
AN ABSTRACT OF THE THESIS OF

Derek M. Jackson for the degree of Master of Science in Electrical and Computer

Engineering presented on June 11, 2021.

Title: Multi-Objective Power Electronics System Design and Optimization, A

Machine Learning Approach

Abstract approved:

Yue Cao

The integration of power electronics within the energy and transportation sec-

tors enlists a demand for the rapid development of energy-efficient electrical sys-

tems. While model-based design and physics-based simulations are effective ways

to handle the multi-disciplinary and multi-objective (MO) design of these com-

plex systems, design exploration remains a time-consuming procedure. A recently

developed machine learning (ML) framework that outperforms other optimiza-

tion algorithms in both accuracy and speed is one promising solution. This thesis

presents the integration of the ML framework into the MO design process for power

electronic systems. The autonomy and efficiency of the ML approach enables de-

velopment of low-cost and energy-efficient systems by reducing the required time

and resources. A discussion of electrical system design, modeling, and optimization

theory will lay the groundwork for demonstrating the proposed ML approach.

©Copyright by Derek M. Jackson
June 11, 2021

All Rights Reserved

Multi-Objective Power Electronics System Design and
Optimization, A Machine Learning Approach

by

Derek M. Jackson

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented June 11, 2021
Commencement June 2021

Master of Science thesis of Derek M. Jackson presented on June 11, 2021.

APPROVED:

Major Professor, representing Electrical and Computer Engineering

Head of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my
thesis to any reader upon request.

Derek M. Jackson, Author

ACKNOWLEDGEMENTS

I would like to acknowledge all who have helped make this possible. I’d like to

thank my advisor Dr. Yue Cao for his guidance throughout these past two years.

Much appreciation is given to Alastair Thurlbeck of Oregon State University for

his efforts in the development of the UAV power system base models. Finally, I’d

like to acknowledge Syrine Belakaria and Dr. Janardhan Doppa of Washington

State University who developed the machine learning algorithm discussed in this

thesis.

TABLE OF CONTENTS

Page

1 Introduction . 1

2 Design and Optimization Process . 4

2.1 Problem Formulation . 5

2.2 Multiple Objectives and Pareto Optimality 6

2.3 Optimization Algorithms for System-Level Power System
Design . 7

2.4 Machine Learning: Bayesian Optimization 10
2.4.1 High-Level Design Process 11
2.4.2 Components of Bayesian Optimization 13
2.4.3 MESMOC . 18

2.5 Genetic Algorithms . 19
2.5.1 NSGA-II . 20

3 Power System Modeling . 23

3.1 High-Level Operation . 23

3.2 Static Models . 25
3.2.1 Motor . 25
3.2.2 Power Electronics . 29
3.2.3 Battery . 32

3.3 Dynamic Models . 33
3.3.1 Motor . 34
3.3.2 Power Electronics . 37
3.3.3 Battery . 37

3.4 Quasi-Dynamic Models . 38

4 UAV Simulations and Results . 41

4.1 Quasi-Dynamic Simulation . 41

4.2 Model-Fidelity Variance . 43

4.3 Pareto Front Comparison . 46

TABLE OF CONTENTS (Continued)

Page

5 Power System Optimization . 48

5.1 Model-ML Integration Issues . 48

5.2 Problem Statement . 50

5.3 Design Space Selection and Analysis 52

5.4 Optimization With MESMOC, PESMOC, and NSGA-II 55
5.4.1 Trial 1: 5-Dimensional Design Space 56
5.4.2 Trial 2: 6-Dimensional Design Space 59

5.5 Randomness of Genetic Algorithms 62

6 Conclusion . 65

Bibliography . 67

Appendices . 72

A MATLAB Code for Static Modeling 73

B Simulink Diagrams and MATLAB Code for Dynamic Model Subsystems 81

LIST OF FIGURES

Figure Page

2.1 One-dimensional problem with two objective functions (a) and re-
sulting Pareto front (b). 7

2.2 A high-level overview of the ML process for power system design
and optimization. 11

2.3 Illustration of how the acquisition function quantifies the usefulness
of evaluating a design candidate for objective function maximiza-
tion. In each iteration, the objective function is evaluated at the
acquisition function maximum. The process is repeated given the
posterior information [23]. 17

2.4 Example sets of Pareto non-domination ranks. Moving towards the
origin, each staircase line is dominated by the next line. 21

3.1 Block diagram of the static model UAV power system showing the
interfaces between each component model. 24

3.2 Mission-profile used for UAV simulations [27]. 25

3.3 Motor parameter perturbations based on the two design parameters
hstator and Nturns. 27

3.4 Hex inverter circuit. 29

3.5 Randle’s equivalent circuit for a three timescale battery model. All
variables are functions of SOC. 33

3.6 Block diagram of the dynamic model UAV power system showing
the interfaces between each component model. 34

3.7 PMSM equivalent circuits for the d-axis (top) and q-axis (bottom). 35

3.8 PI control loop. 36

3.9 Simulink model of the battery voltage drop from an RC parallel
network. 38

4.1 Quasi-dynamic simulation. 42

LIST OF FIGURES (Continued)

Figure Page

4.2 Simulation comparison between the static, dynamic, and quasi-dynamic
fidelity models. 45

4.3 Pareto front comparison between the static and dynamic models. . 47

5.1 Example of the soft limit imposed on the motor temperature, a
model critical constraint variable. 50

5.2 Percent of valid designs for each design parameter combination. Mo-
tor size parameters and battery size parameters are considered in-
dependently. 54

5.3 Trial 1: Pareto fronts and design space evaluated by brute force,
MESMOC, PESMOC and NSGA-II. 58

5.4 Trial 1: PHV through the design search for MESMOC, PESMOC
and three runs of NSGA-II. 58

5.5 Trial 2: Pareto fronts and design space evaluated by brute force,
MESMOC, and NSGA-II. 61

5.6 Trial 2: PHV through the design search for both MESMOC, PES-
MOC and three runs of NSGA-II. 62

5.7 Top left: the Pareto fronts of all 560 NSGA-II runs. Top right: a
subset of 20 runs of varying population size and all other options
fixed. Bottom left: a subset of 20 runs of varying crossover rate and
all other options fixed. Bottom right: a subset of 20 runs of varying
mutation rate and all other options fixed. 64

LIST OF TABLES

Table Page

4.1 Comparison of Static, Dynamic and Quasi-dynamic Simulation Re-
sults and Execution Time. 44

4.2 UAV Design Space for Static and Dynamic Model Pareto Front
Comparison. 47

5.1 UAV Design Space for Trials 1 and 2 in Section 5.4. 53

LIST OF APPENDIX FIGURES

Figure Page

B.1 PMSM Top Level. 87

B.2 PMSM Electrical and Rotational Mechanics. 88

B.3 PMSM Controls. 89

B.4 PMSM Thermal. 89

B.5 PMSM Efficiency. 90

B.6 DCAC Inverter Top Level. 91

B.7 DCAC Inverter Thermal. 92

B.8 Battery. 94

B.9 Per Motor/Inverter to System Conversion. 95

Chapter 1: Introduction

The integration of power electronics within the energy and transportation sec-

tors enlists a demand for rapid development of energy efficient electrical systems.

However, many prohibitive challenges arise in the design of such complex systems.

For example, electric vehicles, fast vehicle charging stations, and renewable energy

sources include many interacting subsystems that span across multiple disciplines

and requires collaboration between various domain experts. Design specifications

for individual subsystems also become dependent on the system as a whole. The

automotive and aerospace industries, who are both known for their large and com-

plicated systems, take a Multidisciplinary Design Optimization (MDO) approach

to development. The MDO process requires exploration of numerous design deci-

sions, which in the past required hardware prototyping – a time-consuming and

expensive procedure – and could often lead to a dead end. This iterative pro-

cess is accelerated when mathematical models representing real-physical systems

and behaviors are utilized to simulate a design’s effectiveness – a core element

of model-based design. Model-based design aims to fast track the development

process by efficiently breaking down the design problem in a hierarchical way and

employ computer simulations for design exploration [1]. Through efficient engi-

neering comes the realization of optimally low-cost and high-energy efficient power

electronic systems.

2

While simulations are more efficient than hardware prototyping, design explo-

ration remains a time-consuming procedure. To enable faster development times,

autonomous and efficient methods to explore optimal designs are needed. This

thesis focuses on formulating the design automation problem and increasing opti-

mization efficiency at the system level.

Optimization methods capable of efficiently searching through a large design

space reduce the need for human interference. Engineers make decisions that limit

the design space size, or otherwise it is computationally unreasonable to exhaus-

tively search a complete design space. By shifting the decision-making process to

an optimization algorithm, design automation can be achieved while also enabling

the efficient search of large design spaces. Hence, effective design automation is

dependent on the performance and efficiency of the optimization algorithm.

Recent theoretical advances in machine learning (ML) for optimization have

made it a promising candidate for effective design automation. The ML algo-

rithm explored in this thesis is capable of searching through a constraint-heavy

design space to efficiently discover Pareto optimal designs (optimal designs consid-

ering multiple conflicting objectives). Without loss of generality, this thesis targets

the design of a vertical-takeoff-landing (VTOL) heavy-duty all-electric unmanned

aerial vehicle (UAV) power system. However, the proposed ML-based power sys-

tem design framework is general and can be used for various complex applications,

such as more electric aircraft, on/off-road vehicles, ships, grid-connected buildings,

renewable energy systems, etc. Using a UAV system, this thesis demonstrates the

efficacy of the approach, especially the drastic reduction of the number of simula-

3

tion iterations towards converging to Pareto optimal designs. Experimental results

demonstrate the ML algorithms consistent performance over a Genetic Algorithm

(GA) and ML algorithm competitor in both Pareto front quality and convergence

rate, where in one trial the optimal Pareto front is discovered after exploring only

4% of the design space.

This thesis begins with a discussion of the design and optimization process

for electrical power systems. Following is a review of optimization algorithms

used for power electronic system level design. Chapter 2 ends with an in-depth

look into the proposed ML algorithm process as well as an overview of the family

of GAs. Chapter 3 defines the multi-physics power system models. Simulations

using these models are provided in Chapter 4. Finally, Chapter 5 demonstrates

system optimization using the novel ML algorithm and two other algorithms for

comparison, with a supplementary experiment to emphasize the benefits of the

novel ML algorithm.

4

Chapter 2: Design and Optimization Process

Model-based design begins at the system level, where high-level models of a pro-

posed architecture are developed. The selected optimal architecture and system

parameters then serve as the design specifications for each subsystem (e.g., battery

pack, DC-AC inverter, electric motor, etc.). An emphasis on system-level function-

ality is beneficial, as the overall performance of a large power system (e.g., electric

vehicles, more-electric aircraft, heavy-duty unmanned aerial vehicles) outweighs

the performance of an individual component. For example, selecting a state-of-

the-art power electronics converter may not be feasible due to size, weight, or

temperature constraints when integrated with the rest of the system.

System-level design relies on simulations to explore feasibility and performance,

especially early in the development process. Simulations require the development

of models with multi-physics domains (e.g., electrical, mechanical, thermal) that

run on multiple timescales (e.g., seconds, milli-seconds, and micro-seconds range)

depending on the required fidelity and can be computationally slow. For example,

a 300-minute flight in a more electric aircraft thermally integrated power sys-

tem simulation completes one design candidate in about 15 minutes [2]. Even if

simulation times were reduced by an order of magnitude, the high number of de-

sign candidates, typically in the order of thousands, can still slow down the total

design evaluation. Additionally, modeling uncertainties in design require Monte

5

Carlo simulations that further increase computation time [3]. Such simulations can

take a few hours to several days to explore the entire design space and are usually

tailored for a particular drive cycle or mission profile. When the mission profile is

replaced, such computations must start over, creating lengthy processes.

2.1 Problem Formulation

In engineering, a design is optimized for a specific set of objectives. Examples

of these objectives are efficiency or energy consumption, cost, reliability, and life-

time. These objectives are to either be maximized or minimized. The realization

of a designed physical system is also subject to a set of constraints that limits the

feasibility of certain designs. Constraints in electrical systems include voltage and

current ratings, temperature limits, and energy storage limits. Given these ob-

jective functions Fk(x), inequality Gi(x) and equality Hj(x) constraint functions,

and constraint limits gi and hj, the optimization problem is formally defined by

min
x

F1(x), ..., FK(x)

s.t. G1(x) ≤ g1

...

GI(x) ≤ gI

H1(x) = h1

...

HJ(x) = hJ

(2.1)

6

2.2 Multiple Objectives and Pareto Optimality

When considering the multidisciplinary design of electrical power systems, it is

often impossible to optimize all objectives at once due to their conflicting nature,

such as minimizing energy consumption, total weight, and cost. This leads to a

set of Pareto optimal solutions where an objective cannot be improved without

degrading another. This difference between single-objective optimization (SOO)

and multi-objective optimization (MOO) is important to distinguish. The goal of

SOO is to find the global optimum based on one criterion, whereas, with MOO, a

global optimum may no longer exist [4]. Individual objectives that have different

global optimizers introduce Pareto optimality, which significantly complicates the

optimization process.

An example of this increase in complexity is given in Fig. 2.1, which gives a one-

dimensional problem with two polynomial objectives functions to be minimized,

F1(x) and F2(x). The individual global optimizers for F1(x) and F2(x) are located

at x = 6.0 and x = 2.7, respectively. However, when Pareto optimality is intro-

duced, a global optimum no longer exists and instead becomes a range between

the two individual global optimizers (shaded region in Fig. 2.1(a)). The resulting

Pareto front, where no single solution can be considered better than another, is

shown in Fig. 2.1(b).

The two approaches to MOO are to either linearly combine objectives and treat

them as a SOO problem or apply metaheuristic methods [5]. The former approach

is less favorable as it can lead to aggressive exploitation behavior resulting in sub-

7

0 1 2 3 4 5 6 7 8 9 10

x

0

2

4

6

8

10

12

14

16

O
bj

ec
tiv

e
F

un
ct

io
ns

F
1
(x)

F
2
(x)

(a)

2 3 4 5 6 7 8 9

F
1
(x)

2

4

6

8

10

12

14

F
2
(x

)

Pareto Front

(b)

Figure 2.1: One-dimensional problem with two objective functions (a) and resulting
Pareto front (b).

optimal solutions [6]. Reducing a problem into a single objective also requires more

human intervention through prioritizing each objective. For the latter approach,

algorithms capable of true Pareto front optimization primarily use gradient-free

methods, such as genetic algorithms (GAs), particle swarm optimization (PSO),

ant colony optimization (ACO), and divided rectangle (DIRECT) [5][7].

2.3 Optimization Algorithms for System-Level Power System

Design

The challenges with power electronics system-level design can be attributed to the

following:

• Non-linear functionality

8

• Mixed-integer design parameters

• Non-convex objective space

• Often involves multiple objectives

• Essentially a black-box

Not all optimization algorithms perform well given these traits. Almost all

optimization algorithms utilize either deterministic, metaheuristic, or ML methods

[5]. Deterministic algorithms often resort to gradient-based methods which fail

to generate high-quality solutions with a non-convex objective space that have

multiple local optima. Therefore, the gradient-free methods of metaheuristic-based

optimization are widely used in the system-level design of electric power systems

[7][8]. Traditional optimization methods for electric power systems that consider

a single objective or a linear combination of multiple objectives also often use a

manual approach [9] or use weighted sums and linear approximations [10][11][12]

at the system level. As mentioned in the previous section, these approaches can

lead to sub-optimal solutions and can be impractical due to large design spaces.

Some popular metaheuristic methods are GA, ACO, and PSO. A Metaheuristic

method follows a set of rules based on various concepts (e.g., evolution, ant colonies,

etc.), which through trial and error have been found to be effective optimizers.

Metaheuristic methods have been used for the design of a solar-powered hybrid

airship [13], an all-electric vehicle [14], a solar power conversion system [15], and

hybrid electric vehicles [16][17], to name a few.

9

While these metaheuristic methods have shown to be somewhat effective op-

timizers, they suffer from the following limitations: 1) requiring a large number

of design evaluations, which may not be practical when design simulations are

computationally expensive; 2) suffering from convergence related challenges; 3)

not always able to uncover the optimal Pareto front [18]. Bayesian optimization

(BO) is a ML-based framework that has the potential to overcome the drawbacks

of GA, especially in reducing the number of expensive design simulations to dis-

cover (approximate) optimal Pareto solutions [19]. While ML models are typically

trained with previously generated data, BO instead builds statistical surrogate

(representative) models throughout the optimization process, using the knowledge

of prior design evaluations to improve these models continuously. These models are

employed to intelligently select the sequence of designs for evaluation by maximiz-

ing a utility function defined in terms of the learned statistical model’s prediction

and uncertainty. Optimizing the utility function is a cheaper alternative because

evaluating the surrogate models is often less time-consuming than evaluating the

physical models.

In the field of electrical engineering, BO algorithms have been used to optimize

a converter level design of a multi-output switched-capacitor voltage regulator and

achieved a 90% reduction in the number of simulations required to optimize de-

sign parameters [20]. However, there has been little research in developing power

electronic system-subsystem-oriented design automation tools using ML-based op-

timization. ML-enabled algorithms aim to further increase the speed of design it-

erations by efficiently searching through the design space to minimize the number

10

of computationally-expensive simulations to uncover high-quality Pareto designs.

The following section will delve into the functionality of BO with a focus on

a novel BO algorithm called MESMOC. Section 2.5 will provide and overview of

the widely popular family of GAs with a focus on the NSGA-II algorithm, as

understanding the GA will help to understand the benefits of BO.

2.4 Machine Learning: Bayesian Optimization

Developments in the past twenty years have made BO a strong candidate for

efficient global MOO, with notable early implementations being ParEGO [21] and

SMS-EGO [22]. The key idea of BO is to build statistical models of objective

functions to select the sequence of designs for evaluation based on probabilistic

calculations. The information inferred from the statistical models can predict a

designs performance before directly evaluating the objective functions. However,

this ability comes with a cost. Compared to other algorithms, such as GA, PSO,

and SA, the BO algorithm time complexity is large. Thus, for simple optimization

problems that have fast function evaluation times there is little benefit to using

BO. When function evaluations become time-expensive, BO becomes a strong

candidate for the optimization process.

A high-level overview of the BO process will first be given, keeping the ex-

planation generic to all multi-objective BO. The fundamental theories behind BO

will then be discussed. Finally, a novel BO algorithm called MESMOC will be

explained. MESMOC is later compared to an alternative BO algorithm called

11

PESMOC and the NSGA-II algorithm in Section 5.4.

2.4.1 High-Level Design Process

This overview is generalized to apply to all multi-objective BO algorithms. How-

ever, due to variations in the BO process, it most accurately reflects the MESMOC

algorithm which is discussed in-depth in Section 2.4.3.

Power System
Design Space

𝑋 ∶ 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏

Where 𝒙𝒊 is a design
variable vector

Multi-Physics
Power System Simulator

Evaluate the functions 𝑓 , … , 𝑓 at 𝒙

𝒙

Update prior
information and

statistical models:
𝐷 = 𝐷 ∪ 𝒙 , 𝒚

and
𝑴𝒇𝟏

, … , 𝑴𝒇𝑲

Initialize the
acquisition function:

𝛼 𝒙

Select 𝒙 that
maximizes the

acquisition function
𝒙 = max

𝒙
𝛼(𝒙)

𝒚 = {𝑦 , … , 𝑦 } Objective
evaluations

Selected design
for evaluation

Objective function 𝑓 (𝒙)

Pareto front of designs

O
bj

ec
tiv

e
fu

nc
tio

n
𝑓

(𝒙
)

Optimal Pareto
front 𝒀∗

Estimated Pareto
front 𝒀𝒕

Figure 2.2: A high-level overview of the ML process for power system design and
optimization.

A high-level overview of the proposed design process is presented in Fig. 2.2,

which will be referred to throughout this section. The design process begins by

constructing subsystem models of a electrical power system, which in this case

is the UAV to be used in a mission-based simulation. A mixed-fidelity modeling

(e.g., static, dynamic, quasi-dynamic) approach may be chosen, depending on the

12

design objectives and level of details. The ML algorithm discussed suits a variety

of modeling methods, as they are treated as black-box functions. This physical

modeling part is reflected in the upper box “multi-physics power system simulator”

in Fig. 2.2.

Next comes the design variable selection and evaluation process. A design

variable vector xt represents the set of parameters used in each power subsystem

model (e.g., battery pack voltage and capacity, motor quantity, etc.), where t

denotes the iteration number. The design space X, is the set of all possible design

variable vectors X : {x1,x2, ...,xn}, where n is the design space size, which means

all possible combinations of individual physical parameter choices. This design

space is defined upfront, as illustrated in the left box of Fig. 2.2. The vital role of

BO is to intelligently select the proper xt for the next iteration without the need to

go through all n design vectors, which will be discussed in the next paragraph and

in detail in Section 2.4.2. Referring to the upper side of Fig. 2.2, assuming an xt

is chosen, then the power system simulation yields an output vector, yt = F (xt),

where F is the black-box function defined by the physical models. To be specific,

givenK design objectives the power system simulation output is yt = {yf1 , ..., yfK}.

An objective function fk can be any design evaluation metric to be optimized such

as energy consumption, system weight, cost, or reliability. The latest input xt

and output yt joins a pool of all previous evaluated inputs and outputs Dt (i.e.,

Dt = Dt−1∪{xt,yt}). This entire pool, known as prior information, is used by the

ML algorithm to intelligently select a new design variable xt for the next iteration.

Inside the design variable selection box (center of Fig. 2.2), the proposed ML

13

process utilizes statistical models, represented as Mfk
, to learn the true mapping

function from the input parameters to the design objectives. The statistical models

provide (Gaussian) probability distributions, based on the prior information, of

the objective and constraint values for each design candidate in X. The statistical

models and prior information are then used to construct an acquisition function

αt(x). The acquisition function is a critical element of a BO algorithm. The

information αt(x) provides is what guides BO to intelligently select the next design

candidate xt to evaluate. The different types of acquisition functions are discussed

in Section 2.4.2. The next simulated design xt is selected by maximizing the

acquisition function which ensures the best design is evaluated (based on the αt(x)

criteria) in the next iteration.

Then this xt feeds to the next iteration of the multi-physics power system

simulator as discussed previously. After the design xt is evaluated, the results

yt are used to update statistical models Mfk
. The process is then repeated.

Throughout the optimization process, the estimated (known) Pareto front Yt is

continuously updated according to the new information and will approach the

optimal Pareto front Y ∗. After a specified number of iterations, the final Pareto

set is ready to review, as illustrated in the right side of Fig. 2.2.

2.4.2 Components of Bayesian Optimization

The three main components of BO are the statistical models, acquisition function,

and the acquisition optimization procedure. All three components are summarized

14

below.

Statistical Models: At the core of BO is the well-known Bayes’ theorem,

defined as

p(w|D) =
p(D|w)p(w)

p(D)
(2.2)

and where p(w) is the prior probability distribution of w, p(D|w) is the likelihood

of the collected data D given w, and p(D) is the distribution of D [19]. It states

that given the a priori information of p(w) and likelihood model p(D|w), a pos-

terior probability of w can be found. In terms of optimization, given the current

knowledge of the objective functions from previously evaluated designs and an

assumed function model, a prediction of the objective function values for a new

design can be made [23].

The most common statistical model used in BO is the Gaussian Process (GP).

This is because special properties of the GP allow for simplified calculations, such

as a closed form equation for the marginal and conditional likelihood [24]. By

assuming all points of an objective function f(·) are jointly distributed with zero

mean, the probability distribution is given as

f ∼ N (0, K) (2.3)

where f is a vector of all previously evaluated values of the objective function

{f1, ..., fn} and the desired objective function predictions {f̂1, ..., f̂i}, and K is the

covariance kernel matrix. Based on the minimum mean square estimator (mmse)

for joint Gaussian distributions, the posterior mean µ̂(x̂) and variance σ̂2(x̂) for a

15

point x̂ are given in (2.4) and (2.5), respectively [24].

µ̂(x̂) = k(x̂,x)k(x,x)−1f(x) (2.4)

σ̂2(x̂) = k(x̂, x̂)− k(x̂,x)k(x,x)−1k(x, x̂) (2.5)

In (2.4) and (2.5) is the covariance kernel function k(·, ·). This kernel function

is what defines the general shape or smoothness of the objective function model.

While a handful of kernel functions exist, the squared exponential covariance ker-

nel function is popular for design optimization because of the smoothness of the

objective functions [25]. With this GP-based statistical model, predictions of yet

to be evaluated designs can be made.

Acquisition Functions: The acquisition function is what varies the most be-

tween BO algorithms. The purpose of an acquisition function is to quantify the

usefulness of evaluating a design candidate. A good acquisition function carefully

balances the trade-off between exploration and exploitation to efficiently discover

optimal points without missing any points [23]. A common approach of an ac-

quisition function is to based it on improvement. This includes the probability of

improvement (PI) and expected improvement (EI) functions [25]. Another popular

approach utilizes an upper confidence bound (UCB) [19]. More advanced acqui-

sition functions take an information theory approach such as max-value entropy

search (MES) [26][27] and predictive entropy search (PES) [28]. While all types

mentioned have been effective in various applications, not all are capable of han-

dling multiple objectives. Even more restricting, only two acquisitions functions

16

(at the time of this writing) have been shown to handle multiple objectives and

constraints, namely MESMOC [27] and PESMOC [29]. MESMOC is discussed in

more detail in Section 2.4.3.

MESMOC and PESMOC both include additional steps to initialize the ac-

quisition function. Sample models of objective functions and constraints are first

constructed using Monte Carlo sampling techniques such as Thompson sampling

and Fourier features on the statistical models [30]. Sample Pareto fronts are then

generated using the sampled models with a traditional optimization algorithm like

DIRECT or GA. The sample Pareto fronts are used within the acquisition function

to quantify the expected entropy reduction from evaluating the design.

Optimization Procedure: The next candidate design is selected through

maximizing the acquisition function and is demonstrated in Fig. 2.3. In Fig. 2.3

the objective function (f(·)) and its statistical model are shown on top, with the

acquisition function (u(·) in this figure) shown on bottom of each plot. Given

the previously observed/evaluated points, the acquisition function quantifies the

usefulness of evaluating f(·) at any point. To maximize the acquisition function

will thus ensure the most information is gained from the next design simulation.

Optimization of the acquisition function can be performed with any global opti-

mization algorithm but a popular approach is to use the deterministic algorithm

DIRECT [6].

17

acquisition max

acquisition function (u(·))

observation (x)
objective fn (f(·))

t = 2

new observation (xt)

t = 3

posterior mean (µ(·))

posterior uncertainty
(µ(·)±σ(·))

t = 4

Figure 1: An example of using Bayesian optimization on a toy 1D design problem.
The figures show a Gaussian process (GP) approximation of the objective function over
four iterations of sampled values of the objective function. The figure also shows the
acquisition function in the lower shaded plots. The acquisition is high where the GP
predicts a high objective (exploitation) and where the prediction uncertainty is high
(exploration)—areas with both attributes are sampled first. Note that the area on the
far left remains unsampled, as while it has high uncertainty, it is (correctly) predicted
to offer little improvement over the highest observation.

The posterior captures our updated beliefs about the unknown objective func-
tion. One may also interpret this step of Bayesian optimization as estimating
the objective function with a surrogate function (also called a response sur-
face), described formally in §2.1 with the posterior mean function of a Gaussian
process.

To sample efficiently, Bayesian optimization uses an acquisition function to
determine the next location xt+1 ∈ A to sample. The decision represents an
automatic trade-off between exploration (where the objective function is very
uncertain) and exploitation (trying values of x where the objective function is
expected to be high). This optimization technique has the nice property that it
aims to minimize the number of objective function evaluations. Moreover, it is
likely to do well even in settings where the objective function has multiple local
maxima.

3

Figure 2.3: Illustration of how the acquisition function quantifies the usefulness
of evaluating a design candidate for objective function maximization. In each
iteration, the objective function is evaluated at the acquisition function maximum.
The process is repeated given the posterior information [23].

18

2.4.3 MESMOC

The novel ML-based optimization algorithm, namely Max-value Entropy Search for

Multi-objective Optimization with Constraints (MESMOC), is capable of search-

ing through a constraint-heavy design space to efficiently discover Pareto optimal

designs and first presented in [27]. Experiments using a prior version of the ML

algorithm without constraints, i.e., MESMO, consistently outperform state-of-the-

art algorithms at providing an accurate, computationally efficient, and robust op-

timization solver [6]. While the entire optimization procedure is called MESMOC,

it specifically refers to the acquisition function used in the more general BO pro-

cedure. The key idea is to build statistical models of both design objectives and

constraints and use the models to select the sequence of designs for evaluation based

on the information-theoretic principle of output space entropy search: maximize

the information gain about the optimal Pareto front.

The BO design process overview of Fig. 2.2 is modified in the following way

for MESMOC. The power system simulator output vector now becomes yt =

{yf1 , ..., yfK , yc1 , ..., ycK}. In addition to the K design objectives are L constraints

that the system must satisfy. A constraint function Cl is a metric that limits the

physical realization of a design such as component temperatures, battery state, or

spatial limits. Statistical models of the constraint functions, Mcl are created along

with the objective function models Mfk .

The acquisition function initialization is now expanded into a cheap MO prob-

lem in order to create sample Pareto fronts, as discussed in the previous section.

19

Approximations of the objectives (f̃1, ..., f̃K) and constraints (C̃1, ..., C̃L) are gen-

erated by sampling from these distributions via random Fourier features. Each

objective and constraint are often approximated multiple times to create a set of

sampled functions. With these sampled functions, a set of approximate Pareto

fronts Y ∗
s are generated by solving multiple cheap (fast) MOO problems with a

GA. This procedure is considered cheap because the sampled functions provide

quick evaluations compared to the power system simulation. The approximated

Pareto fronts Y ∗
s and previously evaluated designs Dt are then used to construct

the acquisition function α(x), which infers the potential entropy reduction about

the (real) optimal Pareto front Y ∗ for a given design x.

2.5 Genetic Algorithms

The family of GAs have been widely used for MO power system optimization, as

discussed previously in Section 2.3. The reason being that many GAs can han-

dle the mixed-integer design space and is capable of globally optimizing complex

black-box functions [31]. All GAs take a metaheuristic approach to optimization

that mimics the evolutionary process of natural selection. Instead of iteration-ally

progressing to the optimal solutions, they generation-ally converge to the optimal

solutions. During each generation a set of designs called a population produce

offspring and mutate in a similar fashion to real evolution. Whether a design pro-

duces offspring or mutates depends on their fitness value and stochastic processes.

Given the proper fitness metric and enough generations, the GA will often converge

20

to a set of optimal or near-optimal solutions.

GAs differentiate between each other based on the type of genetic operators

used. These operators are defined as selection, crossover, and mutation [31]. The

selection technique uses a fitness value and determines whether a design will repro-

duce. The crossover operator determines how two designs are combined to create

the offspring, sometimes including randomness as a factor. The third operator,

mutation, is what ensures design exploration occurs. Using stochastic processes,

some designs within the population will randomly change design parameters.

While the metaheuristics of a GA provides high-probability of converging to

well-performing designs, optimal solution (or Pareto front) convergence is not guar-

anteed. There is no intelligent component that is learning and searches for the

optimal solution.

In the following section the genetic operators and functionality of the famous

NSGA-II is discussed.

2.5.1 NSGA-II

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is a fast and eli-

tist multi-objective algorithm [32]. The concept of Pareto non-domination rank

partially quantifies the fitness of a certain design within the population. Given

two points, A and B, point A is non-dominated by point B if and only if point

A outperforms point B in at least one objective. The lower the rank, the more

points are dominated by that point. A visualization of Pareto ranking is shown in

21

Fig. 2.4, where the line closest to the origin has the lowest rank (for a minimization

problem). Each line represents a set of points which are non-dominated by each

other.

26.5 27 27.5 28 28.5 29 29.5

Objective Fn 1

1.9

1.95

2

2.05

2.1

2.15

O
bj

ec
tiv

e
F

n
2

Figure 2.4: Example sets of Pareto non-domination ranks. Moving towards the
origin, each staircase line is dominated by the next line.

What makes NSGA-II differ from other non-domination ranking GAs is the

crowding distance function [32]. The crowding distance represents the average

distance between a single point and all neighboring points in the objective space.

Giving a lower rank to points which have a larger crowding distance encourages a

more uniformly spread and diverse Pareto front.

NSGA-II uses the binary tournament selection technique to determine which

designs will be used to generate the offspring. The crossover and mutation oper-

ators used in the original NSGA-II implementation are single-point and bitwise,

22

respectively [32]. However, their functionality will not be discussed here.

23

Chapter 3: Power System Modeling

The ML algorithm must be integrated with a physical model, i.e., the domain

knowledge. A high-level static (or averaged) model and dynamic model are de-

veloped for each component in the power system, both including multiple physics

domains. The two models are developed to show how model fidelity can effect

the system level optimization process and results. Plenty of research exists on the

development and experimental validation of both static and dynamic models of

power subsystems. For example, a multi-timescale parametric electrical battery

model is described in [33], and [2][34][35] demonstrate the integration of multiple

subsystems for electric transportation power systems. Once the physical models

are combined to form the desired system architecture, the ML algorithm can treat

the simulation as a black-box function where the outputs are optimization objec-

tives and evaluation of constraints, and the inputs are the design parameters. Both

models have been implemented in MATLAB/Simulink and the corresponding code

and block diagrams can be found in Appendix A and B.

3.1 High-Level Operation

The UAV system architecture consists of a central Li-ion battery pack, hex-bridge

DC-AC inverters, permanent magnet synchronous machines (PMSM), and neces-

24

sary wiring, as shown in Fig. 3.1 for the static model. A set of variable design

parameters, such as the battery pack configuration and motor size, are included

in the system models. This set, known as the design space, will be searched by

the ML algorithm to find the optimal designs. The sweeping ranges of the design

parameters will be discussed in Section 5.3.

BatteryInverterMotorMission
Profile Data

𝑅𝑃𝑀, 𝑇𝑜𝑟𝑞𝑢𝑒
𝐼𝑏𝑎𝑡

𝑉𝑏𝑎𝑡

𝐼𝑝ℎ𝑎𝑠𝑒
, 𝑃𝑚𝑜𝑡

, 𝑚

𝑉𝑝ℎ𝑎𝑠𝑒

Figure 3.1: Block diagram of the static model UAV power system showing the
interfaces between each component model.

The mass of the aircraft frame and its cargo is held constant for all designs.

Additional mass is added to the total craft mass depending on the number of cells

in the battery pack, motor sizing, and the number of motors. Note that power

electronics mass is assumed constant for this study since the semiconductor weight

variation is relatively small. Other design details may be included, such as heat

sinks or filters. However, this thesis focuses on the development of the ML-physical

integrated framework rather than a high-fidelity model.

The system follows a pre-configured mission-profile during a simulation, such

as the 30-minute mission shown in Fig. 3.2 that represents a roundtrip flight. The

mission-profile is structured as a normalized thrust vs. time array with increments

of 1 second in the case of static modeling. Thrust values are scaled by the UAV’s

total mass and converted into propeller mechanical speed ωmech and torque τmech,

which serve as inputs to the motor model. Thrust to speed and torque conversion

25

Cruise CruiseHover

Takeoff Descend Ascend Landing

Figure 3.2: Mission-profile used for UAV simulations [27].

is achieved in the same manner as [34], where a propeller-dependent relation is

developed. The required motor power characteristics to achieve this mission profile

are back-propagated through the motor drive to the battery.

3.2 Static Models

3.2.1 Motor

The motors considered in this design illustration are fixed-phase fixed-pole (e.g.,

3φ 8-pole) surface-mounted PMSMs. A chosen reference motor provides initial

electrical and mechanical parameters. All potential motor designs are scaled from

this reference using two design parameters: 1) number of coil winding turns Nturns,

and 2) height of the stator structure hstator. These two physical parameters are

selected because of their influence over the electrical parameters. For example, the

26

formula for a single coil’s inductance,

L =
µN2

turns

l
· π
(
hstator

2

)2

(3.1)

is dependent on Nturns and hstator, where l is the length of the coil (governing motor

diameter) and µ is the magnetic permeability constant. For a given set of Nturns

and hstator, the thickest wire gauge in AWG for the stator coil is selected while still

satisfying the winding fill factor limit. In general, motor design is accomplished

by perturbing reference values of stator resistance, synchronous inductance, back

EMF constant, and mass using these two design parameters. Fig. 3.3 shows how

the motor parameters vary with these two design parameters. The model utilizes

the per-phase equivalent circuit of a PMSM motor for all electrical calculations.

The inputs and outputs of the motor static subsystem is given in

[Iphase,ma, Pm, Pm,loss, Tm,n+1] =

Motor(ωmech, τmech, Vin, Tm,n|Nmotors, Nturns, hstator)

(3.2)

where the inputs are mechanical speed ωmech, mechanical torque τmech, input volt-

age from the inverter Vin, and motor winding temperature Tm,n, all under various

combinations of number of motors Nmotors, Nturns, hstator. Not all the necessary

math will be covered in this thesis; however, an overview is provided to aid com-

prehension. For a detailed derivation of this model, see [34][35]. For the model

outputs, the RMS phase current can be found from the mechanical output power

27

500

600

55

700

40

800

Mass (g)

Turns (#)

23

Length (mm)

25

900

18
10 13

8

0

55

100

40

200

Turns (#)

23

Length (mm)

25

300

18
10 13

8

0

55

100

40

200

Ls (H)

Turns (#)

23

Length (mm)

300

25 18
10 13

8

0

55

0.005

40

0.01

Ke (V s/rad)

Turns (#)

23

Length (mm)

25

0.015

18
10 13

8

16

18

55

20

40

22

Winding Gauge (AWG)

Turns (#)

23

Length (mm)

25

24

18
10 13

8

0.55

55

0.6

40

0.65

Fill Factor (%)

Turns (#)

23

Length (mm)

25

0.7

18
10 13

8

Figure 3.3: Motor parameter perturbations based on the two design parameters
hstator and Nturns.

28

and loss using

Iphase =
ωmechτmech + Pmech,loss

3VEMF

(3.3)

The modulation index ma is given in

ma =

√
6Vt
Vin

(3.4)

but requires knowledge of the terminal voltage Vt given the back EMF voltage

VEMF and voltage drop due to motor impedance. While ma is calculated in the

motor model, it is utilized in the inverter subsystem, to be described in the fol-

lowing subsection. Pm represents the input power to the motor and is found with

(3.5), where Pm,loss, in (3.6), is the combined mechanical and electrical losses.

Pm = Pout + Pm,loss (3.5)

Pm,loss = 3I2phaseRs + Pmech,loss (3.6)

While the static model typically captures steady-state values only, the motor’s

thermal transients can be accurately captured at a seconds time-scale. Thus, a

dynamic thermal model is used. The differential equation of the motor winding’s

temperature gradient is represented by

mmcp
dTm
dt

= Pm,loss + hairAm(Ta − Tm) (3.7)

where mmcp is the motor’s thermal capacitance, hair is the heat transfer coefficient

29

based on the Nusselt number, Am is the surface area of the motor coils, Ta is the

ambient temperature, and Tm is the motor temperature.

3.2.2 Power Electronics

The power electronics motor drive is a 3φ hex-bridge DC-AC inverter consisting of

MOSFET/diode pairs (Fig. 3.4). For this given topology and use of static model-

ing, two practical design parameters are the MOSFET/diode selection Msw, and

the switching frequency fsw. Inverter modeling is based on [34], which uses an

averaged switching approach to calculate inverter losses and basic control require-

ments.

Inverter circuit model

𝒊𝒏

𝒂

𝒃

𝒄

Figure 3.4: Hex inverter circuit.

Similar to the motor subsystem, (3.8) shows the inputs and outputs of the

30

inverter subsystem, where VDC is the DC bus voltage, Iphase is a phase RMS current

of the motor stator, ma is the amplitude modulation index of the SPWM switching

scheme, Pm is the motor input power from (3.2), and Ti,n is the temperature of

the MOSFET/diode junction.

[Ibat, Pi,loss, Ti,n+1] =

Inverter(VDC , Iphase,ma, Pm, Ti,n|fsw,Msw)

(3.8)

In order to determine the left-hand-side outputs in (3.8), some intermediate

loss calculations are required. The conduction loss of a single MOSFET is found

with

Pc,m = 2I2phaseRon

[
1

8
+
ma cosφ

3π

]
(3.9)

which averages the time-varying duty cycle to approximate the losses with a drain-

source on-resistance Ron and Iphase [36]. Ron comes from the selected MOSFET

datasheet where curve-fitting is used to adjust the on-resistance given at Ti,n. The

MOSFET switching loss is given in

Psw,m = fsw(Eon + Eoff) (3.10)

which is broken up into turn-on energy (3.11) and turn-off energy (3.12) [37].

Approximating Eon and Eoff requires the reverse recovery charge Qrr and rising/-

31

falling current and voltage times obtained from the datasheet and [38].

Eon = VDC ·
√

2Iphase
π

· tri + tfu
2

+QrrVDC (3.11)

Eoff = VDC ·
√

2Iphase
π

· tru + tfi
2

(3.12)

Similar to the MOSFET conduction loss, diode conduction loss is given in (3.13)

but uses the forward voltage drop rather than the on-resistance. Qrr of the diode

is required to solve for the switching power loss using (3.14) and can be found

on the datasheet. It is worth noting these approximate loss calculations result in

worst case scenario values.

Pc,d = Von ·
√

2Iphase ·
[

1

2π
− ma cosφ

8

]
(3.13)

Psw,d =
QrrVDCfsw

4
(3.14)

Total power loss Pi,loss of the inverter is found by summing up (3.9)-(3.14) and

scaled with the number of switches. The required input current from the battery

Ibat is derived from the total power into the inverter and VDC .

An aluminum heatsink is assumed to attach all switching devices. The differ-

ential equation for the temperature gradient in the heatsink is

mscp
dTs
dt

=
Ti − Ts

Rth,jc +Rth,cs

+
Ta − Ts
Rth,sa

(3.15)

were mscp is the heatsink’s thermal capacitance, Rth,(·) are the thermal resistances,

32

and Ts, Ti, and Ta are the heatsink, MOSFET/Diode junction, and ambient tem-

peratures, respectively. Assuming zero thermal capacitance of the MOSFET/-

Diode, the instantaneous junction temperature Ti is found with

Ti = Ts + PlossRth,jc (3.16)

3.2.3 Battery

The Li-ion battery pack configuration consists of three variables: 1) number of

cells in series Nseries, 2) number of cells in parallel Nparallel, and 3) the battery cell

model dataset, Mbat. The number of cells in series determines the battery pack

voltage, whereas the number of cells in parallel indicates the pack’s Ah capacity.

As individual battery cell current can be determined using Nparallel, it is only

necessary to model a single battery cell. It is assumed that each cell is identical

and discharges at the same rate.

Battery cell modeling follows the work [33], where a Randle’s equivalent cir-

cuit is used (shown in Fig. 3.5). Battery internal voltage Vint is parametrically

computed as a function of state of charge (SOC) using (3.17) and experimentally

gathered coefficients (denoted by ak). Battery internal impedance (Rint and Xc,int)

are calculated in a similar manner as Vint using (3.17) but with different coefficients

ak.

Vint = exp

[
6∑

k=0

ak lnk SOC

]
(3.17)

. In [33], the ak parameters are found over different time scales of seconds, min-

33

utes, and hours. However, capacitive elements can be ignored for static modeling,

allowing simplification of internal resistances into a single constant Rint.

Randles equivalent circuit for battery𝒔

𝒔

𝒔𝒆𝒓𝒊𝒆𝒔

𝒃𝒂𝒕𝒐𝒄

𝒔𝒆𝒄

𝒔𝒆𝒄

𝒎𝒊𝒏

𝒎𝒊𝒏

𝒉𝒐𝒖𝒓

𝒉𝒐𝒖𝒓

Figure 3.5: Randle’s equivalent circuit for a three timescale battery model. All
variables are functions of SOC.

A function notation of the battery pack model is given in

[Vbat, SOCn+1, Pb,loss] =

Battery(SOCn, Ibat|Nseries, Nparallel,Mbat)

(3.18)

showing the subsystem interface. With known Vint and Rint and single-cell current

demand of the system Icell, battery terminal voltage Vbat and power loss Pb,loss are

found using Ohm’s law and I2R losses, respectively. After every time step of the

simulation, the SOC is adjusted given the energy consumption during the last

interval. Battery temperature change is not considered here.

3.3 Dynamic Models

The dynamic UAV model shares the same architecture as the static model. An

overview of the dynamic model is provided in Fig. 3.6. Considering subsystem

34

interfaces, the only difference between the static and dynamic models is the motor

model output and inverter input, which will be discussed in the following subsec-

tion.

Figure 3.6: Block diagram of the dynamic model UAV power system showing the
interfaces between each component model.

3.3.1 Motor

The dynamic motor model is capable of capturing the more realistic behavior of

the motor. While the static motor model assumed a zero error between the mission

profile and the actual speed and torque, the dynamic model introduces error and

35

motor controls. Dq pmsm equivalent circuits

𝒔 𝒒

𝒒𝒆 𝒎 𝒅 𝒅

𝒒

𝒔 𝒅

𝒅𝒆 𝒒 𝒒

𝒅

Figure 3.7: PMSM equivalent circuits for the d-axis (top) and q-axis (bottom).

The dynamic motor is modeled in the amplitude-invariant dq-reference frame

(the 0-axis is omitted because balanced operation is assumed). The equivalent cir-

cuits are given in Fig. 3.7. The accompanying dq-phase terminal voltage equations

are

vd = Rsid + Ld
did
dt
− ωeLqiq (3.19)

vq = Rsiq + Lq
diq
dt

+ ωe(λm + Ldid) (3.20)

where Rs is the equivalent per-phase resistance, Ld and Lq are the dq phase induc-

tances, ωe is the electrical frequency (in rad/s), and λm is the permanent magnet

flux. As this model is for a surface-mounted PMSM, Ld = Lq.

36

The rotational mechanics is modeled with (3.21) where the electromagnetic

torque Tem is found with (3.22). M1 and M2 are mechanical friction losses and

were experimentally derived in [35]. TL represents the load torque from the mission

profile, J is the motors rotational inertia, ωm is the mechanical speed, and p

represents the number of poles of the motor.

Tem − TL −M1 −M2ωm = J
dωm

dt
(3.21)

Tem =
3

2

p

2
λmiq (3.22)

The motor is controlled using Field-Oriented Control (FOC) technique [35].

FOC utilizes two PI controllers for independent dq current control and one PI

controller for speed control. A Simulink implementation of the dynamic motor

model can be found in Appendix B.2.

PI control loop

𝒑

𝒊

Figure 3.8: PI control loop.

37

3.3.2 Power Electronics

Inverter input current Idcac along with power losses are calculated the same as the

static inverter model. As switching behavior is not of interest or importantance

for system level design, the presented average inverter model in Section 3.2.2 is

sufficient for the dynamic model as well. The Iphase RMS current input given in

(3.8) is calculated from the dynamic motor id and iq currents using

Iphase =
1√
2

√
i2d + i2q (3.23)

A Simulink implementation of the dynamic inverter model can be found in Ap-

pendix B.3.

3.3.3 Battery

When considering the dynamics of the UAV power system, the battery capacitive

elements (of the Randles equivalent circuit of Fig. 3.5) must be included in the

model. The terminal voltage is now calculated with (3.24), where each VZ(·) is

the voltage drop from the corresponding time-scale RC parallel network given in

(3.25) and modeled in the frequency domain as Fig. 3.9. The open circuit voltage

Vint, resistances and capacitances are all derived from (3.17). SOC is calculated

the same as the static model. A Simulink implementation of the dynamic battery

38

model can be found in Appendix B.4.

Vterm = Vint − VR(ser) − VZ(sec) − VZ(min) − VZ(hour) (3.24)

VZ(·) = Icell

(
R(·)

sR(·)C(·) + 1

)
(3.25)

Figure 3.9: Simulink model of the battery voltage drop from an RC parallel net-
work.

3.4 Quasi-Dynamic Models

A quasi-dynamic model of the UAV power system is also developed. It combines

the computational efficiency of a static model with the transient accuracy of the

dynamic model. A purely dynamic model simulates at a smaller time-scale and

often includes more calculations than a static model, which results in more accurate

results but also longer execution times. However, the benefits of dynamic modeling

only become apparent during acceleration and deceleration stages of flight. In fact,

there is little difference between the static and dynamic models during the periods

of constant thrust as the dynamic model will quickly settle to a steady-state.

The similar behavior of static and dynamic models during periods of constant

39

thrust can be leveraged in a quasi-dynamic modeling approach. In a quasi-dynamic

model, only the transitions between thrust commands are dynamically modeled

with the majority of the flight mission statically modeled. Unfortunately, there are

implementation challenges involved when transitioning between the two models.

Within the dynamic model exists many state variables that are impertinent

to the system behavior. Some examples of state variables include integral blocks

within the motor’s electrical/mechanical dynamics and controls (see Fig. 3.8), and

within the battery impedance calculations (see Fig. 3.9). If a simulation begins

in the middle of a mission flight, inaccurate current, voltage, and temperature

measurements will be recorded. A simple workaround is to provide an initialization

period for the dynamic UAV system by beginning the simulation a few seconds prior

to when system information is captured. However, this does not solve all state

issues. In the case of the motor, very large error measurements within the speed

and current PI controls produce a large current transient if no initial condition

is defined for the state variables. This is undesirable when maximum current is

a constraint variable. On dynamic simulation start-up, PI control errors can be

minimized by configuring the motors initial speed to the commanded motor speed.

The combination of initializing the motors speed and an initialization period is

sufficient to mitigate any motor measurement inaccuracies.

In the battery model, the voltage drop inaccuracy in each time-scale RC parallel

network cannot be resolved with an initialization period of a couple seconds. This

is because it takes more than 3 time-constants for a RC network to reach its steady-

state value since the time constants are on the seconds, minutes and hours scale.

40

However, the RC network states can be approximated using

VZ(·) = VR(·)

[
1− exp

(
−tsim
R(·)C(·)

)]
(3.26)

where VR(·) is the corresponding static model voltage drop and tsim is the current

simulation time. Battery input current and SOC is held constant during the

initialization period to mitigate deviation from the true system state.

41

Chapter 4: UAV Simulations and Results

All power system models were developed in MATLAB/Simulink using the default

library packages. The static models solely used MATLAB while the dynamic

models were built in Simulink. The quasi-dynamic model ran with MATLAB code

with calls to the Simulink dynamic models. The code and block diagrams can be

found in Appendix A and B.

4.1 Quasi-Dynamic Simulation

This section demonstrates a UAV power system quasi-dynamic simulation, which

captures the steady-state performance of the static model along with the transient

performance of the dynamic model. Therefore, a complete demonstration of the

standalone static and dynamic simulations will not be given. A comparison be-

tween all three fidelity models is discussed in the following section. Evaluation of

this design in terms of performance and constraint violations will not be discussed

here, and instead is included in Section 5.

The simulation follows the mission profile given in Fig. 3.2 with the following

design parameters: Nseries = 12, Nparallel = 26, Nmotors = 8, hstator = 10mm,

Nturns = 60, and fsw = 30kHz. Simulation results that characterize UAV perfor-

mance is given in Fig 4.1. Almost all of these measurements are used as objectives

42

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

40

60

80

100
S

O
C

 (
%

)
SOC

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

2

4

6

8

10

12

P
ow

er
 (

kW
)

Battery Power

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
30

35

40

45

50

V
ol

ta
ge

 (
V

)

Battery Voltage

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

5

10

15

20

25

30

C
ur

re
nt

 (
A

)

Inverter Phase Current (RMS)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0.2
0.4
0.6
0.8

1
1.2
1.4

M
od

. I
nd

ex

Modulation Index

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time (min)

20

40

60

80

100

120

T
em

p
(C

)

System Temperatures

Inverter
Motor

Figure 4.1: Quasi-dynamic simulation.

43

and constraints for system optimization in Chapter 5. The general increase in

modulation index throughout the mission is correlated with the decrease in bat-

tery voltage, which itself is a function of SOC. Between each stage of flight (e.g.,

takeoff, cruising, hovering, etc.) exists an acceleration/deceleration period that

cause a sudden increase (or decrease) in power and can be observed as impulse-like

spikes in Fig 4.1. The high current needed for acceleration causes a drop in battery

voltage due to the internal impedance. There is also a sudden change in inverter

temperature during the acceleration periods. As the inverter’s thermal model as-

sumes zero thermal capacitance of each MOSFET junction, a sudden increase in

power results in a sudden increase in temperature, as seen in (3.16). This behavior

is not observed with motor temperature because the entire motor is modeled as a

lumped thermal capacitor.

4.2 Model-Fidelity Variance

When considering what level of fidelity is necessary/sufficient for system design

optimization, it helps to understand how the results vary between them. A com-

parison between the static, dynamic, and quasi-dynamic models is provided herein.

This comparison uses a single UAV design (Nseries = 12, Nparallel = 26, Nmotors = 8,

hstator = 10mm, Nturns = 60, and fsw = 30kHz); but note that similar differences

are observed for any set of design parameters. Table 4.1 summarizes the simu-

lation results that characterize UAV performance and are also used as objectives

and constraints for optimization in Chapter 5. Two values for minimum Vcell and

44

maximum Icell are provided in Table 4.1 for the quasi-dynamic model since it uses

both static and dynamic models.

Table 4.1: Comparison of Static, Dynamic and Quasi-dynamic Simulation Results
and Execution Time.

Measurement Static Dynamic Quasi-dynamic
Etotal (kWh) 1.9627 1.9546 1.9618

Total DOD (%) 60.72 60.47 60.47

min Vcell (V) 3.0047 2.6170 3.0071/2.6148

max Icell (A) 5.6645 12.7830 5.6612/12.7915

max ma 1.0799 1.2951 1.0790/1.2960

max Ti (◦C) 91.70 104.52 105.46

max Tm (◦C) 66.68 67.43 66.89

Approx. Execution Time (s): 0.2 1620 90

In summary, minimal differences are observed between all models for total

energy Etotal, total DOD, and maximum motor temperature Tm. The discrepancy

between static and dynamic models is apparent with the battery cell voltage Vcell,

battery cell current Icell, modulation index ma and inverter temperature Ti. This is

primarily due to the spike in power when the UAV is accelerating. This transient is

not captured in the static model, which instead transitions to the steady-state load

power after acceleration. Fig. 4.2 provides an example of this difference between

the static, dynamic and quasi-dynamic models. During acceleration, a large inrush

of current into the motors cause a drastic voltage drop of the battery due to its

internal impedance. To supply the acceleration current, the inverter’s ma must

increase to compensate. This current spike occurs for less than a second and the

models quickly stabilize to the same level.

45

958 960 962 964 966

Time (sec)

30

32

34

36

38

40

42

44

V
ol

ta
ge

 (
V

)
Battery Voltage

Static
Dynamic
Quasi-dynamic

958 959 960 961

Time (sec)

8

10

12

14

16

18

20

22

24

26

C
ur

re
nt

 (
A

)

Inverter Phase Current (RMS)

Static
Dynamic
Quasi-dynamic

Figure 4.2: Simulation comparison between the static, dynamic, and quasi-
dynamic fidelity models.

A larger variation in battery voltage after acceleration can be observed in

Fig. 4.2. The capacitive elements within the dynamic battery model requires time

before the voltage reaches its steady-state value, which the static model immedi-

ately calculates. Due to the slow voltage response time present in a real battery

and captured by the dynamic battery model, the static model actually represents

the worst case scenario battery voltage during periods of no acceleration. However,

the static model also does not capture the voltage drop caused from acceleration.

This is one of the benefits of a quasi-dynamic simulation, where both voltages can

be measured. The lack of voltage drop with the static model isn’t necessarily a

disadvantage, either. While batteries have a minimum cut-off voltage, they typi-

cally can operate lower than the cut-off point for short periods of time. The short

duration of the voltage drop in Fig. 4.2 thus should be considered separate to the

steady-state minimum battery voltage captured by the static model.

46

The approximate execution time of each fidelity simulation is also provided in

Table 4.1. Based on these results, the static simulation runs 8100 times faster than

the dynamic simulation and 450 times faster than the quasi-dynamic simulation.

The quasi-dynamic simulation is 18 times faster than the dynamic simulation. The

minimal difference in UAV performance between the three models clearly highlights

the advantage of using the static or quasi-dynamic simulation – especially for

system level design and optimization where there are many designs to be explored.

However, system dynamics are necessary when controls are considered, as apparent

with ma.

4.3 Pareto Front Comparison

The higher fidelity of the dynamic models allow for more design constraints and

performance measurement accuracy than the static models, as discussed in Sec-

tion 4.2. This will actually result in an alternate Pareto front. To demonstrate

the differences, an exhaustive search of the design space of Table 4.2 was per-

formed using the static model simulation. Since the dynamic model only increases

the constraints on a particular design, it’s only necessary to simulate designs that

passed all constraints with the static model. Note that these results use a slightly

different design space and power system models than the results in Section 5.4.

Fig. 4.3 shows the valid design and Pareto fronts for both the static and dynamic

modeling simulations. Of the 5,443 designs that passed all static constraints, only

2,234 designs passed the dynamic constraints. Additionally, all designs considered

47

Table 4.2: UAV Design Space for Static and Dynamic Model Pareto Front Com-
parison.

Design Parameter Range
Battery cells in series, Nseries (#) [8:18]

Battery cells in parallel, Nparallel (#) [10:42]

Quantity of motors, Nmotors (#) [6:14]

Height of stator structure, hstator (mm) [8:26]

Motor stator winding turns, Nturns (#) [10:60]

Pareto optimal using the static model did not pass the constraints of the dynamic

model. The two primary contributing factors are the increased modulation index

and inverter temperature caused by the acceleration stages of flight.

26.5 27 27.5 28 28.5 29 29.5 30

Mass (kg)

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

T
ot

al
 E

ne
rg

y
(k

W
h)

Static model
Dynamic model
Static Pareto front
Dynamic Pareto front

Figure 4.3: Pareto front comparison between the static and dynamic models.

48

Chapter 5: Power System Optimization

5.1 Model-ML Integration Issues

The physical modeling approach described in Chapter 3 requires a proper interface

with the ML algorithm. A major challenge of model-ML integration is how to han-

dle failed design cases, as the failed designs still provide useful learning information

although the simulations face non-preferred conditions. In order to maintain con-

sistent results, simulations must continue running regardless of whether the design

succeeds the mission under constraints or not. Consistency in results is essential,

since MESMOC (and BO in general) learns from every simulation. However, sim-

ulations are subject to instability when the vehicle is operating at extreme limits.

For example, the motor winding temperature is especially susceptible to positive

feedback and eventual simulation instability.

Simulation instability can be prevented by suppressing model critical variables,

which are often constraint variables (temperature, voltage, current, etc.), when a

specified limit is exceeded. A soft limit approach still allows differentiation between

healthy and ill designs by preserving information about the extremity of constraint

violations. A hyperbolic function, such as the tanh trigonometric function, realizes

this soft limit by asymptotically approaching a value. When a variable’s constraint

is to be violated, a hyperbolic function suppresses the output through variable

49

saturation. For the example of motor winding temperature, applying a soft limit

when the temperature exceeds its physical limit reduces further positive feedback

by saturating the calculated temperature. An example of temperature suppression

is shown in Fig. 5.1. This provides more information to the ML algorithm than if

a hard ceiling limit is used, where various failed system designs would report the

same motor temperature that would be indistinguishable by the ML program.

In the case of battery energy depletion, the SOC is reset to the simulation’s

initial SOC. This is preferred over terminating a simulation at the minimum al-

lowed SOC, as the reported total energy consumed will likely be much lower than

a design that completes the mission. A depth of discharge (DOD) variable keeps

track of the total amount of battery discharged throughout multiple SOC resets.

By resetting the SOC, the total energy consumed will more accurately represent

the necessary energy to complete the mission for a specific design.

The modifications mentioned above are only important for integrating with

ML optimization algorithms. Other algorithms like NSGA-II have no intelligent

component involved in selecting a design for evaluation (where it’s actually ran-

domized). Additionally, how much a constraint is violated is irrelevent as NSGA-II

takes a binary approach to handling constraints (a design does or does not violate

a constraint).

50

0 50 100 150 200 250 300 350 400 450 500

Real Temp (C)

0

100

200

300

400

500

S
im

ul
at

ed
 T

em
p

(C
)

Motor Temperature

Temperature Constraint

Soft-limit Enabled

Constrained variable
Constrained variable with soft limit

Figure 5.1: Example of the soft limit imposed on the motor temperature, a model
critical constraint variable.

5.2 Problem Statement

With the power system models constructed and the design variables, objectives and

constraints identified, the optimization process is ready to begin. In this chapter,

the proposed ML MOO framework is demonstrated using the VTOL heavy-duty

all-electric UAV architecture outlined in Chapter 3. The optimization problem for

51

this UAV design is formally defined as

min
x

Etotal,mUAV

s.t. DOD ≤ 0.75

Vbat ≥ 3.0V

Tm ≤ 130◦C

Ti ≤ 125◦C

ma ≤ 1.155

(5.1)

This case study chooses two optimization objectives: minimizing the energy

consumption throughout the mission, Etotal, and minimizing the UAV’s mass,

mUAV . These two objectives are common practice in industrial designs; however,

users may choose others such as reliability and cost. The two selected objectives

contain mutual tradeoffs, since heavier components (e.g., motors) tend to be more

efficient, however, the extra weight must consume additional energy. On the other

hand, many constraints apply to the realistic design candidates; and five repre-

sentative constraints serve for demonstration purpose in this thesis. In particular,

Li-ion batteries have a typical operating range between 20% and 95% SOC, thus

a maximum DOD of 75%. A minimum battery cell terminal voltage, Vbat, is im-

posed to prevent cell damages [36]. The maximum motor winding temperature,

Tm, limits thermal degradation of wire lamination and is based on the NEMA insu-

lation class B rating [39]. Semiconductor device failure is avoided with a maximum

inverter temperature, Ti, that is set marginally lower than the datasheet informa-

52

tion [36]. A maximum modulation index, ma, is set to avoid excessive unwanted

distortion that can occur under a SPWM switching scheme [40]. At the end of a

simulation, the constraint and objective variables are returned to MESMOC, as

described in Fig. 2.2 in Section 2.4.

5.3 Design Space Selection and Analysis

Selecting the range of design parameters (together called the design space) to

be considered during optimization can have a strong impact on the optimization

process effectiveness. A large design space immediately requires more simulation

executions to find the Pareto optimal designs. Additionally, when constraints are

considered, selecting too large of a design space often results in more constraint-

violating designs rather than Pareto optimal candidates. Some optimization al-

gorithms do not handle constraint-heavy spaces well. Inversely, too small of a

design space results in the risk of excluding a Pareto optimal design. Some design

parameters are easier to select bounds for than others. For example, an upper

bound for the battery or system voltage can be set based on device ratings such

as the switches in a power converter. Prior experience of the design engineers may

also be used to select the bounds; however, it may include risks of excluding good

design candidates. Another method to determine the design space is to perform an

exhaustive search with a large parameter step size (i.e, test 20V, 40V, 60V instead

of 20V, 25V, 30V,..., 60V) or a lower-fidelity model with low computational time

(such as static vs. dynamic) as discussed in [8].

53

The design space used for UAV power system optimization in the following

section is provided in Table 5.1 and includes battery sizing (Nseries, Nparallel), motor

count (Nmotors), motor sizing (hstator, Nturns), and inverter switching frequency

(fsw). These bounds were determined from prior simulations and maximum voltage

ratings of the MOSFET/Diode of the inverter. This method of boundary selection

is sufficient for demonstration purpose in this thesis, while real-life selections also

consider the specific application, the physical model’s input/output details, and

the designer’s confidence interval. The computational overhead of using the brute

force method to determine the design space range is ignored in this thesis because

the same space is used for each algorithm tested.

Table 5.1: UAV Design Space for Trials 1 and 2 in Section 5.4.

Design Parameter Range
Battery cells in series, Nseries (#) [10:18]

Battery cells in parallel, Nparallel (#) [16:70]

Quantity of motors, Nmotors (#) [6:10]

Height of stator structure, hstator (mm) [8:26]

Motor stator winding turns, Nturns (#) [10:55]

Inverter switching frequency, fsw (kHz) [10:40]

The given 30-minute mission profile of Fig. 3.2 and the design space defined

in Table 5.1 results in a highly constrained design space. To be precise, only 20%

of designs passed all constraints listed in (5.1) (with fsw omitted from the design

space). A visualization of the constraint-heavy design space is given in Fig. 5.2

where the percent of valid designs given a motor size or battery size are shown.

In the best case for a single motor size, only 45% of designs passed all constraints

54

due to the other selected parameters. Similarly, the best case battery size had 55%

valid designs.

Valid Design Space (%)

8 10 12 14 16 18 20 22 24 26

Stator Length (mm)

10

15

20

25

30

35

40

45

50

55

S
ta

to
r

W
in

di
ng

s
(#

)

Motor Parameters

10 12 14 16 18

Battery Modules in Series (#)

16

20

24

28

32

36

40

44

48

52

56

60

64

68

B
at

te
ry

 C
el

ls
 p

er
 M

od
ul

e
(#

)

Battery Parameters

0

5

10

15

20

25

30

35

40

45

50

55

Figure 5.2: Percent of valid designs for each design parameter combination. Motor
size parameters and battery size parameters are considered independently.

Fig. 5.2 also shows that 13 (out of 100) motor sizes and 33 (out of 140) battery

sizes never resulted in a valid design. This demonstrates how the valid design

space is non-convex. For most (if not all) optimization algorithms the input design

space must be a hyperrectangle and convex, which means the bounds for a single

design parameter cannot vary based on other design parameters. For example, to

omit from the design space the battery size of Nseries = 18 and Nparallel = 68,

all designs with Nseries = 18 or Nparallel = 68 must be removed from the design

space. This would result in the removal of many potentially optimal designs. It is

possible to define a (non-)linear constraint that limits the battery size to certain

55

combinations, equivalent to a limit of total stored energy. However, in black-box

optimization such as with this UAV power system, prior knowledge of required

energy is not available.

5.4 Optimization With MESMOC, PESMOC, and NSGA-II

This section contains results from a paper [41] to appear in the IEEE Transaction of

Transportation Electrification journal and was written, in part, by Syrine Belakaria

of Washington State University.

MESMOC is compared to the known constrained GA, namely NSGA-II, and

to the BO method PESMOC. Each algorithm’s performance is evaluated using

the Pareto hypervolume (PHV) metric, which is a commonly employed metric to

measure the quality of a given Pareto front [42]. Given the randomness in the

NSGA-II process, the algorithm is ran several times and only the Pareto front

of the best performing run and the hypervolume curves of three different runs

are reported. MESMOC and PESMOC utilize an open-source BO library called

Spearmint, and the PyGMO library is used for the NSGA-II algorithm in the cheap

MO solver. The Platypus library was used for the NSGA-II trials and configured

for the same total number of design evaluations as MESMOC and PESMOC. The

matlab.engine library enables MATLAB function and script calls in the Python

environment.

Each optimization algorithm is applied to the design process of a UAV power

system in two trials to evaluate performance. The first trial approaches the power

56

system design with five parameters, while the second trial adds an additional pa-

rameter to explore the scalability of the ML algorithm under the same computing

assumption. The design space for both trials, comprised of each parameter and

the range, is summarized in Table 5.1.

5.4.1 Trial 1: 5-Dimensional Design Space

The design space for this trial consists of 42,000 design combinations using five

parameters: Nseries, Nparallel, Nmotors, Nturns, and hstator, indicated in Table 5.1.

Based on the constrained optimization problem given in (5.1), brute force, MES-

MOC, PESMOC and NSGA-II methods were run. Fig. 5.3 shows all the points

evaluated by brute force, MESMOC, PESMOC and NSGA-II, and the Pareto

fronts of all algorithms. The figure indicates each point as a potential design with

respect to the two objective functions (energy minimization and mass minimiza-

tion), omitting points that do not pass all constraints. Note that the sporadic

empty spaces and discrete boundaries are due to a few factors: 1) the battery

parameters, Nseries and Nparallel, cause discrete changes to the objectives; 2) the

inherent difference in the energy requirement and vehicle mass between n-motored

UAVs creates clusters of points within the objective space; and 3) many designs

in the design space are not valid due to the defined constraints and are thus not

shown.

MESMOC uncovered all six points in the optimal Pareto front. This was

achieved with 1,736 design evaluations, equating to 4% of the entire design space

57

searched. In comparison, PESMOC and NSGA-II did not find any of the optimal

Pareto optimal points under the same number of design evaluations. Additionally,

given that the constraints are defined as black-box, it is important to evaluate the

ability of each algorithm to select inputs that satisfy the constraints. PESMOC

and NSGA-II experiments show poor performance with percentages of valid points

selection of 4% and 39%, respectively. For MESMOC, 95% of the selected inputs

are valid.

While Fig. 5.3 provides a visual aid to compare the Pareto fronts to the entire

design space, it does not show the convergence behavior and progress of the al-

gorithms. Hence the PHV metric, measuring the hypervolume of the best Pareto

front throughout the search, is shown in Fig. 5.4. The graph depicts how each

algorithm’s hypervolume approaches the volume of the optimal PHV (constant

line shown in brown), which is calculated from the brute force search results. Note

that an iteration for NSGA-II is equivalent to a design evaluation. A single gener-

ation for NSGA-II will consist of many iterations (based on population size). From

Fig. 5.4, not only does MESMOC successfully discover the optimal Pareto front,

it also converges faster than PESMOC and NSGA-II do to their best front. This

experiment highlights MESMOC’s ability to reduce design evaluations while also

maintaining search accuracy.

58

26.5 27 27.5 28 28.5 29 29.5 30 30.5 31

Mass (kg)

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

T
ot

al
 E

ne
rg

y
(k

W
h)

Brute force
MESMOC
NSGAII-1
PESMOC
Pareto Front (MESMOC)
Pareto Front (NSGAII-1)

Figure 5.3: Trial 1: Pareto fronts and design space evaluated by brute force,
MESMOC, PESMOC and NSGA-II.

Figure 5.4: Trial 1: PHV through the design search for MESMOC, PESMOC and
three runs of NSGA-II.

59

5.4.2 Trial 2: 6-Dimensional Design Space

The terminating point for MOO algorithms such as GA or BO is a continuing

challenge. When the optimal Pareto front is unknown, there is no deterministic

method to generate a termination point. As such, it is common to interpret the

given Pareto front after a set number of iterations as the most optimal. Algorithms

that provide an accurate and fast convergence rate are then highly favorable, as

the quality of optimization is dependent on the Pareto front at the end of a search.

By quadrupling the design space size while retaining the same number of design

evaluations, we can compare the non-optimal Pareto front quality of the proposed

MESMOC to that of PESMOC and NSGA-II. To achieve this increase in design

space size, the inverter switching frequency, fsw, becomes a design variable. All

other parameters and their ranges remain the same as in Trial 1. Thus, the total

number of design combinations increases to 168,000.

With the same constrained optimization problem as Trial 1, MESMOC un-

covered two of the five points on the Pareto front while PESMOC and NSGA-II

did not discover any Pareto optimal points. Fig. 5.5 shows the Pareto fronts of

all algorithms, along with the optimal Pareto front. It can be noted that while

MESMOC does not find the entire optimal Pareto front, it offers a strong final

Pareto front. Moreover, MESMOC maintains its high performance at selecting

80% of valid designs while the performance of PESMOC and NSGA-II degrades

even further to selecting only 1% and 15% of valid points, respectively.

A PHV plot throughout the search with MESMOC, PESMOC and NSGA-II is

60

provided in Fig. 5.6, showing that the Pareto front found by MESMOC has a PHV

quantitatively close to the optimal PHV. Compared to the PHV in Fig. 5.4 from

Trial 1, MESMOC’s PHV curve in Trial 2 grows much slower and contains more

extended periods of zero improvement. During the perceived periods of no im-

provement, MESMOC is still selecting designs to simulate that will maximize the

information gain with respect to the optimal Pareto front. The intelligent compo-

nent of MESMOC to continually improve the statistical model of the design space

with respect to the objective functions guarantees continual Pareto front improve-

ment. However, the increased design space size requires more design evaluations

to build a robust statistical model of the objective functions. Before MESMOC

was terminated at 1,750 designs, the PHV was still increasing. On the other hand,

NSGA-II depends on random ‘mutations’ of its current set of designs for PHV

improvement. Because of the GA’s inherent randomness, there is no guarantee

it will converge on the optimal Pareto front. The enhanced performance of the

output-space entropy search used in MESMOC is made clear when compared to

PESMOC, another BO algorithm.

While MESMOC can drastically reduce the number of design evaluations com-

pared to brute force, PESMOC and NSGA-II, it comes at a cost. The MESMOC

acquisition function relies on the previously evaluated design parameters and ob-

jective values. Thus, the computational cost of selecting the next design to simulate

increases with respect to the iteration number. To put it into context, MESMOC

consumes an average (throughout the optimization process) of 60 seconds per it-

eration (excluding physical model’s simulation time) for Trial 1 and an average

61

of 68 seconds per iteration for Trial 2. In terms of scalability, the time per it-

eration should increase linearly with the increase of number of constraints and

objectives, experimentally shown in [6] with MESMO. This computational cost in-

crease is part of the motivation behind the parallel implementation of MESMOC.

Regardless, the performance of MESMOC is highly favorable, as there is a trade-

off between computation time and optimization accuracy for systems with a large

design space. In the end, the drastic reduction in design evaluations outweighs the

computation gain in parameter selection per iteration. The benefit is especially

obvious when simulating complex physical models (inside the black-box) where

each physical simulation iteration takes much time.

26.5 27 27.5 28 28.5 29 29.5 30 30.5

Mass (kg)

1.9

1.95

2

2.05

2.1

2.15

2.2

T
ot

al
 E

ne
rg

y
(k

W
h)

Brute force
MESMOC
NSGAII-1
PESMOC
Pareto Front (MESMOC)
Pareto Front (NSGAII-1)
Pareto Front (PESMOC)
Optimal Pareto Front

Figure 5.5: Trial 2: Pareto fronts and design space evaluated by brute force,
MESMOC, and NSGA-II.

62

Figure 5.6: Trial 2: PHV through the design search for both MESMOC, PESMOC
and three runs of NSGA-II.

5.5 Randomness of Genetic Algorithms

This section further demonstrates the randomness and variability of the GA, specif-

ically NSGA-II. In Section 5.4 NSGA-II used a fixed population size for each run.

As discussed in Section 2.5, there are multiple options that can be configured even

for a specific GA (like NSGA-II). The population size, crossover rate, and muta-

tion rate are varied and 5 trials are run for each combination, totalling 560 runs.

The same design space is used as Trial 2 of Section 5.4. For this demonstration

a maximum of 1,800 design simulations are run, to closely match the results of

Trial 2.

All NSGA-II runs were implemented using the MATLAB multi-objective GA

library within the Global Optimization Toolbox. Custom creation and mutation

functions were written because the default MATLAB functions do not allow multi-

63

objective optimization of a discrete design space. The custom creation function

implemented latin hypercube sampling for the initial population. The bitwise

mutation operator of the original NSGA-II implementation was adapted to work

with an integer vector-based genome.

The Pareto fronts of all 560 NSGA-II runs and subset plots are given in Fig. 5.7.

The top right plot used population sizes of {25, 50, 100, 200}. The bottom left plot

used crossover rates of {0.2, 0.4, 0.6, 0.8}. The bottom right plot used mutation

rates of {0.2, 0.4, 0.6, 0.8}. Each option combination ran 5 times to show the ran-

domness of the stochastic process.

While the true Pareto front was almost or completely discovered during some

NSGA-II runs, the majority of runs did not uncover the true front. Specific GA

options and the stochastic nature of the algorithm all contributed to the variability

in results. There isn’t the option to test a range of options and see which give the

best results when evaluating a design incurs a large time expense. Therefore, an

algorithm that is consistent in it’s performance regardless of the variable options

can greatly reduce the guess work of the optimization process.

64

26.5 27 27.5 28 28.5 29 29.5

Mass (kg)

1.9

1.95

2

2.05

2.1

2.15

2.2

T
ot

al
 E

ne
rg

y
(k

W
h)

560 Runs with Varying Parameters

26.5 27 27.5 28 28.5 29 29.5

Mass (kg)

1.9

1.95

2

2.05

2.1

2.15

2.2

T
ot

al
 E

ne
rg

y
(k

W
h)

Varying Population Size

26.5 27 27.5 28 28.5 29 29.5

Mass (kg)

1.9

1.95

2

2.05

2.1

2.15

2.2

T
ot

al
 E

ne
rg

y
(k

W
h)

Varying Crossover Rate

26.5 27 27.5 28 28.5 29 29.5

Mass (kg)

1.9

1.95

2

2.05

2.1

2.15

2.2

T
ot

al
 E

ne
rg

y
(k

W
h)

Varying Mutation Rate

Figure 5.7: Top left: the Pareto fronts of all 560 NSGA-II runs. Top right: a subset
of 20 runs of varying population size and all other options fixed. Bottom left: a
subset of 20 runs of varying crossover rate and all other options fixed. Bottom
right: a subset of 20 runs of varying mutation rate and all other options fixed.

65

Chapter 6: Conclusion

While the modern day methods of model-based design and physics-based sim-

ulations make the engineering task more manageable, the developmental process

remains a time-consuming venture. To keep up with the growing demand for power

electronic integrated systems found within the energy and transportation sectors,

a machine learning approach to accelerate the design and optimization process is

presented. The approach aims to automate the multi-objective design exploration

process by utilizing an efficient and high-performance optimization algorithm and

multi-physics power system modeling. Design of a VTOL heavy-duty all-electric

UAV serves as a demonstration.

A review of the design and optimization process emphasizes the challenges with

multi-objective power electronic system design. The concept of Pareto optimality

and a non-convex, constraint-heavy design space being two contributing factors. A

large component to design and optimization involves developing the multi-physics

power system models that are used to evaluate a designs performance. The mod-

eling theory and approach accompanied by simulation demonstrations lays out the

required electrical domain knowledge. This includes model-algorithm integration

issues that must be addressed for effective optimization. Design parameter and

constraint selection requires the electrical domain expertise as well.

The nature of electrical system optimization greatly limits algorithm options.

66

Metaheuristics are often employed when exhaustive or deterministic methods are

not an option due to limitations in computational resources. However, these meta-

heuristic methods involve stochastic processes that reduce their reliability and can

result in slow convergence rates. Bayesian optimization (BO), a machine learn-

ing framework, takes an intelligent approach to design exploration and removes

the stochastic component. By utilizing statistical models which map the design

space to the objective space, the design space is efficiently searched to discover

the Pareto optimal points. A novel BO algorithm, called MESMOC, is shown to

outperform two optimization algorithm competitors in both Pareto front quality

and convergence rates.

In this thesis, the machine learning optimization approach utilizes static mod-

eling techniques for the UAV power system simulation. Future work will inves-

tigate the use of higher-fidelity models for design and optimization. Additional

design constraints and more accurate performance metrics become available with

increased fidelity, such as the dynamic and quasi-dynamic models discussed, but in-

creases simulation times. A bi-level optimization approach, where multiple fidelity

models are used, could integrate well within the machine learning framework. How

the model fidelity and ML influence each other is an interesting topic.

67

Bibliography

[1] R. Aarenstrup, Managing Model-Based Design. Natick, MA: The MathWorks,
Inc., 2015.

[2] Y. Cao, M. A. Williams, B. J. Kearbey, A. T. Smith, P. T. Krein, and A. G.
Alleyne, “20x-real time modeling and simulation of more electric aircraft ther-
mally integrated electrical power systems,” in Proc. IEEE International Conf.
Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles
(ESARS-ITEC), pp. 1–6, 2016.

[3] A. Papageorgiou, M. Tarkian, K. Amadori, and J. Ölvander, “Multidisci-
plinary design optimization of aerial vehicles: A review of recent advance-
ments,” International Journal of Aerospace Engineering, vol. 2018, pp. 1–21,
2018.

[4] A. Ghosh and S. Dehuri, “Evolutionary algorithms for multi-criterion op-
timization: A survey,” International Journal of Computing & Information
Sciences, vol. 2, pp. 38–57, 2004.

[5] S. Zhao, F. Blaabjerg, and H. Wang, “An overview of artificial intelligence
applications for power electronics,” IEEE Transactions on Power Electronics,
vol. 36, pp. 4633–4658, 2021.

[6] S. Belakaria, A. Deshwal, and J. R. Doppa, “Max-value entropy search for
multi-objective bayesian optimization,” in Proc. Advances in Neural Informa-
tion Processing Systems (NeurIPS) Conf., pp. 7823–7833, 2019.

[7] X. Hu., J. Han, X. Tang, and X. Lin, “Powertrain design and control in
electrified vehicles: A critical review,” IEEE Transactions on Transportation
Electrification, pp. 1–19, 2021.

[8] E. Silvas, T. Hofman, N. Murgovski, L. F. P. Etman, and M. Steinbuch,
“Review of optimization strategies for system-level design in hybrid electric
vehicles,” IEEE Transactions on Vehicular Technology, vol. 66, no. 1, pp. 57–
70, 2017.

68

[9] Z. Jiang, H. Huang, X. Jia, and J. Zhang, “Model-based design and real-time
testing of commercial more-electric aircraft power systems,” in Proc. IEEE
National Aerospace and Electronics Conf., pp. 28–35, 2018.

[10] N. Rashidi, Q. Wang, R. Burgos, C. J. Roy, and D. Boroyevich, “Multi-
objective design and optimization of power electronics converters with uncer-
tainty quantification – part i: Parametric uncertainty,” IEEE Transactions
on Power Electronics, vol. 36, no. 2, pp. 1463–1474, 2020.

[11] N. Rashidi, Q. Wang, R. Burgos, C. J. Roy, and D. Boroyevich, “Multi-
objective design and optimization of power electronics converters with uncer-
tainty quantification – part ii: Model-form uncertainty,” IEEE Transactions
on Power Electronics, vol. 36, no. 2, pp. 1441–1450, 2020.

[12] E. Vinot, R. Trigui, B. Jeanneret, J. Scordia, and F. Badin, “Hevs comparison
and components sizing using dynamic programming,” in Proc. IEEE Vehicle
Power and Propulsion Conf., pp. 314–321, 2007.

[13] L. Zhang, M. Lv, W. Zhu, H. Du, J. Meng, and J. Li, “Mission-based multi-
disciplinary optimization of solar-powered hybrid airship,” Journal of Energy
Conversion and Management, vol. 185, pp. 44–54, 2019.

[14] N. B. Hadj, J. K. Kammoun, and R. Neji, “Application of evolutionary algo-
rithm for triobjective optimization: Electric vehicle,” Int. Journal of Energy
Optimization and Engineering (IJEOE), IGI Global, vol. 3, no. 3, pp. 1–19,
2014.

[15] M. D’Antonio, C. Shi, B. Wu, and A. Khaligh, “Design and optimization of a
solar power conversion system for space applications,” IEEE Transactions on
Industry Applications, vol. 55, no. 3, pp. 2310–2319, 2019.

[16] C. Desai and S. S. Williamson, “Optimal design of a parallel hybrid elec-
tric vehicle using multi-objective genetic algorithms,” in Proc. IEEE Vehicle
Power and Propulsion Conf., pp. 871–876, 2009.

[17] X. Wu, B. Cao, J. Wen, and Z. Wang, “Application of particle swarm opti-
mization for component sizes in parallel hybrid electric vehicles,” in Proc.
IEEE Congress on Evolutionary Computation (IEEE World Congress on
Computational Intelligence), pp. 2874–2878, 2008.

69

[18] M. P. Mark Hauschild, “An introduction and survey of estimation of distri-
bution algorithms,” Journal of Swarm and Evolutionary Computation, vol. 1,
no. 3, pp. 111–128, 2011.

[19] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas, “Taking
the human out of the loop: A review of bayesian optimization,” Proceedings
of the IEEE, vol. 104, no. 1, pp. 148–175, 2016.

[20] Z. Zhou, S. Belakaria, A. Deshwal, W. Honga, J. R. Doppa, P. Pande, and
D. Heo, “Design of multi-output switched-capacitor voltage regulator via ma-
chine learning,” in Proc. IEEE/ACM Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 502–507, 2020.

[21] J. Knowles, “Parego: a hybrid algorithm with on-line landscape approxima-
tion for expensive multiobjective optimization problems,” IEEE Transactions
on Evolutionary Computation, vol. 10, no. 1, pp. 50–66, 2006.

[22] W. Ponweiser, T. Wagner, D. Biermann, and M. Vincze, “Multiobjective op-
timization on a limited budget of evaluations using model-assisted s-metric se-
lection,” in Proc. Parallel Problem Solving from Nature, pp. 784–794, Springer
Berlin Heidelberg, 2008.

[23] E. Brochu, V. M. Cora, and N. de Freitas, “A tutorial on bayesian optimiza-
tion of expensive cost functions, with application to active user modeling and
hierarchical reinforcement learning,” Tech. Rep. UBC TR-2009-23, Dept. of
Computer Science, University of British Columbia, 2009.

[24] C. Williams and C. Rasmussen, Gaussian processes for machine learning.
Cambridge, MA, USA: MIT Press, 2006.

[25] J. R. Gardner, M. J. Kusner, Z. Xu, K. Q. Weinberger, and J. P. Cunning-
ham, “Bayesian optimization with inequality constraints,” in Proc. of the
31st International Conference on International Conf. on Machine Learning,
pp. 937–945, 2014.

[26] Z. Wang and S. Jegelka, “Max-value entropy search for efficient bayesian opti-
mization,” in Proc. International Conf. on Machine Learning (ICML), pp. 1–
12, 2017.

70

[27] D. Jackson, S. Belakaria, Y. Cao, J. Doppa, and X. Lu, “Machine learning
enabled fast multi-objective optimization for electrified aviation power sys-
tem design,” in Proc. IEEE Energy Conversion Congress & Expo (ECCE),
pp. 6385–6390, 2020.

[28] J. M. Hernández-Lobato, M. A. Gelbert, and et al, “Predictive entropy search
for bayesian optimization with unknown constraints,” in Proc. International
Conf. on Machine Learning, vol. 37, pp. 1699–1707, 2015.

[29] E. C. Garrido-Merchán and D. Hernández-Lobato, “Predictive entropy search
for multi-objective bayesian optimization with constraints,” Neurocomputing,
vol. 361, pp. 50–68, 2019.

[30] A. Rahimi and B. Recht, “Random features for large-scale kernel machines,” in
Proc. Advances in Neural Information Processing Systems (NeurIPS) Conf.,
pp. 1177–1184, 2008.

[31] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algorithm:
past, present, and future,” Multimedia Tools and Applications, vol. 80, no. 5,
pp. 8091–8126, 2021.

[32] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multi-
objective genetic algorithm: Nsga-ii,” IEEE Transactions on Evolutionary
Computation, vol. 6, no. 2, pp. 182–197, 2002.

[33] Y. Cao, R. C. Kroeze, and P. T. Krein, “Multi-timescale parametric electrical
battery model for use in dynamic electric vehicle simulations,” IEEE Trans.
Transportation Electrification, vol. 2, no. 4, pp. 432–442, 2016.

[34] A. Thurlbeck and Y. Cao, “Analysis and modeling of uav power system archi-
tectures,” in Proc. IEEE Transportation Electrification Conf. (ITEC), pp. 1–8,
2019.

[35] Y. Cao and A. Thurlbeck, “Heavy-duty uav electric propulsion architectures
and multi-timescale multi-physics modeling,” in Proc. AIAA/IEEE Electric
Aircraft Technologies Symposium (EATS), pp. 1–13, 2019.

[36] J. Hayes and G. Goodarzi, Electric Powertrain: energy systems, power elec-
tronics and drives for hybrid, electric and fuel cell vehicles. Hoboken, NJ:
John Wiley & Sons, 2018.

71

[37] D. Graovac and M. Purschel, “Mosfet power losses calculation using the data-
sheet parameters,” 2006. Infineon Application Note.

[38] T. A. Lipo, Introduction to AC Machine Design. Hoboken, NJ: John Wiley
& Sons, 2017.

[39] Engineering ToolBox, “Nema insulation classes,” 2004.
www.engineeringtoolbox.com/nema-insulation-classes-d 734.html.

[40] P. T. Krein, Elements of Power Electronics, 2nd ed. New York: Oxford
University Press, 2015.

[41] D. Jackson, S. Belakaria, Y. Cao, J. Doppa, and X. Lu, “Machine learn-
ing enabled design automation and multi-objective optimization for electric
transportation power systems.” Submitted to IEEE Transactions on Trans-
portation Electrification.

[42] E. Zitzler, Evolutionary algorithms for multiobjective optimization: Methods
and applications. PhD thesis, ETH Zurich, Switzerland, 1999.

72

APPENDICES

73

Appendix A: MATLAB Code for Static Modeling

A.1 Simulation Main

1 function [Total_Energy,Final_DOD,Mass,Vmin_cell,Imax_cell,...

2 Max_Temp_Mot,Max_Temp_ESC,Max_Mod_Index,simdata]...

3 = run_sim_static(bs, bp, mn, msl, msw, fsw, mssn)

4 % This function runs the UAV flight mission simulation given the design

5 % parameters.

6

7 %% Setup

8 %get params

9 [bat, esc, motor, sys] = sys_params(bs, bp, mn, msl, msw, fsw);

10

11 %init loss collection

12 bat_wire = 0;

13 bat_cell = 0;

14 esc_wire = 0;

15 esc_fet = 0;

16 mot_wire = 0;

17 mot_mech = 0;

18

19 I_cell = 0;

20

21 %initialize results

22 Total_Energy = 0; %total energy consumed, in J

23 Final_DOD = 0; %final DOD of battery

24 Mass = sys.mass;

25 Max_Temp_Mot = 0;

26 Max_Temp_ESC = 0;

27 Max_Mod_Index = 0;

28 Vmin_cell = 4.2; %init max cell voltage

29 Imax_cell = 0; %init max cell current

30

31 %Calculate RPM and Torque

32 time = mssn.time;

33

34 %removes non-integer values for the static sim

35 toRemove = fix(time)~=time;

74

36 time(toRemove) = [];

37 timeStep = mssn.timeStep;

38 Thrust = mssn.Thrust*sys.mass; %total thrust, kgf

39 Thrust(toRemove) = [];

40

41 Thrust_m = (Thrust/sys.motor_num)*9.805; %thrust per motor (N)

42 Torque = motor.prop_a*(Thrust/sys.motor_num); %torque per motor (N-m)

43 RPM = motor.prop_b*(Thrust/sys.motor_num).^(motor.prop_c); %per motor (RPM)

44

45

46

47 %% Run Simulation

48 SOC_init = 0.95;

49 SOC = SOC_init; %initial State of Charge

50 temp_mot(1) = 25; %initial temp of motor, starting at ambient temp

51 temp_esc(1) = 25; %initial temp of ESC, starting at ambient temp

52 temp_s(1) = 25; %initial temp of heat sinks in the ESC

53

54 %compute initial state of battery

55 [V_bat(1), eff_bat(1), Ploss_bat(1), Ploss_bat2esc(1),...

56 Pout_bat(1), SOC(1)] = Battery(SOC,.001,timeStep,bat,sys.motor_num);

57 V_bus(1) = V_bat(1);

58

59 for i = time/timeStep

60 %reset SOC if below 20%

61 if SOC(i+1) < .2

62 Final_DOD = Final_DOD + SOC_init - 0.2; %update DOD

63 SOC(i+1) = SOC_init;

64 end

65

66 [Iphase(i+1), ma(i+1), Pin_mot(i+1), Ploss_mot(i+1), eff_mot(i+1),...

67 temp_mot(i+2), Pout_mot(i+1), mot_loss]...

68 = Motor(RPM(i+1), Torque(i+1),Thrust_m(i+1), V_bus(i+1),...

69 temp_mot(i+1),timeStep, motor);

70

71 V_bus(i+2) = V_bat(i+1) - Iphase(i+1)*bat.R_w*2; %wire voltage drop

72

73 [eff_esc(i+1), Iin_esc(i+1), Ploss_esc(i+1), Ploss_esc2mot(i+1),...

74 temp_esc(i+2), temp_s(i+2), esc_loss] = ESC(V_bus(i+1),Iphase(i+1),...

75 ma(i+1),Pin_mot(i+1),temp_esc(i+1),temp_s(i+1),timeStep,esc);

76

77 [V_bat(i+2), eff_bat(i+1), Ploss_bat(i+1),Ploss_bat2esc(i+1),...

78 Pout_bat(i+1), SOC(i+2), bat_data] = Battery(SOC(i+1),Iin_esc(i+1),...

79 timeStep,bat,sys.motor_num);

80 %battery() will find the next iterations Vbat and SOC using the

75

81 %current iteration’s SOC and I_out.

82

83

84 %% Update constraint vars

85 Vmin_cell = min(Vmin_cell, bat_data.Vcell);

86 Imax_cell = max(Imax_cell,bat_data.I_cell);

87 Icell(i+1) = bat_data.I_cell;

88

89 end

90

91 %% Gather up results

92 Psystem = (Ploss_bat + Pout_bat); %total power of system

93 Ploss_system = Ploss_bat + (Ploss_esc + Ploss_mot +...

94 Ploss_bat2esc + Ploss_esc2mot)*sys.motor_num; %total power loss

95

96 Total_Energy = sum(Psystem*timeStep); %total energy consumed, in J

97 Final_DOD = Final_DOD + SOC_init - SOC(end); %final SOC of battery

98 Max_Temp_Mot = max(temp_mot); %max temp of motor

99 Max_Temp_ESC = max(temp_esc); %max temp of ESC

100 Max_Mod_Index = max(ma); %max modulation index

101

102 simdata.Loss_Energy = sum(Ploss_system*timeStep); %Total energy lost, in J

103 simdata.Efficiency = (Total_Energy - simdata.Loss_Energy)/Total_Energy;

104

105 end

A.2 Motor

1 function [Iphase, ma, P_in, Ploss, Eff, temp_new, P_out, mot_loss]...

2 = Motor(RPM, Torque, Thrust, Vin, temp, time_step, motor)

3

4 w_m = RPM * pi/30; %angular mechanical speed (rad/s)

5 w_e = w_m * motor.polePair; %electrical frequency (rad/s)

6 EMF = motor.Ke*w_m*motor.polePair; %back emf

7 if EMF == 0

8 EMF = 0.001; %avoid div 0 when w_m = 0

9 end

10

11 %% Intermediate Power calculations

12 P_out = w_m*Torque; %power output of motor

13 Ploss_mech = motor.Mech2*(w_m^2) + motor.Mech1*w_m; %mechanical power loss

14 P_motor = P_out + Ploss_mech; %intermediate total power into motor

15

16 %% Electrical calculations

76

17

18 %temperature adjusted resistance, 0.00393 is constant for copper in ohm/C

19 Rs = motor.Rs*(1 + 0.00393*(temp-25));

20

21 Iphase = P_motor/(3*EMF); %single phase current

22 Vterm = ((EMF^4 + 2*(EMF^2)*(P_motor/3)*Rs + ((P_motor/3)^2)*Rs^2 ...

23 + ((P_motor/3)^2)*(w_e*motor.Ls)^2)^(1/2))/EMF; %terminal voltage

24 ma = (Vterm*sqrt(2)*sqrt(3))/Vin; %modulation index

25

26 %make sure mod index does not go to zero

27 if (ma < 0.001)

28 ma = 0.001;

29 end

30

31 %% Final Power and Efficiency calculations

32 Ploss_elec = Rs*(Iphase^2)*3; %electrical loss for all 3 phases

33 P_in = P_motor + Ploss_elec; %total power in

34 Eff = P_out/P_in; %efficiency of motor

35 Ploss = Ploss_elec + Ploss_mech;

36

37 %% Temperature calculations

38 rho = motor.rho; %air density, kg/m^3

39 D_m = motor.D_m; %diameter of motor, m

40 L = motor.Length; %height of motor, m

41 u_air = motor.u_air; %absolute air viscosity, N*s/m^2

42 k = motor.k; %thermal conductivity of air, W/mk

43

44 A_m = motor.A_m; %area of heat transfer of motor

45 A_a = motor.A_a; %area of air moving around motor

46 v_a = sqrt(Thrust/(rho*A_a))*motor.fracoef;%vel of air relative to motor.

47

48 Re = rho*v_a*D_m/u_air; %Reynolds number for air

49 Pr = motor.Pr; %Prandtl number for air

50 Nu = 0.3 + ((0.62*sqrt(Re)*Pr^.333)/((1 + (0.4/Pr)^.666)^.25))*...

51 (1 + (Re/282000)^.625)^.8; %Nusselt number

52 h_air = Nu*k/L; %heat transfer coefficient

53 T_amb = 25; %ambient temperature

54

55 if (time_step == 0)

56 %steady-state temp calc

57 temp_new = T_amb + Ploss/(A_m*h_air); %temp of motor for next iteration

58 else

59 %dynamic temp calc

60 t_delta = (Ploss + A_m*h_air*(T_amb - temp))*...

61 time_step/(motor.mass*motor.c_p);

77

62 temp_new = temp + t_delta;

63 end

64

65 %start suppressing temp values when getting too hot

66 %max temp will be 250C, well above constraint.

67 %a scaled tanh curve is used.

68 var_a = 201.5; %variable to tune tanh curve

69 if temp_new > 175

70 %temp of motor for next iteration

71 temp_new = 250*(exp(temp_new/var_a)-exp(-temp_new/var_a))/...

72 (exp(temp_new/var_a)+exp(-temp_new/var_a));

73 end

74

75 end

A.3 Power Electronics

1 function [Efficiency, Iin, Ploss, Ploss_w, Tj_new ,Ts_new, esc_data]...

2 = ESC(Vin,Iphase,ma,Pmotor,Tj,Ts,time_step,esc)

3 %calculates efficiency and required input current of an individual ESC

4

5 if (Tj > 140)

6 Tj = 140; %max out at 140C

7 end

8 Ron_ds = interp1(esc.Ta_lu, esc.Rdson_lu,Tj); %MOSFET on resistance

9 Von_d = esc.Von_d; %diode forward voltage drop

10

11 Paux = 6; %measured auxillary power losses at no loads

12 I_o = sqrt(2)*Iphase; %peak phase current

13 I_dc = I_o/pi; %DC equivalent current

14

15

16 %% Switching times

17 tfu1 = (Vin - Ron_ds*I_dc)*esc.Ron_g*esc.Cgd1/(esc.V_g-esc.V_miller);

18 tfu2 = (Vin - Ron_ds*I_dc)*esc.Ron_g*esc.Cgd2/(esc.V_g-esc.V_miller);

19 tfu = (tfu1 + tfu2)/2;

20 tru1 = (Vin - Ron_ds*I_dc)*esc.Roff_g*esc.Cgd1/(esc.V_miller);

21 tru2 = (Vin - Ron_ds*I_dc)*esc.Roff_g*esc.Cgd2/(esc.V_miller);

22 tru = (tru1 + tru2)/2;

23

24 %% Mosfet Losses

25 Pcond_m = Ron_ds*(I_o^2)*(1/8 + (ma*esc.DisFac/(3*pi))); %conduction loss

26 %Using Qrr of diode because it will dominate over mosfets internal diode

27 Eon_m = Vin*I_dc*((esc.tri+tfu)/2) + esc.Qrr*Vin; %turn on energy cost

78

28 Eoff_m = Vin*I_dc*((tru+esc.tfi)/2); %turn off energy cost

29 Pswitch_m = (Eon_m + Eoff_m) * esc.f_switch; %average switching power

30

31 %% Diode Losses

32 Pcond_d = Von_d*I_o*(1/(2*pi) - (ma*esc.DisFac)/8); %diode conduction loss

33 if Pcond_d < 0

34 Pcond_d = 0;

35 end

36 Eon_d = (esc.Qrr*Vin)/4; %turn on energy of diode

37 Pon_d = Eon_d*esc.f_switch; %average diode turn on power

38

39 %% ESC Power and Efficiency calculations

40 %power loss from mosfet/diode

41 Ploss_m = (Pcond_m + Pswitch_m + Pcond_d + Pon_d)*6;

42 %power loss from 3 phase wires from esc to motors

43 Ploss_w = (Iphase^2)*esc.R_w * 3;

44 Ploss = Ploss_m + Paux;

45

46 P_in = Pmotor + Ploss + Ploss_w; %total power going into ESC

47 Efficiency = Pmotor/P_in;

48

49 %% Input current

50 Iin = P_in/Vin;

51

52 %% Temperature calculations

53

54 T_amb = 25; %ambient temperature

55

56 if (time_step == 0)

57 %steady-state temp calc

58 Ts_delta = (Tj-Ts)/esc.Rth_jc + (T_amb-Ts)/esc.Rth_sa;

59 Ts_new = Ts + Ts_delta;

60 Tj_new = Ts_new + Ploss*esc.Rth_jc; %new temp

61 else

62 %dynamic temp calc

63 Ts_delta = ((Tj-Ts)/esc.Rth_jc + (T_amb-Ts)/esc.Rth_sa)*...

64 time_step/(esc.hs_mass*esc.cp_al);

65 Ts_new = Ts + Ts_delta;

66 Tj_new = Ts_new + Ploss*esc.Rth_jc*time_step;

67

68 end

69

70 end

79

A.4 Battery

1 function [V_bat, Eff, P_loss, P_lossW, P_out, SOC_new, bat_data]...

2 = Battery(SOC,Iout,timeStep,bat,mnum)

3

4 %% Initialize Results

5 bat_data.Vlow = 4.2;

6

7 %% Battery Equivalent Circuit Parameters

8

9 %calculate V and R using the cell parameters and curve fitting

10 V_int = exp(bat.Voc(1) + bat.Voc(2)*log(SOC)...

11 + bat.Voc(3)*(log(SOC))^2 ...

12 + bat.Voc(4)*(log(SOC))^3 ...

13 + bat.Voc(5)*(log(SOC))^4 ...

14 + bat.Voc(6)*(log(SOC))^5 ...

15 + bat.Voc(7)*(log(SOC))^6);

16 R_seriesD = exp(bat.R_serD(1) + bat.R_serD(2)*log(SOC)...

17 + bat.R_serD(3)*(log(SOC))^2 ...

18 + bat.R_serD(4)*(log(SOC))^3 ...

19 + bat.R_serD(5)*(log(SOC))^4 ...

20 + bat.R_serD(6)*(log(SOC))^5 ...

21 + bat.R_serD(7)*(log(SOC))^6);

22 R_secD = exp(bat.R_secD(1) + bat.R_secD(2)*log(SOC)...

23 + bat.R_secD(3)*(log(SOC))^2 ...

24 + bat.R_secD(4)*(log(SOC))^3 ...

25 + bat.R_secD(5)*(log(SOC))^4 ...

26 + bat.R_secD(6)*(log(SOC))^5 ...

27 + bat.R_secD(7)*(log(SOC))^6);

28 R_minD = exp(bat.R_minD(1) + bat.R_minD(2)*log(SOC)...

29 + bat.R_minD(3)*(log(SOC))^2 ...

30 + bat.R_minD(4)*(log(SOC))^3 ...

31 + bat.R_minD(5)*(log(SOC))^4 ...

32 + bat.R_minD(6)*(log(SOC))^5 ...

33 + bat.R_minD(7)*(log(SOC))^6);

34 R_hourD = exp(bat.R_hourD(1) + bat.R_hourD(2)*log(SOC)...

35 + bat.R_hourD(3)*(log(SOC))^2 ...

36 + bat.R_hourD(4)*(log(SOC))^3 ...

37 + bat.R_hourD(5)*(log(SOC))^4 ...

38 + bat.R_hourD(6)*(log(SOC))^5 ...

39 + bat.R_hourD(7)*(log(SOC))^6);

40 %add up all R

41 R_int = R_seriesD + R_secD + R_minD + R_hourD;

42

43

80

44 %% I,V,P Calculations

45

46 %Find single cell P,I,V values

47 Ibat = Iout*mnum; %scale to number of ESC/motors

48 I_cell = Ibat / bat.parallel; %I of each cell series

49 V_cell = V_int - I_cell*R_int; %V of each cell

50 P_lossC = I_cell^2 * R_int; %P loss of each cell

51 bat_data.Vcell = V_cell; %store cell voltage

52

53 %calculate individual time scale voltage drops for dyn sim

54 bat_data.Vsec = R_secD*I_cell;

55 bat_data.Vmin = R_minD*I_cell;

56 bat_data.Vhour = R_hourD*I_cell;

57

58

59 if V_cell < bat.Vmin

60 V_cell = bat.Vmin;

61 end

62

63 %Calculate battery pack values

64 V_bat = V_cell*bat.series; %battery voltage seen at the end of wire

65

66 P_lossW = Iout^2 *bat.R_w*mnum*2; %Ploss from battery terminals to each esc

67 P_loss = P_lossC*bat.series*bat.parallel; %total power loss

68 P_out = V_bat*Ibat;

69 P_total = P_out + P_loss; %total power delivered by battery

70

71 %store cell current

72 bat_data.I_cell = I_cell;

73

74 Eff = P_out/P_total; %calculate efficiency

75

76 %% Update SOC

77 E_cur = bat.E_max*SOC - P_total*timeStep; %get updated Energy stored

78 SOC_new = E_cur/bat.E_max; %calculate new SOC

79

80 end

81

Appendix B: Simulink Diagrams and MATLAB Code for Dynamic

Model Subsystems

B.1 Simulation Main

1 function [Total_Energy, Final_DOD, Mass, Vmin_static, Vmin_dyn,...

2 Imax_static, Imax_dyn, Max_Temp_Mot, Max_Temp_ESC,...

3 Max_Mod_Index_static, Max_Mod_Index_dyn, simdata]...

4 = run_sim_dynamic(bs, bp, mn, msl, msw, fsw, mssn)

5

6 %% Setup

7 %get params

8 [bat, esc, mot, sys] = sys_params(bs, bp, mn, msl, msw, fsw);

9

10 %initialize results

11 SOC_init = 0.95;

12 Total_Energy = 0; %Total energy consumed, in J

13 Final_DOD = 0; %final DOD of battery

14 Mass = sys.mass;

15 Max_Temp_Mot = 0;

16 Max_Temp_ESC = 0;

17 Max_Mod_Index_static = 0;

18 Max_Mod_Index_dyn = 0;

19 Vmin_dyn = 4;

20 Vmin_static = 4;

21 Imax_dyn = 0;

22 Imax_static = 0;

23

24 %Calculate RPM and Torque

25 time = mssn.time;

26 timeStep = mssn.timeStep;

27 Thrust = mssn.Thrust*sys.mass; %total thrust, kgf

28 Thrust_m = (Thrust/sys.motor_num)*9.805; %thrust per motor, in N

29 Torque = mot.prop_a*(Thrust/sys.motor_num); %torque per motor (N-m)

30 RPM = mot.prop_b*(Thrust/sys.motor_num).^(mot.prop_c); %RPM per motor (RPM)

31 %create timeseries of profile

32 Torque_ts = timeseries(Torque(1,:).’, time(1,:));

82

33 RPM_ts = timeseries(RPM, time);

34 Thrust_ts = timeseries(Thrust_m, time);

35

36 %% Init sim variables

37 Iphase = timeseries();

38 ma = timeseries();

39 P_mot_in = timeseries();

40 P_mot_loss = timeseries();

41 eff_mot = timeseries();

42 temp_mot = timeseries(25,0);

43 P_mot_out = timeseries();

44 eff_esc = timeseries();

45 Iin_esc = timeseries();

46 P_esc_loss = timeseries();

47 temp_esc = timeseries(25,0);

48 temp_esc_s = timeseries(25,0);

49 V_bat = timeseries();

50 V_bus = timeseries();

51 eff_bat = timeseries();

52 P_bat_loss = timeseries();

53 P_bat_out = timeseries();

54 SOC = timeseries(SOC_init,0);

55 I_cell = timeseries();

56 RPM_out = timeseries();

57 P_bat2esc_loss = timeseries();

58 P_esc2mot_loss = timeseries();

59

60 %% Run Simulation

61

62 %compute initial state of battery

63 [s_V_bat, s_eff_bat, s_Ploss_bat, s_Ploss_bat2esc, s_Pout_bat, s_SOC]...

64 = Battery(SOC.Data(end),.001,timeStep,bat,sys.motor_num);

65

66 V_bat = addsample(V_bat, ’Data’,s_V_bat,’Time’,0,’OverwriteFlag’,true);

67 V_bus = addsample(V_bus, ’Data’,s_V_bat,’Time’,0,’OverwriteFlag’,true);

68 SOC = addsample(SOC, ’Data’,s_SOC, ’Time’,0,’OverwriteFlag’,true);

69 Iin_esc = addsample(Iin_esc, ’Data’,0, ’Time’,0,’OverwriteFlag’,true);

70 Iphase = addsample(Iphase, ’Data’,0, ’Time’,0,’OverwriteFlag’,true);

71 temp_mot= addsample(temp_mot,’Data’,25, ’Time’,0,’OverwriteFlag’,true);

72

73 s_temp_s = 25;

74 s_V_bus = V_bus.Data(end);

75

76 %initialize these vars for dyn sim

77 bat_data.Vsec = 0; %voltage drop sec timescale

83

78 bat_data.Vmin = 0; %voltage drop min timescale

79 bat_data.Vhour = 0;%voltage drop hour timescale

80

81 i = 0;

82 while i < time(end)

83 %stop simulation if SOC is below 20%

84 if SOC.Data(end) < .2

85 Final_DOD = Final_DOD + SOC_init - 0.2; %update DOD

86 SOC.Data(end) = SOC_init;

87 break

88 end

89

90 %check whether dynamic sim needs to happen

91 if any(time(i+1) == mssn.dyn_start)

92 %% dynamic sim

93 dyn_start = mssn.dyn_start(mssn.dyn_start == time(i+1));

94 dyn_rec = dyn_start;

95 dyn_dur = mssn.dyn_dur(mssn.dyn_start == dyn_start);

96 dyn_end = dyn_start + dyn_dur;

97 dyn_init = mssn.dyn_init(mssn.dyn_start == dyn_start);

98 %set back dyn sim start time to allow for system to become stable

99 if (dyn_start - dyn_init) > 0

100 dyn_start = dyn_start - dyn_init;

101 end

102

103 if dyn_start == 0

104 Pesc_loss = 0;

105 else

106 Pesc_loss = P_esc_loss.Data(end);

107 end

108

109 RPM_dyn_init = RPM_ts.Data(i+1)*pi/30; %initialize motor temp

110

111 dyn_result = sim(’Models_Dynamic\UAV_model.slx’,...

112 ’SrcWorkspace’,’current’, ’StartTime’,...

113 num2str(dyn_start), ’StopTime’, num2str(dyn_end));

114

115 %share updated values with static sim

116 Iphase =merge_ts(Iphase, dyn_result.Iphase, dyn_rec,dyn_end);

117 P_mot_loss =merge_ts(P_mot_loss,dyn_result.P_mot_loss,dyn_rec,dyn_end);

118 P_mot_out =merge_ts(P_mot_out, dyn_result.P_mot_out, dyn_rec,dyn_end);

119 P_mot_in =merge_ts(P_mot_in, dyn_result.P_mot_in, dyn_rec,dyn_end);

120 Iin_esc =merge_ts(Iin_esc, dyn_result.Iin_esc, dyn_rec,dyn_end);

121 P_esc_loss =merge_ts(P_esc_loss,dyn_result.P_esc_loss,dyn_rec,dyn_end);

122 V_bat =merge_ts(V_bat, dyn_result.Vbat, dyn_rec,dyn_end);

84

123 V_bus =merge_ts(V_bus, dyn_result.Vbus, dyn_rec,dyn_end);

124 P_bat_loss =merge_ts(P_bat_loss,dyn_result.P_bat_loss,dyn_rec,dyn_end);

125 P_bat_out =merge_ts(P_bat_out, dyn_result.P_bat_out, dyn_rec,dyn_end);

126 SOC =merge_ts(SOC, dyn_result.SOC, dyn_rec,dyn_end);

127 I_cell =merge_ts(I_cell, dyn_result.I_cell, dyn_rec,dyn_end);

128 RPM_out =merge_ts(RPM_out, dyn_result.RPM_out, dyn_rec,dyn_end);

129 ma =merge_ts(ma, dyn_result.ma, dyn_rec,dyn_end);

130 temp_mot =merge_ts(temp_mot, dyn_result.Temp_mot, dyn_rec,dyn_end);

131 temp_esc =merge_ts(temp_esc, dyn_result.T_esc, dyn_rec,dyn_end);

132 temp_esc_s =merge_ts(temp_esc_s,dyn_result.T_esc_s, dyn_rec,dyn_end);

133 P_bat2esc_loss = merge_ts(P_bat2esc_loss,...

134 dyn_result.P_bat2esc_loss, dyn_rec, dyn_end);

135 P_esc2mot_loss = merge_ts(P_esc2mot_loss,...

136 dyn_result.P_esc2mot_loss, dyn_rec, dyn_end);

137 i = i + dyn_dur +2; %inc counter, +2 to account for sub-second thrusts

138

139 %% Update constraint vars

140 Vmin_dyn_temp = min(dyn_result.Vcell.Data);

141 Vmin_dyn = min(Vmin_dyn, Vmin_dyn_temp);

142

143 Imax_dyn_temp = max(dyn_result.I_cell.Data);

144 Imax_dyn = max(Imax_dyn, Imax_dyn_temp);

145

146 Max_Mod_Index_dyn_temp = max(dyn_result.ma.Data);

147 Max_Mod_Index_dyn = max(Max_Mod_Index_dyn, Max_Mod_Index_dyn_temp);

148

149 else

150 %% static sim

151 [s_Iphase, s_ma, s_Pin_mot, s_Ploss_mot, s_eff_mot, s_temp_mot,...

152 s_Pout_mot, mot_loss] = Motor(RPM(i+1), Torque(i+1),...

153 Thrust_m(i+1), V_bus.Data(end), temp_mot.Data(end), 1, mot);

154

155 s_V_bus = V_bat.Data(end) - s_Iphase*bat.R_w*2; %wire voltage drop

156

157 [s_eff_esc, s_Iin_esc, s_Ploss_esc, s_Ploss_esc2mot, s_temp_esc,...

158 s_temp_s, esc_loss] = ESC(s_V_bus,s_Iphase,s_ma,s_Pin_mot,...

159 temp_esc.Data(end),temp_esc_s.Data(end),1,esc);

160

161 [s_V_bat, s_eff_bat, s_Ploss_bat,s_Ploss_bat2esc, s_Pout_bat, s_SOC,...

162 bat_data]=Battery(SOC.Data(end),s_Iin_esc,timeStep,bat,sys.motor_num);

163 %battery() will find the next iterations Vbat and SOC using current

164 %iteration’s SOC and I out.

165

166 %save new vars

167 Iphase = addsample(Iphase, ’Data’,s_Iphase,...

85

168 ’Time’,time(i+1),’OverwriteFlag’,true);

169 ma = addsample(ma, ’Data’,s_ma,...

170 ’Time’,time(i+1),’OverwriteFlag’,true);

171 P_mot_in = addsample(P_mot_in, ’Data’,s_Pin_mot,...

172 ’Time’,time(i+1),’OverwriteFlag’,true);

173 P_mot_loss = addsample(P_mot_loss,’Data’,s_Ploss_mot,...

174 ’Time’,time(i+1),’OverwriteFlag’,true);

175 temp_mot = addsample(temp_mot, ’Data’,s_temp_mot,...

176 ’Time’,time(i+1),’OverwriteFlag’,true);

177 P_mot_out = addsample(P_mot_out, ’Data’,s_Pout_mot,...

178 ’Time’,time(i+1),’OverwriteFlag’,true);

179 Iin_esc = addsample(Iin_esc, ’Data’,s_Iin_esc,...

180 ’Time’,time(i+1),’OverwriteFlag’,true);

181 P_esc_loss = addsample(P_esc_loss,’Data’,s_Ploss_esc,...

182 ’Time’,time(i+1),’OverwriteFlag’,true);

183 temp_esc = addsample(temp_esc, ’Data’,s_temp_esc,...

184 ’Time’,time(i+1),’OverwriteFlag’,true);

185 temp_esc_s = addsample(temp_esc_s, ’Data’,s_temp_s,...

186 ’Time’,time(i+1),’OverwriteFlag’,true);

187 V_bat = addsample(V_bat, ’Data’,s_V_bat,...

188 ’Time’,time(i+1),’OverwriteFlag’,true);

189 V_bus = addsample(V_bus, ’Data’,s_V_bus,...

190 ’Time’,time(i+1),’OverwriteFlag’,true);

191 P_bat_loss = addsample(P_bat_loss,’Data’,s_Ploss_bat,...

192 ’Time’,time(i+1),’OverwriteFlag’,true);

193 P_bat_out = addsample(P_bat_out, ’Data’,s_Pout_bat,...

194 ’Time’,time(i+1),’OverwriteFlag’,true);

195 SOC = addsample(SOC, ’Data’,s_SOC,...

196 ’Time’,time(i+1),’OverwriteFlag’,true);

197 P_bat2esc_loss = addsample(P_bat2esc_loss,’Data’,s_Ploss_bat2esc,...

198 ’Time’,time(i+1),’OverwriteFlag’,true);

199 P_bat2esc_loss = addsample(P_bat2esc_loss,’Data’,s_Ploss_bat2esc,...

200 ’Time’,time(i+1),’OverwriteFlag’,true);

201

202 %additional sim info

203 I_cell = addsample(I_cell, ’Data’,bat_data.I_cell,...

204 ’Time’,time(i+1),’OverwriteFlag’,true);

205

206 i = i + 1; %increment counter

207

208 %% Update constraint vars

209 Vmin_static = min(Vmin_static, bat_data.Vcell);

210 Imax_static = max(Imax_static, bat_data.I_cell);

211 Max_Mod_Index_static = max(Max_Mod_Index_static, s_ma);

212 end

86

213

214 end

215

216 %% Gather up results

217 Psystem = P_bat_loss + P_bat_out; %Total power of system

218 Ploss_system = P_bat_loss + P_esc_loss*sys.motor_num +...

219 P_mot_loss*sys.motor_num; %Total power loss

220

221 Total_Energy = trapz(Psystem.Time, Psystem.Data); %total energy, in J

222 Final_DOD = Final_DOD + SOC.Data(1) - SOC.Data(end); %final DOD of battery

223 Max_Temp_Mot = max(temp_mot.Data); %max temp of motor

224 Max_Temp_ESC = max(temp_esc.Data); %max temp of ESC

225

226 end

87

B.2 Motor

Figure B.1: PMSM Top Level.

88

F
ig

u
re

B
.2

:
P

M
S
M

E
le

ct
ri

ca
l

an
d

R
ot

at
io

n
al

M
ec

h
an

ic
s.

89

Figure B.3: PMSM Controls.

Figure B.4: PMSM Thermal.

90

Figure B.5: PMSM Efficiency.

B.3 Power Electronics

91

Figure B.6: DCAC Inverter Top Level.

92

Figure B.7: DCAC Inverter Thermal.

1 function [Iphase, Idcac_in, Pdcac_loss, Pwire_loss, ma]...

2 = DCAC(Vd, Vq, Id, Iq, Vbus, Tj, esc)

3

4 %reduce temp if pass interpolation range

5 if Tj > 140

6 Tj = 140;

7 end

8 Rdson = interp1(esc.Ta_lu, esc.Rdson_lu,Tj); %MOSFET on resistance

9 Von_d = esc.Von_d; %diode forward voltage drop

10

11 % dq to abc transformation

12 Iphase = sqrt(Id^2+Iq^2) / sqrt(2);%per phase RMS current into the motor

13 Vterm = sqrt(Vd^2+Vq^2) / sqrt(2); %line-neutral RMS voltage into the motor

14

15 ma = Vterm * sqrt(2) * sqrt(3) / Vbus; %modulation index

16 %PMSM input power, Iq tells current direction, negative means regen mode

17 Ppmsm_in = 3*Iphase*Vterm * sign(Iq);

18 Pdcac_out = Ppmsm_in; %same as DC-AC output power

19 Paux_dcac = 6; %measured auxiliary power losses at no loads

20

21 %% MOSFET/Diode Parameters

22 Cgd1 = esc.Cgd1; % Crss for Vbus/2 to Vbus

23 Cgd2 = esc.Cgd2; % Coss for less than Vbus/2

24 Vmiller = esc.V_miller; % Miller plateau voltage

25 Rgon = esc.Ron_g; % gate resistance for on

26 Rgoff = esc.Roff_g; % gate resistance for off

27 Vgate = esc.V_g; % peak gate voltage

28

29 Qrr = esc.Qrr; % diode reverse recovery charge

30

93

31 %---------Calculated Currents----------

32 I_o = sqrt(2)*Iphase; %peak phase current

33 I_dc = I_o/pi; %DC equivalent current

34

35 %% Switching times

36 tfu1 = (Vin - Ron_ds*I_dc)*esc.Ron_g*esc.Cgd1/(esc.V_g-esc.V_miller);

37 tfu2 = (Vin - Ron_ds*I_dc)*esc.Ron_g*esc.Cgd2/(esc.V_g-esc.V_miller);

38 tfu = (tfu1 + tfu2)/2;

39 tru1 = (Vin - Ron_ds*I_dc)*esc.Roff_g*esc.Cgd1/(esc.V_miller);

40 tru2 = (Vin - Ron_ds*I_dc)*esc.Roff_g*esc.Cgd2/(esc.V_miller);

41 tru = (tru1 + tru2)/2;

42

43 %% Mosfet Losses

44 EonM = Vbus*Idc*(tri+tfu)/2 + Qrr*Vbus; %MOSFET turn on energy

45 EoffM = Vbus * Idc * (tru+tfi)/2; %MOSFET turn off energy

46

47 %average conduction loss per switch

48 Pon_fet = Rdson * Io^2 * (1/8 + ma*DisFac/(3*pi));

49 %average switching loss per switch

50 Pswitch_fet = (EonM + EoffM) * fswitch;

51

52 %average conduction loss per diode

53 Pon_d = Von_d * Io *(1/(2*pi)-ma*DisFac/8);

54 EonD = Qrr * Vbus/4; %diode turn on energy

55 EoffD = 0; %absorbed in EonM

56 Pswitch_d = EonD * fswitch; %average switching loss per diode

57

58 Ploss_dcac = 6*(Pon_fet+Pon_d+Pswitch_fet+Pswitch_d); %total losses for 6

59

60 %% ESC Power and Efficiency calculations

61 Rwire = esc.R_w; %wire resistance assuming AWG10

62 Pwire_loss = Iphase^2 * Rwire * 3; %three phase wiring parasitics losses

63 %total power into DC-AC from DC bus

64 Pdcac_in = Pdcac_out + Ploss_dcac + Pwire_loss + Paux_dcac;

65

66 Pdcac_loss = Ploss_dcac + Paux_dcac;

67

68 %DC current into DC-AC, including the current from motor mechanical loss

69 Idcac_in = Pdcac_in/ Vbus;

70

71 end

94

B.4 Battery

F
ig

u
re

B
.8

:
B

at
te

ry
.

95

B.5 Per Motor to System Conversion

Figure B.9: Per Motor/Inverter to System Conversion.

