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1. Historical Background

1.1 History of the Problem — Partial Answers.

R. F. Williams [W] proved the following: Given a differentiable endomorphism
f of a branched one-dimensional manifold K, the inverse limit ﬁin(K ,f) can be
embedded in S* and the shift map f extended to a diffeomorphism of §* possessing

A CHAOTIC EMBEDDING OF THE WHITEHEAD CONTINUUM
’ lim(K, f) as an attractor.
|

M. Misiureuicz [M] proved the following: If 7 : I — I is the tent map (z —
1— |2z —1}), then:

A. For every manifold M where dim(M) > 3, there exists a C*° diffeomorphism
h: M — M such that h restricted to its attractor A is topologically conjugate
to 7 (which is chaotic).

B. For every manifold M where dim(M) > 2, there exists a homeomorphism
h: M — M such that h restricted to its attractor A is topologically conjugate

~

to T.

The results A and B hold for all maps conjugate to 7, for example the

quadratic map z — 4z(1 — z).

W. Szczechla [Sz], in a paper entitled “Inverse Limits of Certain Maps as

Attractors in 2 Dimensions” extended Miziureuicz’s results.

Barge and Martin [BM4] proved that if f : I — I is a map of a closed interval.

Then lim(I, f) can be realized as a global attractor for a homeomorphism of R2.
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In this work we extend some of the results of Barge and Martin to certain
other compact subsets X of R3. These subsets are cell-like sets arising as nested
intersections of tori in a certain way. A typical example of these subsets is the

Whitehead continuum.

In the next few sections we define the Whitehead manifold and discuss some
of its properties. We also define the Whitehead continuum and prove that it is a

cell-like noncellular subset of R3.

Definitions of some of the terms used here (for example, cell-like, cellular and

UV >°) can be found in Section 2.2.

1.2 The Whitehead Manifold. [H]

The Poincare’ conjecture states that every homotopy 3-sphere, that is, every
simply connected, compact 3-manifold without boundary, is a 3-sphere. This is
still an open question. In 1935, J. H. C. Whitehead [Wh] showed that this conjecture
cannot be generalized to open 3-manifolds. He constructed an open homotopy 3-
cell M, that is, a noncompact simply connected, 3-manifold with trivial second
homology group and without boundary, which is not homeomorphic to R®. He

constructed M as the union of an ascending sequence T}, Ty, . .. of solid tori in R3

M = U T;, where T; is embedded in Tj4; as shown in Figure 1.1.

1=0



Tj Tiq

Figure 1.1

1.3 Properties of the Whitehead Mani fold.

For completeness, we list some properties of the Whitehead manifold. Details

can be found in [H].

(i) The space M is simply connected: every simple closed curve C C M lies in

(ii)

a solid torus T, since C is compact and therefore intersects at most finitely
many tori T;. But T is contractible in T,y and hence C is contractible in

Tr+1 CM.

The space M is not homeomorphic to R® since M contains a simple closed
curve that does not lie in a 3-cell in M, for example the core curve C; of Ti.
If C; lies in a 3-cell B3 in M, it follows that B® C Int(T}), (for r sufficiently
large), and that there exists a 3-cell D} in Int(T;) with Ty C Int(D?) such
that no connected component of Bd(D3?) N Bd(T;) could be a meridianal disk
of Ty fori = 2,3,...,r—1. Hence Bd(D}) can be deformed out of T; obtaining
a 3-cell D3 in Int(T;) with Ty C Int(D3). Continuing this way, one would
finally obtain a 3-cell D}_, in Int(T,) with Tr—; C Int(D3_,), which is a
contradiction (since this would imply that the Whitehead continuum, to be

defined in Section 1.4 is cellular). For more details, see [H].
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In [Bi3], Bing gives an alternate proof of the fact that M is not homeomorphic
to R®. He shows that a simple closed curve J on Bd(T}) that circles T; longitu-
dinally does not lie on the interior of a topological cube in M. He does this by
showing that each topological cube whose interior contains J, also contains a sim-
ple closed curve on Bd(T;) that circles T, longitudinally. It follows then that for
every positive integer ¢, the cube contains a simple closed curve on Bd(T;) that

circles T; longitudinally. Hence the cube could not lie in M.
(iii) The space B can be embedded in R3.

(iv) The product B x R' & R* [Mcl]. The idea is to show that every product
Ti+1 X [a—¢€,b+ €] contains a 4-cell which contains T; X [a, b] where [a, b] C R!
anda—e<a<b<b+e Hence Ty x [-1,1] C Bf ¢ Tr x [-2,2] CooBff, C
Ts x [-3,3] C -+, where B is a 4-cell for all i. Hence B x R! = | JT; x

i=1

oo
[—i,7] = LJB:-1 can be represented as the union of an ascending sequence
i=1
of 4-cells. Hence from a result of M. Brown’s [Br2] stating that a space is
homeomorphic to R™ if it is the union of an ascending sequence of open subsets

each homeomorphic to R", it follows that B x R! & R%.

(v) The product B x B = RS [Mc1].

1.4 The Whitehead Continuum.

Let Ty be a solid torus in R3. Let T) be a solid torus in Int(T,) as shown
in Figure 1.2. Let T, be a solid torus embedded in Int(T,) as T; is embedded
in Int(Tp). Continue this construction. This results in a sequence Ty, Ti, T} ... of
solid tori in R® such that for all nonnegative integers n, Tn4; C Int(T,). Assume
the tori Tp, T3, T3, ... are constructed efficiently to force 1-dimensionality of their

intersection. For example, each T can be required to retract to its core curve under

a retraction r; with diam(r'(p)) < 3 for each p. Then W = ﬂT,' is called the
i=0
Whitehead continuum.
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1.5 Properties of the W hitehead Continuum.

For completeness, we list some of the properties of the Whitehead continuum.

For more details, see [D].

(i) The Whitehead continuum W is a noncellular subset of R®. This will be

proved in the next section.

(i) The continuum W is a cell-like subset of R3. This follows from the fact that
if U is a neighborhood of W then for some integer k¥ > 0, Tx C U. Hence
W C Tiey1 C Tk CU. Since Ti+1 contracts to a point in Tk, W contracts to

a point in U.

(ili) The continuum W is a UV continuum in R®. This follows from the fact that
W is cell-like and R® is an AN R (absolute neighborhood retract) [D, Prop.1,
p-123).

(iv) The continuum W is cellular in R*. This follows from the fact that W is

UV in R® [Mc3).



1.6 The Whitehead Continuum W is Noncellular in R3.

In this section we show that W is a noncellular subset of R3. A few results
from the literature are needed. These results and their proofs are included for

completeness.

Notation. Let T = h(S' x D?) be a solid torus in R®, where h : R® — R®
is a homeomorphism. Assume h(S* x {0}) lies in a plane P. Then P — (PN T)
has two components. By the spanning 2-cell D of T we mean the closure of the
bounded component of P — (PN T). The disk D is bounded by a “longitudinal
loop” in Bd(T).

If p is a loop, then by p ~ ¢ we mean p is homotopically trivial.

Let I? = [0,1] x [0,1].

1.6.1 Lemma. [Mo, Th.5, p.113] Let Jy, J2 and J5 be plane polygons, simply
linked in a series, as shown in Figure 1.3. Let D be a plane 2-cell bounded by J,,
and suppose that D is simply punctured by J; and Js, see Figure 1.3. Let p be a
closed path in U = D — (J; UJ,UJ3). Ifp~e in R® — (L1 U Jy), thenp~e in U.

J2
J1 J3

N—

Figure 1.3

Proof. See [Mo, Th.5, p.113]. ||

Let Ty be a solid torus. In the interior of Ty form a set 7} which is the union
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of a finite collection of solid tori with planar cores, linked in cyclic order as shown

in Figure 1.4.

Figure 1.4

Suppose that the number of components C; of T} is k, where k > 4. Figurel.5

shows three successive components of 7.

C i-1 C; C i+l

7

Figure 1.5

Let D; be the spanning 2-cell of C;. The set D; is punctured by C;_; and
Cit+1, hence A; = CI[D; — (C;_, U Ci+1)] 1s a 2-cell with 2 holes.
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1.6.2 Theorem. [Mo, Th.1, p.128] Let the components C; and the spanning
2-cells Dy, i < k be as in the definition of Ty above. Then Bd(Ty) is a retract of
k k
the set To — [|J Ciu | Di.
=1 i=1

k k
Proof. Note that the set U C; U U D; contains a simple closed curve S,

i=1 i=1

k k
which is a core of Tp. Hence Ty~ S retracts to Bd(Tp), and Tp — (U C;u U D,-) C
i=1 i=1

Ty — So retracts to Bd(Tp) as well.

1.6.3 Theorem. [Mo, Th.2, p.129] Let p be a closed path in R® —Tp. Ifp~e
in R3—T), thenp~e in R®* - T,.

Proof. Let A; = CI[D; — (Ci—1 U Ci41)), as in the definition of T}. Suppose,
without loss of generality, that p is a PL map, and let ¢ : I> - R?® — T} be a PL

contraction of p to e.

Choose p and ¢(I?) in general position relative to A;, that is , there exists a
triangulation K of I? such that if ¢ € K, and #(o?) intersects A;, then @, 1sa

simplicial homeomorphism, and 4; contains no vertex of #(a?).

Let J = ¢7'(Ai N ¢(I%)). The set ¢(J) = A; N $(I?) is a 1-dimensional
polyhedron in A; having no isolated points. J C I? is a finite union of disjoint

n

polygons, since J contains no vertex of K. Let J = U Jj. Let J; be a component
=1

of J which is innermost in I?, that is, J; is the boundary of a 2-cell d; which

contains no other components of J.

Consider the map p; = ¢|J,- : J; = Aj. p; is a closed path in A;. Since J; =
Bd(d;) and ¢(d;) C R® —(Ci—1UCi41) it follows that pj ~ e in R® — (Ci_, U Cit1).
Hence by Lemma 1.6.1, p; ~ e in Int(A;).

Extend p; to a PL map ¢; : dj — A;. Define a new contraction ¢’ : I? —
R® — T, by letting ¢id_ = ¢; and ¢' = ¢ elsewhere.
2
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Now if N is a small connected neighborhood of d; in I? then ¢'(N) approches
A; from only one side, since N — d; is connected. Now define a new contraction
¢" : I* —» R® — T) such that the intersection ¢"(N) N A; is empty and ¢' = ¢
elsewhere. Passing from ¢ to ¢” reduces the number of components of J by at least

one. Hence after a finite number of steps, we get a contraction ¢ : I? - R3 — T

such that ¢(I?) N 4; = ¢.

We perform the procedure above for each 7 = 1,2,...,%k. Note that A; inter-

sects A;_; and A;4, in linear intervals, see Figure 1.6.

Aj

AinA g AinA i1

Figure 1.6

Thus if ¢(1?) is already disjoint from A;—; ( or Ait1, or both), and p; : J; —
A; is a closed path in A;, then p; is contractible in A4; — 4;_, (or A; — Aiy, or
Ai = (Ai-1 U Ai41) ). Therefore we can pull ¢(I%) off the sets A, one at a time

preserving the results of our earlier work. Thus after k steps we have a contraction

k
Y : I = R® — T} such that De(I?) N A; = ¢ for all i. Hence ¥;(I%)N [U Ciu

i=1

k

k k
Let r: Ty — [U C; U U D,-] — Bd(T)) be a retraction. Define T|Rs 1, to be
i=1 i=1

the identity map and let p = rix : I* — R® — Int(Tp). To get a contraction of p in
R? — Ty, it suffices to pull p(I?) slightly off Bd(Ty) into R®* ~T,. W
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1.6.4 Theorem. [Mo, Th.3, p.131] Let p be a closed path in R® — Ti, and
o0
suppose that p~ e in R — ﬂT,-. Thenp~ein R} —T,.

=0
Proof. Without loss of ggerality, assume that p is PL, and that there is a
PL contraction ¢ : I? — R — nT. of p. By compactness, for some integer n, the
intersection ¢(I2) N T, is empt’y=.0 Let C be a component of T,,_;, and let Ty = C
and T{ = CNT,.

Then Tj = C and T] = C N T, are related in the same way as T, and T3,
in fact, there is a homeomorphism of R® taking Tp onto Ty and T onto T'. By
Theorem 1.6.3, there is a contraction ¢' of p onto e in R*—C such that ¢'(I?)—¢(I?)

lies in a small neighborhood of C, and hence intersects no other component of T}, _;.

Repeat the argument above for all components C of Ty,—;. Hence in a fi-
nite number of steps we get a contraction of p in R® — T,,—;. By induction, p is

contractible in R® — Tj. | |

Let C; be the union of the cores of the tori C; making up T in Figure 1.4.
The set C; is a link of k unknotted circles arranged in a chain running around the

solid torus Tj.

The following two theorems are generalizations of [Ro, Prop.G.1, p.70] and
[Ro, Prop.G 4, p.72].

1.6.5 Theorem. The meridian M of Ty is not homotopically trivial in R® —C;
or in Ty — C; for all: > 0.

Proof. Clearly, the theorem is true for : = 0. By Theorem 1.6.4, it suffices
to prove it for : = 1. Figure 1.7 shows C; C Tp.
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Figure 1.7

By Theorem 1.6.4, the loop M # e in R* — T} since M # e in R® — T}, where
T3 is a solid torus satisfying C1 C Int(Ty) C Int(Ty). But T} retracts to C;. Hence
M+#ein R -C. [ |

[o o]
Recall that the Whitehead continuum W = ﬂT,-, where T;4, is embedded in
=0

Int(T;) as shown in Figure 1.2. Let J; denote the core of T; for ¢ > 0. Figure 1.8
shows J; C Ty.

Figure 1.8
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1.6.6 Theorem. The meridian loop M of Ty $s not contractible in Ty — J; for
all 7 > 0.

Proof. Clearly, the theorem is true for i = 0. By Theorem 1.6.4, it suffices

to prove it for 1 = 1.

7, 7
C_ O G rg’“‘(’m&_)

Figure 1.9

Let p : T — T, be the universal cover of Tp. Let J; = p~1(J;) and let M be
one component of p~'(M). If H is a homotopy shrinking M in Ty ~ J; to a point,
then by the homotopy lifting property, H lifts to H which shrinks M to a point in
To — J1. Since H (M x I) is compact, we may construct a finite circular chain Ci
missing H(M x I ) which contradicts Theorem 1.6.5 . (Appropriate twists may be
needed for M and C} to be situated as M and C; shown in Figure 1.7). 1

1.6.7 Corollary. Every meridian disk of T, see Figure 1.8, intersects the

Whitehead continuum.

1.6.8 Theorem. The Whitehead continuum W is noncellular in R3.

Proof. Consider the set U = Int(Tp) as an open neighborhood of W. Assume
that W is cellular in R®. Hence there exists a 3-cell B® such that W C Int(B3) C
B3 C U. Let M be a meridian loop of Ty. Let f : B2 — Ty be a map such that
f takes Bd(B?) homeomorphically onto M, where B? is a 2-cell. Choosing f(B?)
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in general position relative to B®, we may assume that f(B?) misses a point p of
Int(B®). Since there is a retraction r : B3 — {p} — Bd(B?), we may replace f
by a map g : B®> — T, — Int(B®) with f and g agreeing on Bd(B?). Hence M is
contractible in Tp — W, which contradicts Theorem 1.6.6. |
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2. Definitions and Preliminary Theorems

2.1 Chains and Chainable Continua.

A chain C is a finite collection of open sets {C1,C3,...,Cpn} such that C;N
Ci#¢ ifandonlyif [i—j|<1. ThesetsC;,i=1,2,...,n are called the links
of the chain C. Links are not assumed to be connected. If the links are of diameter
less than ¢, the chain is called an e-chain. The links C; and C, are called the first
and last links of the chain, respectively. The chain C; is a refinement of the chain

C, if each link of C, is a subset of a link of (.

If {(1,01),(2,42),...,(n,qn)} is & collection of pairs of positive integers, the
chain C; follows the pattern {(1,41),(2,42),--.,(n,q4)} in the chain C, if the ith
link of C; is a subset of the g;th link of ;.

A continuum is a compact connected metric space. A continuum is called
chainable (or snakelike) if for each positive number ¢ it can be covered by an e-
chain. A continuum is decomposable if it is the union of two proper subcontinua;

otherwise it is indecomposable.

Let A C X. Then by Bd(A), Int(A) and Ci(A) we mean the topological

boundary, interior and closure of A in X respectively.

2.2 Cellular Sets. [D]

A subset X of R" (of any n-manifold) is said to be cellular if there exists
a sequence of n-cells B; in R" such that By, C Int(B;), for i = 1,2,... and

X = nB,-. Alternatively, X C R™ is cellular if and only if for every open set
=1

U O X there exists an n-cell B such that X C Int#(B) C B C U. As a second

alternative definition, X C R™ is cellular if and only if X is compact and has

arbitrarily small neighborhoods homeomorphic to R™.
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A compact subset C of a space X is cell-like in X if for every neighborhood
U of Cin X, C can be contracted to a point in U.

A set A C X has Property n-UV in X if for every neighborhood U of A
in X there corresponds another neighborhood V of A in U such that every map
of Bd(B™t!) into V, where B™*! is an (n + 1)-cell, extends to a map of B**!
into U. The set A has Property UV™ in X if it has Property k-UV in X for all
k€ {0,1,2,...,n}. The set A has Property UV in X if it has Property &-UV in
X for all £ > 0.

2.2.1 Lemma. [D, Prop.4, p.121] Let C be a compact subset of an ANR X.
Then C 1s cell-like in X if and only if, for each neighborhood U of C, some
neighborhood V of C in U is contractible in U.

2.2.2 Lemma. [D, Prop.1, p.123] Every cell-like subset A of an ANR X has
Property UV>® in X.

Proof. Let A C X be cell-like. Let U be a neighborhood of A in X. By
Lemma 2.2.1, there exists a neighborhood V of A such that AC V C U and V is
contractible in U. Let f : Bd(B"*!) — V be a map. Note that Bd(B™*!) is closed
in B™*!. The set V is contractible in U ; let ¢ : V — U be that contraction. Then
the map f is homotopic to the constant map ¢; o f : Bd(B™*!) - U. Since ¢; 0 f
extends over B"*!, so does f. Let F': B**1 — U be an extension of f. Hence A
has Property n-UV in X for all n € {0,1,2,...}. Hence A has Property UV in
X. u

2.3 Inverse Limit Spaces.

Motivation. Inverse limit spaces proved to be a valuable tool in the study

of the dynamics of certain maps as evident from [BM1], [BM2], and [BM3]. In
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these papers Barge and Martin began investigating the relationship between the
dynamics of an iterated interval map and the associated inverse limit space. They
showed that complicated or “chaotic” bdynamics of an interval map f is reflected in
complicated topology in the inverse limit space, the existence of an indecomposable
subcontinuum to be more specific. They also showed the following: Suppose f :
I — I is continuous, onto and there is a finite set {ag,a1,...,a1}, a =ay < a; <
-+ <ar=bin I = [a,b] such that f is monotone on [a;_,, a;] fori=1,2,.... Then
if lir_n(I , f) is indecomposable, f has a periodic point whose period is not a power

of 2.

A motivation for their study was that certain strange attractors can be realized

as the inverse limit spaces of certain interval maps.

Studying the dynamics of f : X — X by utilizing im(X, f) has two advan-
tages [BM3]: '

(1) Spaces of the type lim(X, f) have been extensively studied, in particular in
the cases where X = I and X = S?.

(2) The function f : X — X becomes a homeomorphism f : lim(X,f) —

lim(X, f) and this allows certain arguments to be “inverted”.

For more on inverse limit spaces the reader is referred to [ES], [CV], [HY] or
[Be], and for more on inverse limits and dynamical systems [Sc] serves as a good

introduction.

An inverse sequence is a double sequence (X, f»), n = 1,2, ... such that each
coordinate space X, is a topological space and each bonding map f, : Xpt1 —
Xn is continuous. The inverse limit of the inverse sequence (X, fn) is the set

lir_n(X,,,f,,) = {(za) € H Xn 1 Vn 2 1, fa(zn41) = Tn} topologized with the

n=1
relativized product topology.
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oo
Let m; denote the natural projection from both HX,, and its subset

n=1

Hin(Xn,fn) onto X} defined by n((z,)) = z.

We now include some basic results about inverse limits needed for our con-

structions later on.

2.3.1 Lemma. The collection B = {n;'(Ux): k > 1 and Uy is open in Xi}
is @ basis for the topology on Lim(X,, fy).

Proof. Suppose that U is open in im(X,, f,) and (z,) € U. Since
lim(X,, fu) has the relativized product topology, there is an open set W =

Un, X Uny X +++ X Un,, X [] Xn such that (zx) € W N lim(Xa, fa) C U.
' n#n;

Choose n > n; fori =1,2,...,m,and let V = n f7:2a(Un;). One can easily

n;,n
i=1

verify that (z,,) € 7;1(V) C W Nlim(X,, fa). | |

Given (Xy, f,) and (Y,,9,). Forall n > 1, let k, : X, — Y, be a function
such that h,fn = gphn+1. Then there is an induced function A : lim(X;, f;) —
lim(Y;, g;) defined by A((z,)) = (hn(zp)).

2.3.2 Lemma. Consider the following commutative diagram.:

x, &0x, S X, & .. Lm(X;, f;)
th J,h2 lha 1ﬁ
i & vn &£ v & i)

If each h, is continuous then so is h.

Proof. Let U be open in lim(Y;,g;) and &(z) € U. Since U is open, there
exists a positive integer n and an open subset V,, C Y;, such that iz(g) en;} (Vo) C
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U.Let W = X1 x Xy x+++ X Xnoy X h7Y (V)X Xpg1 X+ - Since hy, is continuous,
h;;'(Va) is open in X,. Hence the set W = W' ALm(X;, f;) is open in Lim(X;, f;).
Since A(z) € 7, 1(Va) then hp(z,) € Vi, z, € k1 (V,), and hence z € W. If
z € W then z, € h;(Va), hn(zn) € V,, and hence h(z) € x71(V,) C U. Hence h is

continuous. [ |

Given an inverse sequence (X, fn), n = 1,2,... such that each coordinate
space X, is a metric space with metric d,,. Define a new metric d,, on X, by
dy(z,2) = min{1,d(z, 2)}. The metrics d, and d/, are equivalent metrics, that is,

[ ]

they generate the same topology on X,,. The space H X, is metrizable with metric
n=0
—~ d'n(:l:,', Zi )

¢ defined by o(z,z) = ) 5
i=1
topology. The subset im(Xy, f») inherits this metric [CV, Theorem 6.A.15].

. The topology induced by p is the product

Let X be a metric space and f : X — X be continuous. Let lim(X, f) denote

the inverse limit of the sequence
x L x L x L

Let f be the induced map by the diagram

x L x L x L odmx, g
ool i
x L x L x L .. lim(X, f)

The map f is defined by f(z) = (f(z1), f(z2), f(z3),--.) = (f(1), 21, 22,...).

2.3.3 Lemma. Let X be a metric space and f : X — X be continuous and

onto. Then f: lim(X, f) — lim(X, f) is a homeomorphism.
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Proof. Suppose f(g) = f(g) Hence z; = z; for all : > 1. Hence z = z and f

1s one-to-one.

Suppose z € lim(X, f) and z = (21,22, 23,...). Let £ = (23,23,...). Clearly,
f(_:g) = (f(Zz),f(Z3),...) = (21,22,...) = z and hence f is onto.

By Lemma 2.3.2, f is continuous.

Let U be open in l%r_n(X,f) and z = (z;,72,...) € U. Since U is open
in li‘r_n(X, f), there exists an integer n and an open subset V, C X, such that’
€' (V) CU. Let W =Xy x Xa X+ X XpX f~H Vo)X Xnyz X+ Let W =
W’ﬂlir_n(X, f). Hence W is open in lir_n(X, f). Since f(z) = (f(z1),21,22,...) and
Zn € f71(Vy), we have f(z) e W. If z = (21,22,...) € W, then zn41 € f71(V5).
Hence £ = (23,23,...) € U and f(z) = z. It follows that W C f(U) and f is open.

The map f is one-to-one, onto, continuous and open, hence it is a homeomor-

phism. ||

2.3.4 Lemma. If (Xn, fn) is an inverse sequence and the bonding maps are

o o]
inclusion maps, then im(X,, f,) = ﬂX,,.
n=1

Proof. Given
x, &Lox, ox, L2

o0
We prove that the map & : im(X,, f,) — nX,, defined by h(z,z,z,...)=zisa

n=1
homeomorphism.

Clearly, h is one-to-one and onto.

Let U be open in ﬂX,, and h(z) € U. Then there exists an open subset

n=1

U' C X, suchthat U =U'N ﬂX,,. Since U’ is open in X, and h(z) € U’, there is

n=1
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[ o]
an open subset V' C X, such that h(z) e V' CU'. Let V=V'n ﬂX,,. Vis an

n=1

o0
open subset of ﬂ Xn such that h(z) € V C U. Let W = =,;!(V) for some integer
n=1

n. W is open in im(X,,f,) and z € W. ¥ z = (2,2,...) € W, then z € V and
h(z) € V. C U. Hence h is continuous.

Let U be open in im(X,, f,) and £ € U. Then by Lemma 2.3.1 there
exists an integer n and an open subset V, C X, such that z € = (V) c U.
o0

Let V.=XiNXp NN Xp N VaN Xog1 N+ V C V, is open in [) X, and
n=1
h(z) =z € V. Since n;'(V) C 7;*(V,) C U, then V C h(U) and # is open. Hence

h is a homeomorphism. | |

2.3.5 Lemma. Given (X, fn). If X; = X; for all i and j, and f; is a
homeomorphism for all i, then im(X,, f,) = X; for all i.

Proof. The map F; : im(X,, f,) — X; defined by Fi(z1,22,...) = z;is a

homeomorphism for all 3. n

2.3.6 Theorem. [Be, Th.7, p.8] Given (X;, f;) and ny,nq,... an increasing

sequence of positive integers. Then lim(Y;,g;) = Lim(X;, f;) where for each i, Y; =

Xn.- and gi = fn.',n.'+1'

Proof. We prove that F : lim(X;, f;) — lm(Y;,¢;) defined by F(z) =

(TpysTny,...) where z = (;,z,,.. .) is a homeomorphism.
Clearly, F(z) € lim(Y;, g;).

Suppose F(z) = F(z). Then z,, = Tyn; for all i > 1. Given k a positive
integer, there exists an i such that n; > k. Hence zx = fi n,(Zn;) = Jeni(zn;) = 2.

Hence z = z and F is one-to-one.
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Suppose y = (y1,¥2,...) € Em(Y;,g:). Let 2 = (fi,ni(91), fo,m(11)s-. .50,
fn1+1,"2(y2), fn1+2,n2(y2),---,y2,---)- Clea.rly, T € hEI(Xg,fg) and F(_:I_)_) = _?i

Hence F is onto.

Suppose U is open in I'En(Y,',g,') and F(z) € U. By Lemma 2.3.1, there exists
a positive integer £ > 1 and an open set V C Y; containing 7y (F(z)) such that
a point z of liin(Yi,!]i) €U if m(z) € V. Define W' = X;x X x -+- X X, _1 X%
VxXp4+1X---andlet W=W'n liin(X,-,f,-). Clearly, W is open in liin(X;,f,')
and z € W. Note that = (F(W)) C V, hence F(W) C V and F is continuous.

Suppose U is open in liin(X,-,f,-) and £ € U. By Lemma 2.3.1 there is a
positive integer p such that for any integer n > p there is an open set V C X,
containing 7,(z) such that z;(V) C U and z € 7;)(V). Choose n to be any
ng > pand V as above. Clearly F (7 !(V)) contains F(z) and is open in lim(Y;, g:)
since F(x;}(V)) = n;*(V). The map F is continuous, one-to-one, onto and open,

hence it is a homeomorphism. W

The following three corollaries follow from the previous lemma.

2.3.7 Corollary. Given (X;, f;) and an integer n > 1. Then lim(Y;, g;) &
lim(Xj;, f;) where for each i, Y; = Xn—1)+i and gi = fra_1y4i.

2.3.8 Corollary. Given (X, f) and an integer n > 1. Then lim(X, f*) =
im(X, f) for all n.

2.3.9 Corollary. Given (X;, f;) and ny,ny,... a sequence of positive integers.

Then lim(X;, f;) = him(X, f) where for each i, X; = X and f; = f™.

2.3.10 Lemma. If F: X — X is a one-to-one map. Then A = n F*'(X) is
n>0

homeomorphic to im(X, F).

Proof. Consider the following diagram:
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F

X — X — X «— - lim(X,F)
el e |~
X & F(X) & Fyx) S A

By Lemma 2.3.4, A = n F™(X). This diagram induces a homeomorphism
n>0
Fy : liz_n(X,F) — ﬂF"(X) defined by Fuo(zo,21,22,...) = (20, F(71),...) =
n2>0

(z0,z0,...). n

2.3.11 Lemma. If A is a closed subset of lim(X;, fi), and for each n, 7, (A) =
Xn, then A = lLim(X;, f;).

Proof. Suppose z € liin(X,-, fi) and U is an open set containing z. By
Lemma 2.3.1, there exist an integer n and an open set U, C X, such that z €
7.1 (Un) CU. But 71 (Un) N A # ¢ since 7,(A) = X,. Hence z is a limit point of
A. But A is closed, hence z € A. |

2.3.12 Theorem. [En, Theorem 1.13.2] For every compact metric space X
such that dimX < n there ezists an inverse sequence(K;, f;) consisting of polyhedra
of dim < n whose limit is homeomorphic to X; moreover, one can assume that for
1=1,2,..., K; is the underlying polyhedron of a nerve K; of a finite open cover of
the space X and that for each i, the bonding map f; is linear on each simplez in

Kit1.

2.4 Chaos and Chaotic Maps.

We begin with some definitions. We also state some results which will be used

later on. Some proofs are included for completeness.
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If f: X — X is a map, a point £ € X has period n, where n is a positive
integer, if f"(z) = z, and if for all integers 1 < k < n, f¥(z) # z. The orbit of z,
O: ={f*(z):n=0,1,2,...}.

Let F : X — X and A be a closed subset of X. Then A is an attractor
for F if there exists an open neighborhood U of A such that C! (F(U)) c U and

A= [)F(U).

n>0

Let X be a compact metric space. Then a map f : X — X is said to be

chaotic if it satisfies the following conditions:

(1) The map f has sensitive dependence on initial conditions (SIC). That is,
there exists a § > 0 such that for each z € X and for each € > 0 there

exists an z' € X, such that d(z,2') < € and a positive integer n such that

d(f*(2), f*(2')) 2 6.

(2) The map f has a dense orbit. That is, there exists an z € X whose orbit (o

is dense 1n X.

(3) The periodic points of f are dense in X.

In [BM1], Barge and Martin define topological stability as follows: Let X be
a metric space and f: X — X be a map. Let = € X, then z is topologically stable
tf and only if for every § > 0, there is an ¢ > 0 such that if z € X and d(z,z) < e
then for each positive integer n, d(f™(z), f*(z)) < 6. If z is not topologically stable,

then z is topologically unstable.

Examining the definitions above, we see that f : X — X is SIC if and only if
every point € X is topologically unstable.

A map f: X — X is topologically transitive if and only if for every pair of
nonempty open sets U, V in X, there exists an n > 0 such that f*(U)NV # ¢.
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2.4.1 Lemma. [Si] Let X be a metric space with no isolated points. If f : X —
X has a dense orbit, then f is topologically transitive. The converse is true if X is

a complete separable metric space.

Proof. We first prove the following claim:

Claim: In a metric space with no isolated points, every nonempty open subset
is infinite.

To prove the claim, let V C X be a nonempty open subset. Let z € V. Then
there exist z, € V, n = 1,2,..., such that z, # z and d(z,z,) < 1. The set

{z1,22,...} cannot be finite because d(z,z,) — 0. This proves the claim.

Let U and V be nonempty open subsets of X. Let O, = {zo,z;,...} be a
dense orbit. Then there exist integers k¥ and m such that zx € U and z,, € V —

{zo,21,..., 2k} which is open and nonempty. Since m > k, then i onv = ¢.

To prove the converse, suppose that f has no dense orbit and {B,}2, is
a countable basis for X. For each ¢ € X there exists an integer n(z) such that

f¥(z) ¢ Bps) for all k > 0.

=<
The union U fk (Bn(z)) is open and is dense in X since f is topologically

k=0
oo
transitive. Let A,,;) = X — Uf"‘(B,,(,)), then z € A,(;) and A,(,) is closed
k=0
and nowhere dense. Hence X = U A, (z) is a countable union of closed nowhere

r€X
dense subsets of X, contradicting the fact that X is of second category. The union

xR0
U Ay (z) is countable because for every z € X, Apzy =X — U f"‘(Bm) for some
zeX k=0
m=123,.... | |

Let X and Y be topological spaces and let f : X — X andg:Y — Y be
maps. f and g are said to be topologically conjugate if and only if there exists a

homeomorphism h : X — Y such that the following diagram commutes:
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2:4.2 Lemma. Let X be a compact metric space. If f : X — X is chaotic and
13 topologically conjugate to g: Y — Y, then g is chaotic.

Proof. Let Yy €Y and ¢; > 0. Then there exist ¢ € X and e; > 0 such that
h(z) = y and for all z € X if d(z,2) < e then d(y, h(z)) < €. Choose b >0
for f : X — X as in the definition of SIC. Then there exist an z' € X such that
d(z,z') < €2 and an integer n > 0 such that d(f~(z), f*(z")) > &;.

Let y' = h(z'). Now we have d(g"(y),g"(y'")) = d(g"h(z),g"h(z')) =
d(hf"(z), hf"(z')).

Claim: The map h : X — Y satisfies the condition : for each § > 0 there
exists an € > 0 such that if d(z,z') > § then d(h(z), h(z')) > € for all z,z’' € X.

Note that if h satisfies the previous condition then taking § = o5 we get
6y = € > 0, we see that g is SIC.

We prove the claim by contradiction. So assume that there exists a § > 0 and
points {z,}, {z,},n = 1,2,... such that d(z,,z") > & and d(h(zn),h(z})) = 0 as
n — oo. Since X is compact, {z,} and {z’,} have convergent subsequences {zn;}
and {z},,} respectively. Assume z,, — z and z;,, — ¢' as i — oo. By the triangular
inequality, d(z,z') > 6o, hence h(z) # h(z') since h is one-to-one. By continuity of
h, d(h(zn,), h(zy;) — d(h(z), h(z')) as i = co. But d(k(z,), h(z;,,) = 0 as i — oo,
hence d(h(z), h(z')) = 0. Hence h(z) = h(z'), a contradiction.

I 0, = {z, f(z), f2(z),...} is dense in X, then Owzy = {k(z),g(h(z)),
9%(h(z)), g*(h(z))...} is dense in Y. To show this, let U be open in Y. The
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set h='(U) is open in X, hence f"(z) € h=!(U) for some positive integer n. Since
ho f=goh, wehave hf*(z) = g"h(z) € U.

Assume that Per(f) = {z € X : f*(z) = z, for some integer n > 0} is dense
in X. Let U CY be open, then h~}(U) is open in X. Hence there exist an z € X
and an integer n > 0 such that = = f"(z) € h~(U). Hence h(z) = h(f"(z)) € U.
But since h(f"(z)) = ¢"(h(z)), we have h(z) = g"(h(z)) € U. Therefore Per(g) =
{y €Y : g™(z) = z, for some integer n > 0} is dense in Y. |

The following lemma is needed for the proof of Theorem 2.4.4.

2.4.3 Lemma. [Sc, Lemma 32] Let X be a metric space. Then for each z €
im(X, f) and € > 0, there ezists a positive integer k and an a > 0 such that if
z € im(X, f), where d'(zx,2:) < a, then o(z,z) < e.

Proof. Given z € liln(X, f) and € > 0, let k be such that 2=% < ¢/2. Using
the continuity of the bonding maps, for each i = 1,2,...,k — 1, there exists a; > 0
such that if z; € X, where d'(2x,7:) < ay, then d'(fi(zx), fi(zx)) < €/2. Let
a = min{e/2,a,,...,a;-1}. Now, if z € li‘r_n(X, f), where d'(zk, 2x) < «, then for

each: =1,...,k, d'(zi,2) < ¢/2 and

_ ood'(:c,',z,') € en 1 =1 € —k
9@’5)—2—_2-'_"35(25)4“ Z §;S§+2 <e. B

=1 =1 i=k+1

2.4.4 Theorem. Suppose that X is a metric space and f : X — X is onto. If
f is chaotic, then f : lim(X, f) — im(X, f) is chaotic.

Proof. Suppose that f is SIC. Let é be given from the assumption that f
1s SIC. Let z € liin(X, f) and € > 0. Assume that ¢ < §. Apply Lemma 2.4.3 to
obtain k£ and a such that if z € liln(X, f), where d'(zi,2:) < a, then o(z,z) < e
Since f is SIC, there exist wi € X such that d'(wi, i) < a and a positive integer
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m such that d'(f™(zz), f™(w)) > 6. Since f is onto, the set {z € 1%1_11(X, f):
7(z) = wi} is nonmempty; choose such a z. Recall that d'(f™(zk), f™(zx))
= d(Tk-m,2k-m) > 6. Since d'(zi,2;) < €¢/2 < 6, for i = 1,2,... .k, we
have m > k. Now, fm=¥+1(g) = (fm=k+1(g,), fm—Fk(zy),..., f(z1),21,22,...) =
(Tk=m»Tk—m+1,-.,%0,T1,... ), and hence, if n = m~ k+1, then o(f*(z), f*(2) 2
6/2. Therefore, f is SIC.

Assume that O, = {z, f(z),f?(z),...} is dense in X. Choose z €
im(X, f) such that z; = z and consider O, = {z, f(z),f*(z),...}. Let
U be open in lix_n(X, f), then there exists an integer a and an open sub-
set Uy C Xo such that n;'(Us) C U. Since O, = {z,f(z),f*(z),...}
is dense in X, there exists an integer m such that f™(z) € U,. Hence
(f'""'"(a:),f’""'"‘l(:c),...,f’"(:c),f'""(a:),...,f(:c),:c,...) € U and O; is dense
in lim(X, f).

Assume that Per(f) is dense in X and let U be open in li‘x_n(X, ),
then there exists an integer o and an open subset U, C X, such that
©;'(U,) C U. Since Per(f) is- demse in X, there exists a periodic
point z of period m in U,. Let § = a (modm). Consider z =
(fB(z), fP~Y(2),..., f(z),x, fm (), fm*(z),..., f(z),z, f*(z),...). Clearly
z € 7;'(Ua) and f™(z) = z. Hence Per(f) is dense in im(X,f). B

2.5 Maps of the Compact Interval f: I — I.

In this section we include a few results on maps of the compact interval. These

give alternative characterizations of chaos for maps f : I — I.

2.5.1 Lemma. [MB1, Lemma 2] Suppose f has a dense orbit O,. Forz € I
and s and k integers, s > 1, k > 0, let A, i(z) = Ay = {75 (z) : n > 0}). Then
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(i) If Az is dense in I, then A, ts dense in I for alls > 1, k > 0.

(#) If Az is not dense in I, then I = 22,0 uZz,l, Az, Zz,l are closed intervals
which intersect in a point, and f(Az0) = 43, f(A2,1) = Az 0. Moreover, for each

k>1, Az ts dense in Zz’o and Az, is dense in Zz,l.

2.5.2 Corollary. [MB1, Cor., p.359] Suppose f has a dense orbit O,. Then

the set of periodic points of f is dense in I.

Proof. Let V C I be an open subinterval. Choose z € V such that O, is
dense in I. If {f2*(z) : n > 0} is not dense in I, we may assume, by Lemma 2.5.1,
that V' C CI{f?**(z) : n > 0}. Let j be an integer such that fi(z) € V. We may
assume that z < fI(z). From Lemma 2.5.1, it follows that {g¥(z) : £ > 0} is
dense in V. Now let I be the smallest positive integer such that 9'(9(z)) < g(z).
Then g'(z) = ¢'"'(9(z)) 2 g(z) > = and ¢'(9(z)) < g(z). So gz) > = and
9'(9(z)) < g(z). Hence g has a fixed point y, z < y < g(z). Since g'(y) = y,
f*(y) =y and since y € V, V contains a periodic point of f. |

2.5.3 Corollary. [MB1, Cor., p.359] Suppose f has a dense orbit O,. Then

every point of I is topologically unstable.

Proof. Suppose y € I and y is topologically stable. Let = € I have a dense
orbit O,. We first show that O, is dense.

Suppose U C I is an open subinterval and for all n > 0, ff(z) ¢ U. Let V
be an open interval which is the open middle third of U. Let ¢ = 1diam(U). Then
since y is topologically stable, there is a § > 0 such that if |z — y| < & then for all
n, |f*(y) — f*(2)| < e. In particular, is |z — y| < § then, for each n, fi(z) ¢ V.
Now since z has a dense orbit, there is an integer j such that |fi(z) —y| < 6. Then
there exists an integer k¥ > j such that f*(z) € V. But then f¥i(fi(z)) € V and

this is a contradiction. Hence O, is dense.
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By Lemma 2.5.1, there exists a positive number € and a subinterval C of I
such that diam(C) > 3¢, and for each n > 0 {f*"(y) : k > 0} is dense in C. Now
choose § > 0 such that if |z — y| < & then for each j, |f/(2z) — fi(y)| < e. Now
by Corollary 2.5.2, let ¢ be a periodic point such that |t —y| < §. Let n be the
period of ¢. Then for each k, |f**(¢) — f*"(y)| < e so |t — f*"(y)| < e. But then
{f**(y) : k >0} isdenseinC. B

Hence for maps f of the interval I & [0, 1], f having a dense orbit is equivalent
to f being chaotic.

In [BM1] and [BM2], Barge and Martin prove results, which yield the equiv-
alence of (1)-(4) in the following theorem. In [CM], Coven and Mulvey prove that
(5) is equivalent to the rest if f is piecewise monotone. They do so by proving that
if f: I — I is piecewise monotone and if f* is transitive for every n > 0, then for

every subinterval J C I there exists an n such that f*(J) = I [CM, Lemma 4.1].

2.5.4 Theorem. Let f : I — I be continuous. Then the following statements

are equivalent:
(1) f is transitive and has a point of odd period greater than one.
(2) f? is transitive.
(3) f* is transitive for every n > 0.

(4) For every pair U, V of nonempty open sets, there exists an N, such that
fFPU)YNV # ¢ for alln > N.

Furthermore, if f is piecewise monotone, then the following statement is equiv-

alent to the rest:

(5) For every interval J C I, there exists an n such that JH)=1I
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2.6 Maps of the Circle f : S — §1.

In this section we include a few results on maps of the circle. These give

alternative characterizations of chaos for maps f : §! — S!.

2.6.1 Theorem. [CM, Theorem C] Let f : S* — S? be a continuous map of

the circle to stself. Then the following statements are equivalent:

(1) There is an m such that f™ is transitive and has a fized point and a point of

odd period greater than one.
(2) There is an m such that f2™ is transitive and f™ has o fized point.
(3) f" is transitive for every n > 0 and f has periodic points.

(4) For every pair U, V of nonempty open sets, there erists an N, such that
fFU)NV #£ ¢ for alln > N.

Furthermore, if f is piecewise monotone, then the following statement is equiv-

alent to the rest:

(5) For every interval J C S, there ezists an n such that (s =8

2.6.2 Theorem. [Si, Theorem 7.1] If f : S* — S* has a dense orbit then any

of the following are equivalent to f being chaotic:
(1) f has a periodic point.
(2) f is not one-to-one.
(3) f has sensitive dependence on initial conditions.
(4) f has a non-dense orbit.

(5) f is not conjugate to an irrational rotation.
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2.6.3 Corollary. [CM, Cor. 3.4] For transitive maps of the circle with periodic

points, the periodic points are dense.
A map f : X — X is called topologically transitive if any of the following
equivalent conditions hold [CM):

(1) For every pair U, V of nonempty open sets, there ezists an n, such that
fTHUYNY # 4.

(2) The only closed invariant set K with Int(K)# ¢ is K = X
(3) If Int(K) # ¢, then Un>of"(K) = X.

(4) f is onto and has a dense orbit.
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3. The Whitehead Continuum

In this section we construct two spaces homeomorphic to the Whitehead con-
tinuum. One in R? which we refer to as the Whitehead continuum and one in R2
which we refer to as the Knaster continuum. We chain the Knaster continuum in a
specific way and then analogously we chain the Whitehead continuum. We use these
chainings to prove that the Whitehead and the Knaster continua are homeomorphic.
This result is stated without proof in [A].

Let C = ITor C = S'. Let f : B2 xC — R® be an embedding. Let
N(f({0} x C),r) = {z € R® : d(z, f({0} x C)) < r}. We say that f(B? x C)
has “cross sectional diameter < r” if it is a subset of N(f({0} x C),r) and if
diam(f(B? x c)) <rforall ce C.

Let f : I x I — R® be an embedding. Let N(f(I x {3}),r) = {z € R® :
d(z, f(I x {%})) < r}. We say that f(I x I) has “width < r” if it is a subset of
N(f(Ix{3}),7) and if diam(f(t x I)) <rforallt € I.

3.1 Construction of the Whitehead Continuum.

Let To be a solid torus in R®. Let Ti be a solid torus in In#(Ty) as in
Figure 3.1. Let T, be a solid torus embedded in Int(Ty) as T) is embedded in
Ty. Continue this construction. This results in a sequence Ty, Ty, Ts,. .. of solid tori
in R® such that for each n € Z+ U {0}, Tny1 C Int(T,). Assume that the cross
sectional diameter of T, < (11—0)" for all n. The Whitehead continuum W is defined

oo

by W = ﬂ Ti;. Note that the conditions on the cross sectional diameters force
1=0
W to one-dimensional and that W is homemorphic to the Whitehead continuum

defined earlier in Section 1.4.
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Figure 3.1

3.2 Construction of the Knaster Continuum.

let Dy be a 2-dimensional disk in R? of width 1. Let D; be a 2-dimensional

disk in Int(Dy) as in Figure 3.2. Let D; be a 2-dimensional disk in Int(D,) as

D; is embedded in Dy. Continue this construction. This results in a sequence

Do, D1,D,,... of 2-dimensional disks in R? such that for each n € Z+ U {0},

Drny1 C Iny(Dy). Assume that the width of D, < (§5)" for all n. Then the
0o

Knaster continuum K is defined by K = n D;. Note that the conditions on the
i=0
width of Dy, force K to be one-dimensional.

el T I T T T it

Figure 3.2

Next, will chain the Knaster continuum K in a specific way and then analo-
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gously chain the Whitehead continuum W. These chainings will be used to prove
that W is homeomorphic to K.

.3 Chaining the Knaster tinyum.
We will inductively define chains &, &;, &, ... where &; covers D;.
Defining the Chain &,.

Consider the 2-cell Dy shown in Figure 3.3.

r T'neg-1
0 1 ra Dy Ng 2
L
L
Dy
D,
L

Figure 3.3

Let Dy = Iy x Jo, where Iy = [0,2] and Jy = [0,1]. Partition the interval
Io into ng subintervals [ro,71], [r1,72),. .., [Frg=1,Tn,], Where ro = 0 and r,,, = 2.

Require that diam([r;, r,-.,.;]) < % forall0 <i<ng-—1.

Let E{; = [ri=1,7i] X Jo for all 1 < 7 < ng. Choose the links E} such that
E{ N D, has exactly two components for 1 < ¢ < ng and Eg° N D; has exactly
one component. Now, slightly expanding each link E}, as shown in Figure 3.4,
we produce the open links (still denoted by Ej, E2,..., Ey°) making up the chain
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€. Hence & = {Ej,E32,...,Eg°} is a chain made up of ng open links such that

EiNE] # ¢if andonly if |i —j| < 1.

Te———= N = - - T=ees-- h ]
' 1 1 '
' 1 1 '
' 1 1 '
' 1 1 '
-, 1 1 '
' 1 1 '
' ' 1 '
' ' ' '
' 1 1 '
L .l]l - J L. .lJ
1- 1 1+ - S | i
Eg Eg Eb E}-l i Ej*!
Eb
Figure 3.4

Defining the Chain &,.

Let EEND; = *SiU'Si forall1 < i < no, where *S§ = ([ri_1,ri] x [3,1])nD,

and 'S§ = ([ri—1,m3] x [0,4]) N D;.

Let 'S} = I x J;. Partition the interval I, into m subinterval [rg,r],

[r1;72), .+ [Fm—1,7m]. Require that :
(1) Diam([ri,ri41]) < .
(2) The intersection Dy N ([to,#1] x J;) has one component.
(3) The intersection D;N ([t,-, tiv1]x Jl) has two componentsforall1 < : < m—1.

Let Elnl = [to,tll x Ji, Elnl—l = [tl,t2] x Ji, Elnl-2 = [tz,t;;] X J1y...,
Ef"™ = [tm-1,tm] x J1. Expand these links slightly to produce open links
EM,EP T EM T2 EM™. Hence we have defined the last m links of the chain

&1. See Figure 3.5.
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Figure 3.5

Similarly, partition 'S('; into m sublinks E;.‘, E;.’, ey E;."‘ such that 'S§ =
Eiy E;.’ u---u E;."‘ for all 1 < i < m. Also partition S} into m sublinks E:*,
Ep?,..., Ei" such that 'S} = EPU E# U...U Ei™ for all 1 < i < m. Here each

sublink intersects D, in two components.

Now consider Ey° N D;. Let h : R*® — R® be a homeomorphism taking
Eg° N D, onto the 2-cell I x J, such that diam(h_l(r x Jp )) < 11—0. See Figure 3.6.

m(ng- 1)+1
El

1/
I] h
—

AN

\\ A ,1\
' -

. h(eP®o D) h(EP"?)

ER Do
Figure 3.6

Partition I; into m subintervals [ro, 1], [r1,72),..., [Fm-1,7m] of equal diam-
eters. Let E(mo—DH _ p1 (Iro,m] x J2), Ein("°—l)+2 = b~ ([r1,r2] X &), ...,
Ef*"™° = p—1 ([rm_l,rm] X Jz). This defines the middle m links of &;.
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Hence the definition of the chain £ is complete. Note that &£ has n; =
2m(np — 1) + m open links such that E} ﬂEf #¢if andonly if i —j| <1. Note
also that each link of the chain & is the union of exactly m links of the chain &;.

Defining the Chain &.

In general, having defined the chain £, define the chain &£ to be a chain
with ni = 2m(ni_y — 1) + m open links such that Ei N EJ # ¢ if and only if
[t — 7] < 1 and each link of the chain & is the union of exactly m links of the chain
Ek—1. We call & a U-chain in €_; since the first link of & is a subset of the first
link of £¢_; and then & goes straight through £_,, turns around and comes back
through £ _;. Note that dz'am(E,j) — 0 as 1 — oo.

3.4 Chaining the Whitehead Continuum.

Having chained the Knaster continuum, we analogously chain the Whitehead

continuum. We inductively define chains Co,C;,Cz, ... where C; covers T:.

Consider the cylinder BZ x I, where I = [0,2] shown in Figure 3.7.

rs r2 no-3 2-Uu 2

) 5 T )
\\ \\ s \\ s ‘LL': \\ L Il
J 1 ] L IL J
No

C 0

of;

Co

Figure 3.7
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Let & < u < 3, u = is a good choice. Consider the following identification:
Given a disk Bf x {r} where 2—u < r < 2. Rotate B2 x {r} about the axis {0} x I,
through an angle § = ¥ is the counter-clockwise direction and identify it with the
disk B x {r + u — 2}. The quotient space of this identification yields the first
two stages Ty and T; in the construction of the Whitehead continuum shown in

Figure 3.1.
Defining the Chain C,.

Consider the cylinder B x [u,2 — u] shown above. Partition the interval
(#,2—u] into 2n¢—3 subintervals [r1,72), [r2,m3)s o [Tro=1>Tnols - - - 5 [T2mo—3) Tong—2)
where r1 = u and ryp,—2 = 2 — u. Require that diam([ri,ri+1]) < & for all

1<i1<2n9-3.

Let C¢ = Bf x [0,r1] U B} X [r2no—2,2], C? = Bf x [r1,r2] U B? x

[7'2110—-3,7'2110—2], sy (’)10_.1 = Bg X [Tno—2,7'no-l] U Bg X [rno+larno+2], a'nd

C(’;o = Bg X [Tno—l,rno]-

Note that the link C§ has exactly two components for all 1 < i < ng and
C; and Cg° have one component each; recall that B2 x [0,71] is identified with
Bf X [r2no—2,2]. Note also that C§ N7} has exactly two components for 1 < < no.
Expand the links defined above slightly to produce the open links (still denoted by
C3,C¢,...,C5°) making up the chain Cy. Hence Cp = {Cs,C2,...,C5°} is a chain
made up of ng open links such that C} N CI # ¢ if and only if [t — 7] < 1. See
Figure 3.7.

Defining the Chain C;.

Let Co NTy =!Sj UTS} and consider 'S). Let kh : R — R3 be a homeomor-

phism taking 'S} onto the cylinder B; x I as shown in Figure 3.8.
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Partition the interval I; into 2m — 1 subintervals [ro,71), [r1,72], ...,
Pm=1Tm), ..., [T2m—2,T2m-1]. Choose the subintervals such that '1‘36 <
diam([rm_l,rm]) < l—g—o- and diam([r,',r;.,.l]) < T(%(T for : € {0,1,....m —
2,m,...,2m — 2},

Let C{ = h=!(B? x [fm-1,Tm]), C? = r=1(B? x [Fm—2,Tm-1]) U h~1(B? x
[PmsTm41])y..., CP~1 = -1 (BE x [r1,72)) U B2 (B x[r2m-—3, Tam—2]), and CJ* =
h—1 (312 X [7‘0,7‘1]) U A1 (312 X [1"2,,-,-2,1"2,,—,_1]).

Require that Ci N T, has four components for 1 < ¢ < m and C} has two

components.

Expand the links C},C2%,...,CI* slightly to produce open links; use
C1,C%,...,CM™ to denote these open links also. This defines the first m links in
the chain C;. Similarly partition 'S4 into m sublinks Cl'", cpy, ..., C{"‘ such that
"S3 = Ci'U C{* U---U Cj™. This defines the last m links in the chain C;.

Recall that, C§ = B x [r;, 7] U B} X [r2n,—3,T2n,—2). Now consider Ic} =
B§ x [r1,72). Partition the interval [r1,72] into m subintervals [to, ;] [t1,t2),...,

[tm—-1,tm] of equal diameters where to = r; and tm = T2.

Let CT"*' = T, 0 (B x [to, 1)), C*? = Ty 0 (B3 x [t1,t2]),..., C?™ =
T2 0 (B X [tm-1,tm]), This defines the second m links of C1. Note that C; has two

components for all m+ 1 < : < 2m.
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Similarly, define the rest of the links of C;. Hence the definition of the chain C;
is complete. Note that C; has ny = 2m(ng —1)+m open links such that CfﬂClj # ¢
if and only if |i — j| < 1. Note also that each link of the chain C, is the union of
exactly m links of the chain C,.

Defining the Chain Ci.

In general, having defined the chain C;_,, define the chain C; to be a chain
with nxy = 2m(ng_; — 1) + m open links such that C,‘; N C,’; # ¢ if and only if
li ~j| £ 1 and each link of the chain Ci is the union of exactly m links of the chain
Cik—1. Note that Ci is a U-chain in Cix—,. Note that diam(C,-j) — 0 as ¢ — oco.

The proof of the following theorem parallels that of [Bi2,Theorem 11].

3.5 Theorem. The Whitehead continuum W is homeomorphic to the Knaster

continuum K.

Proof. Given z € W, let C}(z) = U C,’ Note that C}(z) C Cf,(z)
::EC;!.

for all i, hence z = ﬁc;(z). let Ef(z) = |J Ei. Define h : W — K by
=1 z€C}
h(z) =[] Ei ().
i=0

Clearly, h is well-de fined and onto. To show that h is continuous, we show
that if z € W and U is an open subset of K containing h(z), then there exists an
open set V C W containing z such that A(V) C U. So let U be an open set in K
such that h(z) € U. There exists j such that any link of & containing h(z) is a
subset of U. Now if = € CY, then h(C] NW) C Ef. But h(z) € Ef CU, hence h is

continuous.

We will argue by contradiction to show that k is one-to-one. So let Ty, 22 €W

such that h(z1) = h(x;). Then there exists k such that no element of Ci contains
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both z; and z;. Let Ef be such that k(z;) = h(z2) € Ef. Then there exists a
J > k such that every element of &; containing h(z1) = h(z3) is a subset of Ef. Let
C¥ ,CY contain z,, z; respectively. Since E}, EY contain h(z,) = h(z2) then E¥,
E} C Ef. Then C} and C? are subsets of C}. But no elements of Cx contains both

r) and z2. A contradiction, hence 4 is one-to-one.

The map h : W — K is one-to-one, onto, and continuous; but W is compact

and K is Hausdorff, so k is a homeomorphism. ||
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4. The Whitehead Continuum Viewed as a Nontransitive Attractor

In this section we view a specific Whitehead continuum as an attractor of a
map F : T — T. A projection map P : T — S* is defined. The maps F and P
induce a map f : S — S'. We prove that the attractor of the map F, that is, W =
o0

ﬂ F*(T) is homeomorphic to lim(S", f). Hence F},, is topologically conjugate to
k=0
f:Lm(S*, f) - Lim(S*, f ) which is not topologically transitive. Finally, we discuss

the dynamics of F.

Let C =TorC =S8" Let f: B*xC — R? be an embedding. Let
N(f({o0} x C),r) = {z € R®: d(z, f({0} x C)) < r}. We say that f(B? x C)
has “cross sectional diameter < r” if it is a subset of N(f({0} x C),r) and if
diam(f(B® x c)) <rforallce C.

By a Whitehead map f we mean an embedding f : T — T such that the attrac-
tor of f is homeomorphic to the Whitehead continuum constructed in Section 3.1

and is embedded in R? just as the Whitehead continuum is.

By a Whitehead continuum we mean an attractor of a Whitehead map.

The results in this chapter parallel those in [Ba2]. In [Ba2], Barge considers
horseshoe maps and realizes their attracting sets as inverse limits of maps of the
interval. Here we consider Whitehead maps and realize their attracting sets as

inverse limits of maps of the circle.
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4.1 Construction.

Suppose that T is a solid torus, T = S! x B2. Given an angle 0 < 6p < %,
let 01 ‘—‘-22—"'—00,02:%15-}-00, 03=_12_r_00, a.nd94=§+90 Let Cl 2{0:01 S
9592}XB2,02={0:92SG_<_93}><32,C3={0:0350504}XB2,a.nd

C4=={0:04S€_<_01}XB2.

N\

\ 4

Figure 4.1

Consider B% x I shown in Figure 4.2. Identify each disk B? x  (located to
the right of C3) with the disk B2 x (located to the left of C3) for 6, < 6 < 0,.
That is identify the cylindrical sections (labeled C)) at the ends of B2 x I. The
quotient space corresponding to this identification is a solid torus 7. Hence T can

be thought of as depicted Figure 4.2.
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Let S' be the quotient space of the interval [0,1] resulting from identifying
the end points {0} and {1}.

Define P : T — §? as follows:

P(Ch) = {0}, P(C3) = {1}, and

=8, if (9 Bz) C Cz'

2 63—05° ) = ’
I(G,B)—'{ 8,6 1f(0 B2)CC
6,—84° 9 = U4q.

Define F : T — T as follows:

(i) Radially contract C; and Cy by a factor of § = -1% and linearly stretch them by

a factor of u to get two cylinders F(C;) and F(C)) of cross-sectional diameter
26 and Of length /1,(93 - 92)

(ii) Radially contract C; and C; by afactor of § = :& and horizontally shrink them

by a factor of A < 1 to get two cylinders F(C;) and F(C3) of cross-sectional
diameter 6 and of length A(6; — 6,).

(iii) Embed F(C,), F(C2),F(C3), and F(Cs) in T as shown in Figure 4.3.
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This defines an embedding F : T — T. We want F(T) to be embedded in
T just as T is embedded in Ty in Figure 1.2. That is, we want F(T) to self-link
in T. One way to realize this self-linking, is to obtain T as a quotient space of the
cylinder shown in Figure 4.3 with the following identification: Given a disk B2,
61 < 6 < 6,, located to the right of B? x 6, in the figure below. Rotate B2 x 6

2

and identify it with B? x 6 located to the left of B? x 4.

|
} about the axis {0} x I through an angle § = Z in the counter-clockwise direction
|
|
i
|

6 82 8 B¢ By 8,
| 7 0 F(C)) 0 0 0 = |
l FCp FCD 1——-
' [} ok FCy) 0T o 0 |
| i Lj | f v f V!
l (- A LY, L." X %
" Figure 4.3

By choosing A and 4 appropriately, we can require that the embedding F have

the following properties:

(i) F(P" (P(z))) c p-1 (P(F(z))) for all z € T.

(i) F(C1) C IntC,, and F(C;) C IniCh.
(iii) For all z € §*, P~!(z) N F(T) has exactly four components; and
(iv) Diam(F* (P*(P(2))) — 0 uniformly in z € T as k — co.

[ o]
The attracting set for F is W = ﬂ Fk(T). This means that for z € T,
k=0
d(F*(z),W) — 0 as k — co. The set W is a Whitehead continuum.
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So we have the following diagram:

T 5 T
lp | 1,,
st L, &

F induces a continuous map f : §* — S defined by f(z) = P(F(P‘l(z))).

The embedding F is required to satisfy property (:) above to insure that the

induced map f is well-defined and the commutativity of the diagram above.

To show that f : §' — S' is well-defined, let = = P(z) = P(z3) be
in §! such that z; # 2z, € T. Then f(z) = PFP~!(z) = PFP-1(P(z)) C
P(P~'PF(21)); the inclusion follows from property (i). Then f(z) = PF(z).
Similarly, f(z) = PF(2;). But since P(z;) = P(z2), then z; € P~1P(z;). Hence
PF(z1) € PF(P7'P(z,)) = P(FP_IP(Zz)) C P(P~'PF(z2)) = PF(z2). Hence
PF(z1) = PF(z2) and f is well-defined.

To show the commutativity of the diagram above, assume F satisfies property
(¢). That is, assume FP~!P(z) C P~ PF(z) for all z € T. Then P(FP~'P(z)) C
P(P7'PF(z)) = PF(z). Hence fP(z) C PF(z) for all z € T. To show that
PF(z) € fP(z), let z € T, then PF(z) C PF(P~'P(z)) = fp(z). Hence fo P =
PoPF.

The map f has the following properties:
(i) f(0)=0, f(1) =0, and

(ii) Fori=1,...,4, there exists a; € S, 0 = ap < a; < a2 < a3 < a4 < 1 such
that f is strictly monotone on [a2i—1,a2;] for i = 1,2 and for i = 0,1,2
1, if 7 is odd;
f([e2i, a2i41]) =

0, if zis even.
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See Figure 4.4.
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Figure 4.4

The proof of the following theorem is a modification of the proof of Theorem

1 of [Ba2], tailored to our needs.

4.2 Theorem. Consider the following diagram:

o0

T « F(T) < FT) & ... \F(D)=w
n=0

I

T & r 2 7 £ .. lim(T, F)

LA »

s Lo Lo L im(sh )

The map P: W — im(S?, f) given by

P(z) = (P(), P(F™(2)), P(F*(2)), ..
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is a homeomorphism and the following diagram of homeomorphisms commutes:

W LR w

el

lim(S',f) > Lm(S", f)
That is , Fy,, is topologically conjugate to f.

Proof. Since PoF = fo P, then f(P(F—<"+1>(z))) = P(F(F-<"+1)(z))) =
P(F~(2)) and P(z) € im(S", f).

The map P is clearly continuous. To see that P is one-to-one and onto, let
z = (z1,%2,...) € li}_ll(Sﬂf) and let Cx = F*(P~Y(z)) for k = 1,2,.... Then
Ck is a closed, nonempty subset of T for each k¥ > 1, and since F(P~!(z441)) C
P~1(f(zx41)) = P~Y(z), we have Cxyy C Ci for k = 1,2,.... Thus ﬁ Ck is

k=1
[o o]
a nonempty set and if z € n Ck, then P(z) = z;, P(F~!(2)) = z,.... That
k=1
is, f’(z) = z. Moreover, if P(z) = z then z must be in ﬂ Ck. But since

k=1

[ o]

diam(F"(P"l(:ck))) — 0 as k — oo, we have n Cr = {2z} and P is one-to-
k=1

one and onto. i

4.3 lemma. The map f : Lim(S?, f) — Lm(S, f) is not topologically transi-

tive.
Proof. let U = n7%(ag,a1) and V = n7(az, a3).
claim: f*(UYNV = ¢ for all n > 0.
f(U) = fr(x7 (a0, a1)) = 77 (f"(a0,@1)) = 77 {ao}-

Clearly, 77" {ao} N 77 (az,a3) = ¢. Hence the claim is proved and f is not

transitive. |
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Consider the following inverse sequence:

T - F(I) < F(T) < . im(F/(T),i)

o0

From Lemma 2.3.4, it follows that lim(Fj (T),%) is homeomorphic to n FY(T) =
n=0

w.

Consider the following diagram:

r 2 7 L 1 E .. inTF)
eIl
T & FT) & FYT) & ... w

Since F? : T — F¥(T) is a homeomorphism for all j we have im(T, F) = W. Hence
by Theorem 4.2, im(T, F) is homeomorphic to lim(S?, f).

From Theorem 1 of [Ba2] we conclude that the Knaster continuum is home-

omorphic to lim(I, k) where h has the following properties:
(i) R(0) =0, R(1) =0, and
(2) Fori=1,...,4, there exists a; € S, 0 =ao < a1 < a3 < a3 < a4 < 1 such
that f is strictly monotone on [azi_1,a2;] for i = 1,2 and for i = 0,1, 2,
1, if 7 is odd;
h([az;, 02i+1]) =

0, 1if zis even.

From Theorem 5 of [Ba2], we conclude that lim(I, k) is homeomorphic to
lix_n(I,g) where g : I — I is defined by

(z) 1, if 7 is odd;
9(=) =
2 0, if 7 is even.

for = 0,1,2 and g is linear on [%,13,_*,31] for: =0, 1.
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Consider the following diagram

LA ST S SN e )
lo e e le
st L g J.ooa L. Km(S?, f)

where G : I - S is defined by G(0) = G(1) = 0 and G(z) = z for z ¢ {0,1}.
4.4 Lemma. The map G : Lim(I, k) — Lim(S?, f) is @ homeomorphism.

Proof. We only need to show that G is one-to-one, the rest is obvious. So
assume g = (z1,22,...) and y = (y1,y2,...) are in liin(I, f) such that G(z) = é(g)
Then (G(z1), G(x2),. ..) = (G(w),G(y2), .. .). Assume without loss of generality
that z; # yi, ; = 0 and y; = 1. Then z;4; € [ao, a;] U [a4,as] and yit1 € [az,a3].
This contradicts the fact that G(z;41) = G(yi+1). Hence z = - [

4.5 The Dynamics Of The Whitehead Map .

The discussion given here parallels that given in [De, Sec. 2.3] for the horse-

shoe map.

The Whitehead map F embeds T into itself as described earlier. Note that
F(T) CT and F is one-to-one. Now we study the dynamics of F in T.

Figure 4.5
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The set F~(C2UCy) = VopUVp UV1oUWi4, is a union of four vertical cylinders
which are mapped linearly onto the four horizontal components Hyo,Hoy, Hyo and
Hy, of F(C2UCy)NC3UC,. The height of Vij is 7’; The cross sectional diameter of
H;j is é. By linearity of F on C; and C,, F preserves cross sections in C, and Cs.
If C is a cylinder in C; U Cy whose image lies in C; U C4 then the length of F(C)
1s expanded by a factor of u times the length of C and the cross sectional diameter

of C is shrunk by a factor of é.

The map F is a cbntraction on C). By the Contraction Mapping Theorem,
F has a unique fixed point p € C, and nlingo F*(q) = p for all ¢ € C;. Since
F(C3) C Ch, all forward orbits in C; behave likewise. Similarly, if ¢ € C, U C4
but F*(¢q) € Cy U Cj for some k > 0, then we have F*(g) e C1UCs forn > 2, so
F"(q) — p as n — oo. Hence, to understand the forward orbits of F, it suffices to

consider the set of points whose forward orbits lie entirely in C; U Cy.

Now, if the forward orbit of ¢ lies in C; U Cy then g € Voo U Vo, U Vyo U Vi1,
for all other points in C2 U Cy are mapped into C; UCs. Also F(q) € CoUCy, then
F(q) € VooUVo1UV1oU WAy, that is, g € F~1 (Voo )UF (Vo1 )JUF =} (Va0 )JUF (V).

8, 8 6 8,

If.":, sy i A

[ ’asrgr;(u-gm

‘\L.-" 5. ‘\‘ “u-‘: ‘\ _". .’E.E. .’E 1 \ 7
Figure 4.6

Inductively, if V is any vertical cylinder in Cz U Cy of cross sectional diameter
¢, then F~1(V) is a pair of cylinders of cross sectional diameter c, one in each V;.
Hence F~'(F~Y(V;)) = F~%(V;) consists of four cylinders each of cross sectional

diameter §%c, F~3(V;) consists of eight cylinders of cross sectional diameter §3c.
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Hence Ay = {g: F¥(q) € C2UCy for k = 0,1,2,...} is the product of a
Cantor set with a vertical disk. Analogously, A_ = {¢: F~%(¢) € C,UCy for k =
0,1,2,...} is the product of a Cantor set with a horizontal disk. Let A = {q €
C2UCy: F¥(q) € CLUCy for all k € Z}. Note that A=Ay NA_.

Now we introduce symbolic dynamics into the system. Given a cylinder C C
Ay, F¥*(C) is a cylinder of length p* in either V; or V;. Attach an infinite sequence
08182 ... of 0’s and 1’s to any point in C according to the rule s; = a if and only
if F/(C) C Va. so tells us which cylinder C lies in, s; tells where its image is
located, etc. Similarly, attach a sequence of 0’s and 1’s to any horizontal cylinder
H. Write this sequence ...s_3s_3s_,, where s_j =a if and only if F~/(H) C V,
for j = 1,2,3,.... Note that F~'(H), F~%(H),... are horizontal line segments of

decreasing lengths.

Hence, if p is a point in A, we may associate a pair of sequences of 0’s and 1’s
to p. One sequence gives the itinerary of the forward orbit of p; the other describes
the backward orbit. Let us amalgamate both of these sequences into one, doubly

infinite sequence of 0’s and 1’s. That is, we define the itinerary S(p) by the rule

Sp)=(...5-25_1.508182...)

where s; = k if and only if F/(p) € V;. This then gives the symbolic dynamics on
A. Let ), denote the set of all doubly infinite sequences of 0’s and 1’s:

Zz = {(3) =(...8-25-1.505182...):8; =0 or 1}
Define a metric on ), by

A @)=y Lt

i=—00

Define the shift map o by

o(...8-28-1.505182...) = (...5_25_150.5182 .. 2)
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o is a homeomorphism on },.

Hence we have the following commutative diagram:
A E oA
= s
X, & X
S:A - ), is a homeomorphism. Hence Fj, is topologically conjugate to o. But

o has a dense orbit, hence F is chaotic on A.

In summary, we have shown that F : W — W is topologically conjugate
to f : im(SY, f) — Lm(S",f). Also f is not chaotic, by Lemma 3.3. Hence
F:W — W is not chaotic, whereas F : A — A is chaotic.

Our goal now is to define an embedding F' : T — T such that the attractor
W' for F' is a Whitehead continuum and F' : W' — W’ is chaotic. This is done in

the next two chapters.
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5. Partial Results

In this chapter we focus our attention on functions f : I — I which are
continuous, onto and satisfy Conditions (1) or (2) stated below. We show that for a
function f satisfying Condition (1), if H is a proper nondegenerate subcontinuum of
liin(I , f) then H is homeomorphic to I; if in addition f satisfies Condition (2) then
li}_ll(I , f)—H is dense in li}_ll(I » f) which implies that li}_ll(I , f) is an indecomposable

continuum.

Condition 1: If (J,),n = 1,2,3,... is a sequence of nondegenerate proper
closed subintervals of I such that f(Ji+1) = J; for i > 1, then there exists an integer

N >1suchthat f:J;4y — J;isa homeomorphism for : > N.

Condition 2: If J is a proper nondegenerate closed subinterval of I then
there exists an integer M > 1 and a collection of pairwise disjoint proper closed

subintervals Jy, J;,...,J, where n > 2 such that YD =hULU---UJ,.

9.1 Examples. It can be easily verified that the following functions satisfy

Conditions 1 and 2 above. We will prove that g, satisfies Conditions 1 and 2 in

Lemma 4.5.

Let g5 : I — I, n > 2 be defined by

: 0, 1if 7is even;
gn(=) = .
n 1, if 7 is odd.

1=0,1,...,n and gy, is linear on [%,%‘—l],izo,l,...,n—-l.
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5.2 Theorem. Suppose that f : I — I satisfies Condstion 1 above. If H is a

proper nondegenerate subcontinuum of im(I, f) then H is homeomorphic to I.

Proof. Let H be a proper nondegenerate subcontinuum of lix_n(I ,f). Let H;
denote m;(H) for all i. From Lemma 2.3.11 it follows that there exists a j > 1 such
that H; # I, and hence H; # I for all i > j. Let @ = min{i : H; # I}. Since H; is
connected it follows that H; is a proper closed subinterval of I for all i > a.

The set {H; : i > a} is a collection of proper closed subintervals of I and
f(Hiz1) = H; for all i > a. Since f satisfies Condition 1, there exists an N > 1
such that f: H;;1 — H; is a homeomorphism for all i > a + N. Let 8 =a + N.

Now, H; @ I'for alli > S and f: Hi4y — H; is a homeomorphism for all

t > B imply that the inverse limit X of the inverse sequence

B L Hppn L Hppy L

is homeomorphic to the closed interval I. It follows from Theorem 2.3.6 that
X = H. Hence H = I. |

9.3 Theorem. Suppose that f : I — I satisfies Conditions 1 and 2 above. If
H 1is a proper nondegenerate subcontinuum of Lim(I, f) then lim(I, f) — H 1is dense

in lix_n(I, -

Proof. Let H be a proper nondegenerate subcontinuum of lim(I, f). We need

to show that if U C lim(I, f) is open then U N (lim(Z, f) — H) # ¢.

Assume that U N (lim(I, f) - H ) = ¢ for some open subset U of lim(I, f ). It
follows that U C H. The map f satisfies Condition 1, hence there exists an N >1

such that f : H;;; — H; is a homeomorphism for all : > N.

The set Un = wn(U) is open in I; choose a proper closed subinterval J C Uy.

Since f satisfies Condition 2, there exists an M > 1 and a collection of pairwise
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disjoint proper closed subintervals Jy, Js,...,Jn, n > 2, such that M) =1vuU
JoU---U Jn. Since fM : Hyopr — Hy is a homeomorphism, at most one of the
intervals Ji, Ja,. .., Jn, without loss of generality, J; is a subset of H N+M. Hence
ifz € l%x_n(I, f) such that 7nx(z) € U~ and 7n4um(z) ¢ J1, thenz € U and z ¢ H.
A contradiction to the assumption that U c H. Hence li‘x_n(I ,f) — H is dense in
lix_n(I . 1

9.4 Theorem. Suppose f : I — I satisfies Conditions 1 and 2 above. Then

Lim(1, f) is an indecomposable continuum.

Proof. By the previous theorem, if H is a proper nondegenerate subcontin-
uum of im(7, f), then im(I, f) — H is dense in lim(J, f). Hence by Theorem 2 of

[JK], im(I, f) is an indecomposable continuum . ||

9.5 Lemma. Let f: I — I be defined by

2z, f0<z <%,
f(w)={x yosess

Then f satisfies Conditions 1 and 2.

Proof. Let Jy,J, J3,. .. be a sequence of proper nondegenerate closed subin-
tervals of I such that f(Ji41) = J; for all i > 1. We need to consider the following

three cases :
(1) Ji=[0,¢J,0<e< 1.
(2) J; = [61,62], €1 < e€,0< €1,€6 < 1.

3) Ji=[1-¢1),0<e<1.
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Case 1: If J; = [0,€], then Jiyy = [0,5] or Jipy = [1 — £,1]. It suffices to
consider Ji+y = [1-3,1]. It follows that Jiyz = [} —£,3+£] and Jiys = [~ £,14¢]
or Jiyz = [3 ~ £,3 + £]. The maps f,_,',+3 3-&3+§1—-[32- £+ £] and
Fings B-&3+8-[- £,3 + £] are homeomorphisms. Hence if N = i + 2

then f: Jiyy — Ji is a homeomorphism for all k > N.

Case 2: if J; = [e1, €2] then Jiyy = [$, %] or Jiz1 = [1—%,1—%]. The maps

fioep (%, %] — [e1,€2] and flong 11— %, 1=e1]  [e1, €2] are homeomorphisms.

Hence if N =i then f: Jir41 — Ji is a homeomorphism for all £ > N.

Case §: If J; = [1 —¢,1] then Jiy1 =[5 — £,1 + £] and Jiva=[} - %3 +4]

or Jiya = [§ — £,2 + £]. The maps Firige t-5it8-B3-%531+ ¢ and
flJ-

i42
then f: Jyyy — Jris a homeomorphism for all £ > N.

: [% - f,% +£ -3 - £+ £] are homeomorphisms. Hence if N =i + 1
Hence f satisfies Condition 1. Moreover, It follows from the proof that f

satisfies Condition 2. [ |

Define 7 : I — I by

5.6 Corollary. If H is a proper nondegenerate subcontinuum of lim(I,7) then

H is homeomorphic to I and im(I,7) — H is dense in im(I, ).

Proof. This corollary follows from Theorem 5.2, Lemma 5.5 and Theorem
5.3. |

It can be shown that lim(J,7) is homeomorphic to the Knaster continuum

defined in Section 3.2.
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9.7 Corollary. The Knaster continuum is indecomposable.

Proof. This corollary follows from Lemma 5.5 and Corollary 5.4. ||

In the following theorem we give an elementary proof that the Knaster con-

tinuum is indecomposable. The proof parallels that of Theorem 9.D.14 in [CV].

9.8 Theorem. The Knaster continuum K is indecomposable.

Proof. Let A and B be subcontinua of K such that K = 4 U B. We show
that AC B or B C A.

Claim: For all i, m;(A) C m;(B) or mi(B) C mi(A).

Assume the claim is false for some k, and let a € m(4) — 7x(B) and b €
Tk(B)—mi(A). The set K = lim(I, f) and f is onto, hence =; is onto for all 5. Thus
7 € Tet1(A) Umega(B). If ¢ € misa(B), then a = f(£) € frip1(B) = mu(B),
which is impossible. Hence % € Ti41(A) — me41(B). Similarly we have 1 — 2 €
Ti41(4) = Te41(B) and 2,1 - 2 € 71 (B) — mepa (4).

The set A is connected implies that 7k+1(A) includes at least the interval
[$,1 — 4]. Similarly, mx4,(B) includes at least the interval (2,1 - 2]. Clearly
[$:1-%1C (3,13 or [§,1- 4] C [£,1~ #] contradicting the fact that 2,1~ 2 ¢
Ti41(A)—7e41(B) and £, 1—% € Tk+1(B)—mr41(A). Hence the claim is proved. We
now have two possibilities: 7;(A4) C 7;(B) for infinitely many i, or 7i(B) C mi(A)
for infinitely many .

Now if m;(A) C mi(B) for infinitely many 7, then for every i there exists a
J» J > i, such that 7;(A) C n;(B). Hence mx(A) C mi(B) for all k < Jj, since
Tk-1(A4) = fme(A) C frie(B). Hence mi(A) C mi(B) for all i. Similarly, if 7i(B) C
i(A) for infinitely many ¢ then 7;(B) C i(A) for all i.
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Now observe that A is the inverse limit of the sequence (mi(A), Fleic 4)) and B
is the inverse limit of the sequence (m;(B), Flesc B)). Hence A C B or B C A follow

from the following diagrams:

m(A) = m(4) L ma) L ... a4

| I I

mB) L mB) L mm L ... B
or

m(B) < m(B) <L mB) L ... B

| g | Ik

! ! !

m(4) «— m(4) «— m(4) — ... A4

Hence the Knaster continuum is indecomposable. i
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6. Main Results

Consider a solid torus Ty = S x D, such that 7} C Bz where D, is a 2-cell and
B3 is a 3-cell. Our objective is to construct a near homeomorphism H : B; — Bs

satisfying:

(1) There is a sequence of homeomorphisms H. t; : B3 — B3 converging uniformly

to H such that each H,, is a Whitehead map.

(2) There exists a homeomorphism F : lim(Bs, H) — lim(Bs, Hy,) such that
F(hl_n(Tl,H)) = ﬁj_n(Tl,Ht.-)-

(3) Taking S* to be the quotient space of [0,1] generated by identifying the
endpoints {0} and {1}, then the restriction of H to S is the the function
7:85" = S defined by

which is chaotic.

(4) The set lim(T}, H) is a local attractor for H : lim(B3, H) — lim(Bs, H).

Note that (2) implies that lim(7}, H) is embedded in lim(Bs, H) just as the
standard Whitehead continuum is embedded in B;. Note alse that (3) implies B

restricted to lim(T), H) is chaotic.

While [Brl, Theorem 3], stated below, supplies us with a homeomorphism
F : lim(B;,H) — lm(B;,Hy,), it does not guarantee that F(Qlim(T,H)) =
li:-II(T 1, Hy;). This is rectified by proving a generalization of [Brl, Theorem 3] for

inverse sequences of pairs.
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[Br1, Theorem 3]. Let Xf = lLim(X;, f;) where the X; are compact
metric spaces. For 2 < i, let G; be a nonempty collection of maps from X; into
Xi—1. Suppose that for each : > 2 and € > 0 there exists a ¢ € G; such that

||fi—gll < e. Then there is a sequence (g;) where g; € G; and X1, is homeomorphic
to lim(X,',g,') = Xgo .

The homeomorphism in [Brl, Theorem 3] is defined in [Brl, Theorem 1] and
[Brl, Theorem 2]. For completeness we will state these theorems. The following

technical definitions are needed first:

(1) Let f : X — Y be a map, where X and Y are compact metric spaces. Then for
| € > 0 define L(¢, f) by L(e, f) = Sup{é < diam(X) : z,y € X and dx(z,y) <
i § implies dy(f(z), f(y)) < €}. Since X is compact 0 < L(e, f) < diam(X).

(2) Given the inverse sequence (Xj, f;). A sequence (a;) of positive real numbers
is a Lebesgue sequence for (X, f;) if there is a sequence (b;) of positive real

numbers such that

(a) Zb.‘ < 0o, and

=1

(b) Whenever z,y € Xj, i < j and dj(z,y) < aj, then d,‘(f,‘j(.’l?),f,‘j(y))
< bj.

(3) A sequence (c;) of positive real numbers is a measure for (X, fi) if

(a) Z ¢ < %cn forn=1,2,..., and
t=n+1

(b) For any two distinct points z, z' € lim(Xj, fi) there is an integer n such

that dn+l(-77n+1,-77:1+1) > Cq.

We now state [Brl, Theorem 1] and [Brl, Theorem 2].

|
:
|
|
i
|
|
e
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[Brl, Theorem 1]. Let X1 = Um(X;, f;) and X, = lim(X;, g:;) where the
X; are compact metric spaces. Suppose ||fix1 — gi+1]| < @i, 1 =1,2,..., where (a;)
is a Lebesgue sequence for (Xi,gi). Then the function Fn : X{, — Xn defined by
Fy = nlin;o gNnTy 18 well-defined and continuous. Moreover the function F : cho —

X4, defined by F(z) = (Fi(z), F2(z),...) is well-defined, continuous, and onto.

[Br1l, Theorem 2]. Let X1 = lim(X;, f;) and X% = lim(X;, g;) where the
X are compact metric spaces. Suppose ||fi — gi|| < min [c,-_l; kxginlL(c,-_l,gk,,-_l)]
where (c;) is a measure for (X;, f;). Then the map F : XL — X% described in

[Brl, Theorem 1] is a homeomorphism .

Notation. By the pair (X;,Y;) we mean a metric space X;, equipped with a
metric d;, and a closed subset Y; C X;. By a map f; : (Xi,Y;) — (Xi-1,Yi—1) we
mean a map f; : X; — X,;-; satisfying f;(Y;) C Y;i_;.

Let ((X i, Y5), f,) denote the inverse sequence
f2 I3 fa
(Xlayvl) — (XZ,YZ) A (X3’Y3) A

Let (XL, Y{) denote the inverse limit of the sequence ((X;,Y), fi). That is, let XZ,
and YJ be the inverse limits of the sequences (X;, f;) and (Y3, fity,) respectively.
Similarly, define ((X;,Y:),9:) and (X4,,Y4).

By Lemma 1 and Lemma 2 of [Brl)], If the X; are compact metric spaces

then (Xj, gi) has a Lebesgue sequence (a;) and a measure (c;).

The following theorem is a generalization of [Brl, Theorem 1] .

6.1 Theorem. Let (XL,YS) = lm((Xi,Yi), fi) end (X4,YE) =

lim((X,-,Y,-),g,-) where the X; are compact metric spaces and for all i, Y; 1s a
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closed subset of X;. Suppose ||fi+1 — gi+1]| < ai, © = 1,2,3,...; where a; 13
a Lebesgue sequence for (Xi,g;). Then the function Fy : (XL,YL) — XN de-
fined by Fny = nan;ogNnrn 18 well-defined and continuous. Moreover the function
F:(XL,YS) = (X5,YL) defined by F(z) = (Fi(z), Fa(z),...) is well-defined,

continuous, onto and F(YL)=Y4.

Proof. We only need to show that F(Yf) = Y4, since the rest of the proof
is identical to that of [Brl, Theorem 1] . Assume z € (X£,Yf) and z; € ¥; for
all 7. Clearly F(z) € (X4,,Y%). Since ¢i(Y;) C Yi_; for all 7 > 2, it follows that
Fi(z) = nanéog;nrn(g) €Y, for all ;.

Let w = (w1, w2, ws,...) € Y4. Fix a positive integer N. We first show that
there exists ¥ € (X£,Y{) such that Fy(z") = wn. Let € > 0. From the proof
of [Brl, Theorem 1] we have:

(1) lm |lgnifij — gnigisll =0 and

N<i<j

(2) gnim; converges uniformly to Fiy as ¢ — oo

(1), (2) and the fact that Z b; < oo imply that there exists an 7 > N such
i=1

that “FN — gN,"lr,'” < g, "gN,'f,'j - gN,-g,'jH < § for all > ¢ and b; < :.% Fix this s.

o0
Now, n fij(Y;) = mi(YL). Since Y; is compact, there exists a j > i such that
J=i

if y; € fij(Y;) then there exists z; € m;(Y{) such that d;(yi,z;) < a;. Hence there
exists z € (XL,YS) where z; € 7i(YL) such that d;(f,'j(wj),r;(g)) < a;. Hence
dn (gnifij(w;),gnimi(z)) < bi < . Then dn(Fn(z),wn) < dn(Fn(z),gnimi(z))
+dn (gnimi(z), gnifij(w;)) +dn(gnifii(w;), gnigij(w;)) S s+§+5 =€

The function Fy is continuous and (X£,,Y) is compact, hence there exists
zV € (XL,YS) where zN € Y; for all i > 1 such that Fy(zV) = wy. For all N,
Fn(zN) = wy implies that Fj(zV) = w; for all ; < N.

Since (X£,,Y{) is compact, {z¥} has a convergent subsequence. If y is a

limit point of this subsequence then F(y) = w. Hence F(Y{) =Y{. ||
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The following three theorems are generalizations of [Brl, Theorem 2], [Brl,
Theorem 3] and [Brl, Theorem 1] respectively. The proofs are identical to those
found in [Brl], hence they are omitted.

6.2 Theorem. Let (XL,YL) = liin((X.-,Y,-),f,-) and (X4,YS) =
liin((X.',Y.'), yi) where the X; are compact metric spaces and for all ¢, Y; 1s a closed
subset of X;. Suppose ||fi — gi]] < min [c.-_l;kx?iilllL(c.-_l,gk,.-_l)] where (c;) s
a measure for (X;, fi). Then the map F : (XL,YL) — (XL,YL) described in
Theorem 6.1 is a homeomorphism satisfying F(YL) =Y4.

6.3 Theorem. Let (XL,YS) = léx_n((X.-,Y.-),f.-) where the X; are compact
metric spaces and for all i, Y; is a closed subset of X;. For i > 2, let G; be a
nonempty collection of maps from (X;,Y;) into (Xi-1,Yi—1). Suppose that for each
it > 2 and € > 0 there exists a g € G; such that ||fi — g|| < €. Then there is a
sequence (g;) where g; € G; and a homeomorphism F : (XL,YL) — (X5,YL)
satisfying F(YL) = Y4,

6.4 Theorem. Let (XL,YS) =lim((X;,Y;), f;) where:

(1) For all i, there exists a homeomorphism h; : (X;,Y;) = (X,Y), where X is a
compact metric space and Y C X 1s closed such that hi(Y;) =Y, and

(2) For alli, f; is a near homeomorphism.

Then there ezists a homeomorphism ¢ : (XL ,YL) — (X,Y) satisfying (X))
cY.
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A point p in the zy-plane is coordinatized using the familiar polar coordinate
system (r,8). Let Ry be a rotation of the zy-plane through an angle ¢ measured
counterclockwise from the positive z-azis about the line £ = —1. For any point
p = (r,0) in the ry-plane let R4(p) be the image of p under the rotation Ry. To
be more specific, let Ry ((z,y, 0)) = ((z +1)cosp—1,y, ~(z + 1)sin¢). Consider
Figure 6.1.
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Figure 6.1

Let D, ={(r8):0<r<nr and0§0527r},D2={(r,9):0$r§
3 and0$9§27r},a.ndD3={(r,9):0§r§r5 and 0 < § < 2x}. Fori=1,2
and 3let T; = {Ry(D;): 0< ¢ < 2r}. For i = 1,2 and 3, the T} are solid tori with
diameters 2r;, 2rs, and 2r5 respectively satisfying T) C Int(Ty) C I nt(Ts3).

Let By = {(2,9): -1 <z <ry and —ry Sy<n}l, R ={(zy):-1<
z<ryand —-r4Sy_<_r4},a.ndR3={(:1:,y):—1$:1:$1‘e and —rg <y < rg}.
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Fori=1,2and 3let Bi = {Ry(R:):0< ¢ < 2n}. For ¢t = 1,2 and 3, the B; are
3-cells satisfying: Ty C Int(B,), T; C Int(B,), T3 C Int(Bs) and B; C Int(B,) C

Int(B3).

Let S* = {R4((0,0)) : 0 < ¢ < 27}. To simplify notation, we will denote a
point p = R4((0,0)) € S* by ¢*. For example, Ro((0,0)) will be denoted by 0*
and R.((0,0)) will be denoted by n*. The set S? is a circle of radius 1 centered at
the point (—1,0,0). Let ¢; = -2—”;—‘- for i = 0,1,2,...,n where n is an even positive

integer.

We now describe a typical Whitehead type of embedding g : S* — T} where

the image of S? has a self-linking in Tj.
Let g : S — T be the embedding shown in Figure 6.2 and satisfying:
(1) 9(45) = 43— and g(¢3) = 43,

(2) For ¢2 < ¢ < ¢z _2 let g(¢*) be in Ry4(D;) and for fri2 < ¢ < bz let
9(¢*) be in Ryg, _24(D1). Note that if ¢g < ¢; < ¢z and ¥; = ¢, — ¢; then

¢3 < ¥; < ¢y and Rey,(D1) = Rag, -2y, (D1).

(3) The set {g(4*) : pn—2 < ¢ < @y or ¢o < ¢ < #2} is a subset of the plane
P determined by the y-azis and the straight line passing through the points

(0,0,0) and ¢ _,.

(4) The set {g(¢*) 193 2<¢< ¢;}+2} is a subset of the rz-plane
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Figure 6.2

Extend g to a homeomorphism G : B; — Bj such that:
(1) The set G(T1) is a solid torus contained in N(g(S?), Ly c Int(Th).
(2) G(Tz) C Int(Tz)

(3) G'|,_L,3_}_L,2 = id.

The homeomorphism G can be visualized by the sequence of pictures in
Figure 6.3. Imagine twisting a “flezible” 3-cell B in such a way that the boundary
stays fixed and the interior is twisted so that a top view of S! C I nt(Bz) goes
through the following stages:

(1) A half twist is introduced.
(2) Another half twist is introduced.

(3) The top loop is folded down over the bottom loop which produces the desired
self-linking.
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Figure 6.3

We now define three pseudo-isotopies P},P? and P} and an isotopy P} of
Bs onto itself. The effects of these maps are represented graphically in Figure 6.4.
The map Py shrinks the solid torus G(T}) to G(S") leaving G(S") fixed. The map

P2 “eliminates” the self-linking of G(S'). Note that the number of components of
R4(Dy) N G(S?) is equal to

2, if ¢2 << Ppy;
3, if ¢=¢o or ¢ =dp;
4, f do<P<d20r dp2<¢<g,.
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Note also that the number of components of Rg(D;)NPEo P} 0G(S") is equal

to

{2, if g0 < ¢ < én;
1, if ¢ =oor é=

The map P} shrinks the torus 7} to its core S1. The map P? is defined such
that for ¢ < ¢ < g3, P{ o P} o P! 0 G(¢*) is in Ry4(D1) and for 3 < ¢ < ¢,

P13 (o} P12 (o} Pll (o) G({ﬁ*) is in R2¢”_2¢(D1 )

P}(G(T1))
——————r

Ty
P
P3(P1(G(T1)))
12031
e
P{eP{P}<P} (T1)
T, Ty

Figure 6.4



70
Defining P} : By — Bs.

Let D} = {(r,0) : 0 < r < r}} where r; < ' < r5. Consider the solid torus
T} = {R4(D}): 0 < ¢ < 2r} satisfying T! C Int(T2) and G(T}) C Int(T;). Define
the pseudo-isotopy P;' such that P} is the identity map and P} collapses G(Th) to
the linked circle G(S') and is the identity map on B® — G(T})

To be more precise, consider D] shown in Figure 6.5 and define a pseudo-
p 1

isotopy °P} : B3 — Bj as follows:

-
\

Figure 6.5

For any point z = (r,6,0) € R; let °P} (r,6,0) = (Re(r),0,0) where R(r) is

defined as follows:

Ro(‘l") =r, and
0, ifOS’”S’”l;
!
Ra(r) = 725(r—mn), iri<r <y
T, if r > 7).

Hence R¢(r) = (1 —t)r + tRyi(r). See Figure 6.6.
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Ty
Ko
|
Ry
ry 1"‘1
Figure 6.6
More precisely,
(1-1t)r, f0<r<mn

Ri(r) = (1—t)r+t[-r711_3r—l(r—r1)], ifry <r<rj;

L) ifOS‘l"S‘l"l.

Let °P)(r,6,4) = Ry("P}(r,6,0)) for ¢o < ¢ < ¢u.

For0 <t < 1,°P/ is a homeomorphism of B onto itself under which R4(D;)
goes to {(r,8,¢) : r = (1—t)r1} and R4(D|~Int(D,)) goes to {(r,6,¢) : (1-t)r; <
r<ri}.

The desired pseudo-isotopy P} is defined by P} = G o °P}! o G1.

Defining P? : B3 — B;.

The objective is to pull the linked parts of G(S") together via a pseudo-isotopy
P? so that P(G(¢3)) = P?((G(¢3)) = (0,0,0).
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Consider the wedge A; C In#(T1), shown in Figure 6.7, whose central plane

P, is a subset of the plane P. Recall that {g(¢*): ¢p—2 < ¢ < ¢n 0or ¢o < ¢ < $2}

is a subset of the plane P. Choose A; such that G(¢*) ¢ A for ¢1 < ¢ < Pps

and G(¢*) € P, for ¢p—1 < ¢ < ¢, 0or o < ¢ < ¢1.

SiXo
(s1-¢)%o

Z 44—
G( Do)

(so+8&)xo

SoXo

i res

teccaccedaaa

~

L. I

~

-
-
~

Figure 6.7

L G(Sh

Consider ¢ shown in Figure 6.8 and view A; as o x J1, where J; = [sg,31]

as seen in Figure 6.7. Note that if z’ € G(S')N A; then z' lies in [e,d] x J;. We

define a pseudo-isotopy P, of o as follows: Let P, be the identity map and P; be

the simplicial map which leaves the vertices a, b, ¢,d fixed and sends e to d.
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Figure 6.8

To be more precise, for 0 < a < 1and 0 < ¢t < 1 define P, on the line segment
zz by:

P(1-a)z +ay] =(1-a)z +a[(1-1t)y +tz], and
Play+(1- a)z] = af(1—t)y +tz] + (1 — a)z.

Note that P, fixes the boundary of ¢ for all £. Now P; on ¢ induces a pseudo-
isotopy 'P? on A; where ! P} (G(q&g)) = (0,0,0) and the P; action is phased out
near the bottom, o x s, and the top, o x s1, of A; so that ' P? fixes Bd(A,).

The pseudo-isotopy 'P? : A; — /\; can be defined as follows:

Py(o) x s, ifsot+tess<s1—g
'Pi(o x s)={ Pe-sy,(0) x5, ifs0<s<3s0+¢

P(.,-.lt(a) xs, ifs)—e<s<sg.

Extend ' P? to Bs by setting ! P3(z) = z for all z € Bs — A,.

We next consider the wedge A; C Int(Ty), shown in Figure 6.9, whose central
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plane P, is a subset of the yz-plane. Note that A, N A; = (0,0,0). Recall that
{g(¢*) : $p-2<¢< ¢g.+2} is a subset of the yz-plane. The wedge A is chosen
such that G(¢*) € P, for ¢31 < ¢ < ¢3+1 and G(4*) ¢ A2 for ¢p41 < ¢ < 9y,

or g0 S < $3 — 1.

S1Xo

(s1-¢)xo =i

(Zn)
2

(so+¢8)Xo

SoXo

Figure 6.9

In a similar way, construct a pseudo-isotopy 2P2 on Bj that is the identity on

B; — Int(A2) and 2P12(G(¢’_"% )) = (0,0,0).
Define P? : B; — B; by
'Pi(x), ifze€ D

Pl(z) = { 2PX(z), ifz € Do
z, fzrze B3 - (A] U Az)
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Defining P}.

The objective is to position PZG(S!) in Int(T}), via the isotopy P?, in such
a way that for ¢o < ¢ < @3, PPPIG(¢*) € Rpy(D1) and for ¢3 < ¢ < ¢y,
PPP{G(4*) € Rag,~24(D1).

Consider C = {R4(D1) : ¢o < ¢ < ¢4 or ¢py < ¢ < ¢n}. The set
C C T; is shown below. Let ST = {¢* 190 < ¢ < @2 0r fp-2 < ¢ < $,} and
St = {¢*: 225¢< ¢z orda<¢< ¢_§+2}. Note that PZG(S") is a subset of
the plane P and PZG(S") is a subset of the zz-plane.

Let $1 = {¢* : 90 S 6 < 42}, S2 = {¢* : $n2 < ¢ < @0}, 3 = {¢*:
¢g-2$¢£¢g}and54={¢'=¢g <$< data}

Let g1 = P}G|5 , g2 = PG, 95 = P{G|,, and g4 = P}G|,,.
Let f1 be an embedding of §) into T} satisfying:
(1) £1(S1) is a subset of the plane P.
(2) £1(45) = 91(4%) and f1(83) = g1(¢3).
(3) f1(4") C Roy(D:) for ¢o < ¢ < ¢2.
Let f2 be an embedding of S, into T} satisfying:
(1) f2(S2) is a subset of the plane P.
(2) f2(47) = 92(¢7) and fa($h_2) = g2(h—2).
(3) f2(6") C Rag,-24(D1) for ¢p_3 < ¢ < 4.
Let f3 be an embedding of S into T} satisfying:

(1) f3(S3) is a subset of the zz-plane.
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(2) fo(¢3-2) = 05(¢3 ;) and fo(63) = 95(43):
(3) fa(¢*) C Rog(Dn) for 32 < 4 < ¢3.
Let f; be an embedding of Sy into 7} satisfying:
(1) fu(S4) is a subset of the zz-plane.
(2) fa($h42) = 94($y4) and fu(8}) = 9a(43).

(8) fa(4*) C Rog,—24(Dn1) for ¢p < ¢ < dg40.

Ry, D1 Rg,(D1) Rg,(D1)

Figure 6.10

We now define four isotopies Q},Q7, Q7 and Qf from Bj onto itself such that
Q3|S. = ¢g; and th_ = fifori=1,2,3, and 4. Also, Q;'lﬁ_s‘ = P12G(Sl ~ ;) and
Q:| Byety is the identity map for all ¢.

To define Q}, consider a 2-cell C? subset of the plane P and containing ¢, (S )
and f1(S1). Choose C? such that C? N f,(S;) = C?n 92(S2) = C? N £3(S3) =
C?Ng3(S3) = C? N f1(S4) = C? N g4(Ss) = G(¢2). The 2-cell C? is the shaded
region in Figure 6.10.

Consider the square I x I where I = [~1,1] shown in Figure 6.11. We will

make use of a theorem of Schoén flies stating that any two closed simply connected
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regions whose boundaries are simple closed curves can be homeomorphically mapped
onto each other so that the correspondence so determined between their boundaries

is a preassigned one-to-one, continuous one [Sm).

Define the maps g11,f11 : I — I by

=l if-1<z<0;
gu(z) =

1%, f0<z <L

=t i 1<z <0
fu(z) =

2=l if0<z<l

Now, it follows from the Schon flies theorem, stated above, that there exists

a homeomorphism k' from the plane P onto itself taking the 2-cell C? onto the
square I x I such that:

(1) B 0g1(¢*) = g1 (52 — 1) and ¥ o fi(¢") = fuz (32 —1) for all g < ¢ < ¢
Note that (1) implies that:
(@) hogi(¢) = g11(=1) = ho fi(4}) = fu(-1) = (~1,0),
(i) hogi(43) = gn(1) = ko fi(43) = fu(1) = (1,0),
(i) ko g1(¢]) = 911(0) = (0,3), h o fi($7) = f11(0) = (0,—3}), and

(iv) For all ¢ < ¢ < ¢2, the points k o g;(¢*) and ko fi1(¢*) have the same

z-coordinate. See Figure 6.11.

Note that the homeomorphism &' : P — P can be extended to a homeomor-
phism h : R* = P x R' — R® = P x R! by letting h(z,r) = (k'(z), r)forall z € P
and r € R1.
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0.5

L dn

v\ f11

-05

zZ 4

Figure 6.11

Now define a pseudo-isotopy °Q; from I x I onto itself such that °Q} is the
identity map and °Q] takes g,;(z) onto f11(z) for all z € I and °Q} fixes Bd(I x I)
for all t. To be more precise, °Q} can be defined as follows: Consider the line

segment uz in Figure 6.11. For 0 < o < 1and 0 <t < 1 define °Q} by:
°Q1 [(1 —a)u+av] =(1—a)u+ a[(l —tv+ ty]
°Qi [av+ (1 - a)z] = af(l-tw+ ty] + (1~ a)z

Note that °Q; fixes the boundary of Ix I for all t. Let C*® be a 3-cell containing
I x I such that h™Y(C®) C In¥(T) and h~1(C?) N £2(S:) = A~1(C?) N g2(S2) =
R7HC) N f3(Ss) = h™1(C%) N ga(S3) = h=1(C®) N fu(S1) = h™Y(C®) N ga(S4) =
(0,0,0).

Let 'Q; be an extension of the isotopy °Q} to C? fixing the boundary of C3.

Now define Q; by @} = h™' 0 'Q} o h. Note that Q} is the identity map on
By — T and Q} (91(4*)) = fu(4") for all ¢* € S:.
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In a similar fashion, define the isotopies Q?,Q3?, and Q. Now define the
isotopy P} : Bs = B3 by P} = Q¢ 0 Q3 0 Q%0 Q1.

Defz'm'ng P14 : B3 — B3.

The objective is to define a pseudo-isotopy P such that P¢ is the identity
map and P collapses T} onto its core S and at the same time collapses T, onto

Ty fixing the boundary of T3.

Consider D3 shown in Figure 6.12.

y

\,”
Jissx

2\

Figure 6.12

Define P : B3 — Bj as follows: For any point z = (r, 6,0) € R3 let
P{(r,6,0) = (Ri(r),6,0) where Ry(r) is defined by

((1—1t)r, if0<r<rg;
r—t[r—(ﬁ)rl], fr <r<rs;
'R,t(r)-—{
r—t[-r';;_'f;(rl—r;;)], fr3 <r<rs;
LT, if r>rs.

Let PA(r,0,¢) = R¢(Pt4(r,9,0)) for ¢o < ¢ < ¢y,.
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For 0 <t < 1, P{ is a homeomorphism of B® onto itself under which Ry4(D;)

‘ goes to {(r,9, $):r=(1 —t)rl} and {(r,9,¢) i <r< r5} goes to {(r,9,¢) :
| (1—t)r; <7 <rs5}. In addition, P} satisfies the conditions:

(1) P{(T2) =Th.

(2) Pt id.

IBg=Ine(Tg) —

(3) If 6* € S” then Ry(D1) C (Pf)7'(¢*).

(4) For every point (r,6,4) € Int(T3) there exists an integer n > 0 such that
(Pf)™(r,6,4) € S".

Define H : B3 — B3 by H = P} o P} o P? 0 P! 0 G. The map H satisfies the

following properties:

(1) The homeomorphisms Hy : B; — B; where H; = PtoP2oP?oP!oG and t €

[0,1) converge uniformly to H as t — 1. Hence H is a near homeomorphism.
(2) H(Tz) = 1.
@) HT) = $'

(4) For every (r,0,4) € Int(T3) there exists an integer n 2 0 such that
H"((r,6,4)) € S". Hence (| H"(Int(T3)) = S™.

n>0

(5) HIBd(Ba) = ud.

Note that T} is a closed subset of B, H(T}) C T and H(T))CT)forallt e
[0,1]. It follows from Theorem 6.3 that there is a sequence Hy,, i = 1,2,.. ., H; €
{Hi:t = =+ and n € {1,2,...}} and a homeomorphism F : Hg((Bs,Tl),H) -
lix_n((B;;, Ty), H) such that F(HE(TI,H)) = lim(T, Hy;).
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Let K = im(T\,H) and W = Lm(Ty,H;;). By Theorem 6.4, there is a
homeomorphism & : lim((B3,Ty), H) — (Bs, Th).

Now, consider the following diagram:

H, H
Tl (—-1— (—'-2— Tl

T,
I [

Ty <~ Hy(Ty) <~ HyHo(T)) < - (HuHe...Hy(Ty)

=1

H;,
—

This diagram defines a homeomorphism h : W — thth ... Hy,(T1). Hence
i=1

W is a standard Whitehead continuum (one with self-linking). Since F :
lim((Bs, Th), H) — lim((B3,T1), Hy,) takes K = lim(Th, H) onto W = lix_n(Th Hy,),
K is embedded in Bj just as W is.

let h be the restriction of H to S! where S* is the core of T;. Note that A
is just the tent map on §'. That is, considering S* as the quotient space of [0, 1]

resulting from identifying the end points {0} and {1} then

2z, ifOS:cs%;
h(z) =
2-2z, fl<z<l.

Now, consider the following diagram:

lim($',h) — lim((Bs,T1),H) -> B;

l,-, lH lw:ﬁm-‘

lim(S$',h) — Lm((Bs,Th),H) 2> Bs

Claim: K = lim(T),H) is a local attractor for H . lim((B;;,Tl),H) —
hm((B;;, Tl ), H)
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To prove the claim, first note that since H(T1) = S', it follows from the
following diagram that K = lim(T}, H) = lim(S?, ).

Tl +£— Tl — Tl ii e K

Ti Ti T:’
st Lo o A lim(S", H)

Since H(S) = S, then H(K) = K.
Let U = {(z1,%,,...) € lir_n((B;;,Tﬂ,H) : 2y € Int(Ty)} = »~! (Int(T;)).

Clearly, U is open in lim((B3,T1),H) and K C U. Now if g = (21, 2,,...) € U,
then H"(z) = (H"(z1), H*(z2),...) = K as n — co.

Since H(T;) = Ty, we have H(U) C x;'(T1) and hence H(U) C =7 (T})
=77 (Tv) C a7 }(Tz) = U. Therefore CI(H(U)) C U.

It follows from Theorems 2.6.1,2.6.2 and 2.4.4 that A = Em(S',h) —
(S',h) is chaotic. Hence K = nﬁ "(U) is a local chaotic attractor for H :

n>0

l{ln((B3,T1), H) — l{r_n((B3, Tl),H)

Let A = ®(K) = ﬂ\If"(fI’(U)). Since H), is topologically conjugate to
n>0
¥|4 x> then ®(K) is a local chaotic attractor for .
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7. Generalizations

Recall that we are studying the following problem: Given a topological space

X, is there a map F : R® — R® such that X is an attractor for F?

In Chapter 6, we showed that the Whitehead continuum can be embedded
in R? as a local chaotic attractor. In this chapter, we define two infinite classes
of continua, W = {W(n,m) : n > 1,m > 1} and £ = {Kp, : n > 2} to which
the construction in Chapter 6 generalizes. Each of these continua is defined as the
intersection of a nested sequence of solid tori. These continua have an important

feature in common with the Whitehead continuum, namely the self-linking.

Defining W.

Let To be a solid torus in the interior of a 3-cell Bs. For all integers n > 1,
m 2 1, let Gnm : B3 — Bj; be a homeomorphism such that T = Gnm(To) C Int(To)
is a solid torus which wraps around Tp n-times in clockwise direction, then it self-
links, and finally it wraps around Ty m-times in counterclockwise direction as shown
in Figure 7.1.

For all integers, n > 1 and m > 1, let W(n,m) = n Gﬁm(To). The continua

k>0
W (n,m) can be embedded in R? as local chaotic attractors.
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W(1,1) W(1,2) W(2,1)

W(2,2) W(3,3)

Figure 7.1

Shown in Figure 7.1 are the first stages in the construction of
W(1,1),W(1,2),W(2,1),W(2,2), and W(3,3). The solid torus 7 is not shown

in its entirety, only its core is shown.

As we have done in Chapter 6, after a few pseudo-isotopies (eliminating the
self-intersection), the homeomorphism Gy, is transformed into a near homeomor-
phism Hy,, : B3 — Bj; such that the restriction of Hp,, to S 1. the core of Ty, is the
map fom : ST — S! such that W(n,m) = 151_11(51, frm)-
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f11 f12 fa1

f22 fas
Figure 7.2

Shown in Figure 7.2 are the maps f11, fi2, fo1, f22, and f33. Here S! is viewed

as the quotient space of the interval [0, 1] resulting from identifying the end points
{0} and {1}.

Forn > 1 and m > 1, the map fam : S* — S? has the following property: If
J C §' with nonempty interior, there exists an integer N such that f*_(J) = §!
for all integers k > N. Hence by Theorem 2.6.1, f¥,. is transitive for every k > 0.
Clearly, fnum has periodic points, hence Theorem 2.6.2 implies that f,., is chaotic.

Defining K.

For all integers n > 2, let @, : B; — B; be a homeomorphism such
that Ty = Qn(T0) is embedded in Int(Tp) as shown in Figure 7.3. Shown in
Figure 7.3 are the cores of Qi(Tp) for i = 2,3,...,7. The images of Ty under Q,
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for n > 7 are not shown, but can be drawn by noticing the pattern developing in

Q2(To), Q3(To), ..., Q+(To).

©IOL0)
O8®

K¢

Figure 7.3

Let K, = ﬂ Q,’i(To) for n > 2. The continua K, can be embedded in R? as
k>0
chaotic local attractors.
Again, as we have done in Chapter 6, after a few pseudo-isotopies (elimi-
nating the self-intersection), the homeomorphism Q, is transformed into a near

homeomorphism Hy : Bs — B; such that the restriction of H, to S!, the core of
To, is the map h, : ST — 5! such that K, = lim(Sl,h,,).



h, hs hg
hs hs h?
Figure 7.4

Shown in Figure 7.4 are the maps h; for ¢t = 1,2,...,7. Here S? is viewed
as the quotient space of the interval [0, 1] resulting from identifying the end points
{0} and {1}. The maps h, : S* — S! are chaotic by Theorems 2.6.1 and 2.6.2.

The continua K, ~ lim(S", hp) ~ lim(1, hs). It follows from [W] that K., is

homeomorphic to K,, if and only if n and m have the same prime factors.
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