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SOLUTION OF A NONLINEAR EQUATION

ARISING IN A DISCONTINUOUS CONTROL PROBLEM

CHAPTER I

TRODLETIM

Continuously operating control elements have

long been used in the automatic control of various types
of physical systems and the resulting automatic control
systems have been extensively treated in the literature.
Systems of this type, however, have the disadvantage of
not making full use of the power available in the driving
element, resulting in many cases in a very uneconomical

arrangement. In recent years, then, considerable effort
has been made to replace these continuously operating

elements by ones which approximate an "on-off" (relay)

type element for it has been recognized that although
a linear system offers the advantage of ease of analysis
certain nonlinear systems may be employed which make full

use of the power available and which also possess better
control characteristics than would be possible by using
a linear system. Also the relatively simple construction
of the relay type system usually has the two advantages
of higher reliability and lower cost,

In the present study several assumptions are
made is assumed that the "uncontrolled" system



possesses only one degree of freedom and that it is
governed by a linear,second order differential equation
with constant coefficients It is also assumed that the
values of the error and its first two time derivatives
are measured precisely. These are the standard assump-

tions which are made when speaking of the idealised

system (1, p. 11) (2, p. 3-17). In addition it is
usually assumed that the on off element can be charac-
terized mathematically by a simple step function, i.e
properties of the mechanism

and dead xone are ignored.

such as inertia, hysteresis
In this study the on-off

element is represented by a continuous function with
continuous derivatives and an effort is thus made to
include the inertia and the dead-zone of the element.

The resulting differential equation for the
system involves a uniformly convergent series in powers

of the unknown y(t) and its first three time derivatives.
This equation is then transformed into a nonlinear
Volterra integral equation of the second kind for which
the resolvent kernel is obtained. On applying the

resolvent kernel a new quation is obtained, which is
then solved by the methods of E Schmidt for nonlinear
integral equations (4, p. 370-399). This discussion

includes a proof of uniqueness of the solution under
certain restrictions. In the appendix is given a



discussion of resolvent kernels for Volterra integral
equations of the second kind. It is shown that if the
kernel K(at) is a polynomial in s.t, then the resolvent
r(sat) can be obtained in closed form, making use of

exponential functions.
Although nothing has been obtained thus far

regarding limit cycles in such systems as have been
described here, it is hoped that this approach to the
problem will eventually yield some results in that
direction. This very important problem is thus the

next to be considered in these investig tions.
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Denoting by y(t) the error (e.g.,
error in the case of a missile), ththe differ
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Itstermines the sign
the contr.l fun t

NI are taken to be constant*.
A more realistic form for

taking into account the "dead 10040

as the inertia in the olomont itself
sechanism (e.g.,the mechanism empl
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the lay as we

in the control
for control of
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the flaps in a miss )4. effect of inertia is
approximated by choosing a function f which does not

change sign discontinuously but which changes sign in *

continuous manner; the offset of the deed Zone is appro ell

tod by requiring that f remain equal to sere in an
erval containing O. For this pipose on. might

employ the entire function

By taking sufficiently la x) can be mad* to

approximate arbitrarily cies ly the discontinuous funs
tion

with a dead son* of length 2A and centered about x O.

Theexact form of equation (2) considered in
this study is the following
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The function (F) is
exists since B is an

equation

be auppos

or y, * and *. Also,

( 0)

say k F k(P) ka

It should be noted that since F bo*

b$0,

in which is some entire function which approximates the

desired situation. it will be assumed further that 0(x)
is a strictly increasing function of x such that 0(0) 0.

tee derivative of 001, whie
ctiong 0(F) is given by

NT*

an equation of third order. Thus

initial conditions will be given
n order to completely determine ft

initial value 00 must be given. Moreover, from ecru&

and (9) and the sesumption that k b 0,

so that y is a continuous function since g is everywhere

different from zero,



Since 0

is an entire function and since F is $ linear combination
of differentiable (and hence bounded) functions it
follow* that the power series in powers of F for 0(F)
converges for ail values of t in any interval Do 11

Denote the series for (F) by

1 by integrating the
and adding 00.

series

That this series converges uniformly and absolutely for t
in any closed interval (0, T) follow* from the Weierstrass

tests F is bounded on (0. 1) and 0 is an entire
unction. Thus the series for 0(F) can bar obtained from

ft

respect to Is

se derivative

noa

by term from 0 to t

differentiating

7

converges and absolutely [0,, T1by the

tes



in in it* radius convergence. Thus, (r) is given by



(12)

CHAPTER

EGAAL EQUATION

quaticn (7) can be transformed into an inte,*
gral equation for y as follow*. Replacing ft and 0 by

their series *satiation* one obtains the equation

nal

nCn

+ k kat.

where tha terms which or. linear in y# *# * and
bean separated out. Replacing y, t and * in *audit ( 2



dts

on* obtains the quation

*0 *0 *0

given by

as,.
(continued on next
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is a nonlinear t
R. Schmidt (4, p.370)

and the An ( 4) satisfy the equati

on nonlinear integral quation* except that equation 13)

is of Volterra type. This, however, causes no particular
difficulty in applying Schmidt methods.

Consider now the equation

)

quation

is work

sythe kernel K is a polynomial it at Lye

obtain its sr 'vents kernel in closd form,
the kernel in the equivalent equation

wherhe rn 02, are distinct roots of the
qua



In th. cas. of multiple ro a similar expression may be

obtain lit).
n deriving for it is sufe

to suppose to be a continuous function.
that tho right side of equation (13) is continuous

one can thus employ the resolvent kernel r to remit'
lotion (13) as

nl

ot

yo as(t)y. 4Po
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11t-t )rindts

0

do111t d
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The right.hand o of equation (16) is an integral

power series" in the arguments ii(t)t Yo Ye, Yo and po

which contains no term linear in y(t) alone (Not* that

if **(t) be replaced by a constant x the general term in

the series of (16) is of nth degree in the arents
Yo. y0, Ye Thus the only linear terms on the ri h

side of ) are the first four.)
Making use of the expansion



the series in equation 6) bacces

Mtn noting that G(0) b, equation 16) iiwritten

16



*** GVdt, it
o

bo

( )

Ad in nt seriis will now be obtained for the
(17
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Donoting by 7 the maximum of absolute value of 8

function f(t) on th interval Cop T] on. obtains the
associated equation

(continued on next page)
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Now, th* sies on the right side of 18dominates that

on the zight side of (17) whenever 0 tgTand

1 < vs 1

e that the eerie 7) converges uniformly and abso-

lutely subject to these conditions provided the series
( 8) converges, But (18) can be rewritten

+av fey*5 8

T) k 1(i+rTfl +X 0+X +X

T)ulk 1(11). 4n
n=2

which converges for all values of

+X +X +X01 *

+x +x +x )
0 1 a
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solution of it uation
of an infinite series.
are obtained such that this series converges and repre.

cents the solution to (17). Substitute for V in (17)
the sari**

(19) is' at

CHAPTER IV

THE 8OUJTiC OF THE INTEGRAL EQUATICiti

v
PoP1P P

a

* the coefficient functionsvmmmm015$
undetermined, On equating coefficients of like powers
in * yo and NIthe v can be determined

inc. >1 in the series of equation (17) the
only terms which are linear on the right side of (17)
are the first four. Hone* the linear terms are detera.

mined as

(20) v1000 v a
0100 1 0010 1 0001

On substituting 9) for yon the right si
no. n

(17) he coefficient of *0 yoniyo is obtained and

obtained in the form

In succeeding sections conditions

1,P0,P1 Ps Ps
rY0 YO 0 0

as yet

22



equatod to v (t). It can be seen that the exOt 25
aion for ) will, be in terms of only those

ch < 0 This is immediately

those terms of (17) for which m in 0 for
11P0PIP
apparent

in those terms y does not oven appear. For m

sider the formal substitution of (19) for y in
t. a

terms of 7) involving Gild%)

(s:14 E_Po.121
P P

PoPIP4P Yo Yo Yo o
k

tin V
PoPiPsPs

or, denoting rç 4* n

r .1140.Ps Ps Ps
.1 Qv dt y

PoP PsPs °°4141

con.',

a

dtthis may be writton as
PoPsPePs

Ps Ps Ps)
P PiPsY0 Ye yo 0

n by as

P Psypa PaPsi * y* o0

..Po P Ps Pe
Vp poops'. o 0
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But this s multiplied io-Ifo-Ya whir m0 t a

+ la > 0

so that the ascend term,i.e., the infinite sum for which
cl k cr,cannot contribute to the 'valuation of termsp n

or which n + + * > 1
1

the argument is very much thi sans. In thi expression

these

which

multipli
terms f

d

V 1PeP PeP e

.P P

P P P Pe e 1 Y0

0 do not involve the V's for
J 1 these V's appear and are each
for hich a 1 which results in
d and thus cannot contributs to

Now, for n has for this term
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P PIP P Yo o o

p is the "power of the general term and the

3 term is given by

uation of

it is not

the evaluation of he v forh eh
no

+nas
For j 1 this is even more true.

Nonce for that part of thet.
from terms involving (j Gidvnons

necessary to substitute tho whole infinite series (19)

for but only that part of it for which It
an be shown in a similar manner that the same statement

t.
ue for those terms involving y(J Griat )

011.1t uydt . This proves the statement made
o o

in the last paragraph.

That is, one first evaluates tho
for which 1 then those for which en m 2 in term

of the preceding ones then those for which On

so that expressions are obtained which define the

explicitly instead of ones which define them

by means of implicit relations.
Eque.

ti (17) can be roe the o

(2 y(t) 0 20
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that of 17)

on

(23) x(t

wh

CO

mmmm
o

nt funct
replacing As

respective absolute

of (21) is implied by

0 >1 P°P1110) x YO°Y01Y08E
t ..P .P P

jr absolute values,
4, do b4 de r by their

Convergence of this series

26

obtained from by r.placinç
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or all values of irey, y0, x, and t 0 follows from

that of he series (18). The formal solution of (23)

(24)

may be o

25)

(26)

where

Ivl

P Pp2p

ed in t
obtained fr

A b k d, d
a o J.

values, respectively. Hence i

f series ) converges does tho solution

19)

Consider next the equation

Again, con ergenco for all values of

ensured by the convergence of the seni

max
OStST

max la
OStST

In fact,
replacing

heir absolute

01lows that

(0 t T

202
POPOseo Yo Yo

PoPiPsP (*)
Yo

(18

rid s is

y as (9)



(27

(28)

(29

(3o)

also be obta
being

imply the validity of

uating co.fftcients,
in a finite number of *

with positive integral coofficients.P0P P$P
Before discussing the series (21), which

a solution to equation (26) by the implicit function
orem it will be shown that

the series (21) dominates the solution series 19

all

For the proof of (28) ii remains then to show that the
inequalities

28

The solution s (26

8
1000 10

0°



For the *vs us ion of the coefficients w
PoPIP Ps

where = n on* substitutes for x on the right side of
(21) the sum

and

nstead, the sum

ubstituted, the resulting coefficients
of

111,

m
terms in io'yeiyo'po for which Om = n would be

greater than the corresponding coefficients ww.m0

respectively, because of inequalities (29). Now

nsq

M Al M

( )i (4* /y
ximis o

m m m0.
Y0

m (1) nwl
mo,

so that the coefficients k (0M = n) a each
%%mama

less than or equal to the corresponding coefficients



( 2)

0 t T so that the series 27) converges

o does tho solution series 19). In fact converg
f (27) implies absolute and uniform convergence o

30

obtained by substituting811.1 for z on the r ht side
of equation (26). But these coefficients are the

Hence w (t) 4 B with a
mo om m m

for each value of t in to, T) and the result (30)
follows. This completes the proof of (28)

It is now possible to give conditions which
ensure the convergence of the solution series (19) For,

from inequalities (25) 8 d (28)

(19).

Return-

ing to the question of convergence of eerie (27) it should

be noted that the coefficients B are polynomials

in a finite number of the 1711 with positive inte-PoPiPiP
grill coefficients sine, they are obtained by a process
which consists only of substitution followed by additions
and multiplications. Now, let the three positive con»
stants M, r R be chosen such that



(33)

Then the sir

(35)

Yo+Yo + o)

(Po+Pl Ps+P M
IPoPePloPIP P +P +P +P P. o a s

211 0, 1, 2,

mi.:1343%,131vp8APII(P P "IT0 111 10 79 ip 1-0 xi°
P P :P P P +P +P 41D Pce>10 1 2 s ro sR

se p +p +ps+ps

dominates he eerie (26) this can be done,
suiting in a convergent series, follows since (26)
convergent series. The formal solution series for
again has coefficients which are polynomials Pm m m m

s $
ite number of the coefficients which appear on

right side of 34). The only difference between

these and the corresponding polynomials in the solut on

f (27) is that in the latter some of the erms are

missing which do appear in the former. In light of this,
the inequalities (31), and the feet that the polynomials
possess positive integral coefficients it follows that



right side of

(36) X =

(37

which h

(38) X =

(39)

Yo 4. *0 + yo
o)( )r

(Y E io+ife

as the ly solution which vanishes with Y.

An equivalent form for (38) is

which may be expanded into a convergent series in

o 0
provided

+Po)

32

Series however, is the expansion of the

Equation (36) has the equiv lent for . for IXI and

IS;et Yo Yo Poi 4 re



(40) + p I < a*

is series for the right side of 39) must

then coincid, with tho formal series solution of (34)
Nene (27) will convergi whenever inequality (40) is

satisfied. Thus the series solution (19) to the

equation (17) will also converge, absolutely and

formly, under this condition.
Since uniform and absolute convergence of (19)

end of ( 7) justifi's the operations carried out
evaluating the solution serios (19) it follows that ( 9)
s a solution of equation (17) and hence of equation (13)

Due to the uniform convergence of the series (19) for Y

it follows that y can be obtained from (19) by

int.gration.That is,

E {sift
0 s

d sifclodd y
.P0.P1

esPs Ps}PPPP
cr *

nd this is the solution the differ tial equation (7)

with the specified initial conditions*
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CHAPTER V

MS OF THE SOLUTION

It will now be shown that there exists
constant h 0 such that if liol < h. liol < h and
1y01 < h then a solution of (17) which is bounded by h
must be unique.

For, suppose u and u + v to be two bounded

solutions to (17) with v(t) $ 4. Then from 17). sub-
tr cting u from u v.

ko
bo u

u+v]dt
1

it t m.sbu+t Gudt )(r G

G[u+v dt I
1

(continued on next ge)

bou s)( Gudt

t. t.
+(k ) ( GEu ]dti Gudt



The ht*hand side of (41) can be expressed in
of u. That is, for terms involving

iu+v3d ( dud ) one has

duds Gvds )
1

that for 0 4

( 4.r. ,d.,

m.,
did. E (;)(

k=0

;c1 IGIds

u+v3dt5 Gudt )m3dt d
s s

(aT)m a v)

k

ti
Gudta 3d

m

kol
U



mi 10) v + isavds
° 0

.m-1..v u
lbo

siii[u+v]ds )(fsGLu+vid
0

1,i+v ds

mat, .1
E k

k=0

ka.0

uds
ma I

m.$

+(bo(u+v)
/m11

dru+vjdsi) L k
k3s0

U + raudi ) G
0 0 0

tk ovokfts,uds I oWdst

;im.$) k
161 ) a

km0

avo.
1)( u+v

mes

36
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Thus on 0 t T, from o 0 (41)

(43)

jko

T)(GT)m

Recalling the in (18) on. observes that the above
series is the term wise derivative of a convergent power
series and hence is convergent. Making the obvious sub*

stitution one rewrites the above as

ye

yo

37

Replacing by ; and dividing each member by thLs pos

t vs number follows that



But this series vanishes forio = Yo =

yo = u+v 0 and thus it follows that there is some

positive number h such that if liol < h < h,

lye' < h and ;:;+7 < 3h, then inequality (43) is foils
Hence if 1%1 < h, IY01 < h. lyol < h. u < h, (u+v) < h
then inequality (43) is false contradicting the sssump*

tion that v(t) 4. This proves the assertion that the

solution is unique if it along with the initial condi..
tions are bounded by all enough positive number.
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eQuivalent to

ds u(t)

and that

1.1(t) +

K(

APPENDIX

CALCULATICZ4 OF THE RESOLVENT KERNEL

In Chapter III the resoivent kernel r for hs

kernel K was obtained in closed form by solving a certain
differential of fourth order. The methods employed there

now be extended to the more general case in which

kernel K is a polynomial of nth degree in at. That

is, suppose

U( )d 111 V(t)

*k k
x

km0

Then from the reciprocal relation

K(x) K(x...y)r(y)dy al 0

40



one obtains by successive differentiation

1'(p)
(p) (p)

differentiability of r can be verified by considering
Neumann series terms of K.) Then, since K is a

ial of nth degree, r satisfies the differential

with the initial conditions

(P)r 0) -sp

x-y) y +

Now, this differential equation can be solved
I one solves the corresponding algebraic equation

rpot
+

P210.1000

or its n+l roots. that an # 0, for it was suppo
that was a polynomial of degree n.) if the n roots r,

41



thenF takes the fora

(AX A
o *

i=0

where he r 0 since a # 0. Now the A,

which satisfy the system of linear equatioi

A satisfy the linear system

(0
where t

,r r as given above. The

this system, being of Vandermonde type, is
different from zero because of the hypo .
roots r are all distinct. Thus the A

re constants

tainly
that the
ways be

determined and the solution r ea then be written.
case the roots r3 are not all distinct, on

the h ad, the form taken by F is somewhat difu

Suppos for example, that of the roots,
say r and r are equal and that the remaining n-1 roots
are distinct from these and from each other. Then

A

42



pr A+

K(s,t)

(0), (p=0,

=0

has been iv by Volt (6. P. 67).

43

Again the determinant does not vanish so that he A

be determined.

Similar results are obta thos cases

where three of the roots r are oo two pairs of

equal roots occur, etc The problem of obtaining is
thus reduced to that of finding the zero.. of a poly*
nomial and then solving a system of linear algebraic
equations.

The case of polynomial kernels would appear to

be of particular interest also for the approximate solu
tion of Volterra integral equations in which the kernel

is analytic in s..t
A more general discussion in which it is sups.

posed only that K(s,t) satisfies a homogeneous differ1.

ential equation of the type




