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THE SOLUTION OF SINGULAR VOLTERRA INTEGRAL EQUATIONS 
BY SUCCESSIVE APPROXIMATIONS 

CHAPTER I 

INTRODUCTION 

In this paper we shall study the integral equation 

t 
tR(t) = SK(t-u)R(u)du, 

0 

0 < t < cc . 

The kernel function K(t), 0 < t < oo, satisfies the following 

conditions: 

(1.2) K(t) > 0 for 0 < t < 00 

(1. 3) K(t) is continuous for 0 < t < co 

(1. 4) 

(1. 5) 

(1. 6) 

lim K(t) = + 

t 
00 

SK(u < +co, 
0 

Sco 
K(u) du < +00 , 

1 u 

(1. 7) K(t) is monotone non- increasing for O < t < co . 

These conditions imply 

1 t (1. 8) K(t) -i0, t K(u)du --0 
0 

as t 

SK(u)du 

. 

, 

-0 
1 

J 

1 
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There are several ways in which (1. 1) can be classified. For 

example it is a Volterra integral equation. In Fredholm's classifica- 

tion, (1. 1) is an integral equation of the third kind. Moreover, (1. 1) 

is homogeneous and the kernel has a weak singularity at zero. 

In general it is usually difficult to construct non -trivial solu- 

tions to homogeneous integral equations. Moreover, a solution is not 

unique since any constant multiple of it is also a solution. 

We shall show that (1. 1) has a real solution R(t), 0 <t< oo, 

unique a. e. to within a constant factor, such that e- xtR(t) is 

integrable (Lebesgue) for some x > 0; moreover, such a solution 

R(t) will be shown to be bounded, continuous, non -negative and 

integrable on (0, oc) . The existence of R(t) will be established 

by constructing successive approximations and proving that they 

converge uniformly to R(t). The uniqueness will be established 

by Laplace transform analysis. 

Since a unique solution is desired it is essential that R(t) 

satisfy some normalization condition. It is convenient to require 

that 

(1. 9) max R(t) = 1 

0<t<00 

A different normalization condition may be desired for some 
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purposes. Thus consider the same integral equation, but with the 

unknown function P(t): 

(1. 10) 

where 

(1. 11) 

t 
tP(t) = K(t-u)P(u)du, 

0 

oo 

P(t)dt = 1 . 

0 

0 <t <oo , 

The functions P(t) and R(t) are related by 

(1. 12) P(t) - 

(1. 13) R(t) = 

R(t) 
(' 
J R(t)dt 

0 

P(t) 
max P(t) 

0 <t <oo 

A special case of (1. 1) was studied in (1). In that paper 

K(t) = µt -X , µ > 0, 0 < X < 1 . All of the relevant results ob- 

tained in (1) are established here in the more general case 

considered. Further generalizations can be obtained by slightly 

weakening some of the conditions (1. 2) - (1.7) on K(t) . However, 

the analysis then becomes more complicated. 

(' 
J 

Si 



4 

CHAPTER II 

UNIQUENESS AND OTHER PROPERTIES OF SOLUTIONS 

We proceed to prove a uniqueness theorem and to establish 

other properties of a solution R(t) of (1. 1). 

Suppose that R(t) is a solution of (1. 1). Assume that 

e- xtR(t) is integrable for x > x0 Then the Laplace transform of 

R(t), 

co 

R(z) =\ e-ZtR(t)dt, x > x0, (z = x + iy), 
0 

is defined at least in the indicated half -plane. By (L 5) and (1. 6), 

R(z)= e_ztK(t)dt, x 0 > 

Transform (1. 1) and use the convolution theorem to obtain 

-f.' (z) A(z)(z), x > xi 

where x1= max(x0, 0). Integration yields 

('z 
R(w)dw 

(2. 1) R(z) = ft()e = 

0o -zt - t 
e -e 

t 
K(t)dt 

0 

with any path of integration in the half -plane for the w- integral. 

The standard results from Laplace transform analysis that we 

. 

. 

0 

= , 

-J 
()e 
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have used can be found in (4). 

Theorem 2.1. If R(t) is a solution of (1. 1) with the 

property that e- xtR(t) is integrable for x sufficiently large, 

then R(t) is unique a. e. to within a constant factor. 

Proof. Equation (2. 1) determines R(z) to within a constant 

factor, so that R(t) is determined a. e. to within a constant factor. 

Theorem 2. 2. Let R(t) be a non - negative solution of (1.1) 

such that e- xtR(t) is integrable for x sufficiently large. Then 

R(t) is integrable on (0, oo) and 

(2. 2) 

-z t 1-e 

P.(z) = R(0)e 0 

K(t)dt 

Proof. It follows from (1. 5), (1. 6) and (2. 1) that RR.(z) 

exists at least for x > O. Since K(t) > 0, Lebesgue's monotone 

convergence theorem (cf. (7,p. 72) ) yields 

limR(x) = I.( )e 
x-.-0 

roo K(t)dt 
JO t 

which is finite. Since R(t) > 0, another application of the same 

theorem yields 

5°°xtR(t)dt 5°tdt lim(x) = lm = = t(0) . 

x-0 x -0 0 0 

oo 

t J 

-fit 
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Thus, R(t) is integrable. Solve for tO in terms of 1\1(0) and 

substitute into (2. 1) to obtain (2. 2). 

For convenience below, let 

(2. 3) M(t) = sup IR(u) I t > 0, 
0 <u<t 

for any solution of (1. 1) which is bounded on each finite interval. 

Theorem 2. 3. If R(t) is a solution of (1.1) which is 

bounded on each finite interval, then R(t) is continuous on (0, co) 

and 

(2.4) IR(t) - R(s) 
¡It-s I 

[2 J K(u)du+ 
0 

t-s J, 0<s, t<t0 . 

Proof. Let 0 < s < t < t . Then by (1. 1) and (1. 7), 

ItR(t) - sR(s) I = I J K(t-u)R(u)du - K(s -u)R(u)du I 

0 0 

= I \ K(t-u)R(u)du + 1 [ K(t-u) - K(s -u) ] R(u)du I 

JO 

< M(t0) 
t -s 
K(u)du + K(u)du - \ K(u)du 

- o o t-s l 

= M(t0) 
- t-s t-s 
( K(u)du + 

J 
K(u)du - 

L 0 0 

(t 
K(u)du] 

t-s 
< 2M(t0) K(u)du 

0 

, 

M(t0) 

J 

('L (°S 

s 

J 

I < I 

LL 

¡ ¡s 
J 

I 

s 

J 



It follows that 

ItR(t) - tR(s) I< ItR(t)-sR(s)I + I sR(s)-tR(s) I 

('It-s s I 

< 2M(t0) J K(u)du + M(t0) It-s I , 0 < s, t < t0 
0 

Hence, (2. 4) holds and R(t) is continuous on (0, co) . 

(2. 5) 

By (1. 6), for a sufficiently large we have 

re) K(u) du < 2 
a 

Fix a such that (2. 5) is satisfied and define 

(2. 6) A = 

a 
.5Th K(u)du 

0 

Theorem 2. 4. If R(t) is a solution of (1. 1) which is 

bounded on each finite interval and R(t) 0 0, then 

(i) R(t) is bounded on [ 0, oo) 

(ii) R(t) < M(A) , t > A , 

(iii) R(t) 0 as t -- co . 

Proof. By (1. 1) (2. 3) and Theorem 2. 3, 

R(t) 
I 

M(t) ('t 

t J K(u)du t > 0; 
0 

and R(t) is continuous on (0, oc) . By (2. 5) and (2. 6), 

7 

2 . 

, 

-. 

, 

. 
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('t a 

S(2. 
8) t J K(u)du + 

K(u) du < 1, t> A. 
0 0 a 

By (2. 3) , I R(t) 
I 

cannot attain a maximum at t > A. So 

M(t) = M(A) for t > A and (1. 8) , (2. 7) imply the theorem. 

Theorem 2. 5. Let R(t) be a solution of (1. 1) such that 

R(t) is bounded on every finite interval, and R(0 +) exists. Then 

R(0 +) = O. 

Proof. Assume IR(0 +) 
I 
>0. Then, by Theorem 2. 3, there 

exists 5 > 0 and e > 0 such that 

R(t) I > 5 > 0 for 0 <t <e . 

By (1. 1) and (1. 7) , 

R(t) I 

SK(t) 
O < t< e 

t 

In view of (1.4), this contradicts the boundedness of R(t) on every 

finite interval. 

We have shown that if R(t) is a solution of (1. 1) such that 

e xtR(t) is integrable for some x, then R(t) is unique a. e. to 

within a multiplicative factor and if, in addition, R(t) is non -nega- 

tive, then R(t) is integrable on (0, 00). Moreover, if R(t) is 

bounded, then R(t) is continuous on (0, 00) and tends to zero as t 

tends to infinity. Finally, if R(t) is continuous on [ 0, 00) , then R(0) = O. 

(2. K(u)du < t 

' 

¡ 
J 

. 
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CHAPTER III 

THE M THOD OF SUCCESSIVE APPROXIMATIONS 

For h > 0, let Rh(t), O < t < oo, denote a non -trivial, con- 

tinuous, non- negative, piecewise- linear function with possible changes 

in slope only at the points t nh, n = 1, 2, . Then Rh(t), 

t > 0, is determined in terms of the values Rh(nh), n > 0, by 

linear interpolation 

(3.1) Rh(t) _ (n+ 1)h-t 
Rh(nh) + t hnh Rh( (n+ 1)h) , 

nh < t < (n+ 1)h, n > 0 . 

Assume that Rh(t) satisfies equation (1. 1) at the points 

Sh n 
(3. 2) nhRh(nh) = K(nh - u)Rl_ (u)du, 

0 

Ultimately, we shall let h - 0 

By (3. 1) and (3. 2) , 

nhR(nh) _ 

n-1 

n > 0 . 

(k+ 1)h 
K(nh.-u)Rh(u)du 

k=0 kh 

n-1. 
(k+ 1)h 

K(nh-u) 

k=0 
"h k 

rJ 

n-1 
(k+ 1)h u-kh 

+ ) K(nh-u) 
h 

Rh ( (k+ 1)h) du 
k 0 kh 

(k+ 1h )h-u Rh(kh)du - 

= nh 

= 

: 

J 

. 

) J 

, 
Z 

. 

: 

. 
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Replace k by k- 1 in the second sum, collect terms and simplify 

to obtain 
n-1 

(3. 3) (n-nh)Rh(nh) = - 12 bnRh(0) + 12 cn-kRh(kh), n > 1, 

h h k=0 

where 

(n+1)h 
(3. 4) b = b (h) = 1 K(u) [ (n+l)h-u] du, n > 1 , - n n nh 

h (n+1)h 
(3. 5) c 

n 
= c (h) n 

= K(u) [ u- (n-1)h] du + K(u) [ (n+l)h-u] du, n >1, 
(n-1)h nh 

and 

(3. 6) nh = 
(h 1 

2 
1 (h-u)K(u)du = (1-t)K(ht)dt . 

h 0 

We shall need some properties of these quantities. It follows 

from (1. 2) , (1. 7) and (3. 6) that nh is a non-negative, monotone 

decreasing function of h and 

gK(u)du. K(h) < nh 
0 

Hence, by (1. 4), (1. 5) and (1. 8), 

nh--4- +00 as 

-h 

(3. 7) 

and 

0 as h-- 00 

SI 

0 

< 

h- 0 , 

L 

(h 
h 

J 

, 
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(3. 8) 

(3. 9) 

as h -- 0 . 

It follows from (1.2), (1.4), (3.4) and (3. 5) that 

and from (3. 5) 

(3. 10) 

(3.11) 

By (3. 3), 

C1 101-2. 

ç 
< 2h2 

(n+ 1)h 
K(u) 

n - u 
1)h 

(1-nh)Rh(h) 
= 2 

du, n > 2 . 

(0)(c1 - b1) 

First assume that nh is not an integer. Then (3. 3) de- 

termines Rh(nh), n > 1, inductively in terms of Rh(0), and 

(3. 1) yields a solution Rh(t) of (3. 2). If nh > 1 and Rh(0) < 0, 

then by (3.11) and (3. 9), Rh(h) j O. Since Rh(t) > 0 by hypothe- 

sis, it follows that Rh(0) = 0 and, hence Rh(t) - 0 if h is so 

small that nh > 1 by (3. 7) . 

Since we desire Rh(t) * 0 and intend to let h -- 0, we must 

assume that nh is an integer. We shall, henceforth, restrict h 

to the bounded and countable set 

(3. 12) H = {h: nh = 1,2, . } 

hnh-# 0 

> 0, 

- 

. 



Now (3. 3) determines Rh(nh) for 1 < n < nh , 

12 

but not for n > nh, 

in terms of Rh(0). As before, (3. 7), (3.9), (3.11) and Rh(t) > 0 

imply that Rh(0) = 0 for h sufficiently small. Let Rh(0) = 0 

for all h e H, Then by (3. 3), 

(3.13) Rh(nh) = 0, 0 <n <nh . 

We now assume that 

(3. 14) Rh(nhh) > 0 . 

Then (3. 3) reduces to 

n-1 

(3. 15) (n-nh)Rh(nh) = 12 cn-kRh(kh) , n > nh , 

h 

which determines Rh(nh), :n > nh, inductively in terms of Rh(nhh). 

Then (3. 1) yields a solution Rh(t) of (3. 2). Since (3. 1) and 

(3.15) are linear relations, 

(3.16) Rh(t) = Rh(nhh)Rh(t) , 

where R1(t) is the particular solution with Rh(nhh) = 1 

Equations (3.1) and (3.13) yield 

(3. 17) Rh(t) = 0, 0 < t < (nh-1)h , 

where (nh -1)h -0 as h -0 by (3. 8). We have by (3. 5), (3.9) 

Li 
k- nh 

. 
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and (1. 2) that 

(3. 18) > 0; c > 0, n > 1; n- 

so that by (3. 1), (3. 14) and (3.15), 

(3. 19) Rh(t) > 0, t > (nh-1)h . 

Hence, the hypothesis that Rh(t) > 0 is satisfied. 

Theorem 3. 1 . Rh(t) is bounded and attains its maximum at 

some point t = kh < A, where A is defined by (2. 6). 

Proof. The proof is based on (3. 1) and (3, 2). It is analogous 

to that of Theorem 2. 4, parts (i) and (ii) . 

Thus far, Rh(t) is the general non- trivial, non -negative solu- 

tion of (3. 1) and (3. 2). Since by Theorem 3. 1, Rh(t) is bounded . 

and attains its maximum, we will assume that 

(3. 20) max Rh(t) = 1, h e H . 

0<t<oo 

Then Rh(t) is determined completely and is given explicitly by 

R1 (t) 
(3. 21) Rh(t) - 1 max Rh (u) 

0 <u <oo 

Theorem 3. 2. As t Rh(t) 0 uniformly in h. 

Proof. The proof is based on (3. 1), (3. 2) and Theorem 3.1. 

c 
1 

--oo , - 



It is analogous to that of Theorem 2. 4, part (iii) . 

(0, 

Theorem 3. 3. For each h e H, Rh(t) is integrable on 

) 

Proof. The proof is analogous to that of Theorem 2. 2, with 

generating functions used in place of Laplace transforms. 

the function Rh(t) is piecewise -linear and Rh(0) = 0, 

co 
oo 

(3.22) 1Rh(t)dt = h Rh(nh) 

if the sum is finite. Let 

(3. 23) Ah(w) = 

00 

n= 

n= 0 

Rh(nh)wn, , w > 0, 

Since 

when the series converges. Since 0 < Rh(nh) < 1, Ah(w) is de- 

fined at least for 0 < w < 1. Note that Rh(t) is integrable if 

Ah(1) exists, in which case 

(3. 24) SRh(t)dt = hAh(1) . 

o 

Let c0 = 0 and use (3. 5) to define 

(3.25) Bh(w) = 

co 

c 
w 

, 

0<w < 1 . ! 
n=0 

14 

By (3.10) and (1.6), Bh(w) exists. Since c0 = 0 and Rh(0) = 0, 

, 

¡¡ 

) 

co 

JO 



(3. 3) yields 

0o 0o n 

n=0 

(n-nh)Rh(nh)wn = 12 
h n=0 k=0 

) (kh)wn cn-kRb , 0 < w < 1 

15 

By (3. 23) (3. 25) and the convolution theorem for sums (cf. (6,p.1.79)) 

1 wAh(w) 
- 

nhAh(w) (w) Bh(w) , 

Integration yields, with the use of (3.25), 

00 

nh c 
(3. 26) Ah(w) = Cw exp { ri wn}, 

h n=1 

where C is a constant of integration 

By (3.10) and (1.6), the series 
c n 
n 

n=1 
by Abel's theorem (cf. (6, p. 177) ), applied to 

CO 

1 cn Ah(1-) = C exp { 2 
h 

0 <w <1 . 

0 <w < 1, 

converges. 
00 

n= 

n=1 

Hence, 

c 
n n 

n 
w , 

which is finite. Since Rh(nh) > 0, an elementary Tauberian theorem 

(cf. (6, p. 189)) applied to (3. 23) yields Ah(1) = Ah(1 -). Thus, Ah(1) 

exists, so that Rh(t) is integrable and the theorem is proved. 

We also obtained 

) 

= 

h 

2, ñ }, 

. 



CO 
c 

A (1) = Cexp{ 
h 

2 n } 

nL=J 

This result and (3. 26) yield 

(3. 27) 

(3. 28) 

Then 

Ah(w) = Ah(l)w h exp 

Define 

Ph(t) 

00 

\ c 

h 2 
) n 

(wn-1)}, 

n=1 

Rh(t) 

00 

,J 
Rh(u)du 

0 

t > 0 . 

nh 
(3.29) nhPh(nh) = SK(nh-u)Ph(u)du, n > 0, 

0 

and 

(3. 30) 
,00 

Ph(t)dt = 

0 

00 

n=0 

Ph(nh) = 1, h e H . 

0<w<1 . 

Each function Ph(t), h E H, is a non -trivial, continuous, 

piecewise -linear, non -negative, approximation to the solution P(t) 

of (1.10) and (1.11). Rh(t) is determined in terms of Ph(t) by 

(3. 31) 
Ph(t) 

Rh(t) - max Ph(u) 
0 <u<oo 

16 

n= 

{ 

- , 

J 

h ) 
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In this chapter we have constructed approximations to R(t) 

and P(t), and have derived some of their properties. Other proper- 

ties are derived in the next chapter. 
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CHAPTER IV 

PROPERTIES OF THE APPROXIMATIONS 

We now establish some important properties of the functions 

Rh(t). A property of the constants c 
n 

, defined by (3. 5), will be 

needed in the proof of the first theorem. 

By (3. 5), (1. 7) and a change of variable we have, 

nh (n+ 1)h 

cn+ 1 
K(u+h) [ u- (n- 1)h] du + K(u+h) [ (n+ 1)h-ú] du < en 

(n-1)h nh 

for n > 1, whence 

(4. 1) - {c 
n 

} is a monotone non- increasing sequence for each fixed h. 

Theorem 4. 1. For h sufficiently small, the functions 

Rh(t), h E H, are monotone non- decreasing in some interval 

0 < t < t0 such that K(t0 +h) < 1 . 

Proof. There exists a unique integer Nh > hE H, 

such that 

(4. 2) 

< Rh( (k+ 1)h) , nh-1 < k < Nh 

Rh(Nhh) ? Rh((Nh+ 1)h) . 

.{-Rh(kh) 

- 

nh, 
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Then Rh(t) is non -decreasing for 0 < t < Nhh By (3. 15), 

(Nh+ 1 -nh)Rh((Nh+ 1)h) - (Nh-nh)Rh(Nhh) 

Nh Nh-1 

cN 
+ 1-k Rh(kh) cN _kRh(kh) . 

k= 0 
h h 

k= 0 
h 

We replace k by k+ 1 in the first sum and use Rh(0) = 0 to 

obtain 

(Nh+l-nh)[Rh((Nh+1)h)-Rh(Nhh)] + h(Nhh) 
Nh-1 

cN _k [ Rh((k+ 1)h) - Rh(kh) ] . 

k= 0 h 

Hence, by (4.1), (4.2) and Rh(0) 0, 

h(Nhh) 2 
cN 

h h 

Nh-1 

[Rh((k+1)h)-Rh(kh)] = Z Rh(Nhh) . 

h h 

Therefore, cN < h2 . By (3. 5) and (1.7), 
h ( Nhh (Nh+ 1)h 

cN > K((Nh+ 1)h) S[u(Nh1)h] du + [ (Nh+ 1)h-u]du = h2. K((Nh+ 1)h) . 

h 
Nh -1) h Nhh 

Therefore, K((Nh +1)h) < 1 and the theorem follows from (1. 4) and 

(1. 7). 

- 2 ) 

= 

cN 
JO 

2 

k=0 

J 



Lemma 4. 1. Let 0 < a < 1 and 0 < b < 1. Then 

ab s ba K(u)du < K(u)du . 

0 0 

Proof. The lemma is obvious if either a = 0 or b = 0. 

For 0 < a < 1 and 0 < b < 1, an equivalent assertion is 

t 
t (s 

K(u)du < s K(u)du, t > s > 
0 0 

Define f(x) = - K(u)du, x > 0 . Then by (1. 7) 
J O 

f' (x) = x K(x) - 
0 

20 

K(u)du < 0 and the lemma follows. 

Theorem 4. 2. The functions Rh(t), h E H, are uniformly 

equicontinuous on each interval t1 < t < co with t1 > 0 . Moreover, 

Su)du+ 

t -s 

It -s I 
(4. 3) IRh(t) - Rh( S) I 

< 
0 

t,s>t1,heH. 

Proof. For n > m > 0 it follows from (3. 2), (3. 20), (1. 7) 

and (1. 2) that 

y 

0. 

, 

t 
1 

12 J 
x 

1 
lI 

6 } 
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nh ¡* u 
InhRh(nh)-mhRh(mh) I = 

I K(nh-u)Rh(u)du- K(mh-u)Rh(u)du I 

0 0 

nh mh 
< K(nh-u)du + [ K(mh-u) -K(nh-u) ] du 

mh 0 

nh - mh ¡nh - mh 
K(u)du - K (u)du < 2 

J 
K(u)du 

0 mh 0 

By symmetry 

¡lnh-mhl 
(4. 4) I nhRh(nh) -mhRh(mh) I < 2 1 K(u)du , n, m > 0 . 

By (3. 20) and (4. 4 

I nhRh(nh) -nhRh(mh) 
I 
< 

I 
nhRh(nh) -mhRh(mh) I+ ImhRh(mh) nhRh(1rn.N I , 

r lnh-mhl _ 

(4. 5) IRh(nh)-Rh(mh)I< K(u)du + Inh-mh I m > 0, n > 0 . 

0 

Let nh < s, t < (n+ 1)h. Then by (3. 1) (4. 5) and Lemma 4. 1, 

IRh(t)-Rh(s) -Rh(s) 

1 

- (n+ 1)h 

Iths I 

{ it-s I 

h 

(4. 6) IRh(t)-Rh(s) 
I< (n+l)h 

( (n+ 1)h) -Rh(nh) I 

('h 
2 J K(u)du + It-s 

0 

SK(u)du 

It-s I 

K(u)du+ It-s l t < 1- s , t<(n+1)h, 
0 

h 
= 2 J . 

0 

, 

, 

Il J 

2J 

1 

J 

J 

I = 
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and (4. 3) holds in this case. 

Now assume that s < nh < t for some n. Define m and 

n such that (m- 1)h < s < mh < nh < t < (n+ 1)h. By (4. 5) , (4. b) , 

we have for s,t > t 

i Rh(t) -Rh(s) I< I Rh(t) -Rh(nh) 1+ I Rh(nh) -Rh(mh) 1+ I 
Rh(mh) -Rh(s) I 

t-nh nh-mh 
< tl { 2 f K(u)du + (t-nh) + 2 J K(u)du + (nh-mh) 

0 0 

(' rnh-s t-s 
+ 2 

JK(u)du + n111.-s < .1 16SK(u)du+ t-s , 

0 tl 0 

and (4. 3) is true in general. 

Theorem 4. 2 allows us to use in the next chapter, the powerful 

Arzelá- Asco1i Theorem. Each nonvoid, bounded, equicontinuous 

family of real functions defined on a closed and bounded interval con- 

tains a uniformly convergent sequence. 

For a proof, see (5, p. 59). 

, 

11ff 

} 
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CHAPTER V 

CONVERGENCE OF THE Rh(t) 

We shall consider the convergence of the functions Rh(t) as 

h -- O through H. We shall regard {Rh: h E H} as a sequence 

ordered by letting h decrease through H. 

Theorem 5.1. Every infinite subsequence {Rh: h E H'cH} 

of {Rh: h e H} has a further subsequence which converges for all 

t > 0, uniformly on any interval 0 < t1 < <:t < t2 < oo 

Proof. Since 0 < Rh(t) < 1, Theorem 4. 2 implies that the 

Arzelá- Ascoli theorem is applicable, and by that theorem there 

exists successive (nested) subsequences of {Rh: h E H' } which, 

respectively converge uniformly on the intervals [ m , m] , 

m = 2, 3, , .. . Then the usual diagonal procedure yields a single 

subsequence which converges uniformly on each of the intervals 
1 

[ 
nz 

, m] . Since Rh(0) =0 for all he H, this subsequence con- 

verges pointwise for t > 0 . 

Theorem 5.2. Suppose that Rh,(t) --R(t) as h'--'-0 through 

some H'CH uniformly on each interval 0 < t1 < t < t2 < oo . Then R(t) 

is the unique solution of (1. 1) , (1. 9) and 

(5.1) < R(t) 1 . 

. 

- 

: 



Proof. In (3. 2) , let n-' 00, h-' 0 and nh-t t with 

hEH . A theorem of Lebesgue (cf. (3, p. 22 -23)) implies that 

¡h 
K(t-u)R(u)du J 

t 
J K(nh-u)Rh(u)du-- 

0 0 

Thus, R(t) satisfies (1. 1) . Theorem 3. 1, (3. 20) and Rh(t) > 0 

imply (1.9) and (5. 1). By Theorem 2. 1, R(t) is unique. 

Auxiliary Lemma. If a sequence of monotone functions con- 

verges pointwise to a continuous function on a closed and bounded 

interval, then the convergence is uniform. 

The proof can be found in (2, p. 90) . 

Theorem 5. 3. 

of (1. 1) such that 
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There exists a unique solution R(t) , 0 < t <00, 

(i) R(t) is bounded and max R(t) = 1, 
0 <t <oc 

(ii) R(t) is non -negative, 

(iii) R(t) is continuous on [ 0, oc) 

(iv) R(t) is integrable on (0,00) 

Moreover, Rh(t) R(t) uniformly as h--" 0 through H. 

Proof. By Theorems 5. 1 and 5.2 there exists a unique 

function R(t) , 0 .< t < oc, which satisfies (1. 1) , (i) and (ii) . 

. 

: 

, 

. 

- 
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By Theorem 4. 1, R(t) is monotone in some neighborhood of t = 0, 

so that R(0 +) exists. Then Theorems 2.3 and 2.5 imply (iii). 

Theorem 2.2 implies (iv). 

Fix t e [ 0, co) arbitrarily and let r(t) be any accumulation 

point, as h-+ 0 through H, of the numerical sequence 

{Rh(t) : hEH }. Then by (3.20), the sequence of functions {Rh: hEH} 

has a subsequence which converges at t to the value r(t) . By 

Theorems 5. 1 and 5.2, there is a further subsequence which 

converges to R on [0, co). Therefore, r(t) = R(t) and, hence, 

Rh(t)--. R(t) as h 0 through H. 

By Theorem 4. 1, the Auxiliary Lemma and the continuity of 

R(t), we have that Rh(t)-. R(t) uniformly in some neighborhood of 

t = 0 and the pointwise convergence and uniform equicontinuity of 

the functions Rh(t) imply uniform convergence on every finite 

interval. Then by Theorem 3.2, the convergence in uniform on 

[0, 00). . 

In this chapter we have shown that the approximations con- 

verge uniformly to a function R(t) with the prescribed properties. 
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CHAPTER VI 

CONVERGENCE OF THE Ph(t) 

We shall investigate the convergence of the functions Ph(t) 

as h --0 through H. We shall regard {Ph: h E H} as a sequence 

ordered by letting h decrease through H. 

We define a function h(w, t) , 0 <w < 1, t > 0, by 

(6.1) tiih(w, t) = wt for t = nh, n = 0,1, . . . , and linear between. 

oo o0 

Lemma 6. 1. As w 1- , SPh(t)h(w,t)dt_Ph(t)dt= 1 

uniformly for h E H . 

Proof. Since Ph(t)Jh(w, t) is piecewise- linear and 

ph(0) J (w, 0) = 0, we have by (3. 28) and (3. 23), 

00 
oo 

Ph(t)Lph(w, t)dt = h 2/- Ph(nh)wnh = hEhAh(wh) , 

n= 

where Eh is a constant. Let w = 1 above to obtain 

SPh(t)dt = = hEhAh(1), 

Therefore, by (3.27), 

1 whence hEh 
Ah(1) h 

1 



h) 

(6.2) SPh(t)h(w,t)dt A 
h 

whnh exp {- 
l 

cn 
(1-wnh) } 

0 ( ) 

00 

n= 

We want to show that this converges to 1 uniformly in h as 

w--1- . In view of (3. 8), it suffices to show that 

c 
(6. 3) 

By (3.10), 

0 < 

Hence, 

Çn n (1-wnh) -4-0 uniformly in h as w -1- . 

cn nh 
< 2 

00 

27 

(n+ 1)h 
(('n+ 

1)h 
K(u) nh 

2J 
K(u) 2u n>2. 

-1)h (n -1)h 

co 
c 

(6.4) 
h ri (1-w nh) 

< 2 Ku(u) (1-w2u)du 

n= n= 2 (n-1)h 

(n+ 1)h 

Since lim 
u 0 

l -w2u 
u 

JK(u)' (1 -w2u)du . 

0 u 

- -2 log w, which is finite, the last integral 

exists by (1. 5) and (1. 6), and does not depend on h. As 

the integrand decreases everywhere to zero. Therefore, by 

Lebesgue's monotone convergence theorem, 

- 

1 ( 
- h2 n 

J 
(n 

¡ 
J 

< 4 

1 -, 

= 
- 

n=2 
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J(u) (1 -w2u)du--0 as 
0 

This result and (6.4) implies (6, 3) which yields the desired result. 

Lemma 6.2. There exists a constant M such that Ph(t) - < M, 

0 <t <oo, for all h E H. 

Proof. By (3. 28), (3. 20) and Theorem 3. 1, 

Ph(t) 
Rh(t) 

00 

Rh(u)du 
0 

rRh(u)du 
0 

<00, 0 < t< oo, he H. 

By Theorem 2.4 and the uniform convergence of the Rh(t), there 

exists hoe H such that 

A A 
Rh(u)du > Z 

J 
R(u)du > 0, h< h0, h e H 

0 0 

So Ph(t) < Mo for h < h0, he H, where Mo = 

Since each Ph(t), h E H, is bounded and the set {he H : h >h0} is 

finite, the lemma follows. (Another proof uses Fotou's lemma). 

Lemma 6.3. Let w, 0 < w < 1, be fixed. Then 

w -.4-1- 
u 

= 

Sb 

1 

. 

< 

1 

2 

R(u)du 
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co 

lim J Ph(t)LP h(w, t)dt = 0 uniformly for h e H. 
T--oo T 

Proof. By Lemma 6. 2 we have 

co 

\ P(t)h(w, t)dt < lvi (w, t)dt, h e H . 

T T 

By the definition of tlih(w, t) , we have ws > wnh > h(w t) for 

s < nh < t , so that wt ̂ h > i (W t) for all t > O. Therefore 

h(w, t) < wt-h < w2 for all h < 

Then, for all he H, 

. Let T > 2 max {h:hEH . 

¡+00 ¡oo 
t 

JJ(wt)dt<3 w 2 dt--0 as T - co , 

T T 

which implies the desired result. 

Lemma 6. 4. As T -e oo, 

co 

Ph(t)dt 0 and 
J 

Ph(t)dt .. 1 

T 0 

uniformly for he H , 

Proof. We have 

( 

t 

J 



0 < 
( oo ¡co 

Ph(t)dt = J Ph(t) (1-h(w, t))dt + Ph(t)tph(w, t)dt 
T T T 

30 

¡oo 00 

< J Ph(t) (14 (w, t) )dt + SPh(t)h(w, t)dt, 0 <w<1, h E H . 

0 

Then the lemma follows from Lemmas 6. 1 and 6. 3, and (3. 30) 

Lemma 6. 5. There exists a constant X such that 

max Ph(t) >X > 0 for all hE H . 

0 <t<oo 

Proof. By Lemma 6. 4, for T sufficiently large we have 

SPht)dt 

T 
> -z for all hE H. Then 

2 
< T max Ph(t) and 

0 t o0 

max Ph(t) > 2T 
0 <t <oo 

for all h E H 

Theorem 6. 1 , As h 0, 

SRh(tdt_ j R(t)dt 
0 

Proof. 
(o0 00 

Rh(t)dt - R(t)dt 
0 0 

(T 
J (Rh(t)-R(t))dt 

0 

oo 00 

Rh(t)dt + J R(t)dt 
T T 

By (3. 31) and Lemma 6. 5, 

1 J 

-- 

0o ¡00 
. 

0 

0 

. 

J 

J < 

+ J 



SRh(t)dt ('= J (t)dt < Ph(t)dt h max Ph(u) Ph(t)dt 

0 <u <oo 

Therefore, 

co 0o 

- R(t)dt 
0 0 

R(t)dt. + J 

rT 

J 
(Rh(t)-R(t))dt 

I 

+ 
X 

0 

Ph(t)dt 

31 

The theorem follows from Lemma 6. 4 and the uniform convergence 

of Rh(t) to R(t) 

Theorem 6. 2. There exists a unique bounded, continuous, non- 

negative solution P(t) of (1. 10) and (1.11), and Ph(t) P(t) 

uniformly for 0 < t < oo as h 0 through H. 

Proof. The existence and uniqueness of P(t) follow from 

(1.12) and the existence and uniqueness of R(t). By Theorem 6. 1, 

(1. 12), (3.28) and the uniform convergence of Rh(t) to R(t), the 

functions Ph(t) converge uniformly to P(t) on 0 < t < co as 

h 0 through H. 

Theorem 6. 3. The functions {Ph(t) : hE H} converge in the 

mean to P(t). 

5 
co 

T 

oo 

) 

. 

J 
I 

< 



Proof. We have 

I 

0 
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(T o0 o0 

Ph(t) -P(t) I dt < J Ph(t) -P(t) I dt + J Ph(t)dt + J P(t)dt . 

0 T 

The theorem follows from Lemma 6.4 and Theorem 6. 2. 

Corollary. As h- 0, 

SPh(tdt SP(t)dt. -i 0 a < b < oo . 

a a 

Proof. 

b b 
SPh(t)dt - J P(t)dt 
a a 

as h 0 by Theorem 6.3. 

SIPh(t)-P(t) 
b 

< 
a 

ShtitIdt Idt < -- o 

We have shown that the functions Ph(t) converge uniformly 

and in the mean to a solution P(t) of (1.10) with the prescribed 

properties. 

We have by (1.12), (3, 28) and Theorem 6.1 that 

Ph(t) = SZhRh(t), P(t) = S2R(t), where S2 and 
211 

are constants, 

and S2h -S2 . In view of this, the two sets of approximations are 

very closely related. In fact, any property derived above for either 

set of approximations Ph 

with trivial modifications, 

or Rh, will also be true for the other set 

oo 

T 

b 

0 < 
` 

I 

J 0 

¡` 
J 

J 
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