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ALGORITHMS FOR THE SOLUTION OF TWO ALGEBRAIC 
EQUATIONS IN TWO UNKNOWNS 

CHAPTER I 

INTRODUCTION 

Algorithms for machine solution of systems of equations of 

degree one have been in use for many years. In this paper the 

author develops algorithms for the machine solution of two equations 

in two unknowns of degrees n and s, respectively, in the variable x 

with coefficients which are polynomials in y. 

Consider two polynomial equations in x and y of the form 

f (x, y) = 

n 

i=0 

g(x,y) = 

s 

a.(y)x1=0 

bi (y)xl= 0 

i=0 

where ai(y) and b. (y) are polynomials in y. We may separate vari- 

ables by use of Sylvester's method of elimination which yields the 

following determinantal equation: 



A= 

a 

0 

bs bs-1 

n-2 0 

a () an-1 an-2 a0 
1 0 

0 bs bs-1 

n an-1 3n-2 

0 a a < 
n n-1 n-2 

0 

0 h h 
s s-1 

This may be written in the form 
r 

c.y i = 0, 

i.=0 

where 

0 

a1 

l 

S rows 

=0. (1) 

71 rows 

(2) 

r < s (max degree a.) + n (max degree b.). The equation (1) has a set 
i i i 

J 

of solutions al, a2, a3, ... , ar, provided that (1) is not an identity. 

The case that (1) is an identity will not be considered in this paper. 

The following theorem may be proven. 

I Theorem: If not both a (a,) and b (a.) are zero, then f(x, a,) and n i s 1 i g(x, ai ) have a common root. 

a 
n an-1 

an . 

0 . . a0 

a 

. . . hi -.3 

... bl h0 

i 

2 

0 

. 

01 
0 

. . . . . 

. 
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This is a well -known result from the standard theory of equations. 

It is the purpose of this paper to show a recursive procedure 

for the evaluation of the determinant A. 

For convenience we may write the right hand side of (1) as 

a . 0 am+lam 0 0 

0 an an-lan-2 ° am+lam 0° .0 

0 0 an an-lari-2 am+1am (3) 

bs bs-1 bk+lbk 0 0 

0 bs bs-1 bk+lbk 0 0 

0 bs bs-1 ` bk+lbk 

Concerning the determinant (3) we may state the following theorems: 

II Theorem: The eliminant (3) may be reduced recursively in such a 
manner that the eliminant is equal to the product of one of the ele- 
ments: an(y), bk(y), am(y) or bs(y) and an eliminant of lower order 

whose elements are rational functions of the elements of the original 
eliminant and hence rational functions of y provided that n -m and s -k 
are both greater than one. 

an-lan-2 
l 2 

. 

. 

. . 

s 

. 

. 

0 

. 

. 

. 

s 
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III Theorem: In case n -m or s -k is one, the recursion is defined and 
the eliminant is the product of a rational function and diagonal deter- 
minant whose non -zero elements are all the same rational function. 

The proofs of theorems II and III are specific as to the 

means of reduction and the theorems will be restated as theorems 

IV and V in Chapter II incorporating the means of reduction in 

their statements. Algorithms based on theorems IV and V are given 

in Chapter III. 



CHAPTER II 

RECURSION FOR SYLVESTER' S DETERMINANT 

Consider the following determinant: 

s - k 
rows 

h - m 
rows 

an an-la lan-2 ' ' am+lam O 

0 an a a 
n n-1 n- 2 

0 

am+lam 0. 0 

5 

0 0 an an- lan-2 am+lam (4Ì 

bs bs-1 bk+lbk 0 0 

0 b bs-1 bk+lbk 0 

0 0 bs bs-1 bk+lbk 

If m = 0 and k = 0, then the determinant (4) is Sylvester's eliminant 

as described in part one. Let m and k be arbitrary integers such 

that 

0 <m <, and 0 <k <s. 
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Let the following equalities hold: 

u =n, v= s, p =m, q =k. 

One and only one of the following elementary transformations, is de- 

fined on the determinant (4). 

Case I: a 0 andu - p -q. Let 
u 

a.b v 
b v+i-u = v+i-u au 

In the determinant (4), replace b by b' v +i -u v +i -u for i = p, p + 1, 

p + 2, ... , u in every row containing b Expand the determi- 
v +i ` -u 

nant (4) by the element au in the left most column and redefine the 

determinant (4) to be the remaining determinant. Replace the value 

of v by the value of v - 1. 

Case II: au - 0, u - p v - q, and by O. Expand the determi- 

nant (4) by the element by in the left most column and redefine the 

determinant (4) to be the remaining determinant. Replace the value 

of u by the value of u - 1. 

Case III: bq 0 andu - p >v - q. Let 

b.a lp 
a' p+i-g - ap-Pi-q - bq 

i 

< 

4 
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In the determinant (4) replace a by a' for i = q, q + 1, 
p +i -q p+1-q 

, v in every row containing ap 
+1 

Expand the determinant (4) 

by the element b in the right most column and redefine (4) to be the 
q 

remaining determinant. Replace the value of p by the value of p + 1. 

Case IV. bq 0, u -p > v -q, and a *O. Expandbythe element apin 
q p P 

the right most column and redefine the determinant (4) to be the re- 

maining determinant. Replace the value of q by the value of q + 1. 

Case V: If both au and by (or, a and bq) are identically zero, then 

the algorithms developed in this paper do not apply, this yielding the 

excluded case of chapter one. 

IV Theorem: If n - m and s - k are greater than one, then the trans- 

formed determinant defined by the operations I through IV is of the 

same form as the determinant (4). Thus the determinant (4) is eval- 

uated as the product of a rational function of y and a transformed de- 

terminant which is also an eliminant. 

Proof: The determinant (4) has two sets of elements a. (i =m, m +l, i 

, n) and bj(j =k, k +l, . 

J 
, s), which are arranged in the form of 

Sylvester's eliminant and satisfy the relations: 

1) the number of rows containing a. is equal to s - k. 

2) the number of rows containing b. is equal to n - m. 

... 

... 

J 
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I: Assume n - m <.s -.k and an O. Case I applies. If bs +i -n is 

replaced by bs +i -n in the determinant (4), the following determinant 

results: 

an an-1 . . . am 

0 an an-1 . . am 

0 an an-1 > . a m 

0 b's_1. s-1 . . bk+1bk 

0 0 b's-1. . bk+lbk 

0 0 b 's - 1 b 
'k+lb 'k 

The minor of the element an in the left most column is: 
n 



an a 
n-1 

. . a m 

0 a a . a 
n n-1 m 

b s-1. . 

b' s-1 

0 a a . a 
n n-1 m 

b' b' k+l k 

b' b' k+l k 

(5) 

The determinant (5) has two sets of elements a. (i =m, m +1, . ,n) i 

and b'. (j =k, k +l, . , s -1) which are arranged in the form of 

Sylvester's eliminant. 

The number of rows containing ai (i= m, m +l, 

9 

,n) is reduced 

by one. The number of rows containing b!(j= k,k +1, . , s -1) is un- 

changed. Thus we have the relations: 

1) the number of rows containing a. equals s -1 -k. 

2) the number of rows containing b'. equals n -m. 
J 

Thus (5) has the form of (4). 

II: Assume n- m(s -k, a = 0 and b 
s * O. Case II applies. Expand- 

ing (4) by the element b 
s 

in the left most column the following 

determinant results: 

. 

. . 

. 

. 

n 
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an- a 
1 n-2 a m 

0 an- 
1 
a n-2 . a 

an-la n-2 a m 
(6) 

b bs-1 k+lbk 

0 bs bs-1 bk+lbk 

0 bs bs-1 . 
° bk+lbk 

The number of rows containing a, (i =n- l,n -2, , .. , m) is unchanged 

and is equal to s -k. The number of rows containing b,(j =k, k +1, 

. , s) has been reduced by one and is therefore equal to n -1 -m. 

The determinant (6) has the same form as (4). 

III: Assume n - m)s - k and bk O. Case III applies. If am 
+i -k 

his replaced by a' -k the following determinant results: 

. 

m 

. 

. 

. 

is 
m +i 

. 



a' a' . . a' a 0 
n n-1 m+l 

0 a'n a' n-1 ° 

.. a m+1 0 

a' a' n n-1° . 

bs bs-1 
° bk+lbk 

0 bs bs-1 . . bk+lbk 

a' 0 
m+1 

b b . . . b b 
s s-1 k+l k 

11 

(7) 

Expanding (7) by the element bk in the right most column the fol- 

lowing determinant results: 

a' a' . . . am+1 n 1 m+l 

0 an a'n- 1 ° ° am+l 

' a' a' an an- 1 
° . . am+1 

bs bs-1 ' bk+lbk 

0 bs bs-1 . . bk+lbk 

bs bs-1 . bk+lbk 

(8) 

. 

n 
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This determinant has two sets of elements, a.' (i =m +1, ... , n) 

and b.(j =k, ... , s) arranged in the form of Sylvester's eliminant. 

The number of rows containing a'(i= m +1,m +2,..., n)is equal to s -k. 

The number of rows containing b, has been reduced by one. There- 

fore the number of rows containing b. is equal to n -m- 1. The deter- 
minant (8) is of the same form as the determinant (4). 

IV: Assume n- mjs -k, bk= 0, and am* O. Case IV applies. 

Expanding by the element a in the right most column of the m 

determinant (4) the following determinant results: 

an . a n n-1 m 

0 a a . a n n-1 m 

n an-1 . . . am 

b' b' b' b' s s-1 k+2 k+1 

' ' ' 0 bs bs-l' bk=2bk+1 

b' b' . . b' b' s s-1 k+2 k+1 

(9) 

a 

m 

. 

. 

J 

i 

) 

) 

. 
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This determinant has two sets of elements a. (i =m, m + 1 , n) 
1 

and b. (j =k +1, k + 2, . . , s) arranged in the form of Sylvester's 

eliminant. The number of rows containing b. is equal to n -m. 

The number of rows containing a. is reduced by one. Therefore 

the number of rows containing a. is equal to s - k - 1. The determi- i 

nant (9) is of the same form as (4) 

This completes the proof of theorem IV. The following exam- 

ples are included to illustrate each of the four cases and the applica- 

tion of the procedure to an actual problem. 

Example I: 

A a0 0 

O a2 al 

b2 hl b0 

0 b2 h h 

0 

=D 

Case I applies giving the following expansion: 

D =a2 b 

a2 

h2a1 
0 

b 
1 

al 

a2a0 

b 
0 

a0 

0 

2a0 
0 

a2 

h2a1 
a2 a2 

... , 

0 

- a2 

1 

J 



Example II: 

0 al a0 0 

0 0 a0 

b2 b1 b0 0 

0 b2 b1 b0 

Case II applies giving the following expansion: 

D = b2 

a0 0 

a0 

b2 b1 b0 

Example III: 

a3 a2 al a0 

b1 b0 0 0 

D = 

0 b1 b0 0 

0 0 b1 b0 

Case III applies giving the following expansion:, 

D = b0 

b1a0 

a3 a2 a1 
- 

b0 

b1 b0 0 

0 b1 b0 

14 

al 

a1 

0 al 

y 
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Example IV: 

a3 a2 al a0 

bl 0 0 0 

D = 

0 b 0 0 

0 0 bl 0 

Case IV applies giving the following expansion: 

D = a0 

bl 

0 

0 

0 

b 

0 

0 

0 

b 
1 

Example V: 

Consider the set of equations in two unknowns: 

(yfl)x2 f yx f 1=0 

yx2 f (yf2)x f y = 0 . 

yf1 y 1 0 

0 yfl y 1 

=0. 

Y y+2 y 0 

0 y y+2 y 



Y+1 

Y+1 

Y+1 Y 

p 

1 

Y+1 

p 

y 

Y+2-Y2 

p 
Y+1 

Y - 

p 

Y+1 

Y+2 _ _Y2 

Y 

Y+1 

3y+2, 
Y+1 

Y 3Y+2 

=Y+1 3Y+2 

Y2 

Y+1 

2 

. p 

Y+1 

'(Y+1)( 
Y) 

Y+1 

' (Y+1) (y_ 
Y+1 ) 

o 

1 

o 

Y+1 
y `y 

Y+1 

Y+1 
3 

_"'-- 3 
Y2 

3-Y-+2 

Y+1 

2 
Y 

Y+1 

Y+1 

3 

!3- Y-2 
2 

p 
2 

Y+1 

(y3 2)(2) 
y (Y+1) 2 

o 

p 

1 

o 

2 
Y 
Y+1 

16 

'Y+1 
3Y+Z 
Y+1 

0 

2 

1 
- 

3Y+? 
Y+1 

2` 

2 
Y 
Y+1 

Y 

ÿ 

Y 
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(Y+1) 
` y I y5+y4- (y3-3y-2)(3y +2) _(y"+1) 

y+1 y+l) i 2 2 
-' - y (y+1) 

= (Y+1 ) 

2 

° ̂ 1(y+1 ) 5----2y`l°2y3+9yL+12y+41 y'rl i 4 3 2 
y - 2y T 

4 3 2 
= y -3y +y + 8y +4. 

V Theorem: The recursive procedure defined by the operations 1 

through IV will reduce Sylvester's eliminant to the form: 

c 0 . . 0 

0 c 0 0 0 

R(y) 0 0 c 0 , 0 
f t rows 

0 c 

Where R(y) is the product of rational functions of y, c is a rational 

function of y, and: 

1 : t < n +s. 

Proof: The procedure defined by the operations I through IV may be 

applied recursively to Sylvester's eliminant until either u -p = 0 or 

v-q = O. 

Let u -p = O. Using the relations 1) and 2) in theorem IV, the 

I 

y 

"\ 

J, 

J 

. . . 



remaining determinant contains b' = q, q+1, ... , v) in none 

of its rows and contains a'i (i = p = u) in v - q of its rows. 

Therefore Sylvester' s eliminant is equal to: 

R(y) 

a' u 

0 

0 

0 

0 

a' 
u 

0 

0 . . 

0 . . 

a'. 
u 

a' u 

= R(y) (a' )v-ci 
u 

} 
v -q rows 

Let v -q = O. The remaining determinant contains a' 
i 

(i =p, p-fl, . 

18 

u) in none of its rows and contains b! (j = v =q;) 

in u - p of its rows. Therefore Sylvester's eliminant is equal to: 

b' 
v 

0 0 . . 0 

0 b' 
v 

0 . . 0 

R(y) 0 0 b' . . 

v 
0 

0 b' 
x 

= R(y) (ID' )u-p. 

u -p rows 

i 
(i 

. . 

0 

0 

J 

0 

. 

. 

} 
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CHAPTER III 

ALGORITHMS 

In chapter II a recursive procedure for the reduction of 

Sylvester's eliminant is developed. The present chapter describes 

this procedure along with all the necessary supporting procedures in 

algorithmic form. The language used in this description is ALGOL 

60. 

From the examples in the preceding chapter the elements in the 

eliminant during the reduction are in general the quotient of two 

polynomials. The element ai(i = 0, 1, 2, . 

its full form as: 

n) may be written in 

t-1 
a. ailty ilt - 1 

y+ a y + . . + ai y + . a. ll i 1 0 

u u-1 1 

ai2uy + ai2u- ly + . . . + ai21y + ai20 

The coefficients a, are in general rational numbers and must be iuj 

stored as ordered pairs of integers. In the following procedure the 

coefficients of the sequence of elements a. (i = 0, 1, 2, ... , n) are 

stored in the four dimensional array A[ 0:n, 1:2, 0:r, 1:2] where the 

first subscript with values 0 to n refers to the element of the sequence 

a. (i = 0, 1, 2, . i , n); the second subscript with values 1 and 2 

refers respectively to numerator and denominator of the rational 

, 

t 1 

= 
i 

. 
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polynomial a.; the third subscript with values 0 to r refers to the co- 

efficient a. of the polynomial; and the fourth subscript with values 
it j- 

1 and 2 refers to the elements of the ordered pair a.. The coeffi- 
i 

cients of the elements b. (j = 0, 1, 2, . . , s) are stored in the array 

B[ 0:s, 1:2, 0:r, 1:2]. The subscript bound r is less than: 

s (max degree a.) + n (max degree b.). As the reduction 
J 

of the eliminant proceeds the storage arrays A and B are used to 

store the new elements of the reduced eliminant and r must be chosen 

to accommodate this storage. 

Each of these polynomials has its own respective degree. The 

degree of the polynomials whose coefficients are stored in the array 

A are stored in the two dimensional array V[ 0:n, 1:2]. Thus the value 

V[ i, 1 ] is the degree of the polynomial in the numerator of the quo- 

tient a. above. The degree of the polynomial whose coefficients are 

stored in the array B are stored similarly in the array W[ 0:s, 1:2] . 

During the procedure various polynomials are stored in the four 

dimensional arrays C[ 1 :1, 1:2, 0:r, 1:2], D[ 0:m, 1:2, 0:r, 1 :2] and 

R[ 0:n +s, 1:2, 0:r, 1:2] where m is the greatest of n or s in the original 

set of equations. Degree storage for these arrays is in the integer 

arrays X[i :i, 1:2], Y[0:m, 1:2], Z[0:n =s, 1:2], respectively. 

The procedure is written assuming that when the polynomials 

f(x, y) and g(x, y) are written as polynomials in x, the 

i 

' 

1 . 

J 
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coefficients of each equation are of the form 

q 

ai y . 

1=0 

procedure Sylvester (A, B, n, s, r): 

integer n, s, r; 

integer array A, B; 

begin 

integer m; 

if n > s then m := n else m := s; 

begin 

integer i, j, p, q, t, u, v; 

integer array C [1:1, 1:2, 0:r, 1:2]; 

D [0:m, 1:2, 0:r, 1:2); 

R [O:n +s, 1:2, 0:r, 1:2] ; 

V [0:n, 1:21 

W [0:s, 1:21 

X [1:1, 1:2J=; 

Y [0:m, 1:2j; 

Z [0:n+s, 1:2]; 

Boolean x; 

comment The arrays declared above correspond to the following 

i 

o 

- 
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storage. 
V .. degree storage for A 

W .. degree storage for B 

C .. storage for polynomials, X degree storage for C 

D .. storage for polynomials Y .. degree storage for D 

R .. storage for polynomials Z .. degree storage for R; 

procedure rat mult (I, i, L, J, j, M, K, k, n); 

comment I is a formal parameter corresponding to an 

array for storage of polynomials. i corresponds to the subscript of 

the element in the array I. L is a formal parameter corresponding to 

an array for the storage of the degree of the polynomial referred to 

by I and the subscript i. Similarly for the sets of three J. j, M and 

K, k, n. I and J refer to the polynomials being multiplied and K to 

the product; 

integer i, j, k ; 

array I, J, K, L, M, N ; 

begin 

mult (I, i, 1,L, J, j, 1, M, K, k, 1, N); 

mult (I, i, 2, L, J, j, 2, M, K, k, 2, N); 

corn fact (K, k, 1, N, K, k, 2, N); 

N[k, 1]:= L[i, 1] +M[j, 1]; 

N[K, 2]:= L[i, 2] + M[j, 2]; 

end rat mult; 

.. 
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procedure rat div (I, i, L, J, j, M, K, k, N); 

comment The correspondence between actual and formal 

parameter in this procedure declaration is identical to that of the 

procedure rat mult. The sets of three I, i, L; J, j, M; and K, k, N 

refer to dividend, divisor, and quotient respectively; 

integer i, j, k; 

array I, J, K; 

integer array L, M, N; 

begin 

mult (I, i, 1, L, J, j, 2, M, K, k, 1, N); 

mult (I, i, 2, L, J, j, 1, M, K, k, 2, N); 

corn fact (K, k, 1, N. K, k, 2, N); 

N[k, 1]:= L[i, 1] + M[j, 2]; 

N[k, 2]:= L[i, 2] + M[j, 1]; 

end rat div; 

procedure rat sub (I, i, L, J, j, M); 

comment This procedure subtracts the polynomial element with 

subscript value corresponding to j which is stored in the array cor- 

responding to the formal parameter J from the polynomial element 

with subscript value corresponding to i which is stored in the array 

corresponding to the formal parameter I and stores the result in the 

array corresponding to the formal parameter I and giving it the 
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subscript value corresponding to i. The value for the degree stored 

in the array corresponding to the formal parameter L is corrected. 

a1 /a2 - = (alb2 - bla2)/a2b2 

Let I and J correspond to storage for a. /a2 and bl /b2 respectively. 

In this procedure the polynomial product a1b2 is stored in the array I 

with subscript value corresponding to i. 
a2b1 

is stored in the array 

C (declared at the beginning of the procedure Sylvester) since the 

storage corresponding to the array J must be left unchanged. Then 

the operation alb2 - a2b1 is carried out; 

integer i, j; 

array I, J; 

integer array L, M; 

begin 

mult (I, i, 1, L, J, j, 2, M, I, i, 1, L); 

mult (I, i, 2, L, J, j, 1, M, C, 1, 1, V); 

sub (I, i, 1, L, C, 1, 1, V); 

mult (I, i, 2, J, j, 2, M, I, i, 2, L); 

corn fact (I, i, 1, L, I, i, 2, L); 

end rat sub; 

comment The procedures mult, sub corn fact, and degree 

operate on polynomials of the form: 

1 
b /b2 
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u 

a[1] y i 

i=0 

as opposed to the procedures above which are defined for the 

quotient of two such polynomials; 

procedure mult (I, i, u, L, J, j, v, M, K, k, w, N); 

comment I corresponds to an array for the storage of poly- 

nomials. i corresponds to the value of a subscript of a polynomial 

element stored in that array. u corresponds a real parameter 

which may have value 1 or 2 as to numerator or denominator of the 

polynomial referred to by the array and value corresponding to I and 

i. L corresponds to an array for degree storage for this polynomial. 

The correspondence in the parameter list for the sets of four J, j, v, 

M and K, k, w, N is the same. I, J, and K correspond to arrays which 

contain the two polynomials multiplied and the product respectively. 

integer i, j, k, u, v, w; 

array I, j, K; 

integer array L, M, N; 

begin 

integer array H[ O:r, 1,2]; 

integer m, t, a, e, f; 

a:= L[i,u]; 

N[k, w] := a + M[ j, v]; 
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for m: = 0 step 1 until r do 

begin 

for t : = 1, 2, do 

H[m,t] := 0; 

end 

for m := 0 step 1 until M[ j, v]do 

begin 

for t := 0 step 1 until a do 

begin 

e := I[ i, u, t, 1] X J[j,v,rn, 1]; 

f := I[ i, u, t, 2] X J[ j, v, m, 2]; 

e := e X H[m+t, 2] + f X H[m+t, 1]; 

f := f X H[m+t, 2]; 

if e > f then C. F. (e, f) else C. F. (f, e); 

H[m+t, 1] := e 

H[m+t, 2] := f 

end 

end 

form := 0 step 1 until N[k, w]do 

begin 

for t := 1, 2 do 

K[k,vr,m,t] .= H[m,t]; 
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end 

end mult; 

procedure sub (I, i, u, L, J, j, v, M); 

comment I corresponds to an actual array for the storage of 

polynomials, i to and integer parameter whose value is the subscript 

of the polynomial, u corresponds to a parameter which may have 

values 1 or 2 as to numerator or denominator of the polynomial ele- 

ment referred to by the correspondents of I and i. J, j, v, M corres- 

pond to actual parameters in the same way. The polynomial stored 

in the array corresponding to J with subscript values corresponding 

to j and v is subtracted from the polynomial stored in the array cor- 

responding to I with subscript values i and u and the result is stored 

in the array corresponding to I and is given the subscript values i and 

u. L and M correspond to degree storage and the value stored in the 

array corresponding to L is corrected before exit from the procedure; 

integer i, j, u, v; 

integer array I, J, L, M; 

begin 

integer m, t, r, e, f; 

if L[ i, u] > M[ j, v] then rn := Lk, u] else m := M[ j, v]; 

fort := L[i, u] + 1 step 1 until m do 

I[ i, u, t, 1] := 0; 
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for t := M[ j, v] + 1 step 1 until m do 

J[ j, v, t, 1] := 0; 

for t := 0 step 1 until m do 

begin 

e :=I[ì.,u,t,l] X J[ j, v, t, 2] - I[i,u,t,2]X J[j,v,t,1]; 

f := I[i,u,t,2] X J[ j, v, t, 2]; 

if e >f then C. F. (e, f) else C. F. (f, e); 

I[ i, u, t, 1] .= e; 

I[ i, u, t, 2] .= f; 

if e 0 then r := t; 

end 

L[ i, u] := r; 

procedure corn fact (I, i, u, L, J, j, v, M); 

comment Correspondence between the sets of formal parame- 

ters I, i, u, L and J, j, v, M is the same as described in the procedures 

must and sub. This procedure finds any common factors of the poly- 

nomials stored in the arrays corresponding to i, u and j, v. Let a 

and b represent the polynomials stored in the arrays corresponding 

to I and J respectively. Let c be the common factor. 

a= c 

= c b' 

the common factor c is removed and a' and b' are stored in arrays 

# 

b 



corresponding to I and J in respective order. 

integer i, j, u, v; 

array I, J; 

integer L, M; 

begin 

integer m, r, s, t; 

array E[0: L[ i, u] +M[j,v], 1:2], 

F[0: L[i,u] +M[j,v], 1:2], 

G[0: L[i,u] + M[ j, v], 1:2], 

I-í[0: L[ u] +M[j,v], 1:2]; 

L[i,u]; 

s := M[ j, v]; 

if ni >s then go to Hl; 

fort := 0 step 1 until ni do 

begin 

E[t, 1] := I[i, u,t, 1]; 

r/ [ t , 2] := I[i, u, t, 2]; 

end 

fort := 0 step 1 until s do 

begin 

F[t, 1] :=J[j,v,t, 1]; 

F[t, 2] :=J[j,v,t,2]; 

29 

m := 
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end 

go to HZ; 

Hl: for t := 0 step 1 until m do 

begin 

F [t, 1.1 := I[ i, u, t, 11 ; 

F [t,2] := 1[i,u,t,2]; 

end 

s : =m; 

m := M[ j, v]; 

for t := 0 step 1 until m do 

begin 

E[t, 1] := J[j,v,t, 1]; 

E[t, 2] := J[ j, v, t, 2]; 

end 

comment This procedure is based on Euclid's algorithm for 

finding common factors. Let a and b represent the two given poly- 

nomials; also let r[i ] and q[ i] be polynomials. Assume the degree 

of the polynomial a is less than that of b. 
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b = a q[1] +r[1] 

a = r[i]q[2] + r[2] 

r[1] = r[l]q[3] +r[3] 

(1 

(2 

(3 

r[n-1] = r[n]q[n+1] + r[n+1] (n 

r[n] = r[n+1]q[n+2] (n+1 

r[n +1] is the common divisor of a and b. The condition that the de- 

gree of the polynomial represented by a be less than that of the poly- 

nomial represented by b is satisfied by the if statements above. The 

following statements carry out the steps (1 through (n +1 stopping when 

the remainder r[n +2] = 0 is reached. 

These steps may be accomplished recursively in the following man- 

ner. After step (1 denote the polynomial a by the name b and the 

polynomial r[ 1 ] by the name a. Divide the polynomial b by the poly- 

nomial a giving the remainder r[2]. After step i which yields the re- 

mainder r [ i] , denote r[i -1] by the name b and r[i] by the name a. 

Carry out the division above. Note that the actual parameters G and t 

are not used after the call in this case. 

H2: div (F, s, E, m, G, t, H, r ); 

if H[ 0, 1] = OA v = 0 then go to H3; 

fort := O step 1 until m do 
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begin 

F[t, 1] := E[t, 1]; 

F[t, 2] := E[t, 2]; 

end 

for t := 0 step 1 until r do 

begin 

E[t, 1 ] := H[t, 1]; 

E[t, 2] := H[t, 2]; 

end 

s ::= m; 

m : =r; 

go to H2; 

comment The following procedures divide out the common fac- 

tors and correct the degree storage. On entrance through the label 

H3 the common factor is stored in the array E; 

fort := 0 step 1 until s do 

H3: s := L[i,u]; 
begin 

F[t, 1] := u, t, 1]; 

F[t, 2] .=I[i,u,t,2]; 

end 

div (F, s, E, m, G, r, H, t); 

for t := 0 step i until r do 

I[ i, 
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begin 

I[ i, u, t, 1] := G[t, 1]; 

I[i,u,t,2] := G[t,2]; 
end 

:= r; 

s := M[ j, v]; 

for t := 0 step 1 until s do 

begin 

F [ t, 1] := J[j,v,t, 1 ] ; 

F [t,2] := J[ j, 2]; 

end 

div (F, w, E, m, G, r, H, t); 

for t := 0 step 1 until r do 

begin 

J [j,v,t, 1 ] := G[t, 1 ]; 

J [ j, v, t, 2] := G[t, 2]; 

end 

M[j,v] := r; 

end corn fact 

procedure div (I, a, J, b, P, c, R, d); 

comment The capital letters I, J, P, and R correspond to one 

dimensional arrays for the storage of a single polynomial. They cor- 

respond to arrays for the storage of dividend, divisor, quotient, and 

remainder in the same order. The small letters correspond to values 

for the degree of each polynomial. Thus the degree of the polynomial 

stored in the array corresponding to I is the value of the parameter 

corresponding to a; 

integer array I, J, P, R; 

begin 

integer i, e, f; 

integer array C[ O:a, 1, 2]; 

L[ i, u] 

- 
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for t := 0 step 1 until a do 

begin 

C [t, 1] := I[t, 1]; 

C [r.,2]:.- I[t, 2]; 

end 

c:= a - b; 

Hl: e := C[a, 1 ] x J[b, 2]; 

f := C[a, 2] X J[b, 1]; 1]; 

if e >f then C. F. (e, f) else C. F. (f, e); 

P[a-b, 1] := e; 

P[a-b, 2] := f; 

for t := 0 step 1 until b do 

begin 

e := J[i, 1] X P[a-b, 1]; 

f := J[i, 2] X P[a-b, 2]; 

e := C[a-b+i, 1] X f - C [a-b+i, 2] X e; 

f := C[a-b+i, 2] X f; 

if e >f then C. F. (e, f) else C. F. (e, f); 

C[a-b+i, 1] := e; 

C[a-b+i, 2] := f; 

end 

H2: a := a-1; 

if a < b then go to H3; 

if C [ a, 1] O then go to Hl; 

P[a-b, 1] := 0; 

P[a-b, 2] := 1; 

# 



35 

go to H2; 

H3: for i := 0 step 1 until b -1 do 

begin 

R[i, 1] := C[i, 1]; 

2] := C[i, 2]; 

if C[ i, 1 ] then d := i; 

end 

end div; 

procedure degree (I, i, u, L); 

comment I corresponds to a four -dimensional array for the 

storage of polynomial elements, i is the subscript of the specific 

polynomial element, u corresponds to an actual parameter which 

has the value 1 or 2 corresponding to the numerator or denominator 

of the polynomial element, and L corresponds to degree storage for 

the array corresponding to I and r in this procedure is the r in the 

parameter list of procedure Sylvester. r is an upper bound on the 

degree of the polynomials to be stored during the procedure Sylvester; 

integer i, u; 

array I; 

integer array L; 

begin 

integer t, v; 

R[i, 

0 
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for t := 0 step 1 until r do 

if I[ i, t, u, 1 ] # 0 then v := t; 

L[ i, u] := 

end degree; 

procedure C. F. (a, b); 

comment this procedure removes the common factors from 

the integers a and b. On entry to this procedure the integer corres- 

ponding to b is less than the integer corresponding to a. The proce- 

dure is based on Euclid's algorithm.; 

integer a, b; 

begin 

integer g, h, q, r; 

g.=a; 

h:=b; 

H1: r:_ [g - h X intier (g/h)] 

if r = 0 then go to H2; 

g. - h; 

h .= r; 

go to H1; 

Hl: e := e/h; 

f := f/h; 

end C. F. ; 

v; 
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procedure string output (Q); 

comment This procedure is an output for the string Q; 

string Q; 

(code); 

procedure alarm (x); 

comment This procedure is used to check after each step that 

the storage placed in the arrays A and B has not exceeded the avail- 

able space. That is: the procedure checks to see that the degrees of 

the various polynomials stored in these arrays has not exceeded the 

value r; 

Boolean x; 

begin 

integer i, j; 

for i := 1, 2 do 

begin 

for j := p step 1 until n do 

if V[ j, i] > r then x := false; 

for j := q step 1 until s do 

if W[ j, i] >r then x := false; 

end 

end alarm; 
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comment All auxiliary procedures have been declared -- we 

now start the compound tail for the main block of Sylvester; 

for i := 0 step 1 until n do 

begin 

degree (A, i, 1, V); 

V[ i, 2] := 0; 

end 

fori := 0 step 1 until s do 

begin 

degree (B, i, 1, W); 

W[i, 2] := 0 

end 

p := q := 0; 

x : true ; 

LI: alarm (x); 

if x =false then string output (The degree of one of the polynomi- 

als stored in the arrays A and B has exceeded the value r. 

Choose a larger r); 

if ri -p > s -q then go to L3; 

if V[n, 1] = OAA[n,1,0,1] = 0 then go to L5; 

comment For purposes of description, let the storage in A be 

represented by a[ i] (i =p, p +l, . , n) and in B be represented by . 
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by b[i] (i =q, q +1, ... , s) as discussed in Chapter II. The author will 

assume this correspondence in the comments which follow. The two 

conditional statements above satisfy the conditions for case I. The 

statements up to but not including the one following the label L3 carry 

out the operations as described in case I, Chapter II; 

if W[ s , 1] = 0 A B[ s , 1, 0, 1 ] = 0 then to L2; 

rat div (B, s, W, A, n, V, C, 1, X); 

for i:= P step 1 until n -1 do 

begin 

rat mult (A, i, V, C, 1, W, D, i, Y); 

t:= s + n-1; 

rat sub (B, t, W, D, i, Y); 

end 

comment The following statements (not including L3 or there- 

after) store the polynomial corresponding to a[n] in the array R and 

store the degree in the array Z; 

LZ:t := n-p+s--q; 

for i := 0 step 1 until V[n, 1 ] do 

begin 

R[t, 1, i, 1] := A[n, 1, i, 1]; 

R[t, 1, i, 2] := A[n, 1, i, 2]; 

end 

Z[t, 

, 

I] := V[n, I]; 
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for i := 0 step 1 until V[n, 2] do 

begin 

R[t,2,i,1] ,=A[n,2,i,1]; 

R[t, 2, i, 2] .= A[n, 2, i, 2]; 

end 

Z[t, 2] := V[n, 2]; 

s s -1; 

if s -q = 0 then go to L7; 

go to L1; 

L3: if W[ q, 1 ] = 0 A B[ q, 1, 0, 1 ] = 0 then go to L6; 

if V[p, 1 ] = 0 A A[p, 1, 0, 1 ] = 0 then go to L4; 

comment The following statements (not including L5 or there- 

after) carry out the operations as described in case III; 

rat div (A, p, V, B, q, W, C, 1, X); 

for i := q +l step 1 until s do 

begin 

rat mult (B, i, W, C, 1, X, D, i, Y); 

t := i-q+p; 

rat sub (A, t, V, D, i, Y); 

end 

comment The following statements (not including L5 or there- 

after) store the polynomial corresponding to b[q] in the array R and 

:= 



41 

store the degree in the array Z; 

L4: t := n- p +s -q; 

for i : = 0 step 1 until W[ q, 1 ] do 

begin 

R[t, 1, i, 1 ] := B[q, 1, i, 1]; 

R[t, 1, i, 2] := B[q, 1, i, 2]; 

end 

Z[t, 1] := W[q, 1]; 

for i := 0 step 1 until W[q, 2] do 

begin 

R[t, 2, i, 1] := B[q, 2, i, 1]; 

R[t, 2, i, 2] := B[q, 2, i, 2]; 

end 

Z[t, 2] := W[q, 2]; 

p := p +l; 

if n -p = 0 then go to L8; 

go to L1 ; 

L5: if W[ s, 1 ] = 0 A B[ s, 1, 0, 11 = 0 then go to L9; 

comment The following statements (not including L6 or there- 

thereafter) carry out the operations as described in case II. The ex- 

pansion is made about the polynomial corresponding to the element 

b[ s] and this polynomial is stored in the array R and the degree in 
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the array Z; 

t := n -p + s -q; 

for := 0 step 1 until W[ s, 1 ] do 

begin 

R[t, 1,i, ì] := B[ s, 1,i, 1]; 

R[t, 1,i, 2] := B[ s, 1, i, 2]; 

end 

Z[t,l] := W[s, 1]; 

fori := 0 step 1 until W[ s, 2] do 

begin 

R[t, 2,1, 1] .=B[s,2,i,.1]; 

R[t,2,i,2] := B[s,2,i,s]; 

end 

Zit., 2] := W[s, 2]; 

n := n -1; 

if n -p = 0 then go to L8; 

go to L1; 

L6: if V[ p, 1 ] = 0 A A[p, 1, 0, 1 ] = 0 then go to L9; 

comment The following statements (not including L7 or 

thereafter) carry out the operations as described in case IV. The ex- 

pansion is made about the polynomial corresponding to the element 

a[q] and this polynomial is stored in the array R and the degree is 

i 

- 
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stored in the array Z; 

t := n- p +s -q; 

fori := 0 step 1 until V[p, 1] do 

begin 

R[t, 1,i, 1] .= A[t, 1,i, 1]; 

R[t, 1, i, 2] .= A[t, 1, i, 2]; 

end 

Z[t, 1] := V[p, 1]; 

for i := 0 step 1 until V[p, 2] do 

begin 

R[t, 2, i, 1] := A[t, 2, i, 1]; 

R[t, 2, i, 2] .= A[t, 2, i, 2]; 

end 

Z[t, 2] := V[p, 2], 

q:= q:= 1; 

if s-q = 0 then go to L7; 

12 to L1 ; 
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comment The following statements store the diagonal 

matrix as shown in the proof of theorem V for the case s -q = 0; 

L7: t n -p; 

u := W[ s, 1]; 

y := W[ s, 2]; 

for i := 0 step 1 until t do 

begin 

for j := 0 step 1 until u do 

begin 

R[i, 1, j, 1] := B[s, 1, j, 1]; 

R[ i, 1, j, 2] B[ s, 1, j, 2]; 

end 

Z i, 1] : =u; 

for j := 0 step 1 until v do 

begin 

R[ i, 2, j, 1 ] := B[ s, 2, j, 1]; 

R[ i, 2, j, 2] := B[ s, 2, j, 2]; 

end 

Z[i,2] :=v 

end 

go to L 10; 

comment The following statements store the diagonal matrix 

:= 
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as shown in the proof of theorem V for the case n -p = 0; 

L8: t -q; 

u V[n -1]; 

v := V[n, 2]; 

for i := 1 step 1 until t do 

begin 

for j := 0 step 1 until u do 

begin 

R[i, 1, j, 2] := A]n, 1, j, 2]; 

end 

Z[i, 1] : =u; 

for j := 0 step 1 until v do 

begin 

R[i, 2, j, 1] := A[n, 2, j, 1]; 

R[i, 2, j, 2] := A[n, 2, j, 2]; 

end 

Z [ i, 2] : =v 

end 

go to L 10; 

L9: string output (Sylvester's eliminant vanishes identically. ); 

L10: Alarm (x); 

R[i, 1, j,1] := A[n, 1, j, 1]; 
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if x false then string output (The degree of one of the poly- 

nomials stored in the array R has exceeded the value r. 

Choose a larger r. ); 

comment Sylvester's eliminant is the product of all the poly- 

nomials stored in the array R. The following statement reduces this 

fraction to lowest terms. 

for i n +s step ( -1) until 1 do 

begin 

for j ;= n +s step 1 until 1 do 

begin 

if j i go to Hl; 

corn fact (R, i, 1, Z , R, j, 2, Z ), 

H1: 

end 

end 

end 

end Sylvester; 

:= 

= 

- 
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