Jerry Earl Clark for the degree of <u>Master of Science</u> in <u>Agricultural and Resource Economics</u> presented on <u>December 17, 1976</u> Title: <u>A Proposed Model to Predict Population in Relatively Rural Areas</u> Experiencing Rapid Economic Development

Abstract Approved:

Frederick W. Obermiller

In this research a model is developed to predict population for relatively rural areas experiencing rapid economic development. Of the many ways to predict population size, in this research a "demographic-economic" model is chosen for use. The economic variables which aid in projecting population are total employment, and net changes in employment associated with economic growth. The model developed for this research is applied to Oregon's Northern Columbia River Basin Counties of Morrow, Umatilla, and Gilliam. Each county is or is expected to experience rapid growth in its agricultural and/or industrial sectors in the next few years. Using employment projections to the year 1990, population projections are made at five-year intervals between the years 1970 and 1990. A Proposed Model To Predict Population In Relatively Rural Areas Experiencing Rapid Economic Development

by

Jerry Earl Clark

A THESIS

submitted to

Oregon State University

in partial fulfillment of the requirements for the degree of

Master of Science

Completed December 1976

Commencement June 1977

APPROVED:

Assistant Professor of Agricultural and Resource Economics

Head of Agricultural and Resource Economics

Dean of Graduate School

Date thesis is presented <u>December 17, 1976</u> Typed by Dodi Snippen for <u>Jerry Earl Clark</u>

ACKNOWLEDGEMENTS

This author wishes to express deepest thanks to Dr. Frederick W. Obermiller whose patience, guidance, and support as major professor made the completion of this research an easier task than it might have been.

To Dr. Roger Kraynick must go thanks also, for his programming of the model developed for this research. Many suggestions made during conferences with Dr. Kraynick utlimately improved the value of this research.

I must also acknowledge members of my advisory committee for their critical reviews and suggestions during the preparation of this thesis.

TABLE OF CONTENTS

Chapte	r	Page
Ι	Introduction	1
	Statement of Problem	1
	Research Setting	3
	Selected Effects of Economic Development	6
	Objectives of the Research	8
	Synopsis of the Thesis	9
II	General Methods of Population Projections	10
	Fertility and Mortality	12
	Migration	13
	Descriptive Methods of Projecting Migration	13
	Economic Methods for Predicting Migration	15
III	Employment Growth and Its Effects on Population Size	18
	Recent Population Projects	18
	Future Growth Scenarios	21
	A Proposed Model to Predict Population	25
	The Model Expressed in Equation Form and the Fertility and Mortality Sub-Models	25
	Fertility and Mortality	27
	The Migration Sub-Model	30
	Estimating Labor Force Associated With Employment	30
	Estimating Labor Force Associated With Unemployment	39
	Estimating Labor Force Size on Basis of Resident Supply of Labor	41
	Net Migration	43

TABLE OF CONTENTS (continued)

Chapter

Page

Population Changes Associated With Net Migration Projections	44
A Discussion of Essentially Non-Economic Variables As A Source of Population Change	45
'IV Statistical Results and Interpretations	47
Relative Accuracy of the Proposed Model	47
Projections: 1975-1990	53
Total Population	54
Selected Age-Cohorts	56
School-Age Population	56
Population Over 65 Years of Age	58
Limitations and Further Research	58
Conclusion	60
Bibliography	61
Appendix A: Sprague Multiplier	64
Appendix B: Computer Program Listing	67
Appendix C: Empirical Results	84

LIST OF TABLES

Table	Pag	le
1	Value of Gross Agricultural Sales: Three-County Region, 1965, 1970, 1975	5
2	Three Scenarios of Economic Growth in Oregon's Northern Columbia River Basin	ŀ
3	National Fertility Rates for Total Female Population Ages 15-44 in 1970 29)
4	National Mortality Rates By Single Year Age and Sex Cohorts for 1970	
5	The Five Industrial Sectors of the Three-County Region and the Associated Industries With Each Sector	2
6	Percent Married Male, Single Head of Household, Dependents, and Seasonal Employees in the Five-Sector Economy of the Three-County Region	,
7	Total Employment By Heads of Households for Baseline Employment Projections: Year 1970	3
8	Total Heads of Households in the Three-County Labor Force: 1970	I
9	Percentage of Males and Females Between the Ages of 18 and 65 Who Are Married 42	2
10	Male-Female Labor Force Participation Rates By Age 43	3
11	Migration of Labor Force Associated With Employment Growth and Total Population Associated With Labor Force Migration: 1970-1971	1
12	Employment by Industry for Umatilla, Morrow, and Gilliam Counties: 1960-1975 48	3
13	Comparison Between Enumerated and Predicted 1970 Population by Selected Age Groups: Morrow, Umatilla, and Gilliam Counties, Oregon	Ą
14	Comparison Between Two Predicted 1975 Population Totals: Morrow, Umatilla, and Gilliam Counties	3
15	Enumerated and Projected Total Population by Scenario for Umatilla, Morrow, and Gilliam Counties: 1970-199055	5
16	Actual and Projected School-Age Population by Scenario for Umatilla, Morrow, and Gilliam Counties: 1970-199057	7

LIST OF TABLES (continued)

Table		Page
17	Sprague Coefficients	. 66
18.	Total Employment: 1970-1990 Umatilla, Morrow, and Gilliam Counties, All Scenarios	. 86

Figure		Page
1	Major Industrial Sites: Three-County Region	4
2	Stanfield/Westland Irrigation District Service Areas	23

A PROPOSED MODEL TO PREDICT POPULATION IN

RELATIVELY RURAL AREAS EXPERIENCING RAPID ECONOMIC DEVELOPMENT

CHAPTER I

INTRODUCTION

Statement of the Problem

One of the most important consequences, and sometimes a major reason for support of local and regional economic development programs, is that growth implies new employment opportunities. Most communities consider new jobs to be a valuable asset.

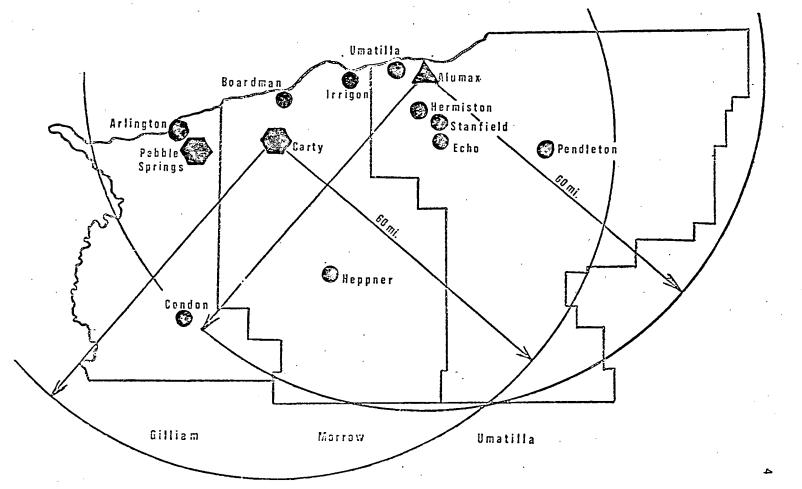
Expanding the employment base means new income infused into a local economy. This new income can lead to increased sales for local merchants. It can mean new housing and an increase in the local tax base, apart from the original increase attributed to the plant or buildings housing the new industry. For many small communities and rural areas in the United States, economic development may mean the reversal of a period of economic stagnation.

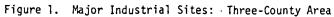
Economic growth further stimulates a local economy indirectly. Many industrial firms attract other industries which serve or are otherwise dependent on the primary industry. Examples include expanding agricultural output leading to new food processing plants, cold storage and transportation facilities following meat packing plants, varous warehouse and wholesale distributors serving major manufacturing facilities. Each new supportive firm contributes new jobs, and new income, to the expansion of the local base. As sales pick up in the local service sector, it may mean new employees or physical expansion into a larger store or service building. Economic growth, as can be seen from the above discussion, has many positive impacts for the community at large, apart from just those who benefit directly in the form of income and profits from the original expansion. But economic growth may also have negative consequences.

New jobs often imply new people in a town or area unprepared for population growth. New costs may be imposed on local governments as, for example, greater police and fire protection are needed. New schools and teachers may be required as new residents enlarge the school population. All of the above costs are primarily monetary in nature, but there may be social costs associated with growth which are hard to quantify. Some communities take pride in the fact that they are small and closely knit. Economic growth may mean an influx of people with different social backgrounds who do not exactly "fit in" with the original residents. If the influx is sufficiently large, small towns may completely lose their original identity.

There are other social costs associated with growth which are not as philosophical as "identity", but are just as hard to quantify. An expanding population means more traffic and its associated pollution, generally higher crime rates, and sometimes pollution of air and water by the firm or firms creating the new jobs. Economic growth brings with it many problems for communities, and not just those monetary costs associated with serving a growing population. Not all the effects of economic expansion and the subsequent rise in employment are positive.

It is nearly impossible to objectively evaluate the multiple impacts of economic development unless total costs and benefits can be identified and measured. Since costs and benefits are things which <u>people</u> must pay for and receive, it is important to know the expected quantity and composition of job-induced population growth (who and how many people there


will be). There is a second reason why identifying the effects of new employment has on population change is necessary. Economic development activities in many areas are a reality apart from whether or not they are desired or even desirable. In areas experiencing economic growth there is a need to react to changes taking place. Identifying expected changes in population size and composition may aid in a smoother economic and social transition.


The ability to project population can be important to decision-makers at various levels of government in facilitating their response to changing social and economic conditions. Without some idea of what the future holds, decisions can only be made in response to a change taking place or to changes that have already taken place. Consequences can be hasty decisions, overreaction, or failure to react adequately.

Research Setting

A relatively rural area in northeastern Oregon provided an opportunity to examine the effects of increasing employment opportunities on population growth (Figure 1). The counties of Gilliam, Morrow, and Umatilla, located in the upper Columbia River Basin in Oregon, were either experiencing rapid development of the local economy, or were expecting such growth in the near future.

In April, 1975 a proposal was submitted to the Office of the Governor, State of Oregon, for funding consideration drawing on Title X funds of the Public Works and Economic Development Act of 1965, administered through the Pacific Northwest Regional Commission. The primary purpose of the research to be supported by those funds was to investigate the alternatives for and consequences of water development projects in the Oregon Northern Columbia River Basin area. On August 1, 1975, the project was funded under the

title "Oregon Northern Columbia River Basin: Irrigation Systems Development Project". The Department of Agricultural and Resource Economics, Oregon State University, assumed as one of several obligations responsibility to provide the primary contractor, Stanfield and Westland Irrigation Districts, "... with a basis for assessing the economic consequences and impacts of agricultural based growth and development in the area" [28, p. 9].

Interest in assessing the economic implications of various forms of development in the tri-county area (Umatilla, Morrow, and Gilliam Counties) was spurred by the rapidity of economic changes that have characterized the region since about 1970. $\frac{1}{}$ The agricultural sectors of Morrow and Umatilla Counties, especially, have undergone radical transformation. Irrigation projects have brought upwards of 80,000 acres into production since 1970 [3, p. 201; b].

Irrigation development has had significant indirect effects on local economies and communities. Several new firms have been established since 1970, including irrigation pipe manufacturing, bulk fertilizer plants, meat packing plants, and potato processing firms. Many additional firms are in the planning stages for future development. Most or all of this development can be attributed to the irrigation-based increase in agricultural pro-

 $\frac{1}{1}$ Actual industrial development in the tri-county area has, since 1974, occurred so rapidly that at any one time it is impossible to accurately list or evaluate new developments. An excellent source for such information is the "Greater Hermiston Chamber of Commerce Newsletter", which contains a listing of all known development proposals for the area [15]. A few of the larger known development as of July, 1976 include:

(1) Gourmet foods - began operation in the third quarter of 1976 with 162 full-time employees with 100 additional employees added in the fourth quarter.

(2) J.R. Simplot Co., - 15 million dollar facility to process potatoes, a three-stage construction phase with the first to employ 200 people.

(3) Alumax Pacific Corporation - primary ore reduction facility with eventual permanent, full-time work force of 800.

(4) Portland General Electric - coal-fired electrical generating facility near Boardman in Morrow County with a full-time work force of 100 employees.

duction in the tri-county area. The magnitude of increases in the value of area agricultural production can be seen in the table below for total value of agricultural sales:

	Total Gross	Sales (Agriculture)	In Thousands
County	1965	1970 <u>a</u> /	1975 <u>-</u> /
Gilliam	6,372	7,991	17,788
Morrow	8,996	11,438	69,216
Umatilla 🚬	29,002	46,853	108,953
TOTAL REGION	44,370	66,282	195,957

Table 1. Value of Gross Agricultural Sales: Three-County Region, 1965, 1970, 1975

<u>a/</u> Revised estimate.

<u>b/</u> Preliminary.

Source: Compiled from "Value of Agricultural Sales-Annual Reports", Extension Economic Information Office, Oregon State University [19].

Change in the economic structure of the Northern Columbia River Basin counties has not been limited to agricultural development. Alumax Corporation and Portland General Electric (PGE) are in the final planning stages for new plants to be located in Morrow, Umatilla, and Gilliam Counties. In the fall of 1976, Portland General Electric began construction near Boardman in Morrow County of the first of several proposed electrical power generating facilities. Future plans include the construction of a nuclear power plant near Arlington in Gilliam County. PGE's long-range goals are to have at least three generating plants on line in the area by the year 2000 [27].

Selected Effects of Economic Development

The first notable effect rapid economic development had during the late 1960's and 1970's was on the unemployment rates in the tri-county

area. In Gilliam, Morrow, and Umatilla during the 1960's, unemployment exceeded both national and State of Oregon levels. Average unemployment in the three counties during the 1960's was more than a complete percentage point higher than the United States and Oregon averages. This means that unemployment in the three counties was more than 18 percent higher than national or state levels [2, p. 19; 11, p. 225; 29].

Since 1970, the situation outlined above has sharply reversed. In 1975, the annual unemployment rates for Morrow, Gilliam, and Umatilla were 5.6, 8.6, and 7.7 percent respectively [29, 1975]. These rates are far below the State of Oregon average (10.6 percent), and only Umatilla County had an unemployment rate slightly higher than the 8.5 percent national average [29, 1975].

Population growth has also been associated with the economic development in the tri-county area. Umatilla County experienced a seven percent increase in population between 1970 and 1974, from 44,923 to 48,200 [9, 1970-1975]. Morrow has experienced no less than a 16 percent increase in the same period, from 4,465 to 5,190 [9, 1970-1975]. Gilliam has slightly lost population but that trend could rapidly be reversed with the future development of the Pebble Springs nuclear facility.

Future population growth can be expected for two reasons. The relatively low unemployment rates in the area suggest that any excess labor which may have existed is essentially exhausted. Anticipated employment growth will thus attract more residents to Oregon's Northern Columbia River basin. Secondly, future expansion in such areas as electrical generation and primary metals reduction may require a particular type of labor force which is not now residing in the area in any great numbers.

The primary purpose of this research is to develop a population forecasting model based on changes in total employment for small, relatively rural areas experiencing rapid economic growth. Once the model is developed and tested, it is applied to the counties of Morrow, Gilliam, and Umatilla. The recent history of rapid growth, and the expected continuation of that growth makes the tri-county area an ideal research setting.

Such a model should be of benefit to many communities who are either anticipating, or are experiencing, economic growth and wish to know something about what the future holds. Reasonably accurate population projections which reflect changes in total employment should be of considerable value to county commissions, or their equivalents, by providing a decision-base for questions of planning and zoning, for example. Boards of education will possibly be better able to assess the need for facilities, teachers, and equipment. Mayors and city managers might be better prepared for actions related to the provision of police and fire protection as well as other city services. In the tri-county area, assuming relatively accurate population predictions are forthcoming, local governments should benefit in their attempts to plan effectively for future change in the economic and social structure of their constituency.

Finally, it is also hoped that by providing population projections for alternate growth scenarios, residents of the area can gain some control over their own futures. Decisions being made now will affect the area for several years. Knowing something about the future consequences of present choices should help residents to better decide the course of their own futures.

Synposis of the Thesis

Chapter II contains a review of some traditional, general methods with which population projections have been made in the past. Emphasis is given to models which attempt to relate economic growth to population changes. Chapter III is a fairly broad chapter in scope which deals with three related issues. The first is an examination of extant population projections for the study area. The second issue is outlining and detailing possible growth scenarios in the tri-county region. The third segment is an outline and discussion of the model developed in this research to predict population on the basis of net changes in employment opportunities. The fourth chapter of this research includes tests of the proposed model as well as a discussion of the empirical results from the application of the model in the study area. Chapter IV also includes proposals for future research, the summary, and conclusion of the thesis.

CHAPTER II

GENERAL METHODS OF POPULATION PROJECTIONS

The traditional techniques used in population projects almost exclusively fall into the discipline of demographics. Of primary interest to demographers are three variables which can affect population size. Specifically, those three variables are fertility, mortality, and migration. Population size at any one time can be expressed as $P_T=f(F, Mo, Mi, P_{T-\alpha})$.^{2/}

Estimating or projecting population size is not as easy as the general function makes it appear. Estimates of the variables, F, Mo, and Mi, are made in a number of ways with varying degrees of sophistication, and with different objectives in mind. Thus, the use of the term "general methods", although widely applied by demographers, is somewhat misleading. Approaches taken to the projection of local populations for cities and counties are especially diverse. There are, however, some very broad characteristics which are used to separate projection techniques into two basic types. $\frac{3}{2}$

The two primary categories of population projections are descriptive and component methods. Descriptive population projections extrapolate future population size from measured changes in past population size, and are mathematical in nature. Descriptive projections range from simple

 $[\]frac{2}{P_T}$ population size at time T, is a function of various fertility (F), mortality (Mo), and migration (Mi) rates, applied to population size at some period prior to time T, $P_{T_{-\alpha}}$.

 $[\]frac{3}{}$ In most textbooks dealing with the prediction of population, a third category of techniques includes the various "ratio methods" of projections. All methods which predict population for a local area by estimating its proportionate share of projected population from a larger population are known as the ratio methods. The ratio methods are not treated in this thesis, due to the fact that almost no evidence of their being presently in use can be found.

eye-sight projections of graphis representing past population size, to sophisticated curve fitting models using regression and other forms of multivariate analysis.

In recent literature the descriptive models seem to have fallen out of favor. The accuracy and flexibility of the approach may not be an issue. Rather, descriptive models have, in prior applications, commonly been used to project total population. Increasingly, users of population projections are as concerned with population composition as they are with total size. The ability to disaggregate total population into its composite parts has increasingly been a concern of demographers. Users of population projections are demanding detailed information on such things as the size of the school age population as a surrogate for quantity of educational facilities demanded, percentages of minority residents, and proportion of older citizens in an attempt to assess the special characteristics of those subsets of the total population.

Easy access to computers and the recent addition of electronic calculators have also facilitated the emergence of component models as the method of choice. The primary advantage of component models is the ability to disaggregate, accumulate, and project total population in its component elements. As the term "disaggregate" implies, necessary data sets and computations are compounded as larger number of sub-populations are handled. Computers and calculators make the handling of considerable data relatively low in cost given the benefits of examining changes in the various components of total population.

The first component methodology was introduced by Whelpton in 1928 [32]. The technique has become known as the cohort-component method. A model which projects population is classified as a true cohort-component model if it meets two specifications. First, the model must treat the

three fundamental demographic variables separately and explicitly: fertility, mortality, and migration. Second, the population of interest must be dissaggreated by sex and age--the "cohort" component.

Fertility and Mortality

Within the general cohort-component methodology there remains considerable flexibility with respect to ways in which fertility, mortality, and migration may be treated. At least in the United States, however, with the availability of large quantities of relatively accurate data, the treatments of fertility and mortality have become rather uniform. $\frac{4}{}$ Given an enumerated population total divided into single or multiple year age-sex cohorts, various fertility and mortality rates are applied and yearly population totals are measured or projected.

The fertility and mortality statistics which have been generally utilized are those supplied by the United States National Center for Health Statistics in their annual reports: <u>Vital Statistics of the United States</u> [24; 25]. Fertility is reported in vital statistics by five-year agecohorts for all women between the ages of 10 and 49, defined as the childbearing age cohorts. Mortality statistics are also reported for five-year age-sex cohorts, with a single cohort for infants 0-1 years of age. Except in the case of infants, the mortality rate is the proportion of those alive at the beginning of each time period who will die during the ensuing five years.

 $[\]frac{4}{}$ A detailed discussion of different measures of fertility and mortality, and the use of those variables in demographic projections, is given in <u>The</u> Methods and Materials of Demography, Volume 2 [8].

Migration

A fairly cohesive methodology for the treatment of fertility and mortality has emerged in the literature, but that same unification of ideas has not yet appeared with respect to migration. As with population projections in general, there are at least two broad categories into which most techniques for estimating the effects of migration can be placed. Within those two categories there are several variations which receive most attention. The first general category of techniques used to measure migration includes all "descriptive" models which base projected (future) migration on observed (past) migration. The second general category includes all "explanatory" models that attempt to predict migration by defining and measuring those variables which tend to cause people to migrate.

Descriptive Methods of Projecting Migration

One technique often used to measure migration is the residuals method. Although there are several forms of the residual method, one general formula expresses the idea of all. Migration is equal to the difference between two measures of population change over a given time period, net of the effects of fertility and mortality, or: M=(P'-P'') -(B-D) where M equals migration, P' is an enumerated value of population at some point in time, P'' is a cohort-component projection for the population size for the same point in time net of migration, and B and D are births and deaths, respectively, occurring during the interval of the cohort-component projection [8, p. 628]. Therefore, to assess the effects of migration, a comparison is made between the enumerated population for a given year with a cohort-component projected population for that same year. The difference between the totals, or the "residual", is that

proportion of total population which can be accounted for through migration. The value thus computed for past migration is then used in projecting future migration.

A second set of descriptive methods used to measure the effects of migration is the cohort-survival method. The cohort-survival method was used sparsely during the first half of the 20th century, but became formalized and gained wide acceptance only with Hamilton and Perry's works in the early 1960's [14, p. 160-210]. Using Hamilton and Perry's notation, the cohort-survival method can be mathematically stated using the example: $P_X^7 = (P_X^6 - 10)(P_X^6)/(P_X^5 - 10)$ where P_X^7 is the predicted population in cohort x for 1970, and is equal to the population in cohort x-10 in 1960 ($P_X^6 - 10$), times the population in cohort x in 1960 (P_X^6), all divided by the population in cohort x-10 in 1950 ($P_X^5 - 10$). The predictions for those between 0-9 years of age for 1970 are made by applying the appropriate fertility rates for the 1950-1960 period. Thus, the predictions for 1970 are made by analyzing the <u>combined</u> effects of mortality and migration rather than by determining each separately.

The use of past migration rates to predict future population size is based on the assumption that the techniques reveal underlying or basic migration patterns which are unaffected by local events. On the national or, perhaps, the state level it might be adequate to assume migration rates are constant over time, but on the county or city level such an assumption is unreasonable. In an attempt to deal with the relatively volatile nature of county and city populations, new techniques were needed to estimate the effects of migration on the size of local populations.

Economic Methods for Predicting Migration

Attempts to accurately predict future migration streams are difficult, given the complex reasons which cause people to migrate. There has been considerable speculation and research, however, in which attempts to isolate, quantify, and evaluate the key explanatory variables have been made. One of the earlier hypotheses was the most people migrate for economic reasons. The inherent reasonableness and successful tests, of that hypothesis has led it into the forefront of present migration research. It is not surprising then to find research on the causes of migration in the economic journals rather than those specifically oriented toward demography, although the divorce is by no means complete.

An early attempt to incorporate economics into population projections was done by the Stanford Research Institute in their Basic Economic Projections: United States Population, 1965-1980 [1, p. 37-44]. The work done at the Stanford Research Institute was predicated on the assumption that those areas with a relatively higher per capita income were likely to attract migrants, while those with a relatively lower per capita income would lose population through out-migration. Migration, for the 1965-1980 population projections by state, was predicted with the use of an estimated regression equation based on cross-sectional state 1950-1960 data. The estimated equation was Y = 38.04255 + .402863X in which Y stands for the net migration rate (net migration/1950 population) and X represents the change in per capita income during the same period (expressed as a percent of the same United States figure). In order to make the population projections, net changes in per capita income for the 1965-1980 period were independently projected. Thus, the predicted net migration for any state is equal to: [(Migration rate 1950-1960) + (Unit change in per capita income) x (.4)] x (1960 population).

Other economic variables besides per capita income have also been used to explain observed migration patterns. One of the most useful, especially to those concerned with projecting local populations at the county or city level, is employment or the lack thereof in the prediction of future migration streams. A good example of a model incorporating employment data is that which was used by the Oregon State Board of Census in 1964 [13]. Population projections for 1960-1985 were made in a relatively straightforward, three-step procedure. First, the 1960 population by age-sex cohorts was projected through future years by using appropriate fertility and mortality data. No in- or out-migration was permitted in the sub-model. The total available supply of labor (labor force) was estimated by multiplying the respectively yearly population projection times projected age-specific labor force participation rates.

A second labor force forecast was made by independently projecting employment. This second forecast was adjusted to account for expected unemployment levels in future years. The difference between the two predicted labor force totals represents the expected in- or out-migration of labor.

Third, and finally, expected net labor force migration was converted to expected net population change. A population-labor force multiplier was applied to the predicted net change in labor force to predict net population change resulting from migration. The population-labor force multiplier is calculated by simply dividing the total population by the total number of labor force members.

The value of the various "economic" models lies in the fact that they take into account events at the local level which can affect migration rates. The problem with models that predict migration on the basis

of past migration rates lies with their inability to deal with changing local situations. In many counties and cities the need for population projections is related to a prospective or actually occurring event which may lead to growth in population. Specific examples would include rapid industrialization, the development of a local resource, or a significant expansion of an existing industry. The problem lies in the fact that economic change regardless of type or source, will likely cause present or future levels of migration to vary from past migration rates.

CHAPTER III

EMPLOYMENT GROWTH AND ITS EFFECTS ON POPULATION SIZE

Future economic growth and development in Oregon's three northern Columbia River Basin counties is fairly certain, but the exact rate and magnitude of growth are less certain. In the following discussion two recent population projections for Morrow, Umatilla, and Gilliam are analyzed. Following that, various probable scenarios of economic growth are presented. The final major segment of this chapter includes the presentation of the model developed for this research to project population.

Recent Population Projections

At least two of the major industries which are moving into the northern Columbia River Basin of Oregon have published studies which include population projections: Alumax and Portland General Electric [10, 27]. The Alumax plant is a primary ore reduction facility to be built at the Port of Umatilla. Present plans indicate a four-year construction schedule with peak employment during that period of 2,200 employees [10, p. 36]. Operations staff for completed plant will approach 800.

Portland General Electric (PGE) has three proposed plants to be built before 1985, including the nuclear facility at Pebble Springs south of Arlington, a coal-fired plant under construction south of Boardman, and a second nuclear facility proposed for the area. Total average annual construction employment for the three PGE projects is estimated to be 2,213 [27, p. 11-3]. Operations of the three plants will employ approximately 353.

The population projections made by the consultants to the two firms address the issue of the effects new employment opportunities may have on

1.8

future population size. The method used in the Alumax study to predict population begins by dividing employment into primary and secondary effects. Primary employment effects are those associated with construction and the subsequent operation of the firm. Secondary effects are the result of new employment in other industries generated in the area as the result of the new construction and operations employees in the primary industries.

Population attributable to the primary population is calculated on a persons per job basis, and is computed directly from known employment figures and past experience in similar developments. The number of persons per job includes the employee and all of his primary dependents. Secondary population is estimated by developing an employment multiplier to predict the number of secondary jobs which will result from the primary population. Secondary population is then the number of workers and their dependents who will be associated with secondary jobs, and is calaculated on the basis of past experience and a known job to population ratio in various selected secondary occupations in the area. The total population projection is the sum of the primary population (construction and operation related) and secondary population.

Portland General Electric population projections are based on a nearly identical technique. Slight differences in employment multipliers and family size are used, but these are in substantial agreement with those developed in the Alumax study. The only significant differences are in the amount of disaggregation used by Portland General Electric. Primary and secondary population effects are broken into those associated with bachelors and married persons. In lieu of population per job estimates, as in the Alumax study, the PGE projections are based on estimates of the number of bachelors in the work force and of the family size for those

who are married. This probably accounts for the difference in household or family size (persons per married male) multiplier used by the two studies. Alumax uses 3.00 and PGE uses 3.17. The larger multiplier for PGE would be appropriate since bachelors are not subject to the multiplier as they are in the Alumax study.

In August of 1976 a special Task Force Report entitled "Projected Growth in Oregon's Northern Columbia River Basin Counties" was prepared and published for the Office of the Governor of the State of Oregon [20]. In many ways, the Task Force Report is a precursor of this present expanded study. The population projection model used here is basically a revised and improved version of the one used in the Task Force Report. As with the population projections from Portland General Electric and Alumax, the Task Force Report is limited to the larger developments; and many changes have occurred since the publication of that report.

The question immediately arises as to why another population projection for the area is required. Three answers may be given. First, population projections are highly subject to change, due to delays in construction schedules, the addition of new development projects, and other over-all changes in the local economies. The more recent projections are those in the Portland General Electric study published in May of 1975 and updated in June of 1976 [27]. Since that time the Alumax construction plans have been delayed, several new developments have been added to the growing list in the area, and most recent data are becoming available on over-all economic development in the three counties. A new projection seems in order due to the changes just mentioned, all of which will alter both the size and timing of population growth in the Oregon Northern Columbia River Basin. Second, the present study projects <u>total</u> population for all known developments as of June 1976. The Alumax and Portland General Electric studies do not attempt to predict total population. Rather, projections are limited to net increases in expected population due to several of the larger industrial developments. Neither deals with a second issue, i.e., population changes associated with demographic variables such as the exit of 18 year olds from the area.

In this study an attempt is made to account for all significant events that can have an effect on the population of the tri-county area. The population projections reported here include estimates of net increases due to known and expected developments of various sizes and potential future impact on population size.

Future Growth Scenarios

The population projections made in this study are for the years 1975 to 1990. The purpose of the projections is to describe the effects on population size of several proposed developments for the area. No attempt is made here to project what the <u>actual</u> population of the three counties under consideration will be during any future year. However, the projections should be fairly close to the actual population for the first few years. This is due to the fact that all known developments proposed for the area in the next few years are analyzed. Any future development not accounted for would probably take a few years to come on line, and thus their impact on population size would not be immediate.

Four rather large future development proposals are the basis of these projections. They include the Stanfield/Westland Irrigation Project, Portland General Electric's coal-fired electrical generating plant near

Boardman in Morrow County, Portland General Electric's nuclear electrical generating plant near Arlington in Gilliam County, and Alumax Pacific Corporation's primary ore-aluminum reduction facility near Umatilla and Hermiston in Umatilla County. Only the coal-fired generating plant near Boardman is presently under construction. To account for a degree of uncertainty with respect to the timing of the other three developments, three different scenarios are considered. The first scenario is called a conservative projection and includes only developments which are certain as of February 1976. Of the four major industrial proposals, the baseline projection includes the Portland General Electric coal-fired plant in Morrow County, and a small portion of the Stanfield/Westland Irrigation Project. The baseline projection also includes several smaller developments which are listed in Table 2.

The second scenario includes significant development in the Stanfield/ Westland Irrigation Project only. It is assumed that 60 percent of all the acres signed up for the project will be delivered irrigation water. $\frac{5}{}$ The third set of assumptions are that 90 percent of Stanfield/Westland project will be implemented, the Alumax plant will be built, and the Pebble Springs nuclear facility will become a reality. In Table 2 below, each scenario is outlined, and the assumptions associated with each development are listed.

 $[\]frac{5}{7}$ Farmers representing nearly 100,000 acres paid two dollars per acre to support engineering and related expenses to determine a least-cost alternative for irrigation of their land from the Columbia River [31, p. i-2].

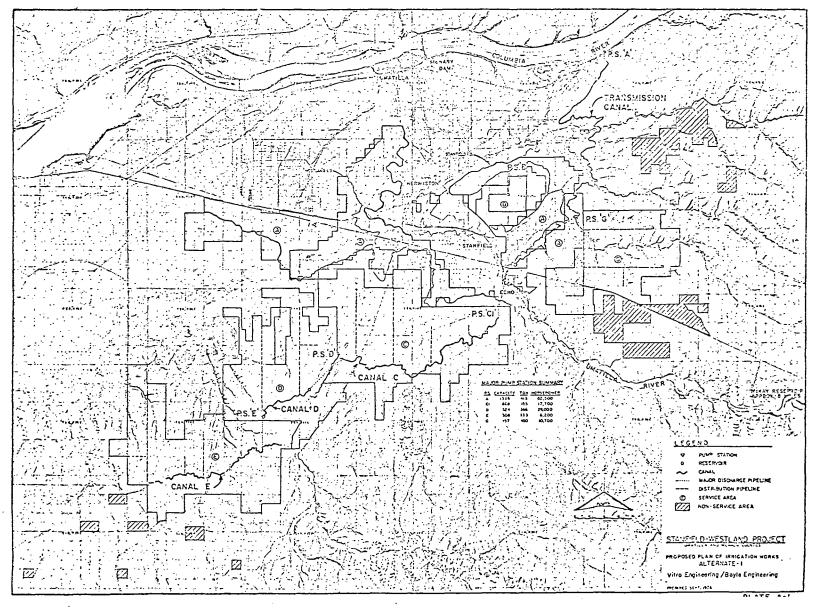


Figure 2. Stanfield/Westland Irrigation District Service Areas

Table 2.	Three Scenarios of Economic Growth in Oregon's Northern
	Columbia River Basin

Scenario	Summary of Development Activities
Conservative: Stanfield/Westland Service Area C ^a / Union-Pacific Hinkle Expansion ^b / Simplot Plant ^C / Carty Coal-Fired Plant ^d /	Stanfield/Westland Irrigation Project not undertaken completely, but service areas A, B, and approximately 2/3 of C receive water. This means approxi- mately 20,000 new acres under cultiva- tion. No inducement of further food processing facilities.
Moderate: Stanfield/Westland All Service Areas except Areas E, F, and G	Stanfield/Westland Irrigation Project undertaken formally with approximately 60,000 new acres under cultivation.
Extensive: Stanfield/Westland All Service Areas Alumax Pebble Springs Nuclear Facility	All service areas of Stanfield/ Westland Irrigation Project receive water. Approximately 90,000 new acres added. Three new food pro- cessing plants accompany the in- creased agricultural output.

- <u>a/</u> The map on the preceding page shows the Stanfield/Westland Irrigation project service areas designated by the letters a, b, c, d, e, f, and g. Service area c contains approximately 20,000 acres. All service areas except e, f, and g will include approximately 60,000 acres. All service areas will be approximately 90,000 acres.
- $\frac{b}{c}$ The Union-Pacific Hinkle expansion is the development of a major west coast switching yard for the railroad.
- \underline{c} The Simplot plant will be a new potato processing facility just south of Hermiston
- $\frac{d}{d}$ Carty Coal-Fired Plant: PGE plant in Morrow County under construction.

A Proposed Model to Predict Population

In Chapter II it was pointed out that the component methods of population projection are probably the superior methods for projecting local populations. It was also pointed out that the disaggregation inherent in the component methodologies can lead to rather large numbers of operations and calculations. In an attempt to reduce potential confusion, the model proposed in this chapter is presented in three distinct sub-sections. The first includes a mathematical interpretation of the model in its entirety, and concludes with the treatment of fertility and mortality. The second section representing the bulk of the present chapter, is the presentation of the sub-model to predict employment-related net migration. Finally, population change associated with essentially non-economic variables is discussed.

The Model Expressed in Equation Form and the Fertility and Mortality Sub-Models

The model used to project population in this study is a composite of structural relationships drawn from the disciplines of both demography and economics. Earlier it was said that population at any one point in time can be expressed by the general formula: $P_T = f(F, Mo, Mi, P_{T-\alpha})$. A general formula to express population is not useful for projection purposes, however, until specific methods are identified to account for the effects of ferility, mortality, and migration on population change. In order to express the specific treatments of fertility, mortality, and migration used here, the general population formula is expanded to:

1. $POP_{ijk} = POP_{ijk}^{t-1} + [(POP_{ijk}^{t-1}) \cdot (F)] + (INMIG_{ijk}^{t-1} - OUTMIG_{ijk}^{t-1}) - [(POP_{ijk}^{t-1}) \cdot (M)]$

where

S 0

t = the beginning of any given year i = 1 - 31 = Gilliam County 2 = Morrow County3 = Umatilla County j = 1-86 = single year age cohorts from 0 to 84 and one group 85 and above k = 1, 21 = male2 = femalePOP = PopulationF = Fertility rate INMIG = In-migration OUTMIG = Out-migration M = Mortality rate POP_{iik}^{t} = Population in county i of age j and sex k at the end of any given year $(POP_{iik}^{t-1})F = Total live births in county i during the year preceding$ time t $(INMIG_{iik}^{t-1} - OUTMIG_{iik}^{t-1}) = Net migration in county i for all age groups$ during the year preceding time t $(POP_{iik}^{t})M$ = Total deaths expected in year preceding time t for all ages who were residing in county i at time t-1.

In the following sections, procedures used to determine values for Equation 1. will be discussed.

<u>Fertility and Mortality</u>. The fertility and mortality rates used for this study are national rates for 1970 compiled by the U. S. National Center for Health Statistics [25, Vol. I, p. 1-10; Vol. II, Part A, p. 5-3]. Statistics for 1970 are used due to the fact that 1970 is chosen as a base year for the over-all study. $\frac{6}{}$ Mortality rates for the past 35 years have varied by no more than 1.5 deaths per thousand, so the 1970 rate can be expected to remain fairly representative throughout the period of this projection.

Fertility rates have traditionally been more variable than those for mortality. Thus, the use of 1970 fertility rates throughout the 1975 to 1990 period is not as acceptable as using the 1970 mortality rates for the same period. The number of births per 1,000 women in their child-bearing years dropped by 30 between 1960 and 1970. $\frac{7}{}$ This means that if the 1960 national fertility rate had been applied to the approximately 4,000 women between the ages of 15 and 144 living in the three-county area in 1970, one would have predicted an excess of approximately 120 more births [7, p. 39-95, 99, 100]. If the 1960 birth rate had been used for each and every year between 1960 and 1970 in forecasting population change during the ten-year period, the total predicted births would have far exceeded

 $\frac{7}{10}$ In 1960 there were 118 births per 1,000 women between the ages of 15-44. In 1970, the birth rate had dropped to 87.9 births per 1,000 [24, Vol. I, p. 1-22, 25; Vol. I, p. 1-10].

 $[\]frac{6}{}$ Base years are used in demographics as a simplifying device. If complete and accurate demographic statistics were collected and compiled each and every year on the number of births; population by age, sex, and race; place of residence, etc., there would be little need for analyzing <u>one</u> particular year as a typical or base year. Such comprehensive statistics make identification of trends more feasible. One way or another, most population projections use some trend analysis.

actual births. The United States Bureau of the Census makes population projections using four different levels of fertility. The 1970 fertility rate used in this study is approximately the mean of the four estimates used by the Census Bureau in their 1990 projections [4]. Therefore, the estimates of the number of births made in this study are mid-range projections. Thus, projections of the number of births to be expected in the region are valid only so long as the actual birth rates in the area approximate the 1970 national average.

One further possibility for error exists in projecting the number of births in the three-county area. United States fertility rates in recent years have been about two percent higher than those for Oregon [25, Vol. I]. Since this would mean an error of only approximately one birth per thousand women, this should cause no significant problems in regards to the number of births projected here.

The actual number of predicted births in each county for each year is computed by distributing the total female population of each county in the child-bearing years (15-44) into five year age cohorts (15-19, 20-24, ... 40-44), and then multiplying each cohort by the appropriate fertility rate as follows:

BIRTHS =
$$(POP_{ijk}^{t-1}) \cdot F_{l}$$

where

2.

i = County
j = Ages 15-44 by five year age cohorts
k = 2 = Female
l = 1-6 = Fertility rates for six age cohorts from
Table 3 below.

Ages	Fertility Rates*
15 - 19	68.3
20 - 24	167.8
25 - 29	145.1
30 - 34	73.3
35 - 39	31.7
40 - 44	8.1

Table 3. National Fertility Rates for Total Female Population Ages 15-44 in 1970

* Births per 1,000 women of each age group.

Source: [25].

The actual number of deaths, or the effects of mortality, is estimated by the following formula: $\frac{8}{}$

DEATHS =
$$(POP_{i,ik}^{t-1}) \cdot M_m$$

where

3.

t-l = Population exactly one year prioer to time t

i ⇒ County

j = Ages 1-85 by single year age cohorts

m = Mortality rate for age and sex by single year cohort.

Mortality rates for single-year age and sex cohorts are not reported in the <u>Vital Statistics of the United States</u>. However, single-year age and sex mortality rates can be computed. From a table which reports the number of survivors at single-years of age for both sexes, out of 100,000

 $[\]frac{8}{1}$ The mortality in the male-female 85 and above age-cohort is set at 4.5 times the 84-85 mortality rate for males, and 8.0 times the 84-85 mortality rate for females.

born alive, single-year age and sex mortality rates are computed as follows:

4.

$$M_{\rm m} = \frac{\frac{t_{\rm jk}^{\rm o} - t_{\rm jk}^{\rm o}}{t_{\rm jk}^{\rm o}}$$

where

 M_m = Mortality rate for age and sex by single year cohort t_{jk}^0 = Number of people age j of sex k alive at period t t_{jk}^1 = Number of people age j of sex k alive exactly one year later.

The computed rates are reported in Table 4,

The Migration Sub-Model

Estimating total net migration is carried out in this model on two levels. First, estimates are made of the net migration which can be expected due to changes in employment totals. Second, estimates are made of net migration which can be expected for reasons other than employment <u>per se</u>.

Estimating net migration due to changes in employment is a three-step process. The method employed here is similar to the technique employed by the Oregon State Board of Census, described in the previous chapter. Two estimates of labor force size are made. The difference between the two is the estimate of expected net labor migration. The estimated in- or out-migration of labor is then inflated for dependents of in-migrants with families.

<u>Estimating Labor Force Associated With Employment</u>. The first estimate of labor force size is the sum of projected total employment and unemploy-

	Se	x		Se	x		Se	x		Se	x		Se	x
Age	Male	Female	Age	Male	Female	Age	Male	Female	Age	Male	Female	Age	Male	Female
0-1	.02550	.01764	17-18	.00161	.00065	34-35	.00263	.00138	51-52	.01062	.00569	68-69	.04349	.02202
1- 2	.00136	.00119	18-19	.00180	.00068	35-36	.00269	.00153	52-53	.01161	.00614	69-70	.04658	.02410
2-3	.00094	.00075	19-20	.00196	.00070	36-37	.00288	.00168	53-54	.01276	.00664	70-71	.04984	.02634
3-4	.00079	.00059	20-21	.00211	.00071	37-38	.00310	.00183	54-55	.01403	.00717	71-72	.05334	.02878
4-5	.00064	.00048	21-22	.00226	.00074	38-39	.00336	.00199	55-56	.01541	.00775	72-73	.05722	.03163
5-6	.00085	.00044	22-23	.00234	.00075	39-40	.00367	.00214	56-57	.01684	.00838	73-74	.06166	.03501
6-7	.00062	.00039	23-24	.00232	.00077	40-41	.00402	.00231	57-58	.01839	.00903	74-75	.06663	.03886
7-8	.00043	.00034	24-25	.00224	.00079	41-42	.00440	.00250	58-59	.01198	.00969	75-76	.07206	.04311-
8-9	.00032	.00029	25-26	.00213	.00081	42-43	.00480	.00272	59-60	.02168	.01038	76-77	.07790	.04773
9-10	.00027	.00026	26-27	.00202	.00084	43-44	.00526	.00297	60-61	.02346	.01113	77-78	.08406	.05262
10-11	.00027	.00024	27-28	.00198	.00087	44-45	.00570	.00325	61-62	.02535	.01198	78-79	.09049	.05784
11-12	.00033	.00025	28-29	.00198	.00091	45-46	.00628	.00356	62-63	.02742	.01296	79-80	.09721	.06342
12-13	.00046	.00027	29-30	.00203	.00095	46-47	.00686	.00388	63-64	.02968	.01510	80-81	.10419	.06954
13-14	.00064	.00033	30-31	.00210	.00100	47-48	.00749	.00421	64-65	.03214	.01539	81-82	.11139	.07631
14-15	.00087	.00040	31-32	.00218	.00108	48-49	.00819	.00455	65-66	.03480	.01684	82-83	.11881	.08397
15-16	.00112	.00049	32-33	.00228	.00116	49-50	.00894	.00491	66-67	.03760	.01839	83-84	.12620	.09284
16-17	.00138	.00057	33-34	.00240	.00127	50 - 51	.00974	.00529	67-68	.04049	.02012	84-85	.13331	.10328

Table 4. National Mortality Rates By Single Year Age and Sex Cohorts for 1970.

Source: Computed from values in Vital Statistics of the United States: 1970 [25, Vol. II, p. 5-6].

31

٠.

ment by year. In order to project employment and unemployment, the economy of the three-county region is disaggregated into twelve industries, and total employment in each is projected for each year between 1970 and 1990.

It is apparent that different industries experiencing net increases in employment would not have the same effect on population due to differences in the characteristics of their work forces. For this reason the twelve industries in the area are aggregated into five groups which receive separate treatment. Two groups are represented by single industries. The single industry groups are agriculture (which includes only farming), and non-local construction. Agribusiness and food processing are assigned to a third category. The two final groups are aggregates of the remaining ten industries and are identified as "basic" and "secondary". The five aggregate industry groups are listed in Table 5, and the component industries of each group are identified.

Table 5. The Five Industrial Sectors of the Three-County Region and the Associated Industries With Each Sector

Industry	Industries Represented If Applicable
Farming	Crop, livestock, and mixed enterprises; includes truck crop, tree crop, and commercial horticulture enter- prises
Agribusiness and Food Processing	Agricultural firms who deal directly with farms, but excluding those primarily involved in manufacturing of farm equipment
Secondary	Agricultural Services, Trade, Transportation, Communi- cations and Utilities*, Finance, Insurance, Real Estate, and Government
Non-Local Construction	Employees of contract construction firms not headquar- tered in any of the three counties, but residing in the area while engaged in local construction activities
Basic	Lumber and Wood, Local Construction, Primary Metals Re- duction, Electrical Generation, and Other Manufacturing

* Except Electrical Power Generation.

The farm sector is treated individually due to several employment practices unique to that industry. There is to a greater degree than in most industries the use of family members in operations of farms. Further, seasonality in farm operations leads to the employment of relatively large numbers of people during several months and not others. Transient farm laborers move into the area during the peak employment periods and then out again as employment tapers off. Since these transients are not fulltime residents, their effect on the population of the area is not like permanent full-time employees in agriculture or other industries. Also, there are many jobs in agriculture which, although requiring special skills, such as machinery operation and truck driving, are held by dependents of area residents.

The second industry to be treated separately is contract construction. This sector is chosen for separate treatment for three reasons. The industry is, at present, much larger than it was in the past, and, further, is closely related to growth in other industries. Employment in construction will mushroom in the three-county area if even one or two of the larger developments takes place. Average annual construction employment for Alumax is estimated to be 768, the Carty coal-fired plant in the Boardman area is expected to reach 436, the Pebble Springs nuclear plant near Arlington has a projected construction employment of 813 [20, p. 3]. An additional construction work force is needed to build residences for the construction force itself, future employees of the aforementioned plants, plus additional housing for employees of the expanding secondary industries.

The second reason construction is treated by itself is the fact that construction employees seldom move with their entire families into an area

in which they are working. Although some estimates of the potential for economic growth in the area include a relatively large construction work force in residence for a number of years, and that work force may be treated in some respects as permanent new residents, in other ways it cannot. Even though a large work force exists at any one time, there will be significant changes in the personnel of the construction population from year to year. Given the transient nature of the construction population, there could be significant differences in family size and other factors which would have an effect on the demand for schools in the area. The type of housing demanded by the construction work force could also be important. For these reasons, it seems appropriate to be able to treat construction individually.

The third and final reason construction is treated separately is due to the existence of two different elements of the total construction work force. There does and will continue to exist in the three-county area a certain part of the construction work force which is part of the permanent resident population. This portion of the total exhibits certain characteristics in family size, demand for housing, and impact on community services such as schools, which is not different from any other full-time resident of the three counties. Thus, the resident portion of the construction work force is contained in one of the final two aggregate categories.

The first aggregate group includes the agribusiness firms who both sell inputs to the farm sector and purchase the farming output. These industries include the retail and wholesale farm machinery and supply firms, and the various food processing firms in Umatilla, Morrow, and Gilliam Counties. These industries as a whole will be most affected by the future of the Stanfield/Westland Irrigation Project.

The final two categories used in the employment to population projection include the eight remaining industries of the original twelve and the permanent portion of the construction employment. The first of the two remaining categories is called "basic". It includes all employment in lumber and wood, primary metals, electrical generation, other manufacturing, and the permanent portion of contract construction. These industries all have similar characteristics which lead to them being treated as a group instead of individually. The term "basic" is widely used in economics to denote a certain section of a local or regional economy. The basic sector is typified by industries that produce a product which is not sold locally. In most cases this means that money is brought into the area by these firms. It is spent locally and thus, supports other portions of the local economy.

Both the agricultural and food processing industries are basic industries. For most types of analyses, they would be treated in the larger group of basic industries. However, since this particular project is concerned with the population effects of employment change, it is deemed appropriate to separate agriculture and food processing due to their distinctly different employment patterns. The industries which are treated as a group in the basic category exhibit similar employment characteristics. First, all have a relatively stable permanent work force. Second, it is possible to assume that these industries as a group have similar ratios of employees in categories defined by marital status and sex.

The rest of the industries not previously accounted for are treated as a group labeled "secondary industries". The secondary industries include: wholesale and retail trade, transportation-communication-utilities (except electrical power generation), finance-insurance-real estate, and government. Secondary industries sell or provide a product or service locally. The term "secondary", like "basic", is commonly used in the literature, and generally connotes industries which purchase their inputs from outside the local economy and sell their products within. It is assumed that those industries identified as "secondary" exhibit certain common practices. Many full-time jobs in these firms are held by wives and dependents of local male household heads. Generally, the same number of new jobs in secondary industries as in basic industries will not lead to the same population effects. The practice of hiring wives and other dependents in the secondary industries tends to lessen the attractions of new residents as opposed to new jobs in the basic industries.

The purpose of disaggregating industries into the five industrial classifications is to account for differences in employment patterns. Quantifying these differences is done in the following manner. Four distinct types of employees are identified for further study. The employee categories include married males, single adults over 18, wives and dependents (members of households under 19), and seasonal labor. The purpose of disaggregating total employment is due to the differences in impact on population among employees typed. For instance, employment growth in industries that primarily hire married males will imply a greater population influx than new employment growth in industries that hire a relatively larger percentage of wives and dependents. Two sources of information are used to determine the percentage of employment in each industry held by the four classes of employees listed above. Information is obtained from the U. S. Decennial Census and an employer survey of the area, and are compiled for the year 1970. The information obtained from

 $\frac{9}{}$ The employer survey was originally done for the Task Force Report prepared for the Governor of the State of Oregon.

the two data sources is summarized in Table 6.

Table 6. Percent Married Male, Single Head of Household, Dependents, and Seasonal Employees in the Five-Sector Economy of the Three-County Region

			· · ·		
Labor					
Force · Profile		Percent Si	ngle Adults	Percent	
Economic Sector	Percent Married Males	Male .	Female	Wives, and Dependents Under 18	Percent Seasonal
Farming	60	10	0.0	5	25
Agribusiness and Food Processing	50	12	13	25	NA
Non-Local Construction	10	90 <u>a</u> /	0.0	0.0	. NA .
Basic Industry	85	10	5	0.0	NA
Secondary Industry	[.] 50	10	15	25	NA

 $\frac{a}{a}$ Includes married males, but not expected to have families present.

It is assumed that the employee mix which existed in 1970 will continue throughout the years of the study. Although it is known that there will be some changes in the mix of job <u>skills</u> in most industries, and this will tend to affect the male, female, and seasonal mix of employees, it is impossible at this time to account for those changes.

The total labor force associated with each employee type is computed by multiplying total employment by the percentage of each type of employee in the five industry groups. However, since the purpose of all these calculations is to predict expected in-migration, totals for wives and dependents are not accumulated. Wives and dependents throughout the rest

of the model are treated as a residual labor force for the following reason. It can be assumed that migration into or out of one economic area will not generally occur in order to acquire employment for a wife or dependents. This is not to say that it won't occur, only that it is an insignificant portion of total migration. Migration is assumed to take place in this sub-model only to acquire employment for heads of households. In this model, heads of households are identified, as in the United States Census, as married males and single adults. Therefore, totals are accumulated for the employee types labelled "married males", "single males", and "single females", as in Table 7.

Table 7. Total Employment By Heads of Households for Baseline Employment Projections: Year 1970

Employment	Employ-	Married	Male .	Single	Male	Single Female ^{C/}		
Industry	ment <u>a</u> /	Percent	Total	Percent	Tota1	Percent	Total	
Farming	2,464	60 <u>b</u> /	1,478	10	264	0.0	0	
Agribusiness and Food Processing	2,160	50	1,080	12	259	13	281	
Non-Local Construction	36	10	4	90	32	0.0	0	
Basic	2,192	85	1,863	10	219	5	110	
Secondary	11,775	50	5,888	10	1,178	10	1,178	
Total	18,627		10,313		1,952		1,569	

<u>a/</u> Source: Unpublished data developed for, "Oregon's Northern Columbia River Basin Irrigation System Development Project", Oregon State University Extension Service prepared by Dr. Roger Kraynick.

 $\frac{b}{c}$ Percentages in rows are net of those for wives and dependents.

c' Includes single female heads of households with dependent children.

Estimating Labor Force Associated With Unemployment. Once the labor force associated with employment is estimated, it becomes necessary to account for the labor force associated with unemployment. A truce picture of expected future labor force is only complete when both the effects of employment and unemployment are measured.

The first step is accounting for the labor force associated with unemployment is to determine an expected unemployment rate for the period of projection. A fairly familiar approach in this instance is to use two or three different rates, and identify one as the most likely. In the present case, however, this practice is not used for the following reasons. Since about 1970, employment growth has put downward pressure on the unemployment rates of the three counties. Those unemployment rates began to stabilize during 1974 and 1975 at a little more than six percent, especially in the rapid growth counties of Morrow and Umatilla. $\frac{10}{}$ Should the Pebble Springs nuclear facility in Gilliam become a reality, Gilliam County's unemployment rate should also be favorably affected. While it is likely little doubt that the rate of growth in the employment experienced since about 1970 in the three-county region will abate, if employment growth does continue there is little reason to expect unemployment rates to significantly exceed the 1974 and 1975 levels. On the other hand, since five years of rapid economic development did not force the yearly average unemployment rate below six percent, there is no evidence to support using a lower rate for these predictions. Therefore, in the projections made here, an unemployment rate of six percent is used for each year.

^{10/} Average unemployment rates for Gilliam in 1974 and 1975 were 6.2 and 6.7. In Morrow the rates were 6.7 and 5.6, respectively. Umatilla County unemployment rates for the two years were 7.0 and 8.6 [29, years 1974, 1975].

The final step in relating unemployment to labor force for this submodel is to disaggregate total unemployment into the respective heads of households employee categories. The task is to compute how many married males, and single male and female heads of household will be associated with a six percent unemployment rate. On the basis of United States labor force statistics, a six percent unemployment rate translates in a .036 unemployment rate for heads of households.^{11/} Since total labor force minus employment equals unemployment, and employment and the unemployment rate are known, unemployment can be calculated by dividing total employment by the quantity one minus the unemployment rate and then subtracting total employment (equation 5).^{12/} An example for the year 1970 follows in Table 8.

5.
$$UNEMP_n = TE_n/(1 - UR) - TE_n$$

Where

UNEMP = Unemployment

p = 1-3 (1 = married male, 2 = single male, 3 = single
female)

TE = Total employment

1 - UR = One minus the unemployment rate

 $\frac{12}{}$ Total labor force associated with unemployment and employment is simply calculated by: TE/(1 - UR).

 $[\]frac{11}{}$ In the ten years between 1965 and 1975, total unemployment rate averaged .667 higher than unemployment rates for heads of households. In one year, 1971 when total unemployment was 5.9 percent, unemployment for heads of households was exactly 3.6 percent. Therefore, a total projected unemployment rate of 3.6 percent is used for heads of households [30, years 1965-75].

Employees	Total Employment ^a /	Total Unemployment ^b /	Total Labor Force
Married Male	10,313	380	10,693
Single Male	1,952	73	2,025
Single Female	1,569	59	1,628
Total	13,834	512	14,346

Table 8. Total Heads of Households in the Three-County Labor Force: 1970

 \underline{a} / From Table 7.

 $\frac{b}{c}$ Calculated as in equation five, with employment from column one and an unemployment rate .036.

Estimating Labor Force Size on the Basis of Resident Supply of Labor.

The model used in this research predicts population on the basis of the difference between two estimates of labor force size. The estimate just completed amounts to a yearly projection of what the <u>actual</u> labor force size will be in the future. The second estimate computed below is a yearly estimate of labor force size available from the resident population. The difference between the two is the estimated net migration.

The procedure to estimate the second value for labor force size used in this sub-model begins by carrying the resident population at the beginning of each year through the year. This is accomplished by aging everyone one year and applying the appropriate fertility and mortality statistics. The labor force associated with the resident population for the year is computed by multiplying the single-year age cohorts by the appropriate labor force participation rates and the estimated percent of males and females who are married as in equation 6. The percent married by sex and age is reported in Table 9.

 $RSL_{p}^{t} = (POP_{jk}^{t} \cdot PM_{jk}) \cdot LFPR_{jk}$

6.

where

RSL = Resident supply of labor POP = Population t = The beginning of any given year j = 18 - 86 k = 1, 2 (1 - male, 2 = female) PM = Percentage married from Table 9 LFPR = Labor force participation rate from Table 10 P = 1-3 (1 = married male, 2 = single male, 3 = single female).

Table 9.	Percentage	of Males	and	Females	Between	the	Ages	of	18	and	65
	Who Are Mai	rried									

Age	Male	Female
18 - 19	9.5	23.8
20 - 24	41.3	58.9
25 - 29	75.4	82.4
30 - 34	86.4	86.0
35 - 44	88.0	86.1
45 - 54	89.5	82.1
55 - 64	87.0	69.0

Source: U. S. Bureau of the Census, <u>Current Population Reports</u>, 1970 (5, series P-20, No. 255).

Estimating the appropriate labor force participation rates during future years is a significant problem. There is considerable theoretical evidence to suggest that the resident labor force participation rates will increase during a period of rapid employment growth other things remaining the same [26, pp. 122, 123]. Empirical evidence, however, which could support adjusting labor force participation rates for the three-county area to account for changes caused by employment growth is absent. Therefore, the anly adjustments used in this study are those predictions of future labor force participation rates, displayed in Table 10, which differ only on the basis of changes expected nationally in future years. No attempt is made to adjust participation rates due to the expanded employment opportunities in the area.

Male	1970	1980	1990	Female	1970	1980	1990
18-19	68.8	65.8	64.6	18-19	.53.4	56.7	56.1
20-24	85.1	83.0	82.1	20-24	57.5	61.0	67.2
25-35	95.0	94.6	94.4	25-35	44.8	49.9	51.5
35-44	95.7	95.1	94.7	35-44	50.9	53.1	55.2
45-54	92.9	91.9	91.5	45-54	54.0	53.4	58.0
55-64	81.5	79.1	77.5	55-64	42.5	40.8	45.8
65 ↑	25.8	21.2	19.3	65 ↑	9.2	8.4	8.3

Table 10. Male-Female Labor Force Participation Rates in Percent By Age

Source: U. S. Bureau of Labor Statistics, 1970, "Handbook of Labor Statistics" (30, year 1970).

<u>Net Migration</u>. Net migration associated with the expanding employment base in the three counties is computed by first calculating the difference between the two measures of labor force estimated above for heads of households: the difference between labor force size associated with the resident population in any one year (from Table 11) and expressed in equation seven. An example for the year 1970-1971 follows in Table 11.

7.
$$Mig_{p} = (Emp_{p} + Unemp_{p}) - RSL_{p}$$

where

- Mig = Migration of labor force
- Emp = Expected employment
- Unemp = Expected unemployment
 - RSL = Resident supply of labor
- Table 11. Migration of Labor Force Associated With Employment Growth and Total Population Associated With Labor Force Migration: 1970-1971

Employee Type	Expected Labor Force ^{a/}	Actual Labor _b / Force	Migration of Labor Force	Family Size Multiplier	Net Population Associated With Migration				
Married Male	10,693	9,958	+ 735	3.58	2,631				
Single Male	2,025	3,000	- 975	1.00	- 975				
Single Female	1,628	1,718	- 90	1.00	- 90				
Total New In-Mi	Total New In-Migrants								

 \underline{a} / From Table 8.

 $\frac{b}{}$ Computed using Equation five.

<u>Population Changes Associated With Net Migration Projections</u>. Since net migration includes married males as well as bachelors, the total population associated with in-migration or labor force is inflated by a family size multiplier (Equation 8).

8.
$$POPMIG = [Mig_1 \cdot (3.54)] + Mig_{2,3}$$

where

POPMIG = Total population associated with migration in any year

 MIG_1 = Married males migrants

$Mig_{2,3}$ = Single male and female migrants.

Total in-migration of married males in multiplied by 3.58 which is the estimated national family size in 1970 (see Table 11) [5, series p-20]. Since there is no way of determining sex of children or their ages, it is estimated that they will be 50 percent female and 50 percent male and will be distributed evenly between the ages of 0 and 18. The men and women who move into the area are assumed to be evenly distributed between the ages of 19 and 39. The ages 19 and 39 are chosen because the in-migrants are moving to the area for employment reasons, and adults between the ages of 19 and 39 are in their prime working years. This assumption is further supported by research which indicates that the ages 20 - 39 represent the most mobile members of our society [16, p. 53].

<u>A Discussion of Essentially Non-Economic Components as a Source of Popula-</u> tion Change

Two other variables which can have an effect on population size are investigated. They include the tendency of high school graduates to leave the area and the proportionately high rate of senior citizens in the threecounty area. Of the two only the effects of high school graduates is explicitly treated in the population projection model.

On the basis of the two studies, one done by Oregon Department of Education as a follow-up on 1975 high school graduates, and a second done by the Intermediate Education District of Umatilla and Morrow Counties, it was determined that approximately half of all high school graduates will leave the three-county area within two years of graduation [21, p. 8 and 17, p. 137]. Not all who leave the area upon graduation can be counted as permanent exits from the area, as about 75 percent left to further their education at some school outside of the area, and a few of these will return. On the other hand, not all who stayed in the community for the first two years will remain for an extended period of time. Therefore, it was decided that in the model, one-half of all 18 year olds would be subtracted from that single year age cohort each year. $\frac{13}{}$

Due to the fact that senior citizens in the three-county area represent a significantly higher proportion of the total population than in most counties in Oregon, an investigation was undertaken to determine the reason for that fact [7, p. 39-44]. In many areas of the United States, providing services to retirees moving into the area means new jobs in the same way a new potato processing plant means new job opportunities in the tricounty area. It became important, therefore, to determine if senior citizens were in fact migrating into the area to retire. Contacts with those serving retirees in the area (including nursing homes and retirement associations) indicated that new senior citizens were not moving into the three counties. According to Holden and Shepard in their study of migration in Oregon, the most likely explanation for the high proportion of older citizens in the area is the fact that during the 1960's the three-county area was losing population rapidly in the 20 to 39 age category [16, p. 45]. Since senior citizens are less mobile, their proportion increased, simply because others in different age groups left.

 $[\]frac{13}{}$ This technique is based on the assumption that all 18 year olds graduate from high school, this is not likely for any area and thus is a source of possible error. The error should not be significant, however, due to the fact that there are relatively few 18 year olds who are not high school graduates, and of course some of those not graduating will leave the area.

CHAPTER IV

STATISTICAL RESULTS AND INTERPRETATION

Results obtained from the application of the population projection model to actual, assumed, and projected data for Umatilla, Morrow, and Gilliam Counties for the years 1960-1990 are presented in this chapter. Projections for the years 1960-1975 are used to test the accuracy of the The predictions for 1975-1990 constitute the major results of model. this research. In the following sections, the predictions for the years 1960-1975 are compared with the 1970 decennial census count, and with 1975 population projections furnished by the Center for Population Research and Census at Portland State University, Portland, Oregon. The predictions for the years 1975-1990 are analyzed with respect to anticipated changes in the size of population in selected age groups for the three counties. The particular age groups of interest are total population, school age (5-19), and senior citizens (65 and above). Finally, a discussion of the relative successes and failures of this research is followed by suggestions for further research, and concluding remarks.

Relative Accuracy of the Proposed Model

The model is run yearly through the years 1960-1970 and 1970-1975, based on the employment totals in Table 12 below. The employment totals are prepared for five-year intervals, and single-year totals are compiled by simple interpolation. Single-year employment levels are available for the non-local construction industry, however, and are used instead of interpolated values. The non-local construction levels of employment are compiled by year due to the relatively short duration of construction activity. At least one major construction project was not started in 1960 and was completed before 1970. Using interpolated values would have led to population estimates which would not have reflected the true impact of the construction employment on population size during the 1960-1970 time period.

Year	County	Farming	Agricultural Services and Processing	Basic Industry	Non-Local Construction	Secondary Industry
1960	Umatilla Morrow Gilliam	1,350 468 278	1,606 151 104	1,777 93 30	20 0 0	8,060 857 507
	Total	2,096	1,861	1,900	20	9,424
1965	Umatilla Morrow Gilliam	1,826 677 377	1,517 163 109	1,568 143 49	70 22 348	8,995 787 1,003
	Total	2,880	1,789	1,760	440	10,785
1970	Umatilla Morrow Gilliam	1,725 493 222	1,865 59 31	1,995 151 4	40 0 0	9,726 1,096 462
	Total	2,440	1,955	2,150	40	11,274
1975	Umatilla Morrow Gilliam	2,989 746 211	1,960 416 94	2,110 229 14	86 24 5	9,690 1,640 504
	Total	3,946	2,470	2,353	115	11,834

Table 12. Employment by Industry for Umatilla, Morrow, and Gilliam Counties: 1960-1975

Source: Unpublished data, "Oregon's Northern Columbia River Basin Irrigation System Development Project: Employment and Sub-Area Distribution, 1960-1970", Oregon State Extension Service; Prepared by Dr. Roger Kraynick.

The results of the initial run between 1960 and 1970 for selected age groups are reported in Table 13. The predicted population size for all three counties is compared to the enumerated population in 1970 from the

	Enumerated Population—/			Predicted Population		ence n Actual umerated	Difference in Per- cent of Predicted to Enumerated	
Age	Male	Female	Male	Female	Male	Female	Male	Female
0 - 4	1,984	1,927	2,108	2,124	+ 124	+ 197	+ 6.25	+10.22
5 - 19	7,757	7,555	7,869	7,768	+ 112	+ 213	+ 1.44	+ 2.82
20 - 64	13,017	13,516	13,139	13,139	+ 122	- 377	+ 0.94	- 2.79
65 & above	2,827	3,147	2,432	2,823	- 395	- 324	-13.97	-10.30
TOTAL	25,585	26,145	25,548	26,835	- 37	+ 690	- 0.15	- 2.64

Table 13. Comparison Between Enumerated and Predicted 1970 Population by Selected Age Groups: Morrow, Umatilla, and Gilliam Counties, Oregon

<u>a</u>/ Source: Bureau of the Census, <u>General Population Characteristics of Oregon: 1970</u>. United States Department of Commerce, Washington, 1971 (7).

United States decennial census. The total male and female predictions were below the enumerated values by -0.15 percent and -2.64 percent respectively. However, when selected ages are compared the relative accuracy of the predictions is seen to differ somewhat more from the census enumeration.

The largest total error is found for those above 65. The predictions were 13.97 percent for males and 10.30 percent for females below the enumerated population. This means that in 1970, for all three counties, there were 395 more males and 324 more females than were predicted by the model. The most likely source of the error above is the model itself. In the present model, the totals above the age of 39 are adjusted only for aging and mortality. It is very likely that during the ten-year period from 1960 to 1970 there was in-migration of small numbers of people above the age of 65. It would take only 10 to 15 new in-migrants per year in each county to account for the total error. The second largest source of error was in the pre-school population where predictions were 6.25 percent higher for males and 10.22 percent higher for females than the enumerated values. This amounts to predicting 124 males and 197 females more than the census count. The most likely source of error in the pre-school population totals is not easily discerned. Any number of factors could account for it. First, the family size multiplier of 3.58 may be too large. Second, given that the region was a net exporter of labor from at least 1960-1965, the model may not have exited labor force of the same age as which actually left. For example, it is likely that the young (prime child-bearing years) were the first to leave, yet the model exits labor force evenly between the ages 19 and 39. Third, local fertility rates may not be equal to the national rates used in the model. The school-age

population (5-19 years of age) prediction is fairly accurate with only a 1.44 percent and 2.82 percent over-prediction for males and females, respectively. This amount to predicting 112 males and 213 females more than the census for those ages. In 1970 the adults between 20 and 64 accounted for 51.29 percent of the total population. The predictions for males between 20 and 64 were 0.94 percent above the enumerated population. The female population predicted in the model was 2.79 percent below the census count.

A second test of the model is provided by a projection from 1970 to 1975. Again the model is run by year, but this time for a total of only five years. Census data are not available for 1975, so the projections of this model are compared to another set of predictions for 1975, prepared by the Center for Population Research and Census. Comparisons on a county-by-county basis are reported in Table 14.

Since male and female values are not available from the Center for Population Research and Census, only total population is compared. The two predictions for total population are closest for Umatilla County where there is only a 3.09 percent difference in the two predicted values. In Gilliam County, the difference rises to 9.01 percent. In both cases the model developed for this research predicted larger total population than did the Center for Population Research and Census. The differences equal 1,487 and 191 more people predicted for Umatilla and Gilliam Counties, respectively, than were projected by the Center for Population Research and Census.

A very large and significant difference exists between the predicted population of Morrow County in 1975. The Center for Population Research and Census estimates a population of 5,190 for Morrow County in 1975,

while the prediction from the model developed here is 7,099. Thus, the present estimate differs by 1,909 people, or 35.78 percent, from the Center's prediction. According to the projections made by the Center for Population Research and Census, Morrow County's population grew by only 725 people between 1970 and 1975. In an attempt to account for the difference in the two predictions, two variables are analyzed. The employment and unemployment data used in the present research indicates that there were 1,256 new jobs created between 1970 and 1975, and unemployment grew from 120 to about 174 people. One thousand fifty-six jobs is a 69.8 percent increase over the 1970 level. High school graduates could have taken only a few of the total new jobs. There are approximately 100 males and females graduating from high school in Morrow County each year during this time period. Of those about half left the area. This means that without any migration or significant change in the labor force participation rate, only 250 people were added to Morrow County's labor force to fill approximately 1,256 new jobs. Since there is an excess of approximately 1,000 jobs, it seems likely that there was migration into Morrow County during this period, and the actual population in 1975 is something in excess of 5,190.

As can be noted from the discussion above, the Center's predictions for 1975 in Morrow County appear not to account for a relatively large increase in employment in Morrow County between 1970 and 1975. The use of historical trends to predict population (as is done at the Center for Population Research and Census) is a good technique only so long as events do not take place which alter the trends. The unanticipated growth in Morrow County employment is a good example of an event which affects the accuracy of trend predictions.

The Center's predictions for 1975 in Umatilla and Gilliam Counties are much closer to the ones predicted here, and that is expected since neither Umatilla nor Gilliam experienced substantial changes in employment between 1970 and 1975.

County	Center for Population Research & Census <u>a</u> /	Present Projection	Difference in Percent	Actual Difference
Umatilla	48,200	49,687	+ 3.09	1,487
Morrow	5,190	7,099	+ 36.78	1,909
Gilliam	2,120	2,311	+ 9.01	191
Total	55,510	59,097		

Table 14. Comparison Between Two Predicted 1975 Population Totals: Morrow, Umatilla, and Gilliam Counties

<u>a</u>/ Source: Center for Population Research and Census. "Population Estimates of Counties and Incorporated Cities of Oregon", Portland State University, Portland, Oregon, 1975 (9).

Projections: 1975 - 1990

The population predictions for 1975-1990 constitute the major empirical results of this research. As such, the 1975-1990 projections are provided with the most amount of disaggregation, and receive the most attention. Population projections are made for each of the three counties for each of the three industrial development scenarios discussed in Chapter III.

The complete results of the population projections are reported in Appendix B. In Appendix B, population is reported by single-year age and sex cohorts for five-year intervals (1970, 1975, 1980, 1985, 1990) for each of the three counties and three scenarios. Appendix B also includes the employment totals, both actual and projected from 1970-1990.

Total Population

The following discussion entails a description of the most significant results with respect to total population and selected age groups. Total population projections at five-year intervals are reported for each of the three counties and each of the three scenarios in Table 15. Beginning with Gilliam County, the first point of interest is the fact that under none of the three scenarios is Gilliam County affected to the same degree as Umatilla and Morrow. All other things remaining the same, only the addition of the Pebble Springs nuclear facility near Arlington will even keep total population at or above the 1970 level. In both of the other scenarios, Gilliam loses some population between 1970 and 1990. The addition of the nuclear plant is estimated to add some 514 people to Gilliam's population between 1970 and 1990, a net increase of approximately 22 percent for the twenty-year projection period. It should be noted that with the present uncertainty with respect to the actual construction of the nuclear facility, most of the increase will probably occur between 1978 and 1990.

In Umatilla, the first of the scenarios (minor development of the Stanfield/Westland Irrigation Project) results in a 27 percent increase in total population between 1970 and 1990, from 44,923 to 56,901. Scenario two (major development of the Stanfield/Westland Irrigation Project) leaves Umatilla with a 34 percent increase, 60,239 population by 1990. Umatilla County will experience the largest increase in its population (20,497 new people--a 46 percent increase) between 1970 and 1990 in scenario three, which is if all potential development takes place. As can be seen from the above figures, even with just the development that is now certain to occur, significant increases can be expected in the total population of Umatilla County. Given the fact that most of the new development is centered in the Hermiston/Umatilla area, it is also fairly certain that those two towns and several smaller ones in the vicinity can expect a substantial growth in their population over the next two decades.

Dovolopmont		Total Population By Year							
Development Level	County	1970	1975	1980	1985	1990			
Conservative	Umatilla Morrow	44,923 4,465	49,687	52,638 8,560	55,209 8,844	56,901 8,822			
	Gilliam Total	2,342	2,300 59,086	2,313 63,511	2,325 66,378	2,283 68,006			
Moderate	Umatilla Morrow Gilliam			52,793 8,320 2,283	57,097 8,894 2,279	60,239 8,973 2,248			
	Total			63,396	68,270	71,460			
Extensive	Umatilla Morrow Gilliam			54,501 9,080 3,423	60,537 9,803 2,961	65,420 9,966 2,856			
	Total			67,004	73,301	78,242			

Table 15. Enumerated and Projected Total Population by Scenario for Umatilla, Morrow, and Gilliam Counties: 1970-1990

Morrow is the most affected county by present and future industrial developments. One aspect of Morrow's growth is different, however, than the other two counties. Morrow experienced nearly a 59 percent increase in its population between 1970 and 1975 by addition 2,634 people. Even the third scenario with all developments becoming a reality shows Morrow's population increasing by less than the 1970-1975 percentage increase, or by some 40 percent (2,867 people) by 1990. Morrow will add more people

after 1975 than between 1970 and 1975, but the rate of growth is less. Morrow County is projected to have 8,822, 8,973, or 9,966 people by 1990, respectively, for the three scenarios. In all three cases the growth expected is nearly evenly divided between the five years between 1970 and 1975, and the period between 1975 and 1990.

Selected Age Cohorts

<u>School Age Population</u>. The first age group of interest is the projected school-age population reported in Table 16. As with total population, Gilliam County is least affected of the three counties. As opposed to total population, however, Gilliam County is expected to have fewer total students through the projection period, for all scenarios, than it had in 1970. This is due in part to the declining birth rate evidenced by the 1970 birth rates in comparison to those in the 1960's, and the relatively small size of the total new population expected in Gilliam County.

Umatilla County shows a gradual growth in its student population through all years for the first two scenarios. Only in the third scenario does there appear to be a rapid acceleration in the number of new students in Umatilla County. By 1990, under the third scenario, Umatilla's schoolage population has increased by over 31 percent, or about 3,655 new students, from 1970 levels.

Morrow County, as with population, shows the largest proportional increase in its student population of the three counties. Even in the conservative scenario, Morrow County is expected to see 824 new students, a 66 percent increase, between 1970 and 1990. Interestingly enough, the second scenario, which adds employment mostly in the farming sector, adds only a few more students than the more conservative scenario. Only 19

		Level of Industrial Development											
	Year	Conservative				Moderate			Extensive				
County		K-6	7-9	10-12	Total	K-6	7-9	10-12	Total	K-6	7-9	10-12	Total
Umatilla	1970	5,847	2,813	3,035	11,695								
	1975	5,703	2,918	3,014	11,635								
	1980	6,632	2,603	2,896	12,131	6,644	2,611	2,903	12,158	6,782	2,668	2,961	12,411
	1985	7,166	3,138	2,837	13,141	7,393	3,227	2,924	13,544	7,689	3,339	3,037	14,065
	1990	7,057	3,246	3,324	13,627	1,493	3,410	3,475	14,378	8,091	3,601	3,658	15,350
Morrow	[.] 1970	.616	305	321	1,242								
	1975	816	405	414	1,635								
	1980	1,004	413	465	1,882	980	403	454	1,837	1,043	427	479	1,949
	1985	1,187	432	388	2,077	1,190	438	388	2,016	1,268	461	412	2,141
	1990	1,075	508	483	2,066	1,080	515	490	2,085	1,196	542	510	2,248
Gilliam	1970	330	167	176	673								
	1975	248	153	178	579								
	1980	250	108	111	469	245	· 108	111	464	319	138	141	596
	1985	273	109	118	500	265	104	112	481	258	86	94	438
	1990	264	117	111	492	258	113	110	481	243	86	68	_ 397

Table 16. Actual and Projected School-Age Population by Scenario for Umatilla, Morrow, and Gilliam Counties: 1970 - 1990.

more students are predicted in the second scenario, in comparison to those projected in the first. The third scenario again adds a considerable number of new students to Morrow County. Full industrial development of all proposed projects leaves Morrow County with 9,477 new students, or a 81 percent increase over 1970 levels.

Population Over 65 Years of Age. The final age group to be discussed here is the population over 65 years of age. Given the assumptions and procedures used here, the population over 65 will continue to grow in the three-county area at a relatively stable rate. During the period of the projections (1975-1990), those who are 65 and above, or who will be 65 by 1990, are not generally affected or likely to migrate into the region. The most important aspect of the population above 65 is not shown in any of the projections. The problem lies in the size of the population over 65 after 1990. The reason for this is the fact that the populations of Morrow, Umatilla, and Gilliam Counties are likely to grow significantly between 1975 and 1990 in those ages between 20 and 39. What this means is, that sometime around the year 2000, the population above 65 years of age will begin to increase very rapidly. This is not too important now, but since no indication of that fact is in evidence in any of the predictions, it is important to mention it as a future event, which is not free of consequences, and they should not be ignored.

Limitations and Further Research

The most serious difficulty with the proposed model lies in the availability of good local data from the counties of interest. Secondary data sources are used in most cases, and generally refer to national statistics. As with most research, the constraints of time and money are the most limiting variables. Given the relative accuracy of the 1970 predictions (total population prediction was less than two percent from enumerated), there may be some point in the argument that the expenditure of more time and money to collect local statistics would not be costeffective.

Second, more flexibility in the model may have produced more accurate results. Specifically, no matter what happened in the economy, those over the age of 39 were simply advanced yearly by one age-cohort and the mortality rates were applied. It seems likely that there is some migration of those over 40 both into and out of the three-county area. It would also have been better to allow the unemployment rate and the labor force participation rate to vary. As mentioned in Chapter III, it seems likely that in a rapid growth situation, local labor force participation rates are likely to rise. This would tend to lessen the number of in-migrants as opposed to what is predicted by the model.

Potentials for future research are many and varied. Possibly the most important would be an analysis of changes which can be expected in the local labor force participation rates in relatively rural areas experiencing rapid economic development. A second extremely important issue to most people involved with the local community is who gets the new jobs which are created by industrial development. In this model, unemployment is set at a predetermined level, and no attempt is made to determine who, migrant or resident, fills the roles of unemployed. If industrial development is a tool in rural areas to combat local unemployment, research is necessary to determine who benefits from the new employment opportunities associated with the growth.

Conclusion

In this research a model is developed to predict population for relatively rural areas experiencing rapid economic development. Of the many ways to predict population size, in this research a "demographic-economic" model is chosen for use. The economic variables which aid in projecting population are total employment, and net changes in employment associated with economic growth. The model developed for this research is applied to Oregon's Northern Columbia River Basin Counties of Morrow, Umatilla, and Gilliam. Each county is or is expected to experience rapid growth in its agricultural and/or industrial sectors in the next few years. Using employment projections to the year 1990, population projections are made at five-year intervals between the years 1970 and 1990.

Bibliography

- Balestra, Pietso and W. Kotesweru Rao, "Basic Economic Projections: United States Population, 1965-1980". Stanford Research In-Stitute, Menlo Park, California, 1964.
- 2. Bureau of Business and Economic Research. "Oregon Economic Statistics". Eugene, Oregon: University of Oregon, 1971.
- 3. Bureau of the Census. <u>Census of Agriculture 1969</u>, Volume I, Area Reports, Part 47, Oregon, United States Department of Commerce. Washington. 1972.
- Bureau of the Census. <u>Current Population Reports</u>, series P-25, Numbers 311, 483, and 493. United States Department of Commerce, Washington.
- 5. Bureau of the Census. <u>Current Population Reports</u>, Series P-20. United States Department of Commerce, Washington, 1970.
- 6. Bureau of the Census. <u>General Population Characteristics: Oregon</u> 1960. United States Department of Commerce, Washington, 1961.
- 7. Bureau of the Census. <u>General Population Characteristics: Oregon 1970</u>. United States Department of Commerce, Washington, 1971.
- 8. Bureau of the Census. <u>The Methods and Materials of Demography</u>, Volume 2, United States Department of Commerce, Washington, 1973.
- 9. Center for Population Research and Census. "Population Estimates of Counties and Incorporated Cities of Oregon". Portland State University, Portland, Oregon. (annual)
- CH2M Hill Inc. "Community Impacts Alumax Pacific Corporation Port of Umatilla Site", April 1975.
- 11. Council of Economic Advisors. "Economic Report of the President". Washington. (annual)
- 12. Fernstrom, John R. <u>Bringing in the Sheaves</u>. Corvallis, Oregon. Oregon State Extension Service, 1973.
- Halley, Richard B. and Morton Paglin. "Population Forecast, State of Oregon and Economic Areas: 1960-85." Population Bulletin, Release Number P-10, Oregon State Board of Census, Portland, Oregon, 1964.
- Hamilton, C. Horace and Josef Perry. "A Short Method for Projecting Population by Age From One Census to Another." Social Forces, 41, 2 (1962):160-210.
- 15. Hermiston, Oregon, Chamber of Commerce. "Greater Hermiston Chamber of Commerce Newsletter". Hermiston, Oregon, July 1976.

- 16. Holden, Arnold G., and W. Bruce Shepard. <u>Migration and Oregon--1970:</u> <u>Patterns and Implications</u>. Corvallis, Oregon: Department of Political Science, 1974.
- Intermediate Education District, Morrow and Umatilla Counties. "1975 High School Follow-Up Survey". (unpublished) Pendleton, Oregon, 1975.
- 18. Kraynick, Roger. "Oregon's Northern Columbia River Basin Irrigation System Development Project: Employment and Sub-area Distribution, 1960-1970," (unpublished data) Oregon State Extension Service.

 Miles, Stanley (Extension Economist). "Value of Agricultural Sales -Annual Reports," Extension Economic Information Office, Oregon State University, 1965, et. al., 1975.

- 20. Obermiller, Frederick W. <u>Projected Growth in Oregon's Northern Columbia</u> <u>River Basin Counties</u>. Corvallis, Oregon: Oregon State Extension Service, 1975.
- 21. Oregon Department of Education. "1975 High School Graduate and Follow-Up Systems: Summary of Findings." Salem, Oregon, Spring 1976.
- 22. Pittenger, Donald B. <u>Projecting State and Local Populations</u>. Cambridge (Ballinger Publishing Company), 1976.
- Plambeck, Hans. <u>The Population of Oregon, 1940-1970</u>. Corvallis, Oregon: Oregon State University, 1975.
- 24. Public Health Service. <u>Vital Statistics of the United States</u>. Fertility, Volume I, Washington, 1960.
- 25. Public Health Service. <u>Vital Statistics of the United States</u>. Fertility, Volume I; Mortality, Volume III, Part A. Washington, 1970.
- 26. Ross, Arthur (Editor). <u>Employment Policy and the Labor Market</u>. University of California Press, 1965.
- Skidmore, Owings, and Merrill Inc. "Housing and Community Facility Requirements - PGE Thermal Power Facilities: Pebble Springs and Carty Sites", 1975.
- 28. Stanfield and Westland Irrigation Districts. "Oregon Northern Columbia River Basin Irrigation System Development Project," Corvallis, Oregon: Oregon State Extension Service, 1975.
- State of Oregon Employment Division. "Annual Labor Force Estimates -Oregon Counties". Department of Human Resources, Salem, Oregon (annual).
- 30. United States Bureau of Labor Statistics. "Handbook of Labor Statistics". (annual). United States Department of Commerce, Washington.
- 31. Vitro-Boyle Engineering. "Stanfield Westland Project (Draft)". Bakersfield, California. Project Manager: Dave Hardin. August 1976.

- 32. Whelpton, P. K. "Population of the United States, 1925 to 1975". American Journal of Sociology, 34, 2 (1928):253-70.
- 33. White, T. Kelley. <u>The Purdue Development Model: A Systems Approach</u> to Modeling Demographic-Economic Interaction in Agricultural <u>Development</u>. West Lafayette, Indiana: Purdue University Agricultural Experiment Station, 1975.

APPENDIX A

Sprague Multiplier

Sprague Multiplier

For several reasons, single-year cohorts are used in the population projection model in this research. In order to acquire single-year values from census data, which only report five-year totals above the age of 19, a Sprague Multiplier was used. The Sprague Multiplier is a commonly used technique among demographers to interpolate aggregate quantities.

Basically, the Sprague Multiplier is a formula which yields values which can be used to accurately divide evenly spaced groups (such as five-year age cohorts) into fifths while maintaining totals. In the following table, the Sprague coefficients which are used to interpolate the census five-year cohorts are presented. A more complete description of the Sprague Multiplier can be found in an article by Thomas Bond Sprague called "Explanation of a New Formula For Interpolation," in the Journal of the Institute of Actuaries, 22:270, 1880-81.

		Coefficient	s to be ap	plied to-	-
Interpolated Subgroup	G ₁	G ₂	G ₃	G4	G ₅
		First pa	nel	+	• • • • • • • • • • • • • • • • • • •
First fifth of G_1 Second fifth of G_1 Third fifth of G_1 Fourth fifth of G_1 Last fifth of G_1	+.3616 +.2640 +.1840 +.1200 +.0704	2768 0960 +.0400 +.1360 +.1968	+.1488 +.0400 0320 0720 0848	0336 0080 +.0080 +.0160 +.0176	
,		Next to f	irst panel	••	•
First fifth of G_2 Second fifth of G_2 Third fifth of G_2 Fourth fifth of G_2 Last fifth of G_2	+.0336 +.0080 0080 0160 0176	+.2272 +.2320 +.2160 +.1840 +.1408	0752 0480 0080 +.0400 +.0912	+.0144 +.0080 .0000 0080 0144	
		Middle	panel	••••••••••••••••••••••••••••••••••••••	•
First fifth of G_3 Second fifth of G_3 Third fifth of G_3 Fourth fifth of G_3 Last fifth of G_3	0128 0016 +.0064 +.0064 +.0016	+.0848 +.0144 0336 0416 0240	+.1504 +.2224 +.2544 +.2224 +.1504	0240 0416 0336 +.0144 +.0848	+.0016 +.0064 +.0064 0016 0128
		Next to la	st panel	• •.· · · · · · · · · · · · · · · · · · · 	
First fifth of G ₄ Second fifth of G ₄ Third fifth of G ₄ Fourth fifth of G ₄ Last fifth of G ₄		+.0144 0080 .0000 +.0080 +.0144	+.0912 +.0400 0080 0480 0752	+.1408 +.1840 +.2160 +.2320 +.2272	0176 0160 0080 +.0080 +.0336
		Last p	anel		•
First fifth of G_s Second fifth of G_s Third fifth of G_s Fourth fifth of G_s Last fifth of G_s		+.0176 +.0160 +.0080 0080 0336	0848 0720 0320 +.0400 +.1488	+.1968 +.1360 +.0400 0960 2768	+.0704 +.1200 +.1840 +.2640 +.3616

APPENDIX B

,

Computer Program Listing

ş

1	PROGRAM CONTROL (INPUT, OUTPUT)
	25000000000000000000000000000000000000
5	C XA AA XA XA XA XX XX XX XX XA XX C C AA XX XX AX XA XX XA XX XX C C XXXX XX AX XA XX XA XX XA XX C C XXXX XX XXA AXXA XXXX XAXX C C
13	C XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
-	C xx c C xx c C xx xx xx xx xx xx xx xx c C c
- 15	C C C C C C C C C C C C C C C C C C C
20	C XX C C XX XX XX XX XX XX XX XX C C XX XX XX XX XX XX XX XX XX C C C C C
2 U	C XXXXXXXX XX XX XX XX XX XX XX XX XX C C XX XX XX XX XX XX XX XX XX C C XX XX XX XX XX XX XX XX C C XX XXXX XX XX XX XX XX C
2525	C XX XXX XX XX XX C C XX XXXXXXX XX XX XX XX C C 4X XXXXXXX XX XX XX XX C C 6
30	C C C C C C C C C C C C C C C C C C C
	C XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	C xx
43	C C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
· · -	
SYNBOLIC	REFERENCE MAP (R=1)
ENTRY ROINTS 4107 CONTROL	· · · · · · · · · · · · · · · · · · ·
TLE NAMES	MODE 2041 OUTPUT

:

1		JERDUTINE FORM
	c c	CHYON VAV N, INITYZ, NPEG, NSCEN
	CC	9×50/23/2004(105,2),8004(105,2),PC0H(100,2),PTOT(25,2),4RE4(3),
	1	
5		ILL READIN
		0.30 I=1,NREG
) 14 K=1,1C3
) 14 J=1,2
		:
10		30×(≺, J) = €.
		C6r(≮, J)=0.
		ALL REGION
		1= 2004 (3 + 1)
		= 2004 (3, 2)
15 _		CCH(34,1)≈ACOH(34,2)=0.
		CCF(36,1)=S4 CCF(36,2)=SF
		0 *6 J=2 + NS ZEN
23		
		2 2 3 - 1 , 2
		23 [1-1,86
		20+(II,J)=3C0+(II,JJ)
) 30 L=2 · N
25	Č Š	ALL COHORT (L)
		DETINUE ITURN 10
	RE	
SY430LIC	RE E N	
	RE E N	
NTRY POINTS	REFERENCE	TURN ND KAP (R=1)
	REFERENCE	TURN ND KAP (R=1)
NTRY POINTS	REFERENCE	TURN ND KAP (R=1)
NT=Y POINTS 1 POPM ARIANES SN 3 ACOM	REFERENCE	TURΝ ND E KAP 1R=1)
NT=Y POINTS 1 POPM ARIANES SN 3 ACOM	REFERENCE	FELOCATION $ARAY 9 1214 AREA RELL ARAY 9$ $ARAY 9 76 I INTESER$
NTRY POINTS 1 POPM ARIAILES SM	REFERENCE	TURN ND FELOCATION ARRAY 3 1214 AREA REAL ARRAY 3 1214 AREA REAL ARRAY 3 1214 AREA ARRAY 3 1214 AREA ARRAY 3 76 I INTEGER 1 INITYR INTEGER A
NTEY POINTS 1 POPM 1 POPM 1 POPM 3 10 0000 310 0000	REFERENCE N TYPE REAL REAL	FELOCATION ARRAY 3 1214 AREA REAL ARRAY 3 ARRAY 3 76 I INTEGER 1 INITYR INTEGER 1 STATES A
NTSY POINTS 1 POSH 28143LES SN 3 4000 310 3000 134 II	REFERENCE REFERENCE REFERENCE REAL REAL REAL INTEGER INTEGER	IVEN ND FELOCATION ARRAY B 1214 ARRAY B 76 I INTEGER 103 JJ INTEGER
NT=Y POINTS 1 POP4 3 400H 3 400H 104 II 103 J 77 K 0 N	REFERENCE REFERENCE REFERENCE REAL REAL INTEGER INTEGER INTEGER	IVEN NO FELOCATION ARAY 9 76 1 INITYR INITYR INITYR INTEGER A 2 NGC
NT=Y POINTS 1 POPM 3 POPM 3 ACOM 3 10 BCOM 104 II 103 J 77 K 0 N 2 NSCEN	REFERENCE REFERENCE REFERENCE REAL REAL INTEGER INTEGER INTEGER INTEGER	TURN ND FELOCATION ARRAY 9 76 I INITYR INITYR INITYR INITYR IS J INTEGER A 2 A
NT =Y POINTS 1 POPM 1 POPM 3 400H 3 400H 3 400H 1 3 00H 1 3 00H 1 3 00H 1 3 00H 1 3 00H 1 1 0 1 0	RE EN REFERENCE REFERENCE REAL REAL REAL INTEGER INTEGER INTEGER PEAL	IURN ND FELOCATION ARRAY B 1214 ARRAY 3 1214 ARRAY 3 11 INITYR INITYR INITEGER 105 105 105 107 ARRAY B 1224 32500 REAL ARRAY B 1224 32500 REAL ARRAY A 1224 32500 REAL ARRAY A 1224 <
NT=Y POINTS 1 POPM 3 POPM 3 ACOM 3 10 BCOM 104 II 103 J 77 K 0 N 2 NSCEN	REFERENCE REFERENCE REFERENCE REAL REAL INTEGER INTEGER INTEGER INTEGER	TURN ND FELOCATION ARRAY 9 76 I INITYR INITYR INITYR INITYR IS J INTEGER A 2 A
NT=Y POINTS 1 POP4 3 400H 310 300H 104 II 113 J 77 K 0 N 2 NSCEN 1133 270T 122 56	REFERENCE REFERENCE REFERENCE REAL RITIESER INTESER INTESER INTESER INTESER INTESER PEAL PEAL	Image: Truth with the second secon
NT = Y POINTS 1 PO= 4 3 400 A 3 10 300 H 104 II 103 J 77 K 0 N 2 NSCEN 1133 = 757 132 SC XTEPNALS	RE EN REFERENCE REFERENCE REAL REAL REAL INTEGER INTEGER INTEGER PEAL	Image: Felocation Image: Felocation ARRAY B 1214 AREA RELOCATION ARRAY B 1214 AREA 1215 INTEGER 1216 INTEGER 1224 SCENO 1224 SCENO 1224 SCENO 1224 SCENO 1224 SCENO 1224 1224 1224 1224 1224 1224 1224 1224 1224 1224 1224 1224 12305
NTFY POINTS 1 POPM 1 POPM 3 4004 3 4004 3 4004 13 4004 13 4004 13 4004 13 4004 13 50 13 50 10 50 10 10 50 10 50	REFERENCE REFERENCE REFERENCE REAL RITIESER INTESER INTESER INTESER INTESER INTESER PEAL PEAL	Image: Felocation Image: Felocation ARRAY B 1214 AREA REL ARRAY B 1214 AREA REL ARRAY B 76 I INTESER Image: Im
NT=Y POINTS 1 POP4 3 4 COH 3 4 COH 3 4 COH 3 4 COH 1 3 4 COH 1 3 4 COH 1 3 5 COH 1 3 7 7 1 3 7 7 1 3 7 7 1 3 7 7 1 3 5 5 XT=PNALS COHORT REGION	REFERENCE REFERENCE REFERENCE REAL RITIESER INTESER INTESER INTESER INTESER INTESER PEAL PEAL	FELOCATION ARRAY 3RRAY 9 76 1 INTEGER 1
NTFY POINTS 1 POPM 1 POPM 3 4004 3 4004 3 4004 13 4004 13 4004 13 4004 13 4004 13 50 13 50 10 50 10 10 50 10 50	REFERENCE REFERENCE REFERENCE REAL RITIESER INTESER INTESER INTESER INTESER INTESER PEAL PEAL	Image: Felocation Image: Felocation ARRAY B 1214 AREA REL ARRAY B 1214 AREA REL ARRAY B 76 I INTESER Image: Im
NTEY POINTS 1 POP4 1	REFERENCE REFERENCE REFERENCE NTYPE REAL REAL INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER	FURN AD FELOCATION ARAY B 1 INTYR IC3 JJ INTEGER ARAY B 1C3 JJ INTEGER A 2 M2C6 A C A A A A A B A A A B A C
NT=Y POINTS 1 POP4 3 4 COH 3 4 COH 3 4 COH 3 4 COH 1 3 4 COH 1 3 4 COH 1 3 5 COH 1 3 7 7 1 3 7 7 1 3 7 7 1 3 7 7 1 3 5 5 XT=PNALS COHORT REGION	REFERENCE REFERENCE REFERENCE NTYPE REAL REAL INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER	FELOCATION ARRAY 3RRAY 9 76 1 INTEGER 1

- --

	SUBROUTINE READIN 73/73 OPT=1 T FTN 4.5+410 76/12/03. 13.25.15 PAGE 1
	1 SUBROUTINE PEADIN COMMON VAX N.INITYR.WREG.NSCEN
	COMMON/2/2004(103,2),RCOM(100,2),PCOH(100,2),PTOT(26;2),49E4(3), 1 SCENU(3)
	5 COMMON /E/ EMPLOY(5,26),C(5,7),AUF,WEDRT(7,2),PARTRT(7,2,3),AOSNL COMMON /D/ CODH(36,2),DEADPT(86,2),DRABY(2)
	COMMON VEV FERTIL (7), 343ES(2) REAT 101, INITYR, N, NREG, NSCEN, AUR, AGSNE
	INITYR=INITYR-1 13
	REAC 103, ((3EAORT(I,J),J=1,2),I=1,35) READ 106, ((3(I,J),J=1,7),E=1,5)
	<pre></pre>
	15 PEAR 108, (((PARTRT(I,J,K),I=1,7),J=1,2),K=1,3) FETLON
	ENTRY REGION FELC 110, (ARE4(I), I=1, 3)
	PEAC 102. ((3COH(I,J),I=1,34),J=1,2) 23 00 15 J=1,2
	00 15 I≈35,100 15 3C0+(I,J)=C.
	PETURN ENTRY SCENIR
	25 PEAD 11G, (SCEND(I), I=1, 3) RE4C 103, ((EMPLOY(I,J), I=1,5), J=1, N)
	25TURN 1C1 F08M47 (4T10,2F10,4)
	122 FORMAT(17F4.3) 33 123 FORMAT (SF5.9)
	104 FORMAT(7F10.1) 105 FORMAT(10F8.5)
	105 FORMAT(775.0) 107 FORMAT (2F10.6)
	35 103 FOPMAT(14F5.0) 112 FOPMAT(14F5.0)
	SYMBOLIG REFERENCE MAP (RE1)
	ENTRY POINTS 1 PEADIN 55 REGION 113 SCENAR
•	VARIANES SN TYPE RELOCATION
	I ACGH FEIL IRRIY B ISS AGSNL REAL E 1214 1744 1745 402 REAL E
	7 BIBES PELL ARRAY F BIG BOOH REAL ARRAY B
	C DCDH FELL ARRAY D 254 DEADRT REAL ARRAY O
	254 I INTEGER 1 INTEGER A
	255 J INTEGER 256 K INTEGER JN INTEGER A 2 NREG INTEGER 4

COMPLMANACCH(1:1:,2),300×(100,2),F00+(100,2),F10+(26,2),482A(3), 1 SC240(3) COMPSM // SC00+(36,2),32(2),3343Y(2) . F(VC:70.2) COULS(6,2),32(2),3343Y(2) . F(VC:70.2) COULS(6,2),32(2),3343Y(2) . COUPSM // SC00+(1,1),3343Y(2) . COUPSM // SC00+(1,1),3343Y(2) . COUPSM // SC00+(1,1),3343Y(2) . COUPSM // SC00+(1,1),3443Y(2) . COUPSM // SC00+(1,1),3443Y(2)			SUBFOUTINE COHORT (KG)
1 SC: 201(2), 2, CCCO+(19, 2) 5 COMENY /// COMISS, 2), J2: D3Y (2), CCC+(19, 2), J2: D3Y (2), CCC+(2), J2: D3Y (2), CCC+(2), J2: D3Y (2), CCC+(2), CCC+(2), CCC+(2), CCC+(2), CCC+(2), J2: CCC+(2), J2: CCC+(2), J2: CCC+(2), J2: CCC+(2), J2: CCC+(1, J), J2: CC+(1, J), J2: CC	-		
5 COMMEN Y/Y (COMIS, 2), 35:371 (86, 2), 33:331 (2) 6 COMMEN Y/Y (COMIS, 2), 35:371 (86, 2), 33:331 (2) 1 Comment Y/Y (COMIS, 2), 35:371 (86, 2), 33:331 (2) 1 Catt Extrement (Comment Y) 1 00 is j:1, 2 1 Joints I:1, 2 2 Joints I:1, 2 3 Joints I:1, 3			
<pre>5</pre>			
C C 0 + 3 × 7 × FERTL(1), BAASS(2) 		5	CONTROL 737 FCON(36.2), DE1091(86.2), 3343Y(2)
IF (*2, 50, 2) CALL _POPOJIT(1) CALL EFAPE (<c)< td=""> CALL EFAPE (<c)< td=""> 10 00 is j=1,2 11=19 00 is j=1,2 12=19 00 is j=1,2 13 14 15=1,2 15 15 15 16 17=13+1 18 19 10 11=1,19 11 12=1,2 13 14 15 15 16 17 18 19 11 11 12 12 13 14 15 15 16 17 18 19 19 19 110 111 111 111 112 113 114</c)<></c)<>			CONMON /F/ FERTIL(2).BABES(2)
Citt Extop (xC) Citt PopC(xC) 10 00 15 J=1;2 J=194 00 15 I=1;31 10 00 15 I=1;2 Cover(1, J) = 2004(IJ, J) + ECOM(I, J) 15 15 Cover(1, J) = 2004(IJ, J) + ECOM(I, J) Cover(1, J) = 1004(IJ, J) + ECOM(IJ, J) Cover(1, J) = 2004(IJ, J) + ECOM(IJ, J) 20 Cover(IJ, J) = 2004(IJ, J) + ECOM(IJ, J) 21 Cover(IJ, J) = 2004(IJ, J) + ECOM(IJ, J) 22 Cover(IJ, J) = 2004(IJ, J) + ECOM(IJ, J) 23 Cover(IJ, J) = 2004(IJ, J) + ECOM(IJ, J) 24 Cover(IJ, J) = 2004(IJ, J) + ECOM(IJ, J) 25 Cover(IJ, J) = 2004(IJ, J) + ECOM(IJ, J) 26 Cover(IJ, J) = 2004(IJ, J) + ECOM(IJ, J) 27 Cover(IJ, J) = 2004(IJ, J) + ECOM(IJ, J) 28 Cover(IJ, J) = 2004(IJ, J) + ECOM(IJ, J) 29 Cover(IJ, J) = 2004(IJ, J) + ECOM(IJ, J) 20 Cover(IJ, J) = 2004(IJ, J) + ECOM(IJ, J) 21 Cover(IJ, J) = 2004(IJ, J) + ECOM(IJ, J) 23 Cover(IJ, J) = 2004(IJ, J) + ECOM(IJ, J) 24 Cover(IJ, J) = 2004(IJ, J) + ECOM(IJ, J) 25 Cover(IJ, J) = 2004(IJ, J) + ECOM(IJ, J) 26 Cover(IJ, J) = 2004(IJ, J) + ECOM(IJ, J) 27 Cover(IJ, J) = 2004(IJ, J) + ECOM(IJ, J) 28 Cover(IJ, J) = 2004(IJ, J) + ECOM(IJ, J) + ECOM(IJ, J) 29 Cover(IJ, J) = 2004(IJ, J) + ECOM(IJ, J) + ECOM(IJ, J) 20 Cover(IJ, J) = 2004(IJ, J) = 2004(IJ, J) + ECOM(IJ, J) + ECOM(IJ, J) + ECOM(IJ, J) + ECOM(IJ, J) = 2004(IJ, J			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			CALL 2000(KC)
$\begin{array}{c} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 &$		13	
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $			
$ \begin{array}{cccc} & a \ ccc \ (I, J) \ = a \ ccc \ (I, J) \ = a \ ccc \ (I, J) \ = c \ ccc \ (I) \ c$			
15 15 CONTINUE ContINUE			
NC 11 J=1.2 00 10 T=1.9 20C(T, J)=2COH(T, J)+ECCOH(T, J) 21 CLL DPOP 00 21 J=2.36 00 21 J=2.42 00 21 J=2.42 00 23 J=2.42 00 24 J=2.42 00 25 J=1.2 00 25 J=1.4 25 COPTONIC 26 ACOP(T, J)=2COH(T, J)=0COH(T, J) 27 20 20 J=2.42 00 21 J=2.42 00 22 J=2.42 26 ACOP(T, J)=2COH(T, J)=0COH(T, J) 27 28 ACOP(T, J)=2COH(T, J)=0COH(T, J) J=0 36 J=341 27 37 38 J=341 39 30 I I=1.20 31 J=311 32 J=341 33 J=341 34 ACOP(T), J)=2.00 35 IF(T, J)=2.01 36 J=341 37 38 J=341 39 30 II=1.20 31 I=2.20 32 I=1.21 33 ACOP(T), J)=2.23 34 ACOP(T), J)=2.43 35 IF(T, J)=2.43			
<pre></pre>		· 15 _	
<pre></pre>			
10 CONTINUE 21 Call Dep2 Call Dep2 00 21 J=2,36 00 21 J=1,2 26 ACOP(I, J)=2COH(I, J) 25 COP(I, J)=.75*1COH(I, J) J=3 30 J=1,2 30 O 45 I=1,66 II=27-I J=II-1 ACOP(II, J)=COH(II, J)+ACOH(IJ, J) ACOP(II, J)=C, II, J)+ACOH(IJ, J) ACOP(II, J)=C, II, J)+ACOH(IJ, J) ACOP(II, J)=C, II, GO TO 3C IF(IJ, E0, 1) GO TO 41 4C COP(II, 2)=2ABES(1) ACOP(II, 2)=2ABES(2) 40 Call POPOUT(<c)< td=""><td></td><td></td><td></td></c)<>			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
C4LL DPCP 00 2J J=2,95 00 2J J=2,2 2C ACO+II,J=2COA(I,J) - 0COH(I,J) 25 00 25 J=13,19 25 2:0+(1,J)=.75*1COH(I,J) J=0 36 J=J+1 30 00 4; J=1,26 I J=I-1 ACO+(I,J)=ACOH(II,J)+ACOH(IJ,J) ACO+(I],J)=C. 35 IF(I:E0.1:240.JE0.1) G0 T0 3C IF(I:E0.1) G0 T0 41 40 CO+(1,J)=243E5(1) ACO+(1,J)=243E5(1) ACO+(1,J)=243E5(2) 40 CALL POPOUT(XC)	-		
00 2) I=2,36 00 2) J=1,2 26 ACOP(I,J)=2COA(I,J) = 0COH(I,J) 25 00 25 J=1,2 00 31 L=1,20 30 30 31 32 33 34 35 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 39 39 30 31 32 33		< ↓	
00 2J J=1,2 26 ACOP(I,J)=2COH(I,J)=0COH(I,J) 25 00 25 J=1,2 00 25 J=1,2 00 25 J=13,13 25 4:0P(I,J)=.75*1COH(I,J) J=3 36 J=J+1 30 00 43 I=1,26 II=27-1 i IJ=II-1 ACOP(II,J)=ACOH(II,J)+ACOH(IJ,J) ACOP(II,J)=C. 35 IF(I).20.1) 60 T0 3C IF(I).20.1) 60 T0 41 41 ACOP(I,1)=243ES(1) ACOP(I,2)=243ES(2) 40			
20 ACOP(I, J)=:COA(I, J)=OCOA(I, J) 0 25 J=1,2 0 25 J=1,3 0 25 J=1,3 30 J=J+1 30 0 4; I=1,26 II==?7-I I J=II-1 ACOP(II, J)=ACOA(II, J)+ACOA(IJ, J) ACOP(IJ, J)=C. 35 IF(I:=C0.1:X0, J)=C0,1) GO TO 3C IF(I:=C0.1:X0, J)=C0,1) GO TO 3C IF(I:=C0.1:X0, J)=C0,1) GO TO 41 41 ACOP(I, 2)=2325(2) 40 CALL POPOUT(KC)			
25 00 25 J=1,2 00 25 I=13,13 25 4COH(I,J)=.75*ACOH(I,J) J=3 30 J=J+1 30 00 43 I=1,66 II=#7-T IJ=II-1 ACOH(II,J)=ACOH(II,J)+ACOH(IJ,J) ACOH(IJ,J)=C. 35 IF(IJ.E0.1) GO TO 3C IF(IJ.E0.1) GO TO 41 40 CALL POPOUT(KC)			
00 25 I=18,13 25 450+(I,J)=.75*400H(I,J) J=0 30 J=J+1 30 00 43 I=1,26 II=27-T IJ=II-1 ACC+(II,J)=ACOH(II,J)+ACOH(IJ,J) ACO+(IJ,J)=C 35 IF(IJ-E0.1) GO TO 3C IF(IJ-E0.1) GO TO 41 40 CALL POPOUT(<c)< td=""><td></td><td>75</td><td></td></c)<>		75	
$25 \ 4 \ CO + (I, J) = .75^{\circ} \ 4 \ CO + (I, J) = .75^{\circ} \ 4 \ CO + (I, J) = .75^{\circ} \ 4 \ CO + (I, J) = .40^{\circ} \ (I, J) =$	-	C,	
J=0 30 J=J+1 30 00 43 I=1,26 II=27-I ; IJ=II-1 ACC+(II,J)=4COH(II,J) ACO+(IJ,J)=C. 35 IF(IJ,E0.1) GO TO 3C IF(IJ,E0.1) GO TO 41 40 CO+(I,2)=243ES(1) ACO+(I,2)=243ES(2) +0 CALL POPOUT(<c)< td=""><td></td><td></td><td></td></c)<>			
30 J=j+1 30 00 43 I=1,26 II=27-I IJ=II-1 ACC+(II,J)=ACOH(II,J)+ACOH(IJ,J) ACC+(IJ,J)=2 35 IF(IJ-20.1) GO TO 41 40 CO+(I,2)=243ES(1) ACC+(I,2)=243ES(2) 40 CALL POPOUT(<c)< td=""></c)<>		· ·	
30 00 4) I=1,26 II=27-I IJ=II-1 ACC+(II,J)=ACOH(II,J)+ACOH(IJ,J) ACC+(IJ,J)=2. 35 IF(IJ.20.1) GO TO 3C IF(IJ.20.1) GO TO 41 42 CO:IINUE 41 ACC+(I,2)=243ES(2) 40			
II=47-I J=II-1 ACGP(II,J)=ACOH(II,J)+ACOH(IJ,J) ACGP(IJ,J)=C. IF(IJ:C0.1.2NO.J.E0.1) GO TO 3C IF(IJ:C0.1) GO TO 41 4C CONJINUS 41 ACOP(1,1)=C13ES(1) ACOP(1,2)=243ES(2) CALL POPOUT(<c)< td=""><td></td><td>30</td><td></td></c)<>		30	
<pre> i</pre>			I I = ?7~I
ACOP(1), J) = 0. 35 IF(I).EQ.1.200.J.EQ.1) GO TO 3C IF(I).EQ.1.1200.J.EQ.1) GO TO 41 4C 4C ACOP(1,1) = 2.3ES(1) ACOP(1,2) = 2.3ES(2) 40 CALL POPOUT(<c)< td=""></c)<>	_		
ACOP(1), J) = 0. 35 IF(I).EQ.1.200.J.EQ.1) GO TO 3C IF(I).EQ.1.1200.J.EQ.1) GO TO 41 4C 4C ACOP(1,1) = 2.3ES(1) ACOP(1,2) = 2.3ES(2) 40 CALL POPOUT(<c)< td=""></c)<>			ACG+(II,J)=ACO+(II,J)+ACO+(IJ,J)
40 CALL POPOUT(<c)< td=""><td></td><td></td><td>ALUFII. J. J. T.</td></c)<>			ALUFII. J. J. T.
40 CALL POPOUT(<c)< td=""><td></td><td>35</td><td>IF(IJ.E0.1.2NO.J.E0.1) GO TO 3C</td></c)<>		35	IF(IJ.E0.1.2NO.J.E0.1) GO TO 3C
41 ACOP(1,1)=2:3E5(1) ACC+(1,2)=3:3E5(2) 40 CALL POPOUT(KC)			TE(T):54:11 00 10 4T
ACC+(1,2)=343ES(2) +0 CALL POPOUT(KC)	-		
			41 ACOF(1,1)=25425(1)
			ACC+(1, 2)=44±S(2)
KE LUKN		÷0	
ΕΝΟ			ENU
	·		·
	-		
		SYNBOLIC R	LFERENCE MAP (R=1)
SYMBOLIC REFERENCE MAP (R=1)		••••• ••• ••	
SYNGOLIC REFERENCE MAP (R=1)		ENTRY POINTS	
ENTRY POINTS		S COHORT	
ENTRY POINTS			
ENTRY POINTS 3 COHORT			
ENTRY POINTS T COHORT VARIABLES SH TYPE FELCCATION		S ACOH	
ENTRY POINTS 3 COHORT VARIABLES SH TYPE FELCCATION 9 ACOH REAL ARRAY B 1214 AREA REAL ARRAY 3		7 91915	
ENTRY POINTS 3 COHORT VARIABLES SH TYPE FELCCATION 5 ACOH REAL ARRAY B 1214 AREA REAL ARRAY B			

•

-	SUBROUT	INE EMPOP 73/73 OPT=1 FTN 4.5++10 75/12/03. 10.25.13 FASE 1
	1	SU3=007[148 E190P(L)
-		CCMMCN/3/ACC+(10),2),800H(100,2),PCOH(100,2),PTOT(26,2),47E4(3), 1 SCENO(3) COMMON /C/ EJOH(21,2),ECCOH(19,2)
	5	CONTON /C/ ESCHELT/;CONTON;CONTON;CONTON /CONTON /CONT
	10	C C C C Mitrix Definition
•		C C(I,1) - FRACTION OF EMPLOYEES ASSUMED TO BE MARRIED MALES
		C C(I,2) - FRACTION OF EMPLOYEES WHO ARE SINGLE MALES
	15	C C(I,3) - FRACTION OF EMPLOYEES WHO ARE SINGLE FEMALES
· -·	•	
·	23	C FART ONE EMPLOYERS EXPECTED POOL
·		ζ κ=1
	25	IT≈0 6 IT=IT+1
	30	00 15 J=1,3 00 9 I=1.6 3 EC4T(I,J) = 0. 00 11 I=1.5 10 EC4T(I,J)=EH>LOY(I,L) + C(I,J) + (1+(C(I,4)/(1-C(I,4))))
		00 12 [=1,5 12 ECAT(5,J)=ECAT(6,J) + ECAT(I,J) 15 CONTINUE
	35	C C C FART TWC - ESTIMATE OF INDISENENT FOOL C
~	-	C 0C 73 J=1,3
	40	00 23 I=1,4 20 FCOH(I,J)=0. FCOF(1,1)=ACOH(19,1) + ACOH(2G,1)
		FCD+(1,2)=ACDH(19,2) + ACCH(22,2) FCD+(1,1)=ACDH(21,1)+ACCH(22,1)+ACCH(23,1)+ACCH(24,1)+ACCH(25,1)
	45	FCC+(2,2)=4C0H(21,2)+AC0H(22,2)+AC0H(23,2)+AC0H(24,2)+AC0H(25,2) I=2
•		I3=15 33 IS=73+10
		IC=I3+3 I=I+1
		00 35 IA=I9+IC FCOH(I,1)=FCOH(I,1) + ACOH(IA,1) 35 FCCH(I,2)=FCOH(I,2) + ACOH(IA,2)
•	55	35 FULF(1,2)=FUJF(1,2) + AUDF(12,2) IF(1,LT,5) GO TO 30 OO 43 I=56.85
		FCGH(7,1)=FCOH(7.1) + ACOH(1,1) 43 FCGF(7,2)=FCCH(7.2) + ACOH(1,2)

		(
	62	-	10 51 1=1,7 TEMO=FCD+(1,1)
	-		FCO+(I,1)=TE4P*HEORT(I,1) FCO+(I,3)=(1-WEORT(I,2))*FCOH(I,2) 50 FCO+(I,2)=TE4P+FCO4(I,1)
	65		
		· - (
-	70		00 6) I=1.7 FCO+(I,1)=FCO+(I,1)+PARTPT(I.1,K) FCC+(I,2)=FCO+(I.2)+FARTRT(I,1,K)
~			60 FCC+(I,3)=FCOH(I,3)+P4RTRT(I,2,K)
-		(00 70 J=1,3
			00 7J I=1,7
	75		70 FCCF(9, J)=FCOH(3, J) + FCOH(1, J)
·			
		6	
	8 <u>2</u>		00 °C J=1.3
			EC:T(5,J)≈ECAT(6,J) - FCDH(3,J) 80 ECAT(6,J)≈ECAT(6,J) * 0.35
		t,	00 °3 J=1,3
	35		IF(EAT(6,J).GE.7.0) IA=-1 IF(ECAT(6,J).LT.7.0) IA=1
-			IF(J,E),1) C(1,4) = C(1,4) + IA+C(1,5)
			IF(J.E3.1) C(2.4) = C(2.4) + IA+3(2.5) IF(J.E3.1) C(3.4) = C(3.4) + IA+3(3.5)
	9 3		IF(J,EQ,2) C(4,4) = C(4,4) + IA+C(4,5)
-			IF(J,EQ.3) C(5,4) = C(5,4) + IA*C(5,5) IF(J,EQ.3) C(2,4) = C(2,4) + IA*C(2,5)
			85 CONTINUE
	95		DD 95 I=1,5 IF(C(I,4).LT.C(I,6)) C(I,4) = C(I,6)
			IF(C(1, 4), GT, C(1, 7)) C(1, 4) = C(1, 7)
-	• -	(
•	100		
· .			FAMS7E=3.10
•			ECTCT=FCAT(6,1) + (FAMSZE - 2.) EMTCT=FCAT(6,1) + ECAT(6,2)
	105		EFTCT=ECAI(6,1) + ECAT(6,3)
	····	···	ECANG=ECTO1/33.
			E54V3=EFT07/21.
	119		00 9J I=1,7: ECCP(I,1)=EMAVG
• -		*	90 ECO+(1,2)=EFAVG
	~- . ~		D0 133 J=1+2 00 133 I=1,13
			100 100 100 100 100 100 100 100 100 100

· · ·

	1 SUBFOUTINE POCO(KC)
-	CONVCN /E/ EVOLOY(5,26).C(5,7).AUR,HEDRT(7,2),PARTRT(7,2,3),AGSNL
	COMMCN /0/ IOCC (5,6), IFAMSEC (6)
	01MENSION 4(5,5),8(25)
	5 EOUIVALENCE (4,8)
	DATA (3(I),I=1,25) / 1 .25 , .30 , .45 , .00 , .00 ,
-	2 .10 , .45 , .46 , .10 , .00 ,
	3 .17 , .43 , .35 , .15 , .00 ,
	10 4 .10 , .70 , .20 , .00 , .30 ,
	5 •10 • •20 • •10 • •60 • •30 /
	00 10 J=1,5
	0CC==Y4L)Y(J, KC) *A(I,J)
	15 10 IOCO(I, J) = IFIX (OCC)
	03C=E49L3Y(1,KC) * A3SNL
	IOCC(5,1)≈IFIX(OCC) 00 22 I=1,5
	22 IOCC(1,6)=ICCC(6,I)=0
	20 20 24 J=1,5
	24 IOCC(6, J) = IOCC(6, J) + IOCC(I, J) DO 26 I=1,5
	DO 26 I=1,5 DO 25 J=1,5
	25 26 I DCC(I,6) = I CCC(I,6) + I CCC(I,J)
	IOCC(6,6)=0
	00 3) I=1,5 3: ICCC(6,6) = IOCC(6,6) + IOCC(I,6)
	30 ENC
	SYMBOLIC REFERENCE MAP (R=1)
	ENISA BOINTS
	7 70.24
	VARIABLES SH TYPE RELOCATION
	122 A PEAL ARRAY 336 AGNE REAL E
• •	212 AUR REAL <u>E 122 B REAL ARRAY</u> 212 C FEAL ARRAY E O EMPLOY REAL ARRAY E
	123 I INTESER 44 IFANSEC INTEGER ARPAY O
	S TOOC INTEGER ARRAY O 117 J INTEGER
	O KC INTEGER F.P. 121 DCC REAL 264 Pirite Real Array E 246 HEDRT REAL Array E
	264 PIRTREAL ARRAY E 246 WEORT REAL ARRAY E
-	INLINE FUICTIONS TYPE ARGS
	IFIX INTEGER 1 INTPIN
	STATEMENT LABELS 0 24
	0 22 0 24 0 25 0 30
	y 20
. :-	
. :-	

FTN 4.5+410 SUBROUTINE BPCP 73/73 OPT=1 75/12/33. 13.25.19 235E 1 SUBSOUTTHE BEOR COMMON/B/ACOH(135,2), 300H(130,2), FCOH(100,2), PTOT(26,2), AREA(5), SCEND(3) 1 COMMON /3/ CCOH(36,2), DEADRT (36,2), CBABY (2) COMMON VEV FERTIL (7), BABES(2) 5 BAGIS(1)=BABES(2)=0. 14=9 00 10 I=1,7 00 11 13=1.5 12 Ia=Ia+i 10 34815(1)=34855(1)+403H(I4,2)+FERTIL(I)/1300. 84853(2)=RNDR(84355(1),2.) 94855(1)=84855(1)-84855(2) 00 20 J=1.2 BARES(J) = BABES(J) - BABES(J) + OBARY(J) 15 22 SARES(J)=AINT(BABES(J)) RETURN ENO. SYMBOLIC REFERENCE MAP (R=1) ENTRY POINTS 1 3F0P VARIANLES SN TYPE RELOCATION 1214 AREA 8541 2993¥ а ≙сон REAL 4884Y 8 3 7 343ES _310 800H 4 REAY REAL 2884¥ F REAL R 533 084 97 95 I L ARSAY Ö REAL 43234 REAL ARRAY D G FERTIL REAL ARRAY 254 DEADRT INTEGER 51 I. INTEGER 52 I 53 IS INTEGER 54 J 1130 PTOT INTEGER TARR1Y 623 PCOH REAL ARRAY 8 REAL ล --1224 SCENO REIL ARRAY 8 EXTERNALS TYPE ARGS RNDR REAL 2 THLINE FUNCTIONS TYPE ARGS AINT PEAL 1 INTRIN STATEMENT LABELS 0 20 C 10 _____ FROM-TO LENGTH PROPERTIES LODPS LABEL INDEX 8 11 163 NOT INNER 5 10 0PT 9 11 43 1. 16 IΒ 48 OPT 14 16 34 20 3 COMMON BLOCKS LENGTH 3 663 345 ۵

ທີ

· .						
SUBROUTINE OPOP	73/73	0PT=1		FTN 4.5+413	76/12/03. 13.25.13	PAGE 1
1		000 1 (130,2),300HT	100,2),=004(100,	2), PTOT (25, 2), AREA (8),),	
5	COMMEN /O/ CO 00 10 J=1,2 00 13 I=1,35 13 I=1,35 14 COP(I,J)=CE	ОН(96+2) + DEAC	(1, J)		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
13	DCCH(95,1)=5. DCCH(95,2)=9. PETURN END			· · · · · · · · · · · · · · · · · · ·		
		=			· · · · · · · · · · · · · · · · · · ·	
SYMBOLIC REFERE	NDE HAP (R=1)				· · · · · · · · · · · · · · · · · · ·	
		·····				
VARIABLES SN TYPE O ACOM REAL	E REL ARRAY ARRAY	.OCATION -	1214 AREA 530 0343¥	 REAL ARRAY REAL ARRAY	B	······
313 BCOH PEAL 0 DCOH PEAL 27 I INTEG	APRAY	0	254 DEADRT	REAL ARRAY	0	······
523 PCOH REAL 1224 SCENO REAL	ARRLY ARRLY	.8	_1130 PTOT	REAL ARRAY		
STATEMENT LABELS	- ·		. <u>. </u>		···· ·································	·······
LOODS LABEL INDEX 3 10 • J 12 10 I	FROM-TO 57 67	158	ROPERTIES NOT INNE	<pre></pre>		· · · · · · · · · · · · · · · · ·
COMMON BLOCKS LENGTH						
		·· · ·				
STATISTICS PROSRAM LENGTH CH LABELED COMMON LE	3C -					
					•••••••••••••••••••••••••••••••••••••••	
						 · · ·
		<u>**_</u>				
- · ·						
·						
	_ · · · · <u>_</u>					· · · · · · · · ·
					· · · · · · · · · · · · · · · · · · ·	······································

	SU3 POUT I XE	PCPDUT 73/73 0PT=1	FTN 4.5+41]	76/12/33. 10.25.13	P435 1	
	•		<u>-</u> <u>-</u> <u>-</u>	<u>.</u> .		
	1	SUBPOUTIVE POPOUT(KC) COMMON /1/ N.INITYR,NREG,NSCEN COMMON/D/ACOH(100,2),SCOH(100,2)).		
	5 _	1 SCEND(3) CCMMDN 202 IOCC(6,6),IFAMSEC(6) OIMENSION ICOM(100)	······································		· · · · ·	
		DIMENSION ITALL(3,3)				
	10	c				-
		C ****** FIRST FAGE ***** C PRINT 2000		· · · · · · · · · · · · · · · · · · ·	••••• • •••	.•
-	15	CALL PNCCHK(KC) IYE2P=1NITYR+KC . RINT 2010, (AREA(I),I=1,8), IYE	AR		<u> </u>	· · · · · · · · ·
		PRINT 2312, (SCENO(I), I=1,8) PRINT 2320 PRINT 2021			· ···· • · · · •	-
	20	FRIVE 2022 PRINT 2023				
	· · ·	PRINT 2030, (I,I≈1,10) ITHC=IY2AR-1300 PRINT 2024, ITHO				
-	25	I3=0H=10				
		00 51 I0=1,9 IC=(I3-1)*10 J=1			···	
_	30	IF(I3.E3.9) 4=5 IA=IC+1		···· · ··· ··· ··· ··· ··· ··· ··· ···		· · · ·
		IC=IC+4 53 CONTINUE DO 45 I=IA,IC			• • • • • • • •	
	_ 35	45 ICOF(I)=IFI>(FCOH(I,J)) ISUM1=ISUM2=J IO=IA+4	······································			•
		IE = 13+1 D0 46 I=IA.ID				
	43 ·	45 ISUM1=ISUM1+ICOH(I) IF(I3.E0.9) GO TO 51 DO 43 I=IE,IC				
• •		43 ISU-2=ISUM2+ISOH(I) IF(J.20.1) FRINT 2036 IF(J.E0.2) FRINT 2038				
		51 CONTINUE IF(J.E1.1.480.13.E0.9) PRINT 203		U 42		
-	50	IF(J.EQ.1) PRINT 2344, IA.IC	COH(I), I=IA, ID), ISUM1	······································		
		J=J+1 IF(J.LE.2) GO TO 50 PRINT 2002		· · · · · · ·		
	55	60 CONTINUE PRINT 2050 PRINT 2052				
						-

			D0 70 J=1,2
·			5 K6 - 2.
	60		D0 71 I=6,12
	0.5	71	SKE3K5 + FCOH(I,J)
		• •	
			5J#=:- 00 72 I=13,15
		. 73	SJ-=_JH + FCH+(I,J)
	65		SK3=1.
			NO 73 I=16,13
		7	SHS= SHS + PCOH(I,J)
			SEXIT=0.
			SEXIT=0.25*ACOH(18,J) + 0.25*ACOH(19,J)
	73		S65=C.
			00 7 · I=66,36
•		74	• Tá5=355+FCCh(I,J)
			7T212(J,1)=IF1X(SK6)
			ITALL(J,2)=IFIX(SJH)
	75		ITALL (J,3)=IFIX(SH3)
			ITALL(J,4)=ITALL(J,1)+ITALL(J,2)+ITALL(J,3)
			IT4LL(J,5)=IFIX(SEXIT)
			ITALL(J,5)=IFIX(S65)
			IT=LL(J,7)=IFIX(ACOH(86,J))
	32		IT1LL(J,3)=IFIX(PTOT(KC,J))
		71	CONTINUE
			C 75 <=1, ⁴
		76	<pre>5 ITALL(3,K)=ITALL(1,K)+ITALL(2,K)</pre>
			00 77 I=1,3
	85		IF(1.50.1) FRINT 2060 IF(1.50.2) PRINT 2062
			IF(I.E0.3) F2INT 2154
			PRINT 2006, (ITALL(I,J),J=1,8) / CONTINUE
	~ ~		LGN INUL IF (KGGI) RETURN
	30	c .	
		с С	
		<u>ل</u>	

FTN 4.5+410 76/12/03. 13.25.13 9105 2 SUBPOUTINE POPOUT 73/73 OPT=1 -

.

82

.

		IF(I.E9.3) FRINT 2364 PRINT 2066, (ITALL(I.J),J=1,8)		•
		77 C9x11xU2		
	93	IF (0.20.1) RETURN	-	
		Č.	·	
		C ****** SECCND PAGE ******		
	95	Č		
		POINT 2000		
		PPINT 2010, (AREA(I), I=1,8), IYEAR	-	
		PRINT 2012, (SCENO(I), I=1,3)		
		FRINT 2001	• • •	
	133	PPINT 221G		
		PRINT 2220		
		PRINT 223C		
		OC 85 <=1,€		
		IF(K.EQ.1) FRINT 2243		
	105	IF(K.EQ.1) FRINT 22+1,(IOCC(1,J),J=1,6)		
		IF(K.E0.2) PPINT 2242		
	-	IF(K.EQ.2) FRINT 2241,(IOCG(2,J),J=1,6)		
		IF(K.EQ.3) FRINT 2244	·	
		IF(X.50.3) PRINT 2241,(IOCC(3,J),J=1,6)		
	110	IF(<.E7.4) FRINT 22+6		ζ.
		IF(X.E2.4) PRINT 2241,(IOCC(4.J),J=1.6)		
		IF(K.EQ.5) PRINT 2243		
~		IF(X.=0.5) PRINT 2241, (IOCC(5,J),J=1,6)		
		IF (K.EQ.6) PRINT 2249		

· · · · - -

_____ -

															·			
	•	SUA	ROUTINE	90P0UT	73/7	3 GPT=1				FTN 4.5+4:	10	76/12/1	3. 13.2	5,11	PAGE	3		
	····			•				••			÷							Ŧ
		115	·		F (K, 20,6) ON TINUE	PRINT 224	•1, <u>(</u> ICC	<u>; (6, J), J=1</u>	,6)									-
			-	C	OW LEADE													
			_	C				-			·· ··.							
		129		C C														
					0741 (1H													
				2002 F	CPM4T (1H	c)		•				•						
		125		2010 F	02811 (18 09811(14,	841J.	*YEAR	*, 2X,	I4)	-	•			..			-	
			· · · · · · · · · · · · · · · · · · ·	2021 F	0=~4T(10X 0=~4T(1X.	NUMBER OF	PERI+)		· ····	·····							
		13)	-			,+SUNS INI ND 5 YR AG		[44,*P0PUL- RTS)*}	ATION TALL	Y BY SEX /	4HO AGE	GR0						
				202 2 F)=>=f(C1X	, * 0L0 ON N * 8181 404 Y	(#XX#)					-		· · · ·				
				2630 F	09411(1H+	,1JX,5 (7A,	,I2) .6	4.+ (5 YR) .	5 (5 (12, 2	7X),*(5 Y=)	• • • • • • • • • • • • • • • • • • • •							
		135 _			08 44T(01X	,* 4-30-* ,148)	•,12)											_
					OFMAT(10X OFMAT(1H+			5I9 , T 63	1.46.	I4. 181	. 519	•						
			· · ·	1	1119,	186. 14	+• 1H))									·	-
		140		2544 F	04T(1K,	12,* - *.1	[2]	T63,1							····			-
				1.	*AGE 35*.	F::0.*TOT4	4L *)	,*SCH00L*,									-	
				2052 F	05 44 F (T 0 3	,*AND TGT4 +05*.130.*	L., T27	.*K-6*,T34 DVE*,I95,*	+7-9+,T4:	1,*1C-12*T4 •.T110.*POF	9,44LL+ PULATION	• T6 • •					-	-
		145		_2060 F	0 AT (5K,	*HALES*)				·								
			-	2064 F	J5-11110	*FEMALES*) ,4%,*TOTAL	.*)						_			-		_
					0==11(14+ 0=247(44X			130,18,195 LY BY INCU										
		15)		2222 5		*/SXILL 3		//) 274,163,40	THER . T 85.	*NON-LOCAL								-
				1	T16	4.*466*)												-
			-	1	F10	4,*SECOND*	•,T120,	+TOTAL+,//	1									-
		155	-	2241 F	004911	1H+, T23	8. 51	NAGERS*,/,: 12%,15),	1/)		_5*)							-
								/.1X.*OTHE: .1X.*AND U										-
		150		2246 7	0 ? " A T (1 X .	•CLERICAL,	, SALES	AND*,/.1X -*,/.1X,*S	*HISC, W	HITE COLLAF	₹*)		· -					
		7.2.1		2243 F	COMAT(3X.	*TGT4L*)												-
						, 5%,*EMPL ,5%,*TOT4L												
		155		2265 F	0844T(1X),	*TOTÁL* 184. T23	· / 1X	Y*,//) , *FAHIL' 12X,15},		* MEMBER								-
• •		• • •		2	ETURN	, .cu					-						~	
			-	c	нс _						.					·		
				······					·		<u></u>		<u>-</u>					-
-			-							· · · · ·			· ···.					

	•	······································
 1		SUBFOUTINE CPRAGUE ((, 45, 41, 48)
_		DIFENSION (11,2)
		DIMENSION S(4,5,+),SM(5,5),T(80),TM(25)
5		
,		1 ,3616 ,2763 , .1483 ,0335 ,
 		2,26+0 ,2400 ,0400 ,0090 ,
		3 .1940 , .0400 ,0320 , .0090 , 4 .12001360 ,0720 , .0160 ,
17		4 .1200 , .1360 ,9723 , .0163 ,
4 1		6 .13362272
	-	7 .3690 , .2323 ,0430 , .0350 ,
 _ ~		83039 , .2150 ,JC33 , .0203 ,
15		90150, .1340, .J4JJ,GJRO, 00176, .1403, .J912,0144,
12		
		2
		3 0303 - 1380 - 2160 - 13840 -
 		4 .33363430 , .2326 , .3080 ,
20		5 .3144 ,752 , .2272 , .335 , 6 .3175 ,3843 , .1963 , .3704 ,
		7 , 0159, -, 0720, 1360, 1200,
		s
		90139,.9400,0961,.2640,0336,.1433,2768,.3616/
 _25		OATA (TM(I),I=1,25) /
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		22016 , .0144 ,2224 ,2+15 ,0064 , 3 .0264 ,2544 ,0336 , .0054 ,
		4 .0154 ,0416 , .2224 , .0144 ,0016 ,
30		5 .1015,0240, .1504, .0343,3128/
	10	I8=M1-IA IA=I3+1
		IA=IA+1 IC=Y3+Y5-IA
35		00 27 J=1,2
		X (I7, J) = X (IC, J)
 • ·	2) X (10, J) = 0. I F (14, L T, M5) GO TO 10
40		43=×2+1 00 43 J≈1,2
-		IC=~3.
		00 49 14=1,2
 		I9=*1-*5*1 00 40 I=1.5
45		00 40 1=1,= 1C=1C41
-,	·	x(IC, J) = S(1, I, I, I) + X(IB, J) + S(2, I, IA) + X(IB+1, J) + S(3, I, IA) + X(IB+2, J)
		*+S (4, I, IA) *X (I5+3, J)
) CONTINUE
 50		19=3+1 MC=*5=+
20		IF (MC.LE.U) GO TO 43
	_	IF=IC
		00 5J J≂1,2
 55		

. . 1

.

١

		Ŧ	3=13+1													
			0=13-2													
50	, -		0 50 I=1,5				-									
		I	C = IC + 1													
	-	S0 ¥	(IC, J) = SH (1	,I)*X(ID,	J)+SH(2	2,I)*X	(IO+1,J)+S	H(3,I) *X(10+2,1)+						-	
			4(4,1) *X(10 8=13+1	+3, J)+54(5,11*11	[10+4+-										
			5=13F1 5=12						·····							
			F = 10		_						• ·		· .			
			0 63 J=1,2				•									
	-		9 = IE										•			
. 70			C=IF 0 53 IA=3,4													
·································			0=13-2													
-		D	0 60 I=1,5													
		-	C=IC+1							.						
~			(10, J) = S(1,		0.1)+2((2,1,1)	A)*X(IO+1,	J)+S(3,I,	IA) +X(I)+	(2+J) _	- · -	· · · - ·	-			-
- 75) ·		S(4,I,IA)*X ETURN	(11+2*1)												
			NO													
													-			
· ·-	-															
						_								- ·	. .	-
ENTRY -	DIVIS		2 PAP (R=1)								·					
ENTOY - 3	SPRAGUE	- Shi type		LOCATION_			 									·
ENTPY 0 3 VLPI1131 217	DIVIS SPRAGUE	SH TYPE INTEGER	۴٤	· . –		213					·····					
ENTPY 3 3 217 214	DINTS SPR4GUE ES I	SN TYPE INTEGER INTEGER		· . –	 	213 215 221	IC	INTEGER INTEGER INTEGER								
ENTPY 3 3 217 214 223	DINTS SPRIGUE -ES I IB IO	SH TYPE INTEGER	fi E	LOCATION_		215 221 216	IC IE J	INTEGER INTEGER INTEGER								
ENT PY - 3 3 217 217 214 223 222 9	DINTS SPR4GUE IS IB IC IF	SN TYPE INTEGER INTEGER INTEGER INTEGER INTEGER		LOCATION_		215 221 216 229	IC IE J MC	INTEGER INTEGER INTEGER INTEGER								
ENT 2Y 3 3 217 214 223 223 222 9 0	DINIS SPEAGUE I I I I I I I I I I I I I I I I I I I	SH TYPE INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER	÷	LOCATION_		215 221 216 229 0	IC IE J HC H5	INTEGER INTEGER INTEGER INTEGER INTEGER	- - 			· · · · · · · · · · · · · · · · · · ·				
ENT 2Y 3 3 217 214 223 222 3 222 3 222	DINIS SPRIGUE ES I IB ID IF IR IR I I I I I I I I I I I I I I I	SN TYPE INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER CEAL	2557. 25	LOCATION_		215 221 216 229 0 344	IC IE J HC H5 SM	INTEGER INTEGER INTEGER INTEGER	- - - - - - - - - - - - - - - - - - -							
ENT 2Y 3 3 217 214 223 223 222 9 0	2)I'iIS SP=4GUE ES I IB ID IF 43 41 5 T	SH TYPE INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER	÷	LOCATION_		215 221 216 229 0	IC IE J HC H5 SM	INTEGER INTEGER INTEGER INTEGER INTEGER REAL								
ENT 2Y 3 3 217 214 223 222 3 222 0 224 224 224 224 224 0	2)I:(IS SP=1GUE IS IO IF TT X	SN TYPE INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER PEAL REAL REAL	45-57 A 	F.P. F.P.		215 221 216 229 0 344	IC IE J HC H5 SM	INTEGER INTEGER INTEGER INTEGER INTEGER REAL			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
ENT 2Y 3 3 217 214 223 222 3 224 224 224 224 224 224 224	2)I:(IS SPELGUE ES I I I I I I I I I I I I I I I I I I	SN TYPE INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER PEAL REAL REAL	45-57 A 	F.P. F.P.		215 221 216 229 0 344	IC IE J HC H5 SM	INTEGER INTEGER INTEGER INTEGER INTEGER REAL		<u></u> <u></u> <u></u>	· · · · · · · · · · · · · · · · · · ·					· · · · ·
ENT PY 3 3 217 217 214 223 222 3 224 224 224 224 224 224 224	POINTS SPEAGUE IS IO IF HA K ENT LABE	SN TYPE INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER PEAL REAL REAL	45-57 A 	F.P. F.P.	0 20 0	215 221 216 229 0 344	IC IE J HC H5 SM	INTEGER INTEGER INTEGER INTEGER INTEGER REAL		0 40	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · ·
ENT 2Y 3 3 217 214 223 222 3 224 224 224 224 224 224 224	POINTS SPEAGUE IS IO IF HA K ENT LABE	SN TYPE INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER REAL REAL REAL	45-57 A 	F.P. F.P.	0 20 0 50	215 221 216 229 0 344	IC IE J HC H5 SM	INTEGER INTEGER INTEGER INTEGER INTEGER REAL		<u></u> <u></u> <u></u>	· · · · · · · · · · · · · · · · · · ·			· · · ·		
 ENT PY 3 3 217 217 214 223 222 3 	2) I (I S SP = 1 GUE I S I O I F I S I I S I S I S I S I S I S I S I S I	SN TYPE INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER REAL REAL REAL	4224Y 4224Y 4224Y 5204-TO	F.P. F.P. F.P.	0-50- FROP	215 221 216 229 344 344	IC IE J 4C 45 SM TY	INTEGER INTEGER INTEGER INTEGER INTEGER REAL		0 40	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · ·	· · · · · · · · · · · · · · · · · · ·		
 ENT 97 3 3 217 217 223 222 3 224 224 224 224 225 3 3 5T 4 TE 45 3 5 159 LOOPS 23	2) I I I S SPEAGUE IS IO IF IA IO IF IA I S T X ENT LABE 10 45 LABEL 20	SN TYPE INTEGER INTEGER INTEGER INTEGER INTEGER REAL REAL REAL LS INDEX J	42244 42244 42244 42244 42247 5204-10 35 37	F.P. F.P. F.P. LENGTH	0-50- FROP	215 221 216 229 0 344 344	IC IE J HC M5 SM TM	INTEGER INTEGER INTEGER INTEGER INTEGER REAL REAL		0 40	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · ·		
 ENT PY 3 3 217 217 223 223 224 224 224 224 224 224 224 224	DINTS SPELGUE ES I I I I I I I I I I I I I I I I I I	SN TYPE INTEGER INTEGER INTEGER INTEGER INTEGER PEAL REAL REAL LS INDEX J	42 24 Y 42 24 Y 42 24 Y 42 24 Y 42 24 Y 57 37 43 43	F.P. F.P. F.P. LENGTH 33 353	0-50- FROP	215 221 216 229 344 344	IC IE J MC M5 SM TY S S NDT INNER	INTEGER INTEGER INTEGER INTEGER INTEGER REAL REAL		0 40						
 ENT PY 3 3 217 214 223 222 3 222 224 224 224 224 224 224	2)IIIIS SPEIGUE ES I I I I I I I I I I I I I I I I I I	SN TYPE INTEGER INTEGER INTEGER INTEGER INTEGER REAL REAL LS INDEX J INDEX J INDEX J INDEX J INDEX	42.54Y 42.54Y 42.54Y 42.54Y 5.37 5.37 4.3 4.8 4.2 4.8	F.P. F.P. F.P. LENGTH 33 353 273	0-50- FROF	215 221 216 229 	IC IE J HC M5 SM TM	INTEGER INTEGER INTEGER INTEGER INTEGER REAL REAL		0 40	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			
 ENT 97 3 3 217 217 214 223 224 224 224 3 3 224 224 224 22 3 3 57 4 12 - 5 157 L00PS 24 45 57 57	2) I I I S SPR 4GUE I S I B I D I F I A I T X ENT LABE 10 45 LA3EL 20 40 40	SN TYPE INTEGER INTEGER INTEGER INTEGER INTEGER EAL REAL REAL REAL LS INDEX J J INDEX J I	ARRAY ARRAY ARRAY ARRAY FROM-TO 35 37 43 48	F.P. F.P. F.P. LENGTH 33 353	0-50- FROF	215 221 216 229 344 344	IC IE J MC SS TY TY S S S S S S I I I I I I I I I I I I I	INTEGER INTEGER INTEGER INTEGER INTEGER REAL REAL		0 40	· · · · · · · · · · · · · · · · · · ·		- - - -			· · · · · · · · · · · · · · · · · · ·
 ENT PY 3 3 217 214 223 222 3 222 224 224 224 224 224 224	DINTS SPEAGUE ES I I I I I I I I I I I I I I I I I I	SN TYPE INTEGER INTEGER INTEGER INTEGER INTEGER REAL REAL LS INDEX J INDEX J INDEX J INDEX J INDEX	42.54Y 42.54Y 42.54Y 42.54Y 5.37 5.37 4.3 4.8 4.2 4.8	F.P. F.P. F.P. LENGTH 33 353 273 103	0-50- FROF	215 221 216 229 	IC IE J HC MS SM TM TM S S NOT INNER	INTEGER INTEGER INTEGER INTEGER INTEGER REAL REAL		0 40			· · · · ·			
 ENT YY 3 3 217 217 214 223 224 224 224 224 3 3 224 224 22 3 3 224 22 3 3 224 22 3 3 224 22 3 3 224 22 3 3 224 22 3 3 224 22 5 3 5 2 5 15 15 15 15 15 15 15 15 15 15 15 15 1	DINTS SPRAGUE ES IB IO IF TR X ENT LABE 10 45 45 45 40 50 50	SN TYPE INTEGER INTEGER INTEGER INTEGER EEAL EEAL EEAL EEAL EEAL EEAL EEAL EE	FROM-TO 35 37 43 48 43 49 54 62 57 62 61 62	F.P. F.P. F.P. LENGTH 33 353 273 103 373 303 113	0 50 - PROP	215 221 216 229 	IC IE J MC MS SM TY TY SM TY SNOT INNER NOT INNER	INTEGER INTEGER INTEGER INTEGER INTEGER REAL REAL		0 40						
 ENT PY 3 3 217 217 223 223 224 224 224 224 224 224 224 224	DINTS SPEAGUE ES I I I I I I I I I I I I I I I I I I	SN TYPE INTEGER INTEGER INTEGER INTEGER INTEGER REAL REAL REAL LS INDEX J INDEX J IA IA IA	42 24 Y 42 24 Y 42 24 Y 42 24 Y 42 24 Y 42 48 44 48 54 62 57 62	F.P. F.P. F.P. LENGTH 33 353 273 133 373 303	0 50 - PROP	215 221 216 220 3.4 3.4 9287125 0PT	IC IE J MC M5 SM TM TM S S NDT INNER REMNI TON	INTEGER INTEGER INTEGER INTEGER INTEGER REAL REAL		0 40	· · · · · · · · · · · · · · · · · · ·					

. ..

-

[8

_	1
	C 34 C 2 / 2 / 2 / 2 C 0 + (1 C 3, 2), 3 C 0 + (1 3 3, 2), P C 0 + (1 2 3, 2), P T O T (2 5, 2), 4 R E 4 (3),
	1 SCENO(8)
	01~ EASICA 1(2)
	5 00 5 I=1,2
	5 PTOI(4,I)=T(I)=0. DO 1J I=1.86
	DU 11 1=1,00 PTCT4(1)=FTTT(4,1)+4COH(I,1)
	10 - F10F(1,2) = F10F(1,2) = 400H(1,2)
	10 PTCT(4,1)=000PTOT(4,1),1.0)
	PTCT(4,2)=FNJR(PTOT(4,2),1.0)
	20 20 J=1,2
	DO 20 I=1,86
	20 PCO+(I, J)=FhOR(ACO+(I, J), 1.0)
	15 00 3 J=1,2
	DC 2] I=1,96
	30 T (J)=T(J)+FCOH(I,J)
	5=F107(H,J)-7(J)
	IF(8) 40,90,70
	20 40.I=37 50 I=I-1
	PCO+(I, J) = FCOH(I, J) - 1.
	3=9×1.
	IF(0) 50,90,50
	R3 [=I+1
	FCC+(I, J)=FCOH(I, J)+1.
	B===-1.
	IF(2) 30,90,30
	3) 95 CCNTINJE
	9 ET UPN EN 0
	STHEOLIC PEFERENCE MAP (R=1)
	ZIPIOS YFIN
	3 RNDCHK
	VARIANES SN TYPE FELOCATION
	VARIANLES SN TYPE FELOCATION D ACOM PEAL ARRAY B 1214 AREA PEAL ARPAY B
:	ALT THERE IS IN INTERVIEW
:	14) I INTEGER 141 J INTEGER N W INTEGER F.P. 620 PCOH REAL ARRAY B
-	0 4 INTESER F.P. 620 PCOH REAL ARRAY B
-	0 4 INTESER F.P. 620 PCOH REAL ARRAY B 1133 PTOT PEAL ARRAY B 1224 SCENO REAL ARRAY B
-	0 4 INTESER F.P. 620 PCOH REAL ARRAY 3 1133 PTOT PEAL ARRAY B 1224 SGENO REAL ARRAY B
-	0 4 INTEJER F.P. 620 PCOH REAL ARRAY B 1130 PTOT PEAL ARRAY B 1224 SGENO REAL ARRAY B 143 T PEAL ARRAY EXTERIALS TYPE ARGS
-	0 4 INTEJER F.P. 620 PCOH REAL ARRAY B 1130 PTOT PEAL ARRAY B 1224 SCENO REAL ARRAY B 143 TPEALARRAY
	0 4 INTEJER F.P. 620 PCOH REAL ARRAY B 1130 PTOT PEAL ARRAY B 1224 SGENO REAL ARRAY B 143 T PEAL ARRAY ARRAY B Integer (Constraint) Integer (Constraint) EXTERVALS TYPE ARGS Integer (Constraint) Integer (Constraint) Integer (Constraint) RNDR REAL 2 Integer (Constraint) Integer (Constraint) Integer (Constraint)
 - 	0 4 INTEJER F.P. 620 PCOH REAL ARRAY B 1130 PTOT PEAL ARRAY B 1224 SCENO REAL ARRAY B 143 T PEAL ARRAY B 1224 SCENO REAL ARRAY B EXTERNALS TYPE ARGS Image: Statement LABELS Image: Statement LABELS Image: Statement LABELS
	0 4 INTEJER F.P. 620 PCOH REAL ARRAY B 1130 PTOT PEAL ARRAY B 1224 SGENO REAL ARRAY B 143 T PEAL ARRAY ARRAY B Integer (Constraint) Integer (Constraint) EXTERVALS TYPE ARGS Integer (Constraint) Integer (Constraint) Integer (Constraint) RNDR REAL 2 Integer (Constraint) Integer (Constraint) Integer (Constraint)

- FUNCTION R	NC2 73/73 OPT=1	"FTN'4.5+410 75/12/03. 10.25.13 PASE 1	
		····	
1	FUNCTION PNOR (4.8)		
	IF (3.20.7) GO TO 19 IF (1+3.27.0) X=-X		
5	A=195(1) 8=485(3) C=1400(1,8)/3	· · · · ·	
19	IF (C.GE.O.45) RNOR=X+AINT(A/B)+X IF (C.LT.J.45) PNOR=X+AINT (A/B) Return	· · · · · · · ·	
	C PCINT 201 G1 FCR+AT (10X,+DIVISION BY ZEROSTOP+) STOP	· · · ·	
·	END		
		······································	
SYMBOLID REFE	EPENCE MAP (R=1)		
ENTRY POINTS	· · · · ·		
VAPIABLES N T	YPE <u>FELOCATION</u> AL F.P. 2 9	REAL F.P.	
5+ C FE	4L 52 RNOR		
FILE NAMES MO			-
INLINE FUNCTIONS 7 . A95 REA . A007 REA	AL 1 INTRIN AINT	REAL 1 INTRIN	
	42 261 FKT		
STATISTICS PROSRAM_LENGTH			
•			
	· • • • •		-
·	· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		

APPENDIX C

Empirical Results

The following pages contain three sets of data. The first are the five-year employment projections (1970-1990) for Umatilla, Morrow, and Gilliam Counties. Total employment is listed for the three scenarios in the five aggregate industry groups for each county.

The second set of data are the three-county region five-year total population projections for 1970 to 1990. Single-year age and sex-cohorts are supplied. At the bottom of each page the population in selected age groups is summarized. The third set of data available are the individual county population projections for 1970 to 1990. The format for the county projections is the same as for the three-county region.

		1	Farming ^a	/	Agricu	ultural S	ervices ^{b/}	Oth	ner Basi	<u>_c/</u>	Non-Loc	al Cons	truction ⁴	<u>.</u> 4	Secondary	<u>,e</u> /
Year	Counties	<u>/ آ</u> ر	/ <u>و</u> ع	c <u>h/</u>	A	в	с	A	В	с	A	8	с	A	В	с
1970	Umatilla	1,350	<u> </u>	·	1,606		1	1,777		1	20	1		8,060		
	Morrow	468			151		· .	93			0	1		857		
	Gilliam	272			104			30			0			507		
1975	Umatilla	2,989			1,960			2,110			86			9,690		
	Morrow	746			416	1		229	ļ		24	i		1,640		
	Gilliam	211			94			14			5			504		
1980	Umatilla	3,082	3,241	3,361	2,580	1,804	3,042	2,174	2,174	2,236	109	109	702	10,284	10,360	10,505
	Morrow	779	771	805	470	304	490	339	339	322	66	66	299	1,735	1,610	1,985
	Gilliam	194	174	170	22	14	24	10	10	10	, 12	12	494	624	630	1,205
985	Umatilla	3,321	3,639	3,834	2,660	3,000	3,660	2,652	2,981	3,762	135	135	171	10,474	10,581	11,401
	Morrow	784	810	822	390	416	474	354	354	486	62	62	79	1,901	1,905	2,190
. ·	Gilliam	194	. 174	182	24	24	16	10	10	28	15	15	139	632	634	1,094
1990 -	Umatilla	3,320	3,661	3,859	2,564	3,074	3,754	2,750	3,094	4,106	104	140	162	10,591	10,755	11,235
	Morrow	779	810	882	372	424	482	368	368	517	45	62	72	1,915	1,924	2,174
	Gilliam	194	174	182	22	24	16	10	10	30	11	15	47	636	640	1,085

Table 18. Total Employment: 1970-1990 Umatilla, Morrow, and Gilliam Counties, All Scenarios

a/ Farming: Crop, livestock, and mixed enterprises; includes truck crop, tree crop, and commercial horticultural operations.

b/ Agricultural Services and Agricultural Crops Processing: Agribusiness firms who deal directly with the farming sector, but not ones primarily involved in manufacturing farm equipment.

C/ Other Basic Industry: Lumber and wood products, primary metal reduction, electrical power generation, other manufacturing, etc.

<u>d'</u> Non-Local Construction: Employees of contract construction firms not headquartered in Morrow or Umatilla Counties but residing in the area while engaged in local construction activities.

e/ Secondary Industry: Trade, transportation, communication, utilities, finance, insurance, real estate, professional services, government, etc.

<u>f</u>/ A: Stanfield/Westland Conservative

9/ B: Stanfield/Westland Project.

b/ C: Stanfield/Westland, Full Project and Industries

Source: For f/, g/, and h/; Unpublished data, "Oregon's Northern Columbia River Basin Irrigation System Development Project: Employment and Sub-Area Distribution, 1960-1990," Oregon State Extension Service. Reger Kraynick (Research Associate).

38

NUMBER OF PER-	STAN					GILLIAN COUN Phent w/o pro		YEAR 19	70				
SONS FILE YPS				POPULATIO	N TALL	A BA SEX YND	AGE GRO	UP (1 YR AN	05 YR A	GE CCHORT	(5)		 ·····
3121 104Y 45 0	F 1	2	3	4	5	(5 YR)	6	7	8	9	13	(5 YR)	
н _ 1_ _ 10	391	336	469	406	392	(1934)	420	452	508	539	513	(2+32)	
F	422	354	397	358	396	(1927)	410	449	513	473		(2333)	 -
н	532	503	533	575	569	(27.17)	622	. 591	570	472	424	(2:73)	
11 - 2) F	509	523	520	545	544	(2641)	559	599	601	450		(2531)	
								•					
4 21 - 33	332	32:	311	302	295	(1561)	289	284	279	276	273	(1401)	
F	392	356	334	317	364	(1693)	294	237	233	230	283	(1424)	
H	271	271	269	263	256	(1330)	249	243	242		264	(1243)	
31 - 40 F	281	285	287	234	279	(1416)	275	271	272	281	296	(1393)	
	275	292	····· ··· 3				765					·	
41 - 50 F	307	325	303	306	334	(1494)	305	305	336	310	316	(1542)	
ŕ	347	323	233	224	304	(1023)	337	333	334	331	326	(1651)	
	321	325 _	327	327	325	(1625)	322	319	31.3		292	_(1553)	
F	320	313	309	307	368	(1557)	367	306	303	295	234	(1495)	
ч	290	267	254	244	235	(1295)	226	216	236	194	1 32	(1024)	
61 - 73 F	274 -	263	252	240			214		190	:35	183	~ (972)	
	•												
м 71 - 90	170	. 158	147	-		(749)	. 128	121	114	106	97	(556)	
	130	173		167	157_	(856)	148	139	129	119	109	(644)	
ч	87	75	61	46	28	(297)							
91 - 95 . F	99	89	77	67	57	(383)							
						· · ·							 · · · · ·
SUBTOTALS AND TOTAL		K-6		-12 -1LL	-	EXITING H.S. GRAOS 260		AGE 55 AND 480VE 2823		35 ABCVE 138	TOTAL POPULATI		
MALES FEMALES		3472 3365		783 693 749 672		265	۰.	2823		234	25658 26149		
TOTAL		6337	3285 3	532 - 1365	5	525	••••••	5966		472	51801		
						• •							

NUMBER OF PER-		NTY REGION	CUMATILLA,	MORROW	, GILLIAM COUN	TIES)	YEAR 197	5				
	STANFIELO-	WESTLAND,	CONSERVATIVE	DEVELO	DPHENT W/O PRO	JECT						
SONS XNX YRG OLO on Next			POPULATI	ONTAL	Y BY SEX AND	AGE GRO	DUP (1 YR AND	5 . 4 . 1	AGE COHORT	3)	······································	
3121434Y 15 OF	1 2	3	4	5	(5 ४९)	6	7	8	9	10	(5 82)	
ч	565 55	6 543	531	516	(2711)	476	470	494	691	477	(2423)	
_ 1 10, F	569 56	547	534	519	(2729)	507	439	432	443	481	(2352)	.
	505 53	7 593	62 4	598	(2857)	617	592	617	493	370	(2657)	
11 - 20	49553	5 593	539	574	(2761)	594	603	605	472	357	(2636)	
		•		c	400451							
21 - 30	412 40			534	(2215)	443	432	422	413	426	(21:5)	
F	385 42	1 446	47 0	511	(2233)	521	495	474	456	443	(2339)	
	410 39	5 391	338	385	(1959)	383	392	390	374	365	(2585)	
31 - 40 F	433 42	÷ 422	420	419	(2120)	420	424	426	422	417	(2109)	
	360 33	36	291	2 8 2	(1563)	271	235	294	237	295	(1442)	
41 ~ 30 F	413 37	9 351	331	317	(1791)	313	315	324	32 8	323	(1593)	
51 - 50	29429	2292	295	299	(1472)	302	304	305	302	293	(1511)	
	328 32	8 326	322	317	(1621)	311	303	298	295	295	(1592)	
	293 23	a 261	270	257	(1389)	243	229	216	204	194	(1036)	•
61 ~ 70F	293 29	2 287	279	267	(1418)	256	245	233	220	2 67	(1161)	
	193 17	3 162	150	138	(806)	126	114	104	96	89	(529)	
71 - 99 F	19317	3163	162	159	(869)	153	149	142	133	1 23	(703)	
•	33 7	5 68	60	53	(339)							
. 81 - 35 F	113 10	z 92	12	72	(461)							
SUBTOTALS AND TOTAL MALES FEMALES	<pre></pre>	SCHC0 7-9 1315 1731	L 10-12 ALL 1925 70 1907 69	91	EXITING H.S. GRADS 277 269		AGE 65 ANO ABOVE 2977 3454		35 360VE 217 273	TOTAL POPULA 2921 - 307	66	

.

													·		
		STAN					, GILLIAM CO OPMENT W/O P		YEAR 19	950		·			
NUMBER SCNS IN	1 Y RS				- POPUL	ATTON TAL	LA_BA REX 7N	O AGE GRO	UP (1 YR AN	10 5 YR A	GE COHORT	<u> </u>			
DLD DN Y BIRTHDA	AS OF	1	2	3	ių.	5	(5 12)	6	7	8	9	10	(5 12)		
4-33-	5J 14	534	596	607	511	ó12	(3010)	6:1	501	588	577	5 52	(2939)		
10	F	- 597 ⁻	600	E11	616	616	(3030)	615	606	593	550	5 55	(2953)		•.
	м	522	517	540	533	524	(2641)	551	58,3	639	531	362	(2635)		
11 - 20	F _	554	_ 436	529	490	528	(25371	542	591	645	454	350	(2572)		
•	ч	372	357	379	417	425	(1949)	467	462	167	633	5.00			
21 - 33	r ·	367	380	386	412			453	. 489	463 514	509 538	588 579	(2453)		
													(2573)		··
31 - 40	м	433	437	477	459	461	(2392)	455	450	446	442	4 38	(2231)		•
•	F	539	563	541	524	510	(2727)	500	493	439	496	4 85	(2453)		
• - • •	Ň	436	431	426		377	(2075)		321	237	232	272	(1523)	· · · · ·	·
41 - 50	F	496	480	473	457	433	(2329)	467	373	345	325	311	(1761)		
		34.	277		227	20.3	<i></i>								
51 - 50	י ד	261 296	273 303	281 	233		(1373)	277	²⁷⁴ 317	272	273	275		· · · · · · · · · · · · · · · · · · ·	
·	F	270	50,	510	317	510	(1997)	313	317	314	310	334	(1563)		
. 61 - 70	ч	27E	275	273	, 268	262	(1354)	255	248	233	226	212	(1179)		
	F	297	299	282	279	278	(1425)	275	272	256	256	2 43	(1312)		••
	ч	198	183	170	155	147	(856)	, 136	. 125	114	103	92	(573)		
71 - 30	F	23:	213	206	192		(1025)						(764)		
									••••••		·		· · <u></u>		
· 51 - 85	4	50	79	61	54										
	F	116	109	101	92	81	(499)								
SUBIDI:			K-6	SC⊁03L 7-9 :	18-12	ALL	EXITING H.S. GRIDS		AGE 65 Ano Above		85 A BOVE	TOTAL			
4413 FE44	5		3978 4000		1772	7 352 7 715	234		3171 3801	- 10	252	POPULAT: 3116 3333	1		
TOTA	L ~	· ·· ··	7978	3149	3540	14667	558	<u> </u>	6972		- 512	6446			
							•			•					
					· · · -	-									

• · · · ·

NUMBER OF PEP- Jons XNX MRS	.						JECT				·	
DED ON NEXT		-				LY BY SEX AND						
BIRTHDAY AS OF 4-33-85	i	2	3	· 4	5	(5 YR)	6	7	3	3	13	(5 13)
<u> </u>	542	554	567	592	5 97	(2844)	611	622	633	633	637	(3143)
F	545	553	572	535	600	(2353)	614	627	633	643	644	(3166)
ч	63 *	629	615	635	590	(3075)	550	544	567	423	3:3	(239+)
11 - 20 F	E43	634	621	609	. 594	(3101)	582	514	557	339	314	(2355)
4 21 - 33	326	344	374	339	373	(1806)	383	368	389	423	435	(20:14)
F	326	351	391	372	386	(1826)	403	415	422	447	461	(2143)
· · · · · · · · · · · · · · · · · · ·	477	472	473	51 8	597	(2537)	508	496	486	L77	475	(2437)
31 - 43 F	+85	524	543	572	613	(2745)	622	596	574	557	543	(23 32)
41 - 50	463	453	443	43 8	431	(2230)	425	420	414	395	364	(2013)
F	533	517	506	496	487	- (2539)	- 479	473	465	449	424	(2290)
ч	338	309	284	268	258	(1456)	246	256	262	261	257	(1282)
51 - 50 F	399	365	335	317	302		287	298	335	237	305	(1502)
	• • • •						201	2 70	555	557	557	(1)(1)
51 - 70	252	247	244	242	242	(1227)	240	236	231	225	216	(1145)
- 51/5 F	304	30 2	293	293	286	(1493)	278	269	261	25 6	2 5 3	(1317)
ч	207	193	187	175	161	(923)	147	133	120	139	95	(607)
71 - 83 F	243		235		210	-			168	153	: 33	
••••••••••••••••••••••••••••••••••••••		·····	··· · · · · ·							······································		(835)
. 91 - 95	88	77	63	58	50	(341)						
F	124	110	98	89	81	(502)						
593707463			- · · - SCHCD1		<u> </u>	EXITING		 AGE 65			 Totic	
AND TOTAL MALES		X-6 441C		1G-12 ALL 1561 78		H.S. GRADS 247		AND 480VE 3398		430VE 235	POPULA 317	
PEHALES		4443	1824	1551 79		236		4063		255	346	
TOTAL	·	8853	3635	3314 159	0 2	483		7371		532		54
							··					

· ·

	- -							GILLIAH COUN PMENT W/O PRO		YEAR 199	90				
14322 DA	YRS	· · · · · · · · · · · · · · · · · · ·			POP	ULATION	TALL	Y BY SEX AND	AGE GRO	UP TI YR AND	S YR A	GE COHORT	5)		······································
N PO C. Rthean	43 CF	1	2	3		4	5	(5 ¥R)	6	7	8	9	10	(5 YR)	
4-30-9	נ א	510	519	529	5	39 -	551	(2848)	562	573	538	631	517	(25-1)	
10	F	512	522		5	÷2	554	126521	565	578	- 592	615	521	(29±1)	• •
	u	631	643	654		59	660	(3247)	653	648	676	467			
- 23	- -					-					635		342	(2752)	
• •	f	635	643	553	0	64	_ 007 _		663	654	642 <u> </u>	472		12777)	
- 30	м	319	315	329	3	27	325	(1511)	336	353	382	393	3 1 3	(1352)	
30	F	340	394	330	3	12	337	(1623)	349	374	413	395	4.08	(1939)	
*** ** **	*	332	377	393	4	36	444	(2047)	 484	479	480	524	651	(2563)	
- 40	F	425	438	لو الد نو		69	482	(2255)	510	544	568	592	ō 32	(2346)	
													. <u></u>		
- 50	H	513	499	485		74	463	(2435)	452	441	432	424	417	(2165)	
	F .	541	611	585	5	62	543	{2942}	525	509	497	487	478	(249ō)	
	, 4	410	463	395	3	76	345	(1930)	319	239	264	243	2 37	(1357)	
- 50	F	469	462	453	4	37	412	(2233)	387	353	324	304	5 9 0	(1553)	
	4	224	231	235	2	32	226	(1148)	219	213	207	233	199	(1041)	
÷. 70	F	275	234 -			чо		(1426)	284	281	276	269	260	11370)	
										4					
- 30	٦	195	199	182	1	74	164	(904)	154	144	132	120	105	(656)	
	F	25:	240	231	2	24	218	(1164)	211	203	192	179			· · · · · · · · · · · · ·
_	۹	94	82	71	i	62	53	(362)							
- 85	F	149	134	120	1	06	92	(601)							
ובזסזרט	LS			 SCHC01	 L	····		EXITING		AGE 65	AGE	85	TOTAL		
NO TOT	4L		۲-6 4215	7-9 1973	10-12 1941	ALL 8129		H.S. GRADS 275		AND ABOVE 3232		190VE 320	POPULA 319		
	LES		4244	1988	1959	8191		273		4315		233	354		
TOTAL		· · · ·	8459	3961	3933	16320		553		7597		553	673	39	
									-		-				-

NUMBER O SONS #N#						UNDERTAKE		SEVIAND	Tes cos	UP (1 YR AN	0 = v0 +	CE CO4027			.
010 DN N BIRTHDAY	EKT AS OF	- 1	2	3	P0P01	5		(5 YR)	6	7 7	3	9	10	(5 42)	
4-30-7	4	391	396	403	- 40	5 - 39	2	(1984)	420	452	508	539	513	(2432)	
110_	F	422	354	397	35	3 390	5	(1927)	413	449	513	473	4 9 9	(2333) -	
	ч	532	5 û B	533	57	5 569	э.	(2717)	62 2	591	570	472	424	(2675)	
11 - 23	<u>F</u>	539	523_		54	554	•	(2541)	559	589	601	460	372	(2531)	
· · ·	н	332	321	311	30	2 29	5	(1561)	289	234	279	276	273	(1401)	
21 - 30	F	382	356	334	31	7 304	4	(1693)	294	287	293	230	280	(1424)	
31 - 40	۹.	271	271	269	26	3 250	5 -~	(1333)	243	243	242	Z5 0	264	(12-3)	
31 - 40	F	281	285	287	25	÷ 27	9	(1415)	275	271	272	231	294	(1353)	
	¥	278	292	303	30	5 3 G	5	(1434)		305	306	310	316	(1542)	
41 - 53	F	367	320	331	334	• 334	•	(1525)	325	335	334	331	326	(1551)	
51 - 51		321_	325_	327	32	32	5	(1625)	322	319	_ 313 _	304	2.92	(1952)	
27 - 22	F	320	313	369	30	7.308	3	(1557)	367	306	303	295	284	(1455)	
61 - 7)	٩	290	267	254	24	• 23	5	(1285)	225	216	206	194	182	(1026)	
01	F	274	263	252	24	22	, ·	(1256)	214	200	190	195 -	183	(972)	
71 - 30	*	170	159	147	14	134	4	(749)	128	121	114	106	97	(565)	
	.F	180	178	174	16	15	7	(855)	148	139	129	119	109	(644)	
81 - 95	ч	87	75	61	4	5 2	3	(297)							
01 - 35	F	99	98	77	6	7 57	7	(335)							
SUBTOTA ANC TOT MALE FEMA	4L S		K-6 3472 3365	SCHOOL 7-9 1577 1609	10-12 1733 1749	ALL 6932 6723		TING • GRADS 260 265	-	AGE 65 AND A90VE 2323 3143	AGE AND	85 A 20VE 138 234	TOTAL POPULA 256 261	56	·

.

•

NUMBER (SCNS AN	YPS				POPU	ATION	TALL	BY SEX AND	AGE "GRO	UP (1 YR /	ND 5 YR	AGE CCHORT	s) ⁻	<u> </u>	
4 NC CLC 710 PIRT -01 +1 -01 +1	AS OF	ĩ	2	· 3	4		5	(5 ¥R)	6	7	3	Ģ	10	(5 YR)	
1_+ 13	я	565	. 555	543	53	3	515	(2798)	475	469	493	430	476	(2403)	
	F	567	553	545	533	?	517	(2715)	506	433	481	443	+81	(2349)	
	ч	504	536	593	62	5	597	(2853)	615	591	616	493	369	(2685)	
11 - 27	۴	495	534	593		3	573	(2753)	59+	607	604	472	355	(2633)	
		411	406	407	45		533	(2212)	442	430	420	412	405		
21 - 33	4	334		467			510	(2228)			420			(2139)	
	F		420	•••?	43 	• ·-			520	493	•/ 2	455	44 <u>1</u>	(2331)	
31 - 43	٦	399	394	393	396	5	383	(1952)	381	381	379	372	365	(1977)	
51 - 45	F	431	425	420	÷18	3	417	(2111)	419	422	424	421	415	(2101)	
	ч —	353	323		234	ə ·	280 -	(1559)	271	235	294	297	295	(1442)	
41 - 50	F	411	377	349	33()	316	(1733)	303	315	324	32 \$	3 29	(1593)	
	4	234	292	292	299	5	299	(1472)	302	304	305	302	293	(1511)	
51 - 63	F	323	328				317	(1621)	311	303	293	295	2 95	(1502)	
	Ħ	293	283	281	27(2	257	(1339)	243	229	216	234	194	(1236)	
_ 61 - 73	F	293	292	287	27 <	ə 	267 -	(1413)	256	245	233	22 0	2 27	(1161)	- · -
	4	183	173	162	15(}	138	(806)	126	114	104	96	89	(529)	
71 - 80	F	193	179				158			•		132		(697)	
	4	33	75	63	6 1	L	54	(341)							
91 - 95		112	102	92			72	(460)							
SUBTOT AND TO MALE Family	AL		K-6 3443 3373	SCH00 7-9 1313 1729	L 1C-12 1523 1395	ALL 7379 6312		EXITING H.S. GR40S 277 263		AGE 65 AND ABGVE 2930 3450		15 15 217 273	TOTAL POPULA 291 306	50	
TOT:			6821	3542		13991							595		
	-												2.90		

. .

NUMBER D					PROJECT UNC									
5045 242 OLD ON 4 BIRTHDAY 4-30-3	EKT AS OF	1	2	3	POPULATI ¥	ON TALLY	(S YR)	AGE GRO	UP (1 YR AN) 7	3 Y R Ai	9 -	5) 10	(5 12)	
	4	573	597	615	610	610	(3000)	608	598	536	574	563	(2925)	
110	F	582	691	610	61+	514	(3021)	612	602	590	577	5 62	(2943)	·
	м	525	515	533	535	521	(2629)	549	581	536	530	360	(2526)	
11 - 23	_F	531	434	527	438	526	(2576)	540	579	643	452	348	(2562)	·
	н	364	350	373	414	422	(1923)	463	459	450	5:5	584	(2471)	
21 - 30	F	359	373	381	438	422	(1943)	449	485	509	533	574	(2553)	
· - • · ·	•	694	483	473	465	457	(2372)	451	446	442	433	4 3 4	(2211)	
31 - 40	, F .	584	557	535	. 519	505 .	(2731)	495	448	483	431	÷sc	(2427)	
	- <u>-</u>	432	436	429	409	376	(2082)	350	320	296	230	271 -	(1517)	
41 - 50	F	431	484	475	457	432	(2329)	406	372	343	324	310	(1755)	
	<u> </u>	261	273	281	213	280	(1373)	277	274	272	273	275	(1371)	
51 - 63	E	296	303	315	319	318	(1557)	318	317	314	3:0	3 04	(1563)	
	м	276	275	273	258	262	(1354)	255	248	238	22 ō	212	(1179)	
61 - 70	F	297	239	282	279	278		275	272	266	256	243	(1312)	
••	۲	198	163	173	158	147	(855)	136	125	114	133	92	(573)	
71 - 8] 	F	_ 231	219	205	192	178	(1026)	164	150	138 _	_ 129	123	(784)	
	ч	51	71	62	54	49	(317)							
91 - 45	F	116	109	101	92	81	(439)							-
SUBTOTA AND TOT AND TOT MALE	41		к-6 3951	SCF00L 7-9 1594		21	EXIJING H.S. GRADS 283		AGE 65 AND ABOVE 3174		35 430VE 252	TOTAL POPULA 310	TION	

and the second second

94

-

NUNBER OF PER-				PROJECT UND		T BY SEX AND	ACE CON	10 11 V2 +N	D 5 V3 X	E COMORT				
SONS XNX YRS DLD ON NEXT GIRTHDAY AS OF	1	2	3		- 5	(5 YR)	462 640 6	0P (1 YR AN 	8 - 8	9	10	(5 12)		
4-30-85 M	551	563	577	588	. 599	(2873)	612	630	639	644	645	(3170)		
1 - 13 F	55+	565	58)	591	603	(2894)	616	635	645	649	649	(3194)		
×	543	633	621	609	595	(3101)	555	549	572	426	313	(2-15)		
11 - 20 F	647	638	625	612	598	(3120)	5 87	519	562	392	317	(2377)		· - ·
		25.0					700		300	170	·	(
4 21 - 30	331	350	383	+03	387		390	377 422	399	439 456	448 470	(2053)		
F	336	357	399	384	397	(1367)	468	466	430	420 · · · · ·	470 	(2185)		
ч	639	484	485	530	608	(2596)	519	507	497	489	481	(2493)		
31 - 40 F	493	533	_ 557	591	621	(2790)	630	604	582	565	551	(2932)		
······································	474	462	452	440	428	(2256)	422	425		396	3 63	(2023)		
41 - 50 F	541	524	510	497	483	(2553)	474	477	467	449	424	(2291)	·	
<u>-</u> 51 - 53	337		283	267	257	(1451)	246	256	262	261	257	(12 52)		
51 - 53 F	397	363	335	315	301	(1711)	287	298	305	307	305	(1502)		
H 51 - 70	252	247	244	242	242	(1227)	240	236	231	225	216	(11-5)		
F	354	302	298	293	286	(1483)	273	269	261	256	253	(1317)		
, H 71 - 90	207	195	187	175	161	(928)	147	133	120	139	. 98	(697)		
	248	243	235	224:	210_	(1160)	196	183	168	153	1 39	(\$35)		
4	8 A.	77	63	58	50	(341)								
81 - 35 F	124	110	58	39	81	(522)								
SUBTOTALS AND TOTAL AND TOTAL ALLES FEMALES		K-6 4446 4479	SCHOOL 7-9 1925 1335	10-12 ALL 1575 74	947 982	EXITING H.S. GR1DS 249 233		AGE 65 AND ABOVE 3303 4063	AGE AND	85 A30VE 235 247	TOTAL POPULA 2 211 3491	07		
TOTAL		8925		334+ - 159				7371		- 532	570			-

THREE COUNTY REGION (UNATILLA, MURROH, GILLIAN COUNTIES) YEAR 1985 Stanfific-Festiand, project undertaken

-

1043ER OF Ions inf		· · ·			POPULATIO	TALL	Y BY SEX AND	AGE	UP (1 YR AN		ECOHORT	\$1			•••
ILD DN NE	AS OF	1	2	3	4	5	(5 YR)	- 6	7	8	9	10	(5 YR)		
	4	521	530	541	551	563	(2705)	574	535	599	610	6 2 2	(2990)		
1 - 10	F	525	534	545	55 4	565	(2724)	577	589	603	E14	627	(3010)		••
1 - 20	ч	635	654	66 3	668	668	(3288)	666	. 655	643	473	_ 347	(2784)		
	F	640	653_		673	572	(3313)	670	661	649	477	350	(2807)		
•								-							
1 - 33	4	325	324	333	337	331	(1655)	349	363	431	421	404	(1943)		
	F	346	310	- 337	319	345	(1657)	358	385	426	411	424	(2004)		
	H	488	395	417	457	465	(2142)	505	500	501	545	621	(2572)		
1 - +0	F	436	450	_ 457	433	497	(2323)	524	559	582	606	645	(2915)		-
	н —	533	517	562	499		(2517)		450	439		413	(2192)		
1 ~ 50	F	654	623	596	573	552	(2998)	533	516	502	433	474	(2513)		
1 - 60	۹	_406	403	399	377	344 _	(1934)	317	297	2ô 3	247	236	(1353)		_
	F	+6+	466	455	437	412	(2234)	_ 385	351	323	393	2 89	(1651)		
	4	224	231	235	232	226	(1148)	219	213	237	223	199	(10-1)		
170	F	275	284	293	290	287	(1426)	284	281	276	269	263	(1370)		-
,	ч	195	189	182	174	164	(904)	154	144	132	120	107	(657)		
1 - 80	F	251	240	231	224	_ 218_	(1164)	211	203	1,92	179	164	(949)		
	4	95	32	71	62	53	(363)								
1 - 85	F .	150	134	. 120	106	92	(602)								
 SUBTOTALS AND TOTAL HALES FEMALS	L		K-6 4279 4309	SCHOOL 7-9 1999 2014	10-12 ALL 1964 8242 1980 830		EXITING H.S. GRADS 273 231	- · ·	AGE 65 ANO ABOVE 3284 4317	AGE And	35 430VE 320 233	TO IAL POPULA 3266 358	85		•
TOTAL			3533	4013	3944 16545		559		7601			684	98		-

•

•

•

- . -

-

• .

		250	267	254	244	2 3 5	(1250)	226	216	206	194	1 82	(1024)	
1 60	F	320	313	309	337	303	(1557)	307	396	303	295	234	(1495)	 ·
	- 4	321	325	327	327	325	(1625)	322	319	313	304	292	(1550)	
1 - 50	F	367	320	330	334	334	(1625)	335	335	334	331	325	(1651)	
·	н	278	292	303	306	305	(1434)	305	305	- 306	310	316	(1542)	
	F	231	285	287	234	279	(1416)	275	271	272	231	294	(1393)	
1 - 48	4	2/1	271		263	•	(1333)	249	243	242	250	264	(1245)	
										.				
1 - 33	F	312	356	334	317	304	(1693)	294	287	283	250	280	(1424)	
1 - 30	4	332	321	311	332	295	(1561)	289	294	279	276	273	(1431)	
				· · · ·										
1 - 23	F	539	523_	520	545		(2541)	559	589	601	460	372	(2531)	
	4	522	503	533	575	569	(2717)	622	591	570	472	424	(2673)	
		422	324		•••	• , •	-					435	(2003)	
1 15	F	422		397	358	396	(1927)			513	473	4 53	(2333)	
4-33-73) H	391	335	409	406	392	(1934)	420	452	533	539	513	(2432)	
	AS OF	1	2	3	4	· 5	(5 YR)	6	7	8	9	10	(5 YR)	

.

.

.

97

.

NUMBER OF PER-			316401Ja			ALUNAX, PEBBL							
SINS XNX YRS DLD DN NEXT					N TAL	LY BY SEX AND	AGE GRO	OUP (1 YR A	NJ 5 YR	AGE COHORI	5)		
3181401Y AS OF 4+30-75		Z	3	*	5	(5 YR)	6	7	3	9	10	(5 १२)	
1 10	563	554	542		514		474		492	430	47ō	(2401)	
F	566	557	544	532	517	(2715)	506	439	481	442	480	(2347)	
4	504	535	592	623	597	(2352)	616	591	615	432	3,69	(2533)	
11 - 20	496	533	597		572	(2753)	593	607	604	471	395	(2631)	
ч	411	405	407	453	532	(2203)	441		420	411	4 6 4	(2195)	
21 - 30 F	384	420	la 44 ia	458	509		. 519		471	454	441	(2375)	
											· · · •		
м 31 - 40 _	358	393	389	396	382		. 380	380	37 9	372	364	(1974)	
F	431	424	419	417	416	(2107)	413	422	423	420	415	(2098)	
41 - 50	353	328	304	259	28ú	(1559)	271	285	294	297	2 95		
41 - 33 F	410	375	349	329	316	(1780)	303	315	324	323	323	(1533)	
. 4	234	. 292	292	235	299	(1472)	302	. 304	305	302	293	(1511)	•
51 [°] - 50 F	323	323	326	322	317		311	30'3	298	295	295	(1502)	
	A - -		±			•	-	•					
61 - 70	233	289	281	270	257	(1339)	243	229	216	234	194	(1035)	
F	293	292	287	279	267	(1413)	256	245	233	220	207	(1161) ⁻	
N 71 - 30	133	173	152	150	138	(805)	126	114	104	96	. 89	(523)	
······································	193	179	163	162	_158_	(860)	153	149	142	133	123	(703)	
ч	83	75	63	61	54	(341)							
31 - 35 F	113	102	92	82	72	(461)							
SU37074LS		- · ·	SC≻001			EXITING					TOTAL		
AND TOTAL MALES		K-6 3441	7-9	10-12 ALL	5	H.S. GRADS 275	• •	AND 490VE 2990		2 35 2 430VE 217	POPULAI 2912		
FENALES		3374	1726	1304 690	•	268		3454	-	273	3062		
FOTAL		6815	3533	3626 13979		544		6434		490	5979	55	

	STAN						GILLIAN COUN MAX, PEBBLE			q 19	. ve					
UNBER OF FER- ONS INI YPS				P09-J	LATION TA	ALLY	TAY SEX AND	AGE GRO	UP (1	YR AN	0 5 YR A	SE COHORT	(2)	-		
LD DN NEXT IRTHDAY AS OF	1	2	3	4	5	5	(5 YR)	6	7		8	9	10	(5 19)		
4-31-33 M	591	603	613	51	6 61	15	(3038)	613	6	J 3	592	579	564	(2951)		
1 - 10	594	607	615	62	62	20 -	(3057)	616	6	97	594	532	563	- (2957)		
н	525	52)	544	54	1 52	27	(2657)	555	5	56	541	594	36¥	(2850)		
1 - 2J F	557	489	532	49	453	32_	(2604)	546		84	649	476		(2555)		
н	393	399	433	47	3 48	83	(2180)	524	- 5	19	520	566	644	(2773)		
L = 33 F	359	383	392	41	9 43	33	(1995)	461	· 4	96	521	545	5 85	(2633)		
	555	543	533		5 51	17	(2673)	511	. 5	 06	502	493	494	(2511)		
1 - 40 F	595	_ 569	547	53	0 51	16	(2757)	506	4	99	495	492	491	(2433)	-	
_ · · · ·	492-	462			c 37	,, —	(2190)		3	19 - ~		230	271	(1514) -		
L - 53 F	L92	485	477	45	8 43	32	(2344)	405	. 3	71	343	323	310	(1752)		
н	251	273	281	23	326	B C	(1375)	277	2	74	272	273	275	_ (1371)		
F	296	309	316	31	9 31	18	(1557)	318	3	17	314	319	3 04	(1563)	•	
ч	276	275	273	26	8 26	62	(1354)	255	2	48	238	2 25	212	(1179)		
r - 70 F	297	289	282	27	9 27	78 -	(1425)	275	2	72	266	256 -	243	(1312)	~	
ч	198	183	173	15	8 14	47	(856)	136	. 1	25	114	193	_ 92	(570)		
1 - 30 	231	219	206	19	2 1	78	(1026)	164		50	139	129	123	(704)		
ч	8 G	70	61	5	4 :	÷9	(314)									
1 - 85 F	117	110	162	9	2 8	81	(502)									
SUBTOTALS AND TOTAL MALES FEMALES		K-6 3995 4013	SCHCOL 7-9 1612 1554	10-12 1782 1773	ALL 7393 7349		EXITING H.S. GRADS 286 275	-			AGE	85 ABOVE 252 260	TOTAL Populat 3241 3350	1		_
TOTAL	·	809	3170	3560	14739		561		~ ó	975 -		-512 -	6591	le		-

	STAN					. GILLIAM COU Alumax, Pebbl		YEAR 19 S	335				
NUMBED OF PED-				POPUL	TION TAL	LY BY SEX AND	AGE GRO	UP (1 YR A)	STYR A	52 COHORI	rs)		- · · ·
OLO DH NEXT BIRTHDAY AS OF	1	2	3	4	5	(5 YR)	• 6	7	8	ç	10	(5 12)	
4-33-35	538	551	563	573	593	(2325)	608	619	529	633	633	(3:22)	
1 10 F	542	555	563	530	597	(2842)	511	624	633 -	637	5 37	(3:+2)	
` ч	630	621	610	537	582	(3040)	543	537	560	417	306	(2363)	
11 - 20 F	634	625	€12	6J1	586	(3058)	575	507	550	383	309	(2324)	
H	321	334	271	396	397	(1324)	425	433	465	508	515	(2341)	
21 - 33 F	321	347	387	367	386	(1302)	398	412	420	447	÷e2	(2139)	
	5::6	551	552	597	674	(2930)	585	574	564	555	547	(2825)	
31 - 40 F	499	524	549	572	612	(2746)	. 622	. 595	573	556	5 4 2	(2333)	
- <u></u> · · · · · · · · · · · · · · · · ·	- 54ŭ	532	524	516		(2615)	480	456		397	364	(2123)	
41 - 50 F	532	518	507	475	· · 492	(2547)	485	478	469	450	424	(2325)	
- 51 - 60 <u>H</u>	335	306	282	257		(1447)	245	256	262	261	257	(1232)	
51 + 50 F	396	362	334	. 315	301	(1758)	287	298	305	337	365	(1592)	
. Ч бл. – 73	252	247	244	242	242	(1227)	240	236	231	225	216.	(1145)	
51 - 70	394	395	295	293	286	(1433)	278	269	261	256	253	(1317)	
м 71 93	287	199	187	175	161	(928)	147	133	120	139	97	(606)	
F	243	243	235	224	210	(1160)	196	183	169	154	1 39	(3-1)	
м	87	77	63	. 55	50	(348)	••••						
• 31 = 35 F	125	111	99	90	82	t 507)	•		•				
SUBTOTALS AND FOTAL HOLES FEMALES		K-6 +373 4431	SCHOOL 7-9 1789 1799	10-12 4 1649	LL 7532 7332	EXITING H.S. GRADS 244 233		AGE 65 AND ABOVE 3336 - 4071	AGE And	35 430VE 265 247	TOTAL POPULAT 3327 3455	5 .	
TOTAL	·	3774 .	3568		5634	477		7377		532	£783	3	·
	• •	-	-			:							

													•
						GILLIAM COUN LUNAX, PEBBLE		YEAR 19 5	995	-			
NUMBER OF PE Sons ini yps				POPULAT	ION TALL	Y"BY SEX AND	AGE GROU	UP (1 YR AN	0 5 YR 4	GE COHORT	s)		
DED DN NEXT BIRTHDAY AS	0F 1	2	3	4	- 5	(5 YR)	6	7	5	ç	10	(5 77)	
4-33-93 4	499	509	517	528	538	(2533)	549	5ā1	575	519	504	(2175)	
1 10	502	511	521	531	542	(2607)	553	506	579	591	609	(2333)	÷.
ч	619	531	642	645	644	(3131)	642	632	620	455	333	(2552)	
11 - 2J F	523	635		650	650	(3205)	640	637	ō24	459	336	(2752)	-- .
	24.6				34.7		327	715	377			(4)=7)	
H 21 - 30 F	316 331	309 296	321 322	320 304	312 329	(1572)	341	367	436	401 386	413 399	(1353) (1899)	
··· · ··· · ··· ···													
4 31 - 40	31	436	470	510	519	(2366)	560	554	555	599	675	(2943)	
F	417	431	439	466	430	(2233)	527	542	565	538	628	(2333)	:
·	53 ö		559	549	537	(2805)	527	519	539	533	4 05	(2543)	····
41 - 50 F	636	608	582	561	540	(2927)	525	510	499	439	4 33	(2535)	
	452	439	412	378	345	(2035)	317	237	253	2+7	2 35	(13+9)	
51 - 63 F	475	467	453	+38	412	(2250)	384	351	323	303	239	(1552)	
							0						
61 - 70 .	224	231	235	232	226	(1148)	219	213	237	203	199	(1041)	
F	275	284	290 -	290	287	(1426)	284	231	276	269	260	(1370)	
н 71 - 30	195	189	182	174	164	(904)	154	- 144	132	120	137	(657)	• •
F_	251	240	231	22.4	218	(1164)	211	203	192	179	163	(943)	
ч	. 94	82	71	62	53	(352)							
- 31 - 95 F	149	134	120	15 E	92	(601)	 ·						
SUBTOTILS			 SCHODL		• ••••	EXITING	<u></u>	AGE 65	AGE		TOTAL		
AND TOTAL MALES		×-6 4128	7-9	10-12 AL	L 953	H.S. GR105		AND ABOVE 3233	AND	130VE 320	POPULA 332		
FEHLLES		+157			913	270	-	4315		233	350		
TOTAL		\$2 85	3977	3301 15	963	538		7593		553	682	55	

								-						
												-		
		5748		ATTILLA CO STLAND, CO		DEVELO	PHENT WID PRO	JECT	YEAR 19	170	. .			÷
SCHS	SER OF PER-			• • • •	POPULATI	ON TALL	Y BY SEX AND	AGE GROI	UP (1 YR AN	D S YR A	GE COHCRT	. <u>-</u>	· · ·	
BIRI	ON NEXT	1	2	3	•	5	(5 YR)	6	7	8	9	10	(5 YR)	
	-33-73	339	336	353	345	333	(1711)	369	392	4Q 0	467	440	(2063)	
1 -	· 1.)	331	321	241	314	353	(1713)	348	335	446	406	4 17	(2032)	
	ч	45E	439	452	534	486	(2336)	541	501	439	421	367	(2319)	
11 -	· 23 	443 .	443	443	447	476	(2254)	473	510	516	411		(2263)	
		290	276	272	267	263	(1353)	- 250	254	249	244	Z 40	(1245)	
. 2: -	- 33 =	352	325	362	237	263	(1533)	260	252	249 247	244	244	(1243)	
, 			323							······				
31 -	40 - 40	235	233	223	224	218	(1143)	212	207	235	214	227	(1055)	
	c	245	249	250	247	241	(1232)	237	232	233	241	254	111971	
~	· · ·	240	254		257		(1291)	265	264	265	270	275	(1343)	
41 -	· 53 F	265	273	237	231	292	(1413)	293	294	293	271	2 3 3	(1459)	
			245	317	346	707	(1421)	278	27.4	257	253	768	(1324)	
51-	63 ⁻	_ 291 234	285 279	267	272	270	(1393)	267	264	259	253	245	(1233)	
• .		234	2.7	2.5	272			201	201		277	•		
61 -	۲	235	226	216	239	263	(1092)	196	193	182	171	1 = 3	(997)	-
	F	233	230	221	210	199	(1093)	187	174	165	160	153	(844)	
_	۲	145	133	123	117	114	(633)	109	104	99	. 72	35	(433)	
71 -		_ 155 _	154	151	144	136	(741)	127	119	111	102	93	(552)	
	۲	77	67	5.	39	23	(252)		-					
- 31 -		34			55		(324)				-			
4N0	BTOTALS D TOTAL				13-12 ALL		EXITINJ H.S. GRADS		AGE 65 AND ABOVE	AND	85 ABOVE	TOTAL POPULA	TION	
	MALES Females		2962 2335		1531 59 1504 57		227 231		2433 2705		155 244		L44 779	
	TOTAL		5847	2313	3035 116	95	458		5138		399		923	

	STANE	1944 IELO-WEST	TILLA CO LANC, CO	UNTY HSERVATIVE	DEVELOP	MENT W/O PRO	1501	YEAR 1975					
494350 DF PFR- 5945 \$4\$ YPS	J14 11			POPJLATI	ON TALLY	BY SEX AND	AGE GROUP	(1 YR ANO	5 YR 20	SE CCHORTS) .		
DED DA MENT AIRTHDEN AS OF	1	2	3	i.	5	(5 YR)	6	7	8	9	10	(5 YR)	
+-31-75 4	÷49	45 4	461	454	44C	(2253)	394	392	415 .	431	389	(1931)	
1 - 13 -	452	457	462	456	442	(2259)	436	377	397	371	410	(1951)	
પ	425	449	457	524	497	(2352)	512	494	507	419	305	(2237)	
11 - 2J F	+05	442	503	453	474	(2237)	497	500	504		301	(2179)	- ·
					429	(1753)	343	339	335	331	326	(1574)	
ч 21 = 35	335	709	311 336	356 371	429	(1752)	42.9	402	390	352	3 4 9	(1921)	
f .	363	323	. 230	0.1	-					237	2 30	- (1455)	
4	33.5	317	313	338	304	(1564)	300	296	292	_		(1513)	
31 - 4] F	337	330	325	322	321	(1635)	322	325	326	323	3 17	(1913)	
પ	275	265	267	239	249	(1314)	234	247	256	259	257	(1253)	
41 - 50 F	313	302	363	291	273	(1487)	262	274	282	236	286	(1390)	
			25.3	257	261	(1290)	265	267	267	254	259	(1322)	-
9 51 - 63	255	254	253 285	234	280	(1424)	276	270	265	262	259	(1332)	
÷ .	287	20	200	_				195	154	175	167	(923)	
4	253	247	239	229	213	(1136)	207			193	181	. (1315)	
51 - 7] F	255	251	246	239	231	(1222)	222	214	205	¥93	101		
ч	159	152	143	132	120	(705)	108	97	87	30	76	(448)	
71 - 32 F	169	155	145	140	137	(743)	123	129	123	115	105	(636)	
		64	53	52	46	(239)							
4 31 - 35	69		79	70	61	(395)							
c	97	39	19	10				• `				- • •	
			SCHOOL	_		EXITING		4GE 65		E 35 0 430¥E	TOTAL POPUL		
SUBTOTALS AND TOTAL		K-6	7-9	10-12 AL	L	H.S. GR405		450 480VE 2551	A 7	130		1 87	
1-120		2305	1479 1440		5355 5779	231 220		2993		235	25	500	
FERLES		2338	1440	3014 12	-	- 451		5549		- 415		6 ð?	

·

.

103

.

NU4359 OF F JCN5 7N# YP					იეიკ	LATION T	ALLY -	BY SEX AN	D AGE GRE	OUP (1 YR A	ND 5 42 -	58 COHORT	(\$)			
010 04 NEXT RIRTHDAY 15		1	2	3	4		5	(5 YR)	. 5	7	8 [.]	5	10	(5 121		
4-30-30 M		465	459	475	47	7 4	.81	(2362)	485	439	497	- 90	475	(2-37)		
1_= 10 F	·	463	472	477		9 4	·82	(2373)	483			4.32	479	(2452)	· • • • • • • • • • • • • • • • • • • •	
		_		_												
4 11 - 27		-30	423	452	43		26	(2174)	462		492	418	3.50	(2155)		
^r	·	473	. 414	434	40	7 4	46	(2174)	441	473	539 _	374	2 33	(212)) _		• •
۲		310	360	315	35	5 3	-e	(1628)	378	352	354	405	471	(1963)		
21 - 7J F		305	311	320	32	4 3	→ 2	(1602)	345	36 Z	377	412	→ 63	(1553)		
	•									360	355	 350	3 4 5			••••
31 - 40					-				_				-			
٠		47C ·	4 4 3	421	433	2 3	83	(2124)	378	373	365	352	261	(1836)		
		341	332	- 323	30	5 2	AZ -	(1533)	2,69	253	259	230	233	(127-)		
41 - 33 F		361	356	349	335	53	19	(1723)	368	298	· 298	296	272	(1462)		
٩		226	237	245	24	6 2	43	(1197)	241	238	. 236	237	249	(1192)		
51 - 60 F		256	267	275	279		73	(1355)	278		276	273	2 6 9 '	(1374)		
۳ 61 73		241	241	237	23		27	(1183)	220		203	:92	130	(1007)		
F		263	257	252	Z + 1	7 2	44	(1263)	239	234	227	219	210	(1129)		
4 71 - 93		168	156	145	. 13	5 1	27	(731)	113	110	101	91	82	(533)		
71 - 93 		251	192	_ 151	16	91	56	(899)		130	119	112	107	(511)		
		73	60	51	4	5	41	(267)								
. 31 - 35 F		161	95	63	5(71	(436)								
		· ···				-		•				· · ·····				
SUBIDIALS 440 TOTAL			K-6	50203L 7-9	10-12			XITINS •S• GR40S		AGE 65 AND ABOVE	ASE 1ND	ABOVE	TOTAL Popula			
HALES Females			3295 3337		1433 1453	634) 6982		227 223		2715 3299		211 224	2 55 2 7 <u>1</u>			
TOTAL			6632	2603	2 3 9 6	12131 -		455		6014	<u> </u>	435	526	38		·
																·
									· · ·	• •	-			· •		

•

NUMBER OF PER-			TLANG, C		IVE DEVEL	DAMENT MNO BS		YEAR 19					
2048 141 475				POPUL	ATION TAL	LY BY SEX AND	AGE GROU	IP TEL YR AN	10 5 YR A	SE CCHORT	s)		• ·
010 0% NEXT BIPTHICAY 48 OF 4-30-85	1	2	3	4	5	(5 42)	6	7	9	. 5	1 J	(5 YR)	
~	¥5 1	457	465	473	483	(2330)	494	502	539	511	515	(2531)	
1 <u>-</u> 10	451		463	475	486	(2342)	496	505	511	514	517	(2543)	
· u ·	515	52 -	531	524	510	(2608)	465	462	435	353	26:	(2025)	
11 - 25 F	522	. 527	523	527		(2532)	507	449	459		272	(2028)	
 ¥	296	302	310	347	3 3 2	(1577)	342	333	347	337	3 8 0	(1737)	
21 - 33	275	303	333	319	328	(1561)	345	351	360	354	382	(18)2)	
· · ~	- 2 }		385	 440	502	(2121)	417	413			399	(2042)	
31 - 40 F	334	401	417	451	502	(2155)	509	481	459	449	425	(2315)	
	394	-375		351	342	(1827)	333	323	314	235	272	(1533)	
41 - 50 E	415	394	382	370		(1924)	356	351	344	329	313	(1693)	
•	253	243	243	233	227	(1219)	213	722	223	229	223	(111+)	
51 - 50 -	322	291	291	279			248	259	255	253	267	(1303)	
ч	219	215	211	211	211	(1067)	210	207	203	3 F t	1 33	(1004)	
51 <u>-</u> 73 F	266	265	262	258	253	(1304) -	247	23 9	233	227	2 22	[1155]	
	179	170	159	1+3	137	(793)	125	113	1)2	93	33	(516)	
71 - 52 	216	_ 209	201	192	181	(999)	171	16J	145	125	1 22	(_736)	
•	75	67	59	51	43	(295)	-						
- 31 ~ 35 F	108	95	85	77	70								
	• •		30r001	-		EXITING		- · · ·	 AGE	35	TOTEL		
AND TOTAL MALES		K-6 3574	7-9 1565	10-12 1412	ALL 6751	H.S. GRADS 209		AND 430VE 2846		430VE 235	POPULA 266	34	-
FEMALES		3592	1 57 3	1425	6593	200		3550		2:2	235	15	

-

							· ·								
		STANF	U- IELD-WES	MATILLA C Stlang, C	OUNTY ONSERVAT	INE DEVELO	DPMENT W/O PRO	IJECT	YEAR 193	D					-
	IS FIF YRS			-			LY BY SEX AND		UP (1 YR AND) 5 YR A	GE COHCRT	s)	· · · · · ·		
0 ∟0	DA NEXT THOAY AS OF	1	2	3	4	5	(5 YR)	6	7	8	9	10	(5 YR)		
-	-33-32	•39	449	456	465	-472	(229))	478	434	493	500	511	(2466)		
1	- 13		- 451	. 461	456	474	(2295)	- 481	437	490	5:) 3	514	(2491)		
	ų	· · · ·	c 7 1	537	539	543	(2672)	547	551	55 %	413	362	(2371)		
11	- 20	522	531						555	561	415	305	(2389)		
-		524	533	540	5+2	747.	\20041		· · · · · · · · · · · · · · · · ·						
21	4	277	277	292	237	286	(1+19)	312	327	335	372	357	(1703)		
د ب	- 30 =	392	270	284	273	300	(1429)	324	323	366	346	3 55	(1699) -		
-	• • • • •	367	- 35 a	- 372	- 412	405	(1914)	433	403	410	452	523	(2236)		
31	- 4) E	372	378	386	330		(1914)	435	427	442	476	526	(2281)		
	-)/ 2	310	566	170	400	11,04,	*		~~~	• •				
		++C	432	423	412	400	(2107)	385	365	354	3+0	330	(1775)		
*1	- 50 F	532	502	476	451	430	(2391)	410	339	376	. 364	358	(1995)		
	પ	321	319	300	291	258	(1470)	246	232	231	221	268	(1136)		_
51	- 60 - 60	340	343	335	320		(1651)	293	281	280	268	254	(1376)		
		•													
ć:	4 - 73	19-	201	204	20 Z	196	(997)	191	135	179	176	174	(905)		_
<u>.</u>	- ۶	237	246	252	253	251	(1239)	243	245	242	237	232	(1204)		
	ч	170	165	160	152	142	(796)	133	123	113	102	91	(562)		
71	- 30			206			(1033)		174			1.42	(818)		
•	·		··· ·	-											_
_ 31	4 - 15	73	69	60	25	46	(306)								
	F	129	117	105	93	81	(525)								
SL							EXITING		AGE 65	AGE	85	TOTAL			
	AD TOTAL MALES		3519	1619	10-12 1555	6794	H.S. GRADS 242 244		AND ABOVE 2931	ANO	430VE 269	POFULA 273	77	-	
	FE41LES		3538	1627	1639	÷ 933			3780		200	295 		. <u></u>	
	rotau		7057	324E	3324	13627	485		6611		403	207	01		

	- 511		ATILLA C	DUNTY PROJECT UND	ERTAKEN			YEAR 197	73					
NUMBER OF PE	. २													
SCHS THE MR	S			POPULATIO	ON TALL	CH4 X32 YE Y	AGE GRO	UP (1 YR AN) 5 YR A(SE COHORT	2)			
OLD ON HEXT BIRTHDAY AS		Z	3	i.	5	(5 Y9)	6	7	5	9	15	(5 12)		
4+30-70														
۲	338	335	359	345	333	(1711)	369	392	430	467	440	(2023)		
1 - 17	331	32:	341	314	353	(1710)	343	385		÷06	+17	(2002)		
4	456	433	452	504	486	(2336)	541	501	439	421	367	(2313)		
11 - 23	490													
·		443	443	447	476	(2254)	478	<u> </u>	515	411	345	(2263)		
	230	:75	272	257	263	(1353)	253	254	249	2-4	243	(1245)		
21 - 3)	352	325	302	284	276	(1533)	260	25 ?	247	245	Z →÷	(12-5)		
. <u>.</u>	· ·					· ·	·	.207	206	214	227	(1065)		
4 31 - +0	: 36	233	229	224	218	(1140)	212	.207	205	214	221	(1000)		
51 40 6	245	243	250	247	241	(1232)	237	232	233	241	254	(1197)	•	
·	 24C	254	26∓	257	266	(1291)	265		255		276	- (13-3)		
+1 = 53 E	265	273	287	291	292	(1413)	293	294	293	291	2.88	(1459)		
	207	2.,	201	- / -										
Ч 51 - 63	281	_ 285	287	236	282	(1421)	273	273	267	258	248	(1324)		
51 + 63 F	234	279	275	272	270	(1390)	267	, 254	259	253	245	(1235)		
		22 E	216	239	203	(1092)	196	190	132	171	153	(897)		
9 .51 70	233	225	210	239	213	120920	1 70							
F	233	230	221	210	199	(1098)	187	174	165	150	158	(544)		
	146	133	123	117	114	(633)	109	104	99	92	85	(459)		
71 - 83	156	154	151	144	1.36	(741)	127	119	111	192	93	(552)		
· · · · ·	190													
ч	77	67	5+	39	23	(265)								
- 91 - 95 "F	54	74	65	55	46	(324)								
· ,					·			AGE 65	AGE					
SUBTOTALS AND TOTAL		<-6	5CHOOL 7-9	10-12 4LL		EXITING H.S. GRADS		AGE 65 AND ABOVE		ABOVE	POPULA	TION		
44623		2962	1-42	1531 57	75	227		2433	•	155	2 2 1	44		
FENALES		2335	1371	1504 57	63	231		2735		244	227	79		
TOTAL		5247	2313	3335 116	95 -			5133		- 399	: 49	23		
											-			

	ST 4		MATILLA C ESTLAND,		UNDERTAKI	EN		YEAR 19	975		-		
NUHBER OF PER- Sons 202 YRS			· · · · · · ·	P0571	ATION TA	LLY BY SEX AN	D AGE GRO	UP (1 YR A	NO STR A	GE COHORT	\$)		
DED DN NEKT BIRTHDAY AS OF	1	2	3	*	5	(5 YR)	6	7	8	9	10	(5 12)	
4-35-75 , 4	449	453	463	453	44	6 (2255)	394	392	415	461	339	(1991)	
<u>1 - 1</u>	452	457	462	456	· 44	2 (2269)	436	377	397	371	\$1 C	(1991)	
ų	425	44 P	457	520	. 49	6 (2351)	512	494	507	419	305	(2237)	
11 - 23	405	<u>44</u> 2		45	47	4 (2287)	<u> </u>	530	50+	377	361	(2179)	
4	335	209	312	356	42	9 (1751)	343	339	335	331	326	(1674)	
21 - 33	303	329	336	37 :	42	2 (1752)	429	402	380	362	347	(1920)	
4	.22	317	313	30/	30	3 (1563)	299	295	292	237	2 8 0	(1454)	
31 - 40 E	.337	32 9	325	322	32	1 (1634)	322	325	326	323	317	(1613)	
	275	265	267	25	24	7 (1312)	234	247	256	259	2 57	(1253)	
1 - 53 F	313	302	302	291	. 27	7 (1435)	262	274	282	236	286	(1390)	-
ч 1 - 50	255	254	253	~ _ 253	26	1 (1230)	265	267	267	264	259	(1322)	· · · · · · · · · ·
	237	237	28ō	230	23	0 (1424)	276	273	265	262	259	(1332)	
ч	253	247	239	229	21	8 (1196)	207	195 ·	184	175	167	(928)	
51 - 79 F	255	251	243	230	23	(1222)	222	214	205	193	181	(1015)	
4	159	152	143	132	12	c (736)	103	97	37	3 G	75	(445)	
1 - 33 E	169	155	146	14(13	7 (748)	133	129	123	115	165	_ (606)	
4 31 - 35	76	54	59	52	4	6 (290)					i		<u>-</u> '
51 - 12 F	96	3 7	79	7 (1 (393)							
SUBTOTALS AND TOTAL MALES FEMALES		K - 5 2865 2838	SCHOOL 7-9 1477 1446		4LL 5355 5779	EXITING H.S. GRAOS 231 220		AGE 65 AND A30VE 2552 2996	4GE And	35 130VE 130 235	TOTAL Popúla 241 254	81	

						·									
			ST.		ATILLA (STLAND,	OUNTY PROJECT UND	DERTAKEN			YE42 19	83				
	2342 245 A 2342 245 A	P.S		<u> </u>		POPULATI	ON TALL	Y BY SEX AND	AGE CRO	UP II YR AN	0 5 YR 4	SE COHORT	5)		
	DLD DN NEX BIRTHDAY A		1	2	3	÷	5	(5 YR)	6	7	3	9	13	(5 12)	
	4-3)-3) 4 1 - 12		450	475	~ 8J	478	482	(2375)	486	489	497	430	477	(2433)	
	1 . 1) F		463	473	463	491	484	(2390)	489	494	500	494	479	(2455)	- <u></u>
	4		431	429	453	439	427	(2179)	463	485	493	419	294	(2153)	
	11 - 20		474 _	415	435	. 409	448	(2131)	443	479	540	375	283	(2:25)	· · · · · · · · · · · · · · · · · · ·
	भ		36 -	193	315	357	351	(1525)	380	355	357	411	474	(1977)	
	21 - 33		299	30 %	323	325	344	(1596)	346	363	379	414	465	(1957)	
							_ .		· .						
	۳ 31 - 40		339	335	381	376	372	(1903)	367	362	358	353	348	(1733)	
	E		472	لولو لو	422	· 494	390	(2132)	379	371	366	363	362	(13+1)	
			342	- 344	330	307	232	[1607)	263	253	259	230	239	(1274)	· · · · · · · · · · · · · · · · · · ·
	F		363	367	356	336	320	(1742)	363	297	235	236	272	(1451)	
	ч		225_	_ 237	245	246	243	(1197)	_ 241	238	236	237	240	(11 92)	
	51 - 5J F		256	267	275	279	278	(1355)	273	278	276	27 3	2.69	(1374)	
•	н		241	241	233	235	227	(1193)	223	212	203	:92	180	(1307)	
	61 - 73 F	-	253	257	252	2+7	244	(1263)	239	234	227	219	210	(1129)	
			168	156	145	135	127	(731)	118	110	101	91	8C	(533)	
	71 - 33 F		201	198	145	135		(899)		· .				(611)	
	F			* ^ * *		· · · · · · · · · · · · · · · · · · ·									
-	4 91 - 95		72	59	51	+5	41	(266)				-			
	c	-	101	95	89	79	70	[434)	· · ·-						
	SUBTOTALS AND TOTAL			K-6	SC+001	10-12 ALL		EXITING H.S. GR405		AGE 65	AGE	35 43075	TOTAL Popula		
	AND TOTAL MALES FEMALE			8-6 3299 3343	1319 1292	14+1 ö5	59	223 223		2714 3295	AU0	211 224	256	14	
	14C= 			66+4		2903 121		456		6010			527		
															•
										. <u>-</u>				-	

									·			· ·	
	5171		MATILLA C Estland,		UNDERTAKEN	ł		YEAR 198	35 ·				
NU49ER OF PER- SONS #N# YRS				POPUL	ATION TALL	Y BY SEX AND	AGE GRO	UP (1 YR ANG	א איל ל	CE COHORTS	s)		······
OLD ON NEXT BIRTHOMY AS OF	1	2	3	-+	. 5	(5 YR)	6	7	8	9	10 ·	(5 YR)	
4-32-35 1	478	496	483	492	500	(2438)	507	523	527	526	530	(2613)	
1 ± 13		4 8 2	493	434	502	(2443)	511	 526	531	529	532	(2629)	.
ч	53 -	538	545	538	526	(2631)	479	477	. 500	364	269	(2037)	
11 - 23	_ 537	. 542	543		528	(2697)	522	•	483	342	231	(2091)	
								·					
21 - 33	301	719	332	373			363	358	375	415	410	(1922)	
e	295	317	359	343	353	(1662)	365	374	335 	333	-09 	(1923)	
4	439	414	417	470	531	(2271)	. 447	443	433	434 _	429	(2191)	
31 - 49	411	423	444	475	528	(2239)	535	50 5	435	467	453	(2448)	
			- 703	. 169	346		776		321	233	273	(1562)	
41 - 50 F	+24	303	382	352		(1912)	335 358	335	350	331	313	(1713)	
۴	442	414	295		207	(2021)		501	370	532	515	(1)12/	
	259	247	245	238	226	(1217)	213	222	228	229	223	(1114)	
5	30.2	291	293	278	264	(1425)	243	259 .	266	253	2 67	(1309)	
-	219	213	211	211	211	(1067)	210	207	203	195	1 85	(1034)	
61 - 73 F	266	265		- 253			247		- 233 -	227	222		
ч 71 - 33	. 179	170	153	1+8		(793)	125	113	192	93	84	(517)	- · · ·
· F	216	299	201	192	181	- (999)	171	16J		135	1 22	(736)	
۹	75	67	. 23	51	43	(235)							
81 - 95	109	95	85	77	70	(436)	-						
503131225			SCHCOL	• •••		EXITING		AGE 65	AGE	35	TOTAL		
445 TOTAL 445 TOTAL 44LES		K-6 3635	7-9	1ũ-12	4LL 5793	H.S. GRADS 215		AND ABOVE 2347	AND	1 ABOVE 238	POPULA 276	GR	
FEALES		37 3 3	1618	1463	679+	206		3551	•	212	294	69	
TOTAL		7393	3227	2924	13544	421		6398		450	579	97	

									· .						
			CT 1		MATILLA (UNDERTAKE	λ,		YEAR 19	90				
	NUNBER					_ · · - ·		· -		·					
	2042 44 2042 44	NE KT	. :	_	•			LY BY SEX 4ND							
	3IRT401 4-71-1			2	3	4	5	(5 YR)	6	7	8	. 9	10	(5 22)	
	1 13		473	437	495	534	519	(2474)	516	913	526	533	533	(2623)	
		F	483	441	493	536	514	(2433)	519	520	529	533	5-1	(2:-2)	
		ч	546	56?	565	565	568	(2907)	572	57ô	553	431	317	(2479)	
	11 - 23							(2326)					-	(2499)	
	-						·			······					
	21 - 30	4	293	295	314	312	315	(1530)	346	364	377	413	404	(1939)	
	21 - 56	۶	313	289	365	296	327	(1534)	335	362	434.	333	393	(1337)	
			·		· ·	···- ···									
	31 - 40	٦	630	403	420	460		(2146)	483	458	_ 460 _	512	572	(2435)	
		ç	410	413	439	435	453	(2146)	455	472	437	521	570	(2533)	
		ч	63G	479	465		435	(2323)	414		371	351	334	(1357)	
	41 - 50	F	377	544	515	497	462	(2545)	436	408	391	374	350	(1963)	
									•						
	51 - 63	۹.	323	321	316	2 13	253	_ [1491]	244	232	231	220	208	(11 35)	
		د	350	353	341	322	305	(1571)	293	281	230	2 ú 3	2 53	(1375)	
		ч	194	201	204	232	19ć	(997)	191	135	179	:7ć	174	(935)	
	_61 <u>-</u> 73		237	246	25 2	253			- 249	246	242	237	2 3 5	(1234)	
		·	201	2.0	271	270		1220 //		240		231	230	(1234)	
	71 - 33	м	175	165	160	152	142	(795)	133	123	113	192	91	(562)	
	• • - • • • • •	<u>.</u>	223	214	205	195	191	(1033)	183	174	165	154	141	(317)	
		ч	81	73	61	52	46	(307)							
•	91 - 95	E		_											
		· .						(525)							
	SUBTOT				SCHOOL			EXITING H.S. GRADS		AGE 65	AGE	35	TOTAL		
	440 TO 1316	3		3736	1699	1 3	1720	273 0		2834 3779	ANU	269	POPULAT 2909 3114	104	
	FEH				•							202 463		•	
-	1014	L		7493	3410	3415	14378	503	¢.	6613		459	6023	4	
										· •		×			
														-	

	STANE	UMA TELD-VEST	TILLA COU LAND, FUL	NTY L PROJEC	T PLUS AL	UMAX, PEBBLE	SPRINGS	¥E18 197	e				· .	
HAER OF PER-				POPULAT	ION TALLY	BY SEX AND	AGE GROUI	9 (1 Y R AND) 5 YR AGE	сонсят				
ED ON NEXT	1	2	3	•	5	(5 YR)	6	7	3	9	10 (1	5 12)		
4-33-73	338	335	359	345	333	(1711)	369	392	493	467		2255)		
1 - 1) F	381	321	341	314	353	(1710)	348	335	446	496	+17 (2002)		
		439	452	534	436	(2336)	541	501	433	421	3.67 (2319)		
4 11 - 23 _	456		472	447	476	(2254)	478	513	516	411	345 (22:50)	<u></u>	
- -	445	443	14 - F 2	•••		• `			- *	. .	240 (1245)	•	
ч	250	275	272	267	263	(1353)	258	254	249	2-4		1243)		
21 - 30 F	352	325	302	294	270	(1533)	2ć0	252	247	2+5	244 (12407		
	236	233	229	224	218	(1140)	212	207	236	214	227 (1066)		
4 31 - 40 F	235	235	250	247	241	(1232)	237	232	233	241	254 (1197)		
F	247	243					- • -		· · · · · · · · · · · · · · · · · · ·	270	276 (1340)		
ч	240	254	26+	2ó7	266	(1291)	265	254	265	270		1459)		
41 - 30 F	265	27 *	287	291	292	(1413)	293	29+	293	231				
4	231	285	287	236	282	(1421)	278	273	257	25 3	248 (1324)		-
51 - 53	284	279	275	272	270	(1333)	267	254	259	253	245 (12 33)		
F	204	2.,		-	·				132	171	153 (397)		
4	239	225	216	239	203	(1092)	196	190	152 - 165	 160		(844)		
61 - 73 F	238	230	221	210	199	(1095)	187	174	102	100	•.			
ч	1+6	133	123	117	114	. (633)	109	134	99	92		(439)		
71 - 30	196	154	. 151	. 144	136	(741)	127	119	111	132	93	(552)		
4 31 - 35	77	67	54	39	23									
31 - 35 F	ß4	74	65	55	46	(324)								
SUBTOTALS AND TOTAL MALES		K-6 2952	1442	10-12 4 1531	ALL 5935	EXITING H.S. GRADS 227 231		AGE 65 ANO ABOVE 2433 2735		85 130VE 155 244	TOTAL POPULATIO 22144 22779	N		- - r
FEMALES		2335	1371	1504	576) 11695	- 453		5133		399	+4723			
TOTIL		5347	2913	3 0 3 5 3	11697	477							•	

. .

	STANF	TELO-WES	ATILLA C Stlane, F		ECT PL	US A	LUHAX, PEBBLA	E SPRIN	YEAR 197 35	75				
NUMBER OF PER Song ini MP5				FOPUL	ATION	TALL	Y BY SEX IND	AGE GR	DUP (1 YR AND	5 YR 4	GE COHORT	\$1		
	i	2	3	4		5	(5 YR)	5	7	8	9	10	(5 12)	
4-3C+75 M	449	453	460	453		440	(2255)	354	392	415	431	389	(1591)	
1_+ 10	÷52	457	462	436		442	(2269)	436	377	397	371	- 410	(1991)	`
4	425	449	457	524		496	(2351)	512	494	507	419	305	(2237)	
11 - 23	495	448		4÷3		474 .	(2237)	497	503	504		301	(2179)	
	335	369	312	366		429	(1751)	343	339	335	331	326	(1874)	
21 - 30 F	33 3	320	336	371		422	(1752)	429	402	380	352	347	(1923)	
·	322	317		303		 303	(1563)	299	295	292	217	2 8 9	(1454)	
31 - 45 F	337	323	325	322		321	(1634)	322	325	325	_ 323	317	(1513)	
н	275	265		258		247	(1312)	234	247	256	259	2 57	(1253)	
41 - 5] F	313	302	362	291		277	(1435)	262	274	282	235	286	(1390)	
ч —	235 _	_ 254	253	_ 257		261	(1235)	265	267	267	264	259	_(1322)	
51 [°] - 6) [—] F	237	297	285	234		230	(1+2-)	276	270	265	252	259	(1332)	
~	253	247	239	229		218	(1185)	207	195	154	175	167	(323)	
51 - 73 F	255	251	246	239		231	(1222)	222	214	205	193	181	(1915)	
۲	159	152	143	132		120	(735)	103	97	37	30	75	(449)	
71 - 33	169	155_	_ 145	140		137	(743)	133	129	123	115	106	(1605)	
. ч	7 5	64	58	52		46	(293)							
*1 - 35 F	96	Ą 7	79	70		61	(393)							
SUBTOTALS AND TOTAL HALES FEMALES		K-6 2857 2833			4LL 5355 5779		EXITINS H.S. GR135 231 223		AGE 65 AND AROVE 2552 2996	AGE AND	35 ADD/E 130 235	TOTAL Popjl: 24: 25+	31	
TOTAL		5703	2917	3614 -	11634				5548		¥15	496	75	
							-							

	STANF		ATILLA CON TLANC, FUI		PLUS A	LUMAX, PEBBLE	SPRING	YEAR 198	30			-		
SCHS WHX YPS						Y BY SEX AND) 5 Y - AC	ECOHORT	5) -			
OLD ON NEXT BIRTHDLY LS OF	1	2	3	÷	5	(5 YR)	б	7	3	9	13	(5 YR)		
4-31+30 4	431	483	493	439	491	(2442)	496	499	507	500	487	(2439)	-	
<u>1 = 10</u> F	483	492	- 495 -	492	495	(2459)	499	504	509	533	4 8 9	(2534)		· ·
ч	441	430	4,62	449	437	(2223)	472	495	503	427	356	(2203)		
11 - 20	_ 434	429	4-5	. 418	457	(2229)	452	489	550	332	295	(2163)		
	200			7.7.6	202	11000		201	700					
4 21 - 30 F	329 316	325 325	355 329	378 344	392 363	(1806)	÷22 366	396 383	399 399	453 433	515 484	(2135) (2265)		
···· · · · · · · · · · · ·		32.5									+0+			
ч. 31 - 4]	+30	+2 ŝ	422	418	413	(2109)	409	404	399	344	390	(1995)		-
e e	491	4E4	441	423	429	(2223)	399	391	336	333	382	(1941)		
·	335	363	339	- 339 -	283	(1679)	268	258	259	250	2 3 9	(1274)		
41 - 5) F	392	372	360	. 338	320	(1772)	308	297	298	236	272	(1461)		
	20/		2	2.4		444673	24.4	27.1	276	- 77	37.0			
51 - 50 F	. 226	267				(1197)			236	237	240 269	(1192)		
F	256	207	275	279	273	(1355)	278	273	276	273	207	(13:4)		
э́1 73	241	241	239	235	227	(1133)	220	212	203	392	180	(1007)		
F	263	257	252	247	244	(1253)	239	234	227	219	210	(1129)		
ч	168	156	145	135	127	(731)	115	110	101	91	80	1 500)		
71 - 33 	201	192	181	169	156	(_399)		130	119	112	107	(611)		
ч	70	6.0	.			(267)			•					
.91 - 35		60	51	45	41								-	
		-												
SUBTOTALS AND TOTAL		<- 6	30+00L 7-9 13	1-12 ALL		EXITING H.S. GRADS		AGE 65 And Above	AGE And	85 460VE	TOTAL POPJLA			
HILET FEHÁLES		3369 3413	1343 1 1320 1	1473 51- 1491 622	37 24	232		2715 3297			266 278			
TOTAL								6012		435	545	01		

-													
			MATILLA C			ALUMAX, PEBBLE	SPRTNO	YEAR 198	35				
NUMBER OF PER-			31 LANG 1			LY BY SEX AND			15 ¥2 ≜	SE DOHORT			
SONS 202 YES DED ON NEKT BIRTHOLY 45 00		2	3	FU- 01	5	(5 42)	6	7	8	9 9	10	(5 (2)	
4-30-35	F 1	513	518	520			537	543	549	546	549	(2723)	-
1 - 13	521		523				542	543	551	5+8	552	(27-1)	
	-												
4 11 - 20	552	556	56 ↔				498	496	513	375	280	(2173)	
	550	561		_ 501	5-6	(2791)	541	432	502	356	293	(217+)	· · · · · · · · · · · · · · · · · · ·
. 4	319	741	357	÷0 2	2 3 9 9	(1815)	421	425	448	490	434	(2253)	
21 - 3) F	31 č	3 - 2	383	372	364	(1795)	405	415	428	433	452	(2:33)	
·			<u>-</u> . 491	 5+4	606	(2643)	521	517		528	 503	(2552)	
4 31 - 43 F	455	431	491				579	551	529	510	495	(2255)	
-	422		40 -	<i>.</i>		(2)077		***	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			122027	
	498	460	443	415	393	(2211)	376	353	329	239	273	(1533)	
41 - 53 F	445		423	399	6 389	(2140)	377	367	354	332	314	(1744)	·
· •	258	247	243	23	226	(1217)	213	222	_ 223	223	223	(1114)	
51 - 62 F	302	291	5ē0				248	259	266	258	2 67	(1303)	
					2		34.0	20.7	247		- <u></u>		
5173	219	215	211				210	207	203	: 76	188	(13:4)	
F	265	265	262	258	253	(1334)	247	239	233	227	2 2 2 2	(1158)	
ંગ	173	170	159	1+	3 137	(793)	125	113	102	93	84	(317)	
71 - 30	216				2 181	(999)	171	159	147	134	1 21	(732)	
ч	76	53	63	53	2 44	(300)							
31 - 35 F						(435)							
		-	v-										• • •••
SUBTOTALS AND TOTAL		K-6	SCHOOL 7-9	L 10-12	ALL	EXITING H.S. GRADS		AGE 65 And Above		85 130VE	TOTAL Populat		
HALES FEHALES		3931 3858	1665 1574	1512 1525	7 00 3 7 05 7	224 214	÷	ANO ABOVE 2853 3545		238 212	296 308		
T T T T T T T T			3339					6399		~50	605	37	

	STANI	U FIELD-WES	ATILLA (STLAND,	COUNTY FULL PROJEC	T PLUS A	ALUMAX, PEBBLE	SPRING	YEAR 199 S	10 <u>-</u>				
404359 DF 953- 3043 #4# 485						Y BY SEX AND) 5 YR 1	SETCCHORT	\$)		
OLD ON NEXT Birthday as of	i	2	3	•	5	(5 42)	6	7	3	÷	13	(5 YR)	
4-33-93 4	531	543	553	560	566	(2753)	563	563	565	573	5RC	(2347)	
.1 - 17	53 -	546	550	554	569	(2769)	571	567	573	573	584	(2363)	
۲	538	594	600	577	599	(2973)	603	615	613	454	334	(2613)	
11 - 23 	593	593	509	. <u></u> 603	603	(2997)	607	612	617	59	3 3 7	(2532)	
	311	31+	334	337	344	(1640)	382	434	420	404	451	(2131)	
21 - 30 F	337	309	333		364	(1667)	382	413	459	442	455	(2151)	
	- ·		•										
4 31 - 43	4 8 3	437	511		546	(2573)		549	551	503	663	(2940)	
	475	405	495	513	522	(2433)	524	541	556	533	639	(2650)	
	596	569	555	536	514	(2754)	486	448		*32	334	(2143)	
41 - 53 F	6+5	612	579	5+6	513	(2995)	478	437	416	332	3 9 1	(2104)	
4	352	339	. 315	235	259	(1563)	244	232	231	223	2 2 3	(1135)	
51 - 6) F	369	358	345		305	(1700)	293	291	280	253	253	(1375)	
••												(.	
51 <u>-</u> 73	194	201	264		196	(997)	191	185	179	237	230	(935)	
£	237	246	252	253	251	(1239)	249	245	242	231	2 30	(1204)	
4 71 - 33	173	165	160	152	142	(793)	133	123	113	162	91	(552)	
· · · · · · · · · · · · · · · · · · ·	223	214	206	199	191	(1033)	183	174	165	:54	142	(313)	
, 1	5 G	70	61	52	46	(309)							
31 - 95	130	113	105	93	81	(528)							
C1127 274 8		•	SCHCO			EXITING			 4GF	 35	 Tot:L		
SUBTOTELS And Totel Males		к-6 4631		10-12 AL	L 649	H.S. GRADS		AND AROVE		4 30VE 269	POPJLA 319		
FEMALES		4060	1305	1936 7	791	263		3753		213	335	513	
דסדגנ		3091	3601	3653 15	350	534		6617		+£3	554	.20	

		IORROW COUNTY Estland, Conse	RVATIVE DEV	ELOPHE	NT WID PROJ	ECT	YEAR 1978	° .				
NU4329 OF FER		P	T ROITALUSC	ALLY 3	Y SEX AND A	GE GROI	UP (1 YR AND	5 YR AGE	Ссоноят	5)		
BLO ON NEKT BIRIHDAY AS OF	1 2	3	+	5	(5 YR)	ċ	7	R	Э	:0	(5 12)	
4-30-78 1	28 35	20	+5	~1	(179)	3+	45	44	+d .	43	(215)	
_ 1 10	29 23	34	27	34	(147)	48	42	50	33	42	(220)	
4	4	49	47	49	(236)	51	61	52	32	25	(222)	
11 - 23 F	¥9	47	- -	50 <u></u>	(249)	. 52	53		35	17		
•	27 24	21	20	19	(111)	19	19	19	20	21	(33)	
21 - 30	14 17	19	21	23	(94)	24	2 4	24	25	24	(121)	
	22 24	25	25	25	(121)		24	23	24	25	(12)	
31 - 40 -	2- 24	23		25	(120)	25	27	27	27	25	(133)	
	26 27	28	27	26	(134)	25	2.4	23	24	24	(123)	
41 - 53 F	26 25	25			(127)	27	•	2 5	27	26	(136)	
Ч	25	_ 26	27	28	(131)	30	31	31	31	30	(153)	
51 - 60 F	24 23	22		25	(117)	27	23	30	29	27	(142)	
ч	29 24	27	25	23	(132)	21	19	17	17	17	(91)	
61 - 73 F	25 23		20	26	(139)	19	19	13	17	15	(39)	
ч.	17 17	16	16	15	(81)	14	. 13	12	11	9	(53)	
71 - 83		13		13	(68)	13	13	13	13	1?	_ (_ 64)	
ч	3 S	њ [.]	2	0	(20)							· .
31 - 35 F	12 · 11	13	8	6	(47)	• •						
		SCHOOL			TTTNG			49F 3		TOTEL	· · · · · · · · · · · · · · · · · · ·	
SUBTOTALS AND TOTAL HALES	K-6 307	SCHCƏL 7-9 10-12 145 164 160 157	4 61ô	н,	5. GRAOS 21 22	•	AGE 65 AND ABOVE 276 292		30VE 26 24	POPULAT 224 221	•9	<u> </u>

		-												
		STAN		DRROW COUNTY STLANG, CONSI		EVELO	PMENT W/O PRO.	VIECT	YEAR 197	75		-		
NUMRER 0 5045 244)= PEP						Y BY SEX AND A		UD 11 YR ANG	0 5 YR 1/	CE COHORI	<	·	
913104 N 9131434 N	NEXT NY 15 OF	1	2	3	4	5	(5 YR)	6	7	8	9	10	(5 YR)	
		- 73	- 70	67	59	56	(325)	51	58	53	6 3	 6'+	(29+)	
_ 1 _ 19		7	73		60	· 56	1 326)		46	57		57	(261)	
													÷	
11 - 23		57	63	67	71	68	(331)		70	72	52	41	(332)	
	. F	_ 71		73	61	65 _.	(335)	72	63			42	(311)	·
	ч :	48	6)	64	63	69	(304)	70	67	65	53	62	(327)	
21 - 30	£	48	54	65	64	58	(239)	54	57	60	52	53	(235)	
		 5:	· • 62	63	53	 64	(314)	£5	67	 63	63		(335)	
31 - 48		5-	55	65	65	65	(324)	- 65	- 67 64	54	65	57	(323)	
	·	0.			0,				. 07					
41 - 50	- <u>-</u>	67	59	43	36	31	(242)	26	27	27	25	25	(131)	······································
••••••	Ę	66	5 9	50	37	32	(244)	25	25	24	25	25	(124)	
	. 4	24	23	22	. 22	23	(114)	23	23	24	25	25	(121)	
51 - 60	 - F	26	27		26	25	(131)	24	22	21	22	•	(113)	
					, ,									
51 - 7J	N	27	21	23	28	27	(133)	25	24	23	21		(112)	
	F	26	23	29	28	26	(137)	24	22	20	19	13	(133)	••
71 - 33	ч	17	15	14	13	13	(72)	12	12	12	11	18	(57)	
	. <u>F</u>	17		1ò	15	14 _		13		11	11	10		
	ч	9	9	6	5	4	(32)	• -						
81 - 35		16	12	3	9	7	1 45)							
	· -		· . <u>-</u> ·				• • • • • • • • • • • • • • • • • • • •		i			<u> </u>	·	
2101 EUS 101 - CM	TAL		K-6	SCHGJL 7-9 10-1	12 ALL		EXITING H.S. GRADS		AGE 65 AND ABOVE	AGE E And A	1 2011-		TION	
9415 FE4/	ES ALES		419 397	20.6 20	109 334 105 801		3 C 3 3	·	300 300		27 22	357 352		
- TOTA			- 816	·· 405 - 41	14 1635		63		- <u></u> 606		49	709	99	······

	STANF	IECO-WEST	RROW COUN TLAND, CO	TY NSERVATIVE	DEVELO	PMENT W/O PRO	JECT	¥E4R 199	0				
404322 DF 5244		-	-	POPULATIO	N TALL	Y BY SEX AND	AGE GROU	IP (1 YR AND	5 YR 10	Е ССНОКТ	5)		
OLD DY NEKT Hirthday AS OF	1	2	3	4	5	(5 YR)	5	7	3	9	10	(5 12)	
4-3]-3] 4	82	84	84	34	84	(413)	83	81	77	69	67	(377)	
. 1 <u>-</u> 13	· 53	84	- 85	85	35	(423)	85	51	76	73	67	(379)	
ч	61	63	64	7 ŝ	74	(345)	. 68	73	77	ō1	44	(323)	
11 - 23 F		57	63 _	61	63	(316)		76	84	54	43	(339)	
-													
21 - 33	45	43 45	55	59 63	65 6C	(272) (263)	71 66	84 72	58 33	35 32	92 75	(421) (379)	
۰ ۰۰۰۰ ه.	49 									·			
* 31 - +3	ō?	90	83	36	8 E	(443)	85	85	36	36	57	(429)	
F	72	75	75	ðû	81	(385)	82	82	83	33	. 83	(413)	
	- sa -	83	86	79	72	(413)		57	47	34	30	(233)	
41 - 50 -	92	5 S	77	73	70	(332)	65	53	49	35	31	(237)	
ч	25	25	26	. 25	24	(125)	23	22	2:	21	21	(103)	
51 - 50	25	24	24	24	25	(122)	25	26	26	25	24	(125)	
									_				
9 1 - 73	21 23	21 21	21	22 	23 	(103) 	23	24	24 	23 25	22 	(115)	
-	23	21	20	21	23	(105)	24	20	21	29	23	(1257	
4	21	20	13	16	15	(90)			10			(52)	
······ ··· ···	21		18	16	16 _	(90)	15		13	12	16	(_64)	
ુ પ	3	9	7	6	5	(34)	•••						
81 - 15 F	s .	3	7	6	6	(3ō)							
SUBTOTALS	<u></u>	-	SCHOOL			EXITING		 AGE 65	4.GE		TOTAL		
44LE5		K-6 5[6		J-12 ALL 223 0		H.S. GRAOS 34		AND-ABOVE 324 336	AND	ABOVE 31 21	PORULA 43 42	44	

1 - 10 = 72 - 73 - 75 - 73 - 82 - 1379 - 84 - 85 - 87 - 45 - 37 - (429)	4-33-35 1	75	72	75	77	81	(375)	83	85	85	\$5	35	(423)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 F	70	73	75	73	82	(379)	84	85	87	35	57	(429)		
$F = \frac{35}{1} = \frac{35}{1} = \frac{37}{1} = \frac{77}{1} = \frac{71}{1} = \frac{68}{1} = \frac{334}{1} = \frac{63}{1} = \frac{54}{1} = \frac{69}{1} = \frac{39}{1} = \frac{275}{1} = \frac{275}{1} = \frac{77}{1} = \frac{71}{1} = \frac{68}{1} = \frac{277}{1} = \frac{48}{1} = \frac{53}{1} = \frac{51}{1} = \frac{49}{1} = \frac$	4 - 70	85	82	78	70	63	(393)	63	70	65	63	42	(300)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		_ 86	82	77	71	_ 68_	(394)	63	58	<u> </u>	+6	39	(275)	·	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			•6	46											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ج 	47 	44 	49 	÷2	45 	(227)	50	47	54	£ö 	6?	(273)	· · · · · · · · · · · · · · · · · · ·	
$ = \frac{1}{60} 74 85 84 78 (390) 74 77 80 82 83 (395) $ $ = \frac{1}{50} 75 85 87 87 86 86 (434) 86 86 84 77 75 (433) 81 79 75 71 69 (375) 71 69 71 69 71 69 71 69 71 69 71 69 71 69 71 71 69 71 71 71 71 71 71 71 7$	4 - 49	74	87	91	39 .	95	(436)	. 96	93	91	. 89	85	(457)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	=	60	76	85	44	78	(390)	_ 74	77	80	82	83	(395)	-	
F 54 84 84 84 83 63 (413) 81 79 76 71 69 (375) 4 63 55 45 33 29 (225) 23 24 24 23 22 (116) 5 64 57 43 35 36 (234) 24 23 23 23 24 23 23 24 (117) - 64 57 43 35 36 (234) 24 23 23 23 24 (117) - 70 ϵ 21 20 19 13 13 13 13 19 (91) - 70 ϵ 21 25 25 24 23 (121) 21 20 19 20 21 (131) - 70 ϵ 22 23 23 24 23 13 11 10 63) - 70 ϵ 22 23 23 24 23 <t< td=""><td>- 50</td><td>5 5 </td><td>37</td><td>87</td><td>36</td><td>66</td><td>(434)</td><td>86</td><td>36</td><td>3+</td><td> 77</td><td>70</td><td>{ 4 3 3 }</td><td></td><td></td></t<>	- 50	5 5	37	87	36	66	(434)	86	36	3+	77	70	{ 4 3 3 }		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ð 4	84	8-	83	83	(413)	81	79	76	71	69	(375)		
F 64 57 43 35 36 (234) 24 23 23 23 23 24 (117) N 21 20 19 15 18 (96) 13 11 10 13 11 10 13 11 11 10 13 11 11 12 (13) 11 10 13 11 11 10 13 11 12 (273) $= 30$ $=$ 7 5 4 (23) 23 22 23 23 22 23	- 4	63 _	55		33	_ 29		23	24	24	23	22	(116)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		64	57	43	35	30	(234)	24	23	23	23	24	(117)		
= 24 25 25 24 23 (121) 21 20 19 23 21 (131) $= 19 19 19 18 17 (92) 15 14 13 11 10 (63)$ $= 22 23 23 22 20 (110) 18 16 14 13 12 (73)$ $= 35 7 5 4 4 (23)$ $= 35 F 11 10 9 8 7 (45)$ $= 35 F 11 10 9 8 7 (45)$	- 79	21				18	(9ō)	18	13	13	15	19	(91)		
- 30 - 22 23 23 22 20 (110) <u>18</u> 16 <u>14</u> 13 <u>12 (73)</u> - 35 F <u>11</u> 10 9 5 7 (45) JATOTALS <u>3CHOL</u> EXITING AGE 65 AGE 35 TOTAL	F	24	25	25	24	23	(121)	21	50	19	20	2:	(131)		
F 22 23 23 22 26 (116) 18 16 14 13 12 (73) 4 8 7 5 4 (23) - 35 F 11 10 9 8 7 (45) VI370T4LS 3CHCOL EXITING AGE 65 AGE 35 TOTAL	4 - 30														•
- 35 F 11 10 9 5 7 (45) JATOTALS 3CHOOL EXITING AGE 65 AGE 35 TOTAL	<u>E.</u>	22	23	23	. 22	20	(_110)	18	16	14	13	12	(73)		
WAYDIALS SCHOOL EXITING AGE 65 AGE 35 TOTAL		5	7	÷				-							
	F	11	10	9	S	7	(45)						· - ····		
			K-ò		-12 ALL		EXITING H.S. GRADS		AND ABOVE		ABOVE	POPULA			
ALES 540 216 198 1004: 30 308 35 4471 FENALES 597 216 190 1003 28 348 20 4373															

,

					-										
	STANF	YOR TELD-VEST	ROW COUNTY	V SERVATIVE DE	EVELO	PHENT I	1/0 PRO.		YEAR 199	10					
NUNBER DE PER Sons 24% ARS				POPULATION					2 (1 YR ANT	J 5 YR AC	JE COHORT	s)			
DLD DR NEYT BIRTHDAY AS OF	1	z	3	4	5		YR)	6	7	3	9	10	(5 42)		
4-10-31								ب د ع		-	75				
1 - 10	59	60. 	62	63 	67		311)	69	71	74		79	(369)		
F	59	61	62	64	66	(3	121	69	72	75	77	30	(373)		
4	52	84	84	34	84		418)	83	81	77	52	37	(330)		
11 - 25 F		34		35	85	t 2	+231	85	81	7ő	53	38	(333)		
		~	• • • • •			•==									
4 21 - 33	35	4 J	37	46	44	(2)	.021	41	47	÷7	50	49	(234)		
21 - 33 F	35	3 2	33	34	38	t 1	177)	46	42	÷3	+1	44	(221)		
															
4. 31 - 43	. 50	53	60	64.	69		296)	76	83	92	90	95	(442)	-	
Ŧ	49	45	53	54	61	(2)	2731	67	73	34	85	76	(332)		
		93	93		- 36 -	((4543		85		34	52	(+22)		
+1 - 50 F					82		3391	83	83	33	32	ô1	(412)		
.	73	7 ö	78	30	82	ن ا.	341	, 0	.	35	92	91	1 4101		
	. 82	82		73	66	(3	.84) _	_ 59	51	42	30	25	(205)		
51 - 53 F	79	77	7:₊	76	67		367)	62	55	45	34	23	(225)		
ч 61 - 73	21	22	21	21	19	(1)	104)	18	- 17	16	15	15	(31)		
	23	22	22	22	22	~ ('1	111)	23	23	23	22	21	(112)		
	15		• 1.	. 14	14	,	72)	. 14	14	13	12	11	(64)		-
4 71 - 89	15		14									•			
- F	19	17	···· 1/	_ 17	. 18		351	¹ y	19	19		15	(_91)		
. ч	10	9	8	7	4	t	381								
91 - 35 F	13	11	9	8	7	ť	431								
								· ·					• .••••••••••••••••••••••••••••••••••••		
SUBTOTALS AND TOTAL		K - E	SCFCOL 7-9 16	-12 ALL 241 1028 242 1038		EXITIN H.S. (.G 19405	Δ. /	AGE 55 AND ABOVE	ANO A	35 A 3C √E	TOTAL POPULA	ATION		
44155 FEMALES	•	535	252	241 1023			32		292		33 19	44	- 65 355		

_

				RROW COUN Stland, P	NTY PROJECT UNDEF	TAKEN	4		YEAR 197	70				
	NUMBER OF PER		· . ·		POPULATIO:	I TALL	Y BY SEX AND	4GE GRO	UP (1 YR AND	D S YR ÁG	GE COHORTS	; ;		
		1 .	2	3	4	5	(5 YR)	6	7	8	9	1)	(5 YR)	
	· · · · · · · · · · · · · · · · · · ·	2 5	35	30	+5	41	(179)	34		4 4	÷3	45	(215)	
	F .	29	23	34	27	24	(147)	48	42	53	33	÷2	(22))	-
	4 - 23	"	47	49	47	49	(236)	51	61	52	32		(222)	
		4°	40	<u> </u>	63	50 [°]	(2+9)	52	50:		35	1717	(233)	
	4	27	24	21	20	19	(111)	19	19	19	2 0	2:	(53)	
	21 - 33 F	14	17	19	21	23	(94)	24	24	24	25	24	(121)	
		27	24	25	25	25	(121)	24	24	23	24	25	(120)	
	31 - →0 =	2-	24	23	24	25	(123)	26	27	27	27	26	(133)	
	· · · · · · · · · · · · · · · · · · ·	25	27	23	27	26	(134)	25	24	23	2÷	24	(123)	 •
•	41 - 50 F	25	25	25	2 5	26	(127)	27	23	23	27	25	(135)	
		23		25	27	. 28	(131)	. 30		31	31	3û	(153)_	
	51 - 62	24	23	22	23	25	(117)	27	29	30	29	27	(142)	
•	4	29	23	27	25	23	(132)	21	19	17	17	17	. (31)	. ·
	E .	25	23	1 21	20	20	(109)	19	19	18	17	16	(39)	
•	1 71 - 71	17	17	. 16	16	15	(81)	14	13	12	_ 11	9	(59)	
		15	_ 14	13	13	13	(63)	13	13	13	13	12	(_ō4)	
	4 81 ~ 35	5	5	4	2	0	(20)							
·	71 * 37 F	12	11	10	8	6	(47)							
	SUBTOTALS AND TOTAL MALES TEMALES		X-6 327 309	SCHOOL 7-9 1 145 160	10-12 ALL 154 516 157 523		EXITING H.S. GRADS 21 22		AGE 65 AND ABOVE 276 292	AGE A NO	35 A 30 VE 26 24			- 122
		<u>.</u>			321 1242		43		568	<u>.</u>	50	44	65	 ·
	·													

•

			RROW COUN STLAND, P		ERTAKEN	1		¥£49 197	75				
NUMBER OF PERM _ Sons ini tes Slo on nekt				POPULATI	ON TALL	Y BY SEX AND	AGE GRO	UP (1 YR ANE	5 YR AG	E COHORT	5)		
1274047 AS OF 4-31-75		z	3	tę.	5	(5 YR)	ô	7	9	9	10	(5 YR)	
4 4 - 12	73	71	ÉS	59	56	(325)	51	55	53	5 B	ō4	(234)	
1 <u>.</u> 10	7 +	70	67	50	56	(327)	51	4ō	57	50	57	(25:)	
۲.	57	69	67	71	68	(331)	67	73	72	52	.41	(332)	
	71		73	_ 51		(335)	72		70	54	42	(311)	
· · · · ·	48	60	6→	63	69	(30%)	70	67	65	53	62	(327)	
1 - 33 F	43	54	65	64	58	(233)	54	53	60	62	63	(297)	
ч	£ 2	62	63	53	64	(314)	66	67	68	. 68	. 63	(337)	
1 - 43 F	64	65	65	65	65	(324)	65	64	64	65	65	(323)	
ч т	67	59	49	36	32	(243)	20	27 -	27	25	25	(: 31)	
1 - 53 F	65	59	50	37	- 32	(244)	25	25	24	25	25	(124)	
¥	_24	23	22	22	_ 23	(114)	23	23	24	25	25	(121)	
1 - 5) F.	26	27	27	26	25	(131)	24	<u>5</u> 5	21	22	24	(113)	
я	27	23	23	23	27	(133)	25	24	23	21	19	(112)	
1 - 7) F	26	29	2:3	23	26	(137)	24	22	20	19	18	(153)	
ч	17	15	14	13	13	(72)	12	12	12	11	10	(57)	
1 - 30 _ F _	17		_ 15	15	14		13		11	11	10	(57)	[.]
. 4	э	9,	ó	. 5	4	(32)							
1 - 35 F	19	10	Э	9	7	(45)					-		
 SUATOT465			SCHCOL	-		EXITING		AGE 65	AGE		TOTAL		
AND IDTAL HALES FERALES		K-8 419 397	7-9 13 206 199	239 3		H.S. GRADS 31 33		AND ABOVE 300 306	4 N U	ABOVE 27 22	POPULAT 353 352	51	
- TJTAL		816	405			64		606		49	713		

- -

-

	н 11 - 23 F	60 62	67	65	77 [°] 59		(339)	-	77	75 82	50 52	41	(321)	
	9 21 - 30 	45 	45 41 87	51 43 	55 59 	61 56 82	(254) (249) (426)	67 62 82	90 	34 79 	32 73 	39 72 	(432) (353) (413)	 ·
	31 - +3 F 4	53	71	74 	76 79	77	(365)	73	79	79 	79' 35	79	(394)	
	41 - 5) F 51 + 50	7 d		75	73 25	75	(375)		58 22	49 21	36 21	31 21	(239)	
	- 	25	24 21 	2+ 21 20	24 22 21	25	(122) (103)	25 23 	26 24 ² 26	26 24 27	25 23 	24	(125) (115) (123)	
	71 - 37	21	20	13	16	15	(90)	13	11	10	8			 -
•	4 81 - 35 -	7			5 6	6	(29)							

	574		DRROW COU Estland,	NTY PROJECT UN	DERTAKEN			¥E49 198	15				
NU43ER OF PEP		a		-		Y BY SEX AND	AGE GROU	P (1 YR 4NC) 5 YR AG	ECCHORT	s)		· · · · · · · · · · · · · · · · · · ·
	1	2	3	*	5	(5 13)	6	7	3	ð	13	(5 YR)	
······································	71	73	75	77	ЗC	(377)	8:	8.4	35	37	87	(424)	
e e	72	74	76	77	30	(379)	83	85	37	37	37	(423)	• •
4	85	83	75	71	69	(386)	_ 63	70	65	÷3	43	(3)1)	:
	_ 95			72	69	(319)	63		69				
	40	ц7	49	52	51	(239)	51	54	59	63	67	(235)	
21 - 33 -	47	45	51	÷6	<i>4</i> 9	(233)	52	49	55	66	63	(237)	
·····	73	83	92		97	(443)		_ 94	92	91	90	(465)	
31 - 43 F	÷9	75	.68	34	79	(393)	75	78	81	. 32	54	(400)	· .
+ 41.• 50	35	89	··- 87	34	63	(431)	83	34	33	77 -	78	(3 97)	···· ···
41.7 99 F	55	54	83	30	79	(411)	77	77	75	72	69	(373)	
51 - 50	. 53		45	33	29	(225)	23	24	24	53	22	(_115)	·····
71 * 5U F	64	57	43	35	30	(234)	24	23	23	23	24	(117)	
4	21	20	19	13	13	(95)	16	13	18	13	19	(91)	
51+_73F	24	25	25	24	23	(121)	21	20	19	20	21	(151)	
y 71 - 33	19	19	. 19	13	17	(92)	15	14	13	11		(63)	
	22	23	23	22	20	(110)	13	16	14	1313	12	(73)	
ч • в1 - ч5	Ġ	7	5	4	4	(29)							
ور - ۲۵ ۲	11	10	9	8	6	{ 44 }	· .						
SURTOTALS AND TOTAL 44253 FEMALES		K-6 592 530	SCHCƏL 7-9 213 220	10-12 AL 193 1	L J23 0J8	EXITING H.S. GRADS 31 28		AGE 65 AND ABOVE 309 347	4 GE A ND	35 430VE 35 20	TOTAL Populat 450 439	5	
TOTAL	• •• . •	1190	43 9	333 ~ 2	016	59 [`]		656		- 55	389)ų — — — — — — — — — — — — — — — — — — —	

•

					COUNTY SLOPG + GAALIZE	ECT UNDERT	IAKEN	J		YEAR 199	.0					
	3015 214				- · · Pr	JPULATION	TALL	A BY SEX AND A	AGE GROUP	- (1 YR AND	J 5 YR AC	JE COHORT	5)			
	3151435A	Y AS OF	1	2	3	4	5	(5 43)	6	7	5	9	15	(5 YZ)		
	•-32-9	ч	61	63	ó+	55	63	(321)	70	73	75	75	73	(273)		
	1 1)		62	63	65	57	69	(325)	71	7+	75	77	79	(375)	• • •	
	·	ч	81	84	85	86	86	(422)	84	43	77	52	33	(33-)		
-	11 - 25	· · · · · ·	82			36	86	1 4247	85		73	53	33	(_337) _		
		٩	36	41	3 ə	43	46	(213)	43	51	52	56	55	(257)		
	21 - 33	F	35	3 ?	39	35	39	(181)	48	45	52	+6	49	(242)		
•	·			57	63	67	72	(313)	79	91	95	93	 99	(457)		-
	31 - 40		52	4 Đ	55	65	63	(285)	69			. 34		(392)		
		<u></u>	100	95		90	8 _. 8	(466)	e7	95 ·	34	32		(419)		
	41 - 30	F	75	79	80	82	83	(393)	83	33	32	79	77	(404)		
		Ч	3 C	81		73	_ 66	(_379)		51	+2	30	27	(2:7)		
	51 - 53	F	75	75	73	70	67	(351)		. 55	46	34	29	(225)		
		ч	21	22	21	21	19	(104)	18	17	15	15	15	(31)		
	61 <u>-</u> 73	F	23	22	22	22	22	(~111)	23	23	23	22	21	(112)		
		۲	15	15	14	14	14	(72)	. 14	. 14	13	12	11	(54)		
	71 - 33	۴	19.	17	17	17	13	(33)	19	13	19		16	[_91)	···	
		ч	15	9	3	6	4	(37)								
•	51 - 35	£	13	11	3	ō	7	(48)								•
	- SUBTOTA AND TOT AALE FENA	TAL ES		K-6 538 542	SCHCOL 7-9 1J-12 257 244 253 246	4 1039		EXITING H.S. GRADS 32 32	À	AGE 65 AND ABOVE 291 357	4GE 4ND	35 430VE 38 19	TOTAL PJPJLAT 455 441	55		
	TOTA	 ۱		1030	515 493	2385		64		643		57	897	/3	· ·	
															_	

.

.

5045 X17 313 34 4	EKT						A DAA XEX AND A							
3IPT+014 4-33-7		1	2	3	÷	5	(5 YR)	6	7	3	9	10	(5 12)	
1_= .10_	4	28	35	30	45	41	(179)	34	45	لو تو	÷ 5	45	(216)	
	F	29	2 !	34	27	34	(147)	48	42	50	3 3	42	(223)	
1: - 2]	· •	44	47	43	4 7	49	(236)	51	51	52	32	-25	(222)	
1. - 2.	۶	. 49	40		53	5î	(249)	52	53		35_	17		
	ч	27	. 24	21	20	19	(111)	19	- 19	19	20	21	(93)	
21 - 30	F	14	17	19	21	23	(94)	24	24	24	25	24	(121)	
	 4	7 2 7 2	24	 25	25	25	(121)	24	24	23	24		(123)	
31 - 40	£	2 -	2 -	23	24	25	(120)	26	27	27	27	26	(133)	
		25	27	23	27	26	(134)	25	24	23	24	24		
41 - 50	-	26	25	25	25	26	(127)	27	23	23	27	26	(136)	
	-	20	23	23	29	20	(127)	27	23	23	21	20	(739)	
51 - 53	ч.,	25	25	26	27	23	(131)	30		_ 31	31	30	(153)	
J	F	24	2 3	22	23	25	(117)	27	29	30	29	27	(142)	
	٩	29	28	27	25	23	(132)	21	19	17	17	17	(91)	
51 - 73	F	25	27	21	20	20	(109)	19	19	18	17	16	(39)	
	ч	17	17	16	16	15	(81)	14	13	12	11	5	(59)	
71 - 90	F		11	13			(69)			13	13	12	(_54)	
	٦	3	6 ⁻	i4	2	0	(20)							
31 - 95	r F	12	11	19	8	5								
• •				•	<u> </u>			· • • • • · · ·					···· <u>····</u> ·	
5037073. AND TOT- MALE. FEMAI	1 3		K-6 3 J 7 3 0 0	SCrCOL 7-9 10-1 145 16 160 15	516	•	EKITING H.S. GRADS 21 22	• •	AGE 65 AND ABOVE 276 292	AGE AND	35 130VE 26 24	TCT4L POPULA 22 22	49	
·- 1014									569		50			

·

2042 14	125	·	*		POPULATION	TALLI	Y BY SEX AND	AGE GRO	UP (1 YR AND	5 YR A(SE COHORT	3)			••
010 04 45 BIRTH014 +-30-75	AS OF	1	2	3	÷	5	(5 YR)	6	7	8	9	10	(5 YR)		~
	, .H	73	71	65	59	56	(325)	51	53	53	63	64	(294)		
	F	74	73	67	50	~ 56`	(327)	51	46	5.7	50	57	(261)		
11 - 22	ч	57	63	67	71	68	(331)	£7	70	72	52	~1	(302)		
	<u>د</u>	71		73	61	_ 65	(335)	72	63	70	64		(311)	· · · · · ·	
-	મ	4 9	65	64	63	69	(304)	70	67	65	. 63	- 62	(327)		
21 - 30	F	48	54	65	54	50	(239)	54	57	6 C	62	53	(296)		
-	4	52 52	62		53	 64		£6	67	63	 63	67	(336)		
31 - 43	F _	64	_ 65	65	65	65	(324)	65	64	64	65	63	(323)		
	н	67		43	36	~ 32 [·]	(243)	26	27	27	2ó	25	(131)		
41 - 53	F	6ć	59	50	37	32	(244)	25	25	24	25	25	(124)		
	4	24	23	.22		23	(114)	23	23	24	25	25	(121)		
51 - 60	F	Zé	27	27	26	25	(131)	- 24	22	21	22	24	(113)		
	н	27	23	23	23	27	(133)	25	- 24	23	21	- 19	(112)		
.51 - 73	F	26	23;	29	28	26	(137)	24	22	20	19	19	(103)		
	4	17	15	14	13	13	(72)	12	12	12	11	10	(57)		
71 - 90	F		17		15			13	12	11		•	(57)		
	4	ò	f	6	5	4	(32)								
41 - 35	F	10	1)	9	9	7	(45)								
SUBIDIA AND TOTA MALES FEMAL	5 5		K-6 -19 397	SCFOOL	.J-12 4LL 209 934 205 901		EXITING H.S. GR40S 31 33		AGE 65 AND ABOVE 300 306	AGE AND		TOT:L POPUL: 35	30		
- TOTA:			816	405	414 1635				606			71	91		

•

.

. .

	2043 1411 2043 1411	* PE 2				- POPULA	TION TAL	LY BY	SEX AND	AGE GRO	UP (1 YR A	ND 5 YR A	GE COHORT	5)			· ·
	51214314	S OF		z	3	•	5		5 YR)	6	7	8	9	10	(5 YR)		-
	÷-3]-3	4	39	ë c	٩ð	43	66	(4441	86	84	79	72	7:	(391)		
	<u>, 1° -</u> 13 ,	F	89	91	- 91	39	88		443) —	87	94	80	73	72	(394)	-	
•		۹	54	71	66	31	77	ć	359)	70	31	80	63	45	(343)		
	1: - 2)	F	54	59	73		70		326)		73	36	56	46	(345)		···· ·
		4	53	51	£7	71	77	ť	323)	84	95	100	33	105	(+3+)		
	21 - 33	c	50	40	57	69	óć		231)			. 39	37	82	(435)		
	• •		· · · · · ·	• •• •••••••••••••••••••••••••••••••••						·						· - · · · · · · · · · · · · · · · · · ·	• • • • • • • • •
	31 - 43		: 3 à	103	101	99	98		507)	9.8		93	99	100	(493)		:
		ş.	7 3	81	8÷	36	87		415)	85	83		_ 39	59	(443)		
	41 - 53	ч	101	. 95	92		73	(440) -	65	57	47	35	35	(234)	<u></u>	
		F	55	85	68	. 73	76	¢	3961	· 65	53	49	36	31	(233)		
	51 - 50	۹	25.	_ 25	25	25	24	(125)	23	22		21	21	(103)		
		÷	25	24	24	24	25	¢,	122)	25	26	26	25	24	(126)		
		ч	21	21	21	22	23	ť	103)	23	24	24	23	22	(115)		
	.51 70	F	23	21	23						26	27	25		- (125)		
			24						00.1					-			
	71 - 83	F		20	•										(52)		
	-	F									· · · · · · · · · · · · · · · · · · ·		* -				
	· 91 - 35	4	7	7	ຣັ	-		(
		F	10	9	S .	7	6	(40)								
	SURFOTAL And Tota Males Femal	1 <u>-</u>		K-5 526 517		10-12 A 231	LL 931 963	н.5.	ING GRAOS 35 35		AGE 65 AND 430VE 313 341		85 42072 31 21		TI DN 74 66		į
	- TOT4L		····			- 479	1949		70		659		52		30		
											· -				•		

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		STAN	HC FIELO-MES	DRROW COUR	NTY ULL PROJE	LCT PLUS	ALUMAX, PEOBLE	E SPRINGS	YZAR 198	85					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2042 X4X YES				- POPULA	TION TAL	LY BY SEX AND	AGE GROU	P (1 YR AN	0 5 YR AC	GE COHORT	5)		· ······ · ·	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BIRTHOLY AS OF	1	2	3	4	5	(5 42)	6	7	3	9	13	(5 १२)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ч .	79	81	84	36	89	(419)	92	91	92	30	91	(455)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5 C _			36	90	(423)	92	93			91	(460)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	20	87	F 2	75	70	(405)	67	7.5	50	63	5 E	(710)	•	
$21 - 33 = \frac{4}{5} + \frac{42}{55} + \frac{52}{55} + \frac{52}{56} + \frac{59}{52} + \frac{259}{56} + \frac{53}{57} + \frac{71}{55} + \frac{80}{57} + \frac{94}{55} + \frac{50}{77} + \frac{3331}{74} + \frac{110}{74} + \frac{110}{75} + \frac{110}{74} + \frac{110}{74} + \frac{110}{75} + \frac{110}{74} + \frac{110}{74} + \frac{110}{75} + \frac{110}{77} + \frac{110}{77} + \frac{110}{77} + \frac{110}{75} + \frac{110}{77} + 11$	11 - 23														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.3					°'		· ''			(2 9 9 9		
F = 50 + 43 + 55 + 49 + 52 + (254) + 58 + 57 + 65 + 77 + 74 + (331) $F = -3 + 66 + 109 + 113 + 111 + 117 + (546) + 113 + 115 + 113 + 111 + 110 + (567)$ $F = 81 + 85 + 97 + 95 + 89 + (447) + 86 + 39 + 91 + 93 + 94 + (453)$ $F = 57 + 95 + 94 + 93 + 90 + 89 + (447) + 86 + 39 + 91 + 93 + 94 + (453)$ $F = 57 + 95 + 94 + 93 + 90 + 89 + (447) + 87 + 87 + 77 + 79 + (427) + (427) + (417) + 110 + (102 + (532) + 99 + 94 + 87 + 77 + 79 + (427) + (427) + (417) + 110 + (102 + (532) + 99 + 94 + 87 + 77 + 79 + (427) + (427) + (417) + (417 + 104 + 102 + (532) + 99 + 94 + 87 + 77 + 79 + (427) + (427) + (417) + (417 + 104 + 102 + (532) + 99 + 94 + 87 + 77 + 79 + (427) + (427) + (417) + (417 + 113) + (117) + (417 + 113) + (117) + (417 + 113) + (117) + (417 + 113) +$	4 21 - 31	42	5 û	52	56	59	(259)	63	71	80	54	90	(338)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21 - JJ F	50	43	55	49	. 52	(254)	58	57	65	77	74	(331)	、	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		çõ	169	113	111	117	(546)	113	115	113	11:	110	(567)		
41 - 50 = F = 95 = 94 = 93 = 90 = 89 = (451) = 87 = 33 = 79 = 72 = 69 = (359) $51 - 50 = 64 = 57 = 43 = 35 = 35 = 33 = 29 = (225) = 23 = 24 = 23 = 22 = (115) =$		80	85	97	95	89	8 447)	86	39	91	93	94	(453)		
41 - 51 = 51 = 53 = 55 = 5 = 5 = 33 = 29 = (225) = 23 = 24 = 24 = 23 = 22 = (115) = 51 = 51 = 64 = 57 = 43 = 35 = 30 = (234) = 24 = 23 = 23 = 24 = (115) = 51 = 51 = 64 = 57 = 43 = 35 = 30 = (234) = 24 = 23 = 23 = 23 = 24 = (117) = 24 = 23 = 23 = 24 = (117) = 24 = 23 = 23 = 24 = (117) = 24 = 23 = 23 = 24 = (117) = 24 = 23 = 23 = 24 = (117) = 24 = 23 = 23 = 24 = (117) = 24 = 23 = 24 = (117) = 24 = 23 = 24 = (117) = 24 = 23 = 24 = (117) = 24 = 23 = 24 = (117) = 24 = 24 = 23 = (121) = 24 = 23 = 24 = (117) = 24 = 23 = 24 = (117) = 24 = 23 = 24 = (117) = 24 = 24 = 23 = (121) = 24 = 24 = 23 = (121) = 24 = 24 = 23 = (121) = 24 = 24 = 24 = 23 = (121) = 24 = 24 = 24 = 24 = 24 = 24 = 24 = 2		110	169	167	104	162	(532)		9.	37			(427)		
51 - 53 = 53 = 55 + 5 = 33 = 29 = (225) = 23 = 24 = 24 = 23 = 22 = (115) =			-												
51 - 53 = 54 57 43 35 30 (234) 24 23 23 23 24 (117) $61 - 7) = 4 21 23 13 18 18 (96) 18 18 15 18 19 (91)$ $61 - 7) = 24 25 25 24 23 (121) 21 20 19 23 21 (131)$ $71 - 30 = 4 19 19 13 18 17 (92) 15 14 13 11 16 (63)$ $71 - 30 = 22 23 23 22 20 (110) 13 16 16 14 13 12 (73)$				_					•	2.					
$61 - 73 = \frac{4}{5} = \frac{21}{25} = \frac{23}{25} = \frac{13}{25} = \frac{18}{25} = \frac{18}{25$															• • •
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	£	54	57	43	35	30	(234)	24	23	23	23	24	(117)		
F = 24 = 25 = 25 = 24 = 23 = (121) = 21 = 23 = 19 = 23 = 21 = (131) $4 = 19 = 19 = 13 = 13 = 17 = (92) = 15 = 14 = 13 = 11 = 16 = (63)$ $71 = 33 = 5 = 22 = 23 = 23 = 23 = 22 = 20 = (110) = 13 = 16 = 14 = 13 = 12 = (73) = 14$ $4 = 3 = 7 = 5 = 4 = 4 = (29)$	-	21	2 3	13	18	18	(96)	18	18	15	13	19	(91)		
71 - 30 $F_{$	61 - 'J F	24	25	25	24	23	(121)	21	2 រ	19	23	21	(131)		
71 - 30 F = 22 23 23 22 20 (110) 13 16 14 13 12 (73) 4 3 7 5 4 4 (29)	ч	19	19	19	13	17	(92)	15	14	13	11	10	(63)	• .	
ų g 7 5 4 4 (29)	71 - 30 F						-	13	16	1	13	12	(73)		
	•									-					
	4 31 - 35					4									
F 11 10 9 8 7 (45)			10	9	8	7	(45)								
SUBTOTALS SCHOOL EXITING AGE 65 AGE 35 TOTAL And total K-6 7+9 10-12 All H.S. GRADS AND ABOVE AND ABOVE POPULATION													TION		

-

					•										
	STAN		DRRDH COUNT Stlang, Ful		PLUS /	агонах	. PE33L	E SPRINGS	YEAR 199 S	90				•	
NU43ER OF PER- 5045 #4# 495				POPULATI	ON TALI	เรื่อง	SEX AND	AGE GROU	UP (1 YR AND		GE COHORT	'S1	· · - •	• •·	
DED DA NEKT BIRTHDAY AS OF	1	2		4	5		5 YR)	6	7	8	9	10	(5 12)		
4-30-90	- 53	- 73	7 <u>1</u>	73	76			-		93	35	83	(414)		
1 - 13	- 69	- 71	72								35		(413)		
	<u> </u>			• -					· -	.		•	1 7437		
. 4 11 - 23	91	93	91	39	90	(451)	88	86	80	55	46	(349)		
F .	91	92	92 .	90	90	(455)			32		42	(352)		
ч	39	43	41	50	48	ſ	2201	46	53	55	60	62	(276)		•
21 - 33	37	35	42	.3 8	43		195)	52	50	57	51	54	(264)		
		-						· • • • • • • • • • • •		·					• • •
4 31 - 40	ь7	75	83	37	ė3	. (405)	99	_ 112	115	114	120	(562)		
	6ŭ	5.8.	67	79	75	C	339)	82	87	98	97	91	(455)		
	- 121	116	- 113	110	- 109		569)	167	106	194			 (517) ··		·•-
41 + 53 F	87	90	92	93	94		-56)	94	93	91	33	85	(454)		
•	67	30	75	24		•	430.	3.4		7*	.,		1 4741		
51-50	95	96	8+ .	73	66	(408)	59			30	27	(209)		
51 - 50 F ·	. 95	82	77	7 C	67	(391)	62	55	46	34	29	(225)		
-	21	22	21	21	19	,	104)	. 18	17	16	15	15	(31)		
51 - 70 <u> </u>	21	22	22						23				(112)		•-
r	23	~ ~ ~	22	C E	22	. .	1147	<i>L</i> 3	23	23		~	1 1121		
4 71 - 33	15	15	14	14	14	. (72)	14	14	13	12	11	(64)		
F			. 17	17	13	(83)	19 _	19	19	15	18	(91)		
ч	e 10	> 9	3	7 -	5	ı	39)								
91 - 95 F		12		9							•				
· · · · · · ·	-			· ····	•	-								· · · · · · · · · · · · · · · · · · ·	
SUBTOTALS AND TOTAL		<- 5	SCHCOL 7-9 10	0-12 ALL		EXIT H.S.	ING GRAOS	-	AGE 65 Ano above		35 130vē	TOTAL POPULA	TTON		
4455 - 2019 44655 FE446555		595 601	273		19		33 34		294 363		33 19	51	34		
•	' · ·	1196		511 22:			67		657						_ ·
• • • •		**		··· ··	•••		•								

				ILLIAN COUN						YEAR 19	a 7 A						
NUMBER OF		STANF			ISERVATIVE D	EVELO	PHENT	W/0 PR	133L 0.	1643 49	// 5						
SCNS #N# 0LD DN NE	YPS				POPULATION	TALL	S YE Y	EX CYA	AGE GROU!	P (1 YR AN	NO 5 YR AC	E COHORT	\$)				• .
9137401Y 4-32-70	45 OF	1	z	3	÷	5	(5	5 YR)	6	7	S _	9	13	15 121		•	
1 - 13	٦	25	15	2:	16	18	ι	941	17	15	22	24	23	(104)			
A _ A 4	F	14	10	22	17	<u>`</u> 9	(72)	14	22	17	29	23	(111)			-
	۲	32	23	32	24	33	ť	144)	. 30	29	29	19	⁻ 5	(112)	• •		
11 - 21	e	20		25						29		14	12				
																·	
21 - 30	ч	25	21	17	15	13	ť	91)	12	11	11	11	12	(57)			
	F	15	14	13	11	11	ſ	65)	10	10	11	11	12	(5+)		•	
· <u> </u>		13		14	14	13		69)	13	12	. 12	12	12	(51)			-
31 3	. ' F	12	13	14	14	13		66)	13	12	12	13	15	(65)			
	•			_	-												
41 - 53	۹	12	11	12	13	14		62)	15	16	17	17	16	(31)			-
	F	16	17	18	18	16	'ı	85)	15	14	13	12	12	(66)			
	ч.	16	15	14	15	. 15	(75)_	15	15	15	15	14	(74)			
51 - 60	e .	12	11	11	12	12		58)	13	13	13	13	12	(54)			-
51 - 73	4	13	12	11	10	9	(55)	8	7	7		7	(35)			
	F	11	10	9	9	8	(47)	3	8	7	8	8	(39)			~
	ч	7	٩	. 8	7	6	C	35)	5	5	4	. 3	3	(23)			
71 - 3)	F		10	10	9	. <u>.</u> 8		46)	7	6	5	5	6	(27)			_
						,											•
81 - 95	н	3	3	3	3	4	(16)									
	e	4	3	4	4	5	(20)									
SURTOTES	S			SCHOOL			EXITI			AGE 65	AGE		TOTAL				-
AND TOTA	11		K-6 159	7-9 10 89	1-12 ALL 88 335	,		GRADS 12	;	AND ABOVE 114	AND	A BOVE 7	POPULA 11	ATION 192			
FENAL			171	7 A	89 337			11		147		16		150			
TOTAL			¯330 ¯	167	176 673		· ·· ·	23		261		23	23	342			

NUM272 67 672			CLIAM CO Stland, C	UNTY ONSERVATIVE	DEVEL	OPMENT	W/0 PR		YEAR 19	75					
NUMBED OF PED- SCNS #44 YPS		··		POPULATI	ON TAL	LY ŠY S	EX ANO	AGE GROUP	(1 YR AN	0 5 YR A0	ссноят	s) ⁻			
013 ON NEXT RIRIH34Y AS OF 4-33-75	1	2	3	÷4	5	(5	YR)	6	7	8	9	10	(5 YR)		
4-13-75 4 1 13	1 8	17	17	17	18		87)	26	16	21	17	19	(93)		
	18	13	17	17	17		871 -	15	11	53	13	10 -	- (77)	···	
4 11 - 23	18	16	21	25	29	ť	109)	33	24	33	19	19	(123)		
· · · F	15	_23.	19	30	30	(115)	21	41	26	27	11	(126)		
	17	17	16	15	Б	τ	71)	26	21	18	15	13	(73)		
21 - 2)	17	17	17	11	10		72)	17	15	13	12	11	(63)		
·· ··	12	12	12	12	- 12	(63)	13		15	15	 14	(71)	••• •••	• ·
31 - 40 F	11	11	11	. 11	12	. (56)	13	14	1 +	14	14	(63)		
	- 13	13	12	12	- 12	(62) ~	11		11	12	13	.~ (53)	· •- · · •	·
41 - 50 F	13	12	12	13	15	(65)	16	17	18	17	15	(S4)		
51 - 60	14		Ìó	16	15	t	77)	15	. 14	13	13	14	(69)		
51 - 50	15	13	12	12	12	(64)	11	11	11	11	12	(56)		
4	14	14	14	13	12	t	67)	11	10	9	8	8	(45)		
51 - 73 . F	12	13	13	12	11		61)	10	9	9	8				
4 71 - 33	7	· 5	. 5	5	5	ſ	281	5	6	6	_. 5	4	(26)		
· · · · · · · · ·	7	7				(35) _			8	7		(36)		
1 - 25	2	2	1	1	1	ť	7)					•			
31 - 25 F	4	4	3	Z	2		15)								
503707145 443 70746		K-5	SCH00L 7-9	10-12 ALL		EXITI	NG GR405		SE 65 NO ABOVE	AGE AND	35 ABDVE	TOTAL POPULA	TION		
FEMALES		133 115		90 21			12 13		115 144		3 15	11	. 66 . 45		
TOTAL		2 + 3	153	173 5	79		25 ~~~	· · · · · · · · · · · · · · · · · · ·	259		23	23	311		

-															
	STANFIE		LLIAM COUN Tlang, co'		IVE DEV	ELOP	MENT I	1/0 °R	TOJECT	YEAR 199					
NUMBER DE PER SCNS ±N± MRS	•	- · ·			ATION T	ALLY	A BY SE	EX AND	AGE GROUP	LI YR AND) 5 Y 9 AG	E COHORT	5)		
DED DY NEXT SIRTHDAY AS OF	1	2	3			5		Y.R.)	á	7	3	9	10	(5)	23
4-33-80	- 19	20	19	19		18		95)	19	13	18	13	15	(9	
_1 _ 1)	19	- 19	-19	19		19		951			18	13	<u>17</u>	·····	
	17	17	7.2	19		19	•	· · · ·	19	7.2	10	7.2	17		
¥	26	16	21	17		19	t	991	19	16	21	19	16	(9	
11 - 21 F	15	_ 11	23	13		10	'	77)	15	23	18	23	17	_ (- 3	5)
•						24			4.0				-		
21 - 3]	19	13	19	15		20		86)	19	18	15	16	7	(7	
···· · ··	12	23	15	21		11		82)	18	15	18	12	11	(7	
ч	27	22	. 19	17		15	(130)	14	13	13	13	14	(€	
31 - 40 F	17	15	14	13		12	¢	71)	12	12	12	12	13	(8	1)
			_												
41 + 55	14	15	15	16		14	(751	13	12	12	12	11	(6	
F	13	14	15	14		14	C	70)	13	12	12	13	14	(6	54)
	11	11	_ 11	12		13	. (53)	14	15	15	15	14	(7	3)
51 - 63	15	:7	17	17		15		31)	14	13	12	11	11	(E	
÷		- '	1.			.,	•	517	• •		••			• •	
61 ~ 73	13	13	12	12		12	(62)	12	12	12	11	10	(5	7)
	11		10	11		11 -	···· (`	53) -	11	12	12	11	10		6)
	ç	3	. 7	7		6	C	371	5	4	4	4	4	(2	
71 - 33	7	2	. /	,											
i internet i	9	?		'		-'	(371	6	6	5		<u>5</u>	(2	
ч	4	3	2	2		1	(12)							
* 31 - 93	6	ó	ó	5		4	ć	27)							
- · · -				-											
SUBTOTALS AND TOTAL		X-5	SC⊬CJL 7-9 10				EXITI: H.S. D	5220S		GE 65 ND 430VE	AGE And	ABOVE	TOTAL Popyla		
HALES FEHALES		133 117	57 51	55 56	245 224			10 10		136 154		10 14	11		

•

• •

				ILLIAH COU Stland, Co		TIVE DEVE	ELOPHE	ENT V	A/D PRC		YEAR 19						
	NUMBER OF PER- SONS #4# YRS		•		ີ ຄວອນເ	LATION T	ALLY 8	34 2E	EX AND	AGE GROUP	P (1 YR AN	0'5 YR AG	ECOHONTS	\$1			
	010 05 NEXT BIRTHD1Y AS 01 +-30-35	F 1	Z	3	4	Ę	5	(5	YQ)	6	. 7	5	9	10	(५ ४२)		
	۲	15	13	:9	19) 1	19	ι	93)	19	21	20	20	19	(99)		
	1,+ 10 =	14	19	19	19	a :	19	Ξ.	9+1	19	20	20	2)	25	(
	ч	19	13	13	18	8	19	ť	921	27	17	22	13	11	(90)		
	11 - 23 F		_ 1°	_ 18	16	3	18	_ (92)	16	12	24	14	5			
													_				
	4 21 - 33	11	13	13	15	i 9	17	C	66)	19	1+	19	15	21	(33)		2
	<i>. </i>	9	14	11	18	3 1	18	(75)	12	24	16	21	12	(35)		
•	ч	19	19	15	17	7	8	ť	51)	27	23	20	17	15	(152)		
	31 - 40 F	18	13	19	1 2	2 1	12	ι	751	18	15	14	13	13	(74)		
	· •	14	1]	13	13	3 -	13		6ô) .	<u>14</u>	15	····· ₁₆ —··	15 -	14		·	
	41 - 5) F	:2	12	12	12	2	13	C	61)	13	14	14	14	13	(69)		
	м	12	. 12	11	11	1 1	11	ſ	57)	10	13	10	11	12	(53)		
	51 - 67 -	13	12	12	13		14		641	15	16	17	16	15	(79)		
	ч.,	:2	13	14	13	3	12	ι	64)	12	11	10	10	10	(53)		
	51 - 7) F	14	12	11	11	i	11	··	59) ⁻ ^	10		í o 🦳	10	10	(50)		
		10	10	. 9	1	8	я	ť	45)	.' 7	6	5	5	•	(27)	-	
	71 - 30 	10	11	10	. 1(0	9	<u> </u>	501	3	7	6	66	4			
-	ч	2	z	1		1	1	ι	7)								
	31 - 95 F	4	3	3	÷	3	3	ť	16)				-				
						· · ·-		XITIN		·	 AGE 65			TOTAL			 ~
	SUBTOTALS AND TOTAL MALES FEMALES		К-Ь 136 137	SCHCJL 7-9 : 55 54		ALL 257 243		.s. G	R 62405 R 9		AND A30VE 143 150		AROVE 11 14	POPULA 11:	53		
	TOTAL		273	169	115	503			17				25		25		 -

ر. ۱۰	HEER OF PER-	STANF	IELO-WES	TLANC, CO	NSERVATIVE											E
50 Dt	NS FIF YES DONNERT									P (1 YR AND						
	274014 15 OF 4-31-91	1 .	2	3	÷	5		5 YR)	5	7	3	9	19	(5 74		
1	- 13	15	10	17	17	17		32)	15	13	19	19	13	(93		
	- د د	16	16	17	17	18	(34)	18	19	19	19	19	~~(~ 9:	•)	
	ч	19	25	13	20	:9	ť	97)	19	18	13	24	15	(75	3)	
11	- 2:	19	19	19	20	20		. 37.)		19	13	14	10	(33		
			10	1.2	•			6 2 3		4.2	4.7			(63		
21	् म ् म् म्	15		12	10	11		53)	11	10	13	15	17			
-			7	1+	11	6 1	، 	471	9	14	11	18	18	(73	د د	
	4	:9	14	19	16	21	ι	89)	. 19	13	19	17	3	(32	2)	
51	+) F	13	24	16	21	12	ſ	96)	18	13	19	13	12	(33	2)	
		27	21	19		-/ 15	(191)	14	₁₃	₁₃	13			5) <u> </u>	
41	- 51 F	15	16	14	13	12		73)	12	12	12	12	12	(60		
				-	-											
51		13	14	_ 1 >	14		(10				· · · ·
	Ŧ	13	14	1+	14	13	C	631	12	11	11	12	13	(53	i)	
	۲	9	9	. g	10	10	¢	47)	11	11	12	11	10	(55	5)	
51	_= 73 F	14	15	16	15	14	(74) '	13	11	19	10	10		.)	
	м	9	•	. 3	8	8	,	421	7	7	6	6		. (31	•	•
71	н 33 с	ч с	ч Р	· 1									·			
• ·-				···			'		9	· - · · ·		° .		· •	•••••••••••••••••••••••••••••••••••••••	
• 24	4 - 35	4	4	3	3	2	ſ	16)								
31	= ,,, =	6	5	نب	4	2	C	21)	-							
2	- UATOTELS	-		SCHOOL			EXIT			AGE 65	AGE		TOTAL			
· .	ND TOTAL MALED		K-5 132	58	0-12 ALL 55 2+	5		GRADS 7	i.	AND A90VE 156	4 N O	150VE 12	POPÚLA 11	38		
•	FEMALES		132	59	55 24			7		173		13	11			
	Total		264	117	111 - 49	2		14		329		25	22	63		

	4114322 OF PED-	STAR	FIELC-WE	ILLIAM CO Istland,	NUNTY PROJECT UN	JFRTA	KEN			YEAR 19	70					-
	5745 444 495 313 34 457 3131434 45 05		2	3	POPULAT		ALLY T	BY SEX AND (5 YR)	AGE GROU	JP (1 YR AN: 7	ວີ5ັ¥ ຊິ∆G 9	E СОНОЯТ: 9	5)	(5 19)	• • • • •	•
	4-3)-7 <u>1</u> 4-3)-71	25	15		16			(94)			20	24	23	(104)		
	'1 - 13 F							(72)			17	29	· · · · · · · · · · · · · · · · · · ·	(111)		
	4	32	23	32	. 24		33	(144)	30	29	23	19	, è	(112)		
	11 - 23 	2:	40.	25			18	(139)	29	29	30	14	16	(112)		~
	भ	25	21	· 17	15		13	(91)	12	11	11	11	12	(57)		
	21 - !] F	16	14	13	11		11	(65)	10	10	11	11	12	(54)		
		. 13	14	14	14	• • • •	 13	(68)	13	12	12	12	 12	(61)		
	71 - 4J F	12	13	14	14		13	(ćģ)	13	12	12	13	15	(65)		
	· · · · ·	12	11	.12	13	····	14 -	()	15	16	17	<u>1</u> 7 -	15			
	41 - 53 -	16	17	13				(35)	15	14	13			(66)		
		16	15	. 14	15		15	(75)	15	15	15	15	16	{ 74 }	•	
-	51 - 60	12	11	11				(58)	13	13	13	13	•	(64)		
		13	12	11	1.5		۵	1 553		7	7	7	7	(35)	•	
	61 - 70	11	- <u>1</u> 0		···· 9 "			(47)			7	· 's				
		-		. 8			ç	1 263		-		7	7	())		
	71 - 33 F							(36) (46)		5	5	3 _. 5		(23)		
•										· · · · · · · · · · ·						
•	4 31 - 35 F	3	3	3 4	3			(16) (23)	•							
	SUBTOTALS			SCHOOL			 E)	(ITING		AGE 65	AGE	 35	TOTIL			-
	AND TOTAL HALES FEMALES		K-6 159 171	7-9	10-12 3L 84	L	H.	S. GRADS 12 11		AND ABOVE 11+ 147		A 50 V 2 7 16	P0PULA 11	110N 92 50		137
	TOTAL		320	167	176	573		23		261		23	23	42		•

			LIAM COUN TLAND, PR	TY OJECT UNDE	RTAKEN			YEAR 197	75				
NUMBER OF PER SCNS #M# MRS OLD ON NEKT				POPULATIO	N TALLY	TH SEX AND	AGE GRO	UP (1 YR ANG	5 YR AG	E COHORT	5)		
3127404Y 45 OF	1	2	3	*	5	(5 12)	6	7	9	9	13	(5 42)	
1 1.	13	17	15	15	17	(34)	26	16	21	17	19	(33)	
	18	 	17	17	17	(37)	15	11	23	13		(77)	· · · · · · · · · · · · · · · · · ·
4 11 - 21	13	15	21	25	29	(109)	33	24	33	18	19	(127)	
	15	27	13	30	30	(_116)	21		26	27		(_125)	
4	17	17	15	15	5	(79)	25	21	13	:5	13	(92)	
21 - 39 =	17	17	17	11	10	(72)	17	14	13	12	11	(67)	
ч ч	12	12	11	12	12	(59)	13	14	15	14	14 _	(73)	
31 - 49 F	11	11	11	11	12	(56)	· 13	. 13	. 14	14	13	(67)	
	13	12	12	12	·- 12 -	(61)	11 -	11	₁₁	12	13	(53)	
41 - 50 F	13	12	12	13	14	(64)	16	17	15	17	15	(34)	
	14	16	16 _	16	15 _		15	14	13	13	1.	. (69)	
51 - 53 F	15	13	12	12	12	(64)	11	11	11	11	12	(\$5)	
4 617]	1-	14	14	13	12	(67)	11	ţo	9	£	5	(45)	
F	12	13	13	12	11	(61)	10		9	9		(44)	
ч 71 - 33	7	5	· 5	5	5	(28)	5	6	6	5	4	(25)	
- F	7	7	77	7	7	_ (35)		3		7		(36)	
4 91 - 95	3	3	1	1	:	(9)							
F	•	4	3	2	2	(15)							
SUBTOTALS AND TOTAL MALES FEMALES		K-5 133 115	SCHOOL 7-9 10 75 76	-12 ALL 90 29 33 28	4	EXITING H.S. GR:05 12 13		AGE 65 AND ABOVE 117 144	AGE AND	35 190 <i>42</i> 8 15	TOT±L PJPULAT 115 114	59	
TOTAL		248	153 .	179	, 9	25		261 -		- 23	230	o	

••

٠

•

																•.
		STAN	FIELD-W	ILLIAN CI Estland,	OUNTY PROJECT UNDE	RTAKEN				YEAR 198	13					
	NUMBER OF PERH. SONS ANA MPS		· ·-		POPULATIO	N TALL	r ar s	EX AND	AGE GROUP	I YR AND	5 YR AG	ECONÓRT	31			
	OLD ON HERT BIRTHDAY AS OF	1	2	3	'a	5	(5	Y?)	6	7	8	9	10	(5 12)		
	+-32-30	1 9	13	19	19	19	ſ	943	18	18	17	17	17	(37)		
	11.= 13. j F	2:	19	19	19	18	·	951 ~	18	19	13	13	17			<u> </u>
	ч	26	15	21	17	19	í	931	18	16	21	19	15	(90)		
	11 - 23									-						
										·	······································					
	۲ 21 - 33	18	13	13	14	20	ć	33)	15	13	17	15	7	(76)		
	F	12	23	15	20	11		81)	17	17	13	11	11	1 741		
	ч	î ò	22	19	15	14	C	97)	13	13	12	13	13	(54)	•	
•	31 - 43 F	17	15	13	12	11	, c	63)	11	11	11 -	12	12	(57)		
		- <u>1</u> 4	15	 1à				751		12		12		(63)		
	41 - 50 F	13	14	15					13		12	13		(64)		
		-		-	•								•			
		_ 11 .	11	11	12	13	(58)		15	15	15	14	t 731		
	E	15	17	17	17	15	(81)	14	13	12	11	11	(51)		
	ч	13	13	12	12	12	ć	621	12	12	12	11	19	(57)	·	
	51.= 7] F	11	10	<u>1</u> J	11			53)	11	12	12	11	10	(55)		
		~	۵	-	· 7			771		,	,		7	ŧ 20)		
	71 - 30 -											4				
•	· · · · · · · · · · · ·	9_	· ·-)		' .		J7/	°		?		0	`237		
	4 31 - 35	3	3	2	2	1	(11)								
	e	6	6	•	-	4	-	27)								
	SUBTOTALS			SCHOOL	L		EXITI	NG	A:	GE 65		35	TOTAL			
	בזרז כא4 לביבד		K-6 129	7-9 57	10-12 ALL 55 ?4	.1		9	2	ND AROVE		135VE 10		52		
	FLM1LES		115						-	165		14 				
	TOTAL	·	245	108	111 +6	 		19		299		24	22	33		• •

						-									
														•	
				ILLIAM CON Estland, (UNITY PROJECT UN	NDERTAKEN				YE19 193	35				
13 242					POPULAT	FION TALL	Y BY S	SEX AND	AGE GROUI	P (1 YR AND	0 5 YR AG	E COHORT	5)		 -
))) 4 214)14 4-3)-3	45 OF	1	2	3	4	5	e	5 YRI	. 6	7	8	9	13	(5 42)	
	-	1 ĉ	1 à	15	19	19	ι	92)	18	19	19	19	20	(3 5)	
- 13	= · · · · ·	10	13	19	19	18	(92)	19	19	19	19	19	(351	
25	۹.	19	13	. 17	17	17	t	85)	26	_ 16 _	21	_ 13	_ 11	(37)	
. - . 		19	17	13	13_,	17	(_91)	15	1 <u>1</u>	23	14	5	(69)	-
•		10	ą	12	15	16	ت. (52)	18	13	13	:5	20	(54)	
- 33	=	9 9	1 ?	11	13	13	t	63)	13	24	15	21	12	(55)	
	 +	 ið	13		16	7	 . (26		19	16	14	(97)	 -
L — ⊶0	÷	10	13	13	12	11		771	18	15	14	13	12	(72)	
 .	· · · · · · · ·	13	13	12	12	· 13	(·	631		15	15	15			
- 5)	F	12	12	12	12	12		6ũ)	13	14	14	- 14	13	(63)	
	ч	12	12	11		11	ť	571	10	10	10	11	12	(53)	
- 63	e	13	12	1?			· (15	16	17	16	15	(79)	
	પ	12	13	14	13	12	{	64)	12	11	10	10	19	(53)	
- 75	F	- 14		11			· (13	io	₁₀	<u>10</u>	10		 -
	۲	10	17		8	8	ť	45)	7	6	5	5	Ŀ,	(27)	
L - 30										7				(31)	 -
	4	3	3	Z	2	2	ť	12)					·		
- 15	•	4	3	3	3	- 3		15)	-						
 Natora	· -			SCH00L		····	EXITI		·	 AGE 65		45	TOTAL		 •
1031 312 1031 312 10311 312 1031 312 1031 312 1031 312 1031 312 10	T4L E3		K - 5 132 133	7-9 51 53	15-12 AL 63	LL 245 235		G2+32 ° 5 9		AND AROVE 149 160		A 30VE 11 14	POPULAT 113 114	39	-
- T 3 T 4	-		265	104	112	48:		17		329	• • • • •	25		73	

								YEAR 199	<u>.</u> .				
	-		LLIAN COU Stland, f	PROJECT UN	OERTAKEN			1246 133	1				
1943EP OF PER 5015 X1X YPS				POPULAT	ION TALL	CAN XEZ YE Y	AGE GROU	P (1) YR AND	5 Y 7 AG		\$)		
DED ON NEXT BIRTHDAY AS OF	1	2	3	ŕ .	5	(5 YR)	6	7	3	9	19	(5 12)	
4-393 4	15	15	15	17	18	(32)	17	13	18	19	19	(31)	
. 1.= 13	10	15	 17	17	17	(33)	18	<u>1</u> 9		19	13	(92)	
		10	4.2			()))	• 2						
11 - 20		19		-		(94)			17		10		
	_ 19	14	·		10	(44)	19		13		⁶ ⁶ ⁶	(30)	
Ч	:5	9	12	10	11	(57)	11	13	13	15	17	(63)	
21 - 33 F	9	7	13	11	6	(46)	9	14	11	15	19	č 73)	
···· - ····· · ···		 14		15	20	(37)	19	18	18		7	(73)	
313	19		15	21		(35)	13	13	13	13	12	(79)	
-	13	2 4	₽.1	č L	* 5	, t ogr	* '	7 - 7	± /	*-		• • • • •	
Y	27	22	19	16	. 14	(98)	13	12	12	12	12	(61)	
41 - 51 F	- 18	16	14	13	12	(73)	12	11	11	12	12	(53)	
	_ 13	1 -	. 15	1 L	13	(69)	- 12	11	10	13 -	15	(53)	
51 = 63 F		1 13	13			(66) (66)			11		13		
r	• • • •	* *	* *	<u> </u>		1 007	· ··		•-			• • •	
4 6+ _ 71	9	9	ł			(47)			12	11	10	(55)	
_51 7] F	14	15	15	15	14	(74)	13	11	10	10	13	(54)	
ч	٩	9	. 5	8	8	(42)	7	7	6	6	5	(31)	-
71 - 41												(42)	
<u>.</u>		**			•••••								
4 31 - 35	4	4.	2	3	2	(16)	-						
e	6	5	4	3	2	(20)		•		-			
SUBTUTILS						EXITING		AGE 65		35	TOTAL		
AND JOTAL Milito		K-6 124	7-9 : 57	10-12 AL 54 56	L 239	H.S. GRADS 7 7		AND A90VE 156		12 12	1116		
FEMALES		130						172		13 .	11 32		
TOTAL	-	258	113	113	451	14		328		25	22 48	\$	

¹⁴¹

		G T	LLIAN CO	UNTY					YEAR 197					
NU4322 DF F224	STANF	IELD-HES 	TLANC, F	UEL PROJEC	T PLUS A	LUMAX,	PE39L	E SPRING:						
404327 OF 6204 Sons X4X YRS OLD on 42KT				POPULAT	ION TALL	Y BY S	сиа Хјаз	AGE GROU	UP (1 YR AND	5 YR AG	E COHORT	\$)		
BIRTHDAY 45 OF 4-31-71	1	2	3	4	5	(5	12)	6	7	8	9	12	(5 YR)	
4	25								15	20	24	23	(194)	
_ 1 <u>*</u> 13	14	10		17	9	(72)	14	22	17	29	29	(111)	
	32	23	75	24	77	,	1.53	-	29	29	19	. 5	1 1 1 2 1	
11 - 23														
	20	4U			18	· ` .					·····		(112)	
ч	25	21	17	15	13	(91)	12	11	11	11	12 -	(57)	
21 - 39 F	15	14	13	11	11	C	65)	13	10	11	11	12	(54)	
	- ·	·												
4 31 - 40	13		- 14					•	12	12	12	12	(51)	
£ .	12	13	14	14	13	C	65)	13	. 12	12	_ 13	_ 15	(65)	
· · · · · · · · · · · · · · · · · · ·	12	11	12	13	14	···· , ·	62)	15	15	17	17	15	(81)	
41 - 33 . F		17	19	18	16	C	85)		- 14		12	12	(65)	
51 - 60													(74)	
F	12	11	11	12	12	; (58)	13	13	13	13	12	(64)	
4	13	12	, 11	10	9	(55)	з	7	7	- 7	7	(36)	
61 73	11													
71 - 33													(23)	
<u>F</u>	9	10	10	9 -	<u>-</u> 8		461	7	6	5	5	······································	(27)	
ч	7	3	3	3	.	,	161							
* 31 - 35 F			4		5									
- ·	••••••••••••••••••••••••••••••••••••••	,	· · ·											
SUBIDIALS AND IDIAL		1 a î	SCHOOL	10-12 AL		EXITI	NG GRADS		AGE 65 AND ABOVE		85 4 80 V E	TOTAL Populati	05	
HALES .		159	89	89 33	336		12		114			1192 1150		
FEMALES									261		23	2342		~
TOTAL			701	110	013	-	25		-01			2342		

			STAN	FIELD-WES	ELLIAM CO Stland, F		ECT FLU	S ALUM	X, PE93L	E SPRING	YEAR 19 S	175					
	SONS INT			· · ·		 POPUL	ATION T	ALLY 31	Y SEX AND	AGE GRO	UP (1 YR AN	D 5 YR AG	E COHORT	s)	يما بالمام		
		15 OF	1	2	3	•		5	(5 12)	б	7	8	ġ	13	(5 YR)		-
	4-31-7	ч.		17	15	16		17	(84)	26	16	21	17	19	(59)		
	1 11	e	1.6	1 3	17	17		17	(37)	15	11	23	13	10	(77)		
			18	16	21	25		29	(109)	33	24	33	13	19	(127)		
	11 - 23										41				(125)		
	•												÷				
	21 - 7]		17	17	15				(70)		21	13	15	13	(92)		
	·		17	17	17	11		10	{ 72}	17	14	13	12		(67)		~
	31 - 43	ч	12	12	11	12		12	(59)	13	14	15	14	14	(70)		-
			11	11	11	11	:	12	(56)	13	13	14	14	13	(67)		
		ч —	13	12	12	. 12	· ·	12	(61) ~	11 -		11	12		(53)		
·	41 - 50				12								17	15	(34)		
				•												•	
	51 - 50	Ч <u>—</u>															
		2	15	13	12	12	:	12	1 0+1	11	11	. 11	11	12	(>>)		
	61 - 7)	ч	14	14	14	13	:	12	(67)	11	10	9	3	5	(45)		
		F	12	1 3	13	12	1	11	(51) ~	10	9	9	8		- (44)		-
		ч	7	. 6	· 5	5		5	(23)	5	6	6	5	L	(25)		
	71 - 97		7	7	7	7		7	(35)	8	8	8		5	(361		
				-													
	31 - 35	۰ ۶	4	4	-				(15)								
		·				-	•		·					······	·		
	5001014 101 101	÷L		K-ċ	SCFCJL 7-9	16-12	ALL	H.S	TING GRADS		AGE 65 ANO ABOVE	AGE 1 AND	Save	TOTAL Populat:			14:
	, FEMT MITE			133 115	75 73	90 88 .	293 281		12 13		117 144		3 15	115 114			ω
	TOTA	L ·		248	153 -	173	573		25	·	261		23	2300			

	NU4959 0F PER-			• ··· ·		TION TAL	LY 37 5	SEX AND	AGE GRO	UP (1 YR	AND 5 YR	AGE COHORI	15)		• •- · •+ ·	
	SED ON NEXT SIRTHDAY AS OF	:	2	3	÷	5	(5	(YR)	5	7	3	. 9	10	· (5 YZ)	•	
	4-30-30 u	21	31	27	25	24		140)	24	23	22	2 2	22	(113)		
	1 <u>7</u> ,12	32	31	29	24	25		141) -	24	24	23	23	22	- (115)		• • • ·
	ч	31	21	26	22	24	. (124)	23	21	25	23	19	(1:2)		
	11 - 21	2:		2٩	23	15	(192)	20	23	23	27	20	(1:3)		
		29	32	43	÷4	56	1	233)	4.8	43	47	+5	35	(22+)		
	21 - 31 F	16	31	27	33			130)	30	30		24	23	(137)		
		 5 0	<u> </u>				[.]	245}	43	42	42	42		(212)		
	31 - 43 F	29	27	, 45 2ô	**			131)	24			24	25	(212)		
											·					
	41 - 50 F	44 77	31	29	16			141)	13 13	12 12		12	11	(53) (54)		
		25	25	22								-			• · ·	
	51 - 60	11	11	11							15	15	14	(73)		
	Ę	15	17	17	17	15	. t	31)	14)	13	12	. 11	11	(6i)		
	ч _61_ - _70	13	13	12	12	12	(62)	12	12	12	:1	13	(57)		
		11	10	10	11	11	(53)	11	12	12	11	10	(35)	·	
	4	9	8	7	7	6	¢	37)	5	4	4	٤.	4	(21)		
	71 - 33 F	9	9	9		۲ ۲	(39) _	6	6		5		(23)		<u></u>
	. 1	4	4	2	. 2	1	¢	13)								
•	31 - 95 5	ó	6	6	5	4	C	27)	· ·						· · · ·	
			<-6 165	3CHCOL 7-9 72	16-12 /	- 11.L. 337		 NG GR4DS 12	·	4GE 65 ANO 4301 133	VE Ar	E 35 10 430VE 10	TOTAL POPULA 19	TION 05		
	FEHLES		152	őÉ	71			12		16-		14		13		-
	TOTAL		317	139	141	596		24		301	1	24	34	23		

		G) IEL DHWE	ILLIAH CO Stland, F	UNIY ULL PROJECT	PLUS	ALUMAX	• PE33	LE SPRING	S YE	49 19	55		-			-
NUMBER OF PERH . Sons int yrs Old on nekt	-		.	POPULATIO	N TALI	LY 87 1	SEX AN	D AGE GRO	UP (1	YR AN	0 5 YR AG	E COHORT	5)			
	1	2	3	4	5	G	5 Y?)	ô		7	3	9	10	15 1	(3)	
1_~ 13	15	17	20	21	22	C	96)	23		23	20	17	15	(9	;3)	
	17	13	z 3	21	23	(391	24		23	20	16	15	(9	19)	
4	15	15	14	14	14	í	72)	23		13	13	. 11	, 9	(7	' →)	
11 - 2)	_15	15	15 _	15	14		75)	12		3	20	11	<u> </u>	(_ 5		
-	_	_										, -	55	(20		
4 21 - 31	7	5	3	12	20		52)	29		33	49	45				
c 	б 	9	ō	12	12		45)	8		23	19 	25		(· · · · · · · · · · · · · · · · · · ·	
ч	49	43	43	46	37	(228)	. 56	_	52	49 <u>.</u>	46	46	(2,	.7)	
31 - 40 F	22	. 22	22	16	15	(97)	21		19	18	16	15	(9	1 3)	-
· · · ·	43	45	47	÷7	47		229)	43		37	28	15	14	(13	(7)	
41 ~ 55 F	15	17	23	22	24	C	93)	25		24	21	14	13	(3	17)	
				11		,	671	18		10	1.0			(5		
51 - 50		<u>12</u>	11	13	· 11 14			. 15		•	17					
	13	12	12	13	14	``	047			10		10	15	. ,		
4	12	13	14	13	12	í	64)	12		11	10	10	. 10	(5	3)	
61 73	1	12	- 11	11	11	(59)	10		19	10	10	1:		3)	
	10	10	· 9	8	8	í	45)	7		б	5	5	4	۲ ک	(7)	
71 - 9) 	1,6	11	10	10	9	(50)			7	6	55	¥	3		
. 4	2	2	1	1	1	ť	7)									
91 - 95 F	4	3	3	3	3	ć	16)									
				•-				··· ·			· • • · -					
SUBTOTALS AND TOTAL MALES FEMALES		K-6 128 130	42	1J-12 ALL 54 22 40 21	4	н.s.	ING GRADS 7 7			65 AROVE 143 159		35 ABOVE 11 14		ATION 755 206		
TOTAL		256		94 43					· ·••• ·	302						_
								. •				-				
										-		-			•	

		STAN		LLIAN COUNTY TLANG, FULL		LUS A	ALUMAX, PEDBLE	SPRING	YEAR 19	92				
	NUMBER OF PER- Sons int yes						ONA XEZ YE Y			0 5 YR 1	GE COHORT	5)		
	OLD ON HEAT BIRTHOMY AS OF	1	2	3	4	5	(5 YR)	6	7	3	9	10	(5 72)	-
	4-33-93 4	15	14	13	12	13	(67)	23	14	17	18	19	(51)	·
•	1,-13	15	14	14	13	13	(63)	. 14	15	17	13	13	(33)	
			• •					• 2	11	• •	ð	Ś	(47)	
	11 - 2)	19	23	17	14	12	(32)					6	<u>(</u> 53)	
	a an the second	2C				13		[*] .* .	* • · · · ·		^···-	×		
	4 21 - 33	12	8	11	9 [.]	9	(49)	8	6	9	13	21	(57)	
	F _	7	é	14	11	7	(45)	9	12	9	15	15	(63)	
		30	33	49	45	50	(207)	49	49	49	46	37	(223)	
	31 - 40 =	12	25	22	28	18	(105)	25	25	25	19	13	(112)	
		.												
	4 41 - 5)	56	51	40	44	42			•	46	45	45		
	F.	24	20	17	15	15	(91)	15	17	19	21	23	(95)	
	51 - 53		35	27	14	13	(130)	12	11	10	10	13	(53)	 <u>.</u>
	91 - 61 F	24	2 -	21	14	. 13	(96)	12	11	- 11	_ 12	13	(59)	
	ч	9	9	9	10	15	(47)	11	11	12	11	10	(55)	
	51 7) F	 14	15	16	15		(74)			10	10			
		-												
	4 71 - 93	9	э	· 9		9			· 7	6	6	5	(31)	
		3	⁹	· · · · · · · · · · · · · · · · · ·	8	9	(43)	9	···· 9			7	(42)	
	ч	3	3	2	2	1	(11)	•						
	31 - 35	ó	5	4	3	2	(20)							
	213101125 21310125		< - ó	SCHOOL	12 ALL		EXITINS F.S. GRADS		AGE 65 AND 430VE	AND.	35 430VE	TOTAL POPULA	TION	
	HALED FEMALES			43	35 201		4		151 172					
	TOTAL	• • • • • • • •	2+3	86 8	53 397		6		323		25	25	56	 -
							-							