

The Effect of Sucrose on the Viability of Respiratory Syncytial Virus

Jillian Redmond¹, Dr. Manoj Pastey²

¹BioResource Research

²College of Veterinary Medicine

Background on RSV

- Significant cause of mortality and morbidity
 - Infants and elderly
 - Causes most complications
 - Immunocompromised
 - More severe in more compromised patients (Collins, 2008).
 - Transplant patients—no cure, easily spread
- No vaccine
- No effective treatment (McNamara, 2002).
 - Complicated by the immune system
 - Self limiting

Bronchiolitis

Image of infant with bronchiolitis

Background Cont.

- RSV causes significant time and monetary losses (Ausar, 2007).
 - 78,000 hospitalizations per year
 - Annual hospital cost ~\$650 million
- Causes 199,000 deaths worldwide (Luongo, 2013)
 - Global annual infection—64 million
 - Younger child, more complications
 - Estimated 34 million episodes lower respiratory disease

Background Cont.

Figure of RSV structure.

Previous Research

 Sucrose could be stabilizing feature on RSV envelope (Ausar, 2007).

- RSV is denatured easily
 - Thermolabile virus
 - Detergents
 - Reduces titer after 3 months

Hypothesis

- Sucrose may have stabilizing effects on RSV envelope and help shield against environment temperature fluctuations.
 - This could allow it to
 - Remain viable longer in environment
 - Assist person-to-person transmission
 - Development of effective thermostable live-attenuated vaccine
 - Longer storage= easier to study

Objectives

- Optimize RSV cell culture protocol
- Determine RSV titer using plaque assays
- Assay a variety of sucrose concentrations to determine stability
 - 0.1, 0.3, 0.5, 1, 2, 7% sucrose

Materials

- Sucrose Media
 - Stock sucrose concentration made is 14%.
- Cell culture model used are HeLa cells because of availability and convenience.
- The virus strain used is RSV A-2.
- Media used
 - Gibco® Dulbecco's Modified Eagle Medium (DMEM)

Plaque Assay Terms

- Plaque assay
 - Measures the virus concentration
- Virus titer
 - Concentration of virus in a sample
- Plaque
 - 1 plaque= 1 virus infection multiplied several times

Figure of plaques from RSV A-2 from McKimm-Breschkin, 2004

Virology Terms

- Multiplicity of Infection
 - Ratio of number of virions to the number of target cells present in defined space.
- Overlay
 - Restricts virus progeny to neighboring cells
- Viability
 - Ability of a virus to infect a cell.
- Cell-associated virus
 - Virus particles that remain attached to host cell after replication.

Other Terms Cont.

- HeLa cells
 - Immortal cell line from cervical cancer.
- Ten-fold dilution
 - Concentration is 1/10 of the original solution.

Figure of serum dilutions from RSV A-2 from McKimm-Breschkin, 2004.

Methods

 Typical RSV plaque assay takes about a week to complete.

- The titer assay was repeated twice
 - The first assay: two dilutions 10^{-6} and $5x10^{-7}$.
 - 1% and 2% seaplaque agarose®.
 - The second assay used one dilution (10⁻⁶) for the whole plate using four replicates.
 - Both tested consistency between replicates.

Methods: Titer Assay

- Determine titer of virus without treatment
- Step 1
 - Add known concentration of HeLa cells to each well.
- Step 2
 - Distribute cells evenly by shaking
- Step 3
 - Incubate cells, allowing them to stick to wells
- Step 4
 - Inoculate with virus for 1 hour.

Methods: Titer Assay

- Step 5
 - Add overlay to wells to hold virus in place
- Step 6
 - Leave for 5 days
- Step 7
 - fix cells using 4% paraformaldehyde, stain with antibody, and count plaques

Titer Assay results

- 2% seaplaque agarose® only slightly lower than 1% agarose.
- Replicates were consistent with each other.
- Titer was higher than which didn't support hypothesis.
 - 4.32x10⁸ pfu/mL.

1% seaplaque	2% seaplaque
4.16x10 ⁸ pfu/mL	3.93x10 ⁸ pfu/mL

Comparison of titer between 1% and 2% sea plaque agarose®

Methods: MOI Assay

- Determine titer using MOI of 0.01, 0.1, and 1
- Should be a log increase in virus concentration
- Step 1-4 of titer assay is the same
- Step 5
 - Add media and incubate
 - Prepare twenty-four well plates
- Step 6
 - Scrap cells with pipette tip and make dilutions

Methods: MOI Assay

- Step 7
 - Inoculate with virus for 1 hour
- Step 8
 - Add overlay and incubate for 5 days
- Step 9
 - Add 4% paraformaldehyde, stain and count plaques.

Results

Replication of RSV with different MOIs

Graph of the replication of RSV using different MOI treatments. The averages are graphed in LOG(pfu/mL) to show differences between the 0.01, 0.1, and 1. The averages of the MOIs are given in the legend.

Sucrose Assays

- The plaque assays testing various sucrose concentrations followed the MOI model.
 - Use MOI of 2
- The first sucrose assay tested concentrations 0.3, 2, and 7% sucrose. The second tested 0.1, 0.5, and 1% sucrose.
- Sucrose incubate for an hour with virus and media.

Sucrose Assays Cont.

- Negative control
 - No treatment.
- Except for 7% sucrose and control, the dilutions plated in triplicate were 5x10⁻⁵, and 10⁻⁵.
 - The dilutions plated in triplicate for 7% sucrose and control were 10⁻⁴, and 5x10⁻⁵.

Sucrose Concentrations 0.3, 2, and 7%

Replication of RSV at 24 hrs with various sucrose concentrations

Graph of the replication of RSV at 24 hours with sucrose concentrations 0.3%, 2%, and 7% sucrose. The averages are given in the legend. P-value <0.05.

Sucrose Concentrations 0.1, 0.5, 1%

Replication of RSV at 24 hrs with various sucrose concentrations

Graph of the replication of RSV at 24 hours with sucrose concentrations 0.1%, 0.5%, and 1%. The averages are given in the legend. P-value >0.05.

Discussion

- Justification of titer assays
 - The titer assays were consistent with each other but the titer was a lot higher than hypothesized.
 2.8x10⁸ pfu/mL versus 4.32x10⁸ pfu/mL.
- MOI assay had the expected log increase
 - There was a smaller increase between 0.1 and 1.

Discussion Cont.

- Sucrose helps to stabilize virus.
 - Only 0.3% sucrose was only slightly significant, with a p-value <0.05.
 - 0.1%- 0.3% have most plaques compared to other sucrose concentrations.
 - One hour of incubation
 - o 0.1-0.3 range of stability.

Future experiments

- Reproducibility and validity.
- 0.3% sucrose should be tested at 4 hours, 24 hours, 48 hours, and 3 months, to test stability.

Conclusions

 Hypothesis: sucrose may have stabilizing effects on RSV.

- Only 0.3% sucrose was statistically significant. But possible range.
- Implications
 - This range could show a max of sucrose effect.
 - Better storage, can study better

Acknowledgements

- Dr. Manoj Pastey
- Dr. Bruce Geller
- Dr. Larry Curtis
- Meagan Prescott
- Maciej Maselko
- Wanda Crannell
- The audience

References

- Ausar, SF.; Espina, M.; Brock, J.; Thyagarayapuran, N.; Repetto, R.; Khandke, L.; Middaugh, CR. "High-throughput screening of stabilizers for respiratory Syncytial virus: identification of stabilizers and their effects on the conformational thermostability of viral particles." Hum Vaccin. (2007): 94-103.
- Collins, P.L.; Graham, B.S.; "Viral and Host Factors in Human Respiratory Syncytial Virus Pathogenesis." Virology. (2008): 2040-2055.
- McKimm-Breschkin, J.L. "A simplified plaque assay for respiratory syncytial virus direct visualization of plaques without immunostaining." J. Virol. Methods (2004) 113-117.
- McNamara, PS.; Smyth, RL. "The pathogenesis of respiratory Syncytial virus disease in childhood." British Medical Bulletin(2002); 61: 13-28.
- Luongo,C.; Winter, C.C.; Collins, P.L.; Buchholz, U.J. "Respiratory Syncytial Virus Modified by Deletions of the NS2 Gene and Amino Acid S1313 of the L Polymerase Protein Is a Temperature- Sensitive, Live-Attenuated Vaccine Candidate That Is Phenotypically Stable at Physiological Temperature." J.Virol (2013); 87: 1985-1996