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 In light of water scarcity and the impacts of climate change, there is an 

increased need to understand the interaction between land use characteristics and 

ecohydrologic processes in semiarid regions. Additionally, many semiarid and arid 

regions face various land management challenges, including woody plant 

encroachment, decreased snowpack, and increased stream temperatures. Therefore, a 

more comprehensive understanding of these processes is necessary for informing 

short-term land management approaches and long-term planning to help protect the 

resiliency of these systems.  

 The overarching goal of the studies presented here was to examine the 

ecohydrologic connections and environmental characteristics at two semiarid 

watersheds. The research for this dissertation sought to assess these connections in 

the context of two significant land management concerns: western juniper 

encroachment and increasing stream temperatures.  

 This dissertation is divided into four chapters. The research for the first two 

chapters of this dissertation took place at the Camp Creek Paired Watershed Study 

(CCPWS) in central Oregon, USA. This is a long-term study site established in 1993 

in order to research the ecohydrologic impacts of western juniper (Juniperus 

occidentalis) encroachment and removal.  The first chapter compares the seasonal 

water balance of a western juniper-dominated watershed to that of a sagebrush-



 

 

 

dominated watershed over a period of eight years. The second chapter examines 

multiple approaches to estimating evapotranspiration (ET) and characterizes the 

relationship between two vegetation indices [Normalized Difference Vegetation 

Index (NDVI) and the Normalized Difference Moisture Index (NDMI)] and soil 

moisture, ET, and springflow characteristics.  

 CCPWS consists of two adjacent watersheds of similar size and orientation 

and a riparian valley site located downstream of both watersheds. The majority of 

western juniper was removed from one watershed in 2005 and 2006 (‘Mays WS’), 

and big sagebrush (Artemisia tridentata) is the dominant overstory vegetation. 

Western juniper is the dominant overstory in the other watershed (‘Jensen WS’).  

 Western juniper encroachment has been linked to reduced herbaceous 

productivity, altered soil moisture characteristics, altered streamflow timing, and soil 

erosion. Additionally, western juniper is costly and labor-intensive to remove. Cattle 

grazing is a key land use in central OR. In many semiarid regions of OR, reductions 

in herbaceous vegetative production and water availability can have ecological and 

economic impacts.  

 In order to better understand the potential hydrologic impacts of western 

juniper at this study site, a seasonal water balance approach was used. Eight years of 

streamflow, springflow, soil moisture, shallow groundwater levels, and 

meteorological data (precipitation, air temperature, and solar radiation) were 

measured. The Water Table Fluctuation Method was used to calculate shallow aquifer 

recharge. The Hargreaves-Samani equation was used to calculate potential 

evapotranspiration (PET). Seasonal ET was calculated using PET and as the sink term 

in the water balance approach. ET accounted for the largest portion of the water 

budget for both watersheds, although springflow and streamflow were greater at the 

sagebrush-dominated watershed compared to the juniper-dominated watershed. For 

both watersheds, greater groundwater recharge occurred and deep percolation 

occurred in snow-dominated years compared to rain-dominated years, even when 

total annual precipitation amounts were similar.  

 Specific data regarding ET are very limited in this region and in many 

semiarid areas. For the second chapter, satellite-based remote sensing data and readily 



 

 

 

available sources were used to examine monthly ET, PET, NDVI, and NDMI for both 

watersheds at CCPWS. Additionally, the Soil and Water Assessment Tool (SWAT) 

was used to model monthly ET for both watersheds. Environmental indicators, 

specifically springflow, soil moisture, NDVI, and NDMI, related to ET were also 

examined. . A small unpiloted aerial vehicle (UAV) was used to collect thermal 

infrared and multispectral imagery (red, green, blue, near-infrared, and red-edge 

wavelengths) at a small plot in each watershed, which was used to calculate ET and 

NDVI at an hourly scale for a small plot at each watershed. 

 Considerable variability in seasonal and annual ET patterns and totals was 

found across the different watershed-scale ET models examined in this study. In 

general, ET rates peaked in May and June, but this was not the case for all models. 

For most of the watershed-scale ET models examined, total ET was greater at Jensen 

WS than Mays WS. A significant correlation was found between SWAT-modeled ET 

and NDMI, NDVI, and volumetric water content at Jensen WS. At Mays WS, a 

significant correlation was found between SWAT-modeled ET and volumetric water 

content, springflow, NDMI, and NDVI. A significant correlation was found between 

plot-scale hourly NDVI and ET. NDVI and springflow were also found to be 

significant predictors of ET at the plot scale.  

 Research for the third chapter also sought to characterize aspects of the water 

balance. Multiple land use practices and land cover types are present at this study site. 

Sagebrush steppe, including western juniper and perennial grasses, accounts for a 

large portion of the watershed. Ponderosa pine and mixed conifer forests dominate in 

the middle reaches of the watershed. Cattle grazing and forestry are two primary land 

use practices at this study site.   

 For the third manuscript, SWAT was used to model the monthly water 

balance for a 1280 ha watershed in eastern OR. A combination of on-site weather 

measurements (precipitation, air temperature, relative humidity, and solar radiation) 

and PRISM datasets were used to create the SWAT model. Two years were used as a 

“warm up” period for the model. A 10 m DEM was used for watershed delineation, 

National Land Cover Database (NLCD) data were used for land cover classification, 

and State Soil Geographic (STATSGO) data were used for soil type identification. 



 

 

 

The SWAT-calibration and uncertainty program (SWAT-CUP) was used for 

calibration, sensitivity analysis, and validation. Streamflow data from 2021 and plant 

available water content (PAWC) from 2018, 2019, and 2021 were used for 

calibration. Streamflow data were limited and therefore only PAWC measurements 

were used for validation. Sensitivity analysis was conducted for calibration 

simulations using streamflow only, streamflow and PAWC, and PAWC only data. 

 Mean annual precipitation across the watershed from 2018 through 2021 was 

377 mm yr-1. ET accounted for the majority of the output of the water balance at 253 

mm yr-1, followed by water yield (123 mm yr-1). Total modeled aquifer recharge was 

10 mm yr-1. Based on the sensitivity analysis, parameters related to snow cover, 

canopy cover, soil characteristics, and curve number were among the most influential 

parameters.  

 The fourth chapter characterizes stream temperature dynamics along a small 

spring-fed stream and tributary and builds upon the previous research in land cover 

and water balance characterization at the study site in eastern Oregon. In the Pacific 

Northwest of the U.S., increased stream temperatures are of particular concern 

because of their negative impacts on cold-water fish (such as salmonids). While the 

link between land cover change and stream temperature has been widely researched, 

particularly in more humid regions, more information is needed to understand these 

interactions in semiarid climates.  

 Stream temperature measurements were taken along the longitudinal gradient. 

Both the stream and tributary originate at a small spring. The daily mean, minimum, 

and maximum stream temperature were calculated along with the seven-day moving 

average (7DA), the seven-day moving average of the daily maximum (7DADM), and 

the diurnal range of stream temperatures. Land cover classification was performed 

using an object-oriented support vector machine approach. The land cover type 

(forested, sagebrush/shrubland, herbaceous, or non-vegetated) was examined within a 

30 m buffer along the stream.  

 A support vector regression (SVR) approach was used to examine the 

relationship between stream temperature characteristics (specifically the 7DADM and 

the diurnal range) and environmental characteristics (mean air temperature, dew point 



 

 

 

temperature, vapor pressure deficit, SWAT-modeled springflow, and land cover 

characteristics). 

 Excluding the headwater sites, stream temperatures were generally greater at 

lower elevation sites compared to higher elevation sites, but this did not hold true for 

all seasons or all locations. Water temperatures at the headwater springs varied very 

little across seasons or years. The average diurnal range in stream temperature of 

other sites varied between 1.8 and 5.8 °C and did not demonstrate an association with 

elevation. The SVR models indicated that air temperature, followed by sagebrush 

steppe land cover and forest cover were the primary predictors for 7DADM or diurnal 

stream temperatures. The SVR model for 7DADM (R2=0.83) performed better overall 

than the SVR model for diurnal stream temperature (R2=0.55).  

 The research profiled in this dissertation addresses the need for more research 

into the ecohydrologic processes in semiarid regions. Additionally, this research 

examined multiple approaches that can be applied in data-limited environments. The 

use of readily available data, such as PRISM, remote sensing imagery, or ET datasets, 

can help address these gaps in data, particularly when combined with in situ data. 

Results of this study contribute to the existing body of knowledge regarding the 

relationship between ecohydrologic processes and land use characteristics, which can 

provide insight into future research and land management decisions.   
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1. Overview 

 The relationship between ecohydrologic processes and environmental characteristics 

(e.g., land use, climate patterns) has been examined in numerous studies and spans a wide array 

of topics. This includes research into the impacts of woody plant encroachment on elements of 

the water balance (e.g., [1,2] ), the impacts of land use activities and/or climate characteristics on 

stream temperature (e.g. [3,4]) or streamflow (e.g.,[5,6] ), and the relationship between declining 

snowpack and reduced groundwater recharge (e.g., [7,8]). Semiarid rangeland ecosystems face a 

number of related land management challenges, and understanding the underlying ecohydrologic 

processes is key to addressing these issues. However, more research is needed to understand 

these processes in semiarid regions specifically, as important drivers of the water balance have 

been shown to vary with climate and land use characteristics [9].  

 

2. Hydrologic impacts of woody vegetation encroachment 

 Encroachment of woody vegetation is a concern in many regions of the world [10]. In 

particular, western juniper (Juniperus occidentalis) has expanded in range and density over 150 

years throughout much of the western United States. Western juniper is found across 9 million 

acres of the intermountain west [11]. While a number of causes may be linked to the expansion 

of woody vegetation, juniper encroachment has been largely associated with the combination of 

reduced fire occurrence, wetter climate conditions, and land use practices, such as overgrazing 

[12,13]. 

 Woody vegetation encroachment is particularly a concern in many semiarid systems as it 

may reduce water availability and herbaceous productivity in already water-scarce systems. 

Kormos et al. [14] found higher evapotranspiration rates and earlier snowmelt at juniper-

dominated sites compared to sagebrush steppe sites. Increased juniper density has also been 

linked to reduced infiltration and increased runoff and erosion [15,16]. Further, the removal of 

western juniper has been associated with increased soil moisture accumulation over the winter 

[2] and increased vegetation cover [16]. Juniper encroachment has also been linked to decreased 

streamflow duration [17]. However, it is also important to note that the impacts of woody plant 

encroachment can also vary across regions with differing climate characteristics [18], species 

type, and level of encroachment [19].  
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 The cumulative impacts of woody vegetation encroachment and climate change-related 

alterations in precipitation characteristics (e.g., shifts from snow-dominated to rain-dominated 

patterns), have the potential to influence the water balance and increase water scarcity 

[14,20,21]. Climate change is linked to reduced snowpack and earlier snowmelt [22,23] as well 

as shifts in ET rates [24] and soil moisture content [25].  However, in order to address the 

impacts of climate change and vegetation shifts and other land cover changes, it is necessary to 

understand the elements of the water balance (e.g., precipitation, groundwater recharge, 

streamflow, ET, and soil moisture storage). 

 

3. Water Balance Characterization 

 Multiple methods have been used to characterize elements of the water budget, including 

direct measurements of water or energy fluxes and/or modeling approaches. ET is often 

calculated as the remainder of the water or energy balance. In the case of a water balance 

approach, ET is estimated by subtracting other outputs (e.g., soil moisture change, streamflow) 

from inputs (e.g., precipitation, irrigation). Energy balance approaches similarly estimate latent 

heat flux (to estimate ET) by subtracting other energy fluxes (e.g., sensible heat flux, ground heat 

flux) from incoming solar radiation. 

 The limitations of mass balance approaches are also an important consideration, 

including limitations in the spatial and temporal data available. For example, while precipitation 

data are often available for small to regional scales, topography influences precipitation patterns 

[26]. Additionally, rainfall interception and throughfall are influenced by climate and vegetation 

characteristics [27], which are difficult to characterize in a water balance method approach. 

Further, groundwater recharge and deep percolation are difficult to calculate, particularly across 

areas with varying topography and geologic characteristics. In particular, direct measurements of 

ET are often very limited and on-site measurements of fluxes through systems like eddy-

covariance towers are often expensive and labor intensive. In snow-dominated semiarid regions 

(such as those in eastern and central OR), the majority of precipitation falls when ET is energy-

limited and vegetation is often dormant or transpiring at significantly lower rates. Therefore, 

water balance approaches considering data at an annual scale may not accurately account for this 
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asynchrony. In contrast, daily water balances may not account for snowmelt and soil moisture 

recharge that occurs months after precipitation.  

 In data-limited areas, there are many challenges associated with characterizing the water 

balance. Remote sensing data and open access sources such as OpenET 

(https://openetdata.org/;[28]) provide alternative approaches that can be combined with on-site 

data. Several surface energy balance-based approaches, such as the Atmosphere-Land Exchange 

Inverse [ALEXI; [29,30]] or Mapping Evapotranspiration at High Resolution with Internalized 

Calibration [METRIC; [31–33]], utilize remote sensing data in order to model elements of the 

energy balance. Particularly in areas with homogenous agricultural land cover, ET is frequently 

estimated based on the reference ET (RET) or potential ET (PET) (see [34]) calculated from 

meteorological characteristics (e.g., wind speed, air temperature, solar radiation).  

 Environmental characteristics, such as vegetation density and production, also provide 

insight into water balance patterns. Readily available imagery, such as Landsat or Moderate 

Resolution Imaging Spectroradiometer (MODIS), can be used to calculate the Normalized 

Difference Vegetation Index (NDVI; [35]), which is linked to vegetation activity, biomass, and 

density. NDVI has been used as an indirect means of estimating ET in some environments (e.g., 

[36,37]), although vegetation type, climate, and seasonality should be taken into consideration. 

 

4. Soil and Water Assessment Tool (SWAT) for water balance modeling 

 Modeling approaches, such as the Soil and Water Assessment Tool (SWAT, [38]), are 

another approach used to characterize the water balance. SWAT is a widely-used model that has 

been widely used for a variety of purposes, such as characterizing the impacts of land cover 

change (e.g., [39,40]), modeling streamflow rates (e.g., [41]) and snowmelt (e.g., [42]), and 

assessing how climate or soil characteristics can influence the water balance (e.g., [43]). SWAT 

has also been used at study sites of varying climate and land cover characteristics, including 

semiarid sites (e.g., [44,45]) and areas with multiple land uses present (e.g., [46,47]).  

 Multiple factors should also be considered when applying a model, such as SWAT, and 

interpreting the results. For instance, it is important to consider the overall objective and the 

related parameters (e.g., snowmelt timing for predicting streamflow). Parameter choice and 
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sensitivity analysis should be examined closely in order to prevent model overfitting and avoid 

equifinality.  

 Uncertainty in hydrologic models can result from many sources, including limited data, 

oversimplification, and parameter uncertainty [48]. While performance metrics may indicate 

good agreement between predicted and observed results, it is also important to consider the 

accuracy of other aspects of the model (e.g., soil moisture patterns when calibrating using 

streamflow). Calibration using multiple sites and variables has been shown to improve model 

results [49,50]. Sensitivity analysis of the parameters using in a model can also provide insight 

into the factors most impactful on the hydrology of a given area. Examples of approaches include 

the commonly-used Sequential Uncertainty Fitting version 2 (SUFI-2) or the Generalized 

Likelihood Uncertainty Estimation (GLUE, [51]) algorithms available within SWAT-Calibration 

Uncertainty Program (SWAT-CUP, [52,53]). While the limitations of models should be 

considered carefully, particularly when data are limited and in situations of complex geology 

[54], these approaches provide the potential to increase our understanding of land management 

concerns.  

 

5. Environmental Characteristics and Stream Temperatures 

 Stream systems are an essential aspect of the water balance and an important water 

source in many semiarid and arid regions. In addition to water quantity, however, stream 

temperature is a significant water quality concern. In the United States, statistically significant 

increases in stream temperature have been observed in many areas [55]. Increased stream 

temperatures alter chemical and biological processes in stream, leading to reduced dissolved 

oxygen concentrations (e.g., [56]) and changes in nutrient cycling and production (e.g., [57]), 

and impact species distribution (e.g., [58]). Sub-lethal and lethal effects on salmonids and other 

coldwater fish [59] are also linked to increased stream temperatures. In order to address these 

concerns, it is necessary to understand the ecohydrologic processes that impact stream 

temperature.  

 Climate (e.g., arid compared to temperate climates), stream size [60], season [61] 

geomorphological characteristics, such as elevation, [62,63], stream discharge [64], shallow 

groundwater inflows [65] , substrate [66], flooding [67] and precipitation [68] have been found 
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to influence stream temperature. Stream order has also been associated with differences in stream 

temperature response to land cover changes, such as forestry operations [69]. In lower order 

streams, groundwater inputs can moderate stream temperature while mid-stream reaches often 

show a stronger correlation with climate [70].  Additionally, the increase in stream temperatures 

downstream along the longitudinal gradient tends to be greater in smaller streams compared to 

larger streams [71].  

 While multiple environmental characteristics can impact stream temperatures, the 

association between land use/land cover and stream temperature has been a subject of much 

research (e.g., [3,72–74]). Riparian shading, which influences the amount of solar radiation that 

reaches a stream, is strongly linked to stream temperature patterns (e.g., [75–78]). Removal of 

riparian vegetation has been associated to increased daily maximum and mean stream 

temperatures (e.g.,[79,80]) and reductions in diurnal stream temperature ranges (e.g., [76]). 

Additionally, streamflow volume and timing, which can be altered by irrigation withdrawals or 

similar practices [81,82], influence the stream temperature by affecting the thermal capacity of 

the stream. As a result, higher streamflow volume is often associated with lower stream 

temperatures (e.g., [68,83,84]). 

 Local processes and characteristics influence stream temperature and patterns in stream 

temperature profiles along a longitudinal gradient have been found to vary across systems [60]. 

Spatial characteristics, such as the length of riparian corridors, and the spatial resolution of 

stream temperature measurements [85] are an important consideration in assessing stream 

temperature patterns [86].  

 The assessment of stream temperature patterns, and predicting the future impacts of 

environmental changes, present a number of challenges. The stream temperature metric used 

(e.g., mean daily temperature vs. the moving average of the daily maximum) is an important 

consideration for both understanding how stream systems might respond to environmental shifts 

such as climate change (e.g., [87]) or removal of riparian shading (e.g., [88]). Spatial 

autocorrelation is another important consideration (see [89]) as many statistical approaches 

applied to stream temperature analysis assume independence.  While regression approaches 

using air temperature to predict stream temperature are commonly utilized (e.g., [90–92]), they 

are sometimes limited in their ability to predict extreme stream temperatures and stream 
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temperatures over extended timeframes [93]. Additionally, the strength of the association 

between air and stream temperatures varies across systems [94].  

 While extensive research has addressed the stream temperature characteristics in humid 

environments, more research is needed into stream temperature dynamics in semiarid systems. 

This is particularly the case given the land use-related demands on water resources in these 

regions (e.g., water for irrigation or soil moisture for vegetation productivity). An improved 

understanding of the underlying drivers and influences of stream systems (and other aspects of 

the water balance) can be used to inform land management decisions in water-scarce regions. 

 

6. Research Justification and Objectives 

 Each management issue addressed here has implications for water availability and/or 

quality. This dissertation explores the ecohydrologic processes associated with key management 

concerns impacting many semiarid regions. In particular, this research sought to address the 

relationships between land cover and land use on the water balance and stream temperature. 

Previous studies have examined these relationships, but a more comprehensive examination of 

the underlying ecohydrologic processes in semiarid systems is needed. Additionally, multiple 

approaches (e.g., mass balance approach, modeling) and multiple data sources (e.g., on-site 

measurements, remote sensing imagery) were used to achieve this  

 The overarching goal of this research was to provide a more comprehensive examination 

into the relationship between aspects of the water balance (e.g., evapotranspiration) and 

environmental characteristics. This research examined two significant water resource challenges 

faced in many semiarid systems: shifts in vegetation cover/ density (specifically juniper 

encroachment) and increasing stream temperatures. We hypothesized that variations in 

environmental characteristics would be associated with differences in ecohydrologic processes 

(e.g., evapotranspiration rates would vary with vegetation type and stream temperature would 

vary with land cover). Specific objectives of this research were to: 

 

 1) characterize the water balance of two unique semiarid systems in Oregon 

 2) examine multiple methods of modeling components of the water balance, including

 evapotranspiration (ET) and streamflow 
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 3) characterize stream temperature dynamics along the longitudinal gradient of stream 

 system in eastern OR   

 

 This dissertation is divided into four manuscripts. Research for the first two chapters 

occurred at the Camp Creek Paired Watershed Study (CCPWS) in central Oregon, USA. This is 

a long-term study site established in 1993 to examine the ecohydrologic impacts of western 

juniper encroachment. The site consists of two small watersheds of approximately 100 ha each, 

one dominated by western juniper and one in which big sagebrush is the dominant overstory, 

along with a downstream riparian valley.  

 For the first manuscript, the research examined characteristics of the water balance, 

including shallow groundwater recharge and discharge. We hypothesized that annual ET 

amounts would be larger, while other outputs of the water balance (e.g., springflow, streamflow) 

would be lower at the juniper-dominated watershed compared to the sagebrush-dominated 

watershed.  Seven years of streamflow, soil moisture, precipitation, springflow, and shallow 

groundwater levels were used to develop a water balance model. Evapotranspiration was 

estimated using the potential evapotranspiration and the balance of the precipitation and the other 

outputs of the water balance (soil moisture storage, percolation, streamflow). Specific objectives 

of this research were to: 

 

 1) determine the partitioning of water budget components in a western juniper-dominated 

 watershed and a sagebrush-dominated watershed 

  2) characterize shallow groundwater level fluctuations in response to seasonal 

 precipitation 

  

 Research for the second manuscript also took place at CCPWS and builds upon research 

from the first manuscript. We hypothesized that larger rates of ET would be shown at the 

juniper-dominated sites, both at the watershed scale and the plot scale, and that these rates would 

vary with vegetation indices, soil moisture, and springflow. This research examined multiple 

approaches to estimating ET, including modeling using SWAT [38] and remote sensing-based 

energy balance approaches. Unpiloted aerial vehicles (UAVs) were also used to collect data 
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periodically at a small plot within each watershed. Ecohydrologic indicators, such as NDVI and 

the normalized difference moisture index (NDMI) were also calculated. Specific objectives of 

this research were to: 

 

 1) compare different approaches to modeling ET at different temporal and spatial scales 

 at two small watersheds 

  2) assess the relationship between different ecohydrologic indicators and characteristics, 

 specifically ET, springflow, soil moisture, NDVI, and NDMI 

 

 Research for the third manuscript took place at a 1280 ha semiarid watershed in eastern 

Oregon, USA. Multiple land use and land cover characteristics are present in this watershed, 

including cattle grazing and forestry. For this study, the water balance was modeled using 

SWAT. A combination of on-site weather data (including relative humidity, solar radiation, and 

air temperature) and Parameter-elevation Regressions on Independent Slopes Model (PRISM; 

[95]) datasets (air temperature and precipitation data) were used to build the model. SWAT-CUP 

[52,53] was used for model calibration, validation, and sensitivity analysis. Calibration was 

performed using streamflow and soil plant available water content (PAWC), and validated using 

PAWC (due to limited streamflow observations). We hypothesized that parameters associated 

with snow cover and soil moisture would be the most influential and that streamflow patterns 

would reflect patterns in snowmelt. Specific objectives of this study were to:  

 

 1) model the water balance of a snow-dominated semiarid watershed using SWAT  

 2) perform model parameter sensitivity 

 

 The final manuscript built upon the water balance model used in the previous study and 

was conducted at the same study site. For this research, the focus was on the relationships 

between environmental characteristics, including land cover, streamflow, air temperature, and 

stream temperatures. We characterized land cover characteristics within 30 m on either side of 

the stream channel using National Agricultural Imagery Program (NAIP) imagery and used 

SWAT to model daily streamflow rates. Additionally, surveys of stream channel condition were 
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performed at selected reaches. Stream temperature data were recorded along the longitudinal 

gradient of a small spring-fed stream and a tributary. PRISM data (including air temperature and 

vapor pressure deficit) were downloaded for each stream temperature site. A support vector 

regression approach was used to evaluate how well environmental parameters predicted the 

seven-day moving average of the daily maximum stream temperature and the diurnal range of 

stream temperature. We hypothesized that areas with greater amounts of forest cover in and near 

the riparian area would experience generally lower temperatures than sites of similar elevation 

with less forested cover. We also hypothesized that air temperature, streamflow, and forested 

cover would be key predictors of stream temperature patterns. Specific objectives of this study 

were to: 

 1) examine channel characteristics and condition at selected reaches along the system 

 2) characterize stream temperature patterns along the longitudinal gradient 

 3) assess the relationship between stream temperature and meteorological characteristics 

 (e.g., air temperature and vapor pressure deficit), land cover, and streamflow 
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The Seasonal Water Balance of Western Juniper-Dominated and Big Sagebrush-

Dominated Watersheds 

Abstract: The combined impacts of woody plant encroachment and climate variability have the 

potential to alter the water balance in many sagebrush steppe ecosystems in the Western USA, 

leading to reduced water availability in these already water-scarce regions. This study compared 

the water balance characteristics of two adjacent semiarid watersheds in central Oregon, USA: 

one dominated by big sagebrush and one dominated by western juniper. Precipitation, 

springflow, streamflow, shallow groundwater levels, and soil moisture were measured. The 

potential evapotranspiration was calculated using the Hargreaves–Samani method. Potential 

evapotranspiration and a water balance approach were used to calculate seasonal actual 

evapotranspiration. The shallow aquifer recharge was calculated using the Water Table 

Fluctuation Method. Evapotranspiration, followed by deep percolation, accounted for the largest 

portion (83% to 86% of annual precipitation) of water output for both watersheds. Springflow 

and streamflow rates were generally greater at the sagebrush-dominated watershed. Snow-

dominated years showed greater amounts of groundwater recharge and deep percolation than 

years where a larger portion of precipitation fell as rain, even when total annual precipitation 

amounts were similar. This study’s results highlight the role of vegetation dynamics, such as 

juniper encroachment, and seasonal precipitation characteristics, on water availability in semiarid 

rangeland ecosystems. 

Keywords: water balance; groundwater; juniper encroachment; sagebrush steppe; rangelands 

1. Introduction 

 Many areas of the Western US are facing severe drought conditions that have 

dramatically decreased the levels of water available for numerous production and ecological 

functions. Long-term deficits in available water associated with prolonged droughts and a 

changing climate threaten production systems and ecosystem resilience in many arid and 

semiarid regions worldwide. Reduced snowpack [1], shifts from snow to rain-dominated 

precipitation [2], and reduced groundwater recharge [3–5] can severely impact water availability 

for human and environmental use. Seasonal timing of precipitation is a key factor influencing the 

water balance, and therefore water availability, in sagebrush steppe ecosystems [6], particularly 

in regions with already variable precipitation patterns [7]. Shifts in plant functional types have 
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also been shown to alter the water balance of dryland ecosystems [8]. In particular, the 

encroachment of juniper (Juniperus spp.) in sagebrush steppe ecosystems has been associated 

with altered flow regimes [9], earlier snowmelt and increased evapotranspiration [10], and 

increased overland flow and erosion [11]. In the sagebrush steppe ecosystems of the Great Basin 

and Intermountain West, the combined effects of woody plant encroachment [10,12] and 

increased temperatures and precipitation variability associated with climate change [2,13] can 

alter the seasonal water balance. 

 A technique commonly used to assess water availability and the partitioning of water 

resources in a given area is the water-balance method (WBM). In the WBM, inflows (e.g., 

precipitation) offset outflows (e.g., runoff, evapotranspiration, and changes in soil water 

content). Some water budget components are relatively easy to measure (e.g., soil water content, 

precipitation, and runoff); other components, such as evapotranspiration, can be simulated based 

on available weather data. Evapotranspiration and deep percolation can also be calculated as the 

residual term, assuming all other components are known. The WBM approach has been used in a 

range of climates and ecosystems, such as sagebrush ecosystems [14], semiarid savannas [15], 

oak woodlands [16], and agricultural fields [17]. Additionally, the WBM has been used to 

examine climate change [3] and land use practices [18]. This approach has also been used to 

examine a broad range of temporal scales, including long-term examination of the water balance 

[15,19,20] and short-term precipitation events [21]. Similarly, the WBM has been applied across 

spatial scales from the watershed [22] to the larger catchment and continent scales [23]. Several 

studies have examined the water balance of semiarid shrublands in the Southwestern USA 

[19,24,25] and other semiarid regions of the world [26–29]. 

 The partitioning of the water-balance components is less known in the western juniper 

(Juniperus occidentalis) and sagebrush (Artemisia tridentata) dominated settings in the Pacific 

Northwest region of North America. Some research has focused on variables such as soil water 

content (e.g., see [30–32]), runoff (e.g., see [30]), and transpiration (e.g., see  [32–34]). Limited 

research has been conducted into the evapotranspiration (ET) of western juniper and sagebrush 

steppe ecosystems. The measurement of ET poses unique challenges. Methods using eddy-

covariance or Bowen Ratio systems have been successfully applied in many studies (e.g., see  

[35–37]), as well as direct measurements of evaporation, such as pan evaporation measurement 
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(e.g., see [38]), or evapotranspiration, such as lysimeters [39], as well as sap flow approaches to 

measure transpiration (e.g., see [40]). However, the variation in ET across the landscape due to 

vegetation heterogeneity or topography cannot be captured without multiple monitoring systems, 

which are often costly or difficult to maintain in remote environments. Reference ET (ET0) or 

potential evapotranspiration (PET), the amount of ET that would occur when moisture is not 

limited, is frequently used to estimate actual ET (ETA). The Hargreaves–Samani equation [41] 

requires minimal climate data and has been successfully used to calculate PET in arid and 

semiarid regions [42,43]. Thornthwaite–Mather-type water-balance equations [44,45] have been 

used to estimate ETA and other water-balance elements [46,47] and are particularly useful due to 

their simplicity and limited data requirements. 

 Surface water and groundwater interactions influence multiple ecological and 

hydrological relationships occurring in a landscape. Understanding these connections is critical 

for developing sound comprehensive resource management plans [48,49]. Surface water and 

groundwater cannot be seen as isolated components and are spatially and temporally variable in 

many systems [50]. In many instances, seasonal precipitation or irrigation inputs percolating 

below the effective rooting zone contribute to the replenishment of the shallow aquifer [30,51]. 

Groundwater recharge can be influenced by geologic characteristics, such as the presence of 

fractured bedrock or basalt [30,52], and precipitation timing and quantity [53] or vegetation [54]. 

 Many rangeland ecosystems, including sagebrush and juniper woodlands, are not 

considered high water yielding sources mainly because of the low precipitation and the high 

evapotranspiration losses associated with these landscapes. Long-term groundwater recharge is 

assumed to be minimal in some areas of the US Southwest region [25,53,55], where the bulk of 

the precipitation that falls in the hot summer generally corresponds to vegetation productivity, 

and consequently with high evapotranspiration rates. However, the recharge of the shallow 

aquifer can be significant in winter precipitation-dominated systems where there is limited 

consumptive use from vegetation. Aquifer replenishment in response to seasonal water inputs 

can be more significant in regions overlying shallow aquifers characterized by permeable soils 

that allow rapid water infiltration and aquifer recharge [30]. 

 Groundwater recharge can be calculated by using different methods [56], including soil-

water budgets [56,57], isotope measurements [58], Darcy’s equation [59], and groundwater-level 
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fluctuations [60]. Similar to the WBM described above, soil water budget approaches require 

information about other water-balance characteristics, such as ETA, that may not be readily 

available. The use of tracers can be challenging in environments where regular sampling and 

analysis of tracer concentrations in the groundwater may not be possible. The Water Table 

Fluctuation Method (WTFM) is a commonly used approach that calculates recharge in 

unconfined aquifers based on groundwater level data [60]. The WTFM has been applied in 

several studies (e.g., see [61–63]) and is advantageous, particularly in data-limited environments, 

due to its simplicity. 

 It is increasingly recognized that woody vegetation expansion effects on hydrologic 

processes such as groundwater recharge must be better understood. While woody plant 

encroachment can influence groundwater recharge due to changes in infiltration rates, 

interception, and transpiration, among other factors, these impacts vary across spatial and 

temporal scales [64]. Moore et al. [65] found that removal of shrubs (primarily honey mesquite, 

Prosopis glandulosa) resulted in a slight increase in groundwater recharge at a study site in 

Southwest Texas; however, this varied with soil type and the amount of vegetation cover 

removed. Research addressing the effects of woody vegetation on water yield in cool climates is 

limited. Only a few studies (see, for example, [30,52]) have addressed vegetation and 

groundwater relationships in sagebrush- and juniper-dominated landscapes. More studies focused 

on the linkages between seasonal winter precipitation and water distribution throughout the 

landscape are needed to enhance base knowledge of the biophysical mechanisms that influence 

surface water and groundwater connectivity in rangeland ecosystems. 

 This research examined the water balance and the mechanisms of aquifer recharge and 

discharge at two adjacent watersheds in a semiarid region in central Oregon, USA. Specific 

objectives were to (1) determine the partitioning of water budget components in a western 

juniper-dominated watershed and a sagebrush-dominated watershed; and (2) characterize 

shallow groundwater level fluctuations in response to seasonal precipitation. 

 

 

2. Materials and Methods 

2.1. Site Description 
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 This research was conducted at the Camp Creek Paired Watershed Study (CCPWS) site 

in central Oregon, USA. The CCPWS was established in 1993 to examine the potential impacts 

of juniper removal on hydrologic processes such as streamflow, soil water content, and 

groundwater. The CCPWS site includes two watersheds (WSs): Mays WS (116 hectares) and 

Jensen WS (96 hectares). The study site is located within the John Day ecological province [66]. 

Western juniper is the dominant overstory species at Jensen WS, while big sagebrush is the 

primary overstory species at Mays WS following juniper removal in 2005. Juniper canopy cover 

is 30% at the untreated Jensen WS and it is less than 1% at Mays WS [30,31,67]. Juniper density 

is 797 trees ha−1 at Jensen WS, of which 21% (167 trees ha−1) are estimated to be mature 

juniper, and 313 trees ha−1 at Mays WS where most junipers are at the sapling stage [67]. The 

density of mature juniper at the Mays WS is 9.5 trees ha−1 (unpublished data). Shrub cover, 

including big sagebrush and other species such as green rabbitbrush (Chrysothamnus 

viscidiflorus) and antelope bitterbrush (Purshia tridentata), is approximately 10% at the Jensen 

WS and 23% at the Mays WS [68]. At a study site approximately 9 km from CCPWS, Mollnau 

et al. [32] found that shrub density was approximately 2%. Similarly, Bates et al. [69] found that 

shrub cover was <1% at a study site in Southeastern Oregon, but this increased to 5.5% ± 1.3% 

25 years after juniper removal. The CCPWS site consists of public and privately owned land and 

is largely used for cattle grazing. Most precipitation occurs as a mix of rain and snow during fall 

and winter. Long-term (1961–2016) average annual precipitation in the region is 322 mm, with 

daily snow depth reaching up to 480 mm [70]. 

 Clarno and John Day formations dominate the geology in this region, with alluvium in 

the valleys. The low permeability of the deeper geologic strata has resulted in transient 

unconfined shallow aquifers that primarily follow surface topography and that are recharged 

during the winter precipitation and spring snowmelt runoff seasons [52]. The topography of 

Mays WS and Jensen WS are similar and are characterized by a relatively low gradient 

landscape. Elevation ranges from 1367 to 1524 m. The average slope is 24% for Mays WS and 

25% for Jensen WS. The orientation of Mays WS is to the north–northwest, while Jensen WS is 

oriented to the north [71]. The soil series at CCPWS comprise Madeline Loam, Westbutte very 

stone loam, and Simas gravelly silt loam [71]. The Westbutte series covers approximately 50% 

of the area at Mays WS and 26% at Jensen WS. These soils are well-drained and moderately 
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deep [71,72]. Soils in the Madeline loam series are shallow and well-drained and cover 20% of 

the area at Mays and 48% at Jensen [71,72]. The Simas soils are very deep and well-drained and 

cover 21% at Jensen WS and 3% at Mays WS [71,72]. 

 In 2005, the CCPWS site was instrumented to measure multiple hydrologic (e.g., soil 

water content, groundwater, and streamflow) and weather parameters. Since 2014, additional 

monitoring locations and equipment have been included to measure other variables (e.g., 

springflow and tree transpiration) and expand the spatial understanding of ecohydrologic 

processes within and downstream of the treated (Mays WS) and untreated (Jensen WS) 

watersheds (Figure 1). Data collected between 2013 and 2020 were used to calculate the 

different water budget components described in this study. 

 

Figure 1. Location and instrumentation of the study site. This map was created by using 

ArcGIS® software by Esri. ArcGIS® and ArcMap™ are the intellectual property of Esri and are 

used herein under license. Copyright © Esri. All rights reserved. For more information about 
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Esri® software, please visit www.esri.com. Basemap credits: Esri, DigitalGlobe, GeoEye, 

icubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS 

User Community. Oregon counties map credits: Esri, TomTom North America, Inc., US Census 

Bureau, US Department of Agriculture (USDA), and National Agricultural Statistics Service. 

 

2.2. Water Balance 

 A water balance approach was used to calculate deep percolation (DP) below the top 0.8 

m soil depth, which was assumed to be the effective rooting zone depth. This is based on 

observations made during soil water content sensor installation at multiple sites in the two 

watersheds, where it was noted that the soil’s profile was less than 1 m depth [30]. For each 

watershed, the quarterly portioning of different water budget components for each water year 

from 2014 to 2020 were obtained based on measurements of precipitation (P), soil volumetric 

water content (θ), streamflow (Q), and weather data used for modeling evapotranspiration (ETA). 

These components were assumed to represent processes within the unsaturated soil zone. The 

following water balance equation was used (Equation (1); all units are in mm day−1). 

𝐷𝑃 = 𝑃 − Δ𝜗 − 𝑄 − 𝐸𝑇𝐴 (1) 

 The seasonal water budget of the unsaturated soil layer zone was calculated by summing 

the daily values for each component. This was performed for each quarter of the water year, with 

the first quarter corresponding to October through December. A seasonal water budget approach 

was selected to contrast periods of differing precipitation and temperature characteristics. The 

annual water budget based on the water year (1 October through 30 September) was calculated 

by summing the quarterly values for each water balance component. 

 The seasonal patterns of precipitation were determined by using rain and snow data. 

Daily averaged levels of total P were calculated from data collected by using three tipping bucket 

rain gauges installed onsite at each watershed outlet, and the watershed divide. Rain data near the 

outlet of each watershed was primarily used. However, during brief periods of data unavailability 

(e.g., equipment failures), precipitation records from the watershed divide (Figure 1) were used. 

Snow depth data were obtained by using an ultrasonic snow depth recording sensor (Model TS-

15S, Automata, Inc., Nevada City, CA, USA) installed at the outlet of Mays WS. We 

characterized the annual snow water equivalent (SWE) based on the snow depth sensor data and 

SWE: precipitation ratios derived from the nearest (Ochoco Meadows) SNOwpack TELemetry 
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Network (SNOTEL) [73], located approximately 51 km north at an elevation of 1655 m. The 

ratio of the SNOTEL SWE to snowpack depth at this station was multiplied by the snowpack 

depth at CCPWS to estimate monthly SWE. 

 Daily changes in soil volumetric water content (∆θ) were obtained based on hourly 

records of θ from sensors installed at depths of 0.2, 0.5, and 0.8 m, as described in [30]. The Δθ 

was calculated for each soil depth, averaged across all three depths, and then divided by the total 

depth (0.8 m). The soil moisture stations used in this study are at locations representing different 

topographic and vegetation conditions within each watershed. At Jensen WS, soil moisture 

sensors are located in tree undercanopy and intercanopy sites at valley and upland sites. The 

stations at Mays WS, which is dominated by sagebrush, are likewise located in valley and upland 

sites (see [30]). 

 Streamflow (Q) was measured at the outlet of each watershed, using a type-H flume [74] 

equipped with a water level logger (Model HOBO U20-001-01, Onset Computer, Corp.; Bourne, 

MA, USA). Water stage data were collected every 15 min at the flume, and the manufacturer’s 

pre-calibrated equations were used to estimate Q. 

 The Hargreaves–Samani equation [41] was used to calculate potential evapotranspiration 

(PET) (Equation (2)) in mm day−1. Mean (Tmean), maximum (Tmax), and minimum (Tmin) air 

temperature and solar radiation (Ra) data were collected onsite. All temperatures are in °C. Ra is 

in MJ m2 day−1. Additionally, a radiation adjustment coefficient (krs) of 0.17 was used based on 

Samani [75]. Due to the close proximity of the two watersheds and their relatively small size, it 

was assumed that ambient conditions (e.g., air temperature) and solar radiation would be similar, 

and therefore PET values would also be similar. 

𝑃𝐸𝑇 = 0.0135 ∗ k𝑟𝑠 ∗ (𝑇𝑚𝑒𝑎𝑛 + 17.8) ∗ (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)0.5 ∗ 0.408 ∗ 𝑅𝑎 (2) 

 

 Estimates of ETA were obtained by using a modified Thornthwaite-type water balance 

equation, similar to that described by Alley [47] and Dingman [76] (Equations (3) and (4)). This 

approach was selected to reflect seasonal periods of energy-limited evapotranspiration (winter 

months) versus periods of water-limited evapotranspiration (generally late spring through fall). 

When 𝑃𝐸𝑇 > 𝑃 −  𝛥𝜃 –  𝑄, then 𝐸𝑇𝐴  =  𝑃 −  𝛥𝜃 –  𝑄 (3) 

When 𝑃𝐸𝑇 ≤  𝑃 −  𝛥𝜃 –  𝑄, then 𝐸𝑇𝐴  = 𝑃𝐸𝑇 (4) 
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2.3. Subsurface Flow and Shallow Aquifer Response to Seasonal Precipitation 

 Seasonal groundwater flow at each watershed was characterized by using data collected 

hourly with water level loggers (Model HOBO U20-001-01, Onset Computer, Corp.; Bourne, 

MA, USA) installed in five (Mays WS) and six (Jensen WS) shallow groundwater monitoring 

wells located near the outlet of each watershed (see Figure 1). The wells were located 

perpendicular to the stream channel and are numbered in order, generally from west to east 

(Mays WS wells, T1–T5; Jensen WS wells, U1–U6). The transect at Mays WS is 38 m across at 

an elevation of 1438 m and the transect at Jensen WS is 52 m across at an elevation of 1373 m. 

The Mays WS wells are primarily located in fractured rock substrate, while the Jensen WS wells 

are located in alluvium and fractured rock [68,77]. The maximum well depth was 8.2 m; 

however, some wells were somewhat shallower, with the bottom of all wells near or at the 

bedrock layer [30,77]. 

 The recharge (ReGW) of the shallow aquifer was estimated by using the WTFM [60]. The 

WTFM calculates recharge based on shallow, unconfined groundwater level fluctuations and 

specific yield (Sy) [60], where Sy is multiplied by the change in water table height (Δh) over time 

(Δt) (Equation (5)). Re was calculated at the daily time step (mm day−1). 

 

 

 The WTFM works best in shallow unconfined aquifers with sharp groundwater level rises 

and declines observed over short periods of time [60]. This is the case for the wells at our study 

site, where rapid changes in the water table are observed during the relatively short groundwater 

recharge season that peaks in early spring. Peak water level rises in the shallowest vs. the deepest 

wells ranged from 0.5 to 4.1 m at Mays WS and from 0.4 to 5.4 m at Jensen WS. For estimating 

groundwater recharge, the measurements of groundwater level, using a monitoring well, are 

believed to cover at least several tens of square meters [60]. Given that all monitoring wells used 

in this study are located within less than 50 m, in transects spanning across the entire valley 

bottom cross section, we used data from two of the deepest wells in each transect (T3 at Mays 

WS and U5 at Jensen WS) to calculate aquifer recharge. The assumption was that these two 

𝑅𝑒𝐺𝑊 = 𝑆𝑦

Δℎ

Δ𝑡
 (5) 
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wells would be representative of shallow groundwater dynamics occurring at the outlet of each 

watershed.  

 One of the challenges of using the WTFM is determining a representative value for Sy 

[56]. Sy indicates the volume of water drained out of the unconfined aquifer when the water table 

drops, and it is defined as the ratio of the volume of water that drains freely from a saturated 

substrate due to gravity forces to the total volume of the substrate [78]. To our knowledge, no 

shallow aquifer tests to determine Sy have been conducted in the region where our study site is 

located. Therefore, we used Sy values from the literature based on the medium gravel and tuff 

layers at Mays WS, and the fine-to-medium gravel at Jensen WS observed in the water table 

fluctuation zone during the installation of the wells (data not published). An average value of 

0.23 for Mays WS and 0.26 for Jensen WS was obtained based on the Sy values for geological 

deposits reported by [76]. 

 Springflow data were calculated based on a discharging spring in each watershed (Figure 

1). The two relatively low flow springs have been reconditioned to be able to measure springflow 

[30]. A springbox (0.6 m diameter by 1.8 m depth) to capture and discharge water to a cattle 

trough was installed at each site [77]. Springflow was measured regularly (bi-weekly to 

quarterly) from 2004 to 2020, except for 2014 and 2015, when no data were collected. Manual 

springflow measurements were made at the discharge pipe outlet, using a timer and a 5 L bucket. 

In 2017, a water level logger (Model HOBO U20-001-01, Onset Computer, Corp.; Bourne, MA, 

USA) was installed in each springbox to measure springwater level fluctuations hourly. 

 The upslope contributing area for the spring in Mays WS (112 ha) is greater than Jensen 

WS (51 ha). The Mays WS spring is located near the outlet of the WS, while the Jensen WS 

spring is located further upslope in the upper portion of the watershed. Based on the Jensen WS 

spring location, springflow is assumed to contribute to intermittent streamflow, soil water 

content, and shallow groundwater within the watershed. The springflow at Mays WS is assumed 

to reflect groundwater outflow from the watershed. 

 A stage–discharge curve was calculated based on the manual measurements of 

springflow and springbox water level (stage). A high correlation (Pearson r = 0.95 for Mays WS 

and r = 0.95 for Jensen WS) was observed between springflow and spring water stage. A 

multilinear regression based on daily averaged θ in the contributing catchment was used to 
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estimate daily springflow volume in the years before installing the water level loggers in each 

watershed’s springbox. Similar to the stage–discharge relationship, a relatively high correlation 

(r = 0.84 to 0.89 for Mays WS; r = 0.81 to 0.92 for Jensen WS) was observed between θ and 

springflow. 

 The Shapiro–Wilk test indicated that the springflow and groundwater level data were not 

normally distributed; therefore, nonparametric statistical analyses were used. The Mann–

Whitney Rank-Sum test was used to compare mean seasonal springflow rates between the two 

watersheds. The Kruskal–Wallis One-Way Analysis of Variance on Ranks (ANOVA) and 

Dunn’s Method were used to assess differences in groundwater level height for the 11 shallow 

groundwater wells. SigmaPlot® version 14.0 (Systat Software, Inc., San Jose, CA, USA) was 

used for all the statistical analyses. 

 

3. Results 

3.1. Water Balance 

 The annual water balance results by water year (October through September) for both 

watersheds are shown in Table 1. ETA accounted for the largest portion of the annual water 

budget within both watersheds, averaging 83% of incoming precipitation at Mays WS and 86% 

of incoming precipitation at Jensen WS. At Mays WS, ETA ranged from 210 to 260 mm yr−1 

(mean of 242 mm yr−1). The ETA at Jensen WS ranged from 201 to 289 mm yr−1 (mean of 239 

mm yr−1). DP ranged from 5 to 121 mm yr−1 (mean of 50 mm yr−1) at Mays WS and from 0 to 

104 mm yr−1 (mean of 43 mm yr−1) at Jensen WS. 

 Using data collected and described by Abdallah et al. [33] and density estimates from 

Durfee et al. [67], we estimated that transpiration associated with mature juniper at Jensen WS to 

be between 0.35 and 1.9 mm day−1 and between 0.03 and 0.16 mm day−1 at Mays WS for the 

time periods observed. The greater transpiration rate associated with juniper at Jensen WS is 

associated with the greater density of mature juniper in that WS. For saplings, estimated 

transpiration ranged from 0.01 to 0.09 mm day−1 at Mays WS and 0.01 to 0.18 mm day−1 at 

Jensen WS. Transpiration estimates were not available for the whole year, and therefore we did 

not calculate yearly juniper transpiration rates as a portion of the water budget. 



30 

 

 

 Peaks in seasonal ETA occurred during Q3 (April through June), which corresponds to 

periods of snowmelt. The average ETA during Q3 was 107 mm at Mays WS and 101 mm at 

Jensen WS. Seasonal ETA was generally lowest during Q2 (January through March), 

corresponding to periods of lowest temperatures and highest snowmelt. Mean ETA at Mays WS 

was 28 mm and at Jensen WS was 39 mm during the second quarter. 

 

Table 1. Water balance components by season and watershed. Each water year (October 31–

September 30) is presented by quarter, with Q1 referring to October through December, etc. 

    Mays WS Jensen WS 

Water Year PET P Q Δθ ETA DP P Q Δθ ETA DP 

2014 Q1 48 36 0 −29 48 17 26 0 −18 44 0 

2014 Q2 46 112 0 63 46 2 101 0 57 44 0 

2014 Q3 234 67 0 −28 95 0 60 0 −26 86 0 

2014 Q4 287 51 0 −15 65 0 31 0 −10 41 0 

2014 Total    615 266 1 −9 255 19 218 0 2 215 0 

            

2015 Q1 47 170 0 37 47 87 166 0 53 47 66 

2015 Q2 57 69 24 21 24 0 78 0 16 57 6 

2015 Q3 225 59 0 −31 91 0 55 0 −40 95 0 

2015 Q4 287 43 0 −27 70 0 45 0 −28 72 0 

2015 Total 615 342 24 −0.6 232 87 343 0 1 270 72 

            

2016 Q1 44 129 0 26 44 59 112 0 42 44 25 

2016 Q2 42 98 20 35 42 1 111 0 33 42 37 

2016 Q3 232 69 4 −11 77 0 65 0 −29 94 0 

2016 Q4 306 2 0 −43 44 0 12 0 −43 55 0 

2016 Total 624 298 24 7 207 60 300 0 2 235 62 

            

2017 Q1 44 117 0 −2 44 75 126 0 6 44 76 

2017 Q2 38 169 26 86 38 19 156 2 89 38 28 

2017 Q3 220 75 35 −44 84 0 74 2 −48 120 0 

2017 Q4 332 15 1 −31 45 0 14 0 −33 47 0 
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2017 Total 634 376 62 10 210 94 369 4 13 249 104 

            

2018 Q1 52 55 0 -10 52 13 68 0 -9 52 25 

2018 Q2 44 61 0 51 10 0 73 0 50 23 0 

2018 Q3 223 83 0 -26 109 0 80 1 -20 100 0 

2018 Q4 364 28 0 -32 59 0 4 0 -22 26 0 

2018 Total 683 226 0 -17 230 13 226 1 -1 201 25 

            

2019 Q1 54.2 75 0 15 54 5 80 0 -1 54 27 

2019 Q2 50 108 1 94 13 0 102 2 70 29 0 

2019 Q3 207.9 83 27 -45 102 0 78 1 -29 106 0 

2019 Q4 288.3 60 0 -31 91 0 72 0 -28 100 0 

2019 Total 600.4 326 28 34 260 5 331 4 12 289 27 

            

2020 Q1 45.6 88 0 17 46 25 70 0 12 46 13 

2020 Q2 46 88 0 62 26 0 74 0 32 42 0 

2020 Q3 187.9 81 0 -69 150 0 66 0 -39 105 0 

2020 Q4 306.8 9 0 -26 35 0 8 0 -16 25 0 

2020 Total 586.3 266 0 -15 256 25 218 0 -12 217 13 

 

 

3.1.1. Snowpack and Precipitation Patterns 

 Annual precipitation was similar in the two watersheds. The average precipitation 

between the two watersheds was 293 mm yr−1; ranging from 218 to 376 mm (Figure 2). 

Precipitation primarily fell during Q2 (January through March) (Figure 2), when ET is energy-

limited. However, considerable variation was seen in seasonal precipitation patterns over the 

course of this study (see Table 1), even during years with similar amounts of total annual 

precipitation. 
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Figure 2. Average monthly precipitation (mm) of both watersheds. 

 In general, snow accumulated from November to January of each year, with snowmelt 

occurring in March or April (Figure 3). Annual variations in both snowfall and depth were 

observed across years during this study. Snowpack levels and SWE varied from year to year, 

even between years with similar total annual precipitation (e.g., 2014 and 2018). The 2017 water 

year showed the greatest SWE while the 2018 water year showed the least. SWE generally 

peaked in January (mean SWE of 40 mm) or February (mean SWE of 43 mm). Reflecting 

snowpack, SWE varied from 0.2 to 106 mm in January and from 3 to 100 mm in February. Mean 
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December SWE was 25 mm, ranging from 3 to 74 mm. Mean March SWE was 17 mm, ranging 

from 0.2 to 69 mm. 

Figure 3. Snowpack depth at Mays WS. 

 

 

3.1.2. Streamflow 

 On average, streamflow at Mays WS accounted for 5.8% of incoming precipitation, 

ranging from 0% to 17% for individual water years. At Jensen WS, streamflow accounted for an 

average of 0.3% of incoming precipitation, ranging from 0% to 1.1%. 

 In general, seasons of greatest streamflow corresponded to snowmelt and increased soil 

water content periods in March and April. In most years, streamflow peaked in Q2 (January 

through March) or Q3, generally corresponding to snowmelt. However, smaller streamflow 

amounts also periodically occurred in response to warmer season rainfall. 
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 Years with the highest precipitation experienced the highest volume of streamflow 

(Figure 4). The timing of peak streamflow was similar in both watersheds, except for the 2019 

water year, in which peak flow occurred at the Jensen WS several weeks sooner than it did at the 

Mays WS. In 2020, no streamflow was recorded at either WS; however, limited pooling was 

noted in the stream channel at both watersheds. Occasional convective summer storms resulted 

in streamflow during the summer months. During some of the larger summer storms, sediment 

accumulation in the flumes prevented accurate measurements of streamflow. 

 

Figure 4. Streamflow in the sagebrush-dominated watershed (Mays WS) and the juniper-

dominated watershed (Jensen WS). 

 

3.1.3. Soil Water Content Change 

 The soil water content change (∆θ) accounted for between −7.3% and 10.3% of the 

annual water budget at Mays WS and −5.4% and 3.6% at Jensen WS. Across all water years, the 

average ∆θ accounted for −0.2% of the annual water budget at Mays WS and 0.5% at Jensen 

WS. 

 While ∆θ accounted for a small portion of the annual water budget (on average, 1 mm at 

Mays WS and 3 mm at Jensen WS), it did show large shifts from season to season (see Table 1). 

Seasonal ∆θ ranged from −69 to 94 mm at Mays WS and from −48 to 89 mm at Jensen WS. In 

general, increased ∆θ  occurred during Q2 (mean of 59 mm at Mays WS and 49 mm at Jensen 
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WS), and decreased ∆θ  occurred in Q3 (mean of −36 mm at Mays WS and −33 mm at Jensen 

WS) and Q4 (mean of −29 mm at Mays WS and −26 mm at Jensen WS). 

 

3.1.4. Seasonal PET 

 The mean annual PET was 623 mm yr−1 and ranged from 586 to 683 mm yr−1. PET was 

on average 2.2 times greater than P on an annual basis. The balance of the water budget 

exceeded PET during Q1 for most years (see Table 1), which corresponds to the periods when 

increases in groundwater levels occurred. Given that the watersheds are adjacent to each other 

and experience similar temperature regimes and solar radiation, we assumed that PET was the 

same at both watersheds. 

 

3.2. Subsurface Flow and Shallow Aquifer Response to Seasonal Precipitation 

 Similar to streamflow levels, the highest springflow rates obtained corresponded to 

periods of snowmelt in the spring and increased soil water content that typically occurred in 

winter and spring. Years with the highest precipitation generally experienced higher springflow 

rates, which peaked in Q3 (April through June) for most water years (Figure 5). Springflow rates 

were generally higher at Mays WS compared to Jensen WS. The mean springflow rate at Mays 

WS was 43.4 L min−1, and it was 12.6 L min−1 at Jensen WS. The Mann–Whitney Rank Sum test 

indicated a statistically significant difference (p ≤ 0.001, U = 13748) in median daily springflow 

rates between the two watersheds (5.4 L min−1 at Jensen WS vs. 20.6 L min−1 at Mays WS).  

 Based on the contributing area for each spring (112 ha at Mays WS and 51 ha at Jensen 

WS), the average daily springflow rate at Mays WS was 0.06 mm day-1 and at Jensen WS was 

0.04 mm day-1.  The range in average daily springflow based on contributing area was 0 to 0.27 

mm day-1 at Mays WS and 0 to 0.40 mm day-1 at Jensen WS.  
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Figure 5. Daily average springflow (L min−1) at both watersheds. 

 

 Manual measurements of springflow and water level records from the springbox were 

used to create a stage–discharge curve (Figure 6). The majority of observed springflow rates 

were less than 50 L min−1, with springwell water levels less than 0.1 m at Mays WS and 0.2 m at 

Jensen WS. 
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Figure 6. Stage–springflow discharge curve for the sagebrush-dominated watershed (Mays WS) 

and the juniper-dominated watershed (Jensen WS).  

 

 Shallow groundwater level fluctuations showed a seasonal response to winter 

precipitation and snowmelt. All wells in each transect showed similar responses every year, as 

illustrated in Figure 7 for 2016. A pattern of less pronounced but more frequent groundwater 
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level rises and declines was observed in the fractured basalt-dominated aquifer at Mays WS. A 

pattern of more pronounced and steadier groundwater level rises and declines was observed in 

the alluvium-dominated aquifer at Jensen WS. Peak groundwater levels at Mays WS were 

generally observed in February or March, while peak groundwater levels at Jensen were 

observed in late March or April every year (Figure 7). 

 

 

Figure 7. Shallow groundwater level fluctuations for year 2016 in the transect of wells in Mays 

WS and at Jensen WS. 

 

 The annual recharge of the shallow aquifer was highly variable in each watershed during 

the seven years evaluated (Table 2). Annual ReGW ranged from 0 to 1371 mm in Mays WS 

(mean of 707 mm) and from 35 to 1441 mm in Jensen WS (mean of 808 mm). The ANOVA 

results showed mean annual ReGW was not significantly different (p > 0.05) between the two 

watersheds. In general, the highest ReGW values were obtained during the years with the greatest 

snowpack depths (see Figure 3). 

 

 

 

 

Table 2. Annual groundwater recharge (ReGW) and total precipitation (P) in the sagebrush-

dominated watershed (Mays WS) and the juniper-dominated watershed (Jensen WS). All 

measurements are in mm. 

 

  Mays WS Jensen WS 

Water Year ReGW P ReGW P 

2014   276 266 219 218 

2015 862 342 659 343 
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2016 862 298 1311 300 

2017 1263 376 1441 369 

2018 0 226 35 226 

2019 1371 326 1360 331 

2020 318 266 632 218 

 

 

4. Discussion 

 This research examined the seasonal variability of various water budget components 

(e.g., evapotranspiration, precipitation, and deep percolation) and shallow aquifer recharge in 

cool-climate rangeland ecosystems in a semiarid region in central Oregon, USA. Specifically, we 

sought to (1) determine the partitioning of several water budget components in a western-

juniper-dominated watershed and a sagebrush-dominated watershed; and (2) characterize 

shallow groundwater-level fluctuations in response to seasonal precipitation. 

 Similar to other studies [79–82], this research highlights the importance of seasonal 

precipitation patterns in semiarid environments in driving the response of many water budget 

components and the replenishment of the local aquifer. Study results show that 

evapotranspiration (ET) accounted for 83% of total annual precipitation in the sagebrush-

dominated watershed (Mays WS) and 86% in the juniper-dominated watershed (Jensen WS). 

This is similar to that reported for other snow-dominated rangelands in the region. For a study 

site in Southwestern Idaho, USA, Kormos et al. [10] modeled the ET of a juniper-dominated site 

to be 80% of incoming precipitation and ET at a sagebrush-dominated site to be 61% of 

incoming precipitation. Flerchinger and Cooley [55] found that ET accounted for 90% of annual 

precipitation for a semiarid subbasin in Southwestern ID, USA. 

 Limited research has been conducted into the ET of western juniper and sagebrush steppe 

ecosystems. Studies have largely focused on transpiration, particularly of western juniper. 

Mollnau et al. [32] found that mature western juniper stand transpiration rates at a site in Central 

Oregon were approximately 0.4 mm day-1 during summer months and that transpiration rates 

were largely associated with soil water content. Abdallah et al. [33] found that peak transpiration 

rates of western juniper trees ranged from 73 to 115 L day−1, varying with seasonal and annual 

precipitation and soil water content. Calculations of sagebrush transpiration are very limited. 
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Valayamkunnath et al. [37] estimated sagebrush transpiration to be between 229 and 353 mm 

yr−1, or 91–98% of the annual water budget, at a study site in Idaho. 

 Among the limitations of this study, the water balance method (WBM) approach applied 

cannot distinguish between precipitation that evaporates from juniper overstory, soil evaporation, 

or transpiration. As mature western juniper intercepts as much as 46% of precipitation at Jensen 

WS [30], there may be important differences in evaporation and transpiration rates not reflected 

by the WBM approach. Further, the WBM does not account for spatial variability (e.g., 

snowdrift, topographic variations in precipitation, or variations in vegetation cover) or 

connections between hydrologic processes (e.g., transmission losses in the stream channel and 

subsurface flow). It should be noted that for our study, streamflow measurements do not reflect 

potential stream channel transmission losses that may have occurred upslope of the flume at the 

outlet of the watershed. 

 Seasonal soil water storage is critical in sagebrush ecosystems [6]. Reduced soil water 

content has been associated with reduced net ecosystem exchange in sagebrush ecosystems in 

Wyoming [83]. In our study, the soil water content increased during the coldest and wettest 

months (January through March) at both watersheds and subsequently decreased in the following 

months. These seasonal increases corresponded to periods of highest annual precipitation and 

low PET. Additionally, we calculated daily soil water content change for a soil depth of 0.8 m, 

which we assumed represented the maximum rooting and soil depth for most of the two 

watersheds.  This based on our observations of soil depth during sensor installation and the 

results of other studies [84,85]. However, the maximum rooting depth within each watershed 

may have varied due to specific site characteristics, including vegetation density and soil depth.  

 Winter precipitation and snowmelt runoff in the spring were reflected in the greater soil 

moisture and subsurface flows observed in both watersheds. Deep percolation (DP) below the 

root zone, calculated by using the WBM, and shallow aquifer recharge (ReGW), estimated by 

using the WTFM, occurred during the wet season (winter–spring). ReGW rates tended to decrease 

as juniper transpiration increased (based on data described by Abdallah et al. [33]); however, 

some interannual variability was shown. Seasonal variations in precipitation resulted in 

variations in DP and ReGW, even during years when total precipitation amounts are similar. This 

was particularly the case in years when precipitation type was different (rain vs. snow). The 
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WBM used in this study calculates DP as the sink term but does not account for incoming 

precipitation that may percolate through fractures in the soil or for differences in rain vs. snow, 

and therefore may underestimate the amount of DP. A significant portion of the DP estimated 

was expected to reach the shallow aquifer in each watershed; however, it is difficult to equate to 

ReGW given some DP can move laterally out of the watershed or through the spring system. As 

discussed in [51], fractured basalt substrates, like the one found at our study site, may not 

necessarily lead to recharge but could also result in lateral flows.  

 A key premise of WTFM is that the specific yield (Sy) is constant over a given area and 

timeframe. If these assumptions are not met, then the groundwater recharge calculations may not 

be accurate for a given area. The WTFM assumes that increases in shallow groundwater heights 

are associated with aquifer recharge, although other processes, such as evapotranspiration, can 

also result in shallow groundwater fluctuations [60]. In particular, assumptions regarding the 

baseline recession (the decrease in groundwater levels that would have occurred with no 

recharge) will influence recharge calculations. Similar to methods used by [61,86,87], we 

assumed daily increases in groundwater level would reflect recharge rates. While this approach 

has been found to underestimate recharge compared to other WTFM approaches [88], we used 

frequent measurements (recorded hourly for the majority of the study and averaged at the daily 

time step) to minimize these discrepancies. 

 The decline in groundwater levels, consequently less ReGW, observed during late spring 

was attributed to a combination of less snowmelt runoff inputs and the increased vegetation 

water uptake during the warmer spring days. Annual ReGW was, for most years, several times 

that of the total precipitation for the water year, indicating spatial heterogeneity in recharge rates. 

We attributed this ReGW response to the wells’ location at the watershed outlet, which may have 

accounted for the aggregate of subsurface flow coming out of the watersheds. However, it is 

difficult to extrapolate the results observed at the drainage outlet to the entire watershed, 

particularly with the varying topography, vegetation, and subsurface characteristics found at our 

study site. 

 In years with greater snowpack, streamflow and springflow levels were generally higher 

compared to rain-dominated years, even when annual precipitation amounts were nearly the 

same. As in Kormos et al. [10], significantly higher streamflow rates were observed in the 
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sagebrush-dominated watershed. This was the case in the two years (2016 and 2017) with greater 

snowpack depths. Also, higher springflow rates were obtained in the sagebrush-dominated 

watershed for all years evaluated. This was partly attributed to the greater subsurface flow 

residence time observed in the sagebrush-dominated watershed, as previously documented in 

[30]. While springflow has been relatively the same at the juniper-dominated watershed, 

springflow in the sagebrush-dominated watershed is twice that found before juniper removal in 

2005 [30]. The smaller catchment area draining into the spring in the juniper-dominated 

watershed may have also contributed to the lower springflow rates observed. Streamflow and 

springflow accounted for a relatively small portion of incoming precipitation, yet, both play an 

important role in the ecohydrology of the site. For instance, springflow is an important water 

source for cattle and wildlife for most of the year. Also, transient streamflow and subsurface 

flow help maintain the hydrologic connectivity between the upland watersheds and the larger 

valley they drain into [30]. 

 While additional research is needed into quantifying recharge and evapotranspiration 

rates, particularly across a heterogeneous landscape, the results of this study contribute to the 

understanding of how woody plant encroachment and climate variability collectively affect the 

water budget in sagebrush and western juniper ecosystems. Combining ground-based techniques 

and remote sensing can improve our understanding of the spatial and temporal patterns of 

vegetation and soil water content in these watersheds. Future research at this site includes the 

continued monitoring of ecohydrologic characteristics and modeling applications to expand local 

results to larger spatial domains. 

 

5. Conclusions 

 This study examined seasonal water balance and subsurface flow dynamics in two 

rangeland watersheds, one dominated by western juniper and one dominated by big sagebrush, in 

central Oregon, USA. We assessed seven years of observations with varied meteorological 

conditions. A water balance method approach was used to quantify multiple components of the 

water budget in each watershed. The Water Table Fluctuation Method was used to calculate 

shallow aquifer recharge at the outlet of each watershed. Evapotranspiration accounted for most 

of the water budget, followed by deep percolation. Overall, greater springflow and streamflow 
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rates were observed in the sagebrush-dominated watershed. There were no statistically 

significant differences in groundwater recharge rates between the juniper-dominated site 

overlying alluvium substrate and the sagebrush-dominated site overlying fractured basalt. 

However, the significant springflow levels observed at the outlet of the sagebrush-dominated 

basin added to the total amount of subsurface flow coming out of the watershed. Aquifer 

recharge and springflow estimates were higher in both watersheds during the years with less 

potential evapotranspiration and greater snowpack. This study provides important information 

regarding the seasonal precipitation dynamics affecting the portioning of different water budget 

components and the mechanisms of shallow aquifer replenishment in juniper- vs. sagebrush-

dominated landscapes. Further research is needed to expand on the temporal and spatial 

dynamics of the ecohydrologic processes and land management practices affecting water 

availability in cool climate rangeland ecosystems.  
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Comparison of Evapotranspiration Models and Ecohydrologic Characteristics for a 

Juniper-Dominated Watershed and a Sagebrush-Dominated Watershed in Central Oregon, 

USA 

 

Abstract: More information is needed to understand how western juniper encroachment impacts 

evapotranspiration (ET). Direct measurements of ET are often difficult and cost-prohibitive at 

remote, data-scarce sites. The objective of this study is to compare methods of modeling ET for 

two small watersheds, one dominated by western juniper and one dominated by sagebrush, in 

central Oregon, USA. A secondary aim of this study is to characterize the relationship between 

Normalized Difference Vegetation Index (NDVI), Normalized Difference Moisture Index 

(NDMI), canopy cover, soil moisture, and ET. Landsat 8 imagery was used to calculate NDVI 

and NDMI. Monthly ET for the same time period was modeled using the Soil and Water 

Assessment Tool (SWAT). Regional ET was calculated using Moderate Resolution Imaging 

Spectroradiometer (MODIS) ET data. OpenET, an open access platform, was used to download 

ET modeled using Mapping Evapotranspiration at High Resolution with Internalized Calibration 

(METRIC), Operational Simplified Surface Energy Balance (SSEBop), and Disaggregation of 

the Atmosphere-Land Exchange Inverse (DisALEXI). A small unpiloted aerial vehicle (UAV) 

was used to collect thermal infrared and multispectral imagery at small plot within each 

watershed periodically over the course of a year. Soil moisture, canopy cover, and 

meteorological information were collected at the same time as the UAV flights. QWaterModel 

was used to estimate ET from the UAV-based thermal imagery. Estimates of average annual ET 

varied among approaches, although surface energy balance models estimated greater ET at the 

juniper-dominated watershed. Annual average NDVI and NDMI, respectively, are 0.25 and 0.04 

at the juniper-dominated watershed and 0.23 and -0.02 at the sagebrush-dominated watershed. A 

significant correlation was found between monthly ET and NDVI for both watersheds. The 

results of this study provide insight into the relationship between environmental characteristics 

(e.g., springflow, NDVI) and ET in sagebrush steppe environments.  

 

Keywords: sagebrush steppe; juniper encroachment; evapotranspiration; water balance; 

Normalized Difference Vegetation Index (NDVI) 
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1. Introduction 

 Evapotranspiration (ET) if often the largest output of the water balance. However, direct 

measurements of evapotranspiration are frequently not available. Limited data makes direct 

measurements of actual evapotranspiration difficult, particularly in water limited environments 

where potential ET (PET) generally exceeds available moisture. ET is dependent on multiple 

factors, such as vegetation cover and type, and is limited by moisture and energy. Therefore, ET 

is often calculated as either the residual term of the water balance or energy balance. In water 

balance approaches, direct measurements of incoming precipitation and streamflow are often 

used to calculate evapotranspiration. However, other outputs, such as deep percolation and 

groundwater recharge, are difficult to calculate and these measurements may not reflect spatial 

heterogeneity in watershed processes. Many hydrologic models, such as the Soil and Water 

Assessment Tool [SWAT;[1]], use a water balance approach to calculate ET and other 

components of the water balance.  

  Surface energy balance (SEB) methods using remote sensing data are also commonly 

used for estimating ET. The SEB approach focus on partitioning the separate energy fluxes 

(latent heat, sensible heat, and ground heat fluxes) from incoming solar radiation, but it is 

likewise difficult to accurately calculate each of these components. Some SEB methods utilize 

thermal infrared data and meteorological data to determine the land surface temperature and 

estimate the sensible heat flux. For example, the Mapping Evapotranspiration at High Resolution 

with Internalized Calibration [METRIC; [2–4]] uses satellite-based imagery, elevation 

characteristics, and on-site weather measurements to calculate ET as the residual of the energy 

balance and uses reference ET (RET) for calibration. The Operational Simplified Surface Energy 

Balance [SSEBop; [5,6]] uses RET, surface temperature, and air temperature to calculate actual 

ET. The Atmosphere-Land Exchange Inverse [ALEXI, [7,8]] is based on a two-source energy 

balance [TSEB; [9]] approach, in which vegetation and soil surfaces are evaluated separately.  In 

addition to surface temperature, ALEXI utilizes land cover type, leaf area index, and soil 

characteristics, among other on-site characteristics (e.g., windspeed) to calculate ET.  Research 

has also found that incorporating multiple remote-sensing based ET models can improve field 

scale ET estimates [10]. Additionally, much of the imagery required for these methods can be 

readily downloaded using sources such as Google Earth Engine 
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(https://earthengine.google.com/) or the USGS Earth Explorer (https://earthexplorer.usgs.gov/). 

Other readily available resources for estimating ET include Moderate Resolution Imaging 

Spectroradiometer (MODIS) products which calculate ET using remote sensing imagery, 

including albedo and land cover, and meteorological data.  

 Vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), are 

associated with various plant physiological processes and phenology (e.g., [11]). In particular, 

NDVI has been widely used as an indirect means to estimate ET in agricultural areas (e.g., [12]) 

and in humid areas with high amounts of vegetation cover (e.g., [13]). However, NDVI does not 

provide indications of soil transpiration and the correlation between NDVI and transpiration 

varies between vegetation types and ecosystems.  Past research has found that NDVI, when 

combined with soil moisture, can be successfully used to model actual ET in semiarid grasslands 

[14]. However, the relationship between NDVI and ET may vary across seasons. For example, 

[15] found that NDVI values were most strongly related to the previous month’s ET.  NDVI is 

also correlated with thermal emissivity [16], an important aspect of the energy balance. Other 

indices, such as the normalized difference water index (NDWI, [17]) or normalized difference 

moisture index (NDMI, [18]), can also be easily calculated with remote sensing data and provide 

an indication of moisture content. For example, [19] found that ET estimates improved in water-

limited conditions when a surface energy balance approach was combined with NDWI.  

 The relationship between ET and PET (or RET) is a commonly used approach to 

estimating actual ET. Crop coefficients, which are based on PET or RET and on crop type and 

growing phase with adjustments for water stress (such as those discussed in [20]) have also been 

widely used to estimate ET for specific crop types. However, there is limited research that 

address the ratio between ET and PET in heterogenous, semiarid systems such as the sagebrush 

steppe in central Oregon, USA. Additionally, the ratio between ET and PET can vary on a 

seasonal [21,22] and annual basis [23], particularly in systems where the timing of precipitation 

and the growing season are asynchronous.  

 The combination of remote sensing-based and on-site data may yield important 

information about ET. [24] found that combining NIR, SWIR, and surface temperature can be 

used to estimate soil water availability, an important indicator of ET. Additionally, on-site data 

serves as an important means of assessing the accuracy of modeling approaches and 

https://earthexplorer.usgs.gov/
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understanding hydrologic characteristics such as ET. However, direct measurements of ET are 

limited in many semiarid, snow-dominated environments. ET is a crucial piece of the water 

balance that impacts many land use activities in these regions, such as cattle grazing and 

agriculture, and is key to understanding streamflow and groundwater recharge patterns.  

 In order to address these challenges, we examined different approaches to calculating ET 

and PET at different temporal and spatial scales. We also examined environmental indicators 

related to ET, to include springflow, volumetric water content, NDVI, and NDMI. First, we used 

satellite-based remote sensing data and readily available sources of ET calculations to examine 

ET and PET at the monthly scale for two small watersheds and compared these results to 

calculations made using the Soil and Water Assessment Tool (SWAT) model. We also examined 

ET at an hourly scale for a small plot within each watershed, using high spatial resolution UAV-

based thermal infrared and multispectral imagery, and surface soil moisture data. The objectives 

of this study were to 1) compare different approaches to modeling ET at different temporal and 

spatial scales at two small watersheds and 2) assess the relationship between different 

ecohydrologic indicators and characteristics, specifically ET, springflow, soil moisture, NDVI, 

and NDMI.  

 

2. Methods 

2.1 Site description 

 The Camp Creek Paired Watershed Study (CCPWS) is located in central OR, USA, 

approximately 30 km northeast of Brothers, Oregon. This has been the site of various studies 

(e.g., [25,26]) into the impact of western juniper encroachment on the ecohydrology of snow-

dominated sagebrush ecosystems. This study built upon past research at this study site that 

examined the water balance at two small, adjacent watersheds: one dominated by western juniper 

(“Jensen WS”) and one sagebrush-dominated watershed in which the majority of western juniper 

were removed 17 years earlier (“Mays WS”). Tree canopy cover, largely in the form of western 

juniper (Juniperus occidentalis), is approximately 31% at Jensen WS and <1% at Mays WS [27]. 

Big sagebrush (Artemisia tridentata) is the dominant overstory at Mays WS. Jensen WS is 

approximately 96 ha and ranges in elevation from 1367 m near the outlet to 1500 m at the top of 

the watershed. Mays WS is approximately 116 ha in area and ranges in elevation from 1430 m 

near the watershed outlet to 1524 m near the top of the watershed. 
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 The climate in the region is characterized by cold, snowy winters and dry, warm 

summers. Long-term average annual precipitation is 322 mm yr-1  [28]. Most of the precipitation 

falls during the winter season as snow. From October 2013 through September 2021, the mean 

annual precipitation for both watersheds was 293 mm yr-1 based on on-site precipitation 

measurements.   

 During the winter months (December through February) for 2013 through 2021, the 

average minimum daily air temperature was -6.3 °C and the average maximum daily air 

temperature was 4.5 °C. During the summer months (June through August) for 2013 through 

2021, the average minimum daily air temperature was 7.5 °C and the average maximum daily air 

temperature was 26.5 °C. Cattle grazing is the dominant land use at this study site and in the 

surrounding region. The study site consists of both privately owned land and land managed by 

the U.S. Bureau of Land Management.  

 

2.2 Data Collection: Watershed Scale 

 Data collection included both on-site measurements and remote sensing-based 

measurements (Figure 1). Windspeed (model S-WSET-B; Onset Computer Corp., Bourne, MA, 

USA), relative humidity (model S-THB-M0002; Onset Computer Corp.), and ambient 

temperature (model S-THB-M0002; Onset Computer Corp.) were collected using on-site 

weather stations. An onsite pyranometer (model SP-421-SS, Apogee Instruments Inc., Logan, 

UT, USA) was used to measure incoming shortwave solar radiation. Rainfall data were collected 

using tipping-bucket rain gauges located at each watershed and near the divide between the two 

watersheds.  

 Soil volumetric water content (θ) was measured at two sites (one near the outlet and one 

located upslope) at Jensen WS and three sites at Mays WS (one near the outlet, one in the valley, 

and one located upslope). CS650 sensors (Campbell Scientific, Inc., Logan, UT, USA) were used 

at the three soil monitoring sites in Mays WS and the upland monitoring site at Jensen WS. At 

Jensen WS, θ data were collected using HydraProbe sensors (Stevens Water Monitoring 

Systems, Inc., Portland, OR, USA) at the monitoring site near the watershed outlet. The θ data 

were collected at depths of 0.2, 0.5, and 0.8 m at all stations.  
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 A developed spring is located in each watershed. Springflow rates were estimated based 

on the approach described in [29], using the relationship between measured springflow rates and 

the water level at a nearby springbox well. A water level logger (Model HOBO U20-001-01, 

Onset Computer, Corp.; Bourne, MA, USA) was used to measure springbox-water height 

beginning in 2017. Prior to the installation of the water level logger, a regression using averaged 

θ was used to estimate springflow rates.  
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Figure 1. Location and instrumentation of Jensen WS and Mays WS. This map was created 

using ArcGIS® software by Esri. ArcGIS® and ArcMap™ are the intellectual property of Esri 

and are used herein under license. Copyright © Esri. All rights reserved. For more information 

about Esri® software, please visit www.esri.com. Basemap credits: U.S. Department of 

Agriculture (USDA), National Agriculture Imagery Program (NAIP); USDA-FSA-APFO Aerial 

Photography Field Office, publication date: 22 September 2016. Oregon counties map credits: 

Esri, TomTom North America, Inc., U.S. Census Bureau, U.S. Department of Agriculture 

(USDA), National Agricultural Statistics Service (NASS). 

 

http://www.esri.com.'/
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2.2.1 Data Collection: Watershed Scale NDVI, NDMI, and ET 

 Google Earth Engine (GEE; [30] ) is a web-based platform used for geospatial analysis 

and visualization. GEE was used to extract the MODIS-based ET (MET) and PET (MPET) 

values from the MOD16A2.006 Evapotranspiration/Latent Heat Flux product [31] for both 

watersheds for October 2013 through December 2021. Each pixel value indicates the total ET or 

PET for an 8-day period, except for observations that occur at the end of the calendar year which 

are the sum of a 5- or 6-day period of observation. The spatial resolution of MODIS16A2.006 is 

500 m. To estimate total monthly MET or MPET (both reported in kg m-2), we first averaged the 

values of all pixels across each watershed for each observation. This value was converted from 

kg m-2 for each observation to mm day-1. The average ET of the observations occurring within 

each month was then multiplied by the number of days in the month to estimate the monthly 

MET or MPET. GEE was also used to calculate Normalized Difference Moisture Index (NDMI; 

[18]) and Normalized Difference Vegetation Index (NDVI; [32]) for both watersheds for October 

2013 through December 2021 using Landsat 8 data.  A cloud mask was applied to select pixels 

without cloud cover and water. This resulted in observations not being available for some winter 

months. The Landsat 8 satellite collects data every 16 days. The spatial resolution of Landsat 8 

shortwave bands is 30 m, while the Landsat 8 thermal infrared sensors have a spatial resolution 

of 100 m. 

 NDVI [32] is a commonly used index for assessing vegetation characteristics such as 

biomass, phenology, and vitality. It is based on the difference in reflectance between the near 

infrared (NIR) band and the red band (Equation 1). NIR is more strongly reflected by healthy 

vegetation and red wavelengths are more strongly absorbed. Decreased NIR reflectance and/or 

increased red reflectance may indicate that vegetation is water stressed, depending on vegetation 

characteristics and phenology. NDVI values range from -1 to 1. Higher values are associated 

with dense vegetation, values around zero are associated with bare soil, and negative values are 

associated with water or cloud cover. NDMI [18] provides an indication of vegetation water 

content and is based on the difference between NIR and shortwave infrared (SWIR) reflectance 

(Equation 2). For this study, we used the Landsat 8 band 6 SWIR, corresponding to a wavelength 

of 1.57 to 1.65 micrometers. At the extremes, NDMI can indicate completely bare soil (NDMI 

value of -1) to complete canopy, without water stress (NDMI value of 1). Values in the mid-



59 

 

 

range (e.g., NDMI values of -0.2 to 0.2) indicate low to moderate amounts of canopy cover with 

high to low levels of water stress.  

 

𝑵𝑰𝑹 − 𝑹𝒆𝒅

𝑵𝑰𝑹 + 𝑹𝒆𝒅
 

 

𝑵𝑰𝑹 − 𝑺𝑾𝑰𝑹

𝑵𝑰𝑹 + 𝑺𝑾𝑰𝑹
 

  

 OpenET (see [33]) is an open-access, GEE-based platform that primarily uses Landsat 8 

data and weather inputs (e.g., air temperature, wind speed, and solar radiation) to estimate 

monthly ET for the western region of the United States. Monthly modeled ET for January 2016 

through December 2021 using METRIC, SSEBop, and DisALEXI was obtained from the 

OpenET website (https://openetdata.org/about/). The OpenET Ensemble ET (OET) for each 

watershed, which is the average of the monthly ET for the six models (METRIC, SSEBop, 

SIMS, PT-JPL, DisALEXI, and SEBAL) used in OpenET, with outlier estimates removed, were 

also obtained. Monthly reference ET (ORET) for the same period was also calculated. OpenET 

uses the Penman-Monteith equation for a grass surface to calculate RET. At the time of this 

research, January 2016 was the earliest date available within OpenET. 

 

2.3 Watershed Scale: Soil and Water Assessment Tool-based ET 

 The Soil and Water Assessment Tool (SWAT, [1]) was also used to estimate ET (SWAT-

ET) and PET (SWAT-PET) for both watersheds. SWAT is a physically-based hydrologic, semi-

distributed model that has been used to calculate ET (e.g., [34,35]) and other aspects of the water 

balance. Inputs required for this model include a digital elevation model (DEM), soils 

information, and land use/cover, as well as meteorological information. A 10-m DEM was used 

to delineate the watershed boundaries and stream path. State Soil Geographic (STURGO) data 

was used for the soils’ description. National Agricultural Imagery Program (NAIP) image was 

classified using the random trees classifier in ArcGIS Pro (Environmental Systems Research 

Institute (ESRI); Version 2.9; Redlands, CA, USA) to delineate land use. Land use was divided 

(2) 

 (1) 

https://openetdata.org/about/
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into two main categories: range with shrub vegetation and evergreen forest (primarily western 

juniper). The ArcGIS interface for SWAT (ArcSWAT) was used in ArcGIS (ESRI, Version 

10.7.1, Redlands, CA, USA) for this study. At the time of this study, ArcSWAT was not 

available for ArcGIS Pro.  

 Daily measurements of precipitation, minimum and maximum air temperature, relative 

humidity, and solar radiation for January 2010 through October 2021 were used to inform the 

model. The SWAT weather generator tool, which estimates values based on nearby monitoring 

stations, was used to estimate wind speed and to estimate observations for any periods of missing 

data. The slope in each watershed was divided into five categories, based on slope increments of 

10 %. The minimum slope, land use, and soil coverage used to establish hydrologic response 

units was 10 %. Potential evapotranspiration in ArcSWAT was calculated using the Penman-

Monteith equation. A monthly time step was used. The first three years were used as a “warm-

up” period for the model. The monthly patterns of ET modeled by SWAT were compared to 

patterns of previous measurements of juniper transpiration [25] and to the results of a seasonal 

water balance study [29] for this study site. Attempts to calibrate the model using ephemeral 

streamflow and root-zone soil moisture measurements did not improve the results of the modeled 

monthly ET values and therefore the initial values modeled by ArcSWAT were used for analysis.  

 A multiple linear regression approach was used in SigmaPlot (Version 14, Systat 

Software, San Jose, CA, USA) to assess the relationship between NDVI, NDMI, and SWAT-

based calculations of ET or OpenET Ensemble ET. Pearson’s r was used to assess the correlation 

between NDVI, NDMI, θ, and springflow. A Kruskal-Wallis One Way Analysis of Variance 

(ANOVA) on Ranks was used to assess the differences in median values between ET calculated 

using METRIC, DisALEXI, MODIS, SSEBop, SWAT, and the OpenET Ensemble ET. Dunn’s 

method was used to compare each ET method to the Ensemble ET.  

 

2.4 Plot Scale: UAV-Based ET and NDVI 

 Multispectral (red, green, blue, red-edge, and near-infrared) imagery and thermal imagery 

were collected at a plot in each watershed using an Unpiloted Aerial Vehicle (UAV) on 11 days 

(Table 1).  Multispectral imagery was collected using a MicaSense RedEdge camera (MicaSense, 
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Inc., Seattle, WA, USA). The thermal infrared (TIR) data was collected using a Zenmuse XT V2 

(13 mm; DJI, Shenzhen, China) camera mounted to a Matrice 100 UAV (DJI, Shenzhen, China).  

 The thermal camera is radiometrically calibrated. The multispectral imagery was 

radiometrically calibrated using a calibration board and a downwelling light sensor. Visual 

imagery (red, blue, and green wavelengths) was collected using a Phantom 4 (DJI, Shenzhen, 

China) UAV for one flight. Due to processing limitations, the area of the thermal orthomosaic 

was reduced to approximately 3,000 m2. No flights were conducted during the winter due to 

limited site access and snowpack. Flights were conducted approximately one and half hours after 

sunrise and at approximately noon. A flight altitude of approximately 60 to 70 m above ground 

level was used. During one flight, a battery malfunction resulted in only visual (red, green, blue 

wavelengths) and thermal imagery being collected. Two additional flights were excluded due to 

technological issues that occurred during flight. Therefore, more flight data were available for 

the Mays WS than at the Jensen WS. 

 

 

 

Date Time Data collected WS 

23-Jul-2020 mid-day MS, TIR, SM Mays 

6-Aug-2020 morning, mid-day MS, TIR, SM Jensen 

20-Aug-2020 morning, mid-day MS, TIR, SM, CD Mays 

2-Sep-2020 morning, mid-day MS, TIR, SM Jensen 

3-Sep-2020 morning, mid-day MS, TIR, SM Mays 

23-Sep-2020 mid-day MS, TIR, SM Jensen 

29-Sep-2020 mid-day RGB, TIR, SM Mays 

30-Sep-2020 morning, mid-day MS, TIR, SM, CD Jensen 

1-Oct-2020 morning, mid-day MS, TIR, SM, CD Mays 

14-Oct-2020 morning, mid-day MS, TIR, SM Mays 

30-Apr-2021 morning, mid-day MS, TIR, SM, CD Jensen 

18-Jun-2021 morning, mid-day MS, TIR, SM, CD Mays 

 

Table 1. Dates of UAV flights. Data collection included multispectral imagery 

(“MS”), visual imagery (red, green, and blue wavelengths, “RGB”), thermal infrared 

imagery (“TIR”), surface soil moisture (“SM”) and canopy density (“CD”). “WS” 

refers to the watershed where the data were collected. Morning flights occurred 

approximately 1.5 hours after sunrise and mid-day flights occurred around noon. In 

general, 2 to 3 flights were conducted, and total flight time was approximately 30 to 

45 minutes for each observation.  
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 The thermal and multispectral orthomosaics were created using AgiSoft Metashape 

(Agisoft LLC, St. Petersburg, Russia). MetaShape was used to radiometrically calibrate the 

multispectral imagery during the orthomosaic creation process. Each image contains metadata 

regarding the latitude, longitude, and elevation, which are then used for georeferencing. 

Additionally, for most multispectral and visible imagery, a minimum of four ground control 

points (GCPs) were used for geometric calibration. The latitude, longitude, and elevation of each 

GCP was measured using a submeter GPS (Model Geode GNS2, Juniper Systems Inc., Logan, 

UT, USA). The GCPs were not clearly visible in the thermal imagery and therefore the positional 

data were used instead. Additional georeferencing between the TIR and multispectral and visible 

orthomosaics was conducted in ArcGIS Pro to ensure alignment between the rasters. The 

approximate resolution was 0.09 m for the thermal orthomosaics and 0.05 m for the multispectral 

orthomosaics. The resolution for the orthomosaic with visible wavelengths only (red, green, and 

blue wavelengths) was 0.02 m.  

 The thermal orthomosaics created in MetaShape indicate brightness values ranging from 

0 to 255. In order to create an orthomosaic reflecting temperature values in Kelvin, the thermal 

values were extracted from individual images using FLIR Tools (Teledyne FLIR LLC, 

Wilsonville, OR, USA). These values were then compared to brightness values for the same 

pixels within the orthomosaic. A minimum of 25 pixels were selected from each orthomosaic 

and a linear regression was used to determine the formula for converting from brightness values 

to temperature. The raster calculator tool in ArcGIS Pro (V 2.9; Environmental Systems 

Research Institute, Redlands, CA, USA) was used to convert the orthomosaics from brightness 

values to K.  

 NVDI (Equation 1) was calculated for each multispectral orthomosaic using the Raster 

Function NDVI tool in ArcGIS Pro.  For the one orthomosaic of visual wavelengths only, the 

Visible Atmospherically Resistant Index (VARI) (Equation 3) was calculated.  

 

𝑉𝐴𝑅𝐼 =
𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛 + 𝑅𝑒𝑑 − 𝐵𝑙𝑢𝑒
 

 

 

(3) 
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 In order to estimate evapotranspiration and other aspects of the energy balance (e.g., 

sensible heat flux)  from the thermal images, the QWaterModel (version 1.3; [36]) tool in QGIS 

(Version 3.4.15, QGIS Geographic Information System, QGIS.org) was used. This tool is based 

on the Deriving Atmosphere from Turbulent Transport Useful to Dummies Using Temperature 

(DATTUTDUT) model [37]. QWaterModel creates a six-band raster with estimated net 

radiation, the latent heat flux, sensible heat flux, ground heat flux (all in Wm-2), the evaporative 

fraction, and evapotranspiration (mm). The only required user inputs are a tagged image file (tif) 

containing thermal infrared (TIR) values in K. For this study, we provided the incoming solar 

radiation (in W m-2) and air temperature (in K) data from an on-site weather station. 

QWaterModel also provides an estimate of mean albedo (α) based on the TIR raster. The surface 

emissivity (Esurf) was calculated based on NDVI from the Landsat 8 imagery for the same month 

(Equation 4).  

 

𝐸𝑠𝑢𝑟𝑓 = 1.0094 + 0.047(𝐿𝑛(𝑁𝐷𝑉𝐼)) 

 

The atmospheric emissivity (Eatm) was calculated based on actual vapor pressure (ea) and Esurf  

(Equation 5) as described by [38]. TA is air temperature in K.  

 

𝐸𝑎𝑡𝑚 = 1.24 (
𝑒𝑎

𝑇𝐴
)

0.14286

 

 

 The atmospheric transmissivity was left at the default value of 0.7. For flights conducted 

around solar noon, the ground heat flux (G) was assumed to be approximately 35% of the 

calculated incoming solar radiation, similar to methods used by [39,40] and described by [41]. 

For flights conducted approximately an hour and a half after sunrise, the ground heat flux (G) 

calculated by the QWaterModel model was used. In order to limit artefacts in the image, the 

maximum temperature was defined when very high TIR values associated with very reflective 

soils or a vehicle were present. The option to remove implausible output values was selected. A 

period of one hour was used. All images were previously georeferenced.  

(4) 

(5) 
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 Hourly potential ET (PET) was calculated for each of the flights using the FAO-56 

Penman-Monteith equation ([20]; Equation 6) with data from the on-site weather stations. The 

approach was modified to calculate hourly values, where ET0 is the reference ET (mm hr-1), Δ is 

the slope of the saturation vapor pressure curve (kPa °C-1), Rn is the net radiation (MJ m-2 hr-1), G 

is the ground heat flux (MJ m-2 hr-2),  γ is the psychrometric constant (kPa °C-1), T is the mean 

hourly temperature (°C), μ2 is the mean hourly windspeed at 2m (m s-1), es is the saturated vapor 

pressure (kPa), and ea is the actual vapor pressure (kPa). Tmean is the average hourly air 

temperature in °C. Calculations for saturated and unsaturated vapor pressure, the slope of the 

saturation vapor pressure curve, and the psychrometric constant were made based on the methods 

outlined by [20].  

 

𝐸𝑇0 =
0.408𝛥(𝑅𝑛 − 𝐺) + 𝛾

37.5
𝑇 + 273

𝜇2(𝑒𝑠 − 𝑒𝑎)

𝛥 + 𝛾(1 + 0.34𝜇2)
 

  

 

 

 We estimated net radiation (Rn) using an approach similar to the method described by 

[42]. Rn (Equation 7) was estimated as the difference between net shortwave (Rns, Equation 8) 

and net longwave (Rnl, Equation 9) solar radiation. Rsi is the measured incoming shortwave 

radiation (Wm-2), α is the albedo calculated using QWaterModel, Tp is the average pixel 

temperature from the TIR orthomosaic (K), and σ is the Stefan-Boltzman constant (5.6704X 10-8 

Wm-2K4). 

 

𝑅𝑛 = 𝑅𝑛𝑠 + 𝑅𝑛𝑙 

 

𝑅𝑛𝑠 = (1 − 𝛼)𝑅𝑠𝑖 

 

𝑅𝑛𝑙 = 𝐸𝑎𝑡𝑚𝑇𝐴
4𝜎 − 𝐸𝑠𝑢𝑟𝑓𝑇𝑃

4𝜎 

  

(7) 

(8) 

(9) 

(6) 
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 Topsoil (0.12 m) θ data were collected using a handheld portable moisture sensor (model 

CS659, Campbell Scientific) within a few hours of when the flights were conducted. The θ data 

were collected along five 45-m long line transects spaced 10 m apart with measurements spaced 

approximately 15 m apart along each line transect.  

 A CI-110 plant canopy imager (CID Bio-Science, Inc., Felix Instruments, Camas, WA, 

USA) was used to collect assess canopy cover (in %) on a seasonal basis. To assess canopy cover 

associated with big sagebrush (the predominant overstory vegetation at Mays WS), canopy 

imaging was conducted at a height of approximately 0.5 m off the ground. The primary overstory 

at Jensen WS is western juniper and therefore canopy cover was taken at heights of 

approximately 1 m, as very little vegetation fell below this height.  

 Pearson’s r was used to examine the correlation between NDVI, θ, and ET at the plot 

scale. Multiple linear regression was used to assess how topsoil θ and NDVI predicted estimated 

ET at the plot scale. In order to assess differences in modeled canopy transpiration and soil 

evaporation, we selected 50 points, 25 representing overstory vegetation and 25 representing 

non-overstory surfaces (this included samples where small vegetation may not be discernable 

due to spatial resolution as well as open soil, rocky surfaces, etc.), within each mid-day image. 

Due to very slight differences in alignment between the NDVI and ET orthomosaics, points were 

selected using visual inspection of the imagery. 

 The ‘Extract Multi Values to Points’ tool in ArcGIS Pro was used to extract values at 

each sample location. Bilinear interpolation was applied during the extract process. The points 

were used to assess the average ET rate for overstory and non-overstory surfaces for each flight. 

Due to the reduced image quality of the morning TIR orthomosaics, this process was not 

conducted for imagery from the morning flights.  

  

 

3. Results 

3.1 Watershed-scale NDVI and NDMI 

 The NDVI and NDMI seasonal patterns were similar between the two watersheds (Figure 

2), although larger seasonal peaks in watershed-scale NDVI were observed at Mays WS and 

larger peaks in watershed-scale NDMI were observed at Jensen WS. Mean seasonal NDVI and 
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NDMI values for each watershed are shown in Table 2. In general, negative NDVI values 

indicate cloud cover and/or water, therefore months where the mean NDVI was negative were 

excluded.  

 

  

  

 

 

 

Figure 2. Average monthly NDVI and NDMI based on Landsat 8 imagery, 

for both watersheds, from October 2013 until October 2021.  
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 Based on the calculations from Landsat 8 imagery, mean annual watershed NDVI was 

0.23 at Mays WS and 0.25 at Jensen WS from October 2013 through December 2021. Mean 

annual NDMI was -0.02 at Mays WS and 0.04 at Jensen WS for the same period. In general, 

both NDVI and NDMI were greater at Jensen WS than Mays WS on a seasonal basis (Table 2). 

Peaks in seasonal NDVI were associated with peaks in seasonal soil moisture in both watersheds. 

Peaks in NDVI occurred in April through June. Peaks in NDMI were more substantial at Jensen 

WS, and generally occurred December through March.  

 At Mays WS, a significant correlation (at p<0.05) between monthly average NDVI and θ 

(r=0.32, p=0.03), NDVI and NDMI (r=-0.26, p=0.03), and springflow and θ (r=0.79, p<0.001). 

At Jensen WS, a significant correlation  between NDVI and NDMI (r=-0.66, p<0.001), NDVI 

and θ (r=0.35, p=0.01), and θ and springflow (r=0.74, p<0.001).  

 Mays WS    Jensen WS   
Month NDMI NDVI θ Spring NDMI NDVI θ Spring 

Jan N/A 0.15 0.14 7.93 0.21 0.15 0.11 9.94 

Feb 0.06 0.14 0.16 43.47 0.19 0.19 0.13 21.55 

Mar 0.04 0.16 0.21 95.72 0.12 0.20 0.15 36.50 

Apr -0.06 0.25 0.23 88.70 -0.01 0.27 0.18 44.88 

May -0.05 0.29 0.21 72.40 -0.01 0.29 0.16 12.46 

Jun -0.04 0.29 0.18 60.63 -0.03 0.29 0.14 6.49 

Jul -0.07 0.25 0.15 26.63 -0.04 0.26 0.12 4.40 

Aug -0.08 0.22 0.13 18.24 -0.02 0.23 0.11 1.64 

Sep -0.08 0.23 0.12 16.40 -0.02 0.25 0.10 1.21 

Oct -0.03 0.22 0.11 11.96 0.04 0.25 0.10 2.12 

Nov 0.05 0.22 0.12 9.27 0.16 0.22 0.11 2.53 

Dec 0.06 0.18 0.12 6.84 0.22 0.22 0.10 3.31 

Table 2. Average monthly NDMI and NDVI values for both WS for January 2016 through 

December 2021. Calculations are based on Landsat 8 imagery. The average monthly 

volumetric soil water content (θ) and springflow (spring, in average L min-1) were 

calculated for January 2016 through September 2021. θ was calculated using the averaged 

soil water content at all measured soil depths for each soil moisture station in each 

watershed. For springflow, data from January through March 2021 was not available due to 

an equipment failure.  
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3.2 Watershed-scale ET and PET 

 Considerable variability was shown between different ET models in both monthly ET and 

annual ET results. Average monthly ET (in mm) for January 2016 through December 2021 using 

METRIC, SSEBop, DisALEXI, and MET for both watersheds is displayed in Figure 3. The 

MET showed the least variability in monthly or seasonal ET compared to the other methods 

assessed. The other remote sensing-based approaches as well as the SWAT-ET indicated 

seasonal variation in ET. However, these seasonal variations were not consistent between 

models. Peak watershed ET tended to occur in March and April based on the DisALEXI model 

while for the OET (the average of all ET models used on the OpenET platform), SSEBop, and 

SWAT approaches, peak ET occurred between May and July. 
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Figure 3. Average total monthly precipitation and ET for Jensen and Mays 

WS for January 2016 through December 2021.  
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  For Jensen WS, a significant correlation was found between SWAT-ET values and 

NDMI (r=-0.63, p<0.001), NDVI (r=0.50, p<0.001), and θ (r=0.45, p<0.001). No significant 

correlation was found between the SWAT-ET values at Jensen WS and springflow (r=0.12, 

p=0.27). Similarly, a significant correlation was also found between the Jensen WS Ensemble ET 

values and NDMI (r=-0.62, p<0.001), NDVI (r=0.53, p<0.001), and θ (r=0.45, p<0.001), but not 

between the Ensemble ET values and springflow (r=0.13, p=0.30).   

 For Mays WS, a significant, correlation was found between the monthly SWAT-ET 

values and θ (r=0.45, p<0.001), springflow (r=0.33, p=0.001), NDMI (r=-0.35, p=0.003), and 

NDVI (r=0.53, p<0.001). The same pattern was shown between the Mays WS monthly Ensemble 

ET and θ (r=0.49, p<0.001), springflow (r=0.54, p<0.001), NDMI (r=-0.39, p=0.006), and NDVI 

(r=0.54, p<0.001).  

 Multiple linear regression was used to assess how well NDVI, NDMI, springflow, and θ 

predicted monthly SWAT-ET. At Mays WS, the overall regression model indicated that while 

the combination of NDVI, NDMI, springflow, and θ were significant (p=0.002) predictors of ET 

(r=0.60, R2=0.36. F=5.07), NDVI (p=0.04) was the only significant predictor of SWAT-ET 

compared to NDMI (p=0.34), springflow (p=0.68), or θ (p=0.14). At Jensen WS, the overall 

regression indicated that the combination of NDVI, NDMI, springflow, and θ were also 

significant predictors (p<0.001) of monthly SWAT-ET (r=0.74, R2=0.55, F=12.70), although 

NDMI (p=0.002) and θ (p=0.02) were the only significant predictors compared to NDVI 

(p=0.10) and springflow (p=0.54).  

 Excluding the SWAT- ET and MET, average annual estimated ET was greater at Jensen 

WS compared to Mays WS. Average annual ET for each watershed for January 2016 through 

December 2021 are shown in Tables 3 and 4. Excluding the SWAT-modeled ET values, higher 

ET values were calculated at Jensen WS compared to Mays WS. The Ensemble ET exhibited 

patterns most similar to the SSEBop model for both watersheds. 

 For both watersheds, the ANOVA indicated a significant difference (at p≤0.001) in 

median values among the watershed scale ET calculations. Based on Dunn’s method, a 

significant difference between Ensemble ET and METRIC and SWAT-based calculations of ET 

at Mays WS were found. For Jensen WS, Dunn’s method indicated a significant difference 

between Ensemble ET and SWAT, METRIC, and MODIS-based calculations of ET.  
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 At Mays WS, the average annual MODIS PET (MPET) from January 2014 through 

December 2021, was 1468 mm yr-1. At Jensen WS, the average annual MPET from January 2014 

through December 2021, was 1491 mm yr-1. Average annual OpenET RET for January 2016 

through December 2021 was 1039 mm yr-1 at Mays WS and 1036 mm yr-1 at Jensen WS.  

 The average MPET and OpenET-based RET (ORET) by month for January 2016 through 

December 2021 are shown in Table 5. At Mays WS, the average ratio between MET and MPET 

was 0.33 and the ratio between OET and ORET was 0.35. At Jensen WS, the average ratio 

between MET and MPET was 0.34 and the ratio between OET and ORET was 0.45. The ratio 

Year Ensemble ET METRIC SSEBop DisALEXI   MODIS SWAT 

2016 339 174 359 279  243* 197 

2017 273 133 286 244    257** 198 

2018 309 186 282 251  241* 210 

2019 365 162 317 392  254* 243 

2020 331 143 360 238 281 202 

2021 331 224 296 232 274 164 

Average 324 170 317 273 258 202 

Year Ensemble ET METRIC SSEBop DisALEXI   MODIS SWAT 

2016 423 276 440 347 274 194 

2017 371 224 421 379 258** 187 

2018 423 297 387 378 263 188 

2019 454 266 416 505 260* 236 

2020 427 268 445 320 276 184 

2021 418 294 403 316 247* 190 

Average 419 271 419 374 263 197 

Table 4. Total annual ET for the selected approaches at Jensen WS in mm yr-1. For MODIS, 

one month of data were missing (indicated by “*”) for 2016, 2018, and 2019. For 2017, two 

months of data were not available for MODIS (indicated by “**”).  

 

Table 3. Total annual ET for the selected approaches at Mays WS in mm yr-1. For MODIS, 

one month of data were missing (indicated by “*”) for 2019 and 2021. For 2017, two months 

of data were not available for MODIS (indicated by “**”).  
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between MET and MPET was generally greatest during the winter months (December through 

February) for both watersheds and the least during the summer months. While both the MPET 

and ORET displayed seasonal differences, the ratio between OET and ORET tended to peak 

during late winter (February and March) and then again in early fall (October and November), 

with the lowest ratio between OET and ORET occurring during the summer months.  

 

 

 Mays WS     Jensen WS     

Month MPET 
MET/

MPET 
RET 

OET/

ORET 
MPET 

MET/

MPET 
RET 

OET/

ORET 

Jan 30 0.72 25 0.26 30 0.74 23 0.34 

Feb 43 0.61 34 0.36 46 0.57 33 0.5 

Mar 92 0.37 57 0.55 89 0.37 57 0.67 

Apr 146 0.21 90 0.46 152 0.2 90 0.6 

May 185 0.17 126 0.32 185 0.17 127 0.42 

Jun 213 0.11 155 0.33 214 0.11 156 0.39 

Jul 246 0.07 183 0.19 247 0.07 183 0.25 

Aug 214 0.07 158 0.18 214 0.07 158 0.27 

Sep 143 0.13 100 0.31 143 0.13 100 0.42 

Oct 91 0.27 56 0.44 95 0.25 56 0.6 

Nov 52 0.49 33 0.41 54 0.46 32 0.57 

Dec 26 0.78 20 0.33 22 0.91 20 0.39 

 

 SWAT-PET and the ratio between SWAT-ET and SWAT-PET were similar between the 

two watersheds. For January 2014 through December 2021, the average annual SWAT-PET was 

578 mm yr-1 at Mays WS and 575 mm yr-1 at Jensen WS. The average annual ratio of SWAT- ET 

to PET was 0.56 at Mays WS and 0.55 at Jensen WS, ranging from 0.19 in September for both 

watersheds to 0.96 in January for both watersheds. 

 

 

 

Table 5. Average monthly values for MODIS PET (MPET), OpenET reference ET (ORET), and the 

ratio of MODIS-ET (MET) to MPET and OpenET-ET (OET) to ORET. MPET and RET are in total 

mm per month. OET is the average ET of all ET models used in OpenET, with outliers removed.  
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3.3 Plot scale 

 No major differences between the two watersheds were observed in plot-scale ET 

calculated using the thermal imagery. The mean energy balance components for each flight are 

shown in Table 6. Average estimated ET for all mid-day flights was 0.22 mm hr-1. For all 

morning flights, the average estimated ET was 0.03 mm hr-1. Average ET was similar for both 

watersheds, with the average mid-day ET rate at Mays WS being less than that of Jensen WS 

(0.20 mm hr-1 versus 0.24 mm hr-1). Estimated PET for each flight was likewise very similar 

between the two watersheds, with estimated mid-day PET being 0.44 mm hr-1 at Mays WS and 

0.45 mm hr-1 at Jensen WS. The ratio of ET to PET for mid-day flights was 0.56 at Jensen WS 

and 0.46 at Mays WS. For morning flights, the ratio of ET to PET was 0.64 at both watersheds. 

 

Table 6. Energy balance components calculated using QWaterModel. “Rn” is net radiation, 

“LHF” is latent heat flux, “SHF” is sensible heat flux, “G” is ground heat flux. All fluxes are in 

W m-2.  Evapotranspiration (ET) and potential evapotranspiration (PET) are in mm hr-1. “WS” 

the location of the flight: Mays WS (M) or the Jensen WS (J).  

 

Date Time WS Rn LHF SHF G ET  PET  ET/PET 

23-Jul-2020 12:00 M 421 163 110 147 0.24 0.53 0.45 

6-Aug-2020 07:25 J 8 7 1 1 0.01 0.05 0.2 

6-Aug-2020 11:55 J 498 218 106 174 0.32 0.56 0.57 

20-Aug-2020 07:30 M 38 26 7 5 0.04 0.04 1 

20-Aug-2020 11:30 M 469 149 156 164 0.22 0.43 0.51 

2-Sep-2020 07:30 J 33 24 5 4 0.04 0.04 1 

2-Sep-2020 12:10 J 427 130 148 150 0.19 0.52 0.37 

3-Sep-2020 07:22 M 57 39 10 8 0.06 0.06 1 

3-Sep-2020 12:30 M 306 69 130 107 0.1 0.45 0.22 

23-Sep-2020 12:00 J 334 141 77 117 0.21 0.46 0.46 

29-Sep-2020 12:00 M 351 100 128 123 0.15 0.35 0.43 

30-Sep-2020 08:00 J 41 29 7 5 0.04 0.06 0.67 

30-Sep-2020 11:45 J 365 132 105 128 0.2 0.33 0.61 

1-Oct-2020 08:30 M 6 5 0 0 0.01 0.02 0.5 

1-Oct-2020 11:45 M 403 166 96 141 0.24 0.36 0.67 

14-Oct-2020 08:50 M 7 6 1 1 0.01 0.04 0.25 

14-Oct-2020 12:00 M 334 154 63 117 0.22 0.2 1.1 

30-Apr-2021 07:20 J 33 25 4 4 0.04 0.06 0.67 
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 For the morning flights that took place on 1 October 2020 and 14 October 2020, 

approximately 60% of the pixels were excluded from analysis. On both of these days, a haze 

present in the image likely prevented accurate calculations of energy balance components in 

QWaterModel.  

 The NDVI, topsoil θ, and canopy cover at the plot scale are shown in Table 7. For the 

eleven mid-day observations, plot-scale NDVI and topsoil θ , and springflow were not found to 

be significant predictors of hourly ET rates (R2=0.25, F=0.76, p=0.55) and no significant 

correlation was found between ET, NDVI, springflow, and topsoil θ at the plot scale. Excluding 

measurements made in April and May, the average topsoil θ across all flights was 4.7%. At 

Jensen WS, we observed a topsoil θ of 14.7% on 30 April 2021. Due to an equipment 

malfunction we were unable to conduct flights at Mays WS in April or May of 2021, when 

surface soil moisture was at its highest. The increased topsoil θ from fall to spring corresponded 

to an increase in the estimated canopy cover at Jensen WS (39% to 52%) and at Mays WS (30% 

to 37%). A slight increase in watershed-scale NDVI was noted between October and April/May 

(Table 7).  

 A difference in plot-scale NDVI (calculated using UAV-based multispectral imagery) 

and watershed-scale NDVI (calculated using Landsat 8 data) was found (Table 7). At Mays WS, 

the watershed scale estimates of NDVI were on average 0.10 greater than that of the plot-scale 

NDVI. At Jensen, the difference in plot-scale and watershed-scale NDVI was much less 

pronounced with the average difference between the two NDVI measurements being 0.01. In 

general, plot-scale NDVI was greater at Jensen WS (average 0.24 across all mid-day flights) 

compared to Mays WS (average 0.12 across all mid-day flights).  

 There was a noticeable difference in NDVI observed between the morning flights and the 

mid-day flights (Table 7). With the exclusion of the flight on 18 June 2021, morning NDVI was 

greater than mid-day NDVI.  

 

30-Apr-2021 11:40 J 403 188 74 141 0.28 0.36 0.78 

18-Jun-2021 07:10 M 32 25 4 3 0.04 0.09 0.44 

18-Jun-2021 11:40 M 433 157 124 152 0.23 0.49 0.47 
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Date WS NDVI (UAV) NDVI(WS) SM  CD (%) Spring 

23-Jul-20 M 0.09 0.25 5.9  21.4 

6-Aug-20 J 0.55/0.26 0.2 4.4  2.23 

20-Aug-20 M 0.19/0.14 0.21 5.2 24 15.36 

2-Sep-20 J 0.35/0.20 0.23 3.8  0 

3-Sep-20 M 0.45/0.11 0.23 5.3  14.64 

23-Sep-20 J 0.19 0.23 4.3  0 

29-Sep-20 M -0.04 (VARI) 0.23 5.1  7.05 

30-Sep-20 J 0.48/0.27 0.23 3.8 39 0 

1-Oct-20 M 0.23/0.12 0.22 4.3 29 7.24 

14-Oct-20 M 0.46/0.12 0.22 4.9  6.5 

30-Apr-21 J 0.63/0.27 0.25 14.7 52 10.7 

1-May-21 M 
(no UAV 

flights) 
0.24 20.5 37 40.82 

18-Jun-21 M 0.08/0.15 0.22 4.8 29 23.32 

 

 Based on the 50 sample points (25 representing overstory vegetation, 25 representing 

areas with bare ground, woody debris, or minimal detectable vegetation) selected from each mid-

day orthomosaic, ET and NDVI values were greater for points of overstory vegetation (Table 8) 

with average overstory ET being generally greater at Mays WS (0.41 mm) compared to Jensen 

WS (0.35 mm). Average ET for non-overstory sample points was 0.13 mm at Jensen WS and 

0.06 mm at Mays WS. Average NDVI for overstory points was 0.26 at Mays WS and 0.54 at 

Jensen WS. For points without overstory vegetation, the average NDVI was 0.06 at Mays WS 

and 0.10 at Jensen WS. For the flight where VARI was calculated instead of NDVI, there was 

not a sizeable difference in VARI for sample points with overstory vegetation versus those 

without (-0.03 vs. -0.04). Using the sample points (n=550), a significant correlation was found 

between NDVI and ET (r=0.58, p<0.001), springflow and ET (r=0.15, p<0.001), and between 

NDVI and springflow (r=-0.27, p<0.001). Based on the sample points, the multiple linear 

Table 7. NDVI, shallow soil moisture (SM), daily springflow rate (spring, L min-1) and canopy 

density (CD) for the UAV flights. NDVI (UAV) are the NDVI calculations for each flight at the 

plot scale. The NDVI(WS) indicates the average monthly NDVI for the respective watershed for 

the month the flight was conducted. On 29 September, a technological issue resulted in no 

multispectral data being recorded and therefore visual imagery (red, green, and blue wavelengths) 

was used and VARI was calculated instead of NDVI.  
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regression found that NDVI (p<0.001) and springflow (p<0.001) were found to be significant 

predictors of ET.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Discussion 

 This research ought to improve our understanding ET and related environmental 

characteristics in sagebrush-steppe ecosystem in central Oregon, USA. The use of satellite-based 

remote sensing approaches has improved our ability to evaluate ET patterns; yet, limitations in 

spatial and/or temporal resolution create challenges for accurate modeling. This is particularly 

important in water-limited regions where increased water scarcity can have severe environmental 

  Overstory vegetation Non-overstory 

Date WS ET NDVI ET NDVI 

23-Jul-20 Mays 0.50 0.28 0.00 0.11 

6-Aug-20 Jensen 0.50 0.56 0.18 0.13 

20-Aug-20 Mays 0.53 0.26 0.04 0.06 

2-Sep-20 Jensen 0.30 0.49 0.04 0.07 

3-Sep-20 Mays 0.39 0.23 -0.02 0.07 

23-Sep-20 Jensen 0.36 0.57 0.12 0.07 

29-Sep-20 Mays 0.27 -0.03 (VARI) 0.03 -0.04 (VARI) 

30-Sep-20 Jensen 0.19 0.56 0.09 0.06 

1-Oct-20 Mays 0.36 0.24 0.17 0.03 

14-Oct-20 Mays 0.32 0.26 0.13 0.05 

30-Apr-21 Jensen 0.39 0.53 0.24 0.16 

18-Jun-21 Mays 0.53 0.31 0.07 0.05 

Table 8. Average ET (in mm) and NDVI for selected points for each UAV flight. A total of 50 

points in each mid-day orthomosaic were selected. Twenty-five points were selected at pixels 

where overstory vegetation was visible in the image (e.g., western juniper canopy, big 

sagebrush) and 25 points were selected at pixels where no overstory vegetation was visible. The 

non-overstory sample points included areas of bare ground, rocks, shadows, and tree boles. 

Small vegetation, such as perennial grasses, may also be present at the points because they were 

not visible due to spatial resolution or shadows.  
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impacts.  Specific objectives of this study were to 1) compare different approaches to modeling 

ET at different temporal and spatial scales and 2) assess the relationship between different 

ecohydrologic indicators and characteristics, specifically ET, springflow, soil moisture, NDVI, 

and NDMI.  

 For this study, we examined ET models at annual and monthly watershed scales and 

hourly plot scales. The MODIS ET and PET products (MOD16A2.006), the approach with the 

coarsest spatial resolution used in this study, provide calculations at a spatial resolution of 500 m 

and did not capture seasonal variation in ET values that were exhibited in other models. MODIS-

ET products are likely more appropriate for larger spatial scale and regional uses, although it 

offers the advantage of high temporal resolution. The Landsat 8 data offers the advantage of 

higher spatial resolution (30 m for short-wave bands) but has a temporal resolution of 16 days. A 

mask was used in this study which excluded cloud-covered pixels from analysis which resulted 

in limited measurements of NDVI and NDMI being available for winter months and may 

indicate that the values are not entirely representative of seasonal characteristics during the 

winter. In addition to limited observations due to cloud conditions, it may also be the case that 

the spatial resolution was insufficient to assess changes in phenology and water stress conditions 

for small groundcover (e.g., perennial grasses).  

 The differences in ET estimates among the various approaches examined highlight the 

importance of model selection based on the study size, climate, and vegetation cover 

characteristics. Similar to the findings in this study, other research have also found the 

performance of ET models varies with vegetation type and phenology [43] and the availability of 

ground data [44], in addition to climatic factors. Additionally, it is important to note that SWAT 

is soil water-based approach and the OpenET models used here are energy balance-based 

approaches (although considerable variation was shown between OpenET results as well). 

 Past studies have also indicated the challenges of using SWAT and other ET models in 

dry climates (e.g., [45]). While initial calibration using on-site measurements of θ and ephemeral 

streamflow did not improve ET results when compared to transpiration measurements conducted 

in a past study at the same site [25] and a water balance-based approach [29], the use of 

additional ground-based measurements may improve the results of the SWAT model and reduce 

uncertainty.  
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 Similar to the watershed-scale ET calculations, PET or RET calculations and the ratio 

between actual ET and PET or RET showed distinct differences between approaches. Further, 

while the use of a crop coefficient has been commonly used to estimate ET in many agricultural 

systems (e.g., [46,47]. Limited research has been conducted into determining a crop coefficient 

for sagebrush steppe ecosystems. Wight and Hanson [48] estimated the crop coefficient of a 

sagebrush community in Idaho, USA during the growing season to be 0.85, based on lysimeter 

measurements and the Jensen-Haise reference ET approach [49], which is considerably larger 

than the estimates of ET/PET and ET/RET during the growing season found in this study, 

regardless of the method used. In general, the average MODIS-PET and OpenET-RET at both 

watersheds were greater than estimates of PET calculated in a previous study using the 

Hargreaves-Samani approach  [29].  

 Leaf area index has been shown to be strongly linked to the ratio between seasonal ET 

and PET [22] and may serve as another indicator of ET.  NDVI, NDMI, leaf area index, soil 

moisture, and other ecohydrologic characteristics may provide additional means of estimating ET 

[14,50,51]. However, the results of this study indicate that approaches to using these indicators 

for predicting ET may be largely site-specific. For instance, we found that NDVI was an 

important predictor of ET at Mays WS while soil volumetric water content (θ) and NDMI were 

more important predictors at Jensen WS. Similarly, we found that springflow was only strongly 

correlated with NDVI, NDMI, or θ at Mays WS. Therefore, any estimates of ET should consider 

the myriad of factors related to ET (e.g., leaf area index, vegetation type, and θ) when developing 

a model to predict ET.  

 We also found differences in estimates of NDVI based on approach (Landsat 8 data 

versus UAV-based imagery). It is important to note that differences in sensors are also associated 

with differences in NDVI calculations [52]. Further, since we averaged NDVI from observations 

over a course of each month, it is not directly comparable to UAV-based data which captured 

data over the course of approximately an hour, due to the presence of clouds, precipitation 

patterns, or other meteorological factors at the time of flight. As the Landsat 8 data collects data 

at a 30 m scale (for NIR and red wavelengths) versus the sub-meter scale used by the UAV-

based cameras, it may not be sufficient to discern bare ground and ground cover from small 

vegetation. We found that the NDVI calculations at the watershed scale (Landsat 8-based) and at 
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the plot scale (UAV-based imagery) were more similar at Jensen WS compared to Mays WS, 

which may indicate that the spatial resolution was a more important factor in areas with 

relatively smaller canopy size. It should also be considered if the UAV-plots are truly 

representative of the entire watershed for characterizing vegetation, land cover, and ET.   

 We also found that NDVI varied with the time of UAV flight (morning flights versus 

mid-day flights). Past studies have also found the ratio between NIR and red wavelengths varied 

with the time of observation [53] .  With the exclusion of one flight, NDVI was greater for the 

morning flights compared to the mid-day flights. This is similar to [54], who found that NDVI 

values tended to be greater at the beginning and end of the day and [55] who found that 

vegetation indices varied with the time of day. Additionally, while [56] found that the 

performance of UAV-based cameras were similar to that of ground-based approaches, 

reflectance variations can lead to misleading vegetation index calculations. This suggests that the 

variations that we saw between NDVI in morning and mid-day flights were more likely a 

function of factors other than plant vigor and emphasizes the importance of considering when 

images are captured. The UAV-based calculations of ET were also larger than expected 

compared to the results of research conducted by Mollnau et al. [56] which estimated 

summertime western juniper stand transpiration to be 0.4 mm day-1.  

 The results of this study highlight several key limitations in understanding ET in semiarid 

environments, particularly in snow-dominated systems, and the importance of considering 

approaches to calculating ET. While limited studies have been conducted to examine the 

transpiration of western juniper in central Oregon [25,57], additional research is also needed to 

understand the transpiration rates of other vegetation in these regions, to include big sagebrush 

and perennial grasses. Estimates of soil evaporation in semiarid environments are likewise also 

very limited. Future research could address these challenges by incorporating eddy covariance or 

Bowen ratio systems to gain a better understanding of the on-site characteristics related to 

evapotranspiration. Additionally, further information is needed to understand the relationship 

between on-site ecohydrologic characteristics (e.g., soil percolation, vegetation diversity and 

cover) and ET.  

 This study provides insight into the relationship between ET patterns and environmental 

characteristics at this study site. While it is an indirect indicator and will vary by location, the 
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results of this study suggest that certain environmental characteristics (e.g., soil moisture, NDVI) 

can be used estimate seasonal patterns in ET, although caution should be used. Additionally, the 

results of this study highlight the usefulness of incorporating readily-available datasets (such as 

OpenET) into ecohydrologic research in data limited environments.  

 An improved understanding of the factors related to ET has important implications for 

land management in this region. There is particular concern regarding how changes in ET related 

to western juniper encroachment may impact water availability and herbaceous productivity, two 

important factors for cattle grazing and ecosystem functions in the region. This study emphasizes 

the importance of considering the approach used to estimate ET, to include the spatial and 

temporal characteristics, as well as the need for more in-depth assessment of how ET rates may 

vary between western juniper dominated ecosystems and sagebrush-dominated ecosystems.  
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Characterization of the water balance at a semiarid watershed in eastern Oregon, USA 

using the Soil and Water Assessment Tool 

 

Abstract: The water balance is the foundation for many ecohydrologic processes and there is a 

need for an improved understanding of the drivers of the water balance, particularly in semiarid 

and arid regions. However, some aspects of the water balance are very difficult to directly 

measure (e.g., shallow groundwater recharge) and traditional water budget approaches may not 

adequately address spatial heterogeneity. Physically-based hydrologic models, such as the Soil 

and Water Assessment Tool (SWAT), provide another means of characterizing the water balance 

and have been widely used. In this study, we used SWAT to characterize the water balance for a 

semiarid watershed in eastern Oregon, USA in which several land cover types are present. A 

combination of on-site weather and Parameter-elevation Regressions on Independent Slopes 

Model (PRISM) were used in model development. The SWAT-Calibration and Uncertainty 

Program (SWAT-CUP) was used for model calibration, validation, and sensitivity analysis. 

Calibration with streamflow and plant available water content (PAWC) data and validation was 

performed with PAWC data only. The model performance was assessed using Nash-Sutcliffe 

efficiency (NS) and ranged from NS=0.68 to 0.93 for calibration and NS=0.81 to 0.85 for 

validation. Parameters related to snowpack and soil characteristics were found to be among the 

most influential on the modeled water balance. The results of this study highlight the importance 

of considering climate and site-specific characteristics, as well as calibration approaches, when 

modeling the water balance.  

 

1. Introduction 

 The water balance is the basis for understanding many hydrologic processes within a 

watershed and improving land management practices. Many of the drivers of the water balance 

in snow-dominated, semiarid environments are less understood than those of rain-dominated, 

humid climates. Limited on-site data and multiple land cover characteristics, to include varying 

amounts of vegetation cover, make accurate representation of the water balance difficult in many 

of these regions. In light of these challenges, physically-based hydrologic models, such as the 

Soil and Water Assessment Tool (SWAT, [1]) have been widely uses to assess water balance 

components (e.g., [2,3]).  
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 SWAT has been used to characterize diverse environments, including agricultural (e.g. 

[4,5]) and arid and semiarid landscapes ([6–8]). In addition to modelling the general components 

of the water balance, such as precipitation, streamflow, or evapotranspiration, SWAT also 

calculates aspects that are more difficult to directly measure such as soil percolation, aquifer 

recharge, and the contribution of shallow aquifer moisture to soil and plants. SWAT has also 

widely been applied to assess the impacts of land cover and management applications, such as 

urban expansion (e.g., [6]) and other shifts in land cover type (e.g., [9]), on the water balance.  

 While SWAT and other modeling approaches have been applied to areas with different 

climate characteristics, parameter sensitivity and model performance frequently vary between 

arid and humid climates. Muttiah and Wurbs [10] found that among six watersheds in Texas, 

USA, more humid climates showed greater sensitivity to climate and soil variations while the 

semiarid climates demonstrated more sensitivity with soil albedo and water capacity.  Research 

has also found that climate is associated with differences in the performance of some hydrologic 

models [11,12]).  Van Liew et al. [13] found that SWAT performed poorly at a desert rangeland 

site compared to more humid regions but also found that SWAT performed well at a 

mountainous rangeland site in Idaho for predicting streamflow.  However, several studies have 

also found that the SWAT model performed satisfactorily to well in semiarid landscapes [7,14–

16].  

 Limited on-site data is a challenge in many semiarid and arid regions. Alternatives to on-

site measurements of precipitation and temperature, such as Parameter-elevation Regressions on 

Independent Slopes Model (PRISM; [17]), have been used successfully to address gaps in data 

(e.g., [18]). Studies have also illustrated how remote sensing data, such as Landsat (e.g., [19], 

MODIS (e.g., [20], or AMSR2  (e.g., [21]) can be integrated into the SWAT model and be used 

for model calibration.  

 In addition to model development, calibration procedures are an important area of 

research and approaches vary widely. While manual calibration can be performed in the SWAT 

model, this may be time-consuming compared to other approaches. Alternatively, programs such 

as the SWAT-Calibration and Uncertainty Procedures (SWAT-CUP; [22,23]) have widely been 

used for model calibration, validation, and sensitivity analysis. An in-depth examination of 

SWAT-CUP calibration and validation is provided in [24]. Abbaspour et al. [25] also outlined a 
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method for large-scale model calibration using SWAT-SUP and emphasized the importance that 

specific parameters have on variables, such as evapotranspiration or peak flow. Further, 

parameter calibration approaches should reflect watershed characteristics such as size and the 

complexity of topography, vegetation cover, and soil type. Programs, such as SWAT-CUP, allow 

the user to calibrate parameters based on specific soil type, slope characteristics, and vegetation, 

as well as other characteristics [26]. The best approach to calibration will likely depend on the 

study site in question and there is no replacement for an adequate understanding of hydrologic 

processes during model development and assessment.   

 Multisite and multivariable calibration approaches have shown promise in improving the 

performance of hydrologic models. Shah et al. [27] found that a SWAT model calibrated using 

only streamflow data had greater parameter uncertainty compared to a SWAT model calibrated 

using streamflow data and evapotranspiration data from Moderate Resolution Imaging 

Spectroradiometer (MODIS). Niraula et al. [28] found that using multiple streamflow 

measurements improved the accuracy of a SWAT model compared to when only streamflow 

measurements at the watershed outlet were used.   

 While streamflow is frequently used for model calibration and validation, streamflow 

data are often not available in arid and semiarid regions, particularly when streamflow is 

ephemeral or seasonal. Several studies have used soil moisture alone or in conjunction with 

streamflow to evaluate SWAT model performance (e.g., [29,30]). Rajib et al. [31] found that 

remote sensing-based measurements of surface moisture improved soil moisture calibration, 

particularly when combined with on-site measurements of root zone soil moisture. However, 

Kundu, Vervoot, and Ogtrop [32] found that calibration using soil moisture improved SWAT 

streamflow predictions at some locations, this varied with seasonal characteristics and 

topography.  

 The parameters used in calibration should reflect processes relevant to watershed 

characteristics and variables of interest, such as using the Soil Conservation Service curve 

number (SCS CN, [33])  in streamflow modeling. SWAT has effectively been used to model 

streamflow in snow-dominated regions [34,35] and snowpack parameters have been found to be 

particularly influential in these environments ((e.g., [36,37]).  Further, land cover and vegetation 

characterization impact the water balance. The specific vegetation characteristics of land use 
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classification can also vary from region to region. For example, brush dominated rangeland areas 

in the Pacific Northwest USA region are frequently classified under the same land cover 

category as brush-dominated rangeland areas of the southwestern USA although the vegetation 

composition and density in these two regions varies. In light of these differences, several studies 

have also assessed vegetation parameters to improve SWAT models (e.g., [38,39]). 

 In addition to parameter selection, parameter sensitivity and uncertainty analysis are 

important factors in the assessment of model performance. Equifinality, such as when different 

parameter combinations yield similar results, is a key concern for hydrologic modeling. Ficklin 

and Barnhart [40] found that different parameter sets yielded similar calibration results but 

demonstrated differing projections of streamflow characteristics. Parameter sensitivity analysis 

can be used to avoid overfitting the model and to more aptly identify underlying processes within 

a watershed. Numerous factors contribute to uncertainty, to include the complexity of hydrologic 

processes as well as data scarcity. However, more research is needed into hydrologic modeling 

and parameter sensitivity analysis in semiarid and arid regions, particularly considering limited 

data.  

 This research sought to further examine the factors influencing the water balance in 

semiarid regions. We applied the Soil and Water Assessment Tool (SWAT) to estimate 

components of the water balance at a snow-dominated, semiarid watershed which encompasses 

differing land use and topographical characteristics. A combination of PRISM and on-site data 

were used along with a multisite, multivariable calibration approach. Specific objectives of this 

study were to: 1) model the water balance of a snow-dominated semiarid watershed using SWAT 

and 2) perform model parameter sensitivity.  

 

2. Methods 

2.1 Site Description 

 

 This study was conducted on a 1280-ha watershed (44.42° N, 117.91° W ) located near 

Ironside, OR, USA. Elevation at the study site ranges from 1170 to 1953 m (Figure 1). Much of 

this study site is used for cattle grazing, with some timber production in the upper portions of the 

watershed. Sagebrush steppe accounts for a large portion of the land cover at the study site. 

Vegetation also includes western juniper, perennial bunchgrasses, and Ponderosa pine and mixed 
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conifer.  Several perennial and seasonal streams run through the study site and generally flow 

from north to southeast. Multiple springs are located near the top of the watershed and the 

majority of streams within the study site are spring-fed.  

 

 

 

Figure 1. Study site data collection locations, elevation, land use, and soil type. Streams 

generally flow from the north to the south in this watershed and are intermittent in upslope 

regions. “PRISM” indicates the locations for which PRISM data were sourced. Streamflow 

measurements were taken near the Wilks Valley weather station. Descriptions of soil and soil 

land cover characteristics are provided in Tables 1 and 2, respectively. Sources: Esri, 

DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, 

swisstopo, and the GIS User Community. This map was created using ArcGIS® software by Esri. 

ArcGIS® and ArcMap™ are the intellectual property of Esri and are used herein under license. 

Copyright © Esri. All rights reserved. For more information about Esri® software, please visit 

www.esri.com. 

 

 The study site is located in a semiarid, snow-dominated region in eastern Oregon, USA. 

Based on on-site precipitation data and the PRISM precipitation data, the mean annual 

precipitation from 2016 to 2021 was 345 mm yr-1. Some spatial variation in rainfall patterns was 

shown between sites, with slightly greater precipitation being observed at the upslope sites near 

the top of the watershed compared to the sites in the lower elevation valley areas (362 mm yr-1 

vs. 264 mm yr-1). For the years observed during this study, 2019 had the greatest watershed-wide 

annual precipitation (457 mm) and 2021 had the lowest annual precipitation (298 mm). Average 

daily maximum temperatures during the summer (July through September) were 26°C and 

average daily minimum temperatures during the winter (January through March) were -6°C. The 

geology of the watershed is primarily characterized by igneous, volcanic rock, such as rhyolite 
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lava flows and terrestrial tuffaceous sedimentary rock, and clastic sedimentary rock (Figure 2) 

[41,42].  

 

 
 

Figure 2. Geology of local area. Oregon geologic map data was obtained through the U.S. 

Geological Survey [43]. This map was created using ArcGIS® software by Esri. ArcGIS® and 

ArcMap™ are the intellectual property of Esri and are used herein under license. Copyright © 

Esri. All rights reserved. For more information about Esri® software, please visit www.esri.com 
 

 

 On site data collection began in 2018. The Deer Creek weather station (“Deer Creek”) 

was installed in 2018 and is located at 1820 m near the top of the watershed. The Fish Creek 

Valley weather station (“Fish Creek Valley”) was installed in 2019 and is located at 

approximately 1200 m elevation in a sagebrush-dominated area of the watershed, near the outlet 

of the study site used for this SWAT model. Wind speed and direction, air temperature, solar 

radiation, and precipitation were measured at both weather stations using similar equipment.  A 

CR800 (Campbell Scientific, Inc., Logan, UT, USA) datalogger was used at both weather 

stations. A TE525 (Texas Electronics, Inc., Dallas, TX, USA) tipping bucket rain gauge was 

http://www.esri.com/
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used to measure precipitation. Relative humidity and air temperature were measured using a 

CS215 probe (Campbell Scientific, Inc., Logan, UT, USA). Incoming shortwave solar radiation 

was measured using the Apogee CS300 pyranometer (Apogee Instruments, Inc., Logan, UT, 

USA). A Young (R.M. Young Company, Travers City, MI, USA) model 03002 Wind Sentry 

anemometer and vane were used to measured wind speed and direction.  

 Soil moisture was collected using CS650 water content sensors (Campbell Scientific, 

Inc., Logan, UT, USA) beginning in October 2018 at the Deer Creek Site and in August 2019 at 

the Fish Creek Valley site. Hourly soil moisture data at 0.2 m and 0.5 m were collected at the 

Deer Creek and soil moisture data at Fish Creek Valley were collected at 0.2 m, 0.5 m, and 0.8 

m. Three core soil samples were taken at each measurement depth in order to calculate bulk 

density and soil texture. The volumetric water content was calculated by averaging the water 

content at each depth and multiplying by the measured soil depth (0.5 m at the upper weather 

station and 0.8 m at the lower weather station). Soil texture analysis was conducted for both 

watersheds using the hydrometer method [44]. Bulk density was calculated using the soil core 

method as described in [45]. The field-based soil texture and bulk density data were used to 

estimate the permanent wilting point of the soils using the Retention Curve (RETC) computer 

program (Version 6.02, see [46] and [47]). Similar to the method described by [31], the soil 

moisture content was converted to plant available water content (PAWC) by subtracting the 

permanent wilting point from the measured volumetric water content. The monthly average 

PAWC was used for model calibration and validation.  

 Streamflow data was measured near the Fish Creek Valley weather station using a ramp-

style flume installed in April of 2021 and equipped with a Hobo U20L pressure sensors (Onset 

Computer Corp., Bourne, MA, USA) to measure water level height. Streamflow volume was 

calculated based on water level height and the dimensions of the flume.  

 Streamflow measurements were used for model calibration, but insufficient streamflow 

data were available for validation. In order to address this, results were compared to modeled 

peak streamflow results. Manning’s equation (Equation 1, [48]) was used to estimate peak flow 

rates based on stream channel measurements of depth and width, where n is the Manning’s 

roughness coefficient, A is the channel area in m2, R is the hydraulic radius (channel area divided 

by the wetted perimeter), and S is the slope. 
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𝑄 = (
1.00

𝑛
) ∗ 𝐴𝑅2/3√𝑆 

  

 A stream survey conducted in a 100-m reach at the location of the flume showed an 

average width of 2.0 m and average maximum depth of 0.3 m. The channel was classified as 

moderately entrenched.  

 Daily minimum and maximum air temperature and precipitation data for January 2016 

until August 2021 from Parameter-elevation Regressions on Independent Slopes Model (PRISM, 

[17]) data were downloaded for five sites in the watershed (see Figure 1). Sites ranged from an 

elevation of 1162 m to 1953 m. Standard PRISM data have a spatial resolution of 4 km. Time 

series values can be directly downloaded from the PRISM website 

(https://prism.oregonstate.edu/explorer/bulk.php). 

 

2.2 SWAT Description 

 

 SWAT is a semi-distributed, physically-based model that divides a given area into 

individual hydrologic response units (HRUs) based on land use, topography, and soil type. 

SWAT uses a soil water balance approach in which the final soil water content is equal to initial 

soil water content plus the sum of precipitation minus outflows (e.g., surface flow, percolation, 

and groundwater outflows). The ArcSWAT extension in ArcMap (Version 10.7.1; 

Environmental Systems Research Institute; Redlands, CA) was used to execute the SWAT model 

in this study. A simplified flowchart of the modeling process is provided in Figure 3.  

 

 

(1) 

https://prism.oregonstate.edu/explorer/bulk.php
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Figure 3. General flowchart for SWAT model creation. DEM refers to digital elevation model, NLCD 

refers to the National Land Cover Database, and STATSGO refers to the State Soil Geographic Dataset.  
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  A 10-m resolution Digital Elevation Model (DEM) from the Oregon Spatial Data 

Library (https://spatialdata.oregonexplorer.info , [49]) was used to delineate the watershed. 

Elevation values were converted to meters using the ArcGIS Raster Calculator. The DEM and all 

other input rasters were projected to NAD 1983 UTM Zone 11 North. This watershed delineator 

divided the watershed into 12 subbasins and identified major stream systems within the 

watershed based on the DEM.  

 Land use classification was determined using the National Land Cover Database (NLCD; 

[50]) 2019 land cover dataset for the watershed. Resolution of the NLCD raster is 30 m. The 

NLCD datasets are available from the Multi-Resolution Land Characteristics website 

(https://www.mrlc.gov/data). A small section (<1 %) of the riparian area in the southern portion 

of the watershed was misclassified as low-density residential in the NLCD datasets. Our on-site 

observations indicate that this area is largely dominated by sagebrush vegetation and there is no 

residential development along this area of the reach. These portions of the NLCD raster were 

reclassified to rangeland-brush using the reclassify tool in ArcMap.  

 The State Soil Geographic (STATSGO) database was used as the soil input.  Soil Survey 

Geographic Database (SSURGO) data were not available. STATSGO data is less detailed than 

SSURGO data but provides general information regarding rooting zone depth, hydrologic group, 

and soil texture. The primary soil types and texture characteristics are shown in Table 1.  

Soil Type Soil Name Hydrologic group Texture Land uses 

OR 185 Ateron D STV-L-CBV-SICL-

CBV-C-UWB 

FRSE, RNGB, RNGE 

OR 169 Ruckles D STV-CL-STV-C-

UWB 

FRSE, RNGB, RNGE 

OR 186 Segundo B GRV-L-GRV-L-

GRV-SL 

FRSE, RNGB, RNGE 

 

 A minimum threshold of 5 % land cover area for land use, soils, and slope inputs was 

used for HRU definition. Percent slope was divided into five categories (Table 2) that reflect the 

Table 1. Soil class from the State Soil Geographic (STATSGO) database 

(http://www.fsl.orst.edu/pnwerc/wrb/metadata/soils/statsgo.pdf). Texture abbreviations are: 

very stony (STV), loam (L), very cobbly (CBV), silty clay loam (SICL), clay (C), 

unweathered bedrock (UWB), clay loam (CL), very gravelly (GRV), and sandy loam (SL). 

Land uses are classified as forest-evergreen (FRSE), rangeland-brush (RNGB), or rangeland-

grasses (RNGE). 

https://spatialdata.oregonexplorer.info/
https://www.mrlc.gov/data
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range in topography of the watershed. The CN2 numbers are generally based on shallow slopes 

up to 5 %. Based on these thresholds, 184 HRUs were created based on three NLCD land use 

categories, three soil types, and five slope categories (Table 2). 

 

 

Table 2.  Land use, soil, and slope categories after HRU delineation for the watershed.  The “% 

of WS” indicates the percentage of area of the watershed for that land use category. Land uses 

are classified as forest-evergreen (FRSE), rangeland-brush (RNGB), or rangeland-grasses 

(RNGE). 

Land Use Category Area (ha) % of WS 

RNGB 914.9   71.9 

FRSE 332.7   26.1 

RNGE 25.5 2.0 

Soil Category   
OR185 686.7 53.9 

OR186 343.3 27.0 

OR169 243.1 19.1 

% Slope Category   
0-5 9.5 0.8 

5-15 198.2 15.6 

15-30 550.0 43.2 

30-45 376.3 29.6 

>45 139.1 10.9 
 

 Air temperature and precipitation data from PRISM were used for all years. On-site 

weather station data were used for minimum and maximum air temperature, precipitation, 

relative humidity, and wind speed from August 2019 until December 2021. The SWAT weather 

generator tool, which estimates values based on nearby monitoring stations, was used during 

limited periods when on site or PRISM data were not available.  The Penman-Monteith approach 

was selected in ArcSWAT to calculate evapotranspiration.  

 For the SWAT model creation, data from 1 January 2016 to 31 December 2021 were 

used. Two years were used as a “warm up” period for the model. The daily curve number was 

calculated as a function of plant evapotranspiration (the “ICN” variable in SWAT). A SWAT 

model using the soil moisture method for daily curve number was also created but, based on 

initial results, the approach using the plant evapotranspiration modeled values that were closer to 

on-site observations. A skewed normal rainfall distribution was used.  
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2.3 SWAT-Calibration and Uncertainty (SWAT-CUP) Description 

 The SWAT Calibration and Uncertainty Program (SWAT-CUP; [22,23]) was used to 

perform  parameter sensitivity, calibration, and validation. Streamflow (Q) for 2021 and PAWC 

for 2018, 2019, and 2021 were used for calibration, which included the years with the greatest 

and lowest recorded levels of precipitation during this study, and PAWC for 2020 was used for 

validation. Streamflow data were limited to observations during 2021. 

 The Sequential Uncertainty Fitting (SUFI-2) algorithm was used in SWAT-CUP to assess 

parameter uncertainty and sensitivity. SUFI-2 creates a 95 % simulation range (95PPU) based on 

user-selected parameters. SWAT-CUP uses two statistics, p-factor and r-factor, to assess the 

relationship between the simulation and the observations ([22]. The p-factor (ranging from 0 to 

100 %) indicates the percentage of observations that fall within the modeled result while the r-

factor (ranging from 0 to infinity) indicates the thickness of the 95 % probability range. Both 

factors will decrease as the range of parameters decreases [22]. Simulations which perfectly 

model data will have a p-factor of 1 and an r-factor of 0.  

 Within SWAT-CUP, several statistics can be chosen as the objective function in which 

the best performing model parameters for that statistic are selected. Nash-Sutcliffe (NS) was 

used as the objective function in this study.  

 The parameters selected for initial calibration in this study are shown in Table 3. These 

parameters were chosen based on the watershed characteristics (e.g., snow-dominated 

precipitation patterns) and factors that are known to influence streamflow (e.g., CN2) and soil 

moisture patterns (e.g., saturated hydraulic conductivity and soil albedo). Vegetation 

characteristics (e.g., CANMAX) were also included in the initial calibration. The curve number 

parameters (CN2) were further divided into the three land cover categories (RNGB, RNGE, and 

FRSE). These separations were made because of the link between CN2 and land cover. The CN2 

parameter for RNGB was further subdivided into two groups based on the upper watersheds 

(reaches one through seven) and lower watersheds (reaches eight through 12), and then into three 

groups based on the average slope of the HRU. During later stages of calibration, it was noted 

that the average soil water content (SOL_AWC) was outside of expected ranges for some layers 
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and types of soil. Therefore, the SOL_AWC parameter was subdivided by hydrologic soil group 

(B or D) and soil layer.  

 In SWAT-CUP, the user can select one of three types of parameter changes: relative, 

replace, or absolute. When a relative change is indicated, which was used for the majority of 

parameters during this study, the original value is multiplied by a value plus one. For replace, the 

initial value is changed to a given value. For parameters such as CANMX and CH_K2 that were 

initially zero, the replace function was used for calibration. Caution should be used when the 

replace function is used for spatial variables, to include soil characteristics, as it will impact 

spatial variability. For absolute parameter changes, a given value is added to the original value. 

For each type of parameter change, the user selects the upper and lower limits of how much a 

parameter can change. 

 Sensitivity analysis was performed in SWAT-CUP using the global sensitivity analysis 

approach, which uses a multiple regression approach to determine parameter sensitivity. The t-

statistic and p-value for each parameter are calculated during this process. As the range of 

calibration values impacts the sensitivity analysis results, multiple calibration runs were used to 

select parameters for calibration. Initial sensitivity analyses were run using only streamflow 

(“Q”) for calibration, only PAWC, and using Q and PAWC. Each iteration for calibration used 

500 simulations. 

 Using the SWAT-CUP sensitivity analysis, a threshold of p≤10 was used to identify 

parameters that were considered statistically significant (at p≤0.05) and those that were 

marginally significant (at p≤0.10).  This threshold was selected because the results of the 

sensitivity analysis differed somewhat between calibration iterations, depending on the range of 

variation and parameters selected. In general, parameters that exceeded a p-value of 0.10 were 

removed from further calibration.  

 It was noted during several calibration iterations that the removal of some parameters 

(e.g., SNOCOVMX) that were excluded from calibration based on the p≤0.10 threshold resulted 

in reduced performance. In these cases, parameters were reintroduced to the calibration. The 

range of variation for each parameter was narrowed during the calibration process and 

parameters were removed when they were no longer considered statistically significant or 

marginally significant (at p≤0.10). After each iteration, the parameter ranges that yielded the best 
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NS values were used for each successive iteration. Parameter ranges were manually changed as 

necessary to ensure that parameters remained within an expected, realistic range. Therefore, the 

set of parameters used for the final calibration iteration and validation iteration were based on the 

results of previous calibrations and user knowledge of important hydrologic parameters (e.g., the 

influence of CN2 on Q). The parameter ranges yielding the best NS from the final calibration 

iteration were used for validation.  

 

Table 3. Parameters used for sensitivity analysis. The extension (e.g., “.gw”) indicates the 

SWAT file where the parameter is located.  “Method” indicates the type of change applied to an 

existing parameter value. “Relative” indicates that the existing parameter value was multiplied 

by a given value plus one, “replace” indicates that the parameter value was replaced by a given 

value. The CN2 and CANMX parameters were separated by land use type for calibration. The 

CN2 parameter (indicated with “*”) for the RNGB land cover was also divided by reaches based 

on location within the upper reaches (subbasins 1-7) or lower elevation reaches of the watershed 

(subbasins 8-12) and by slope. Sol_AWC (“**”) was divided by hydrologic soil group (B or D) 

and layer (1 or 2-3). 
  

Parameter Explanation Method Land Use 

ALPHA_BF.gw Baseflow alpha factor relative (all) 

CANMX.hru Max canopy storage  replace RNGB, RNGE, FRSE 

CH_K2.rte Effective hydraulic conductivity replace (all) 

CH_N1.sub Manning's roughness coefficient for 

tributary 

relative (all) 

CH_N2.rte Manning's roughness coefficient for 

main channel 

relative (all) 

CN2.mgt* Curve number   relative RNGB, RNGE, FRSE 

EPCO.hru Plant uptake compensation factor relative (all) 

ESCO.hru Soil evaporation compensation factor relative (all) 

EVRCH.bsn Evaporation adjustment factor for reach relative (all) 

GW_DELAY.gw Groundwater delay time in days relative (all) 

GW_REVAP.gw Groundwater revap coefficient relative (all) 

GWQMN.gw Threshold depth of water in shallow aq 

required for return flow 

relative (all) 

OV_N.hru Manning's roughness coefficient for 

overland flow 

relative (all) 

RCHRG_DP.gw Deep aquifer percolation fraction relative (all) 

REVAPMN.gw Threshold depth of water in shallow 

aquifer required for revap or 

percolation to deep aquifer 

relative (all) 

SFTMP.bsn Snowfall temp (°C) relative (all) 

SMFMN.bsn Melt factor: Dec 21 relative (all) 
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SMFMX.bsn Melt factor: June 21 relative (all) 

SMTMP.bsn Snowmelt base temp (°C) relative (all) 

SNOCOVMX.bsn Min snow water content at 100% snow 

cover 

relative (all) 

SOL_ALB.sol Moist soil albedo relative (all) 

SOL_AWC.sol** Average soil available water capacity relative (all) 

SOL_K.sol Saturated hydraulic conductivity (mm 

hr-1) 

relative (all) 

SURLAG.hru Surface runoff lag time relative (all) 

TIMP.bsn Snowpack temperature lag factor relative (all) 

TRNSRCH.bsn Portion of transmission losses from 

main channel that go into deep aquifer 

replace (all) 

  

 Model performance was assessed using the guidelines suggested by Moriasi et al. [51]. 

NS values between 0.75 and 1 were considered “very good”, between 0.65 and 0.75 were 

considered “good”, between 0.5 and 0.65 were considered “satisfactory”, and values below 0.5 

were considered “unsatisfactory”.  

 

3. Results 

 Peaks in the PAWC content generally corresponded to periods of snowmelt in April and 

May (Figures 4 and 5) and were generally greater at the Deer Creek site compared to the Fish 

Creek Valley site.  
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Figure 4. Total monthly precipitation (PPT) and average monthly PAWC for the Deer Creek 

site based.  

Figure 5. Total monthly precipitation (PPT) and average monthly PAWC for the Fish Creek 

Valley site.  
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 The average monthly basin water balance values are shown in Table 4.  Average annual 

ET was  253 mm (67% of incoming precipitation). Average annual water yield, which is the total 

of surface runoff and subsurface flow, was 126 mm (33% of average incoming precipitation). 

Snowfall accounted for 53% of incoming precipitation, with the majority of precipitation falling 

from November through May. Water moving from the shallow aquifer to soils and vegetation 

accounted for 16 mm, 4% of annual average incoming precipitation. Modeled average annual 

total groundwater recharge was 10 mm, 3% of average annual incoming precipitation. 

 

Table 4. Average modeled monthly basin water balance values for 2018 through 2021. All 

values are in mm. “PPT” indicates precipitation, “Snow” refers to the average amount of 

precipitation that fell as freezing rain, sleet, or snow, “Surf Q” refers to surface runoff, “Lat Q” 

refers to lateral flow to streamflow, “Water Yield” indicates total of surface runoff and 

subsurface flow, “ET” refers to actual evapotranspiration, and “PET” refers to potential 

evapotranspiration. 

 

 

 

 

 

 

Month PPT Snow Surf Q Lat Q Water Yield ET PET 

Jan 53 52 2 0 2 1 3 

Feb 57 54 5 3 7 1 2 

Mar 31 20 22 17 41 4 8 

Apr 29 6 1 37 42 11 21 

May 54 0 1 19 21 51 103 

Jun 26 0 0 4 5 52 141 

Jul 3 0 0 0 0 56 195 

Aug 14 0 0 2 2 42 165 

Sep 17 0 0 2 2 20 103 

Oct 23 2 0 4 4 13 47 

Nov 34 26 0 1 1 2 5 

Dec 37 37 0 0 0 0 0 
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Figure 6. Average annual modeled basin water balance values for 2018 through 2021. All values 

are in mm yr-1. “ET” refers to evapotranspiration, “PPT” refers to all precipitation, “REVAP” 

refers to moisture that moves from the shallow aquifer into the unsaturated zone, “Surface Q” 

refers to surface runoff, “Lateral soil Q” refers to subsurface flow through the soil, “water yield” 

refers to total water outflow in the form of surface and subsurface flow from the study area, and 

“total aquifer recharge” refers to all water that entered into the shallow or deep aquifer. Photo 

Credit: Carlos C. G. Ochoa.  

 

 Using Manning’s equation and the characteristics and stream channel dimensions 

observed in our stream survey, we estimated the potential peak flow near the outlet of the study 

area to be 0.56 cms. The average monthly modeled streamflow rate was 0.02 cms with the 

highest monthly modeled streamflow rate occurring in April (0.08 cms) . The average monthly 

modeled streamflow rates are shown in Table 5. 
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Table 5. Modeled average monthly and annual streamflow rates (cms) for 2018 through 2021 at 

the Fish Creek Valley site. 

Month Streamflow 

Jan 8.76E-04 

Feb 5.98E-03 

Mar 3.29E-02 

Apr 8.33E-02 

May 5.39E-02 

Jun 2.55E-02 

Jul 7.43E-03 

Aug 2.18E-03 

Sep 1.89E-03 

Oct 2.99E-03 

Nov 3.95E-03 

Dec 1.55E-03 

Annual 1.85E-02 
 

 

 The model used in this study yielded “very good” results based on the objective function 

(NS) for the calibration of Fish Creek Valley streamflow and Deer Creek PAWC and “good” 

results for the Fish Creek Valley PAWC (Table 6). Modeled streamflow rates and patterns were 

similar to those observed (Figure 7). The timing of seasonal PAWC peaks were generally 

modeled well under this approach although the model generally underpredicted peak PAWC 

(Figures 8 and 9). 

 

 

 

Table 6. Results of the final calibration iteration. Nash-Sutcliffe (NS) was used as the objective 

function. P-factor indicates the percentage of observations that fall within the modeled result, r-

factor is the width of the 95% probability range, R2 is the coefficient of determination, bR2 is the 

adjusted R2, and MSE is the mean squared error. 

 

 

Variable p-factor r-factor R2 NS bR2 MSE 

Streamflow 0.56 0.11 0.96 0.93 0.88 0 

Deer Creek PAWC 0.41 0.42 0.86 0.84 0.67 440 

Fish Creek Valley PAWC 0.06 0.26 0.70 0.68 0.52 350 
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Figure 7. Streamflow observation and calibration results. The shaded blue area represents the 

95% confidence range (95PPU). Streamflow data from 2021 were used for calibration. 

Streamflow data were not available for other years. 
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Figure 8. Deer Creek observation and calibration results. The shaded blue area represents the 

95% confidence range (95PPU). Soil moisture data from 2018, 2019, and 2021 from the Deer 

Creek site were used for calibration. 
 

 

 

 

 

 

Figure 9. Fish Creek Valley observation and calibration results. The shaded blue area represents 

the 95% confidence range (95PPU). Soil moisture data from 2019 and 2021 from Fish Creek 

Valley were used for calibration. 
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 Based on the NS value, the validation yielded “very good” results for PAWC at both sites 

(Table 7). Similar to the calibration results, the timing of peaks was generally modeled well but 

the modeled PAWC was generally lower than observed during peak periods of PAWC (Figures 

10 and 11). 
 

Table 7.  Validation results. Nash-Sutcliffe (NS) was used as the objective function. P-factor 

indicates the percentage of observations that fall within the modeled result, r-factor is the width 

of the 95% range, R2 is the coefficient of determination, bR2 is the adjusted R2, and MSE is the 

mean squared error. 

 

 
 

 

 

 

 

 

 

Figure 10. Deer Creek observation and validation results. The shaded blue area represents the 

95% confidence range (95PPU). 
 

 

 

 

 

 

 

 

 

 

 

Variable p-factor r-factor R2 NS bR2 MSE 

Deer Creek 0.25 0.30 0.89 0.85 0.81 400 

Fish Creek Valley 0.25 0.19 0.88 0.81 0.63 420 
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Figure 11. Fish Creek Valley observation and validation results. The shaded blue area represents 

the 95% confidence range (95PPU). 

 
 

 

  Based on the sensitivity analysis in SWAT-CUP, the parameters found to be statistically 

significant (at p≤0.0.05) or marginally statistically significant (at p≤0.10) are shown in Table 8. 

For the final calibration and validation, six parameters were used: SNOCOVMX, CN2, ESCO, 

CH_N1, SOL_AWC, and TRNSRCH. The average SNOCOVMX value was 255 mm. The 

average available soil water content for the study area was 0.24. The average available soil water 

content for all soils excluding unweather bedrock was 0.30. The final calibrated values for other 

parameters are listed in Table 8. 
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Table 8. Results of initial sensitivity analysis using SWAT-CUP for each variable and the final 

calibrated value for each parameter. The Sol_AWC indicates the average soil available water 

content for all layers across all soil types. “Q only” indicates that the streamflow was the only 

variable used during the sensitivity analysis, “Q and PAWC” indicates that streamflow and plant 

available water content were used during sensitivity analysis, and “PAWC only” indicates that 

plant available water content was the only variable used for sensitivity analysis. Units are shown 

where applicable. The extension (e.g., “.rte”) indicates the SWAT file in which the parameter is 

located. 

 

 

 

Variable Parameter p-value Final value 

Q only CH_K2.rte 0.00 128 mm hr-1 

 CN2.mgt (FRSE) 0.00 35 

 TRNSRCH.bsn 0.00 0.25 

 ALPHA_BF.gw 0.00 0.15 days-1 

 SURLAG.hru 0.00 0.05 days 

 SOL_K.sol 0.01 241 mm hr-1 

 CANMX.hru (RNGB) 0.03 15.3 mm 

 CANMX.hru (RNGE) 0.05 4.2 mm 

 

CN2.mgt (RNGB, upper reaches, slopes 

≥16%) 
0.07 

73 

 CH_N1.sub 0.07 0.45 

 

CN2.mgt (RNGB, upper reaches, slopes 

6-15%) 
0.09 

71 

 REVAPMN.gw 0.10 500 mm 

    
Q and 

PAWC 
ESCO.hru 0.00 

1 

 TRNSRCH.bsn 0.00 0.25 

 
SOL_AWC.sol 0.00 

0.24 (mm water/mm 

soil) 

 CANMX.hru (RNGE) 0.01 4.2 mm 

 ALPHA_BF.gw 0.01 0.15 days-1 

 SMTMP.bsn 0.02 1.1 °C 

 TIMP.bsn 0.06 0.57 

    

PAWC only SOL_AWC.sol 0.00 
0.24 (mm water/mm 

soil) 
 ESCO.hru 0.00 1 
 SMTMP.bsn 0.00 1.1 °C 

  GW_REVAP.gw 0.02 0.02 
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 The average watershed curve number (CN2) was 52. The average CN2 for the RNGB 

land cover, which accounts for 72% of the study area, was 73. The average CN2 for both the 

RNGE and FRSE land cover types was 35. Based on [52] , the estimated curve number for 

pinyon-juniper land cover is between 41 (‘good condition’) and 75 (‘poor condition’) for 

hydrologic group B and between 71 (‘good condition’) and 89 (‘poor condition’) for hydrologic 

group D. The estimated curve number for sagebrush areas with grass understory in hydrologic 

group B ranges from 35 (‘good condition’) to 67 (‘poor condition’) and for hydrologic group D 

ranges from 55 (‘good condition’) to 85 (‘poor condition’). For wooded areas, the curve number 

is expected to range between 55 (‘good condition’) and 66 (‘poor condition’) for hydrologic 

group B and between 77 (‘good condition’) and 83 (‘poor condition’) for hydrologic group D.  

The two soil moisture sites and the streamflow monitoring site were located within the RNGB 

land cover.  

 

4. Discussion 

 This research sought to characterize the water balance and assess parameter sensitivity of 

a relatively small watershed in a snow-dominated semiarid region of eastern Oregon, USA. By 

understanding the water balance and the factors that impact hydrologic processes we can better 

address key water management issues in water-scarce rangeland ecosystems with limited on-site 

data. 

 We used a multisite, multivariable calibration approach for this study. The use of 

multiple variables at spatially distributed locations has been found to improve model calibration 

results [53,54]. The use of multisite and multivariable calibration may be particularly important, 

considering the presence of intermittent streams at this study site, and as spatial heterogeneity 

may not be accurately represented if only data at the study site outlet are used. For example, [55] 

found that streamflow predictions improved when multi-site calibration approaches were used in 

a heterogenous watershed. Even though limited streamflow data were available in this study, we 

noted that the model performance improved when streamflow data were included in the 

calibration compared to when we only used soil moisture data. It should be noted that observed 

streamflow rates were relatively low (0.01 to 0.4 cms) and that intermittent streamflow patterns 

were present in upslope locations. Further, in order to maintain parameter spatial heterogeneity, 
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we used a calibration approach that applied a relative change (the initial parameter value was 

multiplied by a given value plus one) for the majority of parameters.   

 Spatial and temporal variability in precipitation amounts were noted during this study. 

While this study represents a year of varying precipitation characteristics, it likely does not 

represent the full extent of seasonal and annual variability. Therefore, caution should be used 

when extrapolating the results of the model beyond the conditions observed. Further, even when 

years of varying precipitation characteristics are represented, there may be antecedent conditions 

which are not accounted for (e.g., soil moisture storage). However, by increasing the 

understanding of the key drivers of the water balance, we can better predict the influence of 

different weather or climatic patterns even when data are limited.    

 The application of SWAT and other surface hydrologic models is limited in areas with 

complex hydrogeology [56,57], such as when karst or volcanic geology are present [58]. While 

the primary objective of our study focused on the soil water balance and surface hydrology, 

given the presence of multiple spring-fed stream and fractured basalt at this study site, it should 

be noted that some aspects (e.g., deep percolation) may not be accurately represented. The 

SWAT model does not account for water sources external to the watershed (e.g., external 

subsurface flow) or interactions between HRUs; therefore, caution should be used when 

considering groundwater characteristics and groundwater-surface water interactions. Fully-

distributed hydrologic models such as MODFLOW [59,60], have been widely used to model 

groundwater flow at larger, regional scales , and their use was beyond the scope of this study.  

 Parameter sensitivity varies with the variable of interest (e.g., PAWC, streamflow), the 

range of variation allowed for that parameter, and the objective function [61], among other 

factors. We noted that the results of the sensitivity analyses were not consistent between 

iterations and varied with the range of variation. For example, the SNOCOVMX parameter was 

initially removed from calibration based on the results of the sensitivity analysis but subsequent 

calibrations indicated reduced model performance. We attributed this to the initial range of 

variation used for the SNOCOVMX parameter in calibration. The parameter was used in later 

calibration iterations and model results improved.  Therefore, the statistical significance of a 

parameter in the model may not necessarily equate to physical significance in actual hydrologic 



112 

 

 

processes. This may particularly be the case when other influential physical processes (e.g., 

subsurface flow) are not adequately represented. 

 Parameter sensitivity results indicated that snow-related parameters (e.g., SNOCOVMX 

and SMTMP) and soil characteristics (e.g., SOL_K) were among the most influential parameters 

for both variables. These results are similar to [10], who found that soil water content was a key 

factor in calculating the water balance of a semiarid site, and [36], who found that snow 

parameters were among the most influential parameters at a semiarid sage-steppe site. However, 

the sensitivity analyses indicated that the snow-related parameters were most influential when 

either the PAWC alone or when PAWC and streamflow were both being calibrated, not when 

streamflow only was being used for calibration. As expected, the curve number (CN2) and 

channel characteristics (e.g., Manning’s roughness coefficients and baseflow) were found to be 

among the most influential parameters for calibrating streamflow. Similar to [34], we also found 

that the surface lag time (SURLAG) was one of the most sensitive parameters for streamflow 

calibration, although the final calibrated value was very low (0.05 days). Vegetation 

characteristics, specifically the maximum canopy storage (CANMX), were also indicated to be 

influential parameters for streamflow calibration. 

 While increased complexity does not necessarily result in a better model, it may be 

necessary to further subdivide some parameters. For example, we divided the curve number 

(CN2) parameter into separate groups based on land cover type and slope as, in general, steeper 

slopes experience greater runoff than shallower slopes. However, while we subdivided the soil 

available water content (SOL_AWC) parameter by hydrologic group and layer, we did not 

separate this parameter by texture (a key determinant in water content and hydraulic 

conductivity). The calibration data used in this study reflected different slope and elevation 

characteristics, but the locations of both weather stations were classified under the same land use 

type (rangeland-brush). While the average curve number appears representative of the watershed 

as a whole, it may not be representative of individual land cover types, particularly the forested 

areas. Therefore, this study could be further improved by including additional study sites in other 

land cover areas.  

 Although a particular model may yield good results based on the objective function, the 

model may not always realistically reflect physical processes [62]. During calibration and 
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validation careful consideration should be given to ensuring that parameter values are within a 

reasonable range. For example, during initial calibration attempts, we found that two key 

parameters, saturated hydraulic conductivity (SOL_K) and SOL_AWC, were outside of realistic 

ranges although objective function results were considered “good”. In these cases, the parameter 

ranges were manually adjusted. It should be emphasized that, in addition to the objective 

function results, the model objective (e.g., peak flow, water balance, etc.) and the parameter 

ranges should also be closely considered. Additionally, while we used one objective function 

(NS) for this study, past research has also indicated that multi-objective calibration approaches 

may decrease equifinality [63]. Further, in this study we used the Sequential Uncertainty Fitting 

Version 2 (SUFI-2) approach for uncertainty analysis in SWAT-CUP, but the applicability of 

approaches used for uncertainty analysis may vary based on site-specific characteristics [64].  

 Noting the objectives of this research and its limitations, model selection is also an 

important factor in modeling the water balance. For example, Pradhan et al. [12] found that an 

Artificial Neural Network (ANN) approach performed better in areas with high streamflow while 

SWAT performed better in areas with lower streamflow volume. Similarly, Demirel et al. [65] 

found that an ANN approach estimated peak flows better than the SWAT model for a basin in 

Portugal. While comparison of different models was beyond the scope of this project, it is 

important that model selection reflects the research objectives and the study site characteristics.  

 The approach used here can be expanded to larger geographic areas, incorporating a 

greater variation of topographical and land use characteristics. For example, while many of the 

streams in the region are ungauged, openly available data, such as through the USGS 

StreamStats database (https://streamstats.usgs.gov/ss/) or Oregon Water Resources Department 

(OWRD) hydrographic database (https://apps.wrd.state.or.us/apps/sw/hydro_near_real_time/) 

can be included into regional scale models in this area. Snowpack and snow water equivalent 

measurements available through sites such the Natural Resources Conservation Service 

SNOTEL database 

(https://www.nrcs.usda.gov/wps/portal/wcc/home/snowClimateMonitoring/snowpack/) can also 

be used to further improve model calibration for a larger regional scale. Models, such as 

MODFLOW, can be used  to more fully address the complex hydrogeology and remote sensing 

https://streamstats.usgs.gov/ss/
https://apps.wrd.state.or.us/apps/sw/hydro_near_real_time/
https://www.nrcs.usda.gov/wps/portal/wcc/home/snowClimateMonitoring/snowpack/
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data, such as NASA’s Soil Moisture Active Passive soil satellite, can be used to augment the on-

site data available.  

 This study provides insight into the water balance and important hydrologic drivers at a 

semiarid, snow-dominated study site that can be used to inform future research and modeling 

approaches. SWAT is a versatile and robust model that may be used to address other key 

concerns in this region such as climate change, riparian land cover change, and water quality. 

Agricultural production is an important land use in this region, and SWAT has also been used to 

address key issues such as forage yield (e.g.[36]) and irrigation (e.g., [8]). From a land 

management standpoint, these data help improve our understanding of how different land use 

practices and environmental characteristics can impact water availability, both in the form of 

streamflow and soil moisture. The results of this research suggest that hydrologic models can 

improve our understanding of watershed processes and dynamics in semiarid, snow-dominated 

sites, provided that the model applications and limitations are understood. 
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Characterization of stream temperature dynamics in a semiarid watershed in eastern 

Oregon, USA 

 

Abstract: Increasing stream temperatures are a concern in many areas of the world. However, 

more research is needed to understand the unique stream dynamics of semiarid systems. This 

study examined temperature patterns at a small stream and a tributary at a semiarid watershed in 

eastern Oregon, USA. Land cover at this site includes conifer and deciduous woodlands and 

sagebrush steppe. Multiple stream temperature sensors were located along the longitudinal 

gradient of the system, representing areas of different elevation, riparian cover, and streamflow 

volume. The daily mean, daily maximum, daily minimum, and moving averages of the daily max 

(7DADM) and daily mean (7DA) stream temperature were calculated. The diurnal range of 

stream temperature was also examined. A support vector machine (SVM) classifier was used to 

delineate land cover types in the riparian areas. A support vector regression (SVR) approach was 

used to assess the relationship between environmental characteristics (e.g., air temperature, 

riparian land cover) and 7DADM. Air temperature was found to explain the majority of stream 

temperature variation, followed by sagebrush steppe and forested cover. The SVR approach 

performed better at predicting 7DADM (R2=0.83) than diurnal stream temperatures (R2=0.55). 

The results of this study highlight the importance of considering multiple biotic and abiotic 

factors in assessing stream temperature patterns in semiarid systems.  

 

Keywords: Stream temperature; rangelands; riparian; semiarid 

 

1. Introduction 

 Stream temperature is a key water quality concern in many regions of the world and 

impacts biotic and abiotic processes and characteristics within the ecosystem [1,2]. The 

relationship between land use practices and stream temperature dynamics has also been an area 

of considerable research [3]. However, many sites, particularly in semiarid and arid regions, have 

limited on-site data available making addressing the complex relationships between 

environmental characteristics (including land use) and stream temperature dynamics challenging. 

Approaches that use a combination of techniques and data sources, such as on-site measurements 
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with satellite-based imagery, may provide greater insight into stream temperature dynamics in 

these regions by facilitating a more in-depth examination of stream characteristics.  

 Stream temperature is impacted by a combination of external factors (e.g., solar 

radiation) and stream channel characteristics (e.g., geomorphology, substrate, channel width) [4]. 

Heat fluxes in and out of the system are key drivers of stream temperature. This includes solar 

radiation, longwave radiation, convection, evaporation, conduction between the water and the 

stream bed, as well as groundwater inflows and outflows. In streams where groundwater inputs 

are present, stream temperature can be strongly influenced by groundwater advection [5]. 

Groundwater inputs, such as those from perennial springs or seeps, may buffer stream 

temperature changes [6]. Further, streamflow volume influences stream temperature by affecting 

the heat capacity and greater streamflow rates are associated with reduced temperatures in many 

study sites [7,8].  

 Riparian vegetation has been recognized as a critical factor in stream temperature 

dynamics in many systems (e.g. [9–11]), as increased shade reduces the amount of solar 

radiation reaching the channel [12,13]. The type of riparian vegetation, including deciduous vs. 

forested tree cover, has been shown to impact stream energy fluxes [14]. Past studies have also 

indicated the importance of addressing riparian canopy characteristics in conjunction with other 

factors, such as streamflow [15] and channel orientation [16].  

 Land use practices, particularly those that impact riparian areas, have the potential to 

impact energy fluxes and lead to altered stream temperature regimes. For example, [17] found 

that non-grazed reaches had denser riparian vegetation and experienced lower daily maximum 

temperatures compared to grazed reaches for a study site in CA. However, the impacts of grazing 

on riparian vegetation also vary with climate and grazing pressure [18]. Reductions in riparian 

vegetation have been associated with increased stream temperature in numerous locations (e.g., 

[12,13,19]) and those impacts are sometimes more pronounced in smaller streams, depending on 

hyporheic exchange [4]. Irrigation and groundwater withdrawals can lead to altered stream 

temperatures as well by reducing and/or altering streamflow [20,21].  

 Air temperature, along with characteristics such as streamflow (e.g.,[22]), land cover 

(e.g., [23]),  and sun angle (e.g., [24], has frequently been used as a predictor of stream 

temperature (e.g., [25–27]). However, regression approaches may be limited in their ability to 
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predict temperature extremes or future conditions [28]. Additionally, air temperature may not be 

a sufficient predictor in areas with variable and significant groundwater inputs [5].  

 This study takes a systems-based approach to characterize stream temperature dynamics 

at a semiarid study site in eastern OR, USA. We hypothesized that air temperature, the amount of 

forest cover, and streamflow would be key factors in predicting stream temperature. We also 

anticipated that we would see greater diurnal range in stream temperatures at downstream sites 

compared to those further upstream. Specific objectives of this study were to 1) examine channel 

characteristics and condition at selected reaches along the system, 2) characterize stream 

temperature patterns along the longitudinal gradient, and 3) assess the relationship between 

stream temperature and meteorological characteristics (e.g., air temperature and vapor pressure 

deficit), land cover, and streamflow.  

 

 

2. Methods 

2.1 Site Description 

 This study took place at a semiarid watershed located outside of Ironside, OR, USA 

(44.42° N, 117.91° W). Based on data collected from on-site weather stations and using 

Parameter-elevation Regressions on Independent Slopes Model datasets (PRISM; [29]), the 

average annual precipitation from 2016 to 2021 was 345 mm yr-1. Elevation at the study site 

ranges from 1076 to 1950 m. Perennial and seasonal streams are present in the watershed. 

Igneous, volcanic rock and clastic sedimentary rock are present throughout much of the study 

site [30,31]. Multiple springs and seeps are found at the study site, particularly in higher 

elevations of the watershed.  

 Land cover varies from sagebrush steppe/shrubland ecosystems in the upper most 

portions of the watershed and conifer forests in the mid-upper to middle reaches of the watershed 

and transitions into predominantly sagebrush-dominated areas with some deciduous riparian 

forest cover in the lower areas. The prominent land uses in the region are agricultural production, 

including dryland and irrigated pastures, cattle ranching, and forestry. 
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2.2 Data Collection 

2.2.1 Stream Temperature  

 Stream temperature was recorded using two types of sensors, the HOBO Tidbit and 

Pendant MX Water Temperature Data Loggers (Onset Computer Corporation, Bourne, MA, 

USA). Stream temperature sensors were located along the longitudinal gradient of Fish Creek 

(“FC”) and Deer Creek (“DC”) (Figure 1), to include temperature sensors placed at the 

headwaters. FC and DC are spring-fed systems with snowmelt and runoff contributing to 

streamflow during the late spring. Stream temperature data used in this study began in October 

2018 and ended in June 2022.  
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Figure 1. Locations of weather stations and stream temperature stations. Sensors along Fish 

Creek are indicated by “FC” and those along Deer Creek are indicated by “DC”. A flume for 

monitoring streamflow is located near FC10. This map was created using ArcGIS® software by 

Esri. ArcGIS® and ArcMap™ are the intellectual property of Esri and are used herein under 

license. Copyright © Esri. All rights reserved. For more information about Esri® software, 

please visit www.esri.com. Basemap credits: U.S. Department of Agriculture (USDA), National 

Agriculture Imagery Program (NAIP); USDA-FSA-APFO Aerial Photography Field Office, 

publication date: 5 and 14 August 2020.  

 

http://www.esri.com.'/
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 Stream temperature data were recorded hourly. The daily mean, daily maximum, daily 

minimum, seven-day moving average of the daily mean (7DA), and seven-day moving average 

of the daily maximum (7DADM) stream temperatures were calculated. Additionally, the diurnal 

stream temperature range was calculated for each site by subtracting the daily minimum stream 

temperature from the daily maximum stream temperature.  

 

2.2.2 Proper Functioning Condition and Riparian Vegetation Assessment 

 A Proper Functioning Condition (PFC; [32]) assessment was conducted for two reaches 

in the study area: one near FC3 (“FC-Upper”) and one near FC10 (“FC-Lower”) in August 2019. 

The PFC is a qualitative, checklist-based approach to evaluating the physical functioning and 

condition of riparian or wetland areas for perennial or intermittent natural streams. A PFC 

includes an assessment of vegetation, channel morphology and characteristics, and woody debris. 

The PFC uses the Rosgen classification ([33]) to describe stream morphology.  

 Assessments of stream channel condition were conducted at the two 110 m reaches (FC-

upper, FC-lower). Stream assessments at each reach included measurements of bankfull channel 

width, maximum bankfull depth, stream slope, and sinuosity. In addition to the PFC assessment, 

data regarding soil, litter, and vegetation cover by functional species were collected using the 

line-point intercept method [34] along three 30-m transects running perpendicular to the 110-m 

reaches. The three transects were established at 0, 55, and 110 m measured downstream along 

the reach. 

 

2.2.3 PRISM Data 

 Parameter-elevation Regressions on Independent Slopes Model (PRISM; [29]) datasets 

were used to estimate the precipitation, minimum, mean, and maximum air temperature the 

minimum and maximum vapor pressure deficit, and the mean dewpoint temperature for each 

stream temperature sensor location using the bulk download time series page. The PRISM data 

used in this study have a spatial resolution of 4 km. PRISM data were used for creating the 

SWAT model and for the SVR model.  

 

2.2.4 On-site Weather, Streamflow, and Soil Moisture Data Collection 
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 On-site meteorological data were collected at two locations at the study site (Figure 1). 

The first weather station was installed in 2018 near the top of the watershed and a second 

weather station was installed in 2019 near FC10 (Figure 1).  Data collected included air 

temperature and relative humidity (CS215 probe;  Campbell Scientific, Inc., Logan, UT, USA), 

wind speed and direction, (model 03002; R.M. Young Company, Travers City, MI, USA), 

barometric pressure (CS100; Campbell Scientific, Inc., Logan, UT, USA), precipitation (TE525 

tipping bucket; Texas Electronics, Inc., Dallas, TX, USA), and incoming shortwave radiation 

(Apogee CS300 pyranometer; Apogee Instruments, Inc., Logan, UT, USA). A CR800 (Campbell 

Scientific, Inc., Logan, UT, USA) datalogger was used. 

 Soil moisture data were also collected at both weather stations using CS650 water content 

sensors (Campbell Scientific, Inc., Logan, UT, USA). Hourly soil moisture data at 0.2 m and 0.5 

m were collected at the upper-most weather station and at 0.2 m, 0.5 m, and 0.8 m at the weather 

station near FC10 (see Figure 1).  Soil moisture measurements across the soil profile were 

averaged and then multiplied by the total depth of the soil profile (0.5 m or 0.8 m). The 

permanent wilting point of the soils was estimated using the Retention Curve (RETC) computer 

program (Version 6.02, see [35] and [36]) based on measurements of bulk density and soil 

texture data obtained at each weather station. The permanent wilting point was subtracted from 

the averaged soil moisture data to estimate the available water content (AWC), similar to the 

approach described by [37].  

 Measurements of streamflow data were obtained using a 0.6 m wide ramp-style flume 

equipped with a water level logger (Hobo Model U20L, Onset Computer Corporation, Bourne, 

MA, USA) beginning in April 2021. Streamflow measurements were calculated based on the 

height of the water and the dimensions of the flume (see [38]).  

 

2.3 Soil and Water Assessment Tool  

 In order to estimate the streamflow in the watershed, we used the Soil Water Assessment 

Tool (SWAT) using the ArcSWAT extension in ArcMap 10.7.1 (Environmental Systems 

Research Institute; Redlands, CA). A daily timestep was used in the model. A combination of 

PRISM data and on-site weather station data was used to build the model. Weather data from 1 

January 2016 until 31 December 2021 were used, with two years used as a “warm-up”.  A 10-m 
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digital elevation model (https://spatialdata.oregonexplorer.info , [39]) was used to delineate the 

watershed. National Land Cover Database (NLCD; [40]) data from 2019 were used to identify 

land cover and the State Soil Geographic (STATSGO) data were used to delineate soil types 

within the model.   

 During watershed delineation, a stream path was not indicated in SWAT for FC1, FC2, or 

FC3 due to very limited streamflow in this area. Streamflow data were also not modeled for 

FC11 (the furthest downstream point) as the flume is located at FC10. FC10 was used as the 

outlet of the watershed for the SWAT model.  

 

2.3.1 SWAT Calibration and Validation  

 The SWAT Calibration and Uncertainty Program (SWAT-CUP; [41,42]) was used to 

perform parameter sensitivity, calibration, and validation. Streamflow (Q) near FC10 for 2021 

and on-site measurements of plant available water content located near the top of the watershed 

(“AWC_upslope”) and near FC10 (“AWC_FC10”) from 2018, 2019, and 2021 were used for 

calibration. Validation was performed using the available water content data from AWC_upslope 

and AWC_FC10 from 2020. 

 Nash-Sutcliff (NS) was used as the objective function. The range of parameters that 

indicated the best NS were used for subsequent iterations. An initial calibration iteration with 

500 simulations was performed using only streamflow with 26 parameters (Appendix 1). 

Subsequent calibration iterations were performed using streamflow and soil moisture and a 

sensitivity analysis was performed using the Sequential Uncertainty Fitting (SUFI-2) algorithm. 

Based on the sensitivity analysis results, parameters considered statistically significant (at 

p≤0.05) were selected for further calibration. Additionally, based on the results of past studies at 

this site, we included soil available water content parameters separated into groups based on 

hydrologic soil type and layer into calibration. Parameters used for final calibration and 

validation are shown in Table 1.  

 

Table 1. Parameters used in final calibration and validation of SWAT model.  

 

Parameter Definition 

CN2 Curve number 

https://spatialdata.oregonexplorer.info/
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CH_N1 Manning's roughness coefficient for 

tributary 

SFTMP Snowfall temp (°C) 

SNOCOVMX Minimum snow water content at 100% 

snow cover 

SOL_AWC Average soil available water capacity 

SOL_K Saturated hydraulic conductivity (mm hr-1) 

 

 

2.4 Land Cover Classification 

 We assessed riparian cover characteristics along the length of the streams using U.S. 

Department of Agriculture National Agricultural Imagery Program (NAIP; [43]) imagery from 

2020 downloaded from the U.S. Geological Survey Earth Resources Observation and Science 

website (https://earthexplorer.usgs.gov/).  An object-based support vector machine (SVM) 

approach was used to classify the NAIP imagery using the Classification Wizard tool in ArcGIS 

Pro [Environmental Systems Research Institute (ESRI); Version 2.9; Redlands, CA, USA]. A 

segmented image was created for classification using the Segmentation tool in ArcGIS Pro. For 

the segmentation process, spectral detail and spatial detail were both set at 20 and the minimum 

segment size was 9 pixels. Training samples were created for the following categories: forested 

cover, sagebrush/shrubland, other vegetation (largely herbaceous vegetation), bare 

ground/sparsely vegetated, and rock/gravel.  To train the SVM classifier, the following segment 

attributes were used: active chromaticity color, mean digital number, compactness, and 

rectangularity. A maximum of 500 samples per class were used in the SVM classification. The 

ArcGIS reclassification tool was used to correct areas that were misclassified. Following the 

initial classification, the majority filter tool in ArcGIS was applied using eight neighbors and a 

majority replacement threshold. Next, the boundary clean tool was applied to smooth the 

boundaries between individual classes. No sorting approach was used (this is the default).  

 Based on the above land classifications, three categories of land cover were used in the 

stream temperature models: forest cover, sagebrush/shrubland, and herbaceous/other vegetation. 

While tree cover and large areas of herbaceous cover are easy to delineate, the resolution of 

NAIP was insufficient to clearly delineate individual shrub-sized vegetations. Therefore, the 



130 

 

 

sagebrush/shrubland land cover class contain indicates areas that likely include a mixture of 

vegetation diversity and cover characteristics. 

 In order to assess riparian vegetation cover, 30 m wide buffers for 300 m upstream of 

each stream temperature sensor were created in ArcGIS. The percentage of pixels within these 

buffers classified as either forested (“30m_for”), sagebrush or other shrub cover (“30m_sage”), 

or herbaceous/other vegetation (“30m_herb”) were calculated. For the stream temperature 

sensors located at the headwaters of Fish Creek and Deer Creek, the pixels that fell within a 30 m 

radius of the stream temperature sensor were used for analysis.  

 

2.5 Support Vector Regression Model 

 To assess how well environmental characteristics predicted 7DADM or the diurnal 

stream temperature range, a support vector regression (SVR) approach, similar to the one 

described by [44], was used. The SVR analysis used data from October 2018 until November 

2021. The two temperature stations located at the headwaters (DC1 and FC1) are located in 

springs and were excluded from the SVR analysis as the temperature patterns showed very little 

daily or seasonal change throughout the time period observed. The SVR used data from October 

2018 until December 2021 as non-provisional data were not available beyond December 2021 at 

the time of this report. 

 We used ten parameters for the initial SVR analysis: elevation (in m), mean daily air 

temperature (in °C, “temp_mean”), mean daily dew point temperature (“TD_mean”), daily 

precipitation (in mm, “ppt”), daily minimum and maximum vapor pressure deficit in hPA 

(“VPD_min” or “VPD_max”), SWAT-modeled daily streamflow in cms (“Q”), and the three 

categories of vegetation cover (“30m_herb”, “30m_sage “, and “30m_for”). These parameters 

were selected to represent key meteorological and land cover characteristics.  

 While SVR models are non-parametric, we assessed the skew of individual parameters to 

improve model performance. Parameters that had a |skew|>1 (ppt, Q, VPD_min, and VPD_max) 

were transformed using a natural log prior to being input into the model. Python was used to run 

the SVR model, based on algorithms from scikit learn (sklearn.svm.SVR; [45]). Half of the data 

were used for training and half were used for cross-validation of the model. A linear kernel was 

used.   
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 To tune the model, the range for the regularization parameter (C) was set between  10-6 

and 102. The R2 for the training and testing datasets were compared for each training iteration 

(n=100) using a randomly selected value for C. If the difference in the coefficient of 

determination (R2) between the training and testing values exceed 0.1, overfitting was assumed 

and the C-value was excluded from analysis. The C value which yielded the best R2 was used for 

the final model (iterations=1000) and perform the sensitivity analysis.  

 The independent influence of each parameter was assessed during the sensitivity analysis. 

During this process, each parameter individually was allowed to vary by two standard deviations 

while the other parameters were held at a constant value. Overall model performance was 

assessed using the R2 between observed and modeled values.  

 

3. Results 

3.1 Riparian Vegetation Assessment 

 The PFC assessment indicated that the FC-Upper reach was “functional-at risk” with an 

apparent downward trend. This rating was largely given because of the limited presence of 

stabilizing vegetation along the streamside. Minimal disturbance attributed to upstream or upland 

areas was found. Light to moderate streambank erosion was found but the stream was found to 

be vertically stable with no indications of significant erosion (i.e., degradation) or deposition. 

The Fish Creek-Upper had a bankfull width-depth ratio of 11.4 and an average entrenchment 

ratio of 1.4. The reach was determined to be a Stream Type “A” on the Rosgen scale, indicating 

a moderately sloped (4-10%), entrenched stream, with low sinuosity. Data collected from the 

three transects perpendicular to the reach indicated that 19% of the understory cover were 

grasses, 4% were forbs, and 1% were shrubs, while litter accounted for 42% and bare soil 

accounted for 28% of the surveyed site. Water accounted for 6% of the surveyed area.  

 The FC-Lower reach was found to be “functional-at risk” with no apparent trend. This 

reach was found to have a good diversity of vegetation types but limited vegetation age diversity. 

Some areas along this reach showed reduced vegetation growth associated with trampling, 

presumably from cattle or elk. The FC-Lower reach showed a stream slope of 2-4% with low 

sinuosity and moderate entrenchment (2.0 ratio), indicating a Rosgen Type B stream. Based on 

three 30 m transects, most of the understory cover was grass (19%), followed by shrubs (4%). 
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Litter accounted for 66% of the understory layer. Bare soil was found at 4% of the surveyed 

transect points, while rock and water each accounted for 3% of surveyed sites.  

  

3.2 Streamflow 

 The SWAT model calculates streamflow based on stream reaches, therefore the same 

streamflow was indicated for multiple stream sensor locations when sensor locations fell within 

in the same reach. The average annual SWAT-modeled streamflow for the reach including DC1 

through DC4 was 0.013 cms. For the reach including FC7, the modeled average annual 

streamflow was 0.039 cms. The modeled average annual streamflow was 0.019 cms at FC4. 

SWAT indicated that streamflow originated at FC4 and not at the spring (FC1). Observed flow 

from FC1 through FC4 is intermittent with areas of minimal surface flow during some seasons. 

The modeled annual streamflow was 0.023 cms at FC5, 0.045 cms at FC6, 0.039 cms at FC8, 

0.048 cms at FC9, and 0.049 cms at FC 10.  

 Observed streamflow and modeled streamflow rates at the flume at FC10 are shown in 

Figure 2. The SWAT model indicated large very brief (1 to 2 day) early-season (March to April) 

peaks in streamflow that fell outside of the limited period of data collection. These peaks in 

streamflow exceeded observed streamflow conditions on-site. These brief periods of high 

streamflow were excluded from the SVR analysis.  

 

 

Figure 2. Modeled streamflow at FC10 versus observed streamflow. The shaded blue area 

represents the 95% confidence range 

 

  

 
 

 

The NS calibration results ranged from 0.47 (AWC at FC10) to 0.86 (streamflow at FC10) 

(Table 2).   
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Table 2. SWAT calibration results for the coefficient of determination (R2), Nash-Sutcliffe (NS),   

adjusted R2, and mean squared error (MSE).  

 

 

Variable R2 NS bR2 MSE 

FC10 Streamflow 0.87 0.86 0.81 0.00 

AWC Upslope 0.80 0.75 0.49 740.00 

AWC FC10 0.49 0.47 0.28 690.00 

 

 

As limited streamflow data were available, we used AWC data for validation. Based on NS, 

validation results ranged from 0.71 to 0.82 (Table 3).   

 

 

Table 3. SWAT validation results. 

 

Variable R2 NS bR2 MSE 

AWC Upslope 0.89 0.82 0.66 530.00 

AWC FC10 0.77 0.71 0.47 710.00 
 

 

 

3.3 Stream Temperature Along Longitudinal Gradient 

 Water temperatures at the spring headwater sites (FC1 and DC1) were generally similar 

throughout the year (Tables 4 and 5, Figure 3). While summer stream temperatures were 

generally greater at lower elevation sites compared to higher elevation sites, this pattern did not 

hold true for seasonal stream temperatures or for all locations. For example, we saw an increase 

in summer 7DADM and 7DA from DC 1 to DC2 and a decrease in summer 7DADM and 

summer 7DA from DC2 to DC3. However, the annual 7DADM and 7DA were both greater at 

DC3 compared to DC2. The forest cover within 30 meters of the stream is 42% at DC2 and 72% 

at DC3. In contrast, we saw an increase in annual and summer 7DADM and summer 7DA 

between FC2 and FC3, where the forest cover increased from 17% at FC2 to 55% at FC3. 

However, annual and summer 7DADM were both lower at FC4 and compared to FC3.  
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Table 4. The 7-day moving average of the daily maximum stream temperature (7DADM) in °C, 

elevation, and vegetation cover characteristics for all sites from 20 September 2018 through 16 

June 2022. Vegetation cover characteristics indicate the percentage of pixels classified as each 

land cover classification within an area 30 m wide, 300 m upstream of each sensor, except for 

the headwater stream locations (FC1 and DC1). For FC1 and DC1, the vegetation cover within a 

30 m radius was used for characterization.  
 

 

 

 

Table 5. The average 7-day moving average (7DA), mean daily, minimum (Min) daily, and 

maximum (Max) daily stream temperature in °C for selected sites. For 7DA and mean annual, 

data from 20 September 2018 through 16 June 2022 were used. Summer temperatures refer to 

measurements taken during July, August, and September and winter temperatures refer to 

measurements taken during January, February, and March for this same period. 
 

Location  
7DA-

Summer 

7DA-

Annual 

Mean-

Summer 

Mean-

Annual 

Max-

Summer 

Min-

Winter 

FC1 9.3 9 9.3 9 9.5 8.5 

FC2 10.2 7.7 10.2 7.7 11.2 5.1 

FC3 11.4 6.4 11.4 6.4 17.3 1.8 

FC6 13.1 5.8 13.1 5.8 16.5 1 

FC7 14.2 6.3 14.2 6.4 20.1 0.8 

FC8 14 6.7 13.9 6.7 20.3 0.6 

FC10 14.8 6.5 14.6 6.6 19.9 0.5 

DC1 8.8 8.2 8.8 8.2 8.9 7.7 

DC2 13.8 4.7 13.5 4.7 21.7 0.9 

DC3 11.5 5.9 11.5 5.9 15.4 1.7 

Location  

Annual 

7DADM 

Summer 

7DADM 

Elevation 

(m) 

% 

herbaceous/other  

% 

shrub 

% 

forest  

FC1 9.1 9.5 1731 2 97 0 

FC2 8.6 11.2 1667 7 67 17 

FC3 9.7 17.5 1607 4 32 55 

FC4 7.6 14.7 1506 6 45 37 

FC5 6.6 15.2 1451 1 44 39 

FC6 7.5 16.6 1376 4 57 25 

FC7 9.4 20.2 1368 3 51 31 

FC8 10.1 20.5 1364 3 51 32 

FC9 8.4 15.7 1265 18 31 49 

FC10 9.8 20.2 1185 2 83 9 

DC1 8.2 8.9 1714 11 60 16 

DC2 7.6 22.1 1665 9 31 42 

DC3 8.1 15.4 1610 1 12 72 

DC4 7.1 18.9 1450 <1 38 50 
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Figure 3. The 7-day moving average of the daily maximum stream temperature (7DADM) for 

selected sites.  

 

 
 

 

 Diurnal ranges in stream temperature for each quarter varied along the longitudinal 

gradient (Table 6). The headwater locations (springs) demonstrated the least variability in daily 

water temperature ranges. The mean daily range in stream temperatures was 0.3 °C at FC1 and 

0.1 °C at DC1. By comparison, the mean daily range was 4.7 °C at DC2 and 3.9 °C at DC3. The 

mean daily range in stream temperatures was 4.9 at FC3, 3.0 at FC6, 5.8 at FC8, 3.1 at FC 9, and 

5.6 at FC10. The largest ranges in daily stream temperatures were generally observed during the 

summer months (July through September).  
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Table 6. Average range in daily stream temperature for selected sites, by season and annually for 

20 September 2018 through 16 June 2022. Quarter 1 (Q1) refers to January through March, and 

so on. “All” indicates the average of the daily temperature variation for the entire time period. 

Temperatures are in °C.  

 

 

 

  FC1 FC2 FC3 FC4 FC6 FC8 FC9 FC10 DC1 DC2 DC3 DC4 

Q1 0.2 0.5 3.0 1.7 1.3 2.0 2.0 2.7 0.1 0.3 2.6 1.1 

Q2 0.3 3.7 5.5 5.3 4.6 8.6 6.2 9.9 0.0 6.6 5.4 4.9 

Q3 0.4 1.7 8.5 6.4 6.3 10.6 3.7 9.6 0.1 13.0 6.4 6.9 

Q4 0.3 1.0 3.6 2.1 1.4 3.1 1.3 3.1 0.1 1.8 2.2 1.5 

All 0.3 1.8 4.9 3.5 3.0 5.8 3.1 5.6 0.1 4.7 3.9 3.1 
 

 

 Excluding the spring headwater locations (DC1 and FC1), seasonal stream temperature 

patterns generally followed daily air temperature patterns (Figure 4). As expected, patterns in 

VPD also followed air temperature, but exhibited a larger range in values. 

 

Figure 4. Mean stream temperature at FC10 and PRISM-based estimates of mean daily air 

temperature (“Mean air) and maximum vapor pressure deficit (VPD) for September 2018 

through December 2021.  
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3.4 Support Vector Regression Model 

 The mean daily air temperature was the most important parameter in predicting 7DADM 

or the diurnal range, followed by sagebrush/shrubland land cover, forest cover, and daily 

maximum vapor pressure deficit (Figure 5).  However, the SVR model was more effective at 

predicting 7DADM (R2=0.83) compared to the diurnal range (R2=0.55) of stream temperatures 

(Figure 6).  

 

 

 
Figure 5. Weighted importance of each parameter for the 7DADM and diurnal-range SVR 

models. 

 
 

 
 

Figure 6. Scatterplots of modeled versus observed stream temperature values for both SVR 

models.  
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 For both the 7DADM and diurnal range SVR approaches, peak modeled values tended to 

be lower than peak observed values (Figures 7 and 8). Additionally, as we used a linear model, 

the SVR model did not account for stream temperature patterns at freezing temperatures and 

predicted a continual decrease in stream temperatures.  

 

 
 

Figure 7. Comparison of observed and predicted stream temperatures for the 7DADM SVR 

model. “Observed” refers to on-site measurements of stream temperature. “Predicted” refers to 

the average modeled value across all iterations.  
 

 

 

 

 

 

 
 

Figure 8. Comparison of observed and SVR-predicted stream temperatures diurnal ranges. 

“Observed” refers to on-site measurements of stream temperature ranges. “Predicted” refers to 

the average modeled value across all iterations.  
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4. Discussion 

 This study was a preliminary examination of stream temperature and ecohydrologic 

characteristics at a semiarid watershed in eastern Oregon. Stream temperature patterns were 

assessed along the longitudinal gradient, and included areas with varying land cover, streamflow, 

and meteorological (e.g., air temperature, precipitation) characteristics. Additionally, we 

assessed the stream condition at two reaches in the study site. Specific objectives of this study 

were to 1) examine channel characteristics and condition at selected reaches along the system, 2) 

characterize stream temperature patterns along the longitudinal gradient, and 3) assess the 

relationship between stream temperature and meteorological characteristics (e.g., air temperature 

and vapor pressure deficit), land cover, and streamflow. 

 Similar to other studies [27,46], we found that air temperature was the strongest predictor 

of stream temperature. Sagebrush/shrubland and forest cover were found to be the second and 

third most important predictors of stream temperature, respectively, with greater amounts of 

either being associated with decreased stream temperature. It is important to note, that stream 

and air temperature are influenced by solar radiation. Additionally, while several past studies 

have found that forest cover is associated with cooler stream temperatures (e.g., [47,48]), 

sagebrush also provides, to varying degrees, shade when growing near the stream. However, the 

density of vegetation in sagebrush steppe areas varies throughout the watershed, although we 

assumed a relatively vegetation density in the areas nearest the stream. The association between 

sagebrush/shrubland and stream temperature in this study may be because larger amounts of 

shrubland cover are found near the headwaters (although sagebrush steppe is found throughout 

the watershed) where stream temperatures tended to be cooler. Additionally, more herbaceous 

vegetation is present in the lower elevation reaches where stream temperatures are highest.  

 The spatial (1 m) and temporal (on average, every 3 years during the growing season) 

resolution of the NAIP imagery is another important consideration. Due to the limitations of 

image spatial resolution used for classification, individual sagebrush canopy could not be 

discerned while forested cover is clearer. Therefore, areas delineated as sagebrush/shrubland 

may likely have heterogenous cover and vegetation characteristics (e.g., the density of sagebrush 

shrubs and/or perennial grasses may be greater in some areas than others which fall under the 

same land cover classification).  
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 We also anticipated that streamflow would be more strongly associated with stream 

temperatures, based on the results of past studies [44] and because of the link between 

streamflow and stream heat capacity. This lack of association between streamflow and stream 

temperature may also be the result of generally low flows throughout most of the year. However, 

we also have limited direct measurements of on-site streamflow. In particular, very large 

increases in streamflow over the course of a few days, which then rapidly receded,  were 

modeled. While direct measurements of streamflow were not available during these time periods, 

on-site observations of streamflow at similar times do not align with these results. Therefore, 

caution should be applied when interpreting these results as the model may be overfitted for the 

period of observed streamflow data and not representative for the entire timeframe of the model. 

We found that model results improved when we included streamflow data compared to when we 

used only PAWC data. Additionally, another study that examined the SWAT model at this site 

using a monthly timestep, indicated smaller increases in seasonal streamflow during the same 

time period (unpublished data). However, this may also be associated with the timestep used as 

brief, rapid changes will not be as pronounced with monthly estimates of streamflow. The 

results, although preliminary, indicate that more streamflow data are needed for calibration and 

validation but also that there may be processes (e.g., connections between groundwater and 

surface water) that are not adequately represented in this model.  

 Both Deer Creek and Fish Creek originate at a relatively small, low-flow, spring-fed 

perennial stream. As expected, water temperatures at the springs in the headwaters were 

relatively stable through the year. We anticipated that the springflow would provide a 

moderating influence on stream temperatures and expected larger diurnal ranges in stream 

temperature moving downstream. However, the diurnal stream temperatures did not display a 

clear association with downstream position. The diurnal ranges, and stream temperatures in 

general along this reach, may also be impacted by subsurface flows in addition to riparian cover. 

Other characteristics, such as aspect, stream entrenchment, and width/depth ratios are also key 

factors in stream temperature that were not addressed in this study. 

 The PFC surveys used in study also provide important insight into the stream channel and 

riparian conditions, which can impact water quality (including stream temperature). For example, 

trampling or heavy vegetation grazing can lead to streambank erosion and subsequently alter 
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stream channel dimensions and result in increased stream temperatures by creating wider, 

shallower streams. However, monitoring is needed at this study site in order to assess longer-

term trends in function and condition.  

 The results of this study highlight some of the uses, and limitations, of regression-based 

approaches. The SVR approach used here can easily be adapted to multiple circumstances. While 

we used a linear approach in this study, the kernel type used in SVR can be adjusted for non-

linear conditions. This may be particularly useful in areas with sub-zero stream temperatures or 

greater maximum stream temperatures. However, while the SVR model using 7DADM 

performed satisfactorily, the results of the SVR for diurnal stream temperature performed less 

well. In particular, the diurnal stream temperature model underpredicted the range of diurnal 

stream temperature fluctuation. For both approaches, it is also important to consider how well 

these models may perform in future conditions and along other stream reaches (particularly mid-

order streams). More research and data are needed to evaluate these conditions at this watershed. 

Further, hyporheic exchange is difficult to measure and quantify in these approaches but may be 

an important factor influencing stream temperature.  

 Although continued monitoring is needed, , the results of the study suggest that air 

temperature and land cover characteristics are important considerations for stream temperature 

management in semiarid sites. Given the strong relationship between air temperature and stream 

temperature, future studies should consider the impacts of climate change on stream temperature 

at this site. Lastly, the surface water-groundwater connections present at this site may be an 

important factor in stream temperature dynamics. Yet, these connections are difficult to quantify 

and incorporate into stream temperature model used here and therefore future research may also 

seek to examine the hydrogeologic framework at the study site.  
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Appendix 1 

Parameter Definition 

ALPHA_BF.gw Baseflow alpha factor 

CANMX.hru Maximum canopy storage, grouped by land use 

CH_K2.rte Effective hydraulic conductivity 

CH_N1.sub  Manning's roughness coefficient for tributary, grouped by land use 

CH_N2.rte Manning's roughness coefficient for main channel 

CN2.mgt Curve number, grouped by watershed, land use, and range of slope 

EPCO.hru Plant uptake compensation factor 

ESCO.hru Soil evaporation compensation factor 

EVRCH.bsn Evaporation adjustment factor for reach 

GW_DELAY.gw Groundwater delay time in days 

GW_REVAP.gw Groundwater revap coefficient 

GWQMN.gw Threshold depth of water in shallow aquifer required for return flow 

OV_N.hru Manning's roughness coefficient for overland flow 

RCHRG_DP.gw Deep aquifer percolation fraction 

REVAPMN.gw Threshold depth of water in shallow aquifer required for 

revap/percolation to deep aquifer 

SFTMP.bsn Snowfall temp (°C) 

SMFMN.bsn Melt factor on Dec 21 

SMFMX.bsn Melt factor on June 21 

SMTMP.bsn Snowmelt base temp (°C) 

SNOCOVMX.bsn Min snow water content at 100% snow cover 

SOL_ALB.sol Albedo of moist soil 

SOL_AWC.sol Average soil available water capacity, grouped by soil type and layer 

SOL_K.sol Saturated hydraulic conductivity (mm hr-1) 

SURLAG.hru Surface runoff lag time 

TIMP.bsn Snowpack temperature lag factor 

TRNSRCH.bsn Portion of transmission losses from main channel that go into deep 

aquifer 
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GENERAL CONCLUSIONS 

 

 This dissertation examined ecohydrologic connections at two semiarid study sites. In 

particular, this research sought to expand our understanding of these processes regarding two 

significant land management challenges faced in similar regions: woody vegetation 

encroachment and increasing stream temperatures. For both study sites, the water balance was 

characterized in order to establish the basic framework for future research. This research also 

examined different approaches to characterizing the water balance and its components. 

 This dissertation consists of four manuscripts. The first two manuscripts took place at the 

Camp Creek Paired Watershed Study (CCPWS), which was established in 1993 to examine the 

ecohydrologic impacts of western juniper encroachment and removal. For the research in these 

two manuscripts, we focused on examining the water balance components for two small, 

adjacent watersheds: one dominated by western juniper and one in which the majority of juniper 

had been removed 17 years earlier.  

 For the first manuscript, a mass balance approach was used to characterize aspects of the 

seasonal water balance. On-site measurements of spring flow, streamflow, soil moisture, 

precipitation, solar radiation, and shallow groundwater levels were examined. Evapotranspiration 

(ET) was calculated using potential evapotranspiration (PET) and the water balance.

 Evapotranspiration accounted for the majority of the water budget, followed by deep 

percolation. No significant differences were found in shallow groundwater recharge rates 

between the two watersheds. However, we did find that groundwater recharge rates were lower 

in years with reduced snowpack compared to years of greater snowpack, even when the annual 

precipitation amounts were similar. We also found that springflow and streamflow rates were 

generally lower at the juniper-dominated watershed compared to the sagebrush-dominated 

watershed. Therefore, results of this study suggest that the combination of western juniper 

encroachment and reduced snowpack may lead to reduced groundwater recharge and decreased 

water yield.  

 The second manuscript examined different methods of estimating ET and examined the 

relationship between ET and several related environmental characteristics: springflow, soil 

moisture, the Normalized Difference Vegetation Index (NDVI), and the Normalized Difference 

Moisture Index (NDMI). OpenET was used to download ET data for three commonly-used 
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models: Mapping Evapotranspiration at High Resolution with Internalized Calibration 

(METRIC), Operational Simplified Surface Energy Balance (SSEBop), and Disaggregation of 

the Atmosphere-Land Exchange Inverse (DisALEXI). A small unpiloted aerial vehicle (UAV) 

was used to capture multispectral (red, green, blue, near-infrared, and red-edge wavelengths) and 

thermal imagery during the summer, fall, and spring for one year. The QWaterModel, along with 

on-site measurements of solar radiation and air temperature, were used to estimate ET at these 

study plots. The Soil and Water Assessment Tool (SWAT) was used to model ET for both 

watersheds. 

 Variations in overall ET rates and seasonal timing was demonstrated among the 

approaches examined. Estimates of ET using METRIC, SSEBop, and DisALEXI were 

substantially larger at the juniper-dominated watershed compared to the sagebrush dominated 

watershed. Annual mean NDVI and NDMI were both greater at the juniper-dominated watershed 

compared to the sagebrush-dominated watershed. A significant correlation was found between 

watershed-scale monthly ET and NDVI, NDVI and soil moisture, NDVI and NDMI, and 

springflow and soil moisture for both watersheds. ET calculated using UAV-based thermal 

imagery did not indicate major differences in ET between plots at the two watersheds.  

 The results of the first two chapters emphasize the potential advantages and challenges in 

using water balance and energy balance-based approaches to estimating ET. For example, the 

water balance-based approach did not indicate considerable differences in ET between the two 

watersheds while the energy balance-based approaches calculated larger rates of ET at the 

juniper-dominated watershed. Therefore, consideration should be given to the particular 

strengths and weaknesses of each approach when using these methods to inform land 

management. 

 The third manuscript sought to characterize the water balance at a semiarid site in eastern 

OR using the SWAT model and to examine the most sensitive parameters in the water balance 

calibration. A combination of PRISM and on-site meteorological data were used in model 

creation. A multisite, multivariable approach was used in calibration. The SWAT-Calibration 

and Uncertainty Program (SWAT-CUP) was used for calibration, validation, and sensitivity 

analysis. Parameter sensitivity was performed for calibrations using streamflow only, plant 

available water content (PAWC) only, and a combination of streamflow and PAWC. Calibration 
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was performed using streamflow and PAWC, but due to limited streamflow data, only PAWC 

data were used for model validation. Model performance ranged from NS=0.68 to 0.93 for 

calibration and NS=0.81 to 0.85 for validation. Snowpack cover and soil characteristics were 

among the most influential parameters in calibration. While the model generally captured 

patterns in seasonal PAWC, more data are needed to verify the performance of the model over 

longer timeframes. The results of this study further highlight that reductions in snowpack cover 

may be particularly impactful on the ecohydrology of semiarid regions and warrant further 

examination. 

 The final manuscript also took place at the eastern Oregon study site used in the third 

manuscript and examined a key water quality concern in many regions: increasing stream 

temperatures. Stream temperature sensors were located along the longitudinal gradient at sites 

with varying land cover, streamflow, and meteorological conditions. This research built upon the 

water balance characterization used in the third manuscript in order to model daily streamflow 

rates. PRISM data were downloaded for each stream temperature site. A support vector machine 

(SVM) approach was used to delineate land cover in a 30 m area on either side of the stream. 

The daily minimum, maximum, and mean stream temperatures and 7-day moving average of the 

daily max (7DADM) and daily mean (7DA) stream temperature were calculated, as well as the 

diurnal range in stream temperature. A support vector regression (SVR) approach was used to 

evaluate the relationship between selected environmental parameters (e.g., land cover type, air 

temperature) and the 7DADM and diurnal stream temperature. 

 Based on the SVR, air temperature was the primary predictor of stream temperature, 

followed by the percentage of sagebrush steppe and forest cover. A negligible relationship was 

found between streamflow and 7DADM, with a somewhat larger relationship being found 

between streamflow and the diurnal range. The results of this study emphasize the importance of 

considering ambient conditions and riparian vegetation when addressing stream temperature, 

although more research is needed to better understand how the characteristics of headwater 

streams might impact stream temperature dynamics of larger, higher-order systems.  

 The results of this research contribute to our understanding of the ecohydrologic 

connections in semiarid sites in central and eastern, Oregon. In particular, this dissertation sought 

to address the need for a greater understanding of the water balance in semiarid regions, as well 
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to provide a greater examination of two key land management challenges faced in similar areas. 

The methodology applied in these studies can also be adapted and applied to other research sites. 

Through a more in-depth examination of these issues, more informed land management and 

research can be developed.  
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