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The fact that measuring a quantum system reduces it to apparently classical behavior,
eliminating the interference patterns that are a hallmark of quantumness, cries out for
an explanation. That explanation has been provided by the recognition of decoherence,
whereby the interference is destroyed by the very interaction that acquires information.
We begin by showing how this scenario plays out in a simple analytical model-—designed
to be pedagogical-—of measurement in a double-slit experiment. This model illustrates
the continuous trade-off between information and interference in a concrete mathemat-
ical framework that makes explicit the role of measurement-induced decoherence in the
process, thereby providing a natural stepping stone to a discussion of environmentally-
induced decoherence and the real target of this work: the origin and accessibility of
classical reality.

Quantum Darwinism, building on the decoherence program, provides an explanation
for the emergence of classicality within what we have come to recognize as a fundamen-
tally quantum universe; that is, how some physical observables take on robust, objective,

verifiable values despite the intrinsically fragile and subjective nature of observables in



quantum theory. It does so by acknowledging the role of the environment as a witness,
continuously monitoring certain “pointer observables” of the system, and as a communi-
cation channel, amplifying information about those observables and distributing many
copies of it throughout the world. Past work in this area focused on the ability of the en-
vironment to perform this amplification and the amount of information potentially avail-
able in fragments of the environment, but little focus has been placed on the observer’s
ability to actually collect that information. Here we show that redundant information is
available to observers even when locality prohibits them from accessing quantum corre-
lations within their fragment; a “bit-by-bit” measurement will suffice with only a slight
increase in the required fragment size. Moreover, we show that, except in the case of
a very low entropy environment, the decoherence process that produces these objective,
classical states gives rise also to a convenient classical measurement toward which local
observers can evolve. Together, these results demonstrate that even local observers can,
and indeed almost certainly will if given time to adapt, share in the objective, classical
reality that emerges when living in a large quantum universe, thereby providing another
stepping stone in the bridge that quantum Darwinism is building between our quantum

universe and classical experience.
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Locally Accessibility of Objective, Classical Reality

1: Introduction

The most startling insight of the last century of physics has been that, at the most
fundamental level, its constituent parts behave in ways that are entirely alien to our
everyday experience. The “quantum” nature of reality—the intrinsically probabilistic
outcome of experiments, the existence of arbitrary superpositions of states, the fact that
measuring one property of a system can “reset” others to unpredictable values, and so
on—is, somehow, “washed out” in the world we casually observe, manifesting only when
experimenters carefully isolate the system of interest. But the naive formalism of quantum
mechanics, as established in the first half of the last century, suggests just the opposite
should be true: combining quantum systems should amplify the quantum “weirdness”,
as states that exhibit “unintuitive” behavior occupy exponentially larger portions of the
available space of states.

This has been illustrated by the thought experiment of Schrédinger [36], in which a
most unfortunate cat has been locked in a container with a radioactive isotope and a
bottle of poisonous gas: if the isotope decays, the bottle breaks and the cat dies; if the
isotope does not decay, the bottle remains intact and the cat lives. According to the
principles of quantum mechanics, the isotope may decay or not, and therefore its state
will be, until measured, in a superposition of the two possibilities. The uncomfortable
conclusion is that the cat is also in such a superposition, being in some sense both alive
and dead up until the container is opened and a measurement is made to determine what

has happened. Moreover, a bit of consideration demonstrates that neither the isotope,



nor the gas, nor even the container, are necessary to frame this problem. Merely the
existence of a cat, composed as it is of numerous interacting atoms, all of which should
adhere to the laws of physics, is sufficient. In this case, the question becomes not “is the
cat alive or dead”, but simply “is there a cat?”

Of course, we know, empirically, that there is a cat!, so even “is there a cat?” is the
wrong question: a more compelling question is “why is there a cat?” Or, to be a bit more
general, why do we perceive objects as persisting in apparently robust states that seem
unaffected by how many people observe them or how often such observations take place,
when the lessons of quantum mechanics suggest that the state of a system should be
quite fragile, changing when measured and therefore precluding an objective, verifiable
determination of those properties?

In this chapter, I give a brief review of some aspects and tools of quantum theory that
will play a significant role in the sequel?: Section 1.1 discusses the general theory of quan-
tum measurement and the problem of preferred bases, Section 1.3 introduces quantum
mutual information and its decomposition into the Holevo quantity (essentially classical
correlations) and quantum discord (inherently quantum correlations), and Section 1.2
outlines the problem of the quantum-to-classical transition, including the problems of
the absence of interference and the observation of outcomes and a working definition of
“objectivity” as used in the quantum Darwinism.

Chapter 2 is devoted to decoherence|44, 48|, beginning with a general overview
of measurement-induced decoherence, followed by a model for such in the context of

a double-slit experiment, and concluding with a short discussion of environmentally-

In fact, there appear to be many cats, each distinguishable from the others, and each, apparently,
persistently stable in its localized state.

2Several standard results from quantum mechanics are provided here without derivation; these may
be found in standard pedagogical treatments such as Refs. [38, 26]



induced decoherence. This leads naturally to Chapter 3, which summarizes the core
ideas of quantum Darwinism [50] and some of its recent results, including the explicit
demonstration of amplification and redundancy in the case of a photon system and a
spin-system embedded in a spin-environment.

The primary result of this work is presented in Chapter 4, in which we show that
the amplified information is largely available even to observers who are constrained to
make local measurements on very small portions of the environment, such as single-
qubit measurements on a spin-environment. Moreover, we identify a unique, optimal
measurement axis that such observers can identify and converge to by employing an
adaptive, iterative measurement scheme, thereby ensuring that many local observers can
come to a consensus even when they have no initial information about the system. Finally,
we observe that individuals can perform subsequent measurements on other parts of the
environment in order to verify their initial findings, ensuring that this information is

robust, objective, and verifiable.

1.1 Quantum measurement

The postulates of quantum mechanics, however stated, can be broken up into two kinds.
On the one hand are the dynamical laws that govern the evolution over time of a quantum
system and its observables. On the other hand are the postulates governing how we are to
extract information about the system—what a measurement is and what happens when
you make one. The fundamental assumption that underlies the decoherence program,
generally, and quantum Darwinism in particular, is that this second set of postulates is
superfluous. However one defines a measurement, the apparatus used to perform that

measurement should itself be ultimately described as quantum mechanical systems, in



which case the evolution of the joint system-apparatus should follow the first set of

postulates. This is most clearly identified by the idea of the Von-Neumann chain [40].

1.1.1 The von Neumann chain

Suppose that a system, S, is in a well-defined state, |¥)g = " ¢, |n)g, where the states
{|n)} are eigenstates of some complete observable. If one wishes to make a measurement
on S, it is necessary first to identify an appropriate apparatus, A, which will then interact

b

with § in such a way that a “measurement” results. If the system and apparatus are
initially independent, and if we are free to neglect their interactions with any other
systems (such as the environment), then we can suppose that the apparatus is likewise
in some well-defined initialized state |0) ,. Hence, following the usual Hilbert space
formalism, the initial states of the system and apparatus can together be described by a
single ket, [¥,0)g4 = > ,, ¢n|n,0)5 4 in the product Hilbert space. Then this state will
evolve unitarily, and in calling it a “measurement” we expect that it will do so according
to the rule [n,0) s 4 — |n, An) g4, Where [Ay) 4 is the state of the measurement apparatus
that indicates an outcome associated to the state |n)g and we assume these states are
mutually orthogonal. Hence the joint state becomes ) ¢, |n, Ay) g 4, and we see that the
system and apparatus have become entangled to an extent that precludes decomposition
into pure states in their respective Hilbert spaces.

Of course, this unitary evolution simply tells us how the measuring device and the
system evolved, but it doesn’t address how an observer is to determine the outcome
of the experiment. We may suppose that the observer is also initially represented by

a state, |i),, and that after the measurement interaction, the observer will “measure”

the apparatus to determine it’s state. This should follow the same basic outline as the



apparatus-system interaction, leading to a final state ), ¢, |n, Ap, On)g 40, Where the
states {|Op)} represent an observer who has found the apparatus to be in state [Ay) 4.
Now the observer may want to share that information, effectively being themselves
measured by some other observer. Or perhaps the “observer” in the previous paragraph
should have really been an environment upon which some observer would then perform
a subsequent measurement. In any case, we see that this process can be continued
indefinitely, entangling more and more initially independent entities in such a way that
each state of the system corresponding to a particular outcome is correlated to a specific
state of each of the other entities in a consistent way. At first glance, this seems to provide
a model of measurement that is independent of any additional postulates, but there are
a number of difficulties that must be overcome before we can interpret it as such. These
are the “measurement-problems”, which are ultimately tied to the larger question of the
quantum-to-classical transition. These problems are laid out in the remainder of this

chapter, and one partial solution to them is presented in the rest of this paper.

1.2 The quantum-to-classical transition

Quantum mechanics has a reputation for oddity, in that quantum systems are known to
exhibit a range of features not apparently present in our everyday classical world. But,
as previously noted, this classical world in fact arises from a fundamentally quantum
substrate; i.e., all the classical “things” with which we are familiar are ultimately com-
posed of large numbers of quantum “things” (i.e., particles). The strangeness of quantum
mechanics can be traced, ultimately, to the superposition principle, which allows that any
superposition of possible states is itself a possible state, and the absence of such arbitrary

superpositions is the essence of our classical world. But the nature of quantum theory is



that as the number of interacting particles increases, the size of the Hilbert space, and
therefore the possibilities for exotic superpositions, grows exponentially. Hence the ques-
tion: Why does our quantum world appear classical when the vast majority of possible
states are highly non-classical? This question can be broken down into (at least) three

key components as outlined below.

1.2.1 Preferred bases

From the discussion of the von Neumann chain, we have a model of “measurement”
that explains how certain observable outcomes become correlated to particular states
of measuring devices, observers, and the environment. But the superposition principle
tells us that we may consider arbitrary superpositions of our initial states for both the
apparatus and the system. Consider, for example, a spin-system, which is represented
in some basis as |[V)g = a|T) +b|]) and a corresponding measurement device that
interacts with this according to the rule | J,0)g4 — |1, A$>SA' By hypothesis, the
states |Ay) 4 and [A}) 4 are orthogonal, as are | 1)g and | |)5. Hence, let us consider the
complementary bases |+)s = %(\ PsE|hg) and |[A4)g = %(|AT>S + |A})g). Then

we have, for example,

+,0) = \2 ([ 1,0)sa+14:0)54)
1
- \ﬁ (| T AT>3A + ‘ 4 A¢>3A) (1.1)
2;5 ;§(|T7A+>SA+IT,A—>SA)+\2(1¢,A+>5A—y¢,A_>SA)

1

(A sa t 1= A )sa)

S

2



Hence, we see that the interaction appears to create correlations between the system
and apparatus in multiple, complementary bases. If we interpret the state | 1) g as being
spin-up along the z-axis and |+)g as being spin up along the z-axis, the spin-apparatus
interaction appears to describe a measurement along both axes.

There are two problems presented by this observation. First, quantum mechanics pre-
cludes the simultaneous measurement of spin along two orthogonal axes, but it seems here
that once the measurement has been made, an observer could determine these two values
by simply reinterpreting the measurement output; even worse, an appropriate change of
basis would reveal that the correlations are established for spin along every axis. Second,
our experience rejects the notion that there is a “universal” measuring apparatus, capa-
ble of performing arbitrary measurements simply by adjusting our interpretation of its
result. Rather, we expect that once an observable of interest has been established, one
must select an appropriate apparatus, dictated by the physical nature of the observable,
in order to measure it; one configures their Stern-Gerlach device in a specific orienta-
tion when measuring spin along a specific axis and then expects to gain no information
regarding spin along other axes without first reconfiguring the device. Hence, it seems
that to each apparatus there is a preferred basis in which it is able to measure, and that
measurements in other bases entail the choice of a different apparatus. A resolution to
this problem of the preferred basis is provided in Section 3.1. Briefly, the existence of
extra degrees of freedom, either within the apparatus or within the environment in which
it is embedded, selects out a particular basis (i.e., a pointer observable of the apparatus),

and these pointer states are those that can be used to infer the result of a measurement.



1.2.2  Absence of interference

Having identified the problem of the preferred basis and deferred its resolution, we can
move on from measurement in particular to the more general question of the rise of
classicality. The first question that needs answering® is where is all the interference?
As illustrated beautifully in double slit experiments, quantum systems exhibit a form
of self-interference, whereby a superposition of states gives rise to interference patterns
when the corresponding observable is measured. But such interference effects are notably
absent from our everyday experience, as evidenced by just how unexpected the patterns
demonstrated by double slit experiments are.

The solution to this problem requires a shift in the traditional approach to fun-
damental physics. When treating classical problems of physics, particularly outside of
thermodynamics, one often neglects complicating features of the system and the role of
the environment—frictionless surfaces in vacuums and all that. This is justified by the
assumption that the interaction between the system and the environment is much weaker
than the dynamics of the system itself and should, therefore, have only a minor effect on
the observed outcome.

But this assumption fails utterly in our everyday experience, where we rely on the
interactions between systems and their environment as a proxy for performing actual
measurements. A casual observer does not measure, for example, the position of a book
when looking at it. Rather, the observer interacts with light scattered from the book and
then infers the position as a result of that interaction. Hence, the environment plays a
critical role in our experience of the classical world, so it should come as no surprise that

the emergence of classicality requires us to incorporate the environment explicitly into

3Following here the treatment of “measurement problems” in Ref. [34]



our models. This is demonstrated also by the fact that experiments intending to showcase
quantum interference invariably require some effort to isolate the system from external
factors (i.e., the environment) in order to preserve coherent quantum superpositions.
The process by which the environment suppresses interference—‘decoherence”—has
been much studied over the last several decades. In Chapter 2, we review this process
in two forms: first, measurement induced decoherence is introduced and used to explain
the loss of interference in our double-slit model; second, we discuss the formal aspects of

environmental decoherence and the resulting suppression of interference.

1.3 Mutual information: The Holevo quantity and discord

The amount of information shared between two quantum systems, S and A, is quantified

by their mutual information, I (S : A) = Hs + H4 — Hs., where

Hy = —trpg logy px

is the von Neumann entropy of K (representing the amount of “missing” information
regarding the state of ), and the subsystem entropies are computed using the reduced
density operator, ps = traps4. The mutual information effectively summarizes the
degree of correlation between the two systems, characterizing the total information that
is shared between them, but it fails to characterize the nature of those correlations or
the accessibility of that information. The reason for this is clear: the mutual information
depends only on the interaction between the two systems, but the accessibility of that

information depends on the subsequent measurement one performs. In particular, for an
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arbitrary POVM on S, Ilg, the mutual information can be split into two parts [30, 55],
(S A) =y (Tls - A) +D (TIs : A), (1.2)

where the Holevo quantity,

X (ﬂs : .7-") =H (Zpgpﬂg) - Zng(pﬂé)’ (1.3)

provides a bound on the amount of classical information about § that can be transmitted
by A, and the discord, D (f[g : A), characterizes the “quantumness” of the correlations
between S and A.

In other words, for any choice of observable, the mutual information can be cleanly
separated into the classical information about that observable that can be acquired from
A (without any direct measurement on S) and the information associated with (perhaps
inaccessible) quantum correlations between S and A. The essential realization of the
quantum Darwinism program with respect to these quantities arises when we take A to
be some fragment, A = F, of the environment, £. In this case, one finds [55] that the
Holevo quantity very rapidly approaches the entropy of the system Hg as the fragment
size increases when Ilg is the pointer-observable POVM, indicating that nearly complete
information about this system observable can be acquired with only a small portion
of the environment; for other observables, however, the information is stored in global

correlations, necessitating access to a much larger portion of the environment.
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1.3.1 “Objective” reality

At this point, we can introduce a working definition of objectivity [29]: information about
a system observable is “objective” if it can be independently acquired by many different
observers in a way that doesn’t alter the value of the observable. quantum mechan-
ics precludes any direct measurement of the system from yielding information in a way
that satisfies this criteria: the act of measuring the system can ‘reset” it, eliminating
the information gained from previous measurements. Hence, only information acquired
indirectly can achieve objectivity. In light of the previous discussion, it’s clear that this
occurs precisely for the pointer observables of the system, as these are the observables
about which significant information is accessible from only a small fragment of the en-
vironment; hence, the information is redundantly proliferated into the environment, and
many observers can acquire fragments of sufficiently large size to access that information.
Other observables, on the other hand, require much larger fragments, thereby limiting
the number of copies to a much smaller number (in fact, only one in the case where
the required fragment size is greater than half the environment). A precise bound on
the redundancy of the information transmitted in this way is provided by the quantum

Chernoff information, which we discuss in Section 3.2.1.
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2: Decoherence

In this chapter, we present a model of the double-slit experiment that demonstrates the
inverse relationship between the visibility of quantum interference and the acquisition of

information, highlighting the role of decoherence in the process.

2.1 The double slit

In his Bakerian Lecture of 1801 [43], Thomas Young put forth several arguments sup-
porting the claim that light propagates as a wave rather than as a particle, as had been
previously proposed by Newton. More importantly, he proposed a relatively simple ex-
periment that could unambiguously demonstrate this fact: by passing the light from a
single source simultaneously through two nearby apertures and then observing it’s inci-
dence on a distant plate, an interference pattern analogous to those previously displayed
by water and sounds waves may be observed. The successful implementation of this ex-
periment was achieved shortly thereafter, and the wave-like nature of free light became
firmly established in the scientific literature.

A hundred years later, several experimental observations, most notably the photo-
electric effect, led Einstein to propose a return to a model of light that was inherently
particle-like [16]. This picture of light as being composed of “quanta”™—discrete elements
of fixed energy—successfully explained a number of observed phenomena, such as the fact
that the photoelectric effect depended strongly on the frequency, but not the intensity,

of the incident light, but it raised two important questions. First, if light behaves as a
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particle, how do we explain the interference patterns observed in the double slit exper-
iment? Second, if light, as a particle, were able to exhibit such interference, might not
other particulate matter do so as well [12]?

The resolution to both of these questions was provided by the development of quantum
mechanics, in which the classical picture of things being either particles or waves was
supplanted by a more robust model in which a system may exhibit wave-like or particle-
like behavior depending on the details of the experiment performed.

Quantum mechanics has been applied to explain a number of phenomena, but the
nature of quantum interference in double-slit experiments has remained an active area of
research. The first demonstration of interference in matter systems was finally achieved
in 1961 when interference between electrons was successfully observed [21]. From there,
researchers have continued to demonstrate evidence of interference between ever larger
objects and in exotic situations such as Bose-Einstein condensates [2| or with topolog-
ical defects [14]. Finally, research in the last few decades [4, 15, 3] has demonstrated
unambiguously that interference can be observed even when only a single “particle” is
passing through the slits at any one time, thereby demonstrating that the interference
must come from the intrinsic nature of the particle rather than arising from the statistics
or interactions between large numbers of particles.

Perhaps more interesting than the observation that matter systems can exhibit self-
interference is the subsequent observation that the interference can be lost if one attempts
to track the particles through the slits, thereby determining “which path” the particle
took. A schematic of this behavior, which has been demonstrated experimentally by
using circular polarizers at the slits to “mark” each photon,[41] is shown in Fig. 2.1.
More striking still is the fact that giving up the which-path information by, for example,

passing the circularly polarized light through a linear polarizer, restores the interference
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pattern.

Figure 2.1: Schematic representation of the one dimensional version of the double slit
experiment. In this setup, a coherent superposition of two Gaussian wavepackets of width
A emerge from the two slits separated by a distance 2L. (a) When no measurement is
made and coherence is otherwise preserved, the probability density P(x) shows that as
time progresses the two packets begin to interfere, ultimately resulting in a well-defined
interference pattern. (b) In the case of a perfect measurement, each particle takes either
the left or the right path. In this case P(z) observed at the detection screen will be an
incoherent sum of the two spreading Gaussian wavepackets, i.e., no interference will be

present.
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In short, the results of various double-slit experiment provide the paradigmatic ex-
ample of quantum mechanical “weirdness”; as Richard Feynman put it, this experiment
contains “the only mystery [of quantum mechanics|” where the particles—whatever they
may be, electrons, photons, etc.—behave “sometimes like a particle and sometimes like a
wave.” [18].

We know, then, that determining which path a particle took eliminates the appear-
ance of interference. If however, one is willing to forgo perfect determination of the path,
partial interference may yet be preserved. This relationship has previously been demon-
strated in theoretical analyses and proposed experimental realizations of the double-slit
experiment for light [42, 31|, and a general treatment of imperfect two-state discrimina-
tion from basic quantum mechanical principles can be found in textbooks.! In short, when
the apparatus/observer acquires information about the system the interference pattern
disappears.

This deep relationship between interference and information can be understood in
the context of decoherence and entanglement, and plays a significant role in understand-
ing the quantum-to-classical transition |28, 29, 7, 50, 55, 53, 51|. While there exists a
multitude of papers [46, 47, 48, 1, 39, 37, 49] and books [22, 26, 34| on the more general
subjects of quantum information and decoherence, the explicit application of these ideas
to specific physical systems is lacking. To that end, we examine a model of double-slit
interference? in the presence of measurement that allows the measurement precision to
be tuned and thus allows us to examine the interplay between path information gained
and the loss of interference: When one distinguishes between a particle at the left and

right slits, then the interference is destroyed; when no information is gained, then in-

!See Chapter 2.6.2 of Ref.[34]
2The remainder of this section is derived from Ref. [23]
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terference is manifest. This model makes use of the standard wave-function approach
to quantum mechanics and helps make the core concepts of interference, measurement,
distinguishability, decoherence, and dephasing more clear.

In order to keep the discussion concise, we assume that the reader is familiar with cer-
tain mathematical and conceptual tools not necessarily presented in introductory courses,
the foremost of which are density operators,® the evaluation of Gaussian integrals,[38]
and the partial trace.* We also provide only a brief introduction to quantum entropy and
mutual information.® It is also convenient to work with dimensionless parameters, but
we wish to retain the traditional symbols for readability. To that end, we fix a length
scale A (the slit width) and denote physical quantities that carry a dimension with an
overbar. The unbarred version is then the natural dimensionless parameter determined
by A and physical constants. Hence we have dimensionless position z = ZT/A, time
t = ht/mA?, momentum p = pA /A, and so on. Similarly, we use a dimensionless Hamil-
tonian, H = (mA?/h?)H, momentum operator, P = (A/A)P, and position operator,
X = X/A.

2.2  Interference without measurement

In order to establish the basic framework, we first consider the case where no measurement
is attempted. The prototypical version of the double slit experiment is to have particles
impinge on a barrier one by one. The barrier has two slits that let particles through,
where they then continue to travel until striking the detection screen. The latter will

reveal the interference pattern—or lack thereof—that emerges after many repetitions of

3See Chapter 2.4 of Ref.[26]
4See Page 105 of Ref.[26]
®See Chapter 11 of Ref.[26]
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the experiment. We will consider a simplified version of this scenario where, as indicated
in Fig. 2.1, there is just one spatial dimension and the evolution starts after the single
particle exits the double slit.

When the particle—the system S—exits the slits in a superposition of two Gaussian

states,® i.e., its state |¥)g is given by the wavefunction
(2| W) g = U(z) = A |e”@HD?/2 4 o=(@=1)*/2) (2.1)

the two Gaussian components will begin to spread. Here, as throughout, x and L are
dimensionless parameters that correspond to position and slit-spacing (2L), respectively,

and which depend implicitly on the slit-width. The normalization is

1
A=\ F A fep D) (22)

Note that time also represents the role of a second spatial dimension—the one in
which the source, barrier, and screen are separated. As time moves on, one can imagine
the particle moving from the barrier to the detection screen. More formally, one could
include the additional spatial dimensions and integrate them out, as they do not play an
important role.

Making use of the free-particle Hamiltonian H = P2 /2, we find the time-evolved state

5The exact wavefunction emerging from the slits in an experimental set-up will be complicated,
depending on the exact slit shape geometry, the incoming state, particle type, etc. A superposition of
Gaussian wavepackets, which we consider, leads to a clean presentation of interference and measurement.
A square wavepacket, ¢(z) = O(z+ L+ A) — O(z £ L — A), with © the Heaviside step-function at each
slit, which matches the ideal geometry of the slit, is also tractable, though we don’t consider it here.
The actual wavefunction, however, will be more complicated. Indeed, a reasonable approximate form
is ¢ = exp (—=1/[a((A/2)> — (x F L)?)]) (and zero for > £L + A/2 and < £L — A/2) at each slit
of width A. This function, while only approximate, is already non-analytic, but can both match the
geometry and have smooth boundaries.
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by integrating

1 0o oo ) ) ,
U(z,t) = 277/ / e~ 2gip(v—a )W (2') da’ dp. (2.3)

Using the initial wavefunction and evaluating the resulting Gaussian integral, one finds

that the time-dependent wavefunction is given by

A (z+ L)
U (x,t) = exp | ——————~
(%) \/1+it{ Pl o0
(z - L)?
- 5. 2.4
L I TeRT) (24)
The associated probability density is then
2z L 2tz L
P =TI |cosh | —— 2.
(x,t) [cos <1+t2>+cos<1+t2)], (2.5)
where the factor
rt 2A? —x? — L2 (2.6)
= ex .
Vite P\T1re

has been introduced for readability. The first term in Eq. (2.5), the one with the
hyperbolic cosine, is just a sum of two Gaussian wavepackets, which represent particles
coming from the left or right slit, respectively. The second term, the one with the cosine,
describes the interference between these two sources. Figure 2.2 shows the probability
density, Eq. (2.5), for various times—i.e., the separation between the slits and detection

screen—for a slit spacing 2L > 1.
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Figure 2.2: Probability density of a free particle with L = 5 at different times after
passing through two slits. Note that this corresponds to the time of flight from the slit to
the detection screen. (a) Initially, the two packets are well separated. (b) As they spread,
they will start to interfere. (c) Eventually, a well-defined interference pattern develops,

which (d) begins to spread out.

2.3  The effect of measurement

We now want to consider how measurement affects the appearance of interference. Specif-
ically, we are interested in how the interference pattern is lost as the amount of infor-

mation gained increases. In an introductory quantum course, one would discuss, for
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example, double-slit interference of electrons and measurement via photons. In this case,
the observation is performed by measuring scattered light, which, with a suitably short
wavelength, distinguishes the position of the electron. As the wavelength is increased, the
scattered light no longer is imprinted with the left /right position of the electron. Calcu-
lating this scattering process, however, requires a large amount of background material,
unsuitable for introductory courses.

Instead, we consider an idealized measurement process that nevertheless admits vari-
able precision ranging continuously from perfect measurement to no measurement at all.
Following the idea of a von Neumann chain,[40] this process will make use of an auxiliary
quantum system, the apparatus A. When the apparatus, in an appropriately initial-
ized state |0) 4, interacts with a particle in the state |¢L>S with wavefunction ¥ (z)
that is completely localized around the left slit (where we use the less strict condition,
Yl(z) = 0 for x > 0), a perfect measurement would bring the composite state WL, 0>SA
to WL , L> SA" Similarly, when the apparatus interacts with a particle in a state WR> s
with a wavefunction f(x) that is completely localized around the right slit, a per-
fect measurement would bring the state ’@Z)R, 0>SA to ’@DR, R>SA' This process transfers
information about the particle’s state into A, encoding the outcome of the left/right-
measurement in a subspace of dimension two spanned by the basis states |L) , and |R) 4.
This left /right information is accessible to observers who can “read” the apparatus state.
If one has a limited resolution measurement, or wavefunctions 1% (x) and ®(z) that
have overlap, then this information transfer cannot be perfect.

The measurement interaction In general, after a measuring apparatus A inter-
acts with a system S, observers can infer the state of the system by interacting with
(and amplifying information from) the apparatus through the standard measurement

process; i.e., by measuring a non-degenerate observable of A corresponding to the possi-



21

ble measurement outcomes. Of course, such a subsequent measurement could be treated
similarly, requiring yet another measuring apparatus, and so on, leading one ultimately
to the von Neumann chain. We are here concerned only with the first step in such a
chain, considering only the interaction between S and A. Later on, we briefly discuss the
observer as an additional link in the von Neumann chain.

In our case, the relevant (non-degenerate) eigenstates of A are |L) 4 and |R) 4. We
assume that the apparatus and system interact immediately after the particle passes
through the slit, so that the particle wavefunction, Eq. (2.1), does not have time to
evolve on its own before the measurement is made. As usual, the interaction between
the apparatus and the system results in a unitary transformation of the joint state.
Specifically, in keeping with the above discussion, we require that during the measurement

process the joint state, initially [¥,0)g 4, evolves as

W, 0)g4 — |MEW, L) MW, R) = |®) g4 (2.7)

satl

during the interaction (here, as elsewhere, we use ¥ for our specific system state in dis-
tinction to the 1 used for generic system states in the introduction to Sec. 2.3). When
the apparatus registers “L”, the system will be in a state ‘\IIL> oc ML |¥) s that is local-
ized— to a precision oc—around the left slit due to the act of measurement itself. The
conditional state ‘\IIL > depends on both the initial system state and the measurement
operator (similarly for [U#) o MZ |¥) ). The initial state and the states |¥*) and |¥F)
resulting from such an interaction are shown in Fig. 2.3 (a) using an explicit form of
the measurement operator to be derived later in Eq. (2.16). The right-hand side of Eq.
(2.7) cannot, in general, be written as a simple product of system and apparatus states.

Thus, the interaction has caused the two to become entangled (except, of course, in the
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limiting case of no discrimination).

059 ,)

0.0

10 5
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(34
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=)

Figure 2.3: The effect of measurement. (a) The initial wavefunction ¥ with peaks at
L = 45 and the conditional states of the post-measurement wavefunction with o = 4,
UL = miV (dashed) and ¥ = mfW (solid). (b) The measurement functions squared,
(m£)? (dashed) and (m%)? (solid), versus position. As o increases and the measurement
becomes less precise, they tend toward a common constant value; in the opposite limit,

they become complementary step-functions.
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The operators Mg/ = appearing in Eq. (2.7) are called “measurement operators” and
are written inside the ket in order to make clear the fact that they act only on the system
S. As noted, these operators determine the state of the particle after the measurement.
Since the left /right measurement distinguishes the position of the particle, it suffices to

take Mg/ R diagonal in the position basis, giving rise to a pair of “measurement functions”

M |z) = mg () |2),

M |2) = myg (2) |z) . (2.8)

With this choice, the action of Mg/ B on the system wavefunction is purely multiplicative,
(x| ME/ R |T) = mg/R(az)\Il(x) Since the apparatus states |L) 4, and |R) 4 are orthogonal,
the requirement that Eq. (2.7) constitutes a unitary transformation will be satisfied

whenever

MLTME + METME = 1, (2.9)

which, from Eq. (2.8), is equivalent to
Lioy|2 R(.\|2
imy(z)|” + [my ()| = 1. (2.10)

Equation (2.7) can then be extended to a unitary transformation defined on the whole
joint Hilbert space. We note that, while Eq. (2.7) does not uniquely determine this
unitary transformation on the whole space, it suffices as a description of the interaction
when the apparatus is initialized to [0) 4.

While the composite state evolves unitarily, we are also interested in the states of the
system and apparatus separately. In particular, we are interested in whether the system

state exhibits interference and how the apparatus state encodes information about the
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system. For this reason we will examine the density operator psa = |®)s,(®| and the

reduced states of the system and apparatus. Taking the partial trace” gives

ps = trapsa = A(LlpsalL) 4 + s(Rlpsa|R) 4
T T
= M |0) (| ML + ME|0) (v M~

= 2 [P+ [0

(2.11)

which is a mixture of the states corresponding to distinct detection outcomes. Note that
the degree of overlap between the states ‘\IJL> and ‘\IIR> depends on the measurement
precision; they are orthogonal when the measurement perfectly distinguishes left from
right (0 = 0) but identical in the opposite limit of ¢ — oo (in which case ML = MZ =
1/ v/2 and no actual measurement is made). Hence, except in this latter case, the system
transitions from a coherent superposition or pure state (i.e., one representable by a ket)
to a mixed state (one which cannot be represented by a ket): it has been decohered,[49]
to an extent that depends on the measurement precision, through its interaction with
the apparatus.

The partial trace over the system can be evaluated in the position basis with the help

"Recall that the partial trace is defined by

tra(psa) = Y 4(klpsalk) ,
k

where {[s;) 4} is any basis for the apparatus Hilbert space, resulting in an operator that acts only on the
system. For example, one has

trA(‘Mﬁ\I/,L>SA<Mf\I/,RD =0,

as the left hand side is equal to MZ | W) ;(| M?Ttr(|L>A<R|). Note that the states |L) , and |R) , in
Eq. (2.11) do not constitute a complete basis for our apparatus state, but they do give the only nonzero
terms in the trace here.
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of Eq. (2.8), leading to the apparatus state

SR dr fmEml P da _
4 [mEmE |0 da f‘mf‘Q\\P\zdaz ’ .
when represented in the {|L) 4 ,|R) 4} subspace.

Further evaluation requires a definite choice of mg/ R(w). While there are many pos-
sibilities, a physically meaningful choice can be made by considering first a continuous
position measurement, |9, 13| out of which we can build a coarse-grained, binary measure-
ment. To that end, consider the position-indexed, commuting set of operators F, ('),

defined by

1 —(z —)?
F,(z) |z) = : 2.13
(@)1e) = e (T ) o 213
which represent a smooth analog of the projection operator |2)(z’| (to which F,(z')
tends as 0 — 0).

By integrating separately over the positive and negative domains of F,, we arrive at

a pair of coarse-grained operators acting on the position basis as

FL |1) = / B, (a') [2) da’

—0o0

_ 1/00 €_u2du |z)
ﬁ x/V202 ’

_ ;Erfc<0f@> ), (2.14)
1

FR|z) — /OOO Fo(2') |2) da’ — 2Erfc<a_\/x§> 2}, (2.15)

where we made use of the complementary error function Erfc. These operators correspond

to left and right positions with precision o.
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Comparing to Egs. (2.9) and (2.10), we see that taking

mk(—z) = mP(z) = my(z) = [ Eﬂb(avﬁ>]n2 (2.16)

yields measurement operators satisfying ML/ Rt UL/ R FUL/ R

. One can check directly
that the pair of operators Fg/ satisfy Fg + Ff = I, so we conclude that Eq. (2.16)
provides a physically meaningful function that satisfies our criteria. Figure 2.3 shows
how the function m?2 changes as one varies o.

Returning to Eq. (2.12) and inserting Eq. (2.16), one finds that the diagonal terms
evaluate to Gaussian integrals, which can be computed exactly. The off-diagonal terms
contain the product mLmf, which does not result in a simple closed-form expression
(although it is easily evaluated numerically for specific values of o). In order to obtain
an analytic expression for arbitrary o, some approximation will be necessary. To that
end, recall that W is a superposition of two Gaussians centered at L and —L, respectively.
For L > 1, the value of m, changes little over the regions in which ¥ is non-negligible.

This can be seen qualitatively by considering the curves in Fig. 2.3 or analytically by

expanding m, in a Taylor series about © = £L. For example, expanding around z = L,

we find

e—L?/207

mg(x) ~ mJ(L) + m

(z—L). (2.17)

Then for ¢ > 0, m,(L) is bounded below by 1/1/2. Substituting this lower bound for m

and the maximizing the derivative with respect to o shows that, for fixed L,

6_L2/202 1 1

o/8rmy(L) = 2L/re = 5L (2.18)
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Hence, the linear coefficient here is certainly smaller than 0.2/L for all o, i.e., over the
width of the Gaussian (1 in the dimensionless units employed here). The first-order
change to my(x) near L is at most 0.2/L (this is a worst case estimate, and for L = 5
gives a bound of 0.04). Higher order terms are likewise suppressed. Similarly, the first-
order approximation about x = —L is given in Eq. (2.17) with the replacement L — —L.
The linear coefficient can easily be seen to be bounded graphically, but in this case
the denominator includes a factor of m,(—L), which cannot be bounded below by a
positive constant. A numerical calculation provides a bound of approximately 0.379/L
on the actual coefficient, and there are many functions that can be used to find bounds

analytically. For example, inserting the bound

Erfc(x/\/ﬁ) > \/2/m(x) (2 + 1))6_”“2/2

into the linear coefficient and maximizing yields a bound slightly lower than 0.4/L
term near x = —L is bounded by 0.4/L.%
We therefore consider m, (z)e™@L?/2 & m (FL)e~@ED*/2 and my, (—a)e~@ED*/2 ~

mg(:I:L)e*(miL)Q/z; i.e., the functions m,(x) are approximated, but not the Gaussian

8The first-order approximation about z = —L is given by Eq. (2.17) with the replacement L — —L.
The linear coefficient can easily be seen to be bounded graphically, but in this case the denominator
includes a factor of mq(—L), which cannot be bounded below by a positive constant. A numerical
calculation provides a bound of approximately 0.379/L on the actual coefficient, and there are many
functions that can be used to find bounds analytically. For example, inserting the bound

Bxfe(2/v2) > v/2/n(e/* +1)e /2

into the linear coefficient and maximizing yields a bound slightly lower than the 0.4/L used in the main
text.
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envelopes. This results in the approximations

W (z) = (o] UF) = VEmb(2)¥(2)
= A\/i[ma(—x)e*(HL)Q/? + mg(_x)e—(sz)Q/z]

~ Blmgy(L)e”@HE*/2 4y (—L)e~ @~ 1)*/2], (2.19)
and

U (z) = (2 17) = Vamf(2) V()
= A\[Q[ma(x)e*(m+[/)2/2 + ma(x)ef(I*L)2/2]

~ Blmg(—L)e” @t /2 4 (L)e~ @ 1)*/2), (2.20)

Note that in both ¥¥(z) and U (z), each term in the superposition is approximated
separately.
A straightforward integration shows that the normalization constant of the approxi-

mate states should be

B2=x (1 + ﬁge—ﬂ) ~ VT, (2.21)

where the approximation is for L > 1 (i.e., e « 1), and
B = 2my(—L)my(L). (2.22)

As we will show, f,, which ultimately depends on both ¢ and L through the ratio /L,
is the parameter that relates the measurement precision to the visibility of interference
fringes and the information acquired by the measurement apparatus. In some sense, one

can think of 3, as the relevant quantification of the overlap between the left and right
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measurements.
Returning again to Eq. (2.12), it is clear that the approximation of Egs. (2.19) and
(2.20), does not affect the diagonal terms. It does, however, allow us to evaluate the

off-diagonal terms as intended, which are now also just Gaussian integrals. Doing so, we

find
60"‘1‘67[12
1 1 ihe I 11 B
pA = 5 P +6_L2 1“1‘506 ~ 5 . (223)
1‘:/806_L2 1 /80' 1

This has trace 1, as expected, and the eigenvalues are

1 ﬁg—l—e_L2 1
MMd==|1——= | = =(1£05,). 2.24
. 2( 1+BoeL2> (£ 5,) (2.24)

As in Eq. (2.21), the approximate expressions are for exp(—L?) < 1, but we retain a
finite o /L in (B, in order to investigate the full range of measurement precision.

Post-measurement evolution

It is well known that the act of measuring exactly which path a particle takes in pass-
ing through the slits prevents the appearance of interference effects. Having determined
the immediate effect of measurement on the particle’s state, we must now evaluate the
subsequent evolution in order to determine how the interference is affected.

After the measurement, the system evolves as a free particle while the apparatus

remains unchanged. The joint evolution is

|9,0) = [MZW, L) g, + [MZ0, R) s,

saT

1
— 7 [ZA S o* R), (2.25)

1
+$’Z/It

with U, = e "P*/2 and ‘\IJL/R> given in Eq. (2.11). We thus have a system state
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comprising an equal mixture of the wavefunctions

UL/ R, t) = (2| Uy ‘qu/R>
= [ i) [ tola|wt/") dyap. (2.26)
Evaluation of the inner integral can be done with approximations (2.19) and (2.20) and

(x|p) = €®P//2m, which reduces the integrals appearing in Eq. (2.26) to a sum of

Gaussian integrals. These give

B2 \'? —(z+ L)*

Uh(z,t) = (1 n it> {mo'(_L) exp 20+
+mey (L) exp M } , (2.27)

and
B2 \'? —(z+L)?
w0 = <1 —l—it) {m”(L) e
@I

+my(—L)exp [2(14‘”) } . (2.28)

Recalling that our particle is in an equal mixture of these two states, the probability

density associated with detecting the particle at position x is given by

2xL 2tx L
_ t
= Fg. |:COSh (Hﬁ) + Bg— COS (Ht2>:| N (229)
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where we have reintroduced and generalized

e
eXp( 1+22 )

I\xt —
7 Vit a2 (14 Bre L)

(2.30)

for readability. As for the unmeasured free particle, the first term in the brackets (the
hyperbolic cosine) describes the spread of the two incoherent Gaussian wavepackets with
time. The second term (with the cosine) gives rise to the interference pattern and is also
the same as in Eq. (2.5), except for a factor of §,. Hence, we recover the unmeasured
case in the limit where the measurement is not at all precise, for o — oo (8, — 1), and
the interference is suppressed for smaller values of . In the limit of a perfectly precise

measurement, o — 0 (8, — 0), the interference term vanishes and we find

2z L
Py(z,t) = TE cosh | ——
o(z, 1) 0" cos <1+t2>
—(z+L)? —(z - L)?
> exp [th Fexp | = | (2:31)

which describes an incoherent sum of the particle coming either from the left or right slit

as shown in Fig. 2.1b.
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Figure 2.4: Probability density with L = 5 at ¢ = 30 for various values of o. Insets
show simulated detection screens. (a) At o = 0, a perfect measurement has been made;
only a single, broad fringe appears. (b) As o passes 0* &~ 3L /10, interference begins to
appear. Increasing o further, (c) the difference between constructively and destructively

interfering regions is clearly visible, so that (d) by o = 3L the interference is nearly total.

Figure 2.4 demonstrates how the distribution varies as ¢ increases.” Beyond this
qualitative demonstration, a quantitative description is provided by the interferometric
visibility, which relates the amplitude of a wave to its average value. At sufficiently late

times, when a maximum appears at x = 0, this visibility may be expressed as

_ P(0,t) — P(x*,t)
V= P(0,t) + P(x*,t)’ (2:32)

9See supplementary material at http://dx.doi.org/10.1119/1.4943585 for a calculation providing dy-
namic visualization of the distribution for arbitrary parameters.
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where z* = 7(1 + t2)/2tL corresponds to the first minimum of the oscillation term.

Evaluating Eq. (2.32) then yields the expression

_ 16 [1+ Bo] — I'gs; [cosh (1/t) — 5]

Y= 'S [1+ Bo] + 'y [cosh (1/t) — 50]’

(2.33)

which, after canceling common factors and taking the limit ¢ — oo, reduces to

_ (4B —e M- B,)
Yo (1+ Bo) + e ™A% (1= B,) Pe- (2.34)

Hence, for large L, we have V =~ (3,. Thus, 8, = 2m,(L)m,(—L), which is a quantifica-
tion of the measurement precision with respect to the slit width. It further has a direct

physical meaning as the visibility of the post measurement interference fringes.

2.4 Information

We have called the interaction determined in Eq. (2.7) a measurement interaction on the
grounds that a subsequent projective measurement of the apparatus alone will allow an
observer to infer (or attempt to infer, in the case of an imperfect measurement) the state
of the system. This interaction is just a particular example of a positive-operator valued
measure (POVM).1 The key idea is that the apparatus acquires information about the
state of the system due to this interaction. To make this statement quantitative, we
make use of two key ideas from the theory of quantum information: entropy and mutual
information.

For any state represented by a density operator p with eigenvalues {\;}, the von

198ee Chapter 2.2.6 of Ref.[26]
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Neumann entropy is defined by
H(p) = —trlplogy p] = = > Ailogy A, (2.35)

in which we take 0log0 = 0 whenever it arises. In particular, H(p) > 0, with equality
if and only if the state is pure (i.e., A; = 1 for one ¢ and A; = 0 otherwise). Hence, the

“mixedness” and quantifies our uncertainty about the

entropy is a measure of our state’s
state of the system. It thus also quantifies the amount of information we gain about the
system when a measurement is made.!!

If our system is composed of two subsystems in a state ps4 and with reduced states

ps and p4, the quantum mutual information between S and A is defined by
I(S:A)=H(ps) + H(pa) — H(psa)- (2.36)

This quantifies the amount of information about system S that is in A.
In the case of a measurement implemented by some apparatus as described previously,

we have

I(S:A)=H(ps)+ H(pa) — H(psa) (2.37)

= H(ps) + H(pa), (2.38)

since the joint-state is pure (having evolved unitarily from a pure product state). More-
over, when the joint state is pure, the Schmidt decomposition [35, 17]'? ensures that we

can use |®)g 4 = >, a;|i)g ® |i) 4, where {|i)s} and {|i) 4} are orthonormal bases for the

1YWe note that this statement assumes the system state is initially pure.
2See also chapter 2.5 of Ref.[26]



35

two subsystems, in writing the joint density matrix psa = |®)(®|. Taking the partial
traces, one can see that the values {a;} will be the eigenvalues for both ps and p4, so

that their entropies will be the same. In particular, we have

1(S:A)=2H(pa) = 2H(ps). (2.39)

Again, the entropy H(ps) gives a measure of the mixedness (the degree of decoherence)
of our system state after the measurement. This measurement-induced decoherence of
the system is associated with information acquisition by the measurement apparatus,
which is reflected in this generation of entropy. That is, the system goes from a pure
state initially, with entropy of zero, to a mixed state with nonzero entropy.

Following Eq. (2.39), we see that determining the mutual information between the
system and the apparatus amounts to finding the entropy for the reduced state of either
the system or the apparatus. In a general measurement scheme, these may depend on
time, but when the system and apparatus states undergo independent unitary evolution
after the measurement process, we need only consider the states immediately after the
measurement. In our case, for example, the particles passing through the slits evolve as
free particles after the interaction, while the apparatus state remains unchanged. Hence,
we may compute the mutual information from the state of the apparatus immediately
after the measurement, without involving the more complicated time-dependent state of
the particle.

We have previously already found the eigenvalues of the state p 4 after measurement
has occurred, which are given in Eq. (2.24). These eigenvalues give the mutual informa-
tion

I(S . ./4) = 2H(pA) =2 (—)\+ 10g2 )\+ — )\7 10g2 )\7) .



36

In the limit of no measurement, o — oo, the eigenvalues are 1 and 0, so the mutual
information is zero: the apparatus stores no information about the state of the system.
This limit is precisely that in which the standard interference pattern is observed. On
the other hand, o — 0 corresponds to the complete absence of interference and the eigen-
values monotonically approach (14+e~%")/2 ~ 1/2, in which case the mutual information
approaches I (S : A) = 2. The dependence of the mutual information and visibility on
the precision o, is shown in Fig. 2.5, demonstrating that as the information gained by

the apparatus decreases, the visibility of the interference increases.

2.04— -2.0
! I(S:A)
1.59 | 1.5
104 -T====\ oo 1.0
0.5+ -0.5
0-0_ } T T T T |_O-0
o* L 2L 3L 4L 5L
o

Figure 2.5: The dependence of mutual information I (S : A) and visibility V on 0. Ex-
tremely precise measurements, corresponding to small values of o, result in the apparatus
acquiring significant information about the system while the interference is negligible. As
o increases, the measurement is less capable of distinguishing the particle’s path, and the
apparatus fails to decohere the system state. Hence, less information is transferred into
the apparatus and the interference becomes significant. Visibility is calculated according
to the exact expression in Eq. (2.34) with L = 5. The vertical dashed line at o* ~ 3L /10
indicates the approximate precision at which this transition begins to become apparent.
Dots indicate values calculated numerically from the exact apparatus state, Eq. (2.12),
for L = 5. Triangles correspond to o values considered in Fig. 2.4.
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As is shown in Fig. 2.5, both I (S : A) and V are initially flat as o increases from 0,
as at small ¢ the measurement is extremely precise and the particle at the left and right
slits can be effectively distinguished. Beyond a threshold value, ¢ = o* ~ 3L/10,? the
apparatus rapidly loses the ability to distinguish between the two paths, and interference
begins to emerge.

Considering the above discussion, one notes that the quantum mutual information
indicates that, in the case of perfect measurement, we get two bits of information, despite
the fact that the information in which we are interested appears to be a simple binary
statement regarding the particle’s path, or one bit. This is a peculiarity of quantum
information, corresponding to the existence of non-classical correlations (entanglement)
between the apparatus and the system. If there is a third link in the von Neumann
chain—e.g., an observer making measurements on the apparatus—we will find that there
is only one bit of information between the system and apparatus or between the system
and observer. Indeed, that there are many links in the von Neumann chain, including
not just the apparatus and observer, but also the large surrounding environment, e.g.,
photons, is why quantum correlations are so hard to detect.[55] The presence of many

such links is reflected in the redundant acquisition of information by the environment,

13The estimate for o* is found by observing that small values of o correspond to large values in the
argument of Erfc. Hence, the small-o case can be analyzed using an asymptotic expansion, leading to

~]20 /2 12402
Bo =~ L\/;exp(L/éla).

Further expanding this expression as a Taylor series about o = L/2 and locating the z-intercept then
gives
2\ V4 | 5/(, L
o R - B 1 T Y =Y,
e (G) e

which is the value stated in the main text.

so we find
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which is the quantum Darwinian process responsible for the emergence of the classical,
objective world.[51]. To see this, consider an observer O that perfectly measures the
apparatus immediately after the particle has been measured. In other words, if the

observer is initially in the state |0) ., the observer and the apparatus evolve according to

‘Lv O>AO = ‘Lv L)_AO )

|R,0) 40 = |R, R) 40 - (2.40)
Then we should replace Eq. (2.7) with
1 L 1 R
|‘I/,O,O>SAO|—>§’\I/ ,L,L>SAO+§\\I/ R R)s 400 (2.41)

where for a perfect measurement the system states ‘\IIL> and ‘\IIR> would be orthogonal.
If we now compute the partial trace over the apparatus as done in Eq. (2.11), we find

that the joint system-observer state is
1 1
s = S L)oo(WE L]+ L W By, B 2.2)

A second partial trace over the observer will recover Eq. (2.11), showing that the entropy

of the particle is unaffected by the observer’s measurement of the apparatus. The entropy

of the observer, though, is H(pp) = 1. In contrast to the previous discussion, the joint

state pso is not pure, so its entropy does not vanish. Rather, the orthogonality of
L R

|U%, L), and |[¥F, R)

so» due to the presence of the left /right record in the observer’s
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state, indicate that this, too, has H(pso) = 1. Hence, the mutual information is

I(§:0)=H(ps) + H(po) — H(pso) (2.43)

— H(ps)+1—1= H(ps), (2.44)

indicating that the observer acquires an amount of information equal to what is available
about the path of the particle, H(ps). If path information is present, or the measurement
precision is 0 — 0 yielding H(ps) — 1, then the observer will acquire 1 bit of information.
If not, H(ps) ~ 0, the observer will learn nothing about the path of the particle and
interference will be observed at the screen. When the observer is present and the global
state is Eq. (2.41), the apparatus will also have mutual information given by Eq. (2.44),
as entanglement with S is “locked up” in joint correlations between S and AQ.

Finally, we note that in the large L approximation, Eqs. (2.24) and (2.34) together
allow us to write

I1(S:0) = Hyy (“;V) . (2.45)

This explicitly connects the information gain by the observer with the loss of visibility of

the interference fringes through the binary entropy
Hyin(2) = —zlogyx — (1 — x)logy (1 — ), (2.46)

which characterizes the uncertainty regarding the outcome of a classical event that could
result in one of two outcomes with probabilities x and 1 — x, respectively. When the
fringes are readily apparent V &~ 1 and the information acquired by the observer (or

apparatus) is I (S : O) ~ 0. On the other extreme, when the fringes are not visible V ~ 0
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and the information gain is I (S : O) ~ 1. Note also that in the intermediate regimes
one can have quite high visibilities even for I (S : O) near 1, but for ¢ ~ L/2 there are
still visible interference fringes despite gaining nearly complete information about the
system’s path. This fact was also noted in the case of interference of photons.[42]

It bears mentioning that while we have focused exclusively on how the act of measure-
ment can cause a loss of interference, this is by no means the only reason interference may
not be observed. Another cause for interference loss is dephasing, which occurs when, for
example, the relative phase between the two Gaussians in the superposition varies from
trial to trial. In this case, the absence of interference is a statistical result arising from
the oscillation term acquiring a different phase in each trial, which causes the probability
density to be shifted. If the phase is Gaussian distributed with a width v (and mean 0),
then the expected probability density for a free particle (8, = 1) becomes

2zL 1.2 2z Lt
<P> ~ Fa:t |:COSh <1<|»t2> +e727 cos (1 +t2>:| ) (247)

when L > 1 (this calculation is similar to that in Sect. 2.2). Hence, a sharply-peaked
distribution of phases will exhibit interference that becomes washed out as the distribu-
tion widens. While this “dephasing” process produces a similar experimental outcome
(namely, the loss of interference), it is important to note that the physical process
is quite different than that of measurement-induced decoherence.[34] In particular,
decoherence removes interference from the wavefunction for every trial, whereas the
loss of interference due to dephasing is found only as a result of averaging over many

different trials.
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3: Quantum Darwinism

While the decoherence program may provide an explanation for the absence of interfer-
ence in our classical world (interference is suppressed by interactions with an environ-
ment), it fails to resolve the problem of the preferred basis or, more generally, to explain
the origin of an apparently objective classical reality. A more complete resolution is
provided by quantum Darwinism [50, 51|, which recognizes that the environment is a
communication channel, selectively amplifying and proliferating information in a way
that admits access to many different, independent observers. In this chapter, we review
the main results of the quantum Darwinism program, highlighting the means by which
quantum Darwinism attempts to explain the emergence of an objective, classical reality

from a quantum foundation (22, 49, 34].

3.1 Solving the basis problems

By considering a specific model of double-slit interference, we have shown in Chapter 2
how the precision with which one determines the path of particles passing through two
slits is directly correlated with the loss of observed interference effects in the subsequent
evolution of the particles. In particular, we have shown how the absence of interference
can be attributed to an apparatus gaining maximal information. Notably, this discussion
didn’t require any concrete identification of the “apparatus™; i.e., it may be a physical
device, an observer, or, most importantly, the environment.

As part of that previous discussion, we looked at the situation in which a third



42

participant, an observer, “checks” the apparatus after it has measured the particle, thereby
acquiring some of the which-path information indirectly. But this leads to a problem we
have so far avoided mentioning: that of the preferred measurement basis. In essence, how
does the observer know which variable was measured by the apparatus, and therefore
which measurement to perform on the apparatus? If they are incorrect and measure the
apparatus in the “wrong” basis, they may destroy the information it acquired, effectively
resetting it to an initialized state. But this is not our usual experience; it seems that our
measurement devices are typically found in states that correspond to some natural basis,
and that this basis is the one we should measure if we want to acquire information from
the apparatus. The question, then, is why this should be the case.

The answer comes in two flavors, the first of which, provided by Zurek [45, 46], is
rooted in the observation that real measuring devices are embedded in a typically large
environment with which they are consistently interacting. This interaction results in
decoherence between certain pointer states, so that an apparatus initially in a superposi-
tion of these states should rapidly decohere into an improper mixture of them, effectively
transferring information about those states, and hence any correlated information about
the system, into the environment. In other words, the environment acts as a communica-
tion channel, selectively transmitting information about the apparatus to our third-party
observer. In the event that the observer chooses the “wrong” basis, the information may
be lost from their fragment, but the large number of such fragments permits them to “try
again”.

Hence, the preferred basis for the apparatus is the basis that survives this environ-
mental monitoring process, but, on its own, this is not entirely satisfactory. For example,
one expects that isolating a measuring device should not significantly alter its effective-

ness. Moreover, the “apparatus” is not always distinct from the environment (as in the
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case of our everyday experience using a photon environment to acquire information about
the systems around us) or the system (as we can, in general, simply consider their joint
state). To handle these difficulties, we note that the environment accomplishes its role as
a communication channel by bringing a large number of independent degrees of freedom
to the table; the pointer states are those about which information can be accessed from
a small subset of these degrees of freedom, without resorting to a measurement on the
whole environment. But our experience of measuring devices is that, in contrast to the
two-dimensional apparatus discussed in the above model, they are typically macroscopic,
and hence have themselves a large number of degrees of freedom, only some of which
will be directly accessible to the third-party observer at any one time, and only some of
which will be involved in the interaction with the system. In particular, the preferred
basis is selected by form of the measurement interaction and the internal configuration
of the apparatus/environment.

So we’ve seen that the preferred basis problem may be resolved by the large number
of degrees of freedom available in the apparatus or, more generally, the environment. Of
course, the environment is typically huge, which leads to the next question: just how
much of the environment does an observer need in order to gain “enough” information

about the system? The answer, it turns out, is “not much”.

3.2 Amplification and redundancy: The origin of objectivity

In order to answer the question of how much of the environment is needed, we first
have to decide what constitutes “enough” information. The standard is to introduce
an information deficit, §, which represents the amount of information that observers

are willing to forgo. Then we can say that a fragment, F, of the environment carries
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“enough” information about the system when the mutual information between them sat-
isfies I (F : §) > (1—0)Hs. With this characterization, we define the minimum fragment
size, #F5, needed to acquire this much information.’

Knowing F5, we can define the redundancy of information, Rs = 1 / i, this being the
number of distinct fragments of the environment that transmit the necessary amount of
classical information. This redundancy is the origin of objectivity: because observers are
making measurements on their individual fragments, they alter neither the state of the
system nor the information acquired by other observers, and each such observer acquires
the same, nearly complete information regarding the state of the system.

Of course, the recognition that redundancy can provide access to objective informa-
tion is itself insufficient; one still needs to show that the redundancy of typical situations
is sufficient to explain our classical experience. This has since been demonstrated in a
number of situations, including that of a photon [32] environment in which, for example,
a lpym grain of dust subjected to 1us of Solar illumination yields a redundancy on the
order Rs ~ 107 [32]; i.e., tens of millions of independent observers can each acquire infor-
mation about the grain’s position without disturbing it. The redundancy remains large
even when the environment subsystems are initially in mixed states; in the case of a spin
environment, for example, the redundancy simply acquires a scale factor of 1 — h, where

h is the initial entropy of the individual environment spins? [52].

"More specifically, “Fs should be the minimum fragment size such that the average mutual information
between a fragment of size “F5 and the system S is equal to (1-90)Hs.

2 An important feature of the models considered here is the assumed homogeneity of the environment,
in which each environment subsystem begins in the same initial state; future work will be needed to
clarify the exact degree to which this assumption can be relaxed.
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3.2.1 The quantum Chernoff information

Early studies of redundancy were often complicated by the need to explicitly compute
the mutual information between the system and an arbitrary fragment, which in turn
requires an explicit calculation, or at least a strong approximation, for the fragment’s en-
tropy. These complications were ameliorated by the recognition of the quantum Chernoff
information [53]: the redundancy is characterized by the quantum Chernoff bound, EQC B
which provides a bound on the distinguishability between the states of the environment
subsystems conditioned on the state of the system |5, 25|. Explicitly, the redundancy is

given approximately® by B
~ e Sacn

Bs ~ Inl/§

with
£ — _ c 1—c
fQCB = 012(%}(1 ( In <tr [pk‘lTpk\i } >ke€)’ (3.1)

the typical quantum Chernoff information, where pg s is the state of an environment
subsystem conditioned on the system being in state § and the trace is averaged over
the environment. Hence, we see that the redundancy depends only weakly on § while
scaling linearly with the environment size. Moreover, a lower bound can be achieved by
skipping the maximization and just setting c to a computationally convenient value such
as ¢ =1/2.

The key feature of the quantum Chernoff information, made immediately clear by
Eq. 3.1, is that it allows us to characterizes the redundancy, and therefore the amplifi-
cation, of information in terms of (an average over) individual environment subsystems,

removing the need to consider arbitrary states in the (exponentially large) Hilbert space

3For spins systems, the approximation has been explicitly shown to be within a factor of 2 in the
asymptotic limit, and solved examples suggest it to be asymptotically exact
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of the environment /fragment. A less immediately obvious, though equally important,
fact is that outside of the extreme case where the system is in a pure | 1) or | ]) state,
the system’s probabilities entail only minor corrections to Eq. 3.1, so that this typical
quantum Chernoff information becomes the sole quantity of interest in the appearance

of an objective, classical reality.

3.2.2 A central spin in a spin environment

Following Ref. [54], let us demonstrate the use of the quantum Chernoff information
by considering a spin-spin system in which a central qubit, &, interacts with a spin-

environment, £ according to the Hamiltonian,

te
H=0%> g0}, (3.2)
k=1

where the g, are coupling constants between the system and each of the environment

spins, indexed by k. Assuming the initial joint system-environment state is

te
p=ps(0)® | Q) (0)
k=1

Referring to Eq. 3.1 we need to identify the conditional states of the environment
spins, py; after the k-th environment spin has interacted with the system for a time, .

This is straightforward, and one finds

pris = Vspr(0)V] (3.3)
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with

Vi = exp (Ligrtoy),

where the sign of the argument is determined by whether § = 1 or |. Hence, the interac-
tion has the effect of rotating the environment spin’s Bloch vector about the z-axis, and
we see that pyp = p;rg' U i.e., the two conditional states are rotated by equal amounts but
in opposite directions, resulting in a separation by an angle © = 4gtsin? 6 where @ is
the angle between the original Bloch vector and the z axis.

In this case, tr [pinpllc‘_f} is symmetric about ¢ = 1/2 and obtains a minimum there

[54], so we end up with

Eoep=—In [<1 — (1 - M) sin? @/2>J
- [(1- (V) )]

where a is the magnitude of the Bloch vector—i.e., a measure of the mixedness of the
environment spins—and the average is over fragments of size 1. In the special case of a

pure initial state, we have ¢ = 1 and so

EQCB =—In [<0052 (2gkt sin? «9)>1} .

Observe that, except in the extreme case § = 0 (i.e., for an initial state aligned with
the z-axis, which will be unaffected by the interaction and therefore insensitive to the
state of the system), the QCB is nonzero. Hence, redundant information is proliferated

redundantly into the environment in almost all cases.
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4: Local observers with limited tools

We live in a quantum Universe, and quantum systems change their state when observed;
they can be re-prepared by measurements. Observers—from human beings down to
microscopic organisms—have to learn, adapt, and respond within this fundamentally un-
predictable medium. In this chapter, we demonstrate that in our world, where observers
learn about quantum systems indirectly via the environment, there is no substantial ad-
vantage conferred to quantum observers. For instance, observers that can simultaneously
access and manipulate the quantum states of large environment fragments have their ig-
norance about the external world decrease rapidly as they accumulate “the evidence” (a
larger share of the environment). However, as we will show in Section 4.3, this decrease
is only slightly faster than a local, classical observer. These results suggest that observers
would be unlikely to evolve quantum hardware, as the slight advantage gained comes at
a tremendous cost. Moreover, they show that all observers—whatever their innate capa-
bilities—can access objective information about the effectively classical world, producing
consistency and consensus in an unpredictable quantum Universe.

We begin with a review of the essential elements of quantum Darwinism before pro-
ceeding to the primary result of this research: environmentally-induced decoherence gives
rise both to classical objective states of quantum systems and to a natural, local mea-
surement by which observers can acquire information about these states. In other words,

the environment stores the classical information not only redundantly, but also locally.
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4.1 Quantum Darwinism

The conflict between the quantum and classical worlds has been a perplexing feature
since the inception of quantum physics. As outlined in Chapter 3, quantum Darwinism
provides a framework for quantifying and understanding the absence of quantum effects
(i.e., Schrodinger’s cat) and the emergence of classical reality in our everyday experience
that goes beyond decoherence: Decoherence amplifies information—information about
certain, select states of the system S—and banishes what remains—complementary in-
formation about quantum coherences—to global correlations with the environment &,
simultaneously making some information accessible to all and the rest accessible to none
[55]. Indeed, in our everyday experience, we bask in the photon (and other) environ-
ment [53, 32, 33, 24|, which for all practical purposes selects position—the location of
objects—as the preferred observable, simultaneously preventing access to the “weird” su-
perpositions of objects in different locations. Position is the preferred pointer observable
because interactions depend on distances [47].

The environment is thus not just a source of decoherence. It is a communication
channel, acquiring and transmitting information about quantum systems to many ob-
servers (see Fig. 4.1). Information in this context is given by the Holevo quantity
X (f[g : .7-'), which quantifies the amount of information about the system’s effectively
classical pointer basis (e.g., location). The corresponding pointer observable, fIS, is trans-
mitted by a quantum communication channel-—the environment fragment F, the “piece”
available to an observer. The pointer states are thus special: They survive the interac-
tion with the environment and “live on” to proliferate copies of themselves, giving rise to
objectivity in the sense that many observers can identify the state of S independently

without perturbing the system itself [29].
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This amplification is captured by the redundancy of information [28, 7]. When an
observer needs a fragment of size 4F; to acquire y ~ (1 — §) Hs bits of information about

the system’s pointer states, the redundancy is

Rs = %€ %Fs,

where f€ is the size of the environment and Hs = H (ﬂg) is the entropy of the pointer
observable, i.e., the missing information about §. The information deficit § quantifies
the information about the system that observers are prepared to forgo.

For this transmission of information to occur, the environment must decohere the
system. That is, photons, phonons, spins, etc., “incoming” from some source (i.e., out of
equilibrium with the system), must scatter/interact with the system, decohering it and
acquiring information. When decoherence is strong compared to the system’s inherent
dynamics (which is the case for all but the most isolated and microscopic systems), the
initial state, at time ¢ = 0, of an environment component k, pi (t = 0), is rotated into
the conditional state py; depending on what pointer state § it interacted with. These
states are the “evidence”™—imprints of the system’s state—carried by the environment.
For incoming photons scattering off a superposition ~ |z1) + |z2) of, e.g., a dust grain,
these conditional states will be the photon interacting with the particle at 1 and at xo,
respectively. For spin environments, the conditional states are ones that interacted with,

e.g., the § =1, | components of the superposition.



51

Q
HU’
% =
1

i

§
!

54

{

By

1
Information (

o ¢ 5 5 . :
=3
AN P P A

RRAD
0.2 0.4 0.6
"FE

o
o

Figure 4.1: The transmission of information by the environment. (a) Schematic
of the environment as a communication channel, where observers intercept components
of the environment, bit-by-bit, and then locally process them (i.e., the chain in Eq. (4.1)
for a representative environment spin). (b) Information versus the size of the fragment.
The cyan and magenta curves show the classical and quantum components, respectively,
of the mutual information (see Section 4.3). All the quantum information is pushed
into correlations with nearly the whole environment, making it inaccessible to observers.
The antisymmetry between classical and quantum information is evident by the 180
degree rotational correspondence of their respective curves [55]. This is the quantitative
reflection of the statement that when redundant information is present, i.e., i is small
compared to %, then access to quantum correlations requires the ability to measure
at least %€ — Fs components. This is clearly prohibited: The photon environment is
large (10%° or more photons!) and we need only a handful of them to learn about the
location of objects. Recovering all, or nearly all, of the photons that have scattered and
observing quantum effects is a practical impossibility. However, observers can get some
information. The red line indicates the classical information actually available to an
observer free to make arbitrary measurements; i.e., the quantum Chernoff information
[53, 54|, while the dark grey line shows the locally accessible information by using a
measurement like that depicted by the grey arrows in the inset Bloch sphere (the Bloch
sphere represents the conditional rotation — green and blue counter-rotating arrows —
and then local measurement — projected grey arrows — used by the observer). This
information rapidly plateaus at the same value of information, the total information
about the effectively classical pointer states. Indeed, this is represented by the fast
decay of ignorance, P, ~ exp (—ﬁ]-'é), as the observer acquires more and more bits of the
environment. Therefore, even under tight constraints on the observer’s capabilities, they
still can easily access the redundant, objective information present in—and communicated
by—the environment.
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4.2  Local observers

When redundant information is present, i.e., F5 is small compared to %, then access
to quantum correlations requires the ability to measure at least € — #F5 components
simultaneously (see Fig. 4.1). Observers, however, are inherently limited, e.g., they are
local in space and time, in addition to limitations of memory (classicality and capacity).
For instance, a local observer would intercept, e.g., photons from the environment one
at a time and in one location. In the case of this photon environment of our everyday
experience, there is a particular basis that we measure in, corresponding to angular
direction and momentum (color). In other words, there seems to exist a fized basis that
allows observers to efficiently access classical, objective reality.

To acquire information “bit-by-bit”, observers must extract information from the py;
by making a local measurement, converting py; from a quantum to classical state pys,

which can be represented by the chain of events

§imprint local observation —~

pr (t =0) Pkl Dkls - (4.1)

From there, the observer can continue to accumulate more bits of the environment, ul-
timately acquiring a string of outcomes in the local basis they are measuring in. Their
(average) ability to successfully deduce the state § will be quantified by an exponential
decay of the error probability to distinguish the classical states of the fragment. The
exponent of this error decay is the Chernoff Information &, i.e., P, ~ exp (—ﬁ}' 5), where
“F is the size of the fragment (the number of bit-by-bit measurements the observer has
performed).

The inverse Chernoff information essentially gives the characteristic size of an envi-
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ronment fragment needed to make a correct assessment of the system state. The ampli-

fication, or redundancy, of locally accessible information is thus

Bote &
Rs ~ glnl/(i’ (4.2)

where the ratio {/1In (1/9) is a measure of the efficiency of the amplification (see Section
4.3 for details).

Already Eq. (4.2) shows that amplification is macroscopic (i.e., extensive in the en-
vironment size) and universal (as long as there is some sliver of orthogonality in the
local conditional states pyjs, then § will be nonzero. That is, observers have to work
hard—i.e., choose exactly the wrong measurement basis—mnot to find out this informa-
tion). Figure 4.2 shows the Chernoff Information {—the unattenuated efficiency of am-
plification—versus the bit-by-bit measurement basis for a spin environment (both pure
and mixed).

A surprising feature emerges for low entropy environments— the sharp peak in £ that
appears out of place. For exactly zero entropy environments (pure initial states and no
randomness in the interactions), the maximum efficiency occurs for a local measurement
axis that is aligned with one of the conditional states (either will do). As the environment
entropy increases (but considering a fixed direction of the conditional states on the Bloch
sphere), the peak diminishes, finally resulting in the optimal measurement transitioning
from the “aligned” axis to the y-axis (see Section 4.3 for more details). The latter axis
is selected out by the initial condition (z-axis state) and the interaction (z-axis), i.e.,
it is the axis complementary to the plane defined by the initial state and interaction.
Any initial state in the zz-plane will have the same optimal measurement, so long as

the environment has a moderate amount of entropy (h 2 0.05 for the example shown).
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This is remarkable: Except for (very) low entropy environments, there is a single natural
basis to measure in. This is analogous to photons in our Universe, where we measure
in a single basis, momentum (i.e., direction they come from). In essence, this indicates
that not only do classical, objective states of the system emerge from decoherence, but a
convenient classical measurement results as well.

These results are captured by Fig. 4.3, which shows the (unattenuated) amplification
efficiency for three modes of observation. The regime of this diagram that observers
will fall into depends on both their inherent capabilities and properties of the external
world. Observers that can globally store and manipulate the whole fragment state can
use this ability to most efficiently acquire information about the system. Observers
that are local—i.e., can only manipulate £ bit-by-bit—but can otherwise make arbitrary
quantum measurements, can also gain an advantage so long as the environment has a low
enough entropy. This will likely only occur at low temperatures and with very regular
interactions (irregularities add ignorance, as without prior knowledge the conditional
states are averages over the random interactions). Local observers that are constrained
in the measurements they can make still have a lot of power at their fingertips: As
shown by Fig. 4.2 and the amount of locally accessible amplified information in Fig.
4.3, essentially any measurement will allow a (highly) constrained observer to acquire the
objective information about the system. Moreover, the convenient basis allows them to
develop effective means of acquiring objective information, i.e., it serves as a fixed point
to evolve to. We note that in some restricted settings, a small quantum memory can
be used to acquire and store the relevant part of quantum states to be distinguished |[6].
However, having such a quantum resource is still costly, as it requires a highly isolated
quantum degree of freedom (or, for mixed states, more).

Our universe is indeed low entropy and thus highly regular. Most of our information
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Figure 4.2: The unattenuated efficiency of amplification, £, of locally accessible
information. Observers measure the environment locally—bit-by-bit—in some basis
characterized by the Bloch angles 6 and ¢, and for time ¢t = /3 (and per component
interaction Hamiltonian c%07). (a) When the environment is low entropy, the optimal
measurement basis is aligned with one of the two conditional states (either will do), as
highlighted by the intersection of the two solid, red lines. This manifests itself as a peak
in &, which is a remnant of the diverging £ when the conditional states become orthogonal.
This peak only exist for low entropy conditional states, i.e., below threshold of h < 0.05.
(b) For a mixed environment, the peak is washed out (here, h ~ 0.08, which is already
sufficiently high for the flatness to be visually apparent). Indeed, above the threshold
entropy, a basis emerges that gives the maximal amount of locally available information
regardless of the time of interaction or the entropy. This basis is complementary to the
initial environment state and the interaction axis with the system. Here, these are along
the x-axis and z-axis, respectively, giving the convenient basis 0¥ (0 = ¢ = 7/2). Just as
with the photon environment, there is thus a natural, classical basis—a basis for which we
do not need to worry about superpositions thereof—to measure in. Hence, the optimal
basis is dependent on the conditional state only for very low entropy environments. We
expect the photon environment has richer behavior, as we can change the incoming
photon direction, for instance, without changing this objective basis. This flexibility is
permitted since the dimension of the photon Hilbert space is much larger. For the spin
case, we only have the “classical” freedom of changing the mixedness and direction within
a single plane of the Bloch sphere, any other change (in the initial state) will make use
of complementarity (superposition).
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comes from the photon environment (not, e.g., air molecules, which could be out of
equilibrium with some superposition of a dust grain and will decohere it, but do not
lead to locally accessible information). The above results suggest, though, that observers
in our world do not have a strong selection to exploit quantum effects, as the cost is
high (i.e., quantum memory and the ability to make arbitrary measurements) and/or the
window of regularity (for a local quantum advantage) is small, and the practical gain is
low.

However, the regularity present in our world is sufficient for observers to find out about
quantum systems (or classical, e.g., already decohered quantum systems), including var-
ious basic properties, without prior knowledge (i.e., without knowing that it exists, its
dimensionality, its interaction with the environment, or the environments’ initial state).
To do so, an observer only needs to intercept fragments of the environment. As we show
in Section 4.3, the information shared between fragments of the environment is close—to
within € ~ exp (—ﬁ]: §)—to the classical information about the system deposited in the
fragment, x (ﬂg v ) Moreover, to acquire this information, confirm it, and determine,
e.g., the dimensionality of S, requires only bit-by-bit measurements on components of
the environment. These measurements allow an observer to characterize the classical
conditional states, pyz. The number of such states they find yields the (minimum) di-
mensionality of the quantum system. These considerations, of course, require a promise
by Nature, that they will be guaranteed that the initial environment state and its dynam-
ics and interaction with the system has at least some regularity. Only then can observers
learn indirectly via the environment. If observers had the ability to adapt their measure-
ment basis, they could exploit this indirect acquisition of information to “intercept”, but
not destroy, the regularity present in the Universe.

Observers, though, are constrained by the hardware that they are—or can be— built
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Figure 4.3: The phases of observation: Globally quantum advantaged (GQA,
red), Locally quantum advantaged (LQA, black), and classical (LC, magenta).
The unattenuated efficiency, &, of amplification versus the entropy of the post-scattering
conditional state, h, of an environment component with typical parameters for three
modes of observation: Fully quantum observers—ones that can acquire and manipulate
large fragments of the environment—have access to the most information, i.e., they can
be in the GQA regime. Their ignorance about the quantum system decays more rapidly,
providing them near certainty with less “evidence” (the size of the fragment). Locally
quantum observers—ones that can manipulate the environment bit-by-bit but otherwise
arbitrarily—also gain an advantage so long as the environment has a very low entropy.
Local, classical observers are ones that are “stuck” with some basis that is given to
them. Nevertheless, for a broad range of conditions, there is a single, optimal basis
to locally extract information about the system from the environment components. To
make use of the quantum advantage requires prior knowledge of the initial conditions
and interactions, or a stringent amount of regularity in the Universe (i.e., only for very
pure states and constrained interactions, giving a low entropy post-scattering/interaction
conditional state). However, this advantage is not substantial and this suggests that it
is unlikely that observers have evolved to exploit quantum effects in observation.
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with, i.e., they can not make arbitrary measurements. What the results above together
with this discussion show is that there exists a pathway—a pathway that can be taken
randomly where natural selection provides a biasing force—that can lead observers to
good, local measurements to make. As a starting point, just about any local basis will do
and this can—but does not have to—evolve to a more efficient acquisition of information.
In other words, objective, classical reality is inescapable [28, 53, 8] and redundancy leads
to robust observation. Thus, even in the unpredictable quantum Universe, observers can
find objective properties in the world, ones on which they can base subsequent actions,

surviving Darwinism by exploiting quantum Darwinism.

4.3 Methods

The total amount of information about a system that an environment fragment, F, has

about a system, S, is quantified by the quantum mutual information,
I(S:A)=Hs+ Hr — Hsr,

where Hy = —pglogs p4 is the von Neumann entropy for some subsystem A. This
mutual information is divided naturally into classical and quantum components [55],

I(S:A)=x (f[g : ]-") +D (f[g : }"), with the Holevo quantity [20],

X (ﬂs : ]:) =H (Zmﬂﬂg) - ZPgH(Pﬂg),

providing an upper bound on the amount of classical information (i.e., information about

the eigenstates of the system’s pointer observable IIg = > 3|8)(5]) that can be transmit-
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ted by the fragment. The remaining piece—the quantum discord D <ﬂ3 : F ) —quantifies
the coherences in the basis Ilg [45, 30, 19, 55].

This information is stored redundantly in the environment, with redundancy Rs =
'€ J%Fs, when a fragment of size “Fs achieves y (ﬂg : F ) ~ (1 — 0)Hgs bits of information
about §. For a two-dimensional system, Fano’s inequality [26, 11] provides the lower-

bound,

X(ﬂs : f) > Hs — H(P),

where H(x) = —zlogy(x) — (1 — ) logy(1 — z) is the binary entropy and P, is the error
probability for distinguishing between the (two) conditional states prj;. Hence, for a

fragment of size &Fs, we have an upper bound on the information deficit given by
H (P e) > 5HS
In the limit #F5 — oo, the error probability decays exponentially, P, o e 5¢ with

oo =—In <01%ﬂgg1 tr [pim pifD (4.3)

giving the “typical” Chernoff Information, EQCB [53], an extension to non-ii.d. (not
independent and identically distributed) states of the quantum Chernoff Bound [5, 27, 25].

This calculation is readily extended to higher dimensional systems.
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4.3.1 Conditional states

For spin environments and without loss of generality, a single environment spin has an
initial state

pk(0) = = (I+ azo, + azo,) .

N =

We have chosen the basis so that the initial environment state is in the zz-plane. For the
Hamiltonian we consider, this assignment can be done without limiting the class of initial
states. After interacting with the system according to the Hamiltonian H = 03®) ", gro;

for a time ¢, the conditional states evolve to

1 1+a, agze 29khst

Prjs = 5 , (4.4)

2 .
axGngkhSt 1—a,

where hy; = 1,—1 are the eigenvalues corresponding to § = 1, |, respectively; i.e., the
Bloch-vectors rotate in opposite directions about the z-axis, @ — @z as depicted in Fig.
4.1b insert.

If the observer now fixes a measurement basis by choosing an axis m on the Bloch

sphere, there are two measurement operators

1.
[+X+ =5 £ -5) (4.5)
and |—)—| = I — |[+)+|. The measurement interaction then transforms the conditional
states according to
L7 R
P = 5 [I + (2ps — 1) a] (4.6)
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with ps = (4] pgjs |[+) the probability of finding py; in the state [+). Specifically,

1 .
Ps = 5(1 + ds - M), (4.7)
or 2p; — 1 = dz - m. Thus, we can write the measurement transformation as
PS5 I + (d@s - )i - &| = Diag[ps, 1 — ps). (4.8)

The diagonal form is in the basis defined by m (i.e., the post-measurement conditional

states commute, allowing them to be simultaneously diagonalized in that basis).

4.3.2 The local Chernoff information

When one is restricted to local measurements, £ is determined by applying Eq. (4.3) to
the conditional states p; defined in Eq. (4.8). Simultaneous diagonalization then allows

us to write

- . 1— 1—
§=—In onin, (pinpﬂ iy AR ) C), (4.9)

which is just the classical Chernoff Information associated with a Bernoulli random vari-
able [10]. Evaluating Eq. (4.9) explicitly requires determining the value of ¢. Note first
that p, 4 = py|, is obtained only when the two conditional states coincide, in which case
no distinction is possible, i.e., the observer would not be able to infer the system’s pointer
state. Thus, without loss of generality, we will take py 4 > py | and pyjp > 1 /2.

Given this, the simplest case is that of p, 4 = 1, which occurs only for an aligned
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measurement of a pure initial state. In this case, Eq. (4.9) simplifies to

_ : 1—c
E=—In [0I<nc1£1 p+|¢] . (4.10)
The minimum occurs at ¢ = 0, from which we conclude { = —Inp;. This is expected, as

a misidentification can occur only if the received conditional states are all py, , but every
measurement yields outcome |+); hence, the error probability is just pz E A similar
simplification occurs in the case pyj, = 0, so that { = —Inp_j;, corresponding to the
likelihood of finding all |—) outcomes when the received states are Pk -

For other, less extreme cases, the value of ¢ that minimizes Eq. (4.9) is
piyy 8 (%)
P11 1og (221t

c= n/d (4.11)

PiyP—|t
log [PHTILIJ

log

This simplifies greatly in the special case p,|, = p_j;, which holds whenever the two
conditional Bloch-vectors have equal and opposite projections onto the measurement
axis (as in the case for a y-axis measurement when we set the initial state to be in the

xz-plane). In such cases, Eq. (4.11) gives ¢ = 1/2, yielding

1/2 1
&= —log [Qer/Hp_Nl/Q} =3 log [4p+|Tp+u]. (4.12)

An exact simplification of Eq. (4.11) is not generally possible.
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4.3.3 Optimized local measurements

Knowing how £ depends on the probabilities allows us to determine the optimal measure-
ment axis. Starting from Eq. (4.7), we see that the probabilities depend only on the two
conditional Bloch vectors, @y and @, and their projections onto the measurement axis.
Hence, we work now with coordinates chosen so that the conditional states lie in the
xy-plane at angles +«a from the Z-axis, and the measurement axis is determined by the
usual Bloch angles (0, ¢). The optimum measurement axis is then found by expanding
Eq. (4.7) in these variables and then setting the derivatives of Eq. (4.9) with respect to
0 and ¢ equal to zero. The actual computation is simplified by the fact that ¢ is defined
so as to optimize &, so the derivatives of Eq. (4.9) can be computed by skipping the
minimization and treating c as a constant defined by Eq. (4.11).

For the #-derivative, one finds that
d€/df  cosb.

Hence, this derivative vanishes at § = m/2, which corresponds to a measurement in
the plane of the conditional states. The ¢-derivative admits a similar proportionality,
% o sin f, but this yields a minimum (i.e., # = 0, in which case the measurement axis is
orthogonal to both conditional states and so yields no information). The proportionality
term, though, depends on ¢, «, and c in rather complicated ways, but one can verify by
inspection that it vanishes if pp =1 —py; i.e., when the measurement axis lies in the
yz-plane. We therefore see that a critical point exists whenever the measurement axis

is in the plane of the conditional states and orthogonal to their bisector. In terms of

the original coordinates, in which the conditional states are allowed z-components, this



64

corresponds to a measurement along the y-axis.

However, whether or not a critical point is a local maximum, minimum, or neither
cannot be determined by the first derivative. In fact, Fig. 4.2 shows that the y-axis
measurement is optimal only when entropy is past the threshold value. At very low
entropy, it transitions into a saddle-point, and the true optimum moves toward an aligned
measurement, as shown by the deviation of the blue curve (optimal measurement) away
from the green curve (y-axis measurement) in Fig. 4.3. In this regime, we compute the
optimum measurement numerically.

In Fig. 4.2a, the sharp peak in £ is unusual. The rapid increase in £ as the entropy
nears zero can be understood by looking at the information available to an observer
making an aligned measurement at a calculationally convenient time. Specifically, at
sufficiently low entropy, there will always be a time at which p =1 /2. This simplifies
the expressions above sufficiently to approximate &, and we find

A+ (1/B)In[2In(1/B)] ~ In (2/B) In[in (2/B)]

¢ In2/B

where A = In (2) In (21n 2) has been introduced for readability and B = 1—a characterizes

the Bloch vector’s impurity. This has derivative

d§ A-In(2)lnln(1/B)
dB eln?2/B ’

which diverges as B — 0 (i.e, in the limit of zero entropy).
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4.4  The environment has it all

Quantum Darwinism recognizes the role of the environment as a communication channel,
transmitting information about a system to the broader world. Indeed, the environment
is the way observers learn about the world, which is possible only because it carries all
the information that observers need in order to acquire that knowledge. To see this, we
began by a specific calculation where a system is purely decohered by the environment
and where the global state is pure. We then examine the more general case.

For a pure S€ state undergoing pure decoherence, the mutual information between
fragments of the environment, I (F : F'), can be calculated following results in Ref.[52].

It is

I(.F.F/) :H].‘+H]:/—H]:]:/
= Hsar + Hsar — Hsarr

=H (kr)+ H (kr) — H (krF), (4.13)

where Hgg 4 indicates the entropy of the system decohered by the subset A of the en-
vironment and H (k_4) is the binary entropy of k4 = <1 + 'YM) /2 (for clarity, we have
implicitly assumed throughout that the diagonal elements of the system’s density matrix
are 1/2 in its pointer basis, significantly simplifying the expression for x4 from Ref.[52]).
Here, ~ is the decoherence factor from one environment spin (we assume it is the same

for all spins, an assumption that is easily relaxed). Taking the leading order terms in
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72@4 gives
1 (.7: : ]—") ~1— L (,y2’i.7E +,y211]-" o yg(u]:_,_]:/))
In4
=1 ﬁ (672@0311}— + engCBu}—/ — e’EQCB(ﬁ}—Jr}J)) (4.14)
n

where the second line follows from the relationship between the decoherence factor and
the quantum Chernoff Bound for pure environments [54]. This demonstrates that each
of the environment fragments holds the same information. They can thus be used not
only to learn about the system, but also to confirm an initial observation by repeating
the measurement on a different fragment, as Eq. (4.14) rapidly approaches Hg = 1.
More generally, we can show that when I (S : . A) grows rapidly and then plateaus,
observers can both determine the missing information about & and confirm that infor-
mation using fragments of the environment only. Considering a system with “surplus
decoherence” (that the environment even without some small fragments is sufficient to

decohere the system), then we have a system and two fragment state of the form

psFr = Y psl8) (31 @ pris © p s,
;

where we have also taken the environment fragments to be independent. This gives the

FF' state

PFF = Zpgpf\é QP Frs
5

To bound the information in F’ that can confirm the information already determined

from F, we will show that I (F : F’) is close to x (f[g VA ), and specifically the pointer
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information communicated by F’. Essentially, this will make use of

where, for the first equality, we tacked on an auxiliary system A. The second equality

uses a state that has a unitary rotation on F.A only,

prraA =Uraprr s ,.

The two inequalities make use of the data processing inequality [26] (first ignoring F and
then making a measurement on A in the basis corresponding to the pointer basis of S,
yielding a final state oz 4).

When F acquires information about S, this means that there exists a POVM with
elements Az that have the following properties: trAspr; > 1 — € and trAgypr; < €
for & # 5, where € is the exponentially decaying error probability for distinguishing the
states (i.e., the Chernoff bounds computed above). Thus, the unitary operator defined
by Upa [6) 2 10) 4 = X5 VS

After performing this unitary and measuring A in the basis I14, we have the state

V) £ |5) 4 will transfer the information in F into A.

TFA=Y_ a0 Fja @ |a)(al,

a
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where the “pointer states” @ on A correspond to § on S and

1
TFa = > prspstrAap £
5

and

o= Y pstrAapFs.
P

This gives the Holevo quantity

()

=H (%:pgpmg) — %:%H (0 71a) -

O']:/A

We note that the first term is the same as that in y (ﬂg : F ), i.e., in the information
communicated about S by F’. The second term is the sum over entropies of the condi-
tional states o 7| which are close to, but not the same as, p 3 for § = a. Due to the

properties of the POVM elements, the probabilities and states obey

lgs — ps| < e

and

1
§tr ‘O']:/|§ — p]:/|§{ S 2e.



69

The latter is proven by

1
= tr “ > priapatrAsp Fa — p s
S -

a

tr ’O’]:/|§ — p]:/|§

D3 1
=1tr|prs (;trAspﬂg - 1) +— E p FrlaPatrAsp Fla
5 5 a3

D3 1
—trAsp Fis — 1‘ + = patrAsprp
g3 5 ot

<

< 4e.
Moreover, by the continuity of the entropy [26],
|H (p7115) — H (0 715)| < 26F logy D + 1 (2e)

with n () = —zlogy x and D the local Hilbert space dimension of each component of F'.
Thus, we can bound the common information about S that is in F and F’ by the
following:

\X (ia:7)  —x(fis: 7)

OFrl A

Z [psH (prs) — asH (U}"§)]‘

H (prs) — %H (0 713)

S
< Ds
3

< 4€*F" logy D + 21 (2€) .

Therefore, to within the exponentially decaying error probability € (with exponent given

by the Chernoff bound), the information that can be confirmed by F’ is the information
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it has about S (we note that x (f[A : ]-"’)G o which is also close to I (F : F') since
the latter does not grow linearly with the s],;zf;} of F or F', but rather is bounded by
the missing information regarding the system, i.e., when F + & < ¥ /2 then Hs >
I(SF:F) > 1I(F:F)). Hence, one can use the other fragments as a proxy for S,

confirming information they have received in a fragment F without ever having to interact

with or consider the system S.
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5: Conclusions

The question of how an apparently classical world arises within a fundamentally quan-
tum universe is complicated, and its ultimate resolution uncertain. However, as shown
here and in the references, the quantum Darwinism program provides one framework for
finding such a resolution. In particular, we have shown how environmental decoherence
allows observers, even those bound to make local measurements, to acquire objective,
verifiable information about the states of certain systems. Moreover, we have shown that
except in special cases, unlikely to be encountered in the every-day world, the optimal
measurement for acquiring that information is essentially independent of the state of the
system in question, thereby (together with the regularity of our environment) allowing
observers to adaptively identify the optimal measurement without any prior knowledge
regarding the state, or even existence, of the system.

Stepping back to take a broader view, the implications of quantum Darwinism can
be summarized thus: a large quantum universe almost necessarily appears classical to all
but the most careful observers, conspiring to hide quantum correlations in inaccessible
degrees of freedom within the environment while simultaneously using that environment
to amplify and distribute information about select observables. Observers immersed in
the environment can therefore easily come to a consensus about those observables from
just their local piece of the environment, but must struggle against the global environment
in order to find evidence of quantum “weirdness”. Hence, we experience our world as
classical not in spite of, but because of its underlying quantum nature. The quantum

does not transition into the classical; it merely hides behind it.
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