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A CHAOTIC EMBEDDING OF THE WHITEHEAD CONTINUUM

1. Historical Background

1.1 History of the Problem Partial Answers.

R. F. Williams [W] proved the following: Given a differentiable endomorphism

f of a branched one-dimensional manifold K, the inverse limit lim(K, f) can be

embedded in 54 and the shift map f extended to a diffeomorphism of .54 possessing

lim(K, f) as an attractor.

M. Misiureuicz [M] proved the following: If r : / / is the tent map (x -4
1 12x 11), then:

For every manifold M where dim(M)> 3, there exists a C°° diffeomorphism

h: M M such that h restricted to its attractor A is topologically conjugate

to '51 (which is chaotic).

For every manifold M where dim(M) > 2, there exists a homeomorphism

h: M M such that h restricted to its attractor A is topologically conjugate

to I.

The results A and B hold for all maps conjugate to r, for example the
quadratic map x 4x(1 x).

W. Szczechla [Sz], in a paper entitled "Inverse Limits of Certain Maps as

Attractors in 2 Dimensions" extended Miziureuicz's results.

Barge and Martin [BM4] proved that if f : / / is a map of a closed interval.

Then lim(/, f) can be realized as a global attractor for a homeomorphism of R2.
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In this work we extend some of the results of Barge and Martin to certain

other compact subsets X of R3. These subsets are cell-like sets arising as nested

intersections of tori in a certain way. A typical example of these subsets is the

Whitehead continuum.

In the next few sections we define the Whitehead manifold and discuss some

of its properties. We also define the Whitehead continuum and prove that it is a

cell-like noncellular subset of R3.

Definitions of some of the terms used here (for example, cell-like, cellular and

UV") can be found in Section 2.2.

1.2 The Whitehead Manifold. [H]

The Poincares conjecture states that every homotopy 3-sphere, that is, every

simply connected, compact 3-manifold without boundary, is a 3-sphere. This is

still an open question. In 1935, J. H. C. Whitehead [Wh] showed that this conjecture

cannot be generalized to open 3-manifolds. He constructed an open homotopy 3-

cell M, that is, a noncompact simply connected, 3-manifold with trivial second

homology group and without boundary, which is not homeomorphic to R3. He

constructed M as the union of an ascending sequence T1, T2, . .. of solid tori in R3,

M = U T,where Ti is embedded in Ti+1 as shown in Figure 1.1.
i=0



Figure 1.1

1.3 Properties of the Whitehead Manifold.

For completeness, we list some properties of the Whitehead manifold. Details

can be found in [H].

The space M is simply connected: every simple closed curve C C M lies in

a solid torus Tr since C is compact and therefore intersects at most finitely

many tori Ti. But Tr is contractible in Tr+i and hence C is contractible in

Tr+1 C M.

The space M is not homeomorphic to R3 since M contains a simple closed

curve that does not lie in a 3-cell in M, for example the core curve C1 of T1.

If C1 lies in a 3-cell B3 in M, it follows that B3 c Int(T,), (for r sufficiently

large), and that there exists a 3-cell I)? in Int(Tr) with T1 C Int(D) such

that no connected component of Bd(D)n Bd(Ti) could be a meridional disk

of Ti for i = 2, 3, ... , r 1. Hence Bd(.13?) can be deformed out of 7'2 obtaining

a 3-cell D3 in Int(Tr) with 7'2 C Int(D3). Continuing this way, one would

finally obtain a 3-cell Dr3_1 in It(Tr) with 71,---1 C Int(D3r_1), which is a

contradiction (since this would imply that the Whitehead continuum, to be

defined in Section 1.4 is cellular). For more details, see [H].

T14.1
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In [Bi3], Bing gives an alternate proof of the fact that M is not homeomorphic

to R3. He shows that a simple closed curve J on Bd(Ti) that circles T1 longitu-

dinally does not lie on the interior of a topological cube in M. He does this by

showing that each topological cube whose interior contains J, also contains a sim-

ple closed curve on Bd(T2) that circles T2 longitudinally. It follows then that for

every positive integer i, the cube contains a simple closed curve on Bd(Ti) that

circles Ti longitudinally. Hence the cube could not lie in M.

The space B can be embedded in R3.

The product B x R1 R 4 [Mel]. The idea is to show that every product

Ti+1 x [a e, b+ el contains a 4-cell which contains Ti X [a, b] where [a, bJ C R1

andae<a<b<b+ E. HenceT1x[-1,1]CRICT2x[-2,2]CRIC
oo

T3 X [-3, 3] C where Bt is a 4-cell for all i. Hence B X Ri = UTi x
i=1

00

= U13= can be represented as the union of an ascending sequence
i=1

of 4-cells. Hence from a result of M. Brown's [Br21 stating that a space is

homeomorphic to R" if it is the union of an ascending sequence of open subsets

each homeomorphic to R", it follows that B X R1S.**--' R4.

The product B x B R6 [Mc 1].

1.4 The Whitehead Continuum.

Let To be a solid torus in R3. Let Ti be a solid torus in Int(To) as shown

in Figure 1.2. Let T2 be a solid torus embedded in Int(Ti) as T1 is embedded

in Int(To). Continue this construction. This results in a sequence To, T1, T2... of

solid tori in R3 such that for all nonnegative integers n, Tn-Fi C Int(Tn). Assume

the tori To, T1, T2, . . . are constructed efficiently to force 1-dimensionality of their

intersection. For example, each Ti can be required to retract to its core curve under
00

a retraction ri with diam(ril(p)) < + for each p. Then W = nTi is called the

Whitehead continuum.
i=0



Figure 1.2

1.5 Properties of the Whitehead Continuum.

For completeness, we list some of the properties of the Whitehead continuum.

For more details, see [D].

The Whitehead continuum W is a noncellular subset of R3. This will be

proved in the next section.

The continuum W is a cell-like subset of R3. This follows from the fact that

if U is a neighborhood of W then for some integer k > 0, Tk C U. Hence

W C 71-4-1 C Tk C U. Since Tk+i contracts to a point in Tk, W contracts to

a point in U.

The continuum W is a UV°° continuum in R3. This follows from the fact that

W is cell-like and R3 is an AN R (absolute neighborhood retract) [D, Prop.1,

p.123].

The continuum W is cellular in jig. This follows from the fact that W is

UV' in R3 [Mc3].

5



1.6 The Whitehead Continuum W is Noncellular in R3.

In this section we show that W is a noncellular subset of R3. A few results

from the literature are needed. These results and their proofs are included for

completeness.

Notation. Let T = h(S1 x D2) be a solid torus in R3, where h : R3 -4 R3

is a homeomorphism. Assume h(S1 x 101) lies in a plane P. Then P (P n T)

has two components. By the spanning 2-cell D of T we mean the closure of the

bounded component of P (P n T). The disk D is bounded by a "longitudinal
loop" in Bd(T).

If p is a loop, then by p e we mean p is homotopically trivial.

Let 12 = [0,1] x [0,1].

1.6.1 Lemma. [Mo, Th.5, p.113] Let .11, J2 and J3 be plane polygons, simply

linked in a series, as shown in Figure 1.3. Let D be a plane 2-cell bounded by J2

and suppose that D is simply punctured by J1 and J3 see Figure 1.3. Let p be a
closed path in U = D (J1 U J2 U Jo). If p tz_d e in R3 (J U .13), then p e in U.

J2

Proof. See [Mo, Th.5, p.113].

Figure 1.3

Let To be a solid torus. In the interior of To form a set T1 which is the union

6



Figure 1.4

Suppose that the number of components Ci of Ti is k, where k > 4. Figure 1.5

shows three successive components of T1.

Figure 1.5

Let Di be the spanning 2-cell of G. The set Di is punctured by C1_1 and

Ci+1, hence Ai = Cl[Di (Ci_1 U Ci+1)] is a 2-cell with 2 holes.

7

of a finite collection of solid tori with planar cores, linked in cyclic order as shown

in Figure 1.4.
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1.6.2 Theorem. [Mo, Th.1, p.128] Let the components Ci and the spanning

2-cells Di, i < k be as in the definition of T1 above. Then Bd(To) is a retract of

the set To {U U Di].

Proof. Note that the set U CiU U Di contains a simple closed curve So

which is a core of To. Hence T0S0 retracts to Bd(T0), and To (U Ci U Di) c
i=1 i=1

To So retracts to Bd(To) as well.

1.6.3 Theorem. [Mo, Th.2, p.129] Let p be a closed path in R3 To. If p e

in R3 - T , then pr.2:'. e in R3 To.

Proof. Let Ai = C 1[D (C1_1 U C1+1)], as in the definition ofT1. Suppose,

without loss of generality, that p is a PL map, and let irk : P -4 R3 - T1 be a PL
contraction of p to e.

Choose p and O(12) in general position relative to Ai, that is , there exists a

triangulation K of /2 such that if cr2 E K, and ck(o-2) intersects Ai, then ckla, is a

simplicial homeomorphism, and Ai contains no vertex of ck(cr2).

Let J = 0-1(A1 n (4/2)). The set 0(J) = Ai n 4(12) is a 1-dimensional

polyhedron in Ai having no isolated points. J C P is a finite union of disjoint

polygons, since J contains no vertex of K. Let J =J. Let J be a component
:7=1

of J which is innermost in 12, that is, Ji is the boundary of a 2-cell di which
contains no other components of J.

Consider the map pi = : Ji + Ai. pi is a closed path in Aj. Since Ji =
Bd(di) and (k(c/j) c 113 -(C1_1 U Ci+i) it follows that pi e in R3 (C1_1 U Ci+i).

Hence by Lemma 1.6.1, pi e in Int(Ai).

Extend pi to a PL map (ki : di Ai. Define a new contraction ck' : 12

R3 T1 by letting ç6 (kJ and co, = ck elsewhere.



AinAi_

Figure 1.6

Thus if 0(/2) is already disjoint from A1-1 ( or Ai+1, or both), and pi : Ji

Ai is a closed path in Ai, then pi is contractible in Ai - Ai_1 (or Ai - Ai+i or

Ai - (Ai_1 U A2+1) ). Therefore we can pull 0(12) off the sets Ai, one at a time

preserving the results of our earlier work. Thus after k steps we have a contraction

12I 14 --+ R3 - T1 such that Ok(I2) n Ai = 0 for all i. Hence V) k (1-2 ) n [Ui u

U Di] = 0.

Let r : To - [U ci U Di} -+ Bd(To) be a retraction. Define ri
R 3To

to be
i=1 i=1

the identity map and let p = rOk : 12 -+ R3 - Int(To). To get a contraction of p in

R3 - To, it suffices to pull p(12) slightly off Bd(To) into R3 - To.

AinAi+1

9

Now if N is a small connected neighborhood of di in r2 then 01(N) approches

Ai from only one side, since N - di is connected. Now define a new contraction

12-4 R3 - T1 such that the intersection 0"(N) n Ai is empty and 0' =

elsewhere. Passing from 0 to 0" reduces the number of components of .1 by at least

one. Hence after a finite number of steps, we get a contraction b : 12 R3 -
such that 0(12) n Ai = 0.

We perform the procedure above for each i = 1, 2, ... ,k. Note that Ai inter-

sects Ai_1 and Ai.+1 in linear intervals, see Figure 1.6.

Ai



Proof. Without loss of generality,
00

PL contraction IS : P R3 nTi of')
i=o

intersection 0(r) n Tn is empty. Let C

and 71 = C n Tn.

Then T = C and 211 = C n Tn are related in the same way as To and 71,

in fact, there is a homeomorphism of R3 taking To onto n and T1 onto T. By

Theorem 1.6.3, there is a contraction q51 of p onto e in R3 C such that 0'(./2)-0(/2)

lies in a small neighborhood of C, and hence intersects no other component of Tn--1.

Repeat the argument above for all components C of Tn-1. Hence in a fi-

nite number of steps we get a contraction of p in R3 Tn_1. By induction, p is

contractible in R3

Let Ci be the union of the cores of the tori C2 making up Ti in Figure 1.4.

The set C1 is a link of k unknotted circles arranged in a chain running around the

solid torus To.

The following two theorems are generalizations of [Ro, Prop.G.1, p.70] and

[Ro, Prop.G.4, p.72].

1.6.5 Theorem. The meridian M ofT0 is not homotopically trivial in R3 Ci

or in To C1 for all i > 0.

10

1.6.4 Theorem. [Mo, Th.3, p.131] Let p be a closed path in R3 T1, and
co

suppose that p e in R3 fl T. Then p e in R3 To.
i=0

assume that p is PL, and that there is a

. By compactness, for some integer n, the

be a component of Tn_1, and let n = C

Proof. Clearly, the theorem is true for i = 0. By Theorem 1.6.4, it suffices

to prove it for i = 1. Figure 1.7 shows C1 C To.



Figure 1.7

By Theorem 1.6.4, the loop M e in .113 T1 since M e in R3 4, where

T is a solid torus satisfying C1 C Int(T4) C Int(T0). But T1 retracts to Ci. Hence
M e in R3 C1.

00

Recall that the Whitehead continuum W = nTi, where Ti+1 is embedded in
i=o

Int(Ti) as shown in Figure 1.2. Let Ji denote the core of Ti for i > 0. Figure 1.8

shows .11 C To.

Figure 1.8

11
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Figure 1.9

Let p: 4 To be the universal cover of To. Let = P-1(J1) and let M be

one component of 19-1(M). If H is a homotopy shrinking M in To J1 to a point,

then by the homotopy lifting property, H lifts to k which shrinks M to a point in

Ji. Since .1.--/(M x I) is compact, we may construct a finite circular chain CI

missing ii(M x I) which contradicts Theorem 1.6.5. (Appropriate twists may be

needed for M and CI to be situated as M and C1 shown in Figure 1.7).

1.6.7 Corollary. Every meridian disk of To, see Figure 1.8, intersects the
Whitehead continuum.

1.6.8 Theorem. The Whitehead continuum W is noncellular in IV.

Proof. Consider the set U = Int(To) as an open neighborhood of W. Assume

that W is cellular in IV. Hence there exists a 3-cell B3 such that W C int(B3) C
B3 c U. Let M be a meridian loop of To. Let f: B2 + To be a map such that

f takes Bd(B2) homeomorphically onto M, where B2 is a 2-cell. Choosing f(B2)

12

1.6.6 Theorem. The meridian loop M of To is not contractible in To Ji for
all i > O.

Proof. Clearly, the theorem is true for i = 0. By Theorem 1.6.4, it suffices

to prove it for i = 1.
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in general position relative to B3, we may assume that f (B2) misses a point p of

Int(B3). Since there is a retraction r : B3 {p} Bd(B3), we may replace f

by a map g : B2 + To Int(B3) with f and g agreeing on Bd(B2). Hence M is

contractible in To W, which contradicts Theorem 1.6.6.



2. Definitions and Preliminary Theorems

2.1 Chains and Chainable Continua.

A chain C is a finite collection of open sets {C1, C2, , Cn} such that ci n
ci if and only if Ii j < 1. The sets Ci, i= 1, 2, ... , n are called the links

of the chain C. Links are not assumed to be connected. If the links are of diameter

less than e, the chain is called an e-chain. The links C1 and Cn are called the first

and last links of the chain, respectively. The chain C2 is a refinement of the chain
C1 if each link of C2 is a subset of a link of Ci.

If 1(1, ), (2, q2), , (n, qn)} is a collection of pairs of positive integers, the

chain C2 follows the pattern {(1, qi), (2, q2), (n, qn)} in the chain C1 if the ith
link of C2 is a subset of the qith link of

A continuum is a compact connected metric space. A continuum is called
chainable (or snakelike) if for each positive number c it can be covered by an e-

chain. A continuum is decomposable if it is the union of two proper subcontinua;
otherwise it is indecomposable.

Let A c X. Then by Bd(A), Int(A) and Cl(A) we mean the topological

boundary, interior and closure of A in X respectively.

2.2 Cellular Sets. [D]

A subset X of Rn (of any n-manifold) is said to be cellular if there exists
a sequence of n-cells Bi in Rn such that B1+1 c Int(BO, for i = 1, 2, ... and

00

X = nBi. Alternatively, X C Rn is cellular if and only if for every open set
i=1

U X there exists an n-cell B such that X C Int(B) C B C U. As a second
alternative definition, X C Rn is cellular if and only if X is compact and has
arbitrarily small neighborhoods homeomorphic to R'2.

14
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A compact subset C of a space X is cell-like in X if for every neighborhood

U of C in X, C can be contracted to a point in U.

A set A C X has Property n-UV in X if for every neighborhood U of A

in X there corresponds another neighborhood V of A in U such that every map
of BC1(13n+1) into V, where Bn+1 is an (n *cell, extends to a map of Bn+1
into U. The set A has Property UV n in X if it has Property k-UV in X for all
k E {0,1,2, ... , n}. The set A has Property UV°") in X if it has Property k-UV in
X for all k > 0.

2.2.1 Lemma. [D, Prop.4, p.121] Let C be a compact subset of an ANR X.

Then C is cell-like in X if and only if, for each neighborhood U of C, some
neighborhood V of C in U is contractible in U.

2.2.2 Lemma. [D, Prop.1, p.123] Every cell-like subset A of an AN.!? X has
Property UVcx) in X.

Proof. Let A C X be cell-like. Let U be a neighborhood of A in X. By
Lemma 2.2.1, there exists a neighborhood V of A such that AC VCU and V is
contractible in U. Let f: Bd(Bn+1)--4 V be a map. Note that Bd(Bn+1) is closed

in 1312+1. The set V is contractible in U; let Ot : V 4 U be that contraction. Then
the map f is homotopic to the constant map 01 of : Bd(Bn+1) -4 U. Since Oi o f
extends over Bn+1, so does f. Let F: Bn+1 U be an extension of f. Hence A
has Property n-UV in X for all n E {0, 1, 2, ...}. Hence A has Property UVe° in
X.

2.3 Inverse Limit Spaces.

Motivation. Inverse limit spaces proved to be a valuable tool in the study
of the dynamics of certain maps as evident from [BM1], [BM2], and [BM3]. In
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these papers Barge and Martin began investigating the relationship between the

dynamics of an iterated interval map and the associated inverse limit space. They

showed that complicated or "chaotic" dynamics of an interval map f is reflected in

complicated topology in the inverse limit space, the existence of an indecomposable

subcontinuum to be more specific. They also showed the following: Suppose f

I --+ I is continuous, onto and there is a finite set { ao , al , at}, a ao <a1 <
al = b in I = [a, b} such that f is monotone on [ai_1, ai} for i = 1, 2, .... Then

if lim(/, f) is indecomposable, f has a periodic point whose period is not a power

of 2.

A motivation for their study was that certain strange attractors can be realized

as the inverse limit spaces of certain interval maps.

Studying the dynamics off:X--4Xby utilizing lim(X, f) has two advan-

tages [BM3]:

Spaces of the type lim(X, f) have been extensively studied, in particular in

the cases where X = I and X = S1 .

The function f : X --+ X becomes a homeomorphism I : lim(X, f)
44-

lim(X, f) and this allows certain arguments to be "inverted".

For more on inverse limit spaces the reader is referred to [ES], [CV], [HY] or

[Be], and for more on inverse limits and dynamical systems [Sc] serves as a good

introduction.

An inverse sequence is a double sequence (X., f.), n = 1, 2, ... such that each

coordinate space X. is a topological space and each bonding map f. : Xn+1

X. is continuous. The inverse limit of the inverse sequence (Xn, fn) is the set
00

lim(Xn .fn) = {(xn) E H Xn Vn .> 1, fn(xn+i) = xn} topologized with the
n=1

relativized product topology.



If each, h. is continuous then so is I.

Proof. Let U be open in lim(Yi,gi) and i(x) E U. Since U is open, there
exists a positive integer n and an open subset Vn C Yn such that h(x) E r,71(V) C

17

00

Let Irk denote the natural projection from both 11Xn and its subset

liM(Xn f.) onto Xk defined by rk((x.))= xk.
n=1

We now include some basic results about inverse limits needed for our con-

structions later on.

2.3.1 Lemma. The collection B = {ri-1(Uk): k > 1 and Elk is open in Xk}
is a basis for the topology on lim(Xn, fn).

Proof. Suppose that U is open in lim(Xn, in) and (xn) E U. Since

lim(Xn,fn) has the relativized product topology, there is an open set W =
Un, x U., x Un, x H Xn such that (xn) E W nliM(Xn, fn) CU.

nOni

Choose n > ni for i = 1, 2, ... , m, and let V =fl fnil,n(Uni). One can easily

verify that (Xn) E 7;1 (V) C W n 11M(Xn) fn).
4--

Given (Xn,f,) and (Yn,gn). For all n > 1, let h. : Xn ---+ Yn be a function
such that hnfn = gnhn+1. Then there is an induced function h : lim(Xi, fi) --+

lim(Yi,gi) defined by h((xn)) = (hn(xn)).

2.3.2 Lemma. Consider the following commutative diagram:

X1 fi
X2

12 ,c,

12 114

giy1 4y2 92 98-- Y2 4-- 4-



i=1
topology. The subset lim(Xn, fn) inherits this metric [CV, Theorem 6.A.15].

Let X be a metric space and f : X --+ X be continuous. Let lim(X, f) denote

the inverse limit of the sequence

f
- f

..11. 4-

Let is be the induced map by the diagram

x 4 x x 41-

If If If

The map is defined by 1(1) = (f(xi), f (x2), f (x3), (f (xi), , x2,

18

U. Let W' = X1 X X2 X Xn-1 X h,71(V,i)x Xn+i x Since hn is continuous,

h;1(V) is open in Xn. Hence the set W = W' n lim(Xi, fi) is open in lim(Xi, ft).

Since h(x) E 7r;1(V) then h(x) E 14, xn E ici(Vn), and hence E W. If
z E W then zn E h,71(Vn), hn(zn) E 14 and hence ii(z)E 7r;1(V) C U. Hence it is

continuous. I

Given an inverse sequence (X, n = 1, 2, ... such that each coordinate

space Xn is a metric space with metric dn. Define a new metric d'n on Xn by

d'n(x, z) = min{l, d(x, z)}. The metrics 4 and d'n are equivalent metrics, that is,

they generate the same topology on Xn. The space H Xn is metrizable with metric
n=0

00

e defined by e(x, z) = Edn(xi,zi). The topology induced by e is the product
2i

2.3.3 Lemma. Let X be a metric space and f : X -4 X be continuous and

onto. Then f: lim(X, f) lim(X, f) is a homeomorphism.



n=1
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Proof. Suppose j(x) = j(z). Hence xi = zi for all i > 1. Hence x = z and j
is one-to-one.

Suppose z E lim(X, f) and z = (zi, z2, z3, . . .). Let x = (z2, z3, . . .). Clearly,
f(x) = (f(z2), f(z3),... ) (zi, z2, ...) = z and hence! is onto.

By Lemma 2.3.2, j is continuous.

Let U be open in lim(X, f) and x = (x1, x2, ...) E U. Since U is open
in lim(X, A there exists an integer n and an open subset Vn C Xn such that

x E 7r,71(Vn) C U. Let W' = Xi X X2 X Xn X f-1 (Vt) X Xn+2 X Let W =
W' n lim(X, f). Hence W is open in lim(X, f). Since f(s) (f (xi), xi , x2, . .) and
xn E f-i(Vn), we have f(x) E W. If z = z2,...) E W, then zn-1-1 E f-1(17n).

Hence x = (z2, z3,...) E U and j(x) z. It follows that W C j(U) and f is open.

The map I is one-to-one, onto, continuous and open, hence it is a horneomor-

phism.

2.3.4 Lemma. If (Xn, fn) is an inverse sequence and the bonding maps are
00

inclusion maps, then lim(Xn, fn) r='-a nxn.
n=1

Proof. Given

Xj..4- X2 4---h X3

We prove that the map h : lim(Xn, fn) n Xn defined by h(x,x,x,...) = x is a

homeomorphism.
n=1

Clearly, h is one-to-one and onto.

00

Let U be open in n Xn and h(1) E U. Then there exists an open subset
n=1

oo

U' C X1 such that U = U' n n X. Since U' is open in X1 and h(s) E U', there is



00

an open subset V' C X1 such that h(x) E V' C U'. Let V = V' n fl x. V is an
n=1

00

open subset of n xn such that h(x) EVCU. Let W = 7r,71 (V) for some integer
n=1

n. W is open in lim(Xn,fn) and x E W. If z = (z, z,...) E W, then z E V and
h(z) E V C U. Hence h is continuous.

Let U be open in lim(Xn, in) and x E U. Then by Lemma 2.3.1 there
exists an integer n and an open subset Vn C Xn such that x E 71-,71(Vn) C U.

CO

Let V = X1 n X2 n Xn n vnn xn+1 n V c Vn is open in n Xn and
n=1

h(I) = x E V. Since r,71(V) C 71-,71(Vn) C U, then V C h(U) and h is open. Hence

h is a homeomorphism.

2.3.5 Lemma. Given (Xit, fn). If Xi Xi for all i and j, and fi is a
homeomorphism for all i, then lim(X, fn) :41' Xi for all i.

Proof. The map Fi : lim(Xn, fn) -4 Xi defined by F1(xi,x2,...) = xi is a
homeomorphism for all i.

2.3.6 Theorem. [Be, Th.7, p.8] Given (Xi, ft) and n1, n2, ... an increasing

sequence of positive integers. Then lim(Yi, gi) lim(Xi, fi) where for each i, 1 =
X.; and gi = fni,ni+i

Proof. We prove that F : lim(Xi, fi) -4 lim(Yi,gi) defined by F(x) =
(xn xn.2, ...) where x (x1, x2,...) is a homeomorphism.

Clearly, F(x) E lim(Yi,gi).

Suppose F(x) = F(z). Then xn; = xfli for all i > 1. Given k a positive

integer, there exists an i such that ni > k. Hence xk = fk,ni(xni)= ik,ni(zn1)= zk

Hence x = z and F is one-to-one.
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Suppose y (Y1, Y2, - ..) E lim(Yi , gi). Let = (fLni (Y1), .fi,n1(Yi),

fn14-1,n2(Y2), fn1+2,n2(Y2), Clearly, g_ E lim(Xi, fi) and F(/) y.

Hence F is onto.

Suppose U is open in lim(Yi,gi) and F(x) E U. By Lemma 2.3.1, there exists

a positive integer k> 1 and an open set V C Yk containing rk (F(x)) such that

a point z of lim(Yi,gi) E U if rk(z) E V. Define W' = Xi. X X2 X Xnk X

V X Xnk-1-1 and let W = W' n lim(Xi, ft). Clearly, W is open in lim(Xi, fi)

and x E W. Note that r (F(W)) C V, hence F(W) C V and F is continuous.

Suppose U is open in lim(Xi, fi) and x E U. By Lemma 2.3.1 there is a
positive integer p such that for any integer n > p there is an open set V C Xn

containing 7r(x) such that r,71(V) C U and x E 7r,71(V). Choose n to be any

nk > p and V as above. Clearly F(Irn-kl(V)) contains F(x) and is open in lim(Yi,gi)

since F(irn-:(V)) = irk-1(V). The map F is continuous, one-to-one, onto and open,

hence it is a homeomorphism.

The following three corollaries follow from the previous lemma.

2.3.7 Corollary. Given (X1, f2) and an integer n > 1. Then lim(Yi,gi)

lim(Xi, fi) where for each i, Y2 = X(n_i)+i and gi = An-1)+1.

2.3.8 Corollary. Given (X, f) and an integer n > 1. Then lim(X, fn)
lim(X,f) for all n.

2.3.9 Corollary. Given (X1, f1) and n1,n2,... a sequence of positive integers.

Then lim(Xi, fi) lim(X, f) where for each i, Xi = X and ft = fni

2.3.10 Lemma. If F: X X is a one-to-one map. Then A = n Fn(X)
n>0

homeomorphic to lim(X,F).

Proof. Consider the following diagram:
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<FL

IF

F(X) 4--

c-- lim(X, F)

jFoo

A
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By Lemma 2.3.4, A2"-- n Fn(X)' This diagram induces a homeomorphism
n>0

Foo : lim(X, F) Fn(X) defined by F0,0(x0, xi, x2, .) = (x0 F(X1), =
n>0

(xo, so, ...).

2.3.11 Lemma. If A is a closed subset of lim(Xi, fi), and for each n, 7r(A) =
Xn, then A = lim(Xi, fi).

Proof. Suppose x E lim(Xi,fi) and U is an open set containing x. By

Lemma 2.3.1, there exist an integer n and an open set Un C Xn such that x E
ir,T1(Un) C U. But 7r,71 n A since z(A) = Xn. Hence x is a limit point of

A. But A is closed, hence x E A.

2.3.12 Theorem. [En, Theorem 1.13.2] For every compact metric space X

such that dimX <n there exists an inverse sequence(Ki, fu) consisting of polyhedra

of dim < n whose limit is homeom,orphic to X; moreover, one can assume that for
i = 1,2, ..., Ki is the underlying polyhedron of a nerve ki of a finite open cover of

the space X and that for each i, the bonding map fi is linear on each simplex in

ki+1

2.4 Chaos and Chaotic Maps.

We begin with some definitions. We also state some results which will be used

later on. Some proofs are included for completeness.
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If f : X -4 X is a map, a point x E X has period n, where n is a positive

integer, if fn(s) = x, and if for all integers 1 < k < n, fk(x) x. The orbit of x,
Oz = {fn(x) : n = 0,1,2, ...).

Let F : X X and A be a closed subset of X. Then A is an attnzctor

for F if there exists an open neighborhood U of A such that Cl(F(U)) C U and
A= nFn(U).

n>0

Let X be a compact metric space. Then a map f : X X is said to be
chaotic if it satisfies the following conditions:

The map f has sensitive dependence on initial conditions (SIC). That is,

there exists a 6 > 0 such that for each x E X and for each e > 0 there
exists an x' E X, such that d(x,x') < c and a positive integer n such that
d(fn(x), fn(x1)) 6.

The map f has a dense orbit. That is, there exists an x E X whose orbit Ox

is dense in X.

The periodic points of f are dense in X.

In [BM1], Barge and Martin define topological stability as follows: Let X be

a metric space and f: X -4 X be a map. Let x E X, then x is topologically stable

if and only if for every > 0, there is an c > 0 such that if z E X and d(z,x) <e
then for each positive integer n, d(fn(x), fn(z)) <8. Ifs is not topologically stable,
then x is topologically unstable.

Examining the definitions above, we see that f : X X is SIC if and only if
every point x E X is topologically unstable.

A map f : X X is topologically transitive if and only if for every pair of

nonempty open sets U, V in X, there exists an n > 0 such that fn(U) n V 0 0.
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2.4.1 Lemma. [Si] Let X be a metric space with no isolated points. If f : X

X has a dense orbit, then f is topologically transitive. The converse is true if X is

a complete separable metric space.

Proof. We first prove the following claim:

Claim: In a metric space with no isolated points, every nonempty open subset

is infinite.

To prove the claim, let V C X be a nonempty open subset. Let x E V. Then
there exist xn E V, n = 1, 2, ..., such that xn x and d(x, xn) < The set
{Xi, x2, . .} cannot be finite because d(x , xn) + 0. This proves the claim.

Let U and V be nonempty open subsets of X. Let Ox = {x0, xi,...} be a
dense orbit. Then there exist integers k and m such that xk E U and xm E V
{xo, xi,...,xk} which is open and nonempty. Since m > k, then f(U)n v = 0.

To prove the converse, suppose that f has no dense orbit and {Bn}n,./ is

a countable basis for X. For each x E X there exists an integer n(x) such that
fk (x) B, forfor all k > 0.

00

The union U fk(Bn(x)) is open and is dense in X since f is topologically
k=0

00

transitive. Let An(r) = X fk (Bn(x)
) then x E An(r) and An(x) is closed

k=0
and nowhere dense. Hence X = H An(x) is a countable union of closed nowhere

xEX
dense subsets of X, contradicting the fact that X is of second category. The union

00

An(z) is countable because for every x E X, An(x) = X fk (B,) for some
x EX k=0

= 1,2,3,....

Let X and Y be topological spaces and let f : X X and g : Y Y be

maps. f and g are said to be topologically conjugate if and only if there exists a

homeomorphism h : X Y such that the following diagram commutes:



25

2.4.2 Lemma. Let X be a compact metric space. If f : X X is chaotic and
is topologically conjugate to g: Y Y, then g is chaotic.

Proof. Let y E Y and ei > 0. Then there exist x E X and 2 > 0 such that
h(x) = y and for all z E X if d(x, z) < e2 then d(y,h(z)) < el. Choose Sf > 0
for f : X X as in the definition of SIC. Then there exist an x' E X such that
d(x , x') <2 and an integer n >0 such that d(fn(x), fn(x1))

Let y' = h(x1). Now we have d(gn(y), gn(V)) = d(gn h(x), gn h(x'))

d(h fn (x), h fn (x')).

Claim: The map h : X Y satisfies the condition : for each b > 0 there

exists an e > 0 such that if d(x , x') > 46 then d(h(x), h(x' )) > e for all x, x' E X.

Note that if h satisfies the previous condition then taking 6. = 6 f we get
bg = c> 0, we see that g is SIC.

We prove the claim by contradiction. So assume that there exists a bo > 0 and

points {xn}, {4}, n = 1, 2, .. . such that d(xn,x1n) > 5o and d(h(x n), h(x'n)) + 0 as
n oo. Since X is compact, {xn} and {x'n} have convergent subsequences {xni}

and {x'n,} respectively. Assume x1 o x and x'n x' as i oo. By the triangular

inequality, d(x, x') > So, hence h(x) h(x1) since h is one-to-one. By continuity of

h, d(h(x h(4) d(h(x), h(x')) as i oo. But d(h(x ni), h(x'n i) 0 0 as i 0 oo,

hence d(h(x), h(x1)) = 0. Hence h(x) h(x1), a contradiction.

If Oz = fx, f(x), f2 (x),...} is dense in X, then Oh(z) = {h(x),g(h(x)),
g2 (h(x)), g3 (h(x)) .} is dense in Y. To show this, let U be open in Y. The
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set h-1(U) is open in X, hence fn(X) E h-1(U) for some positive integer n. Since
ho f =goh, we have hr(x) = gnh(x)EU.

Assume that Per(f)= E X : fn(x) = x, for some integer n> 0} is dense
in X. Let U C Y be open, then h-1(U) is open in X. Hence there exist anxEX
and an integer n 0 such that x = fn(x) E h-1(U). Hence h(x) = h(fn(x)) E U.
But since h(fn(x)) gn(h(x)), we have h(x) = gn(h(x)) E U. Therefore Per(g)=
{y E Y : g'2(x) = x, for some integer n> is dense in Y.

The following lemma is needed for the proof of Theorem 2.4.4.

2.4.3 Lemma. [Sc, Lemma 32] Let X be a metric space. Then for each x E
lim(X, f) and c > 0, there exists a positive integer k and an a > 0 such that if

z E lim(X, f), where d' (x k, zk) < a, then e(x, z) < c.

Proof. Given x E f) and e> 0, let k be such that 2-k < e/2. Using
the continuity of the bonding maps, for each i = 1,2, ... , k 1, there exists ai > 0

such that if zk E Xk, where c11(zk,xk) < ai, then cf(fi(zk),fi(xk)) < e/2. Let
a = min{e/2, ,ak-1}. Now, if z E A where d'(xk, zk) < a, then for
each i = 1, , k, cr(xi,Zi) < e/2 and

0. IEd (Xi, Zi) fv- 1 " 1E < _ +2-k <e /
i=i 2i 2-dY

i=k+1

2.4.4 Theorem. Suppose that X is a metric space and f : X -4 X is onto. If
f is chaotic, then f : lim(X, f) lim(X, f) is chaotic.

Proof. Suppose that f is SIC. Let 6 be given from the assumption that f
is SIC. Let x E f) and c > 0. Assume that E < 6. Apply Lemma 2.4.3 to

obtain k and a such that if z E f), where d' (xk, zk) < a, then e(x, z) < e.
Since f is SIC, there exist wk E Xk such that d'(wk,xk)< a and a positive integer



2.5.1 Lemma. [MB1, Lemma 2] Suppose f has a dense orbit O. For x E I
and s and k integers, s> 1, k > 0, let A,,k(x)= Ak = { f an+k (X) : n > 0}. Then
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m such that cf(fm(xk),fm(wk)) > 8. Since f is onto, the set {z. E lim(X, f)

7rk(z) = wk} is nonempty; choose such a z. Recall that d'(fm(xk),fln (4))
= C11(Xkm, Zkm) > b. Since dl(xi,zi) < e/2 < 8, for i = 1, 2, ... , k, we
have m > k. Now, fm-k+i(x) = (fmk+1(x1), fmk(1))- ,f(xi), xi s2, =
(X km, Xkm+1, X11 and hence, if n = m k+ 1, then &(f"(), f'(!) >
8/2. Therefore, f is SIC.

Assume that Oz = {x, f(x), f2 (x),...} is dense in X. Choose x E
lim(X, f) such that x1 = x and consider Oz = {1, f(I), /2 . . .}. Let

U be open in lim(X, f), then there exists an integer a and an open sub-.
set Ua C Xa such that (Ua) C U. Since Ox = {x, f(x), f2(x),
is dense in X, there exists an integer m such that fm(x) E U,. Hence

(fin±a(x),fm+c"-1(x), , f m(x), fm-1(x), , f (x),x, .) E U and Oz is dense
in lim(X, f).

Assume that Per(f) is dense in X and let U be open in lim(X, f),
then there exists an integer a and an open subset Ua C X0 such that
7r;1(U) C U. Since Per(f) is dense in X, there exists a periodic
point x of period m in Ua. Let # a (mod m). Consider x =
(P(x), ff3-1(x), . . . , f(x), x, fm-1 (x), , f(x),x, fm-1 (x), . . .). Clearly

x E 7c1(Ua) and fm(x) x. Hence Per(f) is dense in lim(X, f).

2.5 Maps of the Compact Interval f : I -4 I.

In this section we include a few results on maps of the compact interval. These

give alternative characterizations of chaos for maps f: I I.



If A2,0 is dense in I, then As,k is dense in I for all s > 1, k > 0.

If A2,0 is not dense in I, then I = A2,0 U A2,1, A2,0, A2,1 are closed intervals

which intersect in a point, and f(A2,0)= A2,1) f(A2,1) A2,0. Moreover, for each

k > 1, A2k,0 is dense in A2,0 and A2k,1 is dense in A2,1.

2.5.2 Corollary. [MB1, Cor., p.359] Suppose f has a dense orbit O. Then
the set of periodic points of f is dense in I.

Proof. Let V C I be an open subinterval. Choose x E V such that Oz is
dense in I. If {f2n(x) : n > 0} is not dense in I, we may assume, by Lemma 2.5.1,

that V C C f2n (x) : n > 0}. Let j be an integer such that f (x) E V. We may

assume that x < fi(x). From Lemma 2.5.1, it follows that fgk(x) : k > 0} is
dense in V. Now let I be the smallest positive integer such that gl(g(x)) < g(x).
Then gi(x) = g1-1(g(x)) g(x) > x and gl(g(x)) < g(x). So gi(x) > x and
gi(g(x)) < g(x). Hence g1 has a fixed point y, x < y < g(x). Since gI(y) = y,

fki(Y) and since y E V, V contains a periodic point of f.

2.5.3 Corollary. [MB1, Cor., p.359] Suppose f has a dense orbit O. Then
every point of I is topologically unstable.

Proof. Suppose y E I and y is topologically stable. Let x E I have a dense
orbit O. We first show that Oy is dense.

Suppose U C I is an open subinterval and for all n > 0, ffl(x) U. Let V
be an open interval which is the open middle third of U. Let e = idiarn(U). Then

since y is topologically stable, there is a 5 > 0 such that if jz vi < S then for all

n, If n (Y) fn(z)I < e. In particular, is lz yj < 8 then, for each n, fn(z) it V.
Now since x has a dense orbit, there is an integer j such that Ifi(x) vi <S. Then
there exists an integer k > j such that fk(x) E V. But then fki(fj(x)) E V and

this is a contradiction. Hence Oy is dense.
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(5) For every interval J C I, there exists an n such that fn(J) =

29

By Lemma 2.5.1, there exists a positive number c and a subinterval C of I

such that diam(C) > 3e, and for each n > 0 {fkniy : k > 0} is dense in C. Now

choose 6 > 0 such that if lz yl < 45 then for each j, (z) fi(y)1 < e. Now
by Corollary 2.5.2, let t be a periodic point such that jt yj < 6. Let n be the
period of t. Then for each k, If kn (t) fkn (01 < e so ft fkn,yN.

k )1 < e. But then
{fnkiy, : k 0} is dense in C. II

Hence for maps f of the interval I 10, 1], f having a dense orbit is equivalent

to f being chaotic.

In [BM1] and [BM2], Barge and Martin prove results, which yield the equiv-

alence of (1)-(4) in the following theorem. In [CM], Coven and Mulvey prove that

is equivalent to the rest if f is piecewise monotone. They do so by proving that

piecewise monotone and if fn is transitive for every n > 0, then for

every subinterval J C I there exists an n such that fn(J) = I [CM, Lemma 4.1].

2.5.4 Theorem. Let f : I be continuous. Then the following statements

are equivalent:

f is transitive and has a point of odd period greater than one.

f2 is transitive.

fn is transitive for every n > 0.

For every pair U, V of nonempty open sets, there exists an N, such that
fn(U)nv for all n> N.

Furthermore, if f is piecewise monotone, then the following statement is equiv-

alent to the rest:
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2.6 Maps of the Circle f : S1 S1.

In this section we include a few results on maps of the circle. These give

alternative characterizations of chaos for maps f: S1 S1 .

2.6.1 Theorem. [CM, Theorem C] Let f: S1 51 be a continuous map of

the circle to itself. Then the following statements are equivalent:

(I) There is an m such that fin is transitive and has a fixed point and a point of

odd period greater than one.

There is an m such that f2'n is transitive and In has a fixed point.

fri is transitive for every n > 0 and f has periodic points.

For every pair U, V of nonempty open sets, there exists an N, such that
f(U) nV00 for all n > N.

Furthermore, if f is piecewise monotone, then the following statement is equiv-

alent to the rest:

For every interval J C 51, there exists an n such that fn(51) =

2.6.2 Theorem. [Si, Theorem 7.1] If f: 51 S1 has a dense orbit then any

of the following are equivalent to f being chaotic:

f has a periodic point.

f is not one-to-one.

f has sensitive dependence on initial conditions.

f has a non-dense orbit.

f is not conjugate to an irrational rotation.



If Int(K) 0, then Un>of1(10 = X.

f is onto and has a dense orbit.

31

2.6.3 Corollary. [CM, Cor. 3.4] For transitive maps of the circle with periodic

points, the periodic points are dense.

A map f : X -4 X is called topologically transitive if any of the following

equivalent conditions hold [CM]:

For every pair U, V of nonempty open sets, there exists an n, such that
fn(U)nv 0.

The only closed invariant set K with Int(K) is K . X



3. The Whitehead Continuum

In this section we construct two spaces homeomorphic to the Whitehead con-

tinuum. One in R3 which we refer to as the Whitehead continuum and one in R2

which we refer to as the Knaster continuum. We chain the Knaster continuum in a

specific way and then analogously we chain the Whitehead continuum. We use these

chainings to prove that the Whitehead and the Knaster continuaare homeomorphic.

This result is stated without proof in [A].

Let C = I or C = S'. Let f : B2 x C R3 be an embedding. Let

N(f({0} x C), = {x E R3 : cl(x, f({0} x C)) r}. We say that f (B2 x C)
has "cross sectional diameter < r" if it is a subset of N(f({0} x C), r) and if
diam(f(B2 x c)) <r for all c E C.

Let f:IxI R3 be an embedding. Let N(f(I x {1}), r) {x E R3 :
d(x, f(I x {-1})) 5_ r). We say that AI x I) has "width < r" if it is a subset of
N(f(I X {i}), r) and if diam(f(t x.1)) <r for all tel.

3.1 Construction of the Whitehead Continuum.

Let To be a solid torus in R3. Let 711 be a solid torus in Int(To) as in
Figure 3.1. Let T2 be a solid torus embedded in Int(Ti) as T1 is embedded in

To. Continue this construction. This results in a sequence To, T,, 1'2, . . . of solid ton

in R3 such that for each n E Z+ U {0}, Tn+1 C Int(Tn). Assume that the cross
sectional diameter of Tn <()z for all n. The Whitehead continuum W is defined

00

by W = nT1. Note that the conditions on the cross sectional diameters force
i=0

W to one-dimensional and that W is homemorphic to the Whitehead continuum

defined earlier in Section 1.4.
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Figure 3.1

3.2 Construction of the Knaster Continuum.

let Do be a 2-dimensional disk in R2 of width 1. Let D1 be a 2-dimensional
disk in Int(D0) as in Figure 3.2. Let D2 be a 2-dimensional disk in Int(Di) as
D1 is embedded in Do. Continue this construction. This results in a sequence
Do, DI, D2, . . . of 2-dimensional disks in R2 such that for each n E Z+ U {0},
Dn+1 C Int(Dn). Assume that the width of Dn < (-I)fl for all n. Then the

00

Knaster continuum K is defined by K = D. Note that the conditions on the
i=0

width of Dn force K to be one-dimensional.
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Next, will chain the Knaster continuum K in a specific way and then analo-



3.3 Chaining the Knaster Continuum.

We will inductively define chains go , Ei, e2,... where ei covers D.

Defining the Chain eo

Consider the 2-cell Do shown in Figure 3.3.

rit .1 2

44
E 1 E v no

0

Figure 3.3

Let Do = lo X Jo, where 10 = [0,2] and Jo = [0,1]. Partition the interval

10 into no subintervals fro, rd, fri, r2],..., [rno_i, rno], where 7-0 = 0 and rno = 2.

Require that diam([ri, ri+d) < A for all 0 < i < no 1.

Let .E4 = x Jo for all 1 < i < no. Choose the links E4 such that

n D1 has exactly two components for 1 < i < no and E(7° fl D1 has exactly

one component. Now, slightly expanding each link E4, as shown in Figure 3.4,

we produce the open links (still denoted by a n,) making up the chain

34

gously chain the Whitehead continuum W. These chainings will be used to prove

that W is homeomorphic to K.
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Lo. Hence eo = {EL EL . g"} is a chain made up of no open links such that

n Eci)

al Et Et)+1

Figure 3.4

Defining the Chain

Let Et, n = "Stit.11 St; for all 1 < i < no, where uS4 = Eri_i, rd x npi
and x [0, 4]) n D1

Let 151, = x Partition the interval 11 into m subinterval fro, rib

[7-1, r2],..., rmj. Require that

Diam([ri,ri+d) < io2o.

The intersection D2 n ([t, x J1) has one component.

The intersection D2 n ([ti, ti+11 x .11) has two components for all 1 <i < m

Let Er' [to,ti] x E1-1 [t1 t2] X J1, E'2 = [t2 ,t3} X

E;"rn = [t,_1,4,] x J1. Expand these links slightly to produce open links
Erl Er' Er' 2, rn Hence we have defined the last m links of the chain

El. See Figure 3.5.

0 if and only if ji 1.

I '1 a T "I 1
I I I II I
I II I I I
I II I I I
I......., 1 I III I I aII I
I II I I I
I I I I I I
I II I I I
I II II I

... .
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Figure 3.5

Similarly, partition 156 into m sublinks , Elm such that 156 =
U E2 U U Elm for all 1 < i < m. Also partition u5 into m sublinks

, Em such that 154 = E1u E2 U Eli"' for all 1 < i < m. Here each

sublink intersects D2 in two components.

Now consider n. n D1. Let h : R3 R3 be a homeomorphism taking

fl D1 onto the 2-cell 12 X <72 such that diam(h-1 (r X .72 <. See Figure 3.6.

rno _1

E n Di

NET (no- 041)

Figure 3.6

Partition 12 into m subintervals [ro, rib [ri,r2], , [rm_i, rn] of equal diam-
0+ 1eters. Let Etn(n° h I aro, ri] x .12), Eim("-1)+2 = h-1 r2] x .79)1 - ,

Ern° = 11-1 x J2). This defines the middle m links of

2

h(E0)
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Hence the definition of the chain Ei is complete. Note that ei has ni =--

2m(no 1) + m open links such that Ei nE.1 d) if and only if i ii _< 1. Note
also that each link of the chain eo is the union of exactly m links of the chain

Defining the Chain ek.

In general, having defined the chain 4, define the chain ek to be a chain
with nk = 2m(nk_1 1) + m open links such that El fl E if and only if
Ii ii < 1 and each link of the chain Ek is the union of exactly m links of the chain

ek--i. We call Ek a U-chain in Eki since the first link of Ek is a subset of the first

link of Eki and then Ek goes straight through Eki, turns around and comes back

through 4_1. Note that diam(4) -.4 0 as i oo.

3.4 Chaining the Whitehead Continuum.

Having chained the Knaster continuum, we analogously chain the Whitehead

continuum. We inductively define chains Co,C1,C2,... where Ci covers

Consider the cylinder /31) x 10, where /0 = [0,2] shown in Figure 3.7.

r2 r2 no - 3 2-u 2



Let Ca = .131, x [O, ri] U ./33

[r2n1:1 3 r2710.'-2], co-1 Bi3 x

cono. B x [rno-i,rno]

Note that the link C has exactly two components for all 1 < i < no and

C4 and Con° have one component each; recall that Bi3 x [0, ri] is identified with

x [r20_2, 2]. Note also that On 71 has exactly two components for 1 <i < no.

Expand the links defined above slightly to produce the open links (still denoted by

Cj, , Con°) making up the chain Co. Hence Co = {Cti, ,Con°} is a chain

made up of no open links such that C4 n C 0 if and only if li - ji < 1. See
Figure 3.7.

Defining the Chain Cl.

Let Cj n = u r501 and consider 1.54. Let h : R3 --+ R3 be a homeornor-

phism taking ISO' onto the cylinder .131 x .1.1 as shown in Figure 3.8.
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Let A <u < u = A is a good choice. Consider the following identification:

Given a disk Bt3 x {r} where 2-u <r < 2. Rotate ./313 x {r} about the axis {0} x

through an angle 9 = f is the counter-clockwise direction and identify it with the

disk B x u - 2}. The quotient space of this identification yields the first

two stages To and T1 in the construction of the Whitehead continuum shown in

Figure 3.1.

Defining the Chain Co.

Consider the cylinder B x [u, 2 - u] shown above. Partition the interval

[u, 2-u] into 2n0-3 subintervals [7-1, r2], [r2, r3], , [r0 _1, rno], , [r2no _3, r2n0 _2]

where ri u and r2n,--2 = 2 - u. Require that diam([ri, r+1]) < A for all

1 <i < 2no - 3.

r2n0 _2, 2], CI = ./33 x r2] U B x

-2, rno--11 U B x [rT10-14 r720+2], and



Figure 3.8

39

Partition the interval II into 2m 1 subintervals fro, rib [r1, rd,
[rmi,rm], [r2/11-2 r2M-il Choose the subintervals such that Au <
diamarm_i, rm]) < and diamari, < 1-11 for i E {0, 1, , m
2, m,... , 2m 2}.

Let CI = x [r,n_i,r,,,J), C? = lz-1(B? x r,n_d) U (B? X
[rnz, r,7,4.1]), , Cr-i h-i (B? x [r1, r2]) U 11-1(B? x [r2,n_3, r2n2_2]), and Cr =

x [ro,ri]) U h-1 (B? x [r2,n-2,r2m-11)

Require that Ci n T2 has four components for 1 <i < m and CI has two
components.

Expand the links CI, C?,..., cr slightly to produce open links; use
C?,... , Cr to denote these open links also. This defines the first m links in

the chain C1. Similarly partition "S(1 into m sublinks , CI"' such that
r52 C12 U . This defines the last m links in the chain Cl

Recall that, 0 13,3 x [ri,r2] U .131 x [r2n0-3,r2,10--2]. Now consider IC(1 =
x [r1, rd. Partition the interval [ri,r2] into m subintervals [to, ti], t21,

It,,,_1,t,n1 of equal diameters where to = ri and t,n = r2.

Let Cr+1 = T2 n (Bg x [to, 41), Cr+2 = T2 n (Bg x [t1,t21), , Crn =
T2 n (Bg X Eirn_i, trni), This defines the second m links of C1. Note that CI has two
components for all in + 1 < i < 2m.
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Similarly, define the rest of the links of C1. Hence the definition of the chain C1

is complete. Note that C1 has ni = 2m(n0 1)+m open links such that ci n
if and only if Ii jI < 1. Note also that each link of the chain Co is the union of

exactly m links of the chain Ci.

Defining the Chain Ck

In general, having defined the chain Ck_i, define the chain Ck to be a chain

with nk = 2m(nk_i 1) + m open links such that Ci n CI 0 0 if and only if
j) < 1. and each link of the chain Ck is the union of exactly m links of the chain

Ck_i. Note that Ck is a U-chain in Ck-i. Note that diarn(Cii) 0 as i oo.

The proof of the following theorem parallels that of [Bi2,Theorem 11].

3.5 Theorem. The Whitehead continuum W is homeomorphic to the Knaster

continuum K.

Proof. Given x E W, let C7(x) = U Cf.Note that C(z) C C7-1-1(x)
z EC

00

for all i, hence x n C:(x). let E(x) =U E. Define h : W K by
i=1 zEC

00

h(x) = nE:(x).
i.o

Clearly, h is well-defined and onto. To show that Ii is continuous, we show

that if x E W and U is an open subset of K containing h(x), then there exists an

open set V C W containing x such that h(V) C U. So let U be an open set in K
such that h(x) E U. There exists j such that any link of Ej containing h(x) is a

subset of U. Now if x E CT, then h(cl n w) c E. But h(x) E EJT U, hence h is

continuous.

We will argue by contradiction to show that h is one-to-one. So let xl, x2 E W
such that h(xi) = h(x2). Then there exists k such that no element of Ck contains
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both xi and x2. Let El be such that h(xi) h(x2) E El. Then there exists a
j > k such that every element of ei containing h(xi) h(x2) is a subset of El. Let

Cr ,CJ contain xi, x2 respectively. Since E, El contain h(xi) = h(x2) then Eli',

E7 c El. Then Cr and Cr are subsets of Cr. But no elements of Ck contains both

xi and x2 A contradiction, hence h is one-to-one.

The map h : W K is one-to-one, onto, and continuous; but W is compact

and K is Hausdorff, so h is a homeomorphism.



4. The Whitehead Continuum Viewed as a Nontransitive Attractor

In this section we view a specific Whitehead continuum as an attractor of a

map F: T -4 T. A projection map P: T --+ 51 is defined. The maps F and P

induce a map f: 51 --+ S. We prove that the attractor of the map F, that is, W =

flFk (T) is homeomorphic to lim(S1, f). Hence Fi is topologically conjugate to
k=0

: f) 11M(S1, f) which is not topologically transitive. Finally, we discuss

the dynamics of F.

Let C = I or C = S. Let f : 132 X C R3 be an embedding. Let

N(f({0} x C),r) = fx E R3 : d(x, f({0} x C)) < rl. We say that f (B2 X C)
has "cross sectional diameter < r" if it is a subset of N(f({0} x C), r) and if
dian(f (B2 X C)) <r for all c E C.

By a Whitehead map f we mean an embedding f: T T such that the attrac-

tor of f is homeomorphic to the Whitehead continuum constructed in Section 3.1

and is embedded in R3 just as the Whitehead continuum is.

By a Whitehead continuum we mean an attractor of a Whitehead map.

The results in this chapter parallel those in [Ba2]. In [Ba2], Barge considers

horseshoe maps and realizes their attracting sets as inverse limits of maps of the
interval. Here we consider Whitehead maps and realize their attracting sets as

inverse limits of maps of the circle.
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4.1 Construction.

Suppose that T is a solid torus, T = x B2. Given an angle 0 <00 < f,

let 81 = , 02 = 121-r + 00 , 03 = f - 00, and 04 = + 00 . Let C1 = {9: 01 <

0 < 02} x B2 , C2 = {0 : 02 < 0 < 03 } X B2 , C3 = {0 : 03 < 0 < 04 } X B2 , and

C4 = {0: 04 < 9 < x B2.

Figure 4.1

Consider B2 x I shown in Figure 4.2. Identify each disk B2 x 0 (located to

the right of C3) with the disk B2 x 0 (located to the left of C3) for 01 < 0 < 92.

That is identify the cylindrical sections (labeled CO at the ends of B2 x I. The

quotient space corresponding to this identification is a solid torus T. Hence T can

be thought of as depicted Figure 4.2.
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This defines an embedding F: T --+ T. We want F(T) to be embedded in

T just as Tl is embedded in To in Figure 1.2. That is, we want F(T) to self-link

in T. One way to realize this self-linking, is to obtain T as a quotient space of the

cylinder shown in Figure 4.3 with the following identification: Given a disk B2,

01 < 8 < 92, located to the right of B2 x 94 in the figure below. Rotate B2 x

about the axis {0} x I through an angle 0 = 22': in the counter-clockwise direction

and identify it with B2 x 0 located to the left of B2 x 94.

Figure 4.3

By choosing A and p appropriately, we can require that the embedding F have

the following properties:

(P-1 (P(z))) c 13-1 (P(F(z))) for all z E T.

F(C1) ç IntCi, and F(C3) C

For all x E 51, P-1(x) fl F(T) has exactly four components; and

Diam(Fk (13-1(P(z))) -+ 0 uniformly in z E T as k oo.

The attracting set for F is W =fl Fk(T). This means that for z E T,
k=0

d(Fk(z),W) 0 as k oo. The set W is a Whitehead continuum.

F(c3)f-r-

;

81 82 83 84 81 82



So we have the following diagram:

T F
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F induces a continuous map 1: 51 -4 51 defined by f(s) = P (F (P-1 (x))).

The embedding F is required to satisfy property (i) above to insure that the

induced map f is well-defined and the commutativity of the diagram above.

To show that f : 51 is well-defined, let x = P(zi) = P(z2) be
in 51 such that z1 z2 E T. Then f(x) = PFP-1(x) = PFP-1(P(z))
P(P-1PF(zi)); the inclusion follows from property (i). Then f(x) = PF(zi).
Similarly, f(x) = PF(z2). But since P(zi) = P(z2), then z1 E P-1P(z2). Hence
PF(zi) E PF(P-1P(z2)) = P(FP-1P(z2)) C P(P'PF(z2)) = PF(z2). Hence
PF(zi)= PF(z2) and f is well-defined.

To show the commutativity of the diagram above, assume F satisfies property

(i). That is, assume FP-1P(z) C P'PF(z) for all z E T. Then P(FP'P(z)) C
P(13-1PF(z)) = PF(z). Hence fP(z) C PF(z) for all z E T. To show that
PF(z) E fP(z), let z E T, then PF(z) C PF(P-1P(z)) = fp(z). Hence f 0 P =
P o F.

The map f has the following properties:

f(0) = 0, Al). 0, and

For i = 1, , 4, there exists ai E Si, 0 = ao < a <a2 <a3 < < 1 such
that f is strictly monotone on [a21_i,a2i1 for i = 1,2 and for i = 0,1,2

1, if i is odd;
f([a22,a2:+1]) =

0, if i is even.



See Figure 4.4.

I
0=a0 al a2 a3 a4 a5=1

Figure 4.4

The proof of the following theorem is a modification of the proof of Theorem

1 of [Ba2], tailored to our needs.

4.2 Theorem. Consider the following diagram:

CO
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id

51 +-

The map P : w -4 lim(S1,f) given by

4--

n=0

P(z) = (P(z), P (F-1 (z)), P(F-2 (z)), .

lim(T,F)

lim(S1, f)

4-- F(T)4 F2 (T) 4 Fn (71) = W



is a homeomorphism and the following diagram of homeomorphisms commutes:

lim(S1, f) 14 lini(S1 f)

That is, Fiw is topologically conjugate to j.

Proof. Since PoF=f0P, then f(P(F-(i+1)(z))) = P (F-(i+1) (z)))

P(F-i(z)) and P(z) E lim(S1,f).

The map P is clearly continuous. To see that P is one-to-one and onto, let

x = (x1,x2,...) E lim(S1,f) and let Ck = Fk (P-1(Xk)) for k = 1,2,.... Then
Ck is a closed, nonempty subset of T for each k > 1, and since F(P-1(xk+i)) C

00

C Ck for k = 1,2,.... Thus n Ck is
k=1

00

a nonempty set and if zEnCk, then P(z) = xl, P(F-1(z)) = x2,.... That
k=1

00

is, P(z) = x. Moreover, if 13(z) = x then z must be in n Ck. But since
k=1

diam(Fk(P'(xk))) 0 as k oo, we have n ck {z} and P is one-to-
k=1

one and onto. I

4.3 lemma. The map f" : lim(S1,f) -4 lim(S1,f) is not topologically transi-i-
tive.

Proof. let U = ri-1(ao, ) and V = 7r/-1(a2 , a3 ).

claim: fn(U) n V = çfor all n >O.

fn(u) 1(ao,a1))= 1ri-1(fn(ao,a1))=

Clearly, ri-l{ao} n ri-1(a2,a3) = 0. Hence the claim is proved and is not
transitive.

P-1 (f (xk+i)) = (x k), we have Ck+1
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Consider the following inverse sequence:

T F(T) F2 (T) lim(Fj(T),i)

00

From Lemma 2.3.4, it follows that lim(Fj(T), i) is homeomorphic to nFn(T) =
n=0

W.

Consider the following diagram:
F F FT 4--- T 4-- T 4-- lim(T, F)

lid IF IF2

T 4--:- F(T) 4-±-- F2 (T) 4i--

Since Fi : T F' (T) is a homeomorphism for all j we have lim(T, F) W. Hence

by Theorem 4.2, lim(T, F) is homeomorphic to lim(S1, f).

From Theorem 1 of [Ba2] we conclude that the Knaster continuum is home-

omorphic to lim(/, h) where h has the following properties:

(i) h(0) = 0, h(1) = 0, and

(2) For i = 1, , 4, there exists ai E 51, 0 = ao < al < a2 <a3 <a4 < 1 such
that f is strictly monotone on [a2i_1,a21] for i = 1,2 and for i = 0,1,2,

h([a2i,a2:+11)

From Theorem 5 of [Ba2], we conclude that lim(/, h) is homeomorphic to

lim(/,g) where g : / I is defined by

1,

if i is odd;
=

0, if i is even.

for i = 0,1,2 and g is linear on [4, 4-1-] for i = 0,1.

11, if i is odd;

1 0, if i is even.
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Consider the following diagram

4- I 4- I 4-- 11M(I, h)

IG IG IG
16

Si 4 f Si 4-L Si 4-L- lim(S1,f)

where G : I S1 is defined by G(0) = G(1) = 0 and G(x) = x for x {0, 1}.

4.4 Lemma. The map O : lim(/, h) -4 lim(S1,1) is a homeomorphism.

Proof. We only need to show that 6 is one-to-one, the rest is obvious. So

assume = (xi , x2, ...) and E = (yi, y2, ...) are in lim(/,f) such that O(L) = o(y).
Then (G(x 1), G(x 2), ) = (G(yi), G(y2), ) . Assume without loss of generality

that xi 4 yi) xi = 0 and yi = 1. Then xi+1 E [ao, al] U [a4, ad and yi+i E [a2,a31.

This contradicts the fact that G(x11) = G(yi+i). Hence x = y.

4.5 The Dynamics Of The Whitehead Map.

The discussion given here parallels that given in [De, Sec. 2.3] for the horse-
shoe map.

The Whitehead map F embeds T into itself as described earlier. Note that

F(T) C T and F is one-to-one. Now we study the dynamics of F in T.
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Inductively, if V is any vertical cylinder in C2 U C4 of cross sectional diameter

c, then F-1(V) is a pair of cylinders of cross sectional diameter Sc, one in each

Hence F-1 (F-1(vi)) F-2(yrvi) consists of four cylinders each of cross sectional

diameter Pc, F-3(171) consists of eight cylinders of cross sectional diameter 83c.
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The set F-1 (C2 UG4) = V00UV01 UVioUVii , is a union of four vertical cylinders

which are mapped linearly onto the four horizontal components Hoo, H01, Hi0 and

H11 of F(C2U C4) n C2 U C4. The height of Vij is I. The cross sectional diameter of

Hij is S. By linearity of F on C2 and C4 F preserves cross sections in C2 and C4

If C is a cylinder in C2 U C4 whose image lies in C2 U C4 then the length of F(C)

is expanded by a factor of p times the length of C and the cross sectional diameter

of C is shrunk by a factor of S.

The map F is a contraction on C1. By the Contraction Mapping Theorem,

F has a unique fixed point p E C1 and lim (q) = p for all q E C1. Sincen000
F(C3) C C1, all forward orbits in C3 behave likewise. Similarly, if q E C2 U C4
but Fk(q) E C1 U C3 for some k > 0, then we have Fn(q) E C1 U C3 for n > 2, so
Fn(q) -4 p as n --+ co. Hence, to understand the forward orbits of F, it suffices to

consider the set of points whose forward orbits lie entirely in C2 U C4

Now, if the forward orbit of q lies in C2 U C4 then q E Voo U V01 U Vio U V11,

for all other points in C2 U C4 are mapped into C1 U C3. Also F(q) E C2 U C4 then

F(q)E V00UV01UV10UVII, that is, q E F-1(V30)UF-1(Vo1)UF-1(V10)UF-1(V11).

VII
01



cr( -23 -1.803132 = 5--25-15031S2
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Hence A+ = fq : Fk(q) E C2 U C4 for k = 0,1, 2, ...} is the product of a
Cantor set with a vertical disk. Analogously, A_ = {q: Fk(q) E C2 U C4 for k
0, 1, 2, ...} is the product of a Cantor set with a horizontal disk. Let A = {q E

C2 U C4 : Fk(q) E C2 U C4 for all k E Z}. Note that A = A+ n A_.

Now we introduce symbolic dynamics into the system. Given a cylinder C C

A+, Fk(C) is a cylinder of length pk in either Vo or VI. Attach an infinite sequence

so sis2 ... of O's and l's to any point in C according to the rule sj = a if and only
if F3(C) C Va. so tells us which cylinder C lies in, si tells where its image is

located, etc. Similarly, attach a sequence of O's and l's to any horizontal cylinder

H. Write this sequence where =a if and only if F(H) C Va
for j = 1, 2, 3, .... Note that F-1(H), F-2 (H), . are horizontal line segments of

decreasing lengths.

Hence, if p is a point in A, we may associate a pair of sequences of O's and l's

to p. One sequence gives the itinerary of the forward orbit of p; the other describes

the backward orbit. Let us amalgamate both of these sequences into one, doubly

infinite sequence of O's and l's. That is, we define the itinerary S(p) by the rule

S(p) = (... 5-23-1.sosis2

where si = k if and only if F2(p) E Vk . This then gives the symbolic dynamics on

A. Let E2 denote the set of all doubly infinite sequences of O's and l's:

E2 = {(s) = (... .9_23_1.303132 ...) : 0 or 1

Define a metric on E2 by

cc

d((s),(t))= Ei=,
Define the shift map a by



a is a homeomorphism on E2.

Hence we have the following commutative diagram:

A A

Is
E2

a
E2

S: A E2 is a homeomorphism. Hence FIA is topologically conjugate to a. But
a has a dense orbit, hence F is chaotic on A.

In summary, we have shown that F : W W is topologically conjugate

to j : lim(S1, f) lim(51,f). Also I is not chaotic, by Lemma 3.3. Hence

: W --+ W is not chaotic, whereas F: A + A is chaotic.

Our goal now is to define an embedding F' : T T such that the attractor

W' for F' is a Whitehead continuum and F' :W' WI is chaotic. This is done in

the next two chapters.
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5. Partial Results

In this chapter we focus our attention on functions f : / / which are

continuous, onto and satisfy Conditions (1) or (2) stated below. We show that for a

function f satisfying Condition (1), if H is a proper nondegenerate subcontinuum of

lim(/, f) then H is homeomorphic to I; if in addition f satisfies Condition (2) then

lim(/, f)- H is dense in lim(/, f) which implies that lim(/, f) is an indecomposable

continuum.

Condition 1: If (Jn), n = 1, 2, 3, ... is a sequence of nondegenerate proper

closed subintervals of I such that f (Ji+i) = .11 for j > 1, then there exists an integer

N > 1 such that f: Ji+1 Ji is a homeomorphism for i > N.

Condition 2: If J is a proper nondegenerate closed subinterval of I then

there exists an integer M > 1 and a collection of pairwise disjoint proper closed

subintervals J1, J2, , Jn where n > 2 such that f-m(J) = J1 U J2 U Jn

5.1 Examples. It can be easily verified that the following functions satisfy

Conditions 1 and 2 above. We will prove that g2 satisfies Conditions 1 and 2 in

Lemma 4.5.

Let gn : I -4 I, n > 2 be defined by

0, if i is even;
gn(;) =

54

1, if i is odd.

= 0,1, , n and gn is linear on [7-t, i = 0,1, ... ,n - 1.



Hft

55

5.2 Theorem. Suppose that f: I -4 I satisfies Condition I above. If H is a

proper nondegenerate subcontinuum of lim(I, f) then H is homeomorphic to I.

Proof. Let H be a proper nondegenerate subcontinuum of lim(/, f). Let Hi

denote 7r1(H) for all i. From Lemma 2.3.11 it follows that there exists a j > 1 such

that Hi 0 I, and hence Hi 0 I for all i > j. Let a = min{i : 110 I}. Since Hi is
connected it follows that Hi is a proper closed subinterval of I for all i > a.

The set {Hi : i > a} is a collection of proper closed subintervals of I and
f(Hi+i) = Hi for all i > a. Since f satisfies Condition 1, there exists an N > 1
such that f : Hi is a homeomorphism for all i> a + N. Let # = a + N.

Now, Hi I for all i > # and 1: Hi+1 + Hi is a homeomorphism for all

i > # imply that the inverse limit X of the inverse sequence

f u f+--- 41,8+1 +- 14 13+2 4-

is homeomorphic to the closed interval I. It follows from Theorem 2.3.6 that
X .1.=z H. Hence H I.

5.3 Theorem. Suppose that f : I I satisfies Conditions 1 and 2 above. If

H is a proper nondegenerate subcontinuum of lim(I, f) then lim(/,f) H is dense
in lim(/, f).

Proof. Let H be a proper nondegenerate subcontinuum of lim(/, f). We need

to show that if U C lim(/, f) is open then U n (lim(I, f) H) 0.

Assume that U n (lim(/, f) H) = 0 for some open subset U of lim(/, f). It
follows that U C H. The map f satisfies Condition 1, hence there exists an N > 1

such that 1: Hi+i + Hi is a homeomorphism for all i > N.

The set UN = 'WN(U) is open in I; choose a proper closed subinterval J C UN.

Since f satisfies Condition 2, there exists an M > 1 and a collection of pairwise



disjoint proper closed subintervals J1, . . , Jn, n > 2, such that f-Al (J) = J1 U

3.2 U J. Since flif : HN-EM -4 HN is a homeomorphism, at most one of the

intervals J2, ... Jn, without loss of generality, .T1 is a subset of HN+M. Hence

if g_ E lim(i,f) such that 7rN(x) E UN and ITN-1-M(Z.) J1, then E U and g_ 0 H.

A contradiction to the assumption that U C H. Hence lim(/, f) H is dense in

5.4 Theorem. Suppose f : I I satisfies Conditions 1 and 2 above. Then
lim(/, f) is an indecompos able continuum.

Proof. By the previous theorem, if H is a proper nondegenerate subcontin-

uum of lim(/, f), then lim(/, f) H is dense in lim(/, f). Hence by Theorem 2 of
PK], lim(/, f) is an indecomposable continuum.

5.5 Lemma. Let f: I be defined by

{ 2x, if 0 < x <
f (x) =

if < x <1.

Then f satisfies Conditions 1 and 2.

Proof. Let J1, J2, J3, ... be a sequence of proper nondegenerate closed subin-

tervals of I such that f(Ji+i) = Ji for all i > 1. We need to consider the following

three cases

Ji = [0, e], 0 < e < 1.

Ji = [1,621, <62, < 61,62 < 1.

Ji = [1 e, 1j, 0 < e < 1.
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Case I: If Ji = [0, e], then 4+1 = [0, i] or = [1 - , 1]. It suffices to

consider 4+1 = [1-1, 1]. It follows that 4+2 = [I i+1] and 4+3 = 4 4- t]
or 4+3 = - + i]. The maps fl.,i+s : - i] -+ - f] and

:[3- + f] -> - + are homeomorphisms. Hence if N = 1+2
then f: Jk+1 JJk is a homeomorphism for all k > N.

Case 2: if [El , 2] then 4+1 = [-S1-,-E-1] or4+1 = [1 - 121, 1 - In. The maps

-4 [el, 62] and I), : [1 - 122-, -1=-2'1] -4 [el, E2] are homeomorphisms.

Hence if N = i then f: Jk+i .1k is a homeomorphism for all k > N.

Case 3: If = [1- c, 1] then 4+1 = - + 11 and 4+2 [i -4414J
or Ji+2 = [731- - + The maps fi,i+2 : - f, f] - + f] and

- + f] - + -I] are homeomorphisms. Hence if N = i 1

then f: Jk is a homeomorphism for all k > N.

Hence f satisfies Condition 1. Moreover, It follows from the proof that f
satisfies Condition 2.

Define r : / / by

{ 2x, if 0 < x <
r(x)

2 - 2x, if < x < 1.

5.6 Corollary. If H is a proper nondegenerate subcontinuum of lim(I, r) then
4.-

H is homeomorphic to I and lim(/, T) - H is dense in lim(/,

Proof. This corollary follows from Theorem 5.2, Lemma 5.5 and Theorem
5.3.

It can be shown that lim(/, T) is homeomorphic to the Knaster continuum

defined in Section 3.2.
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5.7 Corollary. The Knaster continuum is indecomposable.

Proof. This corollary follows from Lemma 5.5 and Corollary 5.4.

In the following theorem we give an elementary proof that the Knaster con-

tinuum is indecomposable. The proof parallels that of Theorem 9.D.14 in [CV].

5.8 Theorem. The Knaster continuum K ü indecomposable.

Proof. Let A and B be subcontinua of K such that K = A U B. We show
that ACB or B C A.

Claim: For all i,ri(A) C r(B) or r(B) C

Assume the claim is false for some k, and let a E irk(A) 7rk(B) and b E
rk(B) rk(A). The set K lim(/, f) and f is onto, hence ri is onto for all i. Thus

E 7k+1(A) U rk+i(B). If E 74-1-1(B), then a = f(i) E frk+i(B) = rk(B),
which is impossible. Hence E rk-Fi(A) rk+i(B). Similarly we have 1 E

rk+i(A) rk+i(B) and 1 E rk+i(B) rk+i(A).

The set A is connected implies that rk+I(A) includes at least the interval
1 -1]. Similarly, rk+i(B) includes at least the interval [-bi, 1 1]. Clearly
1 C [1,1- 11] or [1,1 4] C [g- 1 2.] contradicting the fact that 1 I E2 2

rk+1(A)-74+1(B) and 4, 1-4 E rk-Fi(B)rk-Fi (A). Hence the claim is proved. We

now have two possibilities: z1(A) C Iri(B) for infinitely many i, or r(B) C r1(A)
for infinitely many i.

Now if 7r-(A) C 71-i(B) for infinitely many i, then for every i there exists a
j, j > i, such that z3(A) C ri(B). Hence 7k(A) c 7rk(B) for all k < j, since
irki(A) = frk(A) C frk(B). Hence 7i(A) C 7r(B) for all i. Similarly, if R-i(B) C

7r1(A) for infinitely many i then iri(B) C iri(A) for all i.
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A

I
B

B

In
A

Hence the Knaster continuum is indecomposable.
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Now observe that A is the inverse limit of the sequence (iri(A), fi.,(A)) and B

is the inverse limit of the sequence (7ri(B), fliri(B)) Hence A C B or B C A follow

from the following diagrams:

ri (A) 4--f 7r2(A) 41-- 73(A) 41-

ri(B) 4L- 71-2(B) 41- 7I-3(B)

Or

ri(B) 41- 4-f-72(B) 71-3(B)

'xi (A) 4-L- 72(A) 41- 71-3(A) 4-:-f-



6. Main Results

Consider a solid torus T1 = 51 x D1 such that T1 C B3 where D1 is a 2-cell and

B3 is a 3-cell. Our objective is to construct a near homeomorphism H : B3 - B3

satisfying:

There is a sequence of homeomorphisms Hi, : B3 B3 converging uniformly

to H such that each lit, is a Whitehead map.

There exists a homeomorphism F : lim(B3,H) lim(B3, HO such that

F(lim(Ti,H)) = lim(Ti, liti).

Taking S1 to be the quotient space of [0,1] generated by identifying the

endpoints {0} and {1}, then the restriction of H to 51 is the the function

: Si --+ Si defined by

I2x, if 0 < x <

2 2x, if < x < 1.

which is chaotic.

The set lim(Ti, H) is a local attractor for ft : lim(B3, H) lim(B3, H).

Note that (2) implies that lim(Ti, H) is embedded in lim(B3, H) just as the

standard Whitehead continuum is embedded in B3. Note alse that (3) implies ft

restricted to lim(71, H) is chaotic.

While [Brl, Theorem 3], stated below, supplies us with a homeomorphism

F : lim(B3, H) lim(B3, HO, it does not guarantee that F(lim(Ti, H)) =
HO. This is rectified by proving a generalization of [Brl, Theorem 3] for

inverse sequences of pairs.
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[Big., Theorem 3]. Let XL = lim(Xi, fi) where the Xi are compact

metric spaces. For 2 < i, let Gi be a nonempty collection of maps from Xi into

X1_1. Suppose that for each i > 2 and e > 0 there exists a g E Gi such that

gj < e. Then there is a sequence (gi) where gi E Gi and XL is homeomorphic

to lim(Xi, gi) = Xgo .

The homeomorphism in [Brl, Theorem 3] is defined in [Brl, Theorem 1] and

[Br1, Theorem 2]. For completeness we will state these theorems. The following

technical definitions are needed first:

(1) Let f : X Y be a map, where X and Y are compact metric spaces. Then for

e > 0 define L(e, f) by L(e, f) = Sup{6 < diam(X) : x, y E X and dx(x, y) <

6 implies dy(f(x), f(y)) < el. Since X is compact 0 < L(c, f) diam(X).

(2) Given the inverse sequence (Xi, fi). A sequence (as) of positive real numbers

is a Lebesgue sequence for (Xi, fi) if there is a sequence (bi) of positive real

numbers such that
00

E bi < oo, and
i=1

Whenever x,y E Xi, i < j and di(x,y) < cti, then di(fii(x), fii(y))

<b,.

(3) A sequence (ci) of positive real numbers is a measure for (xi, fi) if

1E ci <
2cn

for n = 1, 2, and
00

i=n+1

For any two distinct points x, x' E lim(Xi, fi) there is an integer n such

that dn-Fi(xn+i, 4+i > en.

We now state [Brl, Theorem 1] and [Br1, Theorem 2].
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[Brl, Theorem 1]. Let Xof = lim(Xi, fi) and Xg = lim(Xi, gi) where the

Xi are compact metric spaces. Suppose lifi+i - gi+111 < ai, i = 1,2, ..., where (at)

is a Lebesgue sequence for (Xi,gi). Then the function FN : XL, > XN defined by

FN = firn gNorn is well-defined and continuous. Moreover the function F : Xf,---)n-oo
Xgo defined by F(x) = (Fi(x),F2(x),...) is well-defined, continuous, and onto.

[Br1, Theorem 2]. Let XL, = lim(Xi,fi) and .7cgo = lim(Xi,gi) where the

Xi are compact metric spaces. Suppose Ilfi gill < min ki_i;
min1

L(ci_i, gk,ii)]k<i-
where (ci) is a measure for (Xi, fi). Then the map F : XL xg described in

[Brl, Theorem 1] is a homeomorphism .

Notation. By the pair (X1, Y) we mean a metric space Xi, equipped with a

metric di, and a closed subset Yi C Xi. By a map fi : (Xi, 1's) (X1_1,11;_/) we

mean a map fi :X -> Xi_1 satisfying f1(Y2) C

Let ((X1, 1), fi) denote the inverse sequence

(xi,yo (IL (X2) Y2) 4 f .-L8-- (X31173)
14

Let (X4,,ydro) denote the inverse limit of the sequence ((Xi, Yi), fi). That is, let xL,

and Yofc, be the inverse limits of the sequences (Xi, fi) and (Yi, filyi ) respectively.

Similarly, define ((Xi,Yi),gi) and (Xgo,Ycgo).

By Lemma 1 and Lemma 2 of [Bri], If the Xi are compact metric spaces

then (Xi, gi) has a Lebesgue sequence (ai) and a measure (ci).

The following theorem is a generalization of [Brl, Theorem 1] .

6.1 Theorem. Let (X 110) = lim((Xi, Yi), fi) and (X go, 171,)

lim((Xi,Yi),gi) where the Xi are compact metric spaces and for all i, Yi is a



closed subset of Xi. Suppose < ai, i = 1,2,3,...; where ai is

a Lebesgue sequence for (Xi,gi). Then the function FN : (Xaf,,Y,;(c) XN de-

fined by FN = Ern gNn7rn is well-defined and continuous. Moreover the function
noo0

F : (XL, Y) (x-go,Kg,o) defined by F(x) = (F1(), F2(.),...) is well-defined,

continuous, onto and F(Y) =Y.

Proof. We only need to show that F(Y) = Kt, since the rest of the proof

is identical to that of [Br1, Theorem 1] . Assume z E (XL, Y10) and zi E Yi for

all i. Clearly F(z) E (X,Yogo). Since gi(Yi) C Y2_1 for all i > 2, it follows that

F2(z) = lim giorn(z) E for all i.

Let w = (wi, w2, w3, ...) E Kt. Fix a positive integer N. We first show that

there exists XN E (XL, Ydro) such that FN(x) = wN. Let e > 0. From the proof

of [Brl, Theorem 1] we have:

lirn ligNifii g Nigiill = 0 and
N<i<i

gNiri converges uniformly to FN as i -4 oo

00

(1), (2) and the fact that E bi <00 imply that there exists an i > N such
i=1

that IIFN gN7r < f, ligNi.fij gNigii < f for all j > i and bi < f. Fix this i.
00

Now, n = iri(Y4). Since yi is compact, there exists a j > i such that

if yi E fii(yi) then there exists xi E r1(Y) such that di(yi, xi) <a2. Hence there

exists x E (XL, Y) where xi E ri(Ydcf,) such that di(fii(wi),ri(x)) < ai. Hence

dN(gNifii(wi), giveri(x)) <b2 < Then dN(FN(.),wN) 5_ dN(FN(),gN1r1(-))

+dN(gNiri(I), gNifij(wj)) yNigij(wj)) = E.

The function FN is continuous and (XL, Y) is compact, hence there exists

xN E (XL, Y) where 41 E Yi for all i> 1 such that FN(xN)= wN. For all N,

FN(xN)= wN implies that Fi(xN)= wi for all i <N.
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Since (XL, Y,) is compact, {xN} has a convergent subsequence. If y is a

limit point of this subsequence then F(y) w. Hence F(Y10) = Kfo.



64

The following three theorems are generalizations of [Brl, Theorem 2], [Brl,

Theorem 3] and [Brl, Theorem 1] respectively. The proofs are identical to those

found in [Br1], hence they are omitted.

6.2 Theorem. Let (X0, Y) = lim((Xi, Yi), fi) and (xgo,Y) =
lim((Xi, Yi), gi) where the Xi are compact metric spaces and for all i, Yi is a closed

subset of Xi. Suppose !IL gill < min [ci_i;
min1

L(ci_i,gk,ii)] where (ci) is
k<i-

a measure for (Xi, ft). Then the map F : (Xi,, Y,) (xgo, Ycgo) described in

Theorem 6.1 is a homeomorphism satisfying F(Y) =Kt.

6.3 Theorem. Let (XL,Yt) = lim((Xi,Yi), fi) where the Xi are compact

metric spaces and for all i, Yi is a closed subset of Xi. For i > 2, let Gi be a

nonempty collection of maps from (X1, Y2) into (Xi--1,Yi-1) Suppose that for each

i > 2 and e > 0 there exists a g E Gi such that II gil < e. Then there is a

sequence (gi) where gi E Gi and a homeomorphism F : (XL,Y) (x-go,yogo)

satisfying F(Y6f3). Y.

6.4 Theorem. Let (XL, Yof,3) = lim((Xi, Yi), fi) where:

For all i, there exists a homeomorphism hi : (X2, Y) (X, Y), where X is a

compact metric space and Y C X is closed such that h2(Y2) = Y, and

For all i, ft is a near homeomorphism.

Then there exists a homeomorphism : (XL, Y) (X, Y) satisfying 0(XL)

c y.



Figure 6.1

Let Di = {(r,19) :0 < r < 7-1 and 0 < 0 < 27r}, 112 = {(r16) :0 < r <
r3 and 0 < 0 < 2r}, and 113 {(r, : 0 < r < rs and 0 < 0 < 27r}. For i 1,2
and 3 let Ti = {R(D1) :0 < < 27r}. For i = 1,2 and 3, the Ti are solid tori with
diameters 2r1, 2r3, and 27.6 respectively satisfying T1 C Int(T2) C Int(T3).

Let Ri = {(x,Y) < x < r2 and r2 < y < r2}, R2 = {(X) y) : <
x < r4 and r4 < y < r4}, and 113 = {(X1 y) : 1 < x < r6 and r6 < y < r6}.
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A point p in the xy-plane is coordinatized using the familiar polar coordinate
system (r, 0). Let R4, be a rotation of the xy-plane through an angle 0 measured
counterclockwise from the positive x-axis about the line x = 1. For any point
p = (r,19) in the xy-plane let R(p) be the image of p under the rotation R. To
be more specific, let 110((x,y, 0)) = ((x + 1) cos 0 1, y, (x + 1) sin 0). Consider
Figure 6.1.



66

For i = 1,2 and 3 let Bi = {R(Ri) : 0 < < 27r}. For i = 1,2 and 3, the Bi are

3-cells satisfying: T1 c Int(Bi), T2 C Int(B2), T3 C Int(B3) and B1 C Int(B2) C

Int(B3).

Let 51 = fRo((0, 0)) : 0 < < 27r}. To simplify notation, we will denote a

point p = R((0, 0)) E SI. by 0* For example, Ro((0,0)) will be denoted by 0*

and R,((0, 0)) will be denoted by 7r*. The set 51 is a circle of radius 1 centered at

the point (-1,0,0). Let 0i for i = 0,1,2, ...,n where n is an even positive

integer.

We now describe a typical Whitehead type of embedding g : 51 T1 where

the image of 51 has a self-linking in T1.

Let g : S1 Ti be the embedding shown in Figure 6.2 and satisfying:

g(4) = 0;`,-2 and g(01) =

For 02 5_ < let g(0*) be in R20(D1) and for 0-1+2 < < On-2 let

g(0*) be in R2c6_20(D1). Note that if 00 < of < (kik and 71); = 0; then

01.2k 01 :5 On and R2eki(D1)= R2q5-20j (D1)

The set {g(0*) On-2 < 0 < on or oo < < 02} is a subset of the plane

P determined by the y-axis and the straight line passing through the points

(0, 0, 0) and On-2

The set {g(0*) : f2 0 (4+2} is a subset of the xz-plane



1

R2 0(1)1)

g((0- 0)*

g(S1)

g(0111)
g(Ø*)

2

Figure 6.2

Extend g to a homeomorphism G : B3 B3 such that:

The set G(Ti) is a solid torus contained in N(g(S1), , ) C Int(71).

G(T2) C Int(T2).

GIB.....B2 = id.

The homeomorphism G can be visualized by the sequence of pictures in
Figure 6.3. Imagine twisting a "flexible" 3-cell B2 in such a way that the boundary

stays fixed and the interior is twisted so that a top view of S1 C Int(B2) goes
through the following stages:

A half twist is introduced.

Another half twist is introduced.

The top loop is folded down over the bottom loop which produces the desired

self-linking.

Plane P

g(O*0)
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Figure 6.3

We now define three pseudo-isotopies 131 ,P12 and Pt and an isotopy 131 of

B3 onto itself. The effects of these maps are represented graphically in Figure 6.4.

The map P11 shrinks the solid torus G(71) to G(S1) leaving G(S1) fixed. The map

/1 "eliminates" the self-linking of G(S1). Note that the number of components of

R(D1) n G(S1) is equal to

/2,

if 02 < 0 < On-2;

if 46 = (ko or 0 = On;

if Oo < 0 < 02 or On_2 < 0 < On.
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to

f2 if < < On;

11, if 0=0o or 0=On.

The map Pt shrinks the torus T1 to its core SI. The map Pf is defined such

that for 00 < < o o o G(0*) is in R24,(Di) and for Oi 5_ 0 5_ On,

o Pj o o G(4)*) is in R20.-20(Di).

0(T1) P(G( ))

Pi

Figure 6.4
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Note also that the number of components of Ro(Di )(In 0/1 o G(S1) is equal

Tj Tj



Defining Pi1 : B3 -4 B3.

Let DI = {(7.,19) : o < r < ri} where r1 < r' < r2. Consider the solid torus

= {R(D) : 0 < q < 271-} satisfying T; C Int(T2) and G(11) C Int(T2). Define

the pseudo-isotopy PI such that Pj is the identity map and PI collapses G(Ti) to

the linked circle G(S1) and is the identity map on B3 G(T11)

To be more precise, consider DI shown in Figure 6.5 and define a pseudo-

isotopy opti B3 7,3Ja as follows:

Figure 6.5

For any point x = (r, 0, 0) E R3 let °Ptl(r, 0,0) = (12,t(r), 8,0) where Rt(r) is

defined as follows:

no(r) = r, and

0, if 0 < r < ri;

Ri(r) = 4L-(r ri), if ri < r < ri;

r, if r > ri.

Hence Rt(r) = (1 t)r t'Tti(r). See Figure 6.6.
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More precisely,

{(1

Or,

124(r) = (1 Or + t

r,

Let °Ptl(r, 0, 0) = Ro(°Pti(r, 0, 0)) for 0o 0 5_ 071.

For 0 <t < 1, °Pt is a homeomorphism of .133 onto itself under which R#(Di)

goes to {(r, I 9 ,): r = (1t)ri } and Ri;15 (DI I nt(M)) goes to {(r, 0 , 95) : (1t)ri
r <r0.

The desired pseudo-isotopy Pt1 is defined by G o 0/3t1 o G1.

Defining Pi! : B3 B3.

Figure 6.6

if 0 <r <

if r1 < r < r1;

if 0 < r < ri.

71

The objective is to pull the linked parts of G(.54) together via a pseudo-isotopy

Pi2 so that .11 (G(4)) = = (0,0,0).



Figure 6.7

Consider a shown in Figure 6.8 and view Ai as a X *11, where J1 = [so, Si]

as seen in Figure 6.7. Note that if x' E G(Si) n A then x' lies in [e, d] x Ji. We

define a pseudo-isotopy Pt of a as follows: Let Po be the identity map and Pi be

the simplicial map which leaves the vertices a, b, c, d fixed and sends e to d.
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Consider the wedge Ai C Int(71), shown in Figure 6.7, whose central plane

Pc is a subset of the plane P. Recall that {g(e) 0n-2 0 < On or 00 0 5_ 02}

is a subset of the plane P. Choose Ai such that G(0*) V Ai for 01 < < On-1

and G(01 E Pc for Oni On or Oo



Figure 6.8

To be more precise, for 0 < a < 1 and 0 < t < 1 define Pt on the line segment

sz by:

Pt[(1 cr)x + ay] = (1 a)x + a [(1 t)y tz], and

Pt{aY + (1 a)zi = a[(1 t)y tzi + (1 a)z.

Note that Pt fixes the boundary of a for all t. Now Pt on a induces a pseudo-

isotopy 1/11 on Ai where 1 II (G(g)) = (0,0,0) and the Pt action is phased out

near the bottom, a x so, and the top, a x si, of Ai so that 1Pi2 fixes Bd(A1).

The pseudo-isotopy 1/1 A Ai can be defined as follows:

Pi(a) X s, if So + e < S <

iPt2(cr x s) = P(8;80)t(0.) X s, if so < s < so +

t(o-) x s, if si < S < Sl

Extend IP? to B3 by setting 'P(x) x for all x E B3 Ai.
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We next consider the wedge 6,2 C Int(71), shown in Figure 6.9, whose central



Define P : B3 -4 B3 by

1

ipt2(x),

pt2(x) = 2pt2(x),

x,

Figure 6.9

In a similar way, construct a pseudo-isotopy 2/3t2 on B3 that is the identity on

B3 - int(6,2) and 2/1(G(04)) = (0,0,0).

if x E Al;

if x E A2;

if x eB3 - U A2).
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plane Pc is a subset of the yz-plane. Note that A2 n ii =-7 (0,0,0). Recall that

{g(e) (4+2} is a subset of the yz-plane. The wedge A2 is chosen

such that G(0*) E Pc for 0i-i < < 041+1 and G(0*) cl 6,2 for 0i-Fi < On

or 00 << -1.

X



Defining P.

The objective is to position IIG(511) in Int(Ti), via the isotopy Pt3, in such

a way that for 00 < < 45.1, PMG(0*) E R20(131) and for 0.3. 5. 0 07z,

PMG(0*) E R2on-20(D1).

Consider C = {R(Di) : 0o < < 04 or 0n-4 < < On}. The set
C c T1 is shown below. Let Sr = {0* : 00 < 0 < 02 or 0n-2 < < On} and
Si = 10* : 023_2 < < 0.1 or 0.1 <4 < (4+21. Note that PG(St) is a subset of
the plane P and IIG(.51) is a subset of the xz-plane.

Let Si = {0* : 00 0 5_ 021, S2 = {0* On-2 00) S3 = 10*
(Ai 2 (A 0i) and 54 = {0* 01 5_ 0 5.. 01+2}

Let gi = PjG11,g2 = Pi2Gls2, 93 = PiG158 and g4 =

Let fi be an embedding of Si into T1 satisfying:

f(S) is a subset of the plane P.

MOO) = MOO) and (0) = 91(0n.

f1(0*) C R20(D1) for co 5_ 0 02.

Let f2 be an embedding of 52 into T1 satisfying:

/2(5'2) is a subset of the plane P.

f2(0) = g2(44,`) and f2(qi-2) =- 92(44/-2)

f2(e) C R20.-20(D1) for On-2

Let h be an embedding of S3 into T1 satisfying:

(1) f3(S3) is a subset of the xz-plane.
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f3(0*I-2) g3(0_2) and f3(01) = 93(01)-

f3(0*) C R20(D1) for .96i-2 0 5.

Let fi be an embedding of S4 into T1 satisfying:

14(54) is a subset of the :ex-plane.

f4(01-+2) = 94(01+2) and f4(01) = 94(01)-

f4(0*) C R2on-20(D1) for On 5_ 0 5. 01+2.

Ropi) R04(D1)Ron 4(Di)

93(S3) 1 , 9.0.1)._,4,
, .

\ f.(s.) ii,.%

( _7,---;
=-._____fks2)1 7 f4(S4) )

_ ..
1.- .ii(s,)

. ............I
-:.:.:

ti 9404) \. ,./92(2) y
Figure 6.10

We now define four isotopies Q1,0,Q7 and Qt from B3 onto itself such that

gi and Q115, = fi for i = 1,2,3, and 4. Also, Q11 = Pi2G(S1 Se) and
is the identity map for all t.

To define Q, consider a 2-cell C2 subset of the plane P and containing gi(Si)

and fi(Si). Choose C2 such that C2 fl 12(52) = C2 n g2(52) = C2 n f3(S3) =
C2 n g3(53) = C2 n14(54) = C2 n g4(54) = G(4). The 2-cell C2 is the shaded
region in Figure 6.10.

Consider the square I x I where I = [-1, 1] shown in Figure 6.11. We will

make use of a theorem of Sch6n flies stating that any two closed simply connected
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Define the maps gii,fii : / by

git(x) =
z±1.

2

fn(x) =

1-x
2

if-1 <x<0;
if 0 <x<1.

if 1 < x < 0;

if 0< x <1.
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regions whose boundaries are simple closed curves can be homeomorphically mapped

onto each other so that the correspondence so determined between their boundaries

is a preassigned one-to-one, continuous one [Sm].

Now, it follows from the Sch5n flies theorem, stated above, that there exists

a homeomorphism h' from the plane P onto itself taking the 2-cell C2 onto the

square I x I such that:

(1) h' 0 gi(e) = gn and hl 0 h(e) = for all 00 (1)

Note that (1) implies that:

ho gi(4) gll(-1) ho fi(4) f(-1) = (-1, 0

h o gi(04) = 911(1) = h 0 ji(0) = fn(1) = (1,0),

h o (0) =911(0) = h 0 fi(0) = fii(0) = (0,A), and

For all ISo < < 02, the points h o g(0*) and h o fi(0*) have the same

x-coordinate. See Figure 6.11.

Note that the homeomorphism h' : P P can be extended to a homeomor-

phism h : R3 = P x Ri R3 P x R1 by letting h(x, r) = (hi(x), r) for all x E P

and r E .



-1

1

Figure 6.11

Now define a pseudo-isotopy °Q1t- from I X I onto itself such that 0QL- is the

identity map and °QI takes gii(x) onto fii(x) for all x E I and °Q1 fixes Bd(I X I)

for all t. To be more precise, 0C/1 can be defined as follows: Consider the line

segment uz in Figure 6.11. For 0 <a < 1 and 0 <t < 1 define °Q1 by:

°Q1 {(1 - a)u av] = (1 - a)u -I- a [(1 - t)v ty]

°Q1 {av + (1 - a)z} = [(1. - t)v ty] + (1- a)z

Note that °Q1 fixes the boundary of Ix I for all t. Let C3 be a 3-cell containing

I x I such that 11-1(C3) C Int(71) and h-1(C3) n /2(3'2) = h-1(C3) n g2(s2) =
h---1(c3) n f3(53) h-1(C3) n 93(S3) h-1(C3) n ms4) = h--1.(c3) n g4(S4) =

(0,0,0).

Let 1(21 be an extension of the isotopy 0Q1 to C3 fixing the boundary of C3.

1
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Now define Ql by o 1Q1 o h. Note that Q1 is the identity map on

B3 - T1 and Ql(gi(0*)) fi(0*) for all 0* E

05 gil

3-7114r7P.-

_0.5



Figure 6.12

Define Pt : B3 -* B3 as follows: For any point x (r, 9,0) E R3 let
Pi4(r, 0,0) = (Ri(r), 0,0) where Ri(r) is defined by

(1 t)r,

t[r ( -1=1- )r],
Tzt

r5
I
(r1 r3)]-r3

Let Pt (r , 0 , 0) = Ro(Pt (r, 0 ,0)) for

if 0 < r < ri;

if r1 <r < r3;

if r3 <r < r5;

if r > r5.
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In a similar fashion, define the isotopies Q, QL and Q. Now define the
isotopy Pf : B3 -+ B3 byPf=QoQoQoQ.

Defining Pt : B3 -4 B3.

The objective is to define a pseudo-isotopy Pt such that P,1 is the identity

map and Pt collapses T1 onto its core 51 and at the same time collapses 7'2 onto

T1 fixing the boundary of T3.

Consider D3 shown in Figure 6.12.



80

For 0 <t < 1., Pt is a homeomorphism of B3 onto itself under which R(D1)

goes to { (r, 0, (1)) : r = (1 and {(r, 0,0) : ri 5_ r 5_ r5} goes to {(r, 61,)

(1 t)ri < r < r5}. In addition, Pt satisfies the conditions:

Pt (T2) =

Pia = id.1133-Int(ra)

If 4* E 51 then /1,k(DO C (P14)-1(0*).

For every point (r,8, 0) E Int(T3) there exists an integer n > 0 such that

(Pt)'(r, 0, ck) ES'

Define H : B3 B3 by H = P o Pf o .13? o o G. The map H satisfies the

following properties:

The homeomorphisms H : B3 B3 where Ht = Pt o oPi2 o Pti o G and t E

[0,1) converge uniformly to H as t 1. Hence H is a near homeomorphism.

H(T2)

H(Ti) = S1

For every (r, 9,0) E Int(T3) there exists an integer n > 0 such that
Hn ((r, 9, 0)) E 51. Hence n (Int(T3)) = .

n >0

HIBd(133) id.

Note that 71 is a closed subset of B3 H(Ti) C Ti and Hi(Ti) C Ti for all t E

[0, 1]. It follows from Theorem 6.3 that there is a sequence H8, i = 1, 2, ..., Hti E
{Ht : t , and n E {1, 2, ...}} and a homeomorphism F: lim((B3, H)
lim((B3 , H) such that F(lim(Ti H)) = , Hti ).



T1

IHt,

11,2

(Ti ) 4-- Hi, H t2(T1) Ht,Hi, . Hti(Ti)
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Let K = lim(71,H) and W = lim(71,Hti). By Theorem 6.4, there is a
homeomorphism : lim((B3,T1),H) (B3, Ti).

Now, consider the following diagram:

T1
Ht 8

IHtjHt2

i=1
00

This diagram defines a homeomorphism h : W --+ Hence

W is a standard Whitehead continuum (one with self-linking). Since F
lim((B3, 1/) --+ lim((B3, ), HO takes K = , H) onto W = , Ht;

K is embedded in B3 just as W is.

let h be the restriction of H to S' where 51 is the core of T,. Note that h
is just the tent map on S1. That is, considering 51 as the quotient space of [0,1]

resulting from identifying the end points {0} and {1} then

2x, if 0 < x <
h(x) =

2 2x, if < x < 1.

Now, consider the following diagram:

lim(S1,h) lim((B3, H) B3

th =4)1?4,

lim(S1,h) lim((B3, 2--1% B3

Claim: K = lim(Ti,H) is a local attractor for ft : lim((B3, 71),H)

lim((B3,T1),H).



lim(Si, H)

Since H (S1) = S1, then -H(K) = K.

Let U = {(x1,x2, .) E lim((B3,7i),H) : xi E Int(T2)} 71--1 (1-1/i(72))

Clearly, U is open in lim((B3, T1), H) and K C U. Now if z = (x1, x2, . . .) E U,

then iln(z) = (Hn (xi), Hn (x2), . .) K as n oo.

Since H (T2) = T1, we have fl(U) C rTi(Ti) and hence .c/(U)

rr1(71) C rri(T2) = U. Therefore C/(ii(U)) C U.

It follows from Theorems 2.6.1,2.6.2 and 2.4.4 that it = lim(S1,h) +
(51 ,h) is chaotic. Hence K n n (U)is a local chaotic attractor for ft

n>0
11111(P3, TO, H) lim((B3, TO, H).

Let A = (I)(K) = n ((U)). Since is topologically conjugate to
n>0

qf14(K), then 01)(K) is a local chaotic attractor for W.
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To prove the claim, first note that since H(Ti) = S', it follows from the
following diagram that K = H) = lim(S1, h).

Ti 4-- 71 4-- T1



T. Generalizations

Recall that we are studying the following problem: Given a topological space

X, is there a map F: R3 R3 such that X is an attractor for F?

In Chapter 6, we showed that the Whitehead continuum can be embedded

in R3 as a local chaotic attractor. In this chapter, we define two infinite classes

of continua, W = {W(n, m) : n > 1, m > 11 and /C = Lifn : n > 21 to which

the construction in Chapter 6 generalizes. Each of these continua is defined as the

intersection of a nested sequence of solid tori. These continua have an important

feature in common with the Whitehead continuum, namely the self-linking.

Defining W.

Let To be a solid torus in the interior of a 3-cell B3. For all integers n > 1,

in > 1, let Grim : B3 B3 be a homeomorphism such that T1= Gnm(TO) C /nt(To)

is a solid torus which wraps around To n-times in clockwise direction, then it self-

links, and finally it wraps around To m-times in counterclockwise direction as shown

in Figure 7.1.

For all integers, n > 1 and m > 1, let W(n,m) = GL(T0). The continua
k>0

W(n,m) can be embedded in R3 as local chaotic attractors.
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W(1, 1)

W(2, 2)

Figure 7.1

Shown in Figure 7.1 are the first stages in the construction of

W(1,1), W(1,2), W(2,1), W(2,2), and W(3, 3). The solid torus T1 is not shown

in its entirety, only its core is shown.

As we have done in Chapter 6, after a few pseudo-isotopies (eliminating the

self-intersection), the homeomorphism Gnm is transformed into a near homeomor-

phism : B3 -4 B3 such that the restriction of to Sl, the core of To, is the

map : S1 51 such that W(n,m) =

W(3, 3)
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fli
AN

f 12

Figure 7.2

Shown in Figure 7.2 are the maps f f fj 11) j 12, J21) Jf22) and 133. Here S1 is viewed

as the quotient space of the interval [0, 1] resulting from identifying the end points

{0} and {1}.

For n > 1 and m > 1, the map fn, : S-4 Si has the following property: If

C 51 with nonempty interior, there exists an integer N such that fif,(J) = S1

for all integers k > N. Hence by Theorem 2.6.1, Lkim is transitive for every k > 0.

Clearly, Lint has periodic points, hence Theorem 2.6.2 implies that is chaotic.

Defining C.

For all integers n > 2, let Qn : B3 B3 be a homeomorphism such

that T1 = Q(T0) is embedded in Int(To) as shown in Figure 7.3. Shown in

Figure 7.3 are the cores of Q2(T0) for i = 2, 3, ... , 7. The images of To under Qn

/A
f21

f33
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for n > 7 are not shown, but can be drawn by noticing the pattern developing in

C22(T0),Q3(T0), ,Q7(To).

K5

Figure 7.3

Let K. =fl Q(To) for n > 2. The continua K. can be embedded in R3 as
k>0

chaotic local attractors.

Again, as we have done in Chapter 6, after a few pseudo-isotopies (elimi-

nating the self-intersection), the homeomorphism Q,z is transformed into a near

homeomorphism H : B3 -4 B3 such that the restriction of II. to the core of

To, is the map h. :51 ---+ S1 such that K. = 1im(S1, h.).



h3

h6

Figure 7.4

Shown in Figure 7.4 are the maps hi for i = 1, 2, ... , 7. Here 51 is viewed

as the quotient space of the interval [0,1] resulting from identifying the end points

{0} and {1}. The maps h.: 51 S1 are chaotic by Theorems 2.6.1 and 2.6.2.

The continua K. lim(S1, h.) fs_d lim(/, h.). It follows from [W] that K. is

homeomorphic to Km if and only if n and m have the same prime factors.

h4
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