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SOLUTION OF A NONLINEAR EQUATION
ARISING IN A DISCONTINUOUS CONTROL PROBLEM

CHAPTER I
INTRODUCT ION

Continuously operating control elements have
long been used in the automatic control of various types
of physical systems and the resulting automatic control
systems have been extensively treated in the literature.
Systems of this type, however, have the disadvantage of
not making full use of the power availsble in the driving
element, resulting in meny cases in a very uneconomical
arrangement. In recent years, then, considerable effort
has been made to replace these continuously operating
elements by ones which approximate an "on-off" (relay)
type element, for it has been recognized that although
2 linear system offers the advantage of ease of analysis,
certain nonlinear systems may be employed which make full
use of the power available and which also possess better
control characteristics than would be possible by using
a2 linear system. Also the relatively simple construction
of the relay type system usually has the two advantages
of higher reliability and lower eoit;

In the present study several assumptions are

made. It is assumed that the "uncontrolled"™ system



possesses only one degree of freedom and that it is
governed by a linear, second order differential equation
with constant coefficients, It is also assumed that the
values of the error and its first two time derivatives
are measured prociéely. These are the standard assump-
tions which are made when speaking of the idealized
system (1, p. 11), (2, p. 3=17). In addition it is
usually assumed that the on-off element ¢an be charace
terized mathematically by & simple step function, 1l.e.,
properties ef'the mechanism such as inertia, hysteresis
and dead-zone are ignored. In this study the on-off
element is represented by a continuous function with
continuous derivatives and an effort is thus made to
include the inertia and the dead-zone of the element,
The resulting differential equation for the
system involves & uniformly convergent series in powers
of the unknown y(t) and its first three time derivatives,
This equation is thgn transformed into 2 nonlinear
Volterra integral equation of the seﬁaﬁd kind for which
the resolvent kernel is obtained. On applying the
resolvent kernel a new equation is obtained, which is
then solved by the methods of E. Schmidt for nonlinear
integral equations (4, p. 370-399), This discussion
includes a procf of uniqueness of the solution under

certain restrictions, In the appendix is given a



discussion of resolvent kernels for Volterra integral
ecouations of the second kind. It is shown that if the
kernel K{s~t) is & polynomial in s-t, then the resolvent
I'{s-t) can be obtained in closed form, making use of
exponential functions.

Although nothing has been obtained thus far
regarding limit eycles in such systems as have been
described here, it is hoped that this approach to the
problem will eventually yield some results in that
direction. This very impbftant problem is thus the
ntit to be considered in these investigations.



CHAPTER Il
THE DIFFERENTIAL EQUATION FOR THE ERRCR

Denoting by y(t) the error (e.g., the heading
error in the case of 2 missile), the differential equa-
tion in y for the uncontrolled system is written

(1) | ‘,i'*'n?*"y‘@

where a,, a,, 3, are constants and y, y are the first and
second time derivatives, respectively, of the function y.
When the control system is added the equation becomes

(2) l,i + agvf, tays=t

where f denotes a force~ or moment-producing term which
is 2 function of the messured values of y and its deriv-
atives. An example of the form which f may take in an
idealized system is given by

(3) f=k ""(hgv + bg* + b‘?}
where the "signum" function is defined as follows: .

(4) sgn(x) = ﬁr {x # 0),
=0 (x = e}c

The function

(s) Feby+byt+tby (b, #0)



which determines the sign of k in the contrel equation is
called the "control functien®. The ceefficients bes B,s
by are taken to be constants.

A more realistic form for f is obtained by
taking into account the "dead zene™ in the relay as well
as the inertia in the element itself and in the contrel
mechanism (e.g., the mechanism employed for contrel of
the flaps in & missile). The effect of inertis is
approximated by choosing a function f which does not
c¢hange sign discontinuously but which.changes sign in a
reuntinuausmuhanaxxAthu effect of the dead zone is approx~
imated by requiring that f remain equal to zere in an
interval containing F = 0, For this purpese one might
employ the entire functien )
(G)R | ;‘, §(§) ﬂktf‘ﬁh(‘f#)-lt"A&x‘ﬂ);”

By taking A sufficiently large 9{x) can be made to
appreximate arbitrarily closely the discontinuous func-
tion |

| 1/2[sgn{x+u) + :9“‘#*“)3

with a dead zone of lcnéth‘2a and‘ccngcétd about x = 0,
The exact form of equation (2) censidered in
this study is the fellowingt



(7 g7 + 8,7 + a5y = kB(F) + kB(F) + k p(F)
| | (kj = genstant, ko # 0)

in which B is some entire function which approximates the
desired situation, It will be assumed further that 8(x)
is & strietly increasing function of x such that 8{0) =0,
The function B(F) is the time derivative of B(F), whieh
exists since B is an entire function; B(F) is given by

\

;A .
(s) 8(F) = [ B(Flax + B,.
' o

It should be noted that since F=byy + by + by,
(o)  BF) = j‘%f(bﬁ + b,y + byy),

so that equation (7) is an equation of third order. Thus
it will be supposed that initial conditions will be given
for y, vy and ¥. Also, in order to completely determine B
its initlel value B, must be given, Mozeover, f:m equa~

tions (7) and (9) and the assumption that kb, # O,

G - a,y *_a!y + e,y . 2&9 + b,y i 559 + kB

(10) — -
k,b. %% ° koby d

so that y is a continuous function since %% is everywhere
different from zeroc,



is an entire function and since F is a linear conbinstian
of differentisble (and hence bounded) funetions it
follows that the power series in powers of F for B(F)
converges for all values of t in sny interval [0, T].

" Denote the series for B(F) b& |

(i) T Z:e .
- n=)
'?hat'this series eanveigts~unifarmly and absolutely for ¢
in any closed interval [0, T] follows from the Welerstrass
"M test" singe F is bounded on [0, T] and B is an entire
function. Thus the series for B(F) ean be ebtained from
(11) by integrating the series inrn~by term from O to t
and adding 8. | |
The series obtained from (11) by diffcrnnti&ting
term by term with respect to t is
-] net. .2 pes
ngaaéu}‘, F= ?ﬁzgna“!
which converges unifdrn1j tpd absolutely on [0, T] by the
"M test” since the series

3
. i i
,E ne,x

n=l

is the term wise dcfiv;fivo of a power series with



infinite radius of convergence. Thus, B(F) is given by

5(F) = Z&n g{"‘-
nm=}



CHAPTER 111
THE INTEGRAL EQUATION

Equation (7) can be transformed into an inte~
gral equation for y as follows. Replacing B, B and B by
their series representations one obtains the equation

o0
(12) BgY * 8,y + a5y = kg ): nc F""F
‘ n=]

«
+ kt Z‘a?n + ktBt
n=l ‘

+ky ) ¢ [ Fds
n=l °

= g‘{k‘? + k,F + kg f:nc} , keP g

v T epfegne™ti ¢ xge

n=2
+x,[ :F"dt}

where the terms which are linear iny, y, ¥ and y have
been separated out. Replacing y, v and ¥ in equation {12)
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by their equivalent expressions
t R .
y = 1/2] (tat,) §le,)at, + 1/2t7y, + ty, + v,
. t i | | . . |
y = f (tat, Jyle, Jdat, + ty, + vy,
°

.. : *..., o
y= fey(t,)dt; * ¥
one obtains the equation

L("‘iiﬂ'o?o) Z nike s-!'“*kr"*kfl"’dt}

where L is given by

(e,

L= j:{., + g,jt»»t,) + 8 —Jjlt, )dt,

' 8
t o {e=t,)
-e;fo{k,[b‘*b,(tatx)3*&,(h¢*hx(t~tt)%;—-—}*‘2 ]

3
tet, ) (t -t, )

°
+[a +a tﬂ, y]y,,i*{a *a‘t]y‘ﬂtyﬁ
~ {continued on next page)
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v¢, {kqolb, 4,17, #k by

s
*k, [by*b, t4b, %’Jie**x[b;*bs*]*o*kxbxvc

| IO 'ia
*hg[bgtth, 2=4b, g=ligtk, (b t4b, ST gtk By tyo}

“c, kb (t) = kB .

Or, writing G{t) = byt+h, 5—+b, £ and H(t) = ata,t4a, 3=,

L= -c,keha{‘s‘i(thf:(ﬁ;é(t-t, )*;%%;G(twti)‘
+ F:;E;é( t-t, ),-»‘ ;;é;;;ﬂt*mt) Jyat,
s bt oot e)- () T
MOt e
+~[§(t)ﬁ§;ﬁt)qﬁgf&t)&hﬁ;§iﬂ.}
= e,k by {7(t) + f:&(t»t,)‘i(t‘)dt, |
ﬂ:(t)?e*{f((t)%}i,*ﬁ'c(t)é:%h#;;;is:ﬂ.}

1 - k, . kg | .
where K(t) 2 =G(t) yp=(-G()4p—p-G(t)g=F-p-H(t). Thus

17070
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equation (12) is written as
t |
(13)  §(e) + [ Kltet,)y(¢,)at, =
-
e, kg L kgD ;
~x1t>y,.tx(t)~g:3y,-[x¢e)-;;gi}y.ﬁa,a,
) enfke -ggr“*kxl*“«rkg jtr“et_t}
n=2 e
uhire
Fou [ a(tet,)(e,)at, + 6le)y, + 6le)y, + Glt)y,,
. ,
. L, L
F = boylt) + [ Gleet,)yle,)de, + Gledy, + Gley,
o
K() = h(t) + hd(e) + 2t) = sipHle),
o 0 ‘0”0 -;-;G € koby '
G(t) = 1/6b,t" + 1/2b,¢" + b t,
H(t) = 1/20,¢" + ot + a,,

, kt
SR N

1%6Po

, 1
Ay = » € kb’

170
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Bquation (13) is a nonlinear integral equatien
of the sort treated by B, Schmidt (4, p.370) in his work
on nenlinesr integral equations except that equation (13)
is of’?élt-rra type. This, however, causes no particular
difficulty in applying Sehnidt?s methods.

Consider now the oquatiin
t ’
(14) ult) + [ Kot Jult,ddt, = vit),
]

Since the kernel K is a polynomial it is relatively easy
to obtain its "resolvent® kernel in closed form, i.e.,
the kernel in the equivalent equation

. |
vit) + j’rw-z,:m,m‘ = u(t),

In fact, uritihg
d

: d
K(t) = dy +dgt + 52" =t
one obtains
’ ; r,t  r.t r,t  x,t
(1) r(t) = lxo~‘ + Bge " B e L B‘t“

where the r“.(nll,a,s.AB are distinet roots of the
equation

4

s 2
% ‘* d‘x + d‘g

4+ d‘u + d‘ =

and the A, (n=1,2,3,4) satisfy the equations
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z:‘n ® =dy»
n=l

Zr! - ed, +d°
- n=}

Zx n ™ty + 2,9, - 4"

n=}1

ngxr , t2dd +d” - - 34,%, + a’
In the case of multiple roots a similar expression may be
obtained for I'(t).

In deriving the expression for P(t) it is suf-
ficient to suppose v{t) to be & continuous funetien.
Noting that the right side of equation (13) is continuous
one can thus employ the resolvent kernel I' to rewrite
equation (13) as

(16) ¥l(¢) = a(t)y, + a (t)y, + a(t)y, *+ o, (2)B,

rate RONE Ix‘(-m et ]

- n=2

+ k (F" + I:!‘(tutt)?”dt‘]

+ k'{f:P”d- + f:f:‘r(tvt‘)f”d:dt‘]}



where

t ,
Gy = =k(t) « [ T{t-t,)K(t )dt,,
o E

. k, t " k
8, = =(Kte) - 21 - [ rle-t,)lk(s,) - pHlat,,

. kb, . kb
@y = =[kte) - ggh) - j@m«ium,‘) - BBl
¢
ag = A1 + foﬂt-tx)dt‘].

‘The right-hand side of equation (16) is an "integral
power series” in the arguments ¥(t), v, v, ¥, @nd B,
which contains no term linear in y¥(t) alone. (Note that
if y(t) be replaced by a constant x the general term in
the series of (16) is of nth degree in the arguments
Xe Yor Yoo Yo+ Thus the only linear terms on the right
side of (16) are the first four.) |

Making use of the expansion

(A+B+C+D)" =

(o, = mytm +m_+m ),

1%
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the series in equation (16) becomes

ZG z mgim .'u Ta? Yo Yo ":"
n=2 6 -0 |
x{k,[%;(&“‘é‘*a—‘( [“yae, )™
S
. ftr at;{émaéu;ams( f:*@iﬂ, ™) at,]
o ° | ,
o 1, 167%™ ([ agar, )"
]
4 Itr G % %6 ft‘ﬁév}at, Mat, ]
‘e ® N

tmom m |
+x (] 6 %6 %8 *([ Yayar, ) e,
L ) '

+ j‘ j‘t*e % 4 "(f *Gyat, ) at, at I}

Then aatinq that G(Q) = by equation {16) is written



(17) F = ag¥, + a,7, * 957, * 9,8,

* Ay z:° Z: ;?1373:;!33

n=2 o =n
‘mk [g (b ¥ + jﬁam )(Iz-m ym=t
x{mk o Lg, (b,¥ | Gjar, )] Giat,

Hiwg

t : [ t A t '!...
+ I;rqnibby*f;‘ﬁydta)(I;‘Gvdt,)
) t. M
* (kg + kygy )] Giat,)
' j$[(g g + kg )T + kg J(fx‘é§ut ) at
o ey T Faly a9 8 1

+ k,f j g“(I Gydt, ) dt dt }Va ¥y Yo

where, for bravity, g,(t) £ G *(£)+4 *(£):8 "(¢).

A dominant series will now be obtained for the
series of (17).

On replacing the “argument function™ y(t) by
the positive constant u and the arguments 90. ?‘. Yor By
by the positive constants Vor Yy
in equation {17) one has

Var VYo respectively,

dt, ]

17
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u=aqgyv +tqgv *tav *+av
o0 i3 R s 9

- ,
n
+ A 2: Pous rem poomn oy 200
A' cn z: M« oM .
n=2 o =n 8

t. £ .
X mke[gu(ba +.f;8dtt)(joﬁdtl)m t
; ;t t!ﬁ . t!'; 0§
¥ f@r‘%(ra° + jo Gdt’)(fn dae )" "at ]
t,
+ kg, * k’gm)(fbﬁdti)m
+ J't((k' +kog )l +kg J(ft‘édt ) dt
o Ggﬂ iy 2°M ° - 3 : 3

t Mm@ B
+k f&t)dtdt v o v
a ° M 1

Denoting by ¥ the maximum of the absolute value of a
function £{t) on the interval [0, T] one obtains the
assocliated equation

um=s :'v + g'v + 3 v + Z v
oo 13 % 2 E

U AR r

g1 ™
| - Toe s P me3
x{mli 103, ibol*feﬁdtx N L@dt: )

(continued on next page)
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e plor b .l
* Ioreﬂ( !bol*fbaat‘)tj;mt‘)” at, ]
.

* g lg, + I, ‘gu)(ff“x)

AR §+‘ e 10F + Ik I3 1 1Ear, )%

° o' T TRy Oy 'n’u'a t, 7
H "

8 s M
ff Gdt ) dtz“;}"o v, v' u

£y~

I ES

| B W T
where it is understood g 6 G 8 and
wﬂ-xmﬂm mn»smﬂ

- z 3 1 .&. °§ 3’ =
gﬁ B ﬂg ' ~ 3 * Nl »
Or
a + +a +
(18) w=ayv +a AR EAA
Y-
O .
* ’A | 7 h‘ m Im Tm imy X
o' 1" s

o>l
x{(},ﬂ” Thulk I( 3%1’*‘3??%’&”!":’“:%::
x’x"a 1Mt By

X

#(1+47 ‘z)--»!k m z 3

~ ¥ R, B~ -l m 1
+{ 14T r);*-lx | x‘x ®

i, I(F I; + T+l |(14F ‘r)}x“x:’;x:‘x:‘}
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X & GTv, xc ® &ve, X E ﬁw;. X E @v"

Now, the series on the right side of (18) dominates that
on the right side of (17) whenever 0 $ t § T and

3v¢l <ve Iyl <v, lyl<v, y<u

s0 that the series {17) converges uniformly and abso-
lutely subject to these conditions provided the series
(18) converges, But {18) can be rewritten

3 " L
u=qgv +gv *+av tav
o O 3 2 8 s 8

- 1 el @
+Ia, 1{U, 1(F Teamdelic 10147 t)]”‘_gzlcnltx*xo*x;x‘)“

+LOT Thulke ICIs 14G1)] | fgle, [(xox +x )"
n=2
(1+r ?)v,lk

1

}'%rle [xex o #x_ Y

n=2

‘r L d
‘l*r )V ‘k ’x y%z- n tx*xc*x""x‘)n}

n=2

each of which converges for all values of Vor v‘, Vo



fad

5.‘. é;. g. Ty U, by the definition of the LI ’Thn: the
series (17) converges for all i}a. w)&, Yot ¥ and t 20
and has the series (18) as a majorant.

Equation (17) is analegous to the équatim

= B +Bx +B +B
y oo 1'a 2™a +"s

+ }: B xmeim"'xmtxa' n
mmmmn Yo % X3 %, ¥

(At
which, by the implicit function theorem, ¢an be solved
for y as a power series in the xy provided certain con-
ditions are fulfilled. Schmidt's result is analogous
to this implicit function theorem.

21
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CHAPTER IV
THE SOLUTION OF THE INTEGRAL EQUATION

Formal selution of equation (17), A formal
solution of equation (17) is now obtained in the form
of an infinite series, In sueettding sections conditions
are obtained such that this series converges and repre«
sents the solution to (17). Substitute for ¥ in (17)

the series

.Po.Py Pg Py
Z 'P@,?,P,H)?e Yo Yo Po
6,1

(19) y =
(‘b = Pa+pz*pa*ps)'

where the coefficient functions v are as yet

w gﬁ‘ﬁ‘! s

undetermined. On equating coefficients of like powers

in ¥y y and the v can be determined
yﬁ’ yﬁ' Yo 5‘ " ‘i“n‘ L
$ince ¢/ >1 in the series of equation (17) the

only terms which are linesr on the right side of {17)
are the first four. Hence the linear terms are detere

mined as

(20) v =g v =g v =g, V¥ =g
1000 o' o100 1" Toose 8’ ooes 8"

On substituting (19) for ¥ on the right side
n, n, n, N,
of (17), the coefficient of §e°?°‘y°'5°’ is obtained and
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equated to "n,nin,n,(t)‘ It can be seen that the expres-

sion for v, . n, (t) will be in terms of only those
o™ s

vpuptp‘%(t) for which o, < g+ This is immediately

apparent in those terms of (17) for which m = 0, for

in those terms y does not even appear. For m 2 1 con-

sider the formal substituﬂm of (19) for ¥ in those
terms of {17) invelving (f ﬁydt )™

p, Py Py Py )‘
(j @ z"pop,,p.p, o Yo Yo P 4t

P
Po Py Pg Py)|®
( Z ‘{ gvpepﬁap:ét Yo Yo Yo Po ) ¢
P
v ;4
Letting V - f Gv d‘t thh may be written as

PoPy PyPy o PoPiPsPy

‘ .Po.Py Py Pt)’“
v
( }: PGP‘P,P,.Y@ Yo Yo ﬁ@
o'p 1

; 3 +n +na +
or, denoting n, “: n’ a‘ by o+ 38

[ ]
T (ﬂ) ( ~ Po.Py Py Pg\m=
At sz VpoPsPePyYo Yo Yo Po |
1% <3,
v
[T Vomiman e te'Te'e ) .
o gﬂ'

p n



Now, for m = 1 one has for this term

‘ Pe P, P
v Q l -
S;Z pop‘pﬂp‘Y ﬁ
1 pfdﬁ
P P P
g ‘PgPyPgPy 0
o, %0,
s By

But this is multiplied by"y y y where m, + m ta >0
s$o that the second term, i.e., the infinite sum for which
; o’ 2 O+ cannct contribute to the evaluation of terms

A/ oRyPafy for which “a + n *‘n‘ + n, " LA Form> 1
the argument is very much the same. In the expression

2 Im ”p ,p Pg P, m=~]
136
p¢

ﬂ
Z v ..Pg Py P,BP.)j
p,p,p,pbyo Yo Yo o
"%

these terms for which j = 0 do net invelve tke V's for
which 6 b3 L For § = 1 these V‘s appear and are each
multipliad by terms for which % 2 1 which results in

terms for which e'p > sn and thm cannot contribute to



the evaluation of the Vn oP NNy for whieh na*n;*n.*n‘ﬂﬁ%.
For § > 1 this is even more true.

Hence for that part of the evaluation of
Vo n n.p from terms involving (f Gydt )™ 1t is not

o3
necessary to substitute the whele infinite series {19)
for ¥ but only that part of it for which ab'< Oy It
can be shown in a similar manner thﬂt the same statement
m¢1

is true far those torms invelving v(f Gydt
f Gydt (I Gydt =t This proves thc statement made
in the 1&it parngraph»

That is, one first uvaluatta those v
RNy Nghy
fur which o, = 1, then those for which o, = 2 in terms
of the preceding ones, then those feor uh&eh o, = 3, ete.,
80 that expressions are obtained which define the
Yo non.n explicitly instead of ones which define them

A R W ‘ ,

by means of impliecit relations.

Ma jors . , Equa=
tion (17) can be rewritten in the form

. " o . .
(21) y(t) = G ¥, t OV, ey, taf,
, t) P, .Py Py
+
gx P,P,P,P(y) Yo Yo Yy

where p is the "power" of ¥ in the general term and the

general term is given by

25



(22) @ =Ac - W
- mmomom 250, n Tm Im Tn!

. t.. v t- . e
X {mk Loyl it faswt N i oGidtz )
t t,. t,. . .me
4 fel"gﬁ( b;ﬁj:aivat*)(f:ﬁ?dt.)” '
o ot m
+ (g, * kign)(faﬁi’fdtx)
+ft[(k 3 +k g ) +k }(ft*é?at )"de
: 'Qk Qg“ 19” ‘gu O ' ) 2 . 3
t oty o rten. om
vk [ T fo"‘g“( }';Gydt Vet ‘dtt}.

Absolute and uniform convergence of (21) is implied by
that of (17).
Consider the equation

(23) () = la Iy, ¢ la Iy, + la ly, + ls, 8,

Py.Py Py
Z“‘pap‘p’ ( )Y Y'Y,

mmmm is obtained from oy . . by replacing

where |c|

0L ® e
coefficient funetiona by their absolute values, 1.e». by
replacing A o cq » b . kj, é, G, G, 30. I' by their

respective absolute values. Convergence of this serlies

26



for all values of «}o. ir”. Yo %o and t 3 O follows from
that of the series (18), The formal solution of (23),

_ m, m m
(24) x= ) w ,m%%&h ¥,'Y, B,
¢ 21
m

may be obtained in the same way as was (19). In faet,

W is obtained from v
MoMyMgMy W™y My

A a? %.a, b, kj, G, G, G, & I' by their absolute

on replacing

valuu, rnpactivcly. Hcm:o it follows that

(2s) 'ﬂ“am:ma“s . LEX KN ogesm

so that if series (24) converges, so does the solutien
series (19).
Consider next the equation

) ~ * o av *. -
(26) z=a iy, tay, tey *tep
P
PePyPyP e Yo Yo

Ej = 0;‘21 la 3('%)‘;

aax lal

1 pgpypap ™ ostir

‘e
PoPiPaP |1/°

Again, convergence for all values of §a’ Vor Y, and z is

 ensured by the convergence of the series (18),
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The solution series for (26),
B, m m m

1, 2, ®
(27) z = B mmm Yo Yo Yo Po
1

<,
1Y

I

v

%

may also be obtained by equating coefficients, the

By m m m Deing polynomials in a finite number of the

188
lu' with positive integral coefficients.
PoPy PP

Before discussing the series (27), which exists
as a solution to equation (26) by the implicit function

theorem, it will be shown that

(28) B

N
W, s
mm mom, m m m m

80 that the series (27) dominates the solution series {19).
First of all

B = LR P B =g =y .
1000 o 1000 0100 1 o100

=3 |

D0s0 & o010 G001 3 000y

L d

Lok}

For the proof of (28) it remains then to show that the
inequalities

(29) ; B (0’ = 1.2, sees 5*1)
oM B m s mm mom, m ' .

imply the validity of

(30) “onnm SBnmmm (o, = n).

9288 0183
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For the evaluation of the coefficlents w
| | PoPyPgPy
where 6p = n one substitutes. for x on the right side of
(23) the sum
m_m, m, M
\ P Tour S Pla |
Z 'kemxm,M,(t)yo Yo ¥, By *
l$6§<n

I1f, instead, the sum

m_m m,m
- s 0. %, Bo B
S L R 2 2
< :
1 a§<n
were substituted, the resulting coefficients km m.m
m m mm 0427

of terms in ?e°9e’y°'$°' for which ¢, = n would be

greater than the corresponding coefficients Y omomm
01 89

respectively, because of inequalities (29). Now

t Mo My My
’“‘memimam (5 ) Yo Yo Yo
nei
t) Mo My My M
" ‘almemxms“ (1) Yo Yo Yo *nea
and
t ol
i“’mgmlm’m (1) s jalmemim’m

so that the coefficients k (aﬁ = n) are each

m |, mgmy
less than or equal to the corresponding coefficients
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obtained by substituting sn»z for z on the tight side
of equation (26)., But these coefficients are the

B . Hence w (t) g8 (with o = n)
o tam ot ¢ LAY Tt (20
follows, This completes the proof of (28).

It is now possible to give conditions which
ensure the convergence of the solution series (19). For,

from inequalities (2%) and (28)

(32) lVﬁom’m'm'(t)l s !vlmomim.m‘(t)

s “momtm‘m'(t) s ;;cmzm‘m' - Bmomlm,m‘

if 0 £ t ¢ T so that w.enever the series (27) converges
so does the solution series (19). In fact convergence
of (27) implies absolute and uniform convergence of (19).
| Convergence of the dominant series (2 Return=
ing to the question of convergence of series (27) it should

be noted that the coefficlents B, = .

8 N

in a2 finite number of the T;ﬁ with positive inte-
PoP PP

gral coefficients, since they are obtained by a process
which consists only of substitution followed by additions

are polynomials

and multiplications. Now, let the three positive cone~

stants M, r, R be chosen such that



—~ {p.+p, *p.*p )} M
laly oo p $ 5751557 P.%p. %P %P, P °*
. 0 1LY 8 O *"s "8 8 T 0 1 '8 ‘R
(33) u
o ST (s =0, 1, 2, 3).

Then the series

(34) x = %(9;,;;,,;%)

Py P, Py P
b T (ot ey e )t MY

. +D & +p ¥p +
PoiP TPgiP," P YR, P "R, P

'
>
dp 1 R

L]
+p +p +p +
(6, = P *p, *P,*P, *p)

dominates the series (26), kThat this ¢an be done, re-
sulting in a convergent series, follows since (26) is a
convergent series. The formal solution series for (34)

again hes coefficients which are polynomials P _ o
G138

in a finite number of the coefficients which appear on
the right side of (34). The only difference between
these and the corresponding polynomials in the solution
of (27) is that in the latter some of the terms are
missing which do appear in the former. In light of this,
the inecualities (31), and the faet that the polynomials
possess positive integral coefficients it follows that
(3%) B P .

mom‘mam‘ mumzn’m‘
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Series (34), however, 1s the expansion of the
right side of

M X

%) X = - : , - MM,

(36) (1’y +vg+ya+ﬁo)(1*§) R
A . =

Equation {36) has the eouivalent form, for |X] <R and
v +vyv + +
g * ¥, *yg Bl <7y

d+R 8 M ‘- o 4 '
(37) BE . x* o x+ 0 (Y = §_+y ty *8,)

which has

1
2
um  ME
S 1-4-3,--1-2
(38) X = ’2,u+ﬁv e

as the only solution which vanishes with Y.
An equivalent form for (38) is

Y
2

(39) X == _(l" S <1“§) . 6"1‘(5}%)"'

R®

which may be expanded into a convergent series in

§°n '}o' Yo' Ba provided

32
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*» * " ‘ d B .
(40) 19, * ¥, * v, * 50‘ <a

This series for the right side of (39) must
then coincide with the formal series solution of (34),
Hence (27) will converge whenever inequality (40) is
satisfied. Thus the series solution {19) to the original
equation {17) will also converge, absolutely and uni-

- formly, under this conditioen.

Since uniform and absolute convergence of (19)
and of {17) justifies the operations carried out in
evaluating the solution series (19) it follows that (19)
is a solution of equation (17) and hence of equation (13).
Due to the uniform convergence of the series (19) for y
it follows that y can be obtained from (19) by inte-
gration. That is,

o et ot ot P,.P, Py P
. § {‘[oja&fo' vPoPg P;Pa(tﬁ )dt‘dtsdt‘jra,‘yc"j':ﬁ;}
o =1

w 8 a .
+éy°t MEARR L

and this is the solution to the differential equation (7)
with the specified initial conditions. |



CHAPTER V
UNIQUENESS OF THE SOLUTION

It will now be shown that there exists a
constant h > 0 such that if I?el < h, I?ol < h and
lyol < h then 2 solution of (17) which is bounded by h

must be unique.

For, suppose u and u + v to be two bounded
solutions to {17) with v(t) # 0. Then from (17), sub~

tracting u from u + v,

ol m_m m
) T Pho' Yiler
(41) v =A Zcu*—r—ﬂ&-‘-—r?evcvcx

6n>1 m matmi .m‘ tm-
(0o [un+] Blurviat ) Glurvlae )"
x{mkagM b [utv . utvldt, K utvlde,

me3

t, t,
. (bou'*fﬂﬂudt&)(feﬁudt J ]
+mk ftr [(b [ w]*ft‘é[ +v] )(ft’éf +lae )°7
ol g lLib tuty. o utvlidt, “a utvidt

tl . . tt. m*t
-(bou«r_ro Gudt_)( fe Gudt,)" Jdt

t t.
+(k°gn*k$gn){(feﬁf.u+v}dtx)“ - ([ﬁcs‘,m:1 )"

(continued on next page)



t o tz. m
+ f,,“mu*“,“u’“*ka%’“fo Glutvldt )
t, . ®
.(f;ﬁndt‘) lat
' t Wb, ets. L, . ® .
*k’ferf;ig“[(I;‘G[u+v]dt')m_(I;SGudt.) }dttdts}’

The right-hand side of (41) can be expressed in terms of
"powers"™ of u. That is, for terms involving

L 3 m $ n
(f Gelutvlds ) - (f Guds ) one has

0 3 ° 1

( I:Gudss : j‘:cvdsf - ( f; Guds, )"

Mey M & ’ k ". | mek
PINIRTRAI R
1103 3

8 - (| s ‘ .
) IOGVd'; z:(k)(fusud‘z)k(f;swé‘g)m k1
k=0
so that for 0 ¢ 8 T

8 ‘ m 8 )
|(f°G'[u+v]d!1) . (Ioﬁud;‘) |
Rel
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s ;I:lmdgxkge(:)(.r:mést)k(j':{étd,‘ ym=kel ‘-;“ ;Hv-k-x
L) e
: G'(I:tc*sm,;;m N,
k=0

v )" ma+ 9™
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511!1118!‘17.

H(b lutv] + ré[“wjd':)(I;é[u*v]dix)mu

o

- (b, + [Guas )(["Guss )™

= |(b [u*v}+f’6[u+yjd; ) Z ( )(rﬁud: ) (I Gvd m-k-l

mﬂ‘l‘

, . 8,
- (bou + I:Gudai)(feﬁudsl)

M-l

= by + f‘ems ><j'aads )

Hb,Lutv]+] Glurvias,) Z ( )([‘Guds ) (I.Gvd i
k=0

$v gmd(lbal + I:lé!d: 7(f iéldsi)m“‘

Be% met\ k_meke1 met

+ (3‘*5)(“:0! + Jl G(ds ) z (m ‘)u v (f lGlds )
k=0
m-—z A3

vl |+ f‘leids )(f I6las )" [T

BoF [me1) _k_mekes
+ (u+v) Z )\1 v ]
k=0
me1

§ FIn 4] 18las ) 161as )" a3 )

Mwg

"~

¢ ¥l |+ GNEN) " alTR) .



Thus, on 0 § t § T, from equation (41)

Ivl g 1Al ) leg l *“1*'1;*157 mv(tv)

o>l

< {mlk_lg (Ib, 1+8T)(EN" (14T 1)
+ Uk lg, + Ik Ig )ED"
v LUK, 15, + e 1 )F + Ik, I3, 17(ED"
v i T T @0y, 10, My 1

Recalling the series in (18) one observes that the above
series is the termewise derivative of a convergent power

series and hence is convergent., Making the obvious sube

stitution one rewrites the above as

: m ) m B e Ml
(42) vl g o'ggv Aﬁem‘m‘m! cl Q‘Vg' 1!70‘ M)

Replacing |v| by v and dividing each member by this posie

tive number it follows that

(43) 15 ) A, mmgntY lm”lv lm‘lv (107
0yl

37
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But this series vanishes for 90 = ?9 =
Ya = utv = 0 and thus it follows that there is some
positive number h such that if }?ol < h, fﬁ&l <h,
lyo‘ < h and utv < 3h, then inequality (43) is false.
Hence 1f |5 | <h, Iy | <n, |y | <h T <h, Tu™) <n
then inequality (43) is false contradicting the assump~
tion that v(t) Z 0. This proves the assertion that the
- solution is unique if it along with the initial condi-

tions are bounded by a small enough positive number.
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APPENDIX

CALCULATION OF THE RESOLVENT KERNEL

‘ In Chapter 11l the resolvent kernel I' for the
kernel K was obtained in closed form by solving & certain
differential of fourth order. The methods employed there
will now be extended to the more general case in which
the kernel K is a polynomial of nth degree in s-t. That

is, suppose

t
u{t) + f K(t-s)u(s)ds = v(t)
o
is equivalent to

t
v(t) + [ T{t-s)v(s)ds = ult)
o

and that

[ ]

n

, -k

K(x) = Z ﬁ'x.
k=0

.

Then from the reciprocal relation

r{x) + K(x) + j:x(x-y)r(y)dy = 0
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one obtains by successive differentiation

' PE (pejer)
I‘m) . m(!1‘) . f-l((p)(xa-y)l‘(y)dy . z‘f pejei
1+ j'o
(P"qu."*pﬂ"’l)-

(The differentiability of I can be verified by considering
its Neumann series in terms of K.) Then, since K is a
polynomial of nth degree, I" satisfles the differential
equation

(n+s1) (n) (n=1)

+al +arl + ses +aI'=0
-] 1 n

with the initial conditions

p p=d p=i=t
‘P( )<0) = *lp - ljr'( )(0), (W.l.“hﬁ)a
30

Now, this differential equation can be solved
if one solves the corresponding algebraic equation

R R
gng%;*;“#a;a”"!'.au#‘ = 0
] 4 n

for its n+l roots. (Note that a, # 0, for it was supposed
that K was a polynomial of degree n.) If the n+l roots xy
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are distinct, then I takes the form

n

. rjx
= Z: Ajo

J=0

where the ry # 0 since a # 0, HNow the‘hj are constants
which satisfy the system of linear equations

o (p) |
Z r’P ﬁj =TI (0). (p‘-‘o,l,n.,n)
=0

where the rﬁp)(o) are as given above., The determinant of
this system, being of Vandermonde type, is cattaiﬁly
different from zero because of the hypothesis that the
roots Ty sre all distinet, Thus thn~A3 can always be
determined and the solution I' ¢an then be written,

In case the roois ry are not all distinet, on
the other hand, the form taken by I is somewhet dif-
ferent. Buppose, for example, that two of the roots,
tay'ro and .o are equal and that the remaining n-l roots

are distinet from these and from each other, Then

X o rex
re(ax+ale® + | Ay
=2

where thcﬁhj iatlafy the linear system



pro A+ 5}21 £l Ay =T (0), (p’G,l,*'-fn).

Again the determinant does not vanish so that the Aj can
be determined.

Similar results are obtained in those cases
where three of the roots rj are equal, or two pairs of
equal roots occur, etec. The problem of obtaining I is
thus reduced to that of finding the zeroces of a poly~
nomial and then solving a2 system of linear algebraic
equations. |

The case of polynomial kernels would appear to
be of particular interest also for the approximate solu~
tion of Volterra integral equations in which the kernel
is analytic in s-t, |

A more general discussion in which it is sup~
posed only that K(s,t) satisfies a homogeneous differ~
ential equation of the type

n
j};o aj(s) -gé-; K(s,t) =0

has been given by Volterra (5, p. 67).
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