
AN ABSTRACT OF THE THESIS OF

John Ries Holroyd for the Master of Science in Mathematics
(Name) (Degree) (Major)

Date thesis is presented " wì 7, Mpg

Title ALGORITHMS FOR THE SOLUTION OF TWO ALGEBRAIC

EQUATIONS IN TWO UNKNOWNS

Abstract approved
(Major Professor

The author develops a new recursive procedure for the

evaluation of Sylvester's eliminant. The algorithm is written

in the ALGOL 60 language.

G'

ALGORITHMS FOR THE SOLUTION OF TWO
ALGEBRAIC EQUATIONS IN TWO UNKNOWNS

by

JOHN RIES HOLROYD

A THESIS

submitted to

OREGON STATE UNIVERSITY

in partial fulfillment of
the requirements for the

degree of

MASTER OF SCIENCE

June 1963

L

APPROVED:

Pro essorfif Mathematics

In Charge of Major

e of Department of Mathematics

Chairman of School raduate Committee

Dean of Graduate School

Date thesis is presented Weir. g/ /? 6 2-
Typed by Carol Baker

ACKNOWLEDGMENT

The author would like to thank Dr. Goheen for his help in

preparing this paper.

TABLE OF CONTENTS

Chapter Page

I INTRODUCTION 1

II RECURSION FOR SYLVESTER' S DETERMINANT 5

III ALGORITHMS 19

BIBLIOGRAPHY 47

ALGORITHMS FOR THE SOLUTION OF TWO ALGEBRAIC
EQUATIONS IN TWO UNKNOWNS

CHAPTER I

INTRODUCTION

Algorithms for machine solution of systems of equations of

degree one have been in use for many years. In this paper the

author develops algorithms for the machine solution of two equations

in two unknowns of degrees n and s, respectively, in the variable x

with coefficients which are polynomials in y.

Consider two polynomial equations in x and y of the form

f (x, y) =

n

i=0

g(x,y) =

s

a.(y)x1=0

bi (y)xl= 0

i=0

where ai(y) and b. (y) are polynomials in y. We may separate vari-

ables by use of Sylvester's method of elimination which yields the

following determinantal equation:

A=

a

0

bs bs-1

n-2 0

a () an-1 an-2 a0
1 0

0 bs bs-1

n an-1 3n-2

0 a a <
n n-1 n-2

0

0 h h
s s-1

This may be written in the form
r

c.y i = 0,

i.=0

where

0

a1

l

S rows

=0. (1)

71 rows

(2)

r < s (max degree a.) + n (max degree b.). The equation (1) has a set
i i i

J

of solutions al, a2, a3, ... , ar, provided that (1) is not an identity.

The case that (1) is an identity will not be considered in this paper.

The following theorem may be proven.

I Theorem: If not both a (a,) and b (a.) are zero, then f(x, a,) and n i s 1 i g(x, ai) have a common root.

a
n an-1

an .

0 . . a0

a

. . . hi -.3

... bl h0

i

2

0

.

01
0

.

.

3

This is a well -known result from the standard theory of equations.

It is the purpose of this paper to show a recursive procedure

for the evaluation of the determinant A.

For convenience we may write the right hand side of (1) as

a . 0 am+lam 0 0

0 an an-lan-2 ° am+lam 0° .0

0 0 an an-lari-2 am+1am (3)

bs bs-1 bk+lbk 0 0

0 bs bs-1 bk+lbk 0 0

0 bs bs-1 ` bk+lbk

Concerning the determinant (3) we may state the following theorems:

II Theorem: The eliminant (3) may be reduced recursively in such a
manner that the eliminant is equal to the product of one of the ele-
ments: an(y), bk(y), am(y) or bs(y) and an eliminant of lower order

whose elements are rational functions of the elements of the original
eliminant and hence rational functions of y provided that n -m and s -k
are both greater than one.

an-lan-2
l 2

.

.

. .

s

.

.

0

.

.

.

s

4

III Theorem: In case n -m or s -k is one, the recursion is defined and
the eliminant is the product of a rational function and diagonal deter-
minant whose non -zero elements are all the same rational function.

The proofs of theorems II and III are specific as to the

means of reduction and the theorems will be restated as theorems

IV and V in Chapter II incorporating the means of reduction in

their statements. Algorithms based on theorems IV and V are given

in Chapter III.

CHAPTER II

RECURSION FOR SYLVESTER' S DETERMINANT

Consider the following determinant:

s - k
rows

h - m
rows

an an-la lan-2 ' ' am+lam O

0 an a a
n n-1 n- 2

0

am+lam 0. 0

5

0 0 an an- lan-2 am+lam (4Ì

bs bs-1 bk+lbk 0 0

0 b bs-1 bk+lbk 0

0 0 bs bs-1 bk+lbk

If m = 0 and k = 0, then the determinant (4) is Sylvester's eliminant

as described in part one. Let m and k be arbitrary integers such

that

0 <m <, and 0 <k <s.

6

Let the following equalities hold:

u =n, v= s, p =m, q =k.

One and only one of the following elementary transformations, is de-

fined on the determinant (4).

Case I: a 0 andu - p -q. Let
u

a.b v
b v+i-u = v+i-u au

In the determinant (4), replace b by b' v +i -u v +i -u for i = p, p + 1,

p + 2, ... , u in every row containing b Expand the determi-
v +i ` -u

nant (4) by the element au in the left most column and redefine the

determinant (4) to be the remaining determinant. Replace the value

of v by the value of v - 1.

Case II: au - 0, u - p v - q, and by O. Expand the determi-

nant (4) by the element by in the left most column and redefine the

determinant (4) to be the remaining determinant. Replace the value

of u by the value of u - 1.

Case III: bq 0 andu - p >v - q. Let

b.a lp
a' p+i-g - ap-Pi-q - bq

i

<

4

7

In the determinant (4) replace a by a' for i = q, q + 1,
p +i -q p+1-q

, v in every row containing ap
+1

Expand the determinant (4)

by the element b in the right most column and redefine (4) to be the
q

remaining determinant. Replace the value of p by the value of p + 1.

Case IV. bq 0, u -p > v -q, and a *O. Expandbythe element apin
q p P

the right most column and redefine the determinant (4) to be the re-

maining determinant. Replace the value of q by the value of q + 1.

Case V: If both au and by (or, a and bq) are identically zero, then

the algorithms developed in this paper do not apply, this yielding the

excluded case of chapter one.

IV Theorem: If n - m and s - k are greater than one, then the trans-

formed determinant defined by the operations I through IV is of the

same form as the determinant (4). Thus the determinant (4) is eval-

uated as the product of a rational function of y and a transformed de-

terminant which is also an eliminant.

Proof: The determinant (4) has two sets of elements a. (i =m, m +l, i

, n) and bj(j =k, k +l, .

J
, s), which are arranged in the form of

Sylvester's eliminant and satisfy the relations:

1) the number of rows containing a. is equal to s - k.

2) the number of rows containing b. is equal to n - m.

...

...

J

8

I: Assume n - m <.s -.k and an O. Case I applies. If bs +i -n is

replaced by bs +i -n in the determinant (4), the following determinant

results:

an an-1 . . . am

0 an an-1 . . am

0 an an-1 > . a m

0 b's_1. s-1 . . bk+1bk

0 0 b's-1. . bk+lbk

0 0 b 's - 1 b
'k+lb 'k

The minor of the element an in the left most column is:
n

an a
n-1

. . a m

0 a a . a
n n-1 m

b s-1. .

b' s-1

0 a a . a
n n-1 m

b' b' k+l k

b' b' k+l k

(5)

The determinant (5) has two sets of elements a. (i =m, m +1, . ,n) i

and b'. (j =k, k +l, . , s -1) which are arranged in the form of

Sylvester's eliminant.

The number of rows containing ai (i= m, m +l,

9

,n) is reduced

by one. The number of rows containing b!(j= k,k +1, . , s -1) is un-

changed. Thus we have the relations:

1) the number of rows containing a. equals s -1 -k.

2) the number of rows containing b'. equals n -m.
J

Thus (5) has the form of (4).

II: Assume n- m(s -k, a = 0 and b
s * O. Case II applies. Expand-

ing (4) by the element b
s

in the left most column the following

determinant results:

.

. .

.

.

n

10

an- a
1 n-2 a m

0 an-
1
a n-2 . a

an-la n-2 a m
(6)

b bs-1 k+lbk

0 bs bs-1 bk+lbk

0 bs bs-1 .
° bk+lbk

The number of rows containing a, (i =n- l,n -2, , .. , m) is unchanged

and is equal to s -k. The number of rows containing b,(j =k, k +1,

. , s) has been reduced by one and is therefore equal to n -1 -m.

The determinant (6) has the same form as (4).

III: Assume n - m)s - k and bk O. Case III applies. If am
+i -k

his replaced by a' -k the following determinant results:

.

m

.

.

.

is
m +i

.

a' a' . . a' a 0
n n-1 m+l

0 a'n a' n-1 °

.. a m+1 0

a' a' n n-1° .

bs bs-1
° bk+lbk

0 bs bs-1 . . bk+lbk

a' 0
m+1

b b . . . b b
s s-1 k+l k

11

(7)

Expanding (7) by the element bk in the right most column the fol-

lowing determinant results:

a' a' . . . am+1 n 1 m+l

0 an a'n- 1 ° ° am+l

' a' a' an an- 1
° . . am+1

bs bs-1 ' bk+lbk

0 bs bs-1 . . bk+lbk

bs bs-1 . bk+lbk

(8)

.

n

12

This determinant has two sets of elements, a.' (i =m +1, ... , n)

and b.(j =k, ... , s) arranged in the form of Sylvester's eliminant.

The number of rows containing a'(i= m +1,m +2,..., n)is equal to s -k.

The number of rows containing b, has been reduced by one. There-

fore the number of rows containing b. is equal to n -m- 1. The deter-
minant (8) is of the same form as the determinant (4).

IV: Assume n- mjs -k, bk= 0, and am* O. Case IV applies.

Expanding by the element a in the right most column of the m

determinant (4) the following determinant results:

an . a n n-1 m

0 a a . a n n-1 m

n an-1 . . . am

b' b' b' b' s s-1 k+2 k+1

' ' ' 0 bs bs-l' bk=2bk+1

b' b' . . b' b' s s-1 k+2 k+1

(9)

a

m

.

.

J

i

)

)

.

13

This determinant has two sets of elements a. (i =m, m + 1 , n)
1

and b. (j =k +1, k + 2, . . , s) arranged in the form of Sylvester's

eliminant. The number of rows containing b. is equal to n -m.

The number of rows containing a. is reduced by one. Therefore

the number of rows containing a. is equal to s - k - 1. The determi- i

nant (9) is of the same form as (4)

This completes the proof of theorem IV. The following exam-

ples are included to illustrate each of the four cases and the applica-

tion of the procedure to an actual problem.

Example I:

A a0 0

O a2 al

b2 hl b0

0 b2 h h

0

=D

Case I applies giving the following expansion:

D =a2 b

a2

h2a1
0

b
1

al

a2a0

b
0

a0

0

2a0
0

a2

h2a1
a2 a2

... ,

0

- a2

1

J

Example II:

0 al a0 0

0 0 a0

b2 b1 b0 0

0 b2 b1 b0

Case II applies giving the following expansion:

D = b2

a0 0

a0

b2 b1 b0

Example III:

a3 a2 al a0

b1 b0 0 0

D =

0 b1 b0 0

0 0 b1 b0

Case III applies giving the following expansion:,

D = b0

b1a0

a3 a2 a1
-

b0

b1 b0 0

0 b1 b0

14

al

a1

0 al

y

15

Example IV:

a3 a2 al a0

bl 0 0 0

D =

0 b 0 0

0 0 bl 0

Case IV applies giving the following expansion:

D = a0

bl

0

0

0

b

0

0

0

b
1

Example V:

Consider the set of equations in two unknowns:

(yfl)x2 f yx f 1=0

yx2 f (yf2)x f y = 0 .

yf1 y 1 0

0 yfl y 1

=0.

Y y+2 y 0

0 y y+2 y

Y+1

Y+1

Y+1 Y

p

1

Y+1

p

y

Y+2-Y2

p
Y+1

Y -

p

Y+1

Y+2 _ _Y2

Y

Y+1

3y+2,
Y+1

Y 3Y+2

=Y+1 3Y+2

Y2

Y+1

2

. p

Y+1

'(Y+1)(
Y)

Y+1

' (Y+1) (y_
Y+1)

o

1

o

Y+1
y `y

Y+1

Y+1
3

_"'-- 3
Y2

3-Y-+2

Y+1

2
Y

Y+1

Y+1

3

!3- Y-2
2

p
2

Y+1

(y3 2)(2)
y (Y+1) 2

o

p

1

o

2
Y
Y+1

16

'Y+1
3Y+Z
Y+1

0

2

1
-

3Y+?
Y+1

2`

2
Y
Y+1

Y

ÿ

Y

17

(Y+1)
` y I y5+y4- (y3-3y-2)(3y +2) _(y"+1)

y+1 y+l) i 2 2
-' - y (y+1)

= (Y+1)

2

° ̂ 1(y+1) 5----2y`l°2y3+9yL+12y+41 y'rl i 4 3 2
y - 2y T

4 3 2
= y -3y +y + 8y +4.

V Theorem: The recursive procedure defined by the operations 1

through IV will reduce Sylvester's eliminant to the form:

c 0 . . 0

0 c 0 0 0

R(y) 0 0 c 0 , 0
f t rows

0 c

Where R(y) is the product of rational functions of y, c is a rational

function of y, and:

1 : t < n +s.

Proof: The procedure defined by the operations I through IV may be

applied recursively to Sylvester's eliminant until either u -p = 0 or

v-q = O.

Let u -p = O. Using the relations 1) and 2) in theorem IV, the

I

y

"\

J,

J

. . .

remaining determinant contains b' = q, q+1, ... , v) in none

of its rows and contains a'i (i = p = u) in v - q of its rows.

Therefore Sylvester' s eliminant is equal to:

R(y)

a' u

0

0

0

0

a'
u

0

0 . .

0 . .

a'.
u

a' u

= R(y) (a')v-ci
u

}
v -q rows

Let v -q = O. The remaining determinant contains a'
i

(i =p, p-fl, .

18

u) in none of its rows and contains b! (j = v =q;)

in u - p of its rows. Therefore Sylvester's eliminant is equal to:

b'
v

0 0 . . 0

0 b'
v

0 . . 0

R(y) 0 0 b' . .

v
0

0 b'
x

= R(y) (ID')u-p.

u -p rows

i
(i

. .

0

0

J

0

.

.

}

19

CHAPTER III

ALGORITHMS

In chapter II a recursive procedure for the reduction of

Sylvester's eliminant is developed. The present chapter describes

this procedure along with all the necessary supporting procedures in

algorithmic form. The language used in this description is ALGOL

60.

From the examples in the preceding chapter the elements in the

eliminant during the reduction are in general the quotient of two

polynomials. The element ai(i = 0, 1, 2, .

its full form as:

n) may be written in

t-1
a. ailty ilt - 1

y+ a y + . . + ai y + . a. ll i 1 0

u u-1 1

ai2uy + ai2u- ly + . . . + ai21y + ai20

The coefficients a, are in general rational numbers and must be iuj

stored as ordered pairs of integers. In the following procedure the

coefficients of the sequence of elements a. (i = 0, 1, 2, ... , n) are

stored in the four dimensional array A[0:n, 1:2, 0:r, 1:2] where the

first subscript with values 0 to n refers to the element of the sequence

a. (i = 0, 1, 2, . i , n); the second subscript with values 1 and 2

refers respectively to numerator and denominator of the rational

,

t 1

=
i

.

20

polynomial a.; the third subscript with values 0 to r refers to the co-

efficient a. of the polynomial; and the fourth subscript with values
it j-

1 and 2 refers to the elements of the ordered pair a.. The coeffi-
i

cients of the elements b. (j = 0, 1, 2, . . , s) are stored in the array

B[0:s, 1:2, 0:r, 1:2]. The subscript bound r is less than:

s (max degree a.) + n (max degree b.). As the reduction
J

of the eliminant proceeds the storage arrays A and B are used to

store the new elements of the reduced eliminant and r must be chosen

to accommodate this storage.

Each of these polynomials has its own respective degree. The

degree of the polynomials whose coefficients are stored in the array

A are stored in the two dimensional array V[0:n, 1:2]. Thus the value

V[i, 1] is the degree of the polynomial in the numerator of the quo-

tient a. above. The degree of the polynomial whose coefficients are

stored in the array B are stored similarly in the array W[0:s, 1:2] .

During the procedure various polynomials are stored in the four

dimensional arrays C[1 :1, 1:2, 0:r, 1:2], D[0:m, 1:2, 0:r, 1 :2] and

R[0:n +s, 1:2, 0:r, 1:2] where m is the greatest of n or s in the original

set of equations. Degree storage for these arrays is in the integer

arrays X[i :i, 1:2], Y[0:m, 1:2], Z[0:n =s, 1:2], respectively.

The procedure is written assuming that when the polynomials

f(x, y) and g(x, y) are written as polynomials in x, the

i

'

1 .

J

21

coefficients of each equation are of the form

q

ai y .

1=0

procedure Sylvester (A, B, n, s, r):

integer n, s, r;

integer array A, B;

begin

integer m;

if n > s then m := n else m := s;

begin

integer i, j, p, q, t, u, v;

integer array C [1:1, 1:2, 0:r, 1:2];

D [0:m, 1:2, 0:r, 1:2);

R [O:n +s, 1:2, 0:r, 1:2] ;

V [0:n, 1:21

W [0:s, 1:21

X [1:1, 1:2J=;

Y [0:m, 1:2j;

Z [0:n+s, 1:2];

Boolean x;

comment The arrays declared above correspond to the following

i

o

-

22

storage.
V .. degree storage for A

W .. degree storage for B

C .. storage for polynomials, X degree storage for C

D .. storage for polynomials Y .. degree storage for D

R .. storage for polynomials Z .. degree storage for R;

procedure rat mult (I, i, L, J, j, M, K, k, n);

comment I is a formal parameter corresponding to an

array for storage of polynomials. i corresponds to the subscript of

the element in the array I. L is a formal parameter corresponding to

an array for the storage of the degree of the polynomial referred to

by I and the subscript i. Similarly for the sets of three J. j, M and

K, k, n. I and J refer to the polynomials being multiplied and K to

the product;

integer i, j, k ;

array I, J, K, L, M, N ;

begin

mult (I, i, 1,L, J, j, 1, M, K, k, 1, N);

mult (I, i, 2, L, J, j, 2, M, K, k, 2, N);

corn fact (K, k, 1, N, K, k, 2, N);

N[k, 1]:= L[i, 1] +M[j, 1];

N[K, 2]:= L[i, 2] + M[j, 2];

end rat mult;

..

23

procedure rat div (I, i, L, J, j, M, K, k, N);

comment The correspondence between actual and formal

parameter in this procedure declaration is identical to that of the

procedure rat mult. The sets of three I, i, L; J, j, M; and K, k, N

refer to dividend, divisor, and quotient respectively;

integer i, j, k;

array I, J, K;

integer array L, M, N;

begin

mult (I, i, 1, L, J, j, 2, M, K, k, 1, N);

mult (I, i, 2, L, J, j, 1, M, K, k, 2, N);

corn fact (K, k, 1, N. K, k, 2, N);

N[k, 1]:= L[i, 1] + M[j, 2];

N[k, 2]:= L[i, 2] + M[j, 1];

end rat div;

procedure rat sub (I, i, L, J, j, M);

comment This procedure subtracts the polynomial element with

subscript value corresponding to j which is stored in the array cor-

responding to the formal parameter J from the polynomial element

with subscript value corresponding to i which is stored in the array

corresponding to the formal parameter I and stores the result in the

array corresponding to the formal parameter I and giving it the

24

subscript value corresponding to i. The value for the degree stored

in the array corresponding to the formal parameter L is corrected.

a1 /a2 - = (alb2 - bla2)/a2b2

Let I and J correspond to storage for a. /a2 and bl /b2 respectively.

In this procedure the polynomial product a1b2 is stored in the array I

with subscript value corresponding to i.
a2b1

is stored in the array

C (declared at the beginning of the procedure Sylvester) since the

storage corresponding to the array J must be left unchanged. Then

the operation alb2 - a2b1 is carried out;

integer i, j;

array I, J;

integer array L, M;

begin

mult (I, i, 1, L, J, j, 2, M, I, i, 1, L);

mult (I, i, 2, L, J, j, 1, M, C, 1, 1, V);

sub (I, i, 1, L, C, 1, 1, V);

mult (I, i, 2, J, j, 2, M, I, i, 2, L);

corn fact (I, i, 1, L, I, i, 2, L);

end rat sub;

comment The procedures mult, sub corn fact, and degree

operate on polynomials of the form:

1
b /b2

25

u

a[1] y i

i=0

as opposed to the procedures above which are defined for the

quotient of two such polynomials;

procedure mult (I, i, u, L, J, j, v, M, K, k, w, N);

comment I corresponds to an array for the storage of poly-

nomials. i corresponds to the value of a subscript of a polynomial

element stored in that array. u corresponds a real parameter

which may have value 1 or 2 as to numerator or denominator of the

polynomial referred to by the array and value corresponding to I and

i. L corresponds to an array for degree storage for this polynomial.

The correspondence in the parameter list for the sets of four J, j, v,

M and K, k, w, N is the same. I, J, and K correspond to arrays which

contain the two polynomials multiplied and the product respectively.

integer i, j, k, u, v, w;

array I, j, K;

integer array L, M, N;

begin

integer array H[O:r, 1,2];

integer m, t, a, e, f;

a:= L[i,u];

N[k, w] := a + M[j, v];

26

for m: = 0 step 1 until r do

begin

for t : = 1, 2, do

H[m,t] := 0;

end

for m := 0 step 1 until M[j, v]do

begin

for t := 0 step 1 until a do

begin

e := I[i, u, t, 1] X J[j,v,rn, 1];

f := I[i, u, t, 2] X J[j, v, m, 2];

e := e X H[m+t, 2] + f X H[m+t, 1];

f := f X H[m+t, 2];

if e > f then C. F. (e, f) else C. F. (f, e);

H[m+t, 1] := e

H[m+t, 2] := f

end

end

form := 0 step 1 until N[k, w]do

begin

for t := 1, 2 do

K[k,vr,m,t] .= H[m,t];

27

end

end mult;

procedure sub (I, i, u, L, J, j, v, M);

comment I corresponds to an actual array for the storage of

polynomials, i to and integer parameter whose value is the subscript

of the polynomial, u corresponds to a parameter which may have

values 1 or 2 as to numerator or denominator of the polynomial ele-

ment referred to by the correspondents of I and i. J, j, v, M corres-

pond to actual parameters in the same way. The polynomial stored

in the array corresponding to J with subscript values corresponding

to j and v is subtracted from the polynomial stored in the array cor-

responding to I with subscript values i and u and the result is stored

in the array corresponding to I and is given the subscript values i and

u. L and M correspond to degree storage and the value stored in the

array corresponding to L is corrected before exit from the procedure;

integer i, j, u, v;

integer array I, J, L, M;

begin

integer m, t, r, e, f;

if L[i, u] > M[j, v] then rn := Lk, u] else m := M[j, v];

fort := L[i, u] + 1 step 1 until m do

I[i, u, t, 1] := 0;

28

for t := M[j, v] + 1 step 1 until m do

J[j, v, t, 1] := 0;

for t := 0 step 1 until m do

begin

e :=I[ì.,u,t,l] X J[j, v, t, 2] - I[i,u,t,2]X J[j,v,t,1];

f := I[i,u,t,2] X J[j, v, t, 2];

if e >f then C. F. (e, f) else C. F. (f, e);

I[i, u, t, 1] .= e;

I[i, u, t, 2] .= f;

if e 0 then r := t;

end

L[i, u] := r;

procedure corn fact (I, i, u, L, J, j, v, M);

comment Correspondence between the sets of formal parame-

ters I, i, u, L and J, j, v, M is the same as described in the procedures

must and sub. This procedure finds any common factors of the poly-

nomials stored in the arrays corresponding to i, u and j, v. Let a

and b represent the polynomials stored in the arrays corresponding

to I and J respectively. Let c be the common factor.

a= c

= c b'

the common factor c is removed and a' and b' are stored in arrays

b

corresponding to I and J in respective order.

integer i, j, u, v;

array I, J;

integer L, M;

begin

integer m, r, s, t;

array E[0: L[i, u] +M[j,v], 1:2],

F[0: L[i,u] +M[j,v], 1:2],

G[0: L[i,u] + M[j, v], 1:2],

I-í[0: L[u] +M[j,v], 1:2];

L[i,u];

s := M[j, v];

if ni >s then go to Hl;

fort := 0 step 1 until ni do

begin

E[t, 1] := I[i, u,t, 1];

r/ [t , 2] := I[i, u, t, 2];

end

fort := 0 step 1 until s do

begin

F[t, 1] :=J[j,v,t, 1];

F[t, 2] :=J[j,v,t,2];

29

m :=

30

end

go to HZ;

Hl: for t := 0 step 1 until m do

begin

F [t, 1.1 := I[i, u, t, 11 ;

F [t,2] := 1[i,u,t,2];

end

s : =m;

m := M[j, v];

for t := 0 step 1 until m do

begin

E[t, 1] := J[j,v,t, 1];

E[t, 2] := J[j, v, t, 2];

end

comment This procedure is based on Euclid's algorithm for

finding common factors. Let a and b represent the two given poly-

nomials; also let r[i] and q[i] be polynomials. Assume the degree

of the polynomial a is less than that of b.

31

b = a q[1] +r[1]

a = r[i]q[2] + r[2]

r[1] = r[l]q[3] +r[3]

(1

(2

(3

r[n-1] = r[n]q[n+1] + r[n+1] (n

r[n] = r[n+1]q[n+2] (n+1

r[n +1] is the common divisor of a and b. The condition that the de-

gree of the polynomial represented by a be less than that of the poly-

nomial represented by b is satisfied by the if statements above. The

following statements carry out the steps (1 through (n +1 stopping when

the remainder r[n +2] = 0 is reached.

These steps may be accomplished recursively in the following man-

ner. After step (1 denote the polynomial a by the name b and the

polynomial r[1] by the name a. Divide the polynomial b by the poly-

nomial a giving the remainder r[2]. After step i which yields the re-

mainder r [i] , denote r[i -1] by the name b and r[i] by the name a.

Carry out the division above. Note that the actual parameters G and t

are not used after the call in this case.

H2: div (F, s, E, m, G, t, H, r);

if H[0, 1] = OA v = 0 then go to H3;

fort := O step 1 until m do

32

begin

F[t, 1] := E[t, 1];

F[t, 2] := E[t, 2];

end

for t := 0 step 1 until r do

begin

E[t, 1] := H[t, 1];

E[t, 2] := H[t, 2];

end

s ::= m;

m : =r;

go to H2;

comment The following procedures divide out the common fac-

tors and correct the degree storage. On entrance through the label

H3 the common factor is stored in the array E;

fort := 0 step 1 until s do

H3: s := L[i,u];
begin

F[t, 1] := u, t, 1];

F[t, 2] .=I[i,u,t,2];

end

div (F, s, E, m, G, r, H, t);

for t := 0 step i until r do

I[i,

33

begin

I[i, u, t, 1] := G[t, 1];

I[i,u,t,2] := G[t,2];
end

:= r;

s := M[j, v];

for t := 0 step 1 until s do

begin

F [t, 1] := J[j,v,t, 1] ;

F [t,2] := J[j, 2];

end

div (F, w, E, m, G, r, H, t);

for t := 0 step 1 until r do

begin

J [j,v,t, 1] := G[t, 1];

J [j, v, t, 2] := G[t, 2];

end

M[j,v] := r;

end corn fact

procedure div (I, a, J, b, P, c, R, d);

comment The capital letters I, J, P, and R correspond to one

dimensional arrays for the storage of a single polynomial. They cor-

respond to arrays for the storage of dividend, divisor, quotient, and

remainder in the same order. The small letters correspond to values

for the degree of each polynomial. Thus the degree of the polynomial

stored in the array corresponding to I is the value of the parameter

corresponding to a;

integer array I, J, P, R;

begin

integer i, e, f;

integer array C[O:a, 1, 2];

L[i, u]

-

34

for t := 0 step 1 until a do

begin

C [t, 1] := I[t, 1];

C [r.,2]:.- I[t, 2];

end

c:= a - b;

Hl: e := C[a, 1] x J[b, 2];

f := C[a, 2] X J[b, 1]; 1];

if e >f then C. F. (e, f) else C. F. (f, e);

P[a-b, 1] := e;

P[a-b, 2] := f;

for t := 0 step 1 until b do

begin

e := J[i, 1] X P[a-b, 1];

f := J[i, 2] X P[a-b, 2];

e := C[a-b+i, 1] X f - C [a-b+i, 2] X e;

f := C[a-b+i, 2] X f;

if e >f then C. F. (e, f) else C. F. (e, f);

C[a-b+i, 1] := e;

C[a-b+i, 2] := f;

end

H2: a := a-1;

if a < b then go to H3;

if C [a, 1] O then go to Hl;

P[a-b, 1] := 0;

P[a-b, 2] := 1;

35

go to H2;

H3: for i := 0 step 1 until b -1 do

begin

R[i, 1] := C[i, 1];

2] := C[i, 2];

if C[i, 1] then d := i;

end

end div;

procedure degree (I, i, u, L);

comment I corresponds to a four -dimensional array for the

storage of polynomial elements, i is the subscript of the specific

polynomial element, u corresponds to an actual parameter which

has the value 1 or 2 corresponding to the numerator or denominator

of the polynomial element, and L corresponds to degree storage for

the array corresponding to I and r in this procedure is the r in the

parameter list of procedure Sylvester. r is an upper bound on the

degree of the polynomials to be stored during the procedure Sylvester;

integer i, u;

array I;

integer array L;

begin

integer t, v;

R[i,

0

36

for t := 0 step 1 until r do

if I[i, t, u, 1] # 0 then v := t;

L[i, u] :=

end degree;

procedure C. F. (a, b);

comment this procedure removes the common factors from

the integers a and b. On entry to this procedure the integer corres-

ponding to b is less than the integer corresponding to a. The proce-

dure is based on Euclid's algorithm.;

integer a, b;

begin

integer g, h, q, r;

g.=a;

h:=b;

H1: r:_ [g - h X intier (g/h)]

if r = 0 then go to H2;

g. - h;

h .= r;

go to H1;

Hl: e := e/h;

f := f/h;

end C. F. ;

v;

37

procedure string output (Q);

comment This procedure is an output for the string Q;

string Q;

(code);

procedure alarm (x);

comment This procedure is used to check after each step that

the storage placed in the arrays A and B has not exceeded the avail-

able space. That is: the procedure checks to see that the degrees of

the various polynomials stored in these arrays has not exceeded the

value r;

Boolean x;

begin

integer i, j;

for i := 1, 2 do

begin

for j := p step 1 until n do

if V[j, i] > r then x := false;

for j := q step 1 until s do

if W[j, i] >r then x := false;

end

end alarm;

38

comment All auxiliary procedures have been declared -- we

now start the compound tail for the main block of Sylvester;

for i := 0 step 1 until n do

begin

degree (A, i, 1, V);

V[i, 2] := 0;

end

fori := 0 step 1 until s do

begin

degree (B, i, 1, W);

W[i, 2] := 0

end

p := q := 0;

x : true ;

LI: alarm (x);

if x =false then string output (The degree of one of the polynomi-

als stored in the arrays A and B has exceeded the value r.

Choose a larger r);

if ri -p > s -q then go to L3;

if V[n, 1] = OAA[n,1,0,1] = 0 then go to L5;

comment For purposes of description, let the storage in A be

represented by a[i] (i =p, p +l, . , n) and in B be represented by .

39

by b[i] (i =q, q +1, ... , s) as discussed in Chapter II. The author will

assume this correspondence in the comments which follow. The two

conditional statements above satisfy the conditions for case I. The

statements up to but not including the one following the label L3 carry

out the operations as described in case I, Chapter II;

if W[s , 1] = 0 A B[s , 1, 0, 1] = 0 then to L2;

rat div (B, s, W, A, n, V, C, 1, X);

for i:= P step 1 until n -1 do

begin

rat mult (A, i, V, C, 1, W, D, i, Y);

t:= s + n-1;

rat sub (B, t, W, D, i, Y);

end

comment The following statements (not including L3 or there-

after) store the polynomial corresponding to a[n] in the array R and

store the degree in the array Z;

LZ:t := n-p+s--q;

for i := 0 step 1 until V[n, 1] do

begin

R[t, 1, i, 1] := A[n, 1, i, 1];

R[t, 1, i, 2] := A[n, 1, i, 2];

end

Z[t,

,

I] := V[n, I];

40

for i := 0 step 1 until V[n, 2] do

begin

R[t,2,i,1] ,=A[n,2,i,1];

R[t, 2, i, 2] .= A[n, 2, i, 2];

end

Z[t, 2] := V[n, 2];

s s -1;

if s -q = 0 then go to L7;

go to L1;

L3: if W[q, 1] = 0 A B[q, 1, 0, 1] = 0 then go to L6;

if V[p, 1] = 0 A A[p, 1, 0, 1] = 0 then go to L4;

comment The following statements (not including L5 or there-

after) carry out the operations as described in case III;

rat div (A, p, V, B, q, W, C, 1, X);

for i := q +l step 1 until s do

begin

rat mult (B, i, W, C, 1, X, D, i, Y);

t := i-q+p;

rat sub (A, t, V, D, i, Y);

end

comment The following statements (not including L5 or there-

after) store the polynomial corresponding to b[q] in the array R and

:=

41

store the degree in the array Z;

L4: t := n- p +s -q;

for i : = 0 step 1 until W[q, 1] do

begin

R[t, 1, i, 1] := B[q, 1, i, 1];

R[t, 1, i, 2] := B[q, 1, i, 2];

end

Z[t, 1] := W[q, 1];

for i := 0 step 1 until W[q, 2] do

begin

R[t, 2, i, 1] := B[q, 2, i, 1];

R[t, 2, i, 2] := B[q, 2, i, 2];

end

Z[t, 2] := W[q, 2];

p := p +l;

if n -p = 0 then go to L8;

go to L1 ;

L5: if W[s, 1] = 0 A B[s, 1, 0, 11 = 0 then go to L9;

comment The following statements (not including L6 or there-

thereafter) carry out the operations as described in case II. The ex-

pansion is made about the polynomial corresponding to the element

b[s] and this polynomial is stored in the array R and the degree in

42

the array Z;

t := n -p + s -q;

for := 0 step 1 until W[s, 1] do

begin

R[t, 1,i, ì] := B[s, 1,i, 1];

R[t, 1,i, 2] := B[s, 1, i, 2];

end

Z[t,l] := W[s, 1];

fori := 0 step 1 until W[s, 2] do

begin

R[t, 2,1, 1] .=B[s,2,i,.1];

R[t,2,i,2] := B[s,2,i,s];

end

Zit., 2] := W[s, 2];

n := n -1;

if n -p = 0 then go to L8;

go to L1;

L6: if V[p, 1] = 0 A A[p, 1, 0, 1] = 0 then go to L9;

comment The following statements (not including L7 or

thereafter) carry out the operations as described in case IV. The ex-

pansion is made about the polynomial corresponding to the element

a[q] and this polynomial is stored in the array R and the degree is

i

-

43

stored in the array Z;

t := n- p +s -q;

fori := 0 step 1 until V[p, 1] do

begin

R[t, 1,i, 1] .= A[t, 1,i, 1];

R[t, 1, i, 2] .= A[t, 1, i, 2];

end

Z[t, 1] := V[p, 1];

for i := 0 step 1 until V[p, 2] do

begin

R[t, 2, i, 1] := A[t, 2, i, 1];

R[t, 2, i, 2] .= A[t, 2, i, 2];

end

Z[t, 2] := V[p, 2],

q:= q:= 1;

if s-q = 0 then go to L7;

12 to L1 ;

44

comment The following statements store the diagonal

matrix as shown in the proof of theorem V for the case s -q = 0;

L7: t n -p;

u := W[s, 1];

y := W[s, 2];

for i := 0 step 1 until t do

begin

for j := 0 step 1 until u do

begin

R[i, 1, j, 1] := B[s, 1, j, 1];

R[i, 1, j, 2] B[s, 1, j, 2];

end

Z i, 1] : =u;

for j := 0 step 1 until v do

begin

R[i, 2, j, 1] := B[s, 2, j, 1];

R[i, 2, j, 2] := B[s, 2, j, 2];

end

Z[i,2] :=v

end

go to L 10;

comment The following statements store the diagonal matrix

:=

45

as shown in the proof of theorem V for the case n -p = 0;

L8: t -q;

u V[n -1];

v := V[n, 2];

for i := 1 step 1 until t do

begin

for j := 0 step 1 until u do

begin

R[i, 1, j, 2] := A]n, 1, j, 2];

end

Z[i, 1] : =u;

for j := 0 step 1 until v do

begin

R[i, 2, j, 1] := A[n, 2, j, 1];

R[i, 2, j, 2] := A[n, 2, j, 2];

end

Z [i, 2] : =v

end

go to L 10;

L9: string output (Sylvester's eliminant vanishes identically.);

L10: Alarm (x);

R[i, 1, j,1] := A[n, 1, j, 1];

46

if x false then string output (The degree of one of the poly-

nomials stored in the array R has exceeded the value r.

Choose a larger r.);

comment Sylvester's eliminant is the product of all the poly-

nomials stored in the array R. The following statement reduces this

fraction to lowest terms.

for i n +s step (-1) until 1 do

begin

for j ;= n +s step 1 until 1 do

begin

if j i go to Hl;

corn fact (R, i, 1, Z , R, j, 2, Z),

H1:

end

end

end

end Sylvester;

:=

=

-

47

BIBLIOGRAPHY

1. Dickson, Leonard Eugene. New first course in the theory of
equations. London, John Wiley and Sons, Inc., 1949, 185 p.

2. Kurosh, A. G. Course of higher algebra. 5th ed., Moscow,
State Publishing House for Technical -Theoretical
Literature, 1956. Unpublished translation by Harry Goheen,
Department of Mathematics, Oregon State University,
Corvallis, Oregon. Chapter VII. (Hand -written)

3. Naur, Peter. Report on the Algorithmic language ALGOL 60.
Association for Computing Machinery Communications
3(1960). pp.299 -314.

