially in heterogeneous systems. 

 Current literature addresses the importance of considering topology in network 

optimization, often drawing from network theory where networks are represented 
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mathematically [55-57].  For example, Kinney et al. model a power system case study 

with an adjacency matrix, where each node represents either a generation or demand 

component in a network, and arcs connecting the nodes represent connectivity [57].  In 

that work, failures are examined by removal of a single node, which triggers an overload 

cascade in the network.  Similar methods are used by Leonardo and Vemuru, where total 

connectivity loss measures network performance [58].  Ash and Newth examine the 

optimization of complex networks with respect to the average efficiency of the network, 

which was first introduced by Crucitti et al. [59, 60].  While these types of topological 

measures provide valuable information about a specific network, it is important to 

recognize that these mathematical models are abstractions of complex systems.  Hines et 

al. have addressed this concern directly, comparatively evaluating topological metrics 

within the same system to predict failure magnitudes in standard test cases [56].  Their 

work concluded that while exclusively using topological measures can provide general 

information about a system’s reliability, they can be misleading due to the level of 

abstraction and should be used in conjunction with a physics-based model.  Dobson et al. 

use a probabilistic analysis based on past power system performance to suggest that the 

frequency of large blackouts is governed by a power law.  In this work, the author’s 

assert that some methods of suppressing subsystem failures could ultimately increase the 

risk of uncontrollable system level failures [126]. 

6.3.2 Human In-the-Loop Considerations in Complex System Design  

While many cascading system failures begin as a result of external occurrences such as 

extreme environmental conditions (e.g., excessive well bore pressure on the Deepwater 
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Horizon, above normal summer temperature in the Northeast U.S. during the Blackout), 

case studies show that human in-the-loop decision-making has the potential to affect the 

resultant system outcome [66].  The overarching challenge of complex infrastructure 

design is to understand system level interactions, and how an agent (or set of agents) can 

impact the subsequent emergent system behavior, during early design. 

 Watts examines this concept from a sociology perspective, citing parallels to 

engineered systems [67].  In this work, he postulates that individuals in a population 

exhibit herd-like behavior because they are making decisions based on the actions of 

other individuals rather than relying on their own information about the problem.  This is 

a concern in agent-based control strategies for complex systems, as agents must make 

decisions based on information about both their local and global network.  Hines and 

Talukdar examine this relationship by developing a method to create a social network of 

autonomous agents to solve a global control problem with limited communication 

abilities [68].  This approach uses distributed model predictive control and cooperation to 

minimize cascading failure in an IEEE test bus.  However, it requires an agent to be 

present at each location (i.e., node) of the system.  This solution is not economically 

efficient, or even possible in many complex systems.  Other approaches also draw from 

social network analysis, where reliability indicators rely heavily on high-level system 

abstractions [45, 55, 69].   

 Alternatively, decision-based design strategies have also been examined for 

estimating agent decision-making behavior in complex systems.  Sha and Panchal have 

explored this concept comparing the benefits between generalized preferential 

attachment, a statistical regression-based approach, and multinomial logit choice 
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modeling [70].  Both multinomial and nested logit models have been used extensively to 

predict individuals’ decisions in a variety of domains including sociology, economics, 

and civil engineering (e.g., traffic networks) [71].  The barrier to using these methods in 

early design is the reliance on historical behavior required to generate a utility function 

capable of predicting behavior.      

6.4 Contributions 

Current literature formally addressing robustness in complex infrastructure system design 

displays a deficiency in strategies for capturing the impact of operator decision-making.  

This is primarily due to the fact that most robust design methods focus on minimizing 

performance variability of the system during fully functional operation, and do not 

examine the uncertainties contributing to cascading failure.  This distinction is highly 

significant as complex systems are often designed and operated at a low factor of safety, 

For example, uncertain failure events (e.g., environmental effects, agent decisions, hostile 

attacks) can result in cascading failure, and must be accounted for when designing 

predictable and robust systems.  The 2003 Blackout and the 2010 Deepwater Horizon 

incidents further illustrate the need to consider various sources of uncertainty, specifically 

the impact of human decision-making during a failure scenario.  The research presented 

in this paper directly addresses this concern, postulating that robust design strategies can 

be used to optimize agent interaction within a complex system, minimizing performance 

variability after an initiating failure event. 

 A novel approach has been developed to optimize the number and location of 

control agents present in a complex system during conceptual design, to minimize 
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performance loss during an uncontrollable failure propagation scenario.  In this method, 

robustness is represented as the ability of a system to satisfy minimum performance 

requirements, after a cascading failure event.  This research captures system specific 

stochastic failure effects, and accounts for the ability to meet specified design objectives.  

A two-stage optimization approach is utilized, where instantaneous system performance 

is calculated within the outer-loop objective function to capture continuous performance 

degradation during cascading.  This optimization is performed using a multi-objective 

simulated annealing algorithm, based on its ability to efficiently handle discrete solutions 

[109]. 

 The inner-loop simulation is based on the IEEE 118 test bus.  The network is 

created using a series of adjacency matrices, where system attributes for power 

generation, regional demand, system topology, and agent interactions are included [99].  

MatPower, an analysis toolbox designed to operate within the MatLab, is used to 

calculate the quasi-steady state decoupled optimal power flow (DCOPF) [108, 127].  The 

result is a computer Model identifying Pareto optimal design trade-offs between 

performance and performance variability of a degraded system, based on the quantity and 

location of system agents.  

6.5 Methodology 

The research presented in this paper aims to capture the impact of human in-the-loop 

decision making during an uncontrollable cascading failure.  A two-stage optimization 

framework has been developed that identifies design trade offs in an outer-loop 

optimization that identifies quasi-steady state system conditions during a cascading 
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failure scenario (Figure 6.2).  Design trade offs include performance, performance 

variability, and number of agents. 

 

 

Figure 6.2: Two-stage optimization framework 

 

MatPower performs the inner-loop optimization, calculating instantaneous power flow 

based on physical relationships such as generation, demand, and existing topology.  The 

simulation consequently outputs decision variables for the number and location of agents 

to the outer-loop optimization.  This allows a designer to explore Pareto solutions, based 

on their requirements and preferences.  

6.5.1 Solving Quasi-Steady State System Performance in MatPower 

MatPower is a package designed for solving both power flow (PF) and optimal power 

flow (OPF) problems [108, 127, 128].  The power flow problem is a numerical analysis 

of a power system in steady-state conditions using voltage magnitudes and phase angles 
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at each bus (i.e., node).  The input data is provided using standard test cases, and consists 

of system elements such as topology, generator limits, and transmission line 

specifications.  The outputs of these calculations are the active and reactive power 

injections at each bus required to keep the system within operating specifications.  Linear 

programming is used to optimize generation ramping while enforcing transmission line 

limits required to avoid an overload.  This is known as the optimal power flow [128].  

The simulation fidelity can be increased by adding additional details such as generation 

costs (at each source), and will provide the user with the lowest cost per kilowatt-hour 

delivered option. 

 One feature of MatPower is the ability to analyze the decoupled (DC) power flow, 

which is a linear and simplified version of an alternating current (AC) power flow.  The 

DC power flow purely looks at active (i.e., real) power, neglecting transmission losses, 

voltage support, and reactive power management.  For this research, only DC power flow 

will be considered, since the concept of a supporting performance flow (i.e., reactive 

power) is inherent only to power systems, and not other complex infrastructure cases 

such as communication and traffic networks.  In the DC-OPF solver, the voltage 

magnitude and reactive power is eliminated from the problem completely, and active 

power flow is modeled as a linear function of the voltage angles [127].  MatPower then 

outputs active power limits and topology changes due to line overloading. 

6.5.2 Two-Stage Optimization Framework 

The framework presented here is composed of both an outer-loop (i.e., system-level) and 

inner-loop (i.e., power flow) optimization to estimate system performance as illustrated in 
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Figure 6.2.  The outer-loop optimization contains objectives directly relating to 

increasing system robustness, or insensitivity to uncertainty (Equation 6.1).  These are 

defined broadly as design trade offs for performance, performance variability, and cost 

(i.e., number of agents).   

find 𝐴! (6.1) 

minimize  

𝑓! =   −𝜇!!  

𝑓! = 𝜎!!
!   

f! =   𝐴!  

subject to  

𝑔!:  𝐴! − 𝑁!"!#$ ≤ 0  

ℎ!:  𝐴𝐿!!!""#$% − 10% = 0  

 

where the decision variable (𝐴!) is an adjacency matrix representing the number and 

location of agents in the system.  𝐷! is the demand satisfied for a single cascading 

scenario, and 𝐷! is the total average demand satisfied for a given number of discrete 

failures, shown in Equation 6.2.   

 

𝐷! =
𝐷!…!
𝑛  (6.2) 

 

µμ!! is the mean of the resultant demand values, and σ!!
!  is the variance of these values.  

N!"!#$ is the number of nodes in the system (i.e., 118 for the IEEE 118 case), limiting the 
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overall quantity of possible agents (A!).  AL!"#$$%&' represents the discrete shedding 

percentage each agent may utilize during a cascading failure. 

 The inner-loop simulation is the optimal power flow (OPF) analysis which is 

embedded within the outer-loop (i.e., system level) optimization to evaluate the steady 

state conditions of the system during cascading.  This simulation contains its own set of 

subsystem objectives, constraints, and decision variables.  The objective of the OPF is to 

minimize the cost of the active power injections (i.e., generator ramping) required to 

maintain system stability based on a single loading scenario (Equation 6.3).  The inner-

loop optimization objective is defined as: 

 find 𝑃!,𝜃 (6.3) 

minimize  

𝑓! = 𝑓!!
!!

!!!

(𝑝)!!   

 

where 𝑝 is the vector consisting of 𝑃!, the active power injection, and 𝜃, the voltage angle 

(Equation 6.4).  Complete details for this formulation can be found in the MatPower 

User’s Manual [129]. 

 

𝑝 =
𝜃
𝑃!

 (6.4) 
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By nesting the DCOPF of the test case within the system level optimization, each 

instantaneous power flow analysis can be performed as the network topology changes 

during a cascading failure. 

6.5.3 Modeling Decision Making in Complex Systems 

 In both the 2003 Blackout and the Deepwater Horizon incident, decisions made by 

system operators after an unexpected initiating failure event influenced the system’s 

emergent behavior.  This observation provides insight into how human in-the-loop 

interactions could be modeled during concept-stage system design.  Drawing from 

existing physical design elements of the NAPG, Figure 6.4 represents a highly simplified 

abstraction of a power system.  This system consists of three connected subnetworks, 

each containing a generator and multiple demand nodes.  In addition, a subsystem 

operator, or agent, is located adjacent to the generator.  The task of the subsystem agent is 

to dynamically adjust the power output of the generator to match demand fluctuations, 

known as demand response.  However, in the case of an unexpected line failure, this level 

of control can be inadequate to prevent subsequent line overloading.  Line overloading 

occurs when the power delivered to a line exceeds its rated capacity.  Performing 

intentional islanding or strategic load shedding can prevent this overload.  By ramping 

down power generation, load shedding reduces the power being transferred through a 

subnetwork.  As an alternative strategy for reducing line loss, this research explores the 

benefits of strategically placing agents within a given network.  In the event of a line 

overload, each agent has the ability to shed a fixed percentage of demand load for their 
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local region.  This practice allows the agents to make discrete control decisions, 

potentially reducing the magnitude of system failure during cascading. 

 When formulating this approach, the following agent responses to a cascading 

event were identified and evaluated: 

• Response 1: Let failure happen 

• Response 2: Isolate failure (i.e., engage circuit breaker) 

• Response 3: Reduce load (i.e., load shed) 

  

Response 1 occurs when the agent chooses not to take action, and Response 2 is the act of 

selfish agent (or circuit breaker).  We will focus on Response 3, in which an agent can 

shed demand load for their location.  This will allow the exploration of an intermediate 

failure mitigation solution at a node, increasing the total set of Pareto designs in the 

system-level optimization.  This is achieved in practice by exercising a Load Shedding 

Agreement, where a commercial customer voluntarily curtails power demand.  

Strategically placing load-shedding agents in power system subnetworks could reduce 

local line failure, consequently minimizing system level performance degradation. 
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Figure 6.3: Power system visualization with agent decision locations 

 

6.5.4 System Level Optimization 

The outer-loop optimization is performed using a multi-objective simulated annealing 

(SA) algorithm to evaluate the system level objectives [109].  The SA algorithm was 

selected as it avoids getting trapped in local optima by accepting deteriorated solutions.  

Czyzżak and Jaszkiewicz developed Pareto simulated annealing (PSA) to adopt this 

search for multi-objective optimization problems [110].  This search is conceptually 

identical to the single-objective SA but, instead of using one candidate to represent the 

final solution, PSA uses a set of interacting solutions at each iteration [111].   

 In this research, a SA strategy is performed that perturbs an individual solution at 

each iteration.  If the perturbed solution is not dominated by its preceding solutions, it 

enters the non-dominated set of Pareto fronts and this set gets updated accordingly.  The 

next seed of SA is selected randomly from the updated set of Pareto fronts.  If the 
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perturbed solution is dominated by at least one of its preceding solutions, it will not enter 

the Pareto front set, however it will still be selected for the continuation of the algorithm 

with the following probability (Equation 6.5): 

 

𝑃 𝐴! ,𝐴!,𝑇 = 𝑚𝑖𝑛  {1, 𝑒𝑥𝑝
𝑓! 𝐴! − 𝑓! 𝐴!

!!"
!!!

𝑇 } (6.5) 

 

where the adjacency matrix 𝐴! is the solution obtained by perturbing the adjacency 

matrix 𝐴!, 𝑁!" is the total number of objective functions, and 𝑇 is the temperature at each 

iteration.   Details of SA algorithm are as follows: 

• Population = 400 

• Initial temperature = 1000 

• Stop Temperature = 1e-6 

• Cooling Rate = 0.95 

 

6.5.5 Optimization Framework Process Flow 

 To clearly illustrate the steps performed during the two-stage optimization model, a 

process flow diagram is presented (Figure 6.4).  First, the IEEE 118 test case is imported.  

Next, a random number and location of agents is generated using an adjacency matrix.  

This initial agent placement uses the fixed topology of the IEEE 118 test case.  A random 

line is then removed from the system, and the DCOPF is calculated using MatPower.  

The redistribution of power in the test case may cause additional lines to overload, 

initiating a cascading failure.  To mitigate this failure, the agents placed at a line location 



 

 

111 

where demand exceeds capacity will shed 10% of the demand at that node.  The DCOPF 

and load distribution loop is repeated until the system reaches a steady state, where 

demand load does not exceed capacity at any point.  Although load shedding may prevent 

an overload, it will also reduce the total demand satisfied.   This trade off is incorporated 

into the system level optimization objective (Equation 6.1).  

 

Figure 6.4: Two-stage optimization model process flow 

 

 In practice, it is typical for a power system network to become partially 

disconnected after a cascading failure, resulting in multiple independent subsystems, or 

islands [63].  This action is captured during the simulation, and the DCOPF is performed 

for each disconnected subnetwork.  The resultant system level demand satisfied (𝐷!) for 
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each line failure scenario is calculated by summing the demand satisfied for each island 

(Equation 6.6).  It should be noted that an island might not include a generator, 

subsequently resulting in a total subnetwork failure. 

𝐷! =    𝐷!!

!

!!!

 (6.6) 

 

For each agent placement design (𝐴!), 20 unique line removal scenarios are performed.  

This quantity is selected as a function of network size, building on random removal 

techniques from existing literature [59].  These solutions are used to evaluate the mean of 

the resultant demand served values (𝜇!!), and the variance of demand served (𝜎!!
! ).  

 Based on the system level objectives from Equation 6.1, the SA algorithm outputs a 

set of Pareto optimal solutions.  These solutions allow the designer to explore trade offs 

between performance, performance variability, and number of agents.  In this method, the 

number of agents is captured by a cost variable, since there would be implementation and 

operations cost associated with their placement. 

6.6 Implementation and Results 

6.6.1 IEEE-118 Test Bus Case Study 

Based on the system optimization objectives (Equation 6.1), the set of Pareto optimal 

solutions are displayed in Figure 6.5.   
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Figure 6.5: Pareto optimal solution for the outer-loop optimization 

 

Since system robustness is represented as a function of performance invariability, the 

trade offs are explored between the performance variance (𝜎!!
! ), mean performance (𝜇!!) 

and the number of agents (𝐴!).  For example, if the degraded system performance 

requirements increase, the quantity of agents must be increased to minimize the 

performance variability.  Table 6.1 displays a set of extreme solutions from the Pareto 

frontier, to establish a contextual range of solutions.   

 

Table 6.1: Extreme design objective solutions 

Solution 

Type 

Variance 

𝝈𝑫𝑬
𝟐  

Demand 

𝝁𝑫𝑬 

Agents 

𝑨𝒏 

Variance 
Low 4329 2172 32 

High 692233 2467 0 

Demand 
Low 23265 1817 0 

High 637970 2502 1 

Agents 
Low 28408 1894 0 

High 4662 2298 41 
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In these selected results, the most risk averse (i.e., low variance) design is achieved using 

32 agents in select locations.  In comparison, the solution with the largest number of 

agents (41) has a higher variance.  This relationship infers that increasing robustness is 

achieved through implementing a specific design strategy, instead of attempting to 

control system behavior with agents.  Both high and low demand values are achieved 

with little or no agent control, emphasizing the broad range of potential performance 

scenarios after a cascading failure.  The largest demand value has a high associated 

variability, indicating a risk taking solution.  The relevance of risk attitudes in 

engineering design trades is discussed next. 

6.6.2 Risk Attitudes in Engineering Design 

 Throughout a design process, engineers will often make decisions based on their 

individual risk attitude, or the risk attitude of their organization [118-121].  In the context 

of this research, a risk tolerant individual may be willing to accept a higher level of 

performance variability, in exchange for a less costly design.  However, a risk adverse 

individual may be willing to significantly increase design cost in order to minimize 

performance variability.  Table 6.2 presents an alternative selection of less extreme 

design solutions potentially aligning with different risk attitudes.  Three designs are 

presented corresponding with an individual’s tolerance for risk aversion (i.e., low, 

moderate, high).  In these results, the average node degree of an agent’s position is 

presented.  The low risk solution has the highest node degree, indicating that limited 

agents should be placed in critical, highly connected areas of the network.  As the risk 

aversion is increased (along with the number of agents), average agent node degree 
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decreases.  This is expected since the IEEE 118 network has overall average node degree 

of 3.03.   

Table 6.2: Comparison of risk based design solutions 

Risk 

Attitude 
Variance Demand Agents 

Avg. Agent  

Node 

Degree 

Low Risk 

Aversion 
40606 3420 2 7 

Moderate 

Risk 

Aversion 

14388 3369 17 6 

High 

Risk 

Aversion 

8711 3153 38 1.34 

 

In terms of network topology, Figure 6.6 provides a network map for the IEEE-118 test 

case with agent locations indicated for the moderate risk aversion robust design. 
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Figure 6.6: Network topology for the moderate risk aversion robust design 

6.7 Conclusions and Future Work 

The 2003 Blackout and the 2010 Deepwater Horizon incident both illustrate how human 

decisions made during a cascading fault event inadvertently contributed to system failure.  

As complex systems operate in highly stochastic environments, systems must be designed 

for robustness by incorporating the effects of failure propagation into optimization 

objectives, evaluating the performance of the resultant degraded system state.  This paper 

presents a novel approach for incorporating robustness into complex infrastructure 

system design by leveraging the impact of human in-the-loop decision making to 

minimize performance variability during a cascading failure event.  Robustness is 

represented as the invariability of system performance despite the impact of failures due 
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to uncertain environmental events.  This allows the system to meet minimum 

performance requirements, even during degraded operation.  The formulated approach 

captures the impact of human in-the-loop decision-making on system reliability, 

consequently providing a set of design alternatives based on user requirements.   

 The design framework presented shows promise, and there are several 

opportunities for expansion.  The first path forward is applying the author’s approach to 

other domains outside of power systems.  For example, the cascading failure timeline of 

the Deepwater Horizon incident has been extensively documented in literature.  

Application of this approach could help to identify optimum placement of human 

controlled access points in the system.  The range of system operator control (at each 

location) could also be optimized.  In addition, larger scale domains include regional 

communication systems or traffic networks, which could benefit by strategically placed 

operators with limited control.  

 Another direction for future work is addressing scalability.   The results from the 

IEEE-118 test case do provide insight into emergent system behavior due to agent 

interaction, however the relationships identified may not remain consistent in larger 

networks.  The Poland power grid, often cited in the power systems community, will be 

used for this purpose. 

 Finally, expanding the range of agent control and decision making ability will 

significantly increase the simulation fidelity.  The current load shedding strategy in the 

model is based on existing power system best practices of blanket load shedding in a 

specific region.  For example, a reinforcement learning strategy that offers an agent 

multiple discrete choices could increase the number of solutions in the Pareto frontier.  
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This would allow a more appropriate design choice based on system requirements, and 

potentially further reduce performance variability. 
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CHAPTER 7: GENERAL CONCLUSIONS AND FUTURE WORK 

7.1 Research Overview and Summary 

This research presents a comprehensive engineering framework for the robust design of 

infrastructure systems.  Each element of the framework identifies a key strategy for 

increasing system robustness, and contains its own stand-alone design method, 

simulation, and design analysis.  However, the combination of each method produces an 

inclusive approach that addresses a range of critical issues during robust design.  The 

overarching theory behind the three manuscripts in this dissertation is to create a flexible 

design framework that broadly aims to minimize performance variability, even when 

uncertainty in present.  This goal is addressed at the concept-stage design level by 

examining system robustness in terms of cascading failures, network topology 

optimization, and the impact of human in-the-loop interactions.  Several power system 

domain case studies are presented that illustrate the benefit of robust design strategies at 

both the system and subsystem level.  At the system level, network topologies and human 

behaviors are explored to determine their influence on design robustness.  The subsystem 

level also investigates human behavior, but from a low-level energy conservation 

standpoint that will ultimately influence high-level system performance.  However, the 

end goal of this research is to provide an approach that is applicable across various 

infrastructure domains (e.g., satellite and traffic networks). 

 To demonstrate the importance of examining both high (i.e., system) and low level 

(i.e. subsystem) design strategies for infrastructure systems, a case study of the North 

American Power Grid (NAPG) is considered.  Chapter 4 first outlines the projected 
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energy requirements of the United States, and addresses the need to implement 

standardized energy conservation initiatives, specifically in commercial buildings. 

Sustainable building mandates (e.g., LEED, Living Building Challenge) are explored as 

potential alternatives to increasing energy production.  One concern however, is that 

designers cannot quantify every aspect of sustainable building mandates, the most 

subjective being the influence of human behavior.  The strategy developed in this chapter 

for quantifying LEED’s Indoor Environmental Quality (IEQ) estimates causal relations 

between design attributes, and both the stated and revealed user preferences for 

sustainable buildings.  Structural equation modeling (SEM) is used to evaluate postulated 

significant correlations between the fixed design attributes, observed variables, and latent 

variables.  Within this model, latent variables uncovered through statistical analysis 

represent emergent user preferences resultant of a building’s indoor environment.  This 

method enables designers to explore tradeoffs between fixed costs, operational costs, and 

cost savings due to sustainable building mandates.  Understanding an individual’s 

preferences for sustainable design characteristics could offset additional costs required to 

support energy conservation strategies.  In addition, reducing demand load (i.e., 

conservation) within multiple subsystems will increase high-level power system 

robustness. 

 Chapter 5 illustrates the second thrust of the framework by examining the impact of 

topology optimization as an approach for minimizing performance reduction due to 

cascading failures.  Since infrastructure systems operate in highly stochastic 

environments, they must be designed for robustness by incorporating the effects of failure 

propagation into the design optimization objective.  System performance is then 
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evaluated based on the resultant degraded state.  Throughout this dissertation, robustness 

is represented as the invariability of performance due to uncertain effects (both internal 

and external) on the system.  The power system case studies presented are modeled 

mathematically using a combination of physics-based modeling and network analysis, 

iteratively testing multiple network topology configurations against an initiating failure 

event.  These events are simulated by randomly removing a single network arc in each 

design, and examining the resulting steady state system performance after cascading has 

occurred.  Design trade-offs are examined between performance and performance 

variability (i.e., robustness) of the degraded system.  Using this method, network designs 

can be created that account for, and are robust to, uncertainty from external events (e.g., 

natural disasters) often affecting highly distributed infrastructures.  Specifically, this 

research captures system specific stochastic failure effects, and accounts for the ability to 

meet specified requirements, as well as considering cost.  Quantifying the behavior of 

cascading failures in infrastructure systems is a key contribution, as well as identifying 

important design tradeoffs between performance and robustness for early design.   

 The final component of this framework again focuses on system level robustness, 

and captures the impact of human decision-making on performance.  Chapter 6 ties these 

elements together by first citing two historical case studies: the 2003 Blackout and the 

2010 Deepwater Horizon incident.  Both of these historical examples illustrate how 

human behavior during a cascading failure inadvertently contributed to critical 

performance reduction, and ultimately complete system loss.  The method developed in 

Chapter 6 addresses these case studies directly by incorporating robustness into the 

infrastructure design.  This is achieved by leveraging the impact of human in-the-loop 
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decision making within a given network topology to minimize performance variability 

during cascading failure.  To understand the influence of human behavior on emergent 

system performance, a two-stage optimization approach is utilized.  Instantaneous system 

performance is calculated within the outer-loop objective function to capture continuous 

performance degradation during cascading.  The inner-loop objective function focuses on 

minimizing control costs associated with maintaining performance stability.  A 

mathematical abstraction the system is represented with a series of adjacency matrices, 

consisting of system attributes for power generation, regional demand, system topology, 

and agent placement. 

 The holistic theory behind this research framework will allow for the design space 

exploration of infrastructure systems.  These Pareto solutions will provide a wide breadth 

of potential system designs based on domain specific failure characteristics, topology 

constraints, and human interactions.  The resultant methods from this theory will provide 

concept-stage insight to designers by helping to identify key trade offs, without the need 

to explicitly model all component level interactions.  This work has focused on 

fundamental research objectives toward quantifying high-level emergent system 

behavior, which can be leveraged to design robust infrastructure systems. 

7.2 Expanding the Research Framework 

This section of the dissertation outlines specific opportunities and strategies for 

expanding both the fidelity and applicability of the individual methods presented.  

Section 7.3 will address future work pertaining to the collective integration of each 
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method into a single, generalizable approach for the robust design of infrastructure 

systems. 

7.2.1 Ongoing Research Toward Quantifying Indoor Environmental Quality for 

Sustainable Building Design 

While the approach developed in Chapter 4 for quantifying Indoor Environmental 

Quality (IEQ) shows merit, there is an opportunity for continuing research.  In the LEED 

building case study presented, additional empirical measurements could be implemented 

such as indoor temperature, humidity, and air quality.  Incorporating a broad range of 

environmental factors into the Structural Equation Model will provide designers with 

additional insights for specific building attributes that drive user behavior.  In addition, 

the empirical data could be collected from additional LEED buildings to verify 

consistency.  Examining other LEED buildings and user preferences outside of a 

university campus will address any biases present in an academic institution.  On a larger 

scale, the next big step is incorporating projected energy savings from sustainable 

buildings into the high-level power system model utilized in Chapters 5 and 6.  This will 

identify cost trade offs between sustainable building strategies, and increasing energy 

generation when determining how to meet predicted energy needs. 

7.2.2 Topology Optimization for Robust Infrastructure Systems 

The primary challenge of exploring robust designs for infrastructure topologies is the 

ability to validate the model as an accurate abstraction the system it represents.  There is 

room for additional research to increase model accuracy, capturing optimal trade offs 

between physical properties, assumptions, and topological relationships.  In particular, 
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there is a concern when issue developing a method that is scalable to real life networks, 

which are larger and more complex than cases presented.  Future work will include the 

modeling of other synthetic (e.g., IEEE RTS-96) and real size (e.g., Poland) power grid 

networks.  These results will then be compared to the solutions from other robust design 

approaches in the literature.   

 The strategy developed for initiating cascading failure is another area of 

exploration when evaluating system robustness.  Currently, a single failure event initiates 

failure propagation, however it is possible multiple arcs could fail simultaneously.  Future 

work will included the random removal of multiple, which is representative of how 

natural disasters (e.g., hurricane, earthquake) often impact a region.  

7.2.3 Human In-the-Loop Considerations for System Robustness 

The work presented in Chapter 6 has addressed some fundamental concerns for the 

concept-stage design of infrastructure systems, however there is considerable room for 

development.  First, expanding the range of agent control and decision making ability 

will significantly increase the simulation fidelity.  The current load shedding strategy in 

the model is based on existing power system best practices of blanket load shedding in a 

specific region.  Instead, offering the agent multiple discrete choices could increase the 

number of solutions in the Pareto frontier.  This would allow a more appropriate design 

choice based on system requirements, and potentially further reduce performance 

variability.   

 The next direction for future work is again addressing scalability issues as in 

Chapter 5.  The results from the test cases presented do provide insight into emergent 
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system behavior due to agent interaction, however the relationships identified may not 

remain consistent in larger networks.  The Poland power grid, often cited in the power 

systems community, will be used for this purpose. 

 Finally, last path forward is applying the author’s approach to other domains 

outside of power systems.  For example, the cascading failure timeline of the Deepwater 

Horizon incident has been extensively documented in literature.  Application of this 

approach could help to identify the optimum placement of human operation points in the 

system.  The range of system operator control (at each location) could also be optimized.  

In addition, larger scale domains including regional communication systems or traffic 

networks could benefit by strategically placed operators with limited control.  

7.3 Generalizable Robust Design Approach  

The framework presented in this dissertation directly addresses three unique challenges 

for designing robust, concept-stage infrastructure systems.  While each method aims to 

overcome various robust design deficiencies identified in the literature, there is still a 

need to develop a generalizable approach, applicable across various system domains.  An 

opportunity exists to create an integrated robust design approach that contains key 

elements of the current framework, enabling a more comprehensive infrastructure design 

solution. 

 This approach will utilize the existing two-stage optimization method, allowing 

designers to incorporate their desired optimization objectives (i.e. outer loop 

optimization), as well as relevant physics based system relationships and engineering risk 

attitude (Figure 7.1). 
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Figure 7.1: Generalizable two-stage robust design model 

 

This integrated robust design approach incorporates each component of the dissertation 

framework, capturing resource conservation, system topology, and human protocol.  In 

the case of the 2003 Blackout, cascading occurred because the demand load on the power 

transmission lines continued to exceed capacity after an initiating failure event.  If energy 

resource conservation strategies (e.g., sustainable building design) were implemented 

during early design, this scenario may have been avoided due to an overall reduced grid 

load.  In addition, regional power system operators did not correctly implement 

protection practices such as load shedding, which could have further minimized failure.  

Optimizing human protocol and control locations within the NAGP topology would have 

contributed to system robustness, reducing demand losses. 

 Applying an integrated robust design approach could also have mitigated the 

cascading failure scenario during the Deepwater Horizon disaster.  In this case, a 

mechanical failure event cascaded through several mechanical and electrical subsystems, 
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until a system operator was alerted to the failure.  Designing for optimal operator location 

would have reduced the number of failures that occurred before operator notification.  

Additionally, the Deepwater Horizon operators ignored the required decision protocol, 

ultimately leading to catastrophic system failure.  If decision protocol had been optimized 

for limited discrete control, total system failure may have been avoided.  Examples of 

specific control locations for the offshore oil platform include the blowout preventer, drill 

pipe, and engine room.  Corresponding control protocols are shear ram actuation, well-

bore pressure, and drill speed respectively. 

 In both of these case studies, a robust design approach will provide a set of Pareto 

optimal solutions, where designers can trade off objectives based on their (or their 

system’s) risk attitude.  For the NAPG, risk attitude in analogous to a desired security 

constraint such as N-1, where the system must perform as intended despite the loss of a 

single transmission line [130].  The Deepwater Horizon case is similar, where risk 

attitude could relate to well-bore pressure conditions or drill speed.  These design 

variables correspond directly with oil platform performance.  Creating a comprehensive 

design approach, based on the framework presented in this research, will enable robust 

infrastructure system designs that capture resource conservation, topology optimization, 

and human protocol. 
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APPENDIX 

In this survey, you will be asked to give your feelings on one of three buildings on 

campus. Please select one of the following buildings on campus that you are familiar 

with, and base your evaluations on the building you select. 

Kelly Engineering Center Kearney Hall Linus Pauling Building 

 

Please take your time and answer all the following questions thoughtfully and carefully 

by circling the option that most accurately reflects your opinion. This should take about 

15 minutes. 

1. How often do you use your building of choice 

Never Rarely Sometimes Frequently 

 

2. When studying I prefer to use my building of choice over other buildings on 

campus. 

Strongly 

Disagree 

Disagree Moderately 

Disagree 

Have no 

Opinion 

Moderately 

Agree 

Agree Strongly 

Agree 

 

3. When socializing I prefer to use my building of choice over other buildings on 

campus. 

Strongly 

Disagree 

Disagree Moderately 

Disagree 

Have no 

Opinion 

Moderately 

Agree 

Agree Strongly 

Agree 
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4. I prefer the lighting in my building of choice over other buildings on campus. 

Strongly 

Disagree 

Disagree Moderately 

Disagree 

Have no 

Opinion 

Moderately 

Agree 

Agree Strongly 

Agree 

 

5. I like the temperature of my building of choice more than other buildings on 

campus. 

Strongly 

Disagree 

Disagree Moderately 

Disagree 

Have no 

Opinion 

Moderately 

Agree 

Agree Strongly 

Agree 

 

6. I like the types of available seating at my building of choice more seating in other 

buildings on campus. 

Strongly 

Disagree 

Disagree Moderately 

Disagree 

Have no 

Opinion 

Moderately 

Agree 

Agree Strongly 

Agree 

 

7. The architecture of my building of choice is aesthetically pleasing. 

Strongly 

Disagree 

Disagree Moderately 

Disagree 

Have no 

Opinion 

Moderately 

Agree 

Agree Strongly 

Agree 

 

8. The availability of amenities (coffee shops, sofas, soda machines) in my building 

of choice influences my opinion of it. 

Strongly 

Disagree 

Disagree Moderately 

Disagree 

Have no 

Opinion 

Moderately 

Agree 

Agree Strongly 

Agree 
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9. I like the use of windows in my building of choice. 

Strongly 

Disagree 

Disagree Moderately 

Disagree 

Have no 

Opinion 

Moderately 

Agree 

Agree Strongly 

Agree 

 

10. I complete work faster in my building of choice than at other building. 

Strongly 

Disagree 

Disagree Moderately 

Disagree 

Have no 

Opinion 

Moderately 

Agree 

Agree Strongly 

Agree 

 

11. I complete the majority of my homework in my building of choice. 

Strongly 

Disagree 

Disagree Moderately 

Disagree 

Have no 

Opinion 

Moderately 

Agree 

Agree Strongly 

Agree 

 

12.  My building of choice’s popularity encourages me to work there myself. 

Strongly 

Disagree 

Disagree Moderately 

Disagree 

Have no 

Opinion 

Moderately 

Agree 

Agree Strongly 

Agree 

 

13. When studying for a test, a well lit space is important to me. 

Strongly 

Disagree 

Disagree Moderately 

Disagree 

Have no 

Opinion 

Moderately 

Agree 

Agree Strongly 

Agree 
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14. I feel I am more productive when I am surrounded by other people working. 

Strongly 

Disagree 

Disagree Moderately 

Disagree 

Have no 

Opinion 

Moderately 

Agree 

Agree Strongly 

Agree 

 

15. It’s easier for me to work in an environment that I am familiar with. 

Strongly 

Disagree 

Disagree Moderately 

Disagree 

Have no 

Opinion 

Moderately 

Agree 

Agree Strongly 

Agree 

 

16. When choosing a location to study, temperature is important to me. 

Strongly 

Disagree 

Disagree Moderately 

Disagree 

Have no 

Opinion 

Moderately 

Agree 

Agree Strongly 

Agree 

 

17. When studying, I prefer a traditional workspace, such as a desk or table. 

Strongly 

Disagree 

Disagree Moderately 

Disagree 

Have no 

Opinion 

Moderately 

Agree 

Agree Strongly 

Agree 

 

18.  A quiet work environment is important to me. 

Strongly 

Disagree 

Disagree Moderately 

Disagree 

Have no 

Opinion 

Moderately 

Agree 

Agree Strongly 

Agree 
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19. Fresh air is important for a building. 

Strongly 

Disagree 

Disagree Moderately 

Disagree 

Have no 

Opinion 

Moderately 

Agree 

Agree Strongly 

Agree 

 

20. I feel better about myself when working in a building that has been constructed 

using sustainable building practices. 

Strongly 

Disagree 

Disagree Moderately 

Disagree 

Have no 

Opinion 

Moderately 

Agree 

Agree Strongly 

Agree 

 

21. The interior color of my building of choice is aesthetically pleasing. 

Strongly 

Disagree 

Disagree Moderately 

Disagree 

Have no 

Opinion 

Moderately 

Agree 

Agree Strongly 

Agree 

 

 


