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Internal dosimetry is challenging and relies on estimates using MIRD or ICRP 

biokinetic models. To address this, we looked at gene expression analysis in whole 

blood from radiotherapy patients. Patients with relapsed or refractory neuroblastoma 

who received 131I-mIBG at UCSF were used to correlate internal ionizing radiation 

(IR) dose with selected gene expression. 40 patients, median age 7 years, had blood 

drawn at baseline, 72, 96, and 120 hours after 131I-mIBG infusion. A total of 14 

patients received mIBG treatment only, while 19 patients received Irinotecan and 7 

received Vorinostat in combination with mIBG.   

Whole body absorbed dose was calculated for each patient based on the mIBG 

treatment doses using MIRD internal dosimetry models. Two models were used and 

compared with the decision being to use a model that was predictive based on an 

average of three patient’s responses. We then assessed transcripts using RT-PCR that 

were the most significant for describing the mixed therapeutic treatments over time. 

Modulation was evaluated statistically using multiple regression analysis for data at 

hours 0, 72, 96. A total of 6 genes were analyzed across 40 patients: CDKN1A, 

 



 

FDXR, GADD45A, BCLXL, STAT5B, and BAX. Four genes were significantly 

modulated upon exposure to 131I-mIBG at 72 hours, as well as at 96 hours, when 

controlling for dose and chemotherapy. Five genes showed significant responses to 

Irinotecan combined with mIBG and 2 had significant responses to Vorinostat 

combined with mIBG, all when controlling for time and dose. A model was then 

developed to predict absorbed dose based on modulation of gene transcripts within 

white blood cells.  

This study represents a unique effort of using radiotherapy patients to 

characterize biomarkers that may be useful for biodosimetry and treatment. Our data 

indicates that transcripts, which have been previously identified as biomarkers of 

external exposures in ex vivo whole blood and in vivo radiotherapy patients, are also 

good indicators of internal exposure over time. The characterization of internal 

irradiation-responsive genes will provide valuable understanding of the genetic 

mechanisms related to internal exposures.
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1.0 INTRODUCTION 

1.1 Neuroblastoma 

 Neuroblastoma is the most common extracranial solid tumor in childhood 

accounting for about 7% of all patients younger than 15 years. This small percentage 

accounts for 15% of all pediatric cancer deaths (Maris, Hogarty, Bagatell, & Cohn, 

2007). The tumors appear in tissue associated with the sympathetic nervous system, 

with 65% of the tumors developing in the abdomen and half of these from the adrenal 

medulla (Maris et al., 2007). In 1991, the disease occurred 1 in every 10,000 and only 

30% of all diagnosed survived for greater than 5 years. The survival rate was strongly 

correlated with the stage of the disease when found (Fielding & Flower, 1991). And 

only 20% of all patients with metastatic neuroblastoma survive longer than 5 years 

(Matthay et al., 1998). While treatment has advanced, this statistic has barely 

changed. 

 The outcome of patients diagnosed with neuroblastoma depends upon a few 

factors. One is the age of diagnosis. For patients older than 18 months, the outcome is 

significantly less optimistic compared to earlier onset (DuBois & Matthay, 2008). 

Younger patients have better outlooks because they are less likely to develop 

recurrent disease as compared to older patients. The next factor is the presence of a 

mutated and amplified avian myelocytomatosis viral oncogene neuroblastoma derived 

homolog (MYCN). This amplified gene, a proto-oncogene, is found in approximately 

20% of all tumors and is correlated with a poor outcome for patients (Maris et al., 

2007). The last factor is the type of cancer found. There are three ways neuroblastoma 

can present itself: localized tumors, metastasis (multiple sites within the body), and 
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the so-called 4S, which is the most progressive form of neuroblastoma according to 

its anatomical presence at diagnosis (see Appendix A). A total of 40% of all cases 

will be with localized tumors while about half will be as metastasis with the 

remainder being 4S (Maris et al., 2007). Metastasis is accompanied by a poor 

outcome. A description of the different groups of neuroblastoma patients can be 

found in Appendix A. 

  

1.2 Methods of Treatment for Neuroblastoma 

 Therapy differs based on the risk-group assigned to the patient. Patients with 

low-risk neuroblastoma are often treated with only surgery, while intermediate-risk 

often incorporates surgery with 4 to 8 months of multi-agent chemotherapy. High-risk 

patients receive intensive chemotherapy, surgery, myeloablative consolidation 

therapy, and targeted therapy for the small cancer left (Wolden, 2007). The more 

progressed and high-risk the disease, the more complex the therapy will be. 
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Figure 1-1 Image of Neuroblastoma Patient undergoing mIBG radiotherapy 
(Figure is adapted from Maris et al., 2007) The image shows an scan of a patient after 

receiving mIBG treatment. Arrows indicate examples of metastatic neuroblastoma 
tumors. 

 
 

1.2.1 Radiation Therapy  

One of the primary rules of radiosensitivity of cells is that the more 

proliferative the cell is the more radiosensitive it is (Hall & Giaccia, 2012). This is 

largely because the task of undergoing mitosis requires the cell to undergo many 

checks and if any do not pass, the cell will die. Radiation therapy is used to take 

advantage of this weakness, as cancer cells are very proliferative compared to normal 

body cells. For this reason, radiation therapy remains one of the most prevalent and 
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effective forms of cancer therapy. However, even though cancer cells are more 

susceptible to death from radiation, normal cells are still affected. Heavy amounts of 

radiation induce some early effects and late effects on normal tissues, such as 

secondary cancers (Hall & Giaccia, 2012). In order to limit this risk, there is a strong 

desire to maximize the therapeutic ratio.  

Two emerging strategies have the potential to achieve better therapeutic 

ratios, which are broadly applicable to many cancers.  The first selectively directs 

radiation to tumor cells, most commonly by linking a therapeutic radionuclide with a 

targeting small molecule or monoclonal antibody.  The second strategy combines 

radiation with drugs that preferentially sensitize tumor cells to the effects of radiation, 

ideally without increasing the risk of radiation injury to normal tissues. For stage III 

and IV neuroblastoma, both are used. 

 

1.2.1.1 Targeted Therapy  

 Using radionuclide-tagged chemicals is known as targeted radionuclide 

therapy (TaRT).  Rather than whole body radiation treatment, IMRT, or even Proton 

therapy, TaRT allows clinicians to target tumors directly throughout the body while 

sparing surrounding tissues. TaRT involves utilizing molecules that target specific 

tumors based upon the affinity of the tumor for that chemical. So, rather than 

attacking a tumor at the volume level, TaRT affects the tumor at the cellular level 

(Meredith, Wong, & Knox, 2007).   
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1.2.1.2 131I-Metaiodobenzylguanidine 

 Patients with advanced neuroblastoma have poor outcomes that necessitate 

novel treatment approaches. For patients with stage III or IV neuroblastoma, TaRT is 

often used and this therapy of choice uses Iodine-131 tagged 

metaiodobenzylguanidine (131I-mIBG). 131I-mIBG is a radiopharmaceutical that 

provides a tumor cell targeted treatment for patients with advanced neuroblastoma. 

MIBG, also known as Iobenguane, is a norepinephrine analogue that is quickly taken 

up by cells with an activated norepinephrine transporter gene (DuBois & Matthay, 

2013; Vöö, Bucerius, & Mottaghy, 2011). It has been found that mIBG is stored in 

cytoplasm and mitochondria, rather than the neurosecretory granules that store 

norepinephrine (Vöö et al., 2011). 90% of all neuroblastoma tumors are mIBG-avid 

(DuBois & Matthay, 2008; Vöö et al., 2011). 

 When using mIBG as part of TaRT, the mIBG is rapidly taken up by 

neuroblastoma tumors with a peak at 6 hours (Vöö et al., 2011). This rapid clearing 

from the blood causes only 10% to remain in the blood stream within a few hours 

after injection (Vöö et al., 2011). According to ICRP 53, mIBG concentrates in the 

liver (33%), lungs (3%), heart (0.8%), spleen (0.6%), and salivary glands (0.4%), 

along with the tumors  (ICRP, 1988). It has also been shown that approximately 15% 

of total injected activity immediately exits the body into the bladder (Koral et al., 

2008; Matthay et al., 1998, 2001).   

 mIBG can be tagged with Iodine-123, Iodine-125 or Iodine 131. Each of these 

isotopes of Iodine has a different radioactive property that causes it to be used for a 
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different application. I-123 is widely used for imaging because it provides good 

image quality and count statistics (Monsieurs 2002). It decays by electron capture and 

emits a 159 keV gamma. I-125 also decays by electron capture with a 59 day half-life 

and emits a 35 keV gamma. I-131 decays by beta minus decay with an 8.02 day half-

life and emits both a 192 keV beta particle (90%) and a 365 keV gamma (82%).  I-

131 was chosen over I-125 due to the range of its beta. I-125 was ineffective against 

larger tumor spheroids while I-131 performed well for tumors 400um or wider 

(DuBois & Matthay, 2008).  

 

Figure 1-2 Iodine-131 Decay Tree 
(http://en.wikipedia.org/wiki/File:Iodine-131-decay-scheme-simplified.svg).The 
image shows the decay tree for I-131 and the maximum beta energies associated. 

 
1.2.2 Chemotherapy 

 Irinotecan, a camptothecin topoisomerase-1 inhibitor, and vorinostat, a histone 

deacetylase inhibitor, sensitize a range of cancer cells to radiation, though with 
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different proposed mechanisms of radiation sensitization. Camptothecins, such as 

irinotecan, sensitize a range of tumor cells to the effects of radiation (Chabot, 1997; 

Kushner, Kramer, & Modak, 2011; Vassal et al., 2008).  For example, using a 

topoisomerase 1 inhibitor together with 131I-mIBG resulted in increased cytotoxicity 

in neuroblastoma preclinical models (DuBois & Matthay, 2008). Radiation 

sensitization is directly dependent upon interaction of the camptothecin with 

topoisomerase-1 and does not require transcription or new protein synthesis. 

Radiation sensitization by camptothecins is time-dependent, with sensitization not 

observed when camptothecin exposure begins following radiation therapy (Chabot, 

1997; Kushner et al., 2011; Vassal et al., 2008). 

 

Figure 1-3 Irinotecan (http://commons.wikimedia.org/wiki/File:Irinotecan.svg) 

The image shows the chemical structure of the Irinotecan. 

 

 Vorinostat and other histone deacetylase inhibitors as a class sensitize a range 

of tumor cells to the effects of radiation. Rather than an immediate increase in 

double-strand DNA breaks, histone deacetylase inhibitors prolong the presence of 

double-strand DNA breaks, as assessed by prolonged increases in γ-H2AX foci. This 

finding suggests impairment of DNA repair mechanisms and several groups have 

observed decreased expression of critical DNA repair proteins (Rad51, Rad52, Ku70, 

 

http://commons.wikimedia.org/wiki/File:Irinotecan.svg
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Ku80, and Ku86) after histone deacetylase inhibitor therapy (DuBois & Matthay, 

2013; Fantin, Loboda, & Paweletz, 2008; More, Itsara, Yang, & Geier, 2011; Munshi 

et al., 2006; Richon, 2006). 

 

Figure 1-4 Vorinostat (http://commons.wikimedia.org/wiki/File:Vorinostat.svg) 

The image shows the chemical composition of the Vorinostat pharmaceutical. 

 

1.3 Biological Effects of Radiation 

Independent of the IR source, DNA constitutes the most critical target of IR 

(Hall & Giaccia, 2012). There are two types of damage that can occur to the DNA, 

direct and indirect damage. DNA lesion encompass DNA single and double strand 

breaks (SSB and DSBs, respectively), DNA base damage and apyrimidinic/apurinic 

sites as well as DNA-protein crosslinks. Although DSBs may be the most deleterious 

of DNA damages caused by IR and the most relevant lesions to trigger a cellular 

ionizing radiation response (Hall & Giaccia, 2012), other DNA lesions may also have 

carcinogenic consequences. There is also evidence that damage to mitochondria 

might be a significant trigger for radiation response in cells (Budworth et al., 2012; 

Knops, Boldt, Wolkenhauer, & Kriehuber, 2012; S Paul & Amundson, 2008). 

 Alternatively, IR may interact with other atoms or molecules in the cell, 

producing free radicals such as reactive oxygen species (ROSs), which are generated 

by the ionization of water and iron related Fenton reactions within the cells. 

Radiolysis of water does not occur via Equation 1.1 because only one molecule is 

 

http://commons.wikimedia.org/wiki/File:Vorinostat.svg
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affected and the splitting of the molecule is unbalanced. The production of free 

radicals occurs because radiation can only interact with one water molecule at a time 

so Equation 1.2 does not apply. 

𝐻2𝑂 → 𝐻2 + 𝑂2       1.1 

2𝐻2𝑂 → 2𝐻2 + 𝑂2       1.2 

 Instead, a cascading effect of ROSs occurs within the cell as seen in Equation 

1.3. Once a bond is broken, a hydroxyl radical is formed which is considered the most 

reactive byproduct. If it does not immediately interact with something else, hydrogen 

peroxide is created. And finally, a superoxide radical is formed before reacting once 

more to the stable oxygen molecule.  

𝐻2𝑂 
𝑒−
�� ∙ 𝑂𝐻 

𝑒−
��  𝐻2𝑂2 

𝑒−
��  𝑂2− ∙ 

𝑒−
�� 𝑂2     1.3 

 This process is increasingly more reactive if Iron is in the environment, 

causing a Fenton reaction where hydrogen peroxide interacts with Iron forming 

another Hydroxyl radical.  

𝐻2𝑂2 + 𝐹𝑒2+ → 𝑂𝐻− +∙ 𝑂𝐻 + 𝐹𝑒3+     1.4 

𝑂2− ∙ +𝐹𝑒3+ → 𝑂2 + 𝐹𝑒2+      1.5 

These radicals readily damage DNA by causing chemical changes from the breakage 

of bonds. Speaking more generally, IR generates a spectrum of DNA and non-DNA 

lesions that both induce sensory proteins that can trigger repair mechanisms.  
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Figure 1-5 Repair Mechanisms after Double Strand Break in DNA 
(http://omicsonline.org/1948-5956/images/JCST-S8-001-g001.html) The image 

shows the potential causes of DSBs and the available repair processes along with the 
proteins involved with those processes. 

 

When discussing damage to DNA, there are two types of concern: double 

strand breaks (DSBs) and single strand breaks (SSBs). Approximately, between 1 to 2 

Gy, 1000 SSBs are and 40 DSBs are formed (Hall & Giaccia, 2012).  DSBs are 

considered to be the most deleterious and are thought to trigger the most significant 

impacts in the cell’s ultimate fate (Hall & Giaccia, 2012).  Because damage from 

DSBs is significantly more complicated, more time is required for the cell to repair 

the damage. Therefore, as the dose rate increases, the more genotoxic stress is placed 

on the cell, and the more likely the cell will take drastic actions, such as apoptosis. 

 

 

http://omicsonline.org/1948-5956/images/JCST-S8-001-g001.html
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1.3.1 Cellular Response to Ionizing Radiation 

Cells have evolved several mechanisms to sense and respond to cellular and 

genotoxic stress such as IR. Damage response differs by origin of cellular stress and 

can comprise of transcription factors, proto-oncogenes, signalling molecules and 

growth factors, as well as genes involved in response to tissue injury, inflammation 

and oxidative stress. 

While DNA represents the critical target for the biological effects of IR, the 

responses generated after exposure can lead to activation of signal transduction 

cascade which in many cases activate critical transcription factors such as nuclear 

factor kappa-light-chain-enhancer of activated B cells (NFKB) or Tumor protein p53 

(p53) (Criswell, Leskov, Miyamoto, Luo, & Boothman, 2003). As critical proteins 

involved in DNA repair and cell cycle arrest are regulated through protein level 

abundance this pathway might be an important determinant in cellular outcome (A. R. 

Snyder & Morgan, 2004). Exposure to IR can also lead to an increased release of 

cytokines and growth factors, allowing altered communication through these means 

(A. R. Snyder & Morgan, 2004). 

The overall response to DNA damage is controlled mainly at the 

transcriptional level through regulatory elements. Changes in gene expression have 

been reported as fast as five minutes after irradiation and at doses of 10 cGy and 

below (Riecke, Rufa, & Cordes, 2012). The available data indicates that gene 

expression varies over time, beginning with the induction of “immediate early” 

transcriptional regulators and inflammatory response genes such as JunB, followed by 

the expression of secondary damage response genes controlling growth arrest and 
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DNA repair. The most relevant pathways involved in IR induced DNA damage repair 

seems to be Base excision Repair (BER) of single strand breaks and nonhomologous 

end joining (NHEJ) as well as Homologous Repair (HR) of double strand breaks 

(Dudáš & Chovanec, 2004; Reed, 2010) . However, these repair mechanisms may not 

account for other low dose cellular “nontargeted” effects such as “redox-sensitivity”, 

bystander effects (secondary effects on adjacent cells and tissues) and low dose 

hypersensitivity (Asur, Thomas, & Tucker, 2009). 

High IR exposures can induce cell cycle arrest and apoptosis, particularly 

because of the increased number of DSBs being created. These effects can be caused 

through several pathways and involve many protein interactions and modifications 

(see Figure 1-5). The proteins ataxia telengiectasia mutated (ATM) and p53 are 

among the key players involved in mediating generalized IR responses (Hall & 

Giaccia, 2012; Pecorino, 2008). They work through multiple protein partners to affect 

an even larger number of unknown proteins and genes through various complex 

interactions suggesting that any absorbed radiation may have a biological effect by 

activating multiple pathways. Analyzing the modulation of these genes during IR 

exposure could bridge the gap between physical and biological dosimetry. 

 

1.3.2 p53 

P53 has a crucial role in abiding genomic integrity which is why this protein is 

often called “guardian of the genome” (Hall & Giaccia, 2012). It is important to 

realize though that the actual p53 dependent response to cellular stress depends highly 

on the cell type looked upon. In some cell types such as fibroblasts and epithelial 
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cells, p53 induces cell cycle arrest in the G1 and G2 phases of the cell cycle in order 

to prevent dissemination of DNA mutations to daughter cells. Depending on 

conditions such as DNA damage and cellular environment, the arrest in these cells 

can be permanent (resulting in growth arrest) or temporary (giving enough time for 

DNA repair and therefore the possibility to reenter cell cycle). However, in 

exquisitely radiosensitive cells (e.g. lymphocytes) p53 facilitates radiation induced 

apoptosis  

Of all the activities of p53, none is more firmly accepted than the role of p53 

as a transcription factor. Following DNA damage p53 can function as a 

transcriptional activator by binding to its consensus sequence within the promoter of 

target genes. P53 target genes can be classified into different groups according to 

their physiological roles. Some genes such as growth arrest and DNA-damage-

inducible, alpha (GADD45A), the 14-3-3 protein zeta (14-3-3, or cyclin-dependent 

kinase inhibitor 1A (CDKN1A) are known to play a role in growth arrest, others play 

a role in cell cycle arrest, apoptosis, inhibition of angiogenesis or DNA repair 

(Amundson, 2008; Liu & Chen, 2002; Martinez et al., 2008). Some p53 regulated 

genes are known to create a so called “eat-me” signal in provoking potential 

elimination of damaged cells via the host-immune-response system through 

transcriptional regulation of for instance fractalkine or interferon regulatory factor 5 

(IR5) (Schaue, Kachikwu, & McBride, 2012). This implies an essential role of p53 in 

immuno-surveillance to prevent cells from undergoing malignant transformation. p53 

targets also include genes that can be linked to oxidative stress. Furthermore a large 

number of p53 target genes have been discovered that are involved in cell motility, 
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adhesion and migration and could therefore play a role in p53 mediated suppression 

of tumor metastasis. 

 

1.3.2.1 Apoptosis 

It has been suggested that p53 may play a role in apoptosis that is completely 

separate from the regulation of gene expression. It has been observed, that following 

stress p53 seems to function in the cytoplasm or at the mitochondria and that p53 can 

be found associated with several members of the BCL2 family (Cory & Adams, 2002; 

Zinkel, Gross, & Yang, 2006). p53 seems to be able to act as an “enabler," impeding 

the interaction between anti-apoptotic proteins such as B-cell CLL/lymphoma 2 

(BCL2), BCL2-like 1 (BCLXL) and pro-apoptotic proteins. This could directly 

relieve the inhibition of the pro-apoptotic proteins BCL2-associated X protein (BAX) 

and BCL2-antagonist/killer 1 (BAK), or free BH3 only proteins such as BH3 

interacting domain death agonist (BID) and BCL2-like 11 (BIM) which can then 

activate directly BAX and BAK.  

p53 might also act as an “activator," activating BAX and BAK through 

binding and releasing them from anti-apoptotic proteins (Zinkel et al., 2006). Other 

proteins like BCL2 binding component 3 (PUMA) can then again displace p53 from 

binding anti-apoptotic proteins which also leads to apoptosis as PUMA now blocks 

the pro-apoptotic proteins and p53 is able to bind and activate pro-apoptotic proteins. 

Although under experimental conditions this transcription factor-independent activity 

of p53 alone can be sufficient for apoptosis, it seems probable that under 

physiological conditions this mitochondrial activity acts together with the role of p53 
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as a transcription factor. It has been suggested that the ability to accumulate 

mitochondrial p53 may be a distinguishing property between radio-resistant and 

radiosensitive organs and a determinant of whether or not a cell will die in response 

to p53. 

 

1.3.2.2 Cell-Cycle Arrest 

 If a cell is capable of dividing, it will undergo a cycle of stages known as the 

Cell Cycle. There are four stages: G1, S, G2, and M. G1, S, and G2 are all considered 

part of the cycle called interphase. S phase is when DNA is replicated in the nucleus. 

And M phase is when mitosis occurs and the cell divides into two daughter cells. G1 

and G2 are gap phases in between the S and M phases. There is also a G0 phase that 

occurs after the cell has become senescent.  

 There are three important check points in the cell cycle when considering the 

actions that the cell takes when undergoing any kind of stress. There is the G1 

checkpoint, G2 checkpoint, and M checkpoint. Each of these checkpoints is a series 

of signaling pathways that are looking for DNA damage. When damage is sensed, 

Cyclin inhibitors bind with the appropriate CDKs and inactivate the progression into 

the next stage of the cell cycle (Pecorino, 2008). At the G1/S checkpoint, p21 

(CDKN1A) inhibits cdk2 while at G2/M checkpoint GADD45A will inhibit cdk1 and 

prevent progressing into the M stage (Amundson, Grace, Mcleland, et al., 2004; 

Budworth et al., 2012; Martinez et al., 2008).  
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Figure 1-6 Progression through cycle governed by protein kinases-activated by 
cyclins  

(Hall & Giaccia, 2012) See accompanying text for explanation of figure. 
 
 

1.3.2.3 Repair Mechanisms 

 There are a few repair pathways that the cell can undergo when it senses 

damage to DNA. For SSBs, the DNA can undergo Base Excision Repair (BER) or 

Nucleotide Excision Repair (NER). In BER, the damaged base is removed and then 

replaced using the opposite base pair as a “recipe”. DNA contains 4 bases that work 

in pairs: Adenine (A) pairs with Thymine (T) and Guanine (G) pairs with Cytosine 

(C). NER involves recognizing the damage to the base and bracketing a larger region 

than BER.  

 As said before, DSBs are much more complicated to repair. Immediately after 

sensing the damage, the cell cycle is arrested and ataxia telangiectasia mutated 

(ATM) kinase is activated. There are two processes of repair in competition at this 
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point: Homologous Recombination Repair (HRR) and Nonhomologous End-Joining 

(NHEJ). The difference between these two largely depends upon when in the cell 

cycle the damage to DNA occurs (Hall & Giaccia, 2012). If the cell is in G1, the cell 

will do NHEJ while if it is in late S/G2, the cell will do HRR. HRR is more reliable 

because in late S/G2, there is a sister chromatid that can be used to create a template 

for repair of the damaged section which in G1 there is no template available. Still, 

NHEJ has been found to occur in later S/G2 (Hall & Giaccia, 2012; Pecorino, 2008). 

 

 

Figure 1-7 DNA Repair by NHEJ 

 (http://omicsonline.org/1948-5956/images/JCST-S8-001-g002.html) See text for 

explanation of figure. 

 
 

 NHEJ is error prone and the mutations are essential for creating antibody 

diversity (Hall & Giaccia, 2012). Damaged ends in a DSB site require modification 

 

http://omicsonline.org/1948-5956/images/JCST-S8-001-g002.html
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by proteins prior to being rejoined by ligation reactions. The exposed ends are 

recognized by Ku binding which then recruits DNA-dependent protein kinase 

catalytic subunits (DNA-PKcs). The ends are then processed with Artemis, another 

protein that forms a complex with the DNA-PKcs. The complex is then filled-in with 

bases (Hall & Giaccia, 2012).  

 

1.4 Biodosimetry 

 Dosimetry is the method of measuring the amount of energy absorbed by a 

person from IR. This can be done through different methods. For external dose, 

dosimetry consists of wearing dosimeters that “capture” the energy from IR that can 

be analyzed later. There are also pocket dosimeters that read out the dose 

continuously while wearing it. These are used while working in radiation areas by 

nuclear industry, research, and medical personnel. For internal dose, though, there is 

no immediate way to read the dose one gets from an intake of radionuclides. Instead, 

doses are interpreted through bioassays, whether through urine or through fecal 

samples. This presents an issue in emergencies, such as a detonation of an improvised 

explosive device containing a radionuclide, or a “dirty bomb”. During these 

situations, triage necessitates knowing who was exposed and to what extent there 

were exposed. 

 Biodosimetry is using biomarkers to determine the dose one receives from IR. 

There are three major approaches to biodosimetry. First, one can measure the 

biological changes from exposure to IR directly. Second, metabolic products can be 

modified by radiation and assays can be done to analyze these. Third, and the one of 
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focus, involves measuring the biological response to damage caused by IR (Swartz, 

Williams, & Flood, 2014). Regardless of what method is used, there are key criteria 

that must be met in order for biodosimetry to provide a benefit over traditional 

physical dosimetry:  

 

Table 1.1 Key Criteria for Biodosimetry (adapted from Swartz et al., 2014) 

1. Be specific to ionizing radiation 

2. Have well-known effects by type of radiation and by dose rate 

3. 
Be unaffected by prior health status or concurrent perturbations such as wounds or 

stress 

4. 
Have a well-characterized dose–response that is either unaffected by individual 

variations or known for the type of individual being measured (e.g., based on gender) 

5. Reflect biological implications to the individual 

6. Have a constant or well-known response over the full period of relevant times 

7. Allow to provide results quickly 

8. Allow to be accomplished for the population at risk within the appropriate time frame 

9. 
Be suitable for the expertise that is likely to be available for the circumstances in which 

they will be used 

  

Most genomic assays fulfill at least some of these criteria. Lymphocytes are 

used primarily because they are readily sampled and are some of the most 

radiosensitive cells in the body (Amundson, Bittner, Meltzer, Trent, & Fornace, 

2001). 

 

1.4.1 White blood cell based Biodosimetry 

Many studies have been done to determine how different tissues and cells 

respond to IR and different methods have been developed for this very purpose.  Of 
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the most widely used biomarkers used for biodosimetry are chromosomal aberrations 

after exposure to IR. The more common assays used to measure chromosomal 

aberrations are the dicentric assay and the micronucleus assay. 

 Dicentrics are formed by asymmetrical interchromosomal exchanges where 

the “sticky ends” of two broken centromeres reconnect prior to S phase. After S 

phase, this chromosome has two centromeres and is called dicentric (Hall & Giaccia, 

2012). The formation of these dicentrics is linearly related to the radiation dose(Rana, 

Kumar, & Sharma, 2010). The practical lowest amount of dose in vivo detected is 0.5 

Gy (Amundson et al., 2001; Rana et al., 2010). While this assay can reliably 

determine dose, specialized training is necessary and it can take a bit of time to do. 

 

 

Figure 1-8 Dicentric Chromosome (http://usm.maine.edu/toxicology/chromium-

toxicology-studies) Chromosome circled in red is an example of a dicentric 

chromosome. 

 
 Micronucleus assays requires less specialized expertise and are quicker. In 

this assay, lymphocytes are mitogenically stimulated in culture, then cytokinesis is 

blocked (the separation of one cell into two during mitosis). This results in mitosis 
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and nuclear division without cell division. Micronuclei are formed if there were any 

DSBs in the chromosomes. The left-over chromosomal fragments are unstable and 

form smaller structures in the cell that can be seen. Micronuclei are then counted in 

binucleated cells. Studies have shown that the number of micronuclei in binucleated 

cells increase linearly with dose (Amundson et al., 2001; Rana et al., 2010; Ropolo et 

al., 2012; Tucker, Vadapalli, et al., 2013). If fluorescence in situ hybridization (FISH) 

probes are used during this assay, the lowest dose measurable is thought to be 0.1 to 

0.2 Gy (Amundson et al., 2001). Tucker et al. found that the lowest determinable dose 

was age dependent and increases linearly with age (Tucker, Vadapalli, et al., 2013). 

 

 

Figure 1-9 Micronucleus in Binucleated Cell 
(http://www.crios.be/genotoxicitytests/micronucleus_test.htm) Micronucleus is 

marked by the arrow in the above figure. 
 
 

1.4.2 Gene Expression Biomarkers 

 Using gene expression as a biomarker for IR exposure is relatively new. As 

discussed earlier, gene transcripts are activated in response to IR exposure. The levels 

 

http://www.crios.be/genotoxicitytests/micronucleus_test.htm
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of this activation can be measured to determine the extent that a gene is being 

expressed.  Since the human genome is extremely large with approximately 20,000 to 

25,000 protein-coding genes (Pray, 2008), techniques had to be developed that would 

look at a large number of genes at once. Two techniques commonly used for this 

purpose are serial analysis of gene expression (SAGE) and cDNA microarrays. Once 

genes are recognized as being important, real-time polymerase chain reaction (RT-

PCR) can be conducted to target genes of interest.   

 

1.5 Current Trends in Biodosimetry 

 Using RT-PCR for studies in biodosimetry is wanted due to its lower cost, its 

ease of conducting the analysis, and its reliability. After performing microarrays from 

lymphocytes and finding a smaller group of genes that are radiation-induced, 

researchers can target these genes with RT-PCR. Generally, genes in the p53 pathway 

have been targeted. These genes include cell-cycle arresters, DNA repairers, and 

apoptosis regulators.  

 In a 2004 study of patients undergoing total body irradiation (TBI), 

comparisons between in vivo responses and ex vivo responses of gene expression in 

peripheral white blood cells were made. CDKN1A and DDB2 were expressed but 

GADD45A, which had been known to be expressive, was not in this study 

(Amundson, Grace, & McLeland, 2004). This showed that the expression of 

GADD45A was complicated and others factors needed to be taken into consideration. 

Because the p53 pathway is not only activated after exposure to IR, other 

confounding factors need to be taken into account when analyzing the results. 
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Budworth et al. found that CDKN1A, while definitely responsive to radiation, also 

responds to inflammation stress caused by bacterial endotoxin lipopolysaccharide. 

Other genes, though, were only activated to IR exposure (BBC3, FDXR, GADD45A, 

PCNA, XPC, POLH, and DDB2) (Budworth et al., 2012).   

The behavior of the transcripts in the p53 network are not fully understood, 

therefore time after exposure has been taken into consideration in order understand 

this behavior. Tucker et al. exposed mice to different doses from a 60Co source and 

obtained blood at different days after exposure. Using RT-PCR, they showed that 

CDKN1A expression was high at 0.5 days after exposure. CDKN1A also explained 

50% of all variability in the multiple regression models used showing that the gene 

could be the primary variable in describing gene expression after IR exposure 

(Tucker, Divine, et al., 2013). Using this model, Tucker et al. exposed human blood 

ex vivo with a 60Co source. They found that ASTN2 and CDKN1A together 

explained 84% of the variance in the multiple regression model used (Tucker et al., 

2014). 

 

1.5.1 Neuroblastoma Patients as a Model for Biodosimetry 

 131I-mIBG provides an ideal opportunity to evaluate the clinical effects and 

mechanisms of radiation sensitizers. mIBG therapy uses radioactivity among the 

highest reported in this treatment-resistant population. Because hematologic toxicity 

is the main dose-limiting concern and131I-mIBG rarely results in significant non-

hematologic toxicity, this provides an opportunity to combine 131I-mIBG with other 

systemic agents, particularly radiation sensitizers.  
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The current research focuses on CDKN1A as a prime candidate for 

determining dose, but it is difficult to determine whether the increased expression is 

due solely to IR exposure. In cancer patients, this is particularly concerning because 

patients are often treated with chemotherapy concurrently with radiotherapy. Also, 

most (if not all) studies use a dosimetry model based on external radiation sources, 

rather than internal sources which could be of more concern. This is not only because 

of TaRT, but also because of the high potential of an uptake during a radiological 

incident such as a reactor accident or detonation of a “dirty bomb”. 

The overall research approach of combining radiation sensitizers with a source 

of continuous radiation exposure represents a major innovation. 

Radiopharmaceuticals and brachytherapy provide continuous, rather than 

fractionated, radiation exposure to tumor cells.  As such, data from studies using 

external beam radiation in combination with radiation sensitizers may not be directly 

comparable to studies utilizing sources of continuous radiation exposure.   

Patients undergoing targeted radiotherapy provide a unique opportunity to 

model the effects of a radionuclide uptake on lymphocytes. Particularly, this study 

allows comparison between different environments of radiosensitizers provided by 

the randomized chemotherapy treatments. Analyzing the expression of genes within 

each patient can provide invaluable insight to the effects of internal radiation on 

lymphocytes and possibly the whole body. The aim of this thesis is to understand the 

mechanisms of gene expression during IR exposure and chemotherapy treatment and 

to develop a model that can predict the CEDE a patient receives based on modulation 

of key genes. 
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Figure 1-10 Model of Study In this study, the patient (as represented above by the 
box) has two therapies affecting him/her. Subsequently, the patient gives off radiation 
as the I-131 decays from the TaRT and also voids urine containing the radionuclide. 

Blood is sampled and the gene expression of the white blood cells is presumed to 
indicate the dose the patient received from the I-131. 

Patient 
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2.0 MATERIALS AND METHODS 

2.1 Patient Recruitment & Randomization 

 Patients were recruited from among the population of individuals with 

relapsed or refractory neuroblastoma evaluated at any of the 15 New Approaches to 

Neuroblastoma Therapy (NANT) locations, which include universities and children’s 

hospitals in North America.  Randomization was stratified according to potential 

predictors of response to 131I-mIBG. This list of predictors included disease status 

(relapsed versus refractory disease), age at study entry (older than 18 years versus 

younger than 18 years), and bone marrow status at study entry (presence versus 

absence of bone marrow disease). Patients were assigned to one of the three 131I-

mIBG regimens at random, while balancing across the margins of each of the three 

stratification variables. 

 

2.2 Blood Sample Retrieval 

 A total of 41 patients participated in the UCSF-led study. All patients had 

negative responses to their initial therapy with some having relapsed and other having 

poor responses to the initial therapy. All patients had MIBG-avid neuroblastoma 

found by performing 123I-mIBG diagnostic scans. Patients were older than 24 months 

with a median age of 9 years. Prior to treatment, patients had foley catheters placed in 

their bladders prior to treatment as well as had their thyroids blocked to limit 

exposure from free Iodine during the treatment. Injection occurred over a 1 hour 

period within a lead-lined room at UCSF.  
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 2.5 – 10 ml of peripheral blood was drawn using PAXgene RNA blood tubes 

at baseline, 72, 96, and some at 120 hours after treatment injection. For some patients, 

blood was drawn prior to treatment with chemotherapy and then another vial drawn 

prior to mIBG treatment.  A total of 14 patients received mIBG treatment only, while 

19 patients received Irinotecan and 7 received Vorinostat in combination with mIBG. 

9 patients were deemed capable of receiving a second treatment approximately 6 

weeks after initial treatment. After therapy, patients were discharged after radiation 

level at 1 meter from the body was less than 2 mrem/hr.   

 Blood tubes were kept at at -80 ºC at UCSF for 30 days after injection to 

ensure all 131I has decayed away prior to shipping. Blood tubes were sent to Lawrence 

Livermore National Laboratory (LLNL) and then stored at -80 ºC until ready for 

RNA extraction. 

 

2.3 IRB Informations 

 This study was approved by an Institutional Review Board at UCSF as well as 

LLNL under IRB Protocol #04-118 Gene Expression Biodosimeters in Human Blood, 

Salive, and Buccosal Cells at LLNL and IRB Protocol #11-05945 Evaluation of 

Biomarkers of Radiation Exposure in Patients Treated with 131I-MIBG at UCSF. All 

patients consented to genomic studies of gene expression and the study. Oregon State 

University was exempt from the IRB rules due to no physical involvement at OSU 

with the study.   
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2.4 Gene Selection for Biodosimetry 

 Genes listed in Table 2.1 were selected based on prior performance in 

previously conducted gene expression experiments (Amundson, Myers, & Fornace, 

1998; Amundson, Grace, Mcleland, et al., 2004; Budworth et al., 2012; Sunirmal 

Paul, Smilenov, & Amundson, 2013; Wyrobek & Manohar, 2011). GAPDH was 

chosen as the reference gene. Most genes chosen were targets of the p53 activation 

pathway with a couple that were from different signal pathways. The apoptosis 

domain included FDXR, BBC3, BCL2, BCLXL, BAX, and BIM, while the Cell-

cycle arrest domain included CDKN1A and GADD45A. The DNA repair domain was 

represented by XPC and DDB2.  

 

Table 2.1 Selected Genes 
Gene Name Primer # Description  
GAPDH Glyceraldehyde 3-

phosphate 
dehydrogenase 

H202758991_g1 Glyceraldehyde 3-phosphate 
dehydrogenase is an enzyme 
of ~37kDa that catalyzes the 
sixth step of glycolysis, 
breaks down glucose for 
energy and carbon 
molecules 

CDKN1A Cyclin-dependent 
kinase inhibitor 1A 
(p21) 

Hs0035578_m1 G1/S Cell-Cycle Arrest 
 

FDXR Ferrodixin 
Reductase 

Hs00244586_m1 Apoptosis (Pro-apoptotic) 

FLT3LG Fms-Related 
Tyrosine Kinase 3 
Ligand 

Hs00957747_m1 Controls development of 
dendritic cells which 
provide adaptive immunity 
response to pathogens and 
priming pathogen-specific 
immune responses 

GADD45A Growth Arrest and 
DNA-damage-
inducible, alpha 

Hs00169255_m1 G2/M Cell-Cycle Arrest 

DDB2 Damage-specific Hs03044953_m1 DNA Repair, participates in 
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DNA binding 
protein 2 (XPE) 

nucleotide excision repair 

BBC3 BCL2 Binding 
Component 3 
(PUMA) 
P53 Up-regulated 
Modulator of 
Apoptosis 

Hs00248075_m1 Apoptosis (Pro-apoptotic) 

XPC Xeroderma 
pigmentosum, 
complementation 
group C 

Hs00190295_m1 DNA Repair, participates in 
nucleotide excision repair 

MDM2 E3 Ubiquitin Protein 
Ligase 

Hs00234753_m1 Inhibits p53, including 
inhibition of cell-cycle and 
apoptosis transcriptional 
activation domains. 

NQO1 NAD(P)H 
Dehydrogenase, 
quinone 1 

Hs02512143_s1 Member of NAD(P)H 
dehydrogenase family  

BCL2 B-cell 
CLL/lymphoma 2 

Hs99999018_m1 Apoptosis (Anti-apoptotic) 

BCLXL BCL2-like 1 Hs00236329_m1 Apoptosis (Anti-apoptotic) 
BAX BCL2-associated X 

protein 
Hs99990001_m1 Apoptosis (Pro-apoptotic) 

TP53I3 Tumor protein p53 
inducible protein 3 

Hs00153280_m1 Induced by p53. Involved in 
p53-mediated cell death. 

STAT5B Signal transducer 
and activator of 
transcription 5B 

Hs00273500_m1 Member of STAT family of 
transcription factors that 
respond to cytokines and 
growth factors. 

BIM BCL2-like 11 Hs00708019_s1 Apoptosis (Pro-apoptotic) 
 

 

2.5 RNA Preparation using PAX Gene Kit 

 In the Coleman Laboratory at LLNL, RNA was extracted from whole blood 

using a PAX Gene Kit (QIAGEN GmpH, Valencia, CA, USA ) and the 

manufacturer’s instructions. Prior to centrifuging, PAXgene vials are allowed to 

incubate at room temperature overnight to maximize RNA yield. After centrifuging, 

the nucleic acids are a pellet that is washed and resuspended in buffer. Proteinase K is 
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added to digest proteins. A shred spin column is used to homogenize the cell lysate 

and remove debris. Supernatant is transferred into a new microcentrifuge tube where 

ethanol is added to adjust binding conditions. RNA is bound to a PAXgene silica 

membrane. The membrane is then washed to remove remaining contaminants. DNase 

I is applied to the membrane to remove trace amounts of DNA.  Final product is 

eluted with buffer and incubated at 65 °C for 5 minutes. RNA was stored at -80 °C 

until ready for use. RNA was quantified using a Nanodrop ND 1000 

spectrophotometer (Nanodrop Technologies, Wilmington, DE, USA) and Qubit 

Fluormeter (Invitrogen, Carlsbad, CA, USA).  

 

2.6 Synthesis of cDNA and Preamplification 

 For quantification using real-time PCR (RT-PCR) analysis, 200ng of RNA 

was converted to single-strand cDNA using the High Capacity cDNA archive kit 

(Applied Biosystems, Foster City, CA, USA).  RNA was combined with buffer, 

enzyme mix, and RNase-free water. cDNA synthesis was conducted using a 

thermocycler. Incubation was done for 1 hour at 37°C then 5 minutes at 95ºC. cDNA 

was held at 4°C until removed and stored in a freezer between -15°C and -25°C.  

cDNA was then pre-amplified with TaqMan PreAmp Master Mix(Applied 

Biosystems, Foster City, CA, USA).  A pooled mix of TaqMan assay primers was 

combined with the preamp Master mix. 14 cycles of preamplification were done in a 

thermocycler. The cycles were 95 ºC for 10 minutes then 14 cycles of 15 seconds at 

95 ºC and 4 minutes at 60 ºC. 
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2.7 Real-Time PCR 

 RT-PCR was used to quantify the expression of genes for each patient blood 

tube. Each reaction was performed in a volume of 20 µl and in triplicate to reduce 

error. A 96-well plate was used to run multiple reactions at once. In each well, pre-

amplified cDNA was combined with water and 5x concentrated SharkaTAQ Stable 

QPCR Master Mix (Frontier Genomics, Auke Bay, AK, USA), and a single TaqMan 

primer from Table #. The plate was placed in a 7900 HT Fast Real-Time PCR System 

(Applied Biosystems, Foster City, CA, USA). The PCR program used was the 

following: 10 min at 95 °C, followed by 40 cycles of alternating 15 seconds at 95 °C 

and 1 min at 60 °C. Multiple 96 well plates were run for each primer. The computer 

analysed fluorescence using absolute quantification. 

 RT-PCR uses probe-based chemistry in order to discriminate between targeted 

and untargeted genes. The first 10 minutes were for annealing the TaqMan probe to 

the targeted gene sequence template on which the TaqMan probe from pre-

amplification is bound. As the sample is cycled between 95 °C and 60 °C, the Taq 

polymerase degrades the probe, separating the reporter and quencher dyes, allowing 

the reporter to fluoresce. The intensity of the fluorescence increases in direct 

proportion to the amount of target cDNA synthesized and pre-amplified (Green & 

Sambrook, 2012).  

 



 32 

 

Figure 2-1 Diagram of RT-PCR using TaqMan probes (Figure is taken from 
http://upload.wikimedia.org/wikipedia/en/0/07/Taqman.png) The image shows the 
mechanism of how TaqMan probes work during RT-PCR. During the annealing 

phase, TaqMan probes attach to cDNA. As polymerization occurs, the fluorophore is 
cleaved off from the quencher and is allowed to fluoresce. Increasing amount of 

fluorescence is therefore proportional to the amount of that specific RNA contained 
within the sample. 

 
 

2.8 Interpreting RT-PCR Results 

 RT-PCR produces an S-shaped curve that moves from exponential to 

quadratic. The point, or the number of cycles it takes, where the curve changes from 

exponential to quadratic is called the CT value, or the Cycle Threshold. Analysis is 

done by comparing the CT of each well. Triplicate samples are geometrically 

averaged to produce one value. Values can be further adjusted by using the 2−∆∆𝐶𝑇 

 

http://upload.wikimedia.org/wikipedia/en/0/07/Taqman.png


 33 

method described by Livak and Schmittgen by converting CT to fold changes (Livak 

& Schmittgen, 2001). This allows different data sets to be compared.  

∆𝐶𝑇(𝑇𝑎𝑟𝑔𝑒𝑡) =  𝐶𝑇(𝑇𝑎𝑟𝑔𝑒𝑡 𝑇𝑖𝑚𝑒) − 𝐶𝑇 (𝑇𝑎𝑟𝑔𝑒𝑡 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒)    2.1 

The ΔCT of each target gene is the difference in cycle threshold between a 

specific sample and its baseline. It is calculated by using the geometric means of each 

time point and then subtracted from the geometric mean at baseline. 

∆𝐶𝑇(𝐺𝐴𝑃𝐷𝐻) =  𝐶𝑇(𝐺𝐴𝑃𝐷𝐻 𝑇𝑖𝑚𝑒) − 𝐶𝑇 (𝐺𝐴𝑃𝐷𝐻 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒)    2.2 

The ΔCT of the reference gene, in this case GAPDH, is calculated the same 

way as the target gene. 

∆∆𝐶𝑇(𝑇𝑎𝑟𝑔𝑒𝑡) =  ∆𝐶𝑇(𝑇𝑎𝑟𝑔𝑒𝑡) − ∆𝐶𝑇(𝐺𝐴𝑃𝐷𝐻)     2.3 

 The ΔΔCT is calculated by subtracting the ΔCT of the reference gene from the 

ΔCT of the target gene. This takes into account any differences between times in the 

housekeeping gene because it is assumed that the housekeeping gene does not change 

from exposure to IR.   

𝐹𝑜𝑙𝑑 𝐶ℎ𝑎𝑛𝑔𝑒 =  2−∆∆𝐶𝑇(𝑇𝑎𝑟𝑔𝑒𝑡)     2.4 

 The fold change is then calculated using the equation above. This number 

provides insight into how many times the amount of transcripts formed has duplicated 

during gene expression.  

 

2.9 Statistical Methods 

 A variety of statistical tests were conducted to evaluate the data from RT-

PCR. The analyses included Welch’s T-Tests, multiple linear regressions, and step-
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wise regression analyses. All analyses were conducted in the R environment (R Core 

Team, 2013). A P-value of 0.05 was used as the limit for statistical significance. 

 

2.10 Internal Dosimetry 

 Absorbed dose was calculated using established methodologies common in 

the nuclear medicine field. For 131I-mIBG treatments, various adjustments to the 

original method as describe by MIRD was necessary to compute reasonable doses due 

to the differences between the phantoms used and the younger and lighter children. 

ICRP 53 provided a background for the biokinetics of mIBG, many adjustments have 

been made based solely on the results in studies (Buckley, Chittenden, Saran, Meller, 

& Flux, 2009; Fielding & Flower, 1991; Flower & Fielding, 1996; Matthay et al., 

2001; Monsieurs et al., 2001; Sudbrock et al., 2010). 

 

2.10.1 Calculating CEDE based on ICRP Recommendations 

 Calculating the committed effective dose equivalent (CEDE) based on the 

ICRP model requires knowledge of the radionuclide decay scheme, the chemical 

behavior of the radionuclide in the body, and the residence time in each organ or 

compartment. To do this, the body is simplified into a series of compartments 

representing the different tissues and organs. There are schematics for inhalation and 

ingestion of radionuclides, but for the purposes of TaRT, injection is the most 

common mode of intake. Radiopharmaceuticals are injected into the blood which is 

also considered the transfer compartment because it travels to all locations in the 

body.  
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 To determine the effective dose equivalent, dose equivalent must be first 

calculated for each tissue/compartment. To do this, the total number of nuclear 

transitions, or decays, must be calculated. Each radiopharmaceutical has two decay 

constants, one is the physical half-life that is determined by the radionuclide’s 

properties, and the other is the biological half-life which is determined by the 

biochemical properties in the body.  Each compartment will receive a percentage of 

the total amount of initial injected activity. Taking these variables into account, the 

activity is integrated over to determine the number of nuclear transitions in the 

compartment. It is a convention of the dose calculation methodology that the 

integration period is nominally set to 50 years.  This approach captures the total 

number of radioactive decay transitions that are likely to occur during an individual’s 

lifetime.  For short lived radionuclides used in radiation therapy it encompasses 

essentially 100% of all decays that are likely to occur. The total number of decays 

which occur during this time is known as US. Equation 2.5 shows the way Us is 

calculated where Ao is the initial amount of activity, 𝜆𝑒 is the effective decay rate 

constant, and t is time elapsed. 

𝑈𝑠 = ∫𝐴𝑜(𝑡)𝑒−𝜆𝑒𝑡 𝑑𝑡      2.5 

 For time 0 to t: 

𝑈𝑆 = 𝐴𝑜
𝜆𝑒
�1 − 𝑒−𝜆𝑒𝑡�       2.6 

 After the nuclear transitions are calculated, the radionuclide’s radiative 

energies emitted during decay need to be taken into consideration. For beta emitters, 

the beta is considered (for all intents and purposes) to stay within the compartment. 

The energy per transitions is multiplied by the yield and divided by the mass of the 
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compartment. Gamma emission requires taking into account the absorbed fraction 

(AF) for the decays occurring within the compartment as well as those received from 

another compartment (also known as crossfire). Summation of all decay contributions 

in each compartment yields the specific effective energy (SEE) value. Equation 2.7 

shows the calculation for SEE where 𝑌𝑖 is radiative yield, 𝐸�𝑖 is the average energy 

emitted per decay, 𝐴𝐹(𝑇 ← 𝑆)𝑖 is the absorbed fraction from source to target 

tissue/organ, and 𝑚𝑇 is the mass of the target tissue/organ (Martin, 2006). 

𝑆𝐸𝐸 = ∑𝑌𝑖𝐸�𝑖𝐴𝐹(𝑇←𝑆)𝑖
𝑚𝑇

      2.7 

 To get the CEDE (𝐻50,𝑇), multiply the SEE and US by 1.6 x 1010 to convert 

from 𝑀𝑒𝑉 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 × 𝑔𝑟𝑎𝑚�  to 𝐽 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 × 𝑘𝑔�  

𝐻50,𝑇 = 1.6 × 10−10 × 𝑈𝑠 × 𝑆𝐸𝐸(𝑇 ← 𝑆)     2.8 
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Figure 2-2 131I-mIBG Biokinetic Model This image shows the biokinetic model 
used for calculating dose in a patient undergoing 131I-mIBG treatment. 15% of the 

original injection goes straight to the bladder and is removed. This leaves 85% to be 
distributed among mIBG-avid tissues in the body. 1% goes to the liver where it 
remains while the other 99% is shared in other tissues and decays through two 

compartments. Blue arrows represent biological decay and orange arrows represent 
radiological decay. Both are combined to give the effective decay rate for each 

compartment. 
 

2.10.2 Absorbed Dose based on MIRD schema 

 The Medical Internal Radiation Dose schema was developed as a way for 

clinicians to calculate dose in the growing use of nuclear medicine for treatment and 

imaging. The calculation of dose using the MIRD schema is based on Equation 2.9 

(Loevinger, Budinger, & Watson, 1991).  

𝐷� = 𝐴̃𝑆(𝑇 ← 𝑆)       2.9 

 Ã (pronounced A-tilda) is calculated by integrating the number of nuclear 

transitions that occurs within a compartment and is effectively the same as the US in 

ICRP method described above. Its units are in “activity-time”, such as µCi-hour or 

MBq-hour.  It can be calculated using Equation 2.5, or by the following: 
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Ã = 1.44 × 𝑇𝑒 × 𝐴𝑜�1 − 𝑒−𝜆𝑒𝑡�    2.10 

S, called the S-Value, is the mean dose per unit cumulated activity and is 

calculated much the same as SEE. It is calculated by multiplying the number of 

radiations given off per decay (n) by the average energy of each radiation (E) and by 

the specific absorbed fraction ( 𝜑
𝑚

) where 𝜑 is the absorbed fraction (Loevinger et al., 

1991).  

𝑆 = ∆𝛷      2.11 

Where:  ∆ = 𝑛 𝐸   ɸ = 𝜑
𝑚

                       2.12, 2.13 

 Such that:  𝑆 = 𝑛𝐸𝜑
𝑚

                        2.14 

 S-values are published (W. S. Snyder, Ford, Warner, & Watson, 1975) so 

generally there is no need to calculate the S-value, unless the affected person strongly 

deviates from the standard assumption of the schema.  

 

2.10.3 Calculating Retention by Dose Rate 

Another way to calculate total retention of activity in the body is by 

measuring the dose rate of a patient from a fixed position. At UCSF, a Victoreen 451 

ion chamber detector was placed above the patient and was used continuously to 

monitor the dose rate from the patient, recording the measurement every 3 minutes. 

The rate of decay in the patient correlates directly with the rate of drop in dose rate 

read on the ion chamber. This information is saved and used to compare with the 

initial amount of activity injected into the patient. 
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2.10.4 Method of Dosimetry Employed at UCSF 

Absorbed dose was calculated at UCSF utilizing the Medical Internal 

Radiation Dose (MIRD) models as well as by tracking dose-rates coming from the 

patient during treatment. The prescribed amount of 131I-mIBG was injected into each 

patient over the course of an hour. During that time, 15% would be instantly removed 

to the kidneys and would exit the body through the catheter. After the one hour of 

injection, the “washout” begins. As defined at UCSF, the washout is the period of 

time it takes from completed injection to when the patient reads less than 2 mrem/hr 

at 1 meter. Absorbed dose was calculated using a two or three-compartment model 

for each patient which was then correlated with the dose-rates. In order to account for 

the difference S-values for each child versus the MIRD phantoms, the S-values were 

recalculated using Equation 2.16 where 𝑚𝑝𝑎𝑡𝑖𝑒𝑛𝑡 is the mass of the patient. 

𝑆𝑊𝐵←𝑊𝐵 = 1.34 × 10−4𝑚𝑝𝑎𝑡𝑖𝑒𝑛𝑡
−0.921 𝐺𝑦

𝑀𝐵𝑞∙ℎ𝑟
     2.16 

 

2.10.5 Calculating Absorbed Dose at Different Time Points 

 Absorbed Dose was calculated by UCSF using the dose rate decay and the 

MIRD models as developed by the medical physicists. For this study, it was 

necessary to calculate absorbed dose at other specified time points in addition to the 

total amount received over the course of the treatment. To do this, a three 

compartment model was compared to the dose rate curve from 3 patients as supplied 

from UCSF. The effective decay constants for each compartment were averaged 

between the three patients. The resulting model was then used to compute absorbed 

doses at 72 hours, 96 hours, and 120 hours after injection.
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3.0 RESULTS 

3.1 Controls and patients with Neuroblastoma were obtained from UCSF 

 40 patients participated in this study coordinated by University of California 

San Francisco Children’s Hospital. All patients were recruited and informed consent 

was obtained suing a consent form approved by their IRB. Neuroblastoma has a slight 

male predominance and, while enrollment was not based on sex, the study reflects 

this. There were 30 males and 10 females in the study group. Upon entry into the 

study, patients were chosen at random for each chemotherapeutic treatment in the 

study. 19 patients received Irinotecan and Vincristine, 7 patients received Vorinostat, 

and 14 patients only received mIBG. 17 patients in the study had their cancer relapse 

prior to treatment and 23 patients in the study had refractory cancer (did not respond 

to prior treatment). Nine patients in the study tolerated their first treatment well 

enough to have a second treatment within the same study. All of the patients agreed to 

provide whole blood under IRB numbers 11-05945 at UCSF.  

Table 3.1 Summary of UCSF Patient Information 
Number of Patients 40 
Sex Female: 10 

Male: 30 
Chemotherapy Irinotecan + Vincristine: 19 

mIBG Only: 14 
Vorinostat: 7 

Condition of Cancer 
prior to treatment 

Relapsed: 18 
Refractory: 22 

White Blood Cell Counts 1st Treatment: 4.7 (units) SD = 2.5 
2nd Treatment: 3.7 (units) SD = 1.6 

Age Average: 9.25 years 
Median: 7 years 

Weight Average: 31.2 kg avg. SD = 21.2  
mIBG Activity 1st Treatment: 17.232 mCi/kg avg. SD = 1.5 

2nd Treatment: 17.8 mCi/kg avg. SD = 1.2 
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3.2 Total RNA was isolated and converted to cDNA from patient whole blood  

 Whole blood was drawn and stored at -80 C in PAXGene tubes until shipped 

to LLNL. After the PAXGene kit was used and the RNA was isolated, RNA was 

measured using two methods: Spectroscopy with a Nanodrop Spectrometer and 

Fluoroscopy with a Qubit Fluorometer. Spectrometry with the Nanodrop looks for 

absorption at three different wavelengths, 230nm, 260nm, and 280nm. 260nm is 

generally what RNA and DNA absorb while absorption at 280nm indicated the 

presence of proteins. A high 260/280 ratio is greater than 2 and indicates a “pure” 

sample of RNA. On average, the first 26 patients and last 15 patients had high 

260/280 ratios. Qubit uses fluorescent dyes for either of their targets, DNA, RNA, or 

protein. The specificity of the probes makes the Qubit fluorometer a more accurate 

measurement of RNA quantity.  

Table 3.2 Summary of RNA Qualification 
 First 26 Patients (Avg) All 41 Patients(Avg) 

RNA Yield Nanodrop: 31.6 ng/ul 
Qubit: 27.6 ug/ml 

Nanodrop: 43.87 ng/ul 
Qubit: 72.34 ug/ml 

A260 0.79 1.09  
A280 0.32 0.48  
260/280 2.78 3.19  
260/230 0.43 0.29 

 

3.3 Doses were estimated using two different models 

 Cumulative effective dose equivalent (CEDE) was calculated initially at 

UCSF. Doses ranged from 43 cSv (Rem) to 541 cSv with a standard deviation of 

105.8 cSv. These values were influenced directly by the patient’s weight and amount 

of mIBG activity injected. UCSF doses are labeled “Model 1” in this study. 
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3.3.1 At LLNL a 3 compartment model was used to estimate dose 

 CEDE was also calculated at LLNL using a similar method but without the 

assistance of PRISM, called “Model 2” in this study. PRISM is software that takes the 

dose rate decay data from a patient and automatically calculates the retention 

function. Three patients’ dose rate results from UCSF were examined to develop the 

retention function for all patients. Dose rates were obtained at UCSF every 3 minutes 

until the time when patient was removed from the treatment room. Dose rates were 

proportional to the amount of mIBG in the patient and the dose rate curve mimicked 

the retention function of the mIBG in each patient’s body. Three patients’ data were 

used to measure the retention function based on the rate of decay in dose rate from the 

patient.  

Table 3.3 Biokinetic Model Compartments for Three Patients 
 Compartment 1 

t1/2 (hr) 
Compartment 2 

t1/2 (hr) 
Compartment 3 

t1/2 (hr) 
Patient 4 6.8 36 100 
Patient 19 6.8 30 100 
Patient 25 6 36 100 
Average 6.53 34 100 

 

Figures 3-1, 3-2, 3-3 show the differences between retention functions using Model 1 

and Model 2. Using the averaged values in Table 3.4, as well as biokinetic 

information of mIBG in ICRP 53, Equation 3.1 was chosen as best fit for the model.  

 𝑅𝐹 = ��0.36𝐴𝑜𝑒−𝜆1𝑡� + �0.63𝐴𝑜𝑒−𝜆2𝑡� + �0.01𝐴𝑜𝑒−𝜆3𝑡��    3.1 

 Equation 3.1 was used to calculate the absorbed doses at each time of blood 

draw at 72 hours, 96 hours, and 120 hours after injection. The integral of the retention 

function was multiplied by the calculated S-value for each patient based on patient’s 
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weight. Doses ranged from 257 to 381 with a standard deviation of 27. Summary of 

CEDE data is in Table 3.3. 

 

 

 

 

 

  

Table 3.4 CEDE Dosimetry Data 
 Average Median Range SD 

mCi/kg 17.2 17.75 12.5 – 19.6 1.5 
UCSF (Model 1) 263.1 234 43 – 541 105.8 
LLNL (Model 2) 321.3 326.8 257 – 381 27 
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Figure 3-1 Comparison of Patient No. 4’s Retention Function Calculations The 
blue line represents the dose rate as measured from the Victoreen 451 in the treatment 
room. The red line is the retention of mIBG as calculated by Method 1 and the green 
line calculated using Method 2. In this patient (No. 4), Method 2 follows the dose rate 
function much closer than Method 1. Method 1 was calculated using a two-
dimensional function.  
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Figure 3-2 Comparison of Patient No. 25’s Retention Function Calculations The 
blue line represents the dose rate as measured from the Victoreen 451 in the treatment 
room. The red line is the retention of mIBG as calculated by Method 1 and the green 
line calculated using Method 2. In this patient, Method 1 calculated the dose much 
more reliably due to it being a three-compartment model and the numbers were 
adjusted by PRISM much closer than the estimate from Method 2. Method 2 is still 
very close to the dose rate function. 
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Figure 3-3 Comparison of Patient No. 19’s Retention Function Calculations The 
blue line represents the dose rate as measured from the Victoreen 451 in the treatment 
room. The red line is the retention of mIBG as calculated by Method 1 and the green 
line calculated using Method 2. In this patient, both Method 1 and Method 2 tracked 
closely to the dose rate and either could be used for reasonable estimation of dose. 
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3.4 Identification of potential genes associated with IR exposure from mIBG 

Initially, it was important to determine whether there were any gross 

differences in gene expression due to exposure to 131I-mIBG. To determine this, 

Welch’s two sample t-tests were performed to examine the response of each gene to 

the therapy. 11 genes (CDKN1A, FDXR, GADD45A, XPC, BCLXL, STAT5B, 

BAX, NQO1, DDB2, MDM2, and BIM) showed significant modulation in Log2-

transformed fold change between base time and 72 hours after injection of 131I-mIBG.  

The same 11 genes showed significant modulation but less in magnitude between 

base time and 96 hours after injection. 7 genes (CDKN1A, FDXR, GADD45A, 

BCLXL, STAT5B, DDB2, and MDM2) were still significantly different between 

base time and 120 hours after injection.   

Table 3.5 Summary of T-tests showing responses to radiation 
 72 Hours 96 Hours 120 Hours 
 P-value DF P-value DF P-value DF 

CDKN1A <2.2E-16 30 1.258E-13 27 1.014E-06 12 
FDXR 1.676E-14 30 1.806E-12 27 1.046E-05 12 

GADD45A 9.958E-05 30 0.005218 27 0.01996 12 
FLT3LG 0.7486 12 0.7292 12 0.6488 4 

XPC 2.841E-06 29 1.985E-05 26 0.2585 9 
BCLXL 0.001579 29 0.0002643 26 0.006997 9 
STAT5B 0.00318 29 3.628E-05 26 0.01577 9 

BCL2 0.5411 29 0.9456 26 0.3998 9 
BAX 1.907E-07 29 2.315E-06 26 0.4776 9 

NQO1 0.01076 18 0.05304 15 0.614 4 
DDB2 8.22E-09 18 7.264E-05 15 0.009804 4 
MDM2 0.009867 20 0.02991 19 0.02457 11 

BIM 0.00106 29 0.001054 26 0.1922 9 
 

 CDKN1A had the strongest response of all the genes at 72 hours and at 96 

hours. FDXR was a close second. Both of these genes performed well at 120 hours, as 

well. For the most part, the responsive genes showed greater response between base 
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time and 72 hours than the other times with the exception of STAT5B and BCLXL. 

STAT5B had a much larger average response at 96 hours than at 72 hours (p = 3.6E-

05), as did BCLXL (p = 0.0003). BIM had a nearly identical response between 72 

hours and 96 hours. 

 

3.4.1 Sex, weight, and age are potential confounding variables for differential 

gene expression 

To assess whether other variables needed to be considered in the study, an 

analysis of confounding variables was done with a multiple regression analysis of 

each gene with sex, weight, age, and the condition of the patient’s cancer prior to 

treatment. Most genes did not show any significant differences among any of these 

conditions. There were a couple of responses noted, though. GADD45A, BCLXL, 

and DDB2 had significant differences between male and female (p <0.05). BCL2 had 

significant differences based on the patient’s weight (p < 0.05) and patient’s age 

(p<0.01). 
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Table 3.6 Confounding data for all patients 

 Sex Mass Age Condition 

CDKN1A 0.12 
(0.45) 

0.007 
(0.012) 

0.03 
(0.04) 

0.21 
(0.32) 

FDXR -0.5 
(0.53) 

0.008 
(0.014) 

0.005 
(0.047) 

0.18 
(0.38) 

GADD45A -1.47* 
(0.65) 

0.024 
(0.018) 

-0.028 
(0.057) 

0.79 
(0.47) 

FLT3LG -1.49 
(0.77) 

-0.015 
(0.012) 

0.01 
(0.05) 

0.05 
(0.61) 

XPC -0.23 
(0.43) 

-0.004 
(0.01) 

0.04 
(0.036) 

-0.13 
(0.31) 

BIM -0.29 
(0.34) 

0.005 
(0.009) 

0.023 
(.029) 

0.06 
(0.25) 

BCLXL 1.24* 
(0.5) 

-0.005 
(0.012) 

-0.05 
(0.04) 

-0.91 
(0.36) 

STAT5B -0.62 
(0.36) 

0.008 
(0.009) 

0.04 
(0.03) 

0.33 
(0.26) 

BCL2 -0.19 
(0.39) 

-0.02* 
(0.01) 

0.09** 
(0.03) 

-0.31 
(0.29) 

BAX -0.37 
(0.3) 

0.003 
(0.007) 

0.029 
(0.025) 

-0.23 
(0.22) 

NQO1 -0.65 
(0.48) 

0.006 
(0.009) 

0.04 
(0.03) 

0.52 
(0.33) 

DDB2 -1.24* 
(0.60) 

-0.0002 
(0.012) 

0.07 
(0.04) 

0.41 
(0.41) 

MDM2 -0.25 
(0.35) 

0.02 
(0.01) 

-0.05 
(0.04) 

0.48 
(0.33) 

**** <0.0001, ***<0.001, **<0.01, *<0.05, + <0.1 

 

3.4.2 Multiple Regression Analysis identifies subset of genes most useful for mibg 

treatment 

Multiple regression analysis was conducted to assess the effects of IR, time 

elapsed from injection, and chemotherapy used. Because two models were used to 

estimate dose, two multiple regression analyses were run in tandem. Using doses 

supplied from UCSF, 6 genes (CDKN1A, FDXR, XPC, BAX, DDB2, and MDM2) 

showed significant responses at 72 hours; 7 genes (CDKN1A, FDXR, XPC, BCL2, 
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BAX, DDB2, and MDM2) showed significant responses at 96 hours; and 6 genes 

(CDKN1A, FDXR, XPC, BCLXL, DDB2, and MDM2) showed significant responses 

at 120 hours. The second model showed less significant findings with 4 genes 

(CDKN1A, FDXR, BAX, and DDB2) showing significant responses at 72 hours; 3 

genes (CDKN1A, FDXR, and BAX) showing significant responses at 96 hours; and 1 

gene (CDKN1A) being significant at 120 hours.   

The strongest performing genes at each time point were CDKN1A and FDXR 

in respect to time after injection. CDKN1A had a strong average response of 2.29 

(p<0.001) at 72 hours, 1.79 (p<0.01) at 96 hours, and 1.45 (p<0.05) at 120 hours. 

FDXR had a less strong, but significant average response of 2.29 (p<0.01) at 72 hours 

and 1.68 (p<0.05) at 96 hours. DDB2 response was significant at 72 hours with a 

response of 2.40 (p<0.01), 1.74 (p<0.01). BAX performed strongly at 72 and 96 hours 

with 1.48 (p<0.05) and 1.38 (p<0.05), respectively. 

   Patients treated with Irinotecan showed significant differences between 

themselves and those patients treated only with mIBG. 8 genes (FDXR, XPC, BIM, 

BCLXL, STAT5B, BCL2, BAX, and DDB2) had significant responses to the drug in 

comparison to mIBG only. BCLXL and BCL2 had the strong significant difference, 

but in opposite directions. BCLXL saw a significant down-regulation of 1.62 

(p<0.0001) while BCL2 showed a significant up-regulation of 1.05 (p<0.0001) in 

gene expression. 
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****<0.0001, ***<0.001, **<0.01, *<0.05, + <0.1 

Table 3.7 Model 1 – Multiple Regression Analysis Results 
 Intercept Dose 72 Hours 96 Hours 120 Hours Irinotecan Vorinostat 
 β (SE) β (SE) β (SE) β (SE) β (SE) β (SE) β (SE) 

CDKN1A 0.099 
(0.15) 

-0.002* 
(0.0009) 

3.08**** 
(0.27) 

2.64**** 
(0.28) 

2.49**** 
(0.36) 

-0.16 
(0.16) 

-0.16 
(0.21) 

FDXR -0.35 
(0.19) 

-0.0022 
(0.0011) 

3.33**** 
(0.33) 

2.80**** 
(0.35) 

2.91**** 
(0.45) 

0.70*** 
(0.20) 

0.17 
(0.26) 

GADD45A -0.21 
(0.41) 

0.0045 
(0.0025) 

0.69 
(0.72) 

0.62 
(0.76) 

0.17 
(0.99) 

0.19 
(0.42) 

0.77 
(0.57) 

FLT3LG 0.203 
(0.39) 

-0.0008 
(0.0039) 

0.31 
(0.93) 

0.26 
(0.97) 

-0.14 
(1.18) 

0.102 
(0.52) 

-1.57** 
(0.54) 

XPC -0.43 
(0.22) 

-0.003* 
(0.001) 

1.83**** 
(0.39) 

2.03**** 
(0.42) 

1.50* 
(0.57) 

0.86*** 
(0.23) 

0.22 
(0.34) 

BIM -0.28 
(0.20) 

0.00004 
(0.0012) 

0.67 
(0.36) 

0.91 
(0.38) 

0.498 
(0.518) 

0.56** 
(0.21) 

0.11 
(0.31) 

BCLXL 0.92** 
(0.27) 

-0.0009 
(0.002) 

-0.77 
(0.47) 

-0.91 
(0.49) 

-1.67* 
(0.68) 

-1.52**** 
(0.28) 

-1.59*** 
(0.40) 

STAT5B -0.25 
(0.21) 

0.004** 
(0.001) 

-0.22 
(0.36) 

0.43 
(0.38) 

0.42 
(0.53) 

0.53** 
(0.21) 

0.01 
0.31) 

BCL2 -0.32 
(0.22) 

-0.004** 
0.001) 

0.65 
(0.38) 

0.95* 
(0.40) 

0.68 
(0.55) 

0.94**** 
(0.22) 

-0.88** 
(0.32) 

BAX -0.15 
(0.16 

-0.0015 
(0.001) 

1.28**** 
(0.29) 

1.16** 
(0.30) 

0.67 
(0.42) 

0.38* 
(0.17) 

-0.19 
(0.25) 

NQO1 -0.22 
(0.31) 

0.0006 
(0.003) 

0.63 
(0.65) 

0.85 
(0.7) 

0.007 
(0.95) 

0.33 
0.35) 

0.63 
(0.48) 

DDB2 -0.35 
(0.25) 

-0.002 
(0.002) 

2.78**** 
(0.54) 

2.09** 
(0.58) 

2.58** 
(0.79) 

0.79* 
(0.29) 

-0.25 
(0.40) 

MDM2 0.02 
(0.22) 

-0.002 
(0.001) 

1.10** 
(0.39) 

1.14** 
(0.4) 

1.26* 
(0.50) 

0.02 
(0.23) 

-0.15 
(0.28) 
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****<0.0001, ***<0.001, **<0.01, *<0.05, + <0.1 

Table 3.8 Model 2 – Multiple Regression Analysis Results 
 Intercept Dose 72 Hours 96 Hours 120 Hours Irinotecan Vorinostat 
 β (SE) β (SE) β (SE) β (SE) β (SE) β (SE) β (SE) 

CDKN1A 0.07 
(0.18) 

0.001 
(0.002) 

2.29***  
(0.56) 

1.79** 
(0.61) 

1.45* 
(0.68) 

-0.12 
(0.17) 

-0.15 
(0.23) 

FDXR -0.46* 
 (0.22) 

0.002 
(0.003) 

2.29** 
(0.69) 

1.68* 
(0.75) 

1.56+ 
(0.84) 

0.82*** 
(0.21) 

0.25 
(0.28) 

GADD45A -0.24 
(0.49) 

0.001 
(0.006) 

1.41 
(1.51) 

1.38 
(1.63) 

1.22 
(1.83) 

0.15 
(0.47) 

0.85 
(0.62) 

FLT3LG 0.46 
(0.54) 

-0.002  
(0.004) 

0.56 
(1.18) 

0.54 
(1.26) 

0.21 
(1.49) 

-0.10 
(0.51) 

-1.76** 
(0.62) 

XPC -0.52+ 
(0.26) 

-0.00007 
(0.003) 

1.24 
(0.84) 

1.40 
(0.90) 

0.61 
(1.05) 

0.95*** 
(0.25) 

0.28 
(0.36) 

BIM -0.33 
(0.23) 

0.0008 
(0.003) 

0.50 
(0.74) 

0.73 
(0.80) 

0.29 
(0.92) 

0.60** 
(0.22) 

0.15 
(0.32) 

BCLXL 1.07*** 
(0.30) 

-0.00007 
(0.004) 

-1.03 
(0.96) 

-1.18 
(1.03) 

-2.02+ 
(1.2) 

-1.62**** 
(0.29) 

-1.68*** 
(0.42) 

STAT5B -0.30 
(0.25) 

0.003 
(0.003) 

-0.09 
(0.78) 

0.56 
(0.85) 

0.76 
0.98) 

0.55* 
(0.23) 

0.07 
(0.34) 

BCL2 -0.41 
(0.26) 

0.0008 
(0.003) 

-0.38 
(0.82) 

-0.14 
(0.88) 

-0.80 
(1.03) 

1.05**** 
(0.25) 

-0.82* 
(0.36) 

BAX -0.14 
(0.19) 

-0.002 
(0.002) 

1.48* 
(0.61) 

1.38* 
(0.65) 

0.83 
(0.76) 

0.39* 
(0.18) 

-0.20 
(0.26) 

NQO1 -0.31 
(0.39) 

-0.0001 
(0.003) 

0.83 
(0.97) 

1.06 
(1.05) 

0.24 
(1.30) 

0.41 
(0.38) 

0.69 
(0.52) 

DDB2 -0.36 
(0.33) 

-0.0004 
(0.003) 

2.40** 
(0.81) 

1.72+ 
(0.88) 

2.04+ 
(1.08) 

0.75* 
(0.31) 

-0.34 
(0.44) 

MDM2 -0.10 
(0.26) 

0.004 
(0.003) 

-0.27 
(0.78) 

-0.33 
(0.83) 

-0.45 
(0.92) 

0.13 
(0.25) 

-0.04 
(0.31) 
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Patients treated with Vorinostat had only 3 genes (FLT3LG, BCLXL, and 

BCL2) significantly modulate compared to mIBG only patients. BCLXL had near the 

same magnitude of change as it did with Irinotecan. BCL2 reversed its response and 

was down-regulated by 0.82 (p<0.05) on average when the patient was treated with 

Vorinostat vs. Irinotecan. 

 

3.5 CEDE was estimated using expression of selected genes as a model 

 Using the data from the first 26 patients, 6 genes were selected to develop a 

predictive biodosimetry model for neuroblastoma patients. CDKN1A was selected 

due to its strong responses as a cell-cycle inhibitor. BAX and FDXR were pro-

apoptotic genes and had very strong responses. BCLXL was selected due to its 

discriminating performance between different chemotherapies. GADD45A was 

chosen because it has been shown to be a reliable biomarker for external radiation. 

STAT5B also had strong responses and its average behavior appeared to be inversely 

proportional to average BCLXL’s behavior. 

 

3.5.1 6 genes showed significant modulation in expression  

After adding 15 patients, Welch’s t-test were performed to assess if there was 

any change in modulation in bulk response to the therapy. Consequentially, there 

were greater significant differences between base time and 72 hours, as well as 

between base time and 96 hours. BCLXL and STAT5B both increased their 

significance when compared between 72 hours and 96 hours.  
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Table 3.9 T-Test Results of Response to Radiation 
 0-72 Hours 0-96 Hours 

P-value DF P-Value DF 
CDKN1A <2.2E-16 48 <2.2E-16 42 
FDXR <2.2E-16 48 <2.2E-16 42 
GADD45A 8.589E-09 48 1.604E-05 42 
BCLXL 5.857E-05 47 6.889E-08 41 
STAT5B 1.626E-06 47 4.747E-08 41 
BAX 7.762E-12 47 2.305E-10 41 

 

3.5.2 Confounding analysis showed sex as a possible confounding variable  

Re-assessment of confounding data was necessary to conclude whether the 

additional patients changed the effect of patient’s sex, patient’s weight, patient’s age, 

and patient’s cancer condition prior to treatment. For these 6 genes, GADD45A and 

STAT5B showed significant differences between male and female.  

 

Table 3.10 Confounding Analysis for all 41 Patients (P-values) 
 Sex Mass Age Condition 

CDKN1A 0.95 0.87 0.67 0.31 
FDXR 0.63 0.46 0.76 0.93 
GADD45A 0.03* 0.36 0.93 0.92 
BCLXL 0.96 0.68 0.63 0.48 
STAT5B 0.006** 0.39 0.36 0.53 
BAX 0.86 0.73 0.58 0.89 

****<0.0001, ***<0.001, **<0.01, *<0.05, + <0.1 

 

 Additional confounding analyses were done to verify that prior treatments and 

chemotherapy alone did not alter the expression of genes in patients. Welch’s two-

sample t-tests were performed to judge whether there were changes in gene 

expression based on prior exposure from therapy. 6 patients received two therapies in 

this study. There were no significant differences found for all genes in these patients.  
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Five patients had two blood samples taken prior to treatment with 131I-mIBG. 

The first was done prior to injection of chemotherapy and the second was taken just 

prior to 131I-mIBG treatment.  Welch’s two-sample t-tests were also used to determine 

if chemotherapy has a lone effect on gene expression separated from exposure to 131I-

mIBG. There was no significant difference in gene expression due to chemotherapy 

alone.  

 

3.5.3 Multiple Regression Analysis identifies significance of selected genes for 

modeling 

Multiple regression analysis was performed to determine the effects of IR 

dose, elapsed time, and chemotherapy used on gene expression.  All values used were 

transformed by taking the log2 of the fold change. As before, two separate multiple 

regression analyses were performed based on two different estimates of dose, doses 

provided from UCSF and doses calculated. Results differed significantly between the 

two groups. Generally, the difference in doses had no effect on the relationships  
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Table 3.11 Model 1 - Multiple Regression Analysis Results 

 Intercept Dose 72 Hours 96 Hours Irinotecan Vorinostat 

CDKN1A 0.21 
 (0.13) 

-0.0017* 
 (0.0008) 

3.16****  
(0.23) 

2.70**** 
 (0.25) 

-0.30*  
(0.14) 

-0.43*  
(0.18) 

FDXR -0.26 
 (0.17) 

-0.0019 
 (0.001) 

3.39**** 
 (0.29) 

2.91 ****  
(0.31) 

0.59***  
(0.17) 

-0.09 
 (.23) 

GADD45A -0.15 
 (0.29) 

0.0038* 
(0.00018) 

0.89  
(0.49) 

0.81 
 (0.53) 

0.17  
(0.30) 

0.42 
 (0.39) 

BCLXL 0.79***  
(0.21) 

0.0007 
 (0.001) 

-1.31*** 
(0.37) 

-1.56*** 
 (0.4) 

-1.34**** 
 (0.23) 

-1.10*** 
 (0.31) 

STAT5B -0.18 
 (0.16) 

0.002* 
 (0.001) 

0.38 
 (0.27) 

0.78** 
 (0.29) 

0.39* 
 (0.17) 

-0.032 
 (0.22) 

BAX -0.15  
(0.15) 

-0.001 
 (0.0009) 

1.49 **** 
(0.25) 

1.41**** 
 (0.27) 

0.33*  
(0.15) 

-0.02  
(0.2) 

 ****<0.0001, ***<0.001, **<0.01, *<0.05, + <0.1 

 

 At 72 hours and 96 hours, CDKN1A, FDXR, BCLXL, and BAX were 

significantly different from base time when all other variables were held constant. 

STAT5B was significant different for 96 hours. 72 hours after injection of 131I-mIBG 

cause CDKN1A to increase by 2.73 (p<0.01), FDXR to increase by 3.51 (p<0.01), 

BCLXL to decrease by 3.37 (p<0.05), and BAX to increase by 3.43 (p<0.01). 96 

hours after injection of 131I-mIBG caused CDKN1A to increase by 2.23 (p<0.05), 

FDXR to increase by 3.03 (p<0.05), BCLXL to decrease by 3.79 (p<0.05), BAX to 

increase by 13.51(p<0.01). The differences in expression between 72 hours and 96, 

on average were 0.5 for CDKN1A, 0.48 for FDXR, 0.42 for BCLXL, and 0.08 for 

BAX. 
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Table 3.12 Model 2 – Multiple Regression Analysis Results 

 Intercept Dose 72 
Hours 

96 
Hours 

Irinotecan Vorinostat 

CDKN1A 0.25 
(0.15) 

0.0002 
(0.003) 

2.73** 
(0.90) 

2.23* 
(0.98)  

-0.34* 
(0.15)  

-0.48*  
(0.19) 

FDXR -0.26 
(0.19) 

-0.002 
(0.004) 

3.51** 
(1.13) 

3.03* 
(1.23)  

0.62** 
(0.19)  

-0.11  
(0.24) 

GADD45A -0.20 
 (0.33) 

0.003 
(0.007) 

0.81  
(1.95) 

0.75  
(2.12) 

0.22 
 (0.33) 

0.49 
 (0.42) 

BCLXL 0.88*** 
(0.24) 

0.008 
(0.006) 

-3.37* 
(1.49) 

-3.79* 
(1.85) 

-1.45**** 
(0.24) 

-1.18*** 
(0.31) 

STAT5B -0.20 
(0.18) 

0.002 
(0.004) 

0.30  
(1.13) 

0.70 
(1.23) 

0.44* 
(0.18) 

-0.006 
(0.24) 

BAX -0.16 
(0.16) 

-0.009* 
(0.004) 

3.43** 
(1.02) 

3.51** 
(1.11) 

0.35*  
(0.17) 

-0.005 
(0.22) 

****<0.0001, ***<0.001, **<0.01, *<0.05, + <0.1 

 

  The addition of Irinotecan to the therapy caused significant differences in 

CDKN1A, FDXR, BCLXL, STAT5B, and BAX gene expression when all other 

variables were held constant.  CDKN1A had a lower response of 0.09 (p<0.05) with 

Irinotecan while BCLXL has a much stronger decrease in gene expression response 

of 0.55 (p<0.0001). STAT5B had increased gene expression response of 0.21 

(p<0.05) while FDXR had a strong response of 0.33 (p<0.0001). The addition of 

Vorinostat to the therapy causes significant differences in CDKN1A and BCLXL 

when all other variables were held constant. CDKN1A saw a decrease of 0.48 

(p<0.05) and BCLXL saw a decrease of 1.18 (p<0.001). 

 

3.5.4 GADD45A and BCLXL had significant interactions with increasing dose 

 An analysis of variance (ANOVA) was performed to look for interactions 

between absorbed dose, time after injection, and the chemotherapy used in 

conjunction with radiotherapy. Two genes had significant interaction terms. 
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GADD45A had a significant interaction between dose and time after injection (p = 

0.002). BCLXL had a significant interaction between dose and chemotherapy used (p 

<0.0001).  

 

Table 3.13 Summary of Results for Interaction Analysis (P-values) 
 Dose Hour Chemo Hour*Dose Chemo*Dose 
BCLXL 2.43E-09 0.06 5.41E-09 0.75 2.78E-05 
GADD45A 0.70 7.65E-06 0.46 0.003 0.59 

 

 

3.5.5 Step-wise Regression Analysis revealed a model that fit the patients’ gene 

expression best 

 Using all parameters and using time as a continuous variable rather than a 

factor, step-wise regression was performed to determine which genes best describe 

the change in dose over time. The result of the regression showed that 4 gene 

responses and the time described 96% of the variance in dose across all patients.  

CDKN1A, FDXR, GADD45A, BAX and time after injection all contribute to 

describing the variance in the dose that a patient receives on average. This model 

would then be used to predict dose as a calibration equation (Equation 3.1). 

 

Table 3.14 Parameters of Dose Calibration Equation 
 Beta SE P-value 
Intercept 6.57446 4.27803 0.1270 
CDKN1A 16.70192 3.49499 5.17e-06 
FDXR 6.86399 3.09547 0.0285 
GADD45A 2.44853 1.53517 0.1134 
BAX -10.10926 3.93679 0.0115 
Hour 2.40336 0.09775 <2e-16 
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𝐸(𝐷𝑜𝑠𝑒|𝐶𝐷𝐾𝑁1𝐴 + 𝐹𝐷𝑋𝑅 + 𝐺𝐴𝐷𝐷45𝐴 + 𝐵𝐴𝑋 + 𝐻𝑜𝑢𝑟) =

6.57446 + 16.70192(𝐶𝐷𝐾𝑁1𝐴) + 6.86399(𝐹𝐷𝑋𝑅)  + 2.44853(𝐺𝐴𝐷𝐷45𝐴) −

10.10926(𝐵𝐴𝑋) + 2.40336(𝐻𝑜𝑢𝑟)        3.1 

 

3.5.8 Gene expression can be used to predict dose 

 The best-fit model was used to estimate absorbed doses on five patients based 

only on gene expression and time after injection of mIBG. These five patients had no 

dose information provided from UCSF besides mCi/kg injected into the patient for 

treatment. On average, the model estimated the dose within 7% of the calculated dose 

value. Thirteen out of 14 of the calculated doses were within the 95% prediction 

interval with 4 of them being within the 95% Confidence Interval for the gene 

expression model. The 72 hour calculated doses had a tendency to be further off from 

the predicted dose. 
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Figure 3-4 Predicted vs Calculated Dose This chart shows the correlation between 
predicted doses from the prediction equation in section 3.6 and the calculated doses 
from the Model 2 retention function. The values show a reasonably strong linear 
correlation. 
  

 

Figure 3-5Predicted vs Calculated Dose (without outlier) This chart shows the 
correlation between predicted doses from the prediction equation in section 3.6 and 

the calculated doses from the Model 2 retention function. Without the outlier, there is 
more linearity in the model with the relationship describe approximately 58% of the 

variability in the values.
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Table 3.14 Predictive Model Results 
 
 Hour Calculated Dose Predicted Dose 95% Prediction Interval 95% Confidence Interval % off from Calculated Dose 

13 72 274.81 238.42 183.2 – 293.66 226.4 – 250.45 15.26% 
13 96 297.94 294.9 239.68 – 350.18 282.8 – 307.02 1.02% 
13* 72 274.2 251.4 195.34 – 307.4 236.1 – 266.6 9.07% 
13*  96 297.4 306.8 250.4 – 363.12 290.4 – 323.2 3.06% 
15 72 267 223.9 167.6 – 280.12 207.87 – 239.9 19.25% 
15 96 289.47 273.65 218.84 – 328.47 263.72 – 283.59 5.78% 
31 72 289.1 282.91 226.04 – 339.79 264.79 – 301.04 2.19% 
31 96 313.5 329.58 273.75 – 385.4 315.1 – 344.06 4.88% 
32 72 252.5 252.76 197.68 – 307.8 241.49 – 264.02 0.10% 
32 96 273.75 285.2 230.53 – 339.96 275.9 – 294.59 4.03% 
33 72 294.1 209.79 154.36 – 265.22 196.92 – 222.67 40.19% 
33 96 318.8 308.71 254 – 363.43 299.38 – 318.04 3.27% 
40 72 287.95 248.84 194.15 – 303.53 239.64 – 258.03 15.72% 
40 96 312.19 284.9 230.2 – 339.6 275.66 – 294.13 9.58% 
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4.0 DISCUSSION 

4.1 Implications and design for comparing biological Dosimetry in neuroblastoma patients 

 By definition, absorbed dose is the amount of energy deposited per unit mass. In reality, 

dose is difficult to calculate without biological cues. When trying to conduct the longitudinal 

research on Japanese nuclear bomb survivors, dosimetry had to be estimated based on a person’s 

memory of their position at the time of the detonation. Those doses were estimated based on the 

remembered location, distance from the detonation, and the topography of the locale. To say this 

is a difficult task would be understating it. Internal dosimetry has much the same difficulties. If 

anyone has a possible uptake from a radionuclide, unless a bioassay is taken, the dose is a rough 

estimate at best. Without a biological reference, whether it be urine or fecal activity content, 

estimating dose is just that, an estimate.  

 This makes internal biodosimetry research appealing because it can help develop 

techniques that can more precisely quantify the amount of absorbed dose one receives during 

incidents where uptake is a concern. In the medical field, estimating absorbed dose has been 

made relatively simple to undertake. Multiple methods can be employed to analyze the 

concentration of radionuclides in the body. In this study, whole body dose was estimated using 

the dose-rate decay as a representative of the body’s retention function of mIBG. In other 

studies, imaging of the body using I-123-mIBG as the radionuclide has been used to great effect 

to measure the concentration of mIBG in different tissues of the body. This is particularly useful 

if there is a need to determine the dose to a specific organ.  

 Unfortunately, while imaging and examining patient dose-rate methods provide good 

information, they do not provide it for time-sensitive situations. There are other methods that can 

provide dose estimates closer to the time of exposure. Some techniques have already been used 

 



 63 

to great effect, such as micronucleus and dicentric arrays, but these require specialized 

technicians and equipment. While these tests have linear responses to increasing dose, they are 

also expensive and take a significant amount of time. Genomic tests are of interest particularly 

because they are easier and cheaper to do. Potentially, PCR-style arrays can be done in a few 

hours and for a fraction of the cost. Genomic tests, with all of their benefits, have their own 

issues. While a lot has been learned about mechanisms of gene expression, there are many 

questions left unanswered that need to be approached. A lot of these frontiers can be seen in this 

study. First and foremost, these types of studies hinge on good dose estimates to begin with.  

 In this study, doses were estimated based on the dose-rate decay behavior of each patient 

after injection of I-131 mIBG. The retention factor was calculated based on ICRP 53 and studies 

that have looked into detail at the behavior of mIBG in the body. As described before, doses 

were calculated on a per-patient basis at UCSF using PRISM to automatically determine what 

the retention function is. In some patients, rather than a three-compartment model, a two-

compartment model was used by the software which leads to dose estimates that were different 

than would be expected based on prior studies (Fielding & Flower, 1991; Flower & Fielding, 

1996; Koral et al., 2008; Matthay et al., 1998, 2001). For the purposes of this study, instead of 

using PRISM, Microsoft Excel was used to trace the dose-rate decay curve and determine the 

retention function. Averaging the function over three patients provided a standardized way to 

estimate dose, but this approach lacks the patient-specific detail that can cause significant 

variances in the biokinetics of mIBG due to human variance. But, for the situations when the 

dose-rate curve is not reliable, whether it is because the patient moved dramatically or there was 

a fault in the instrument, a standardized curve prevents significant under or over estimation of 

dose.  
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 The necessity of having a consistent and reliable dose estimation process is readily 

apparent in this study.  Overall, two sets of multiple regression analyses were done using doses 

provided by UCSF and using the average retention function. Using the doses provided by UCSF, 

there were many significant findings as summarized in Table 3.7. The doses calculated by the 

average retention function, though, produced less significant findings, and those that were 

significant has lower P-values than those produced in the analysis using UCSF doses. The 

changes in significance can be summarized by the differences of standard error between the two 

analyses. Using UCSF doses, at 72 hours CDKN1A showed an increase in 3.08 with a p-value 

<0.0001 and standard error of 0.27 whereas in using the averaged retention function, CDKN1A 

showed a lesser increase of 2.29 with a p-value <0.001 and standard error of 0.56. There was 

also a moderate amount of evidence of a linear relationship between CDKN1A and increasing 

dose using the UCSF doses, while the averaged retention function did not have any significant 

evidence of the same linear relationship. Taking into account that the variance of the UCSF dose 

values between all patients was much higher than the averaged retention function, it appears that 

the variance was more assigned to the dose contribution, rather than to time. This becomes more 

pronounced when looking at the results for chemotherapies – the significance did not change by 

a whole lot between the two different approaches. While a lot of the patients had reliable dose-

rate curves, the ones that did not obscured the results. Therefore, using the averaged retention 

function is more applicable for analyzing results.  

 There is a trade-off between using Excel to calculate an averaged retention function 

rather than using PRISM to determine dose to each patient individually. With access to each 

patient’s dose-rate information, a clearer and more reliable dose can be assigned to the patient. 

But, because PRISM sometimes only calculates the dose using a two-compartment model, the 
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doses will be widely unreliable. For this reason, when calculating doses for developing a 

biodosimetry model, the benefits of using the averaged retention function outweigh the 

sometimes more accurate but unreliable doses calculated by PRISM.  

 

4.2 Using mIBG patients as a model for estimating Dose to the Blood 

  Using peripheral white blood cells as a biodosimeter is the logical choice because blood 

goes everywhere in the body, but for beta-emitters (such as I-131) a lot of the dose is deposited 

in the blood, blood vessels, and the tumors, rather than anywhere else in the body. Therefore, 

using whole body dose as the measurement of comparison to gene expression might not be the 

best choice. That being said, it is difficult to model the dose to blood as self-shielding, flow 

dynamics, and continually changing blood vessel geometry affects the modeling (Hänscheid, 

Fernández, Eberlein, & Lassmann, 2014). But, by taking samples at regular intervals over a 

longer period of time (approximately 168 hours) and analyzing the activity concentration of 

mIBG in them, estimation of total activity in the blood and therefore dose can still be calculated. 

In 1956, A. A. Yalow conducted a study and derived an empirical equation: 

Dblood = [0.214(B1 − B2)t1] + (41.62B2)     4.1 

where t1 is the effective half-life of mIBG retention in the blood (hrs) B1 and B2 are the 

concentration of mIBG in the first and lest measurements, respectively (Flower & Fielding, 

1996). In Flower et al’s study, they calculated a contribution of 0.04 to 0.17 mGy/MBq whereas 

in this study, it was calculated between 0.01 to 0.10 mGy/MBq with a range of doses to the 

blood of 0.95 Gy to 1.47 Gy. But, since the blood was never tested at 168 hours, nor was any 

blood tested for activity content, the dose estimates were not used for any calculations. But, if a 
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proper experiment was conducted, this could be a possibility for calculating dose and developing 

a biodosimetric model. 

 

4.3 Biodosimetry Model based on Gene Expression 

 In order to use peripheral white blood cells as a biodosimeter, a complete understanding 

of p53’s response to IR could be helpful. As explained, p53 activation contributes to three 

different mechanisms within the cell: cell-cycle arrest, apoptosis, and DNA repair. See Table 2.1 

for further explanation of the genes chosen. 

 

4.3.1 Dose-Dependent and Time-Dependent Gene Expression for Biodosimetry 

 Nearly all genes tested that were up-regulated and in this study showed a peak of 

expression at 72 hours with a slow decent of expression down to 120 hours. This behavior can 

also be seen in a recent study by Tucker et al. with careful examination of the changes in 

CDKN1A ΔCt for 2.5 Gy at 1 day vs 2 days (Tucker et al., 2014). Based on this study and 

Tucker’s study, there are two behaviors of gene expression that need to be accounted for in 

models. First is the dose-dependent response where greater dose causes more expression of that 

gene. As has been shown in studies, CDKN1A particularly appears to increase in expression 

linearly with increasing dose until it reaches a threshold around 6 Gy and plateaus off 

exponentially (Tucker et al., 2014; Tucker, Divine, et al., 2013; Wyrobek & Manohar, 2011). 

This particularly affects dose prediction because doses greater than 6 Gy cannot be predicted 

with certainty (Tucker, Divine, et al., 2013).  

The second behavior of concern is the time-dependent response where with greater time 

elapsing after exposure, the expression of the gene should dampen. To make this more 
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complicated are the effects of an exponentially decreasing source of radiation that is persistent 

rather than acute. It could be argued that this type of situation is more likely with the uptake of 

radionuclides being a concern for nuclear accidents and “dirty bomb” detonations.  

Comparing the T-test results to the multiple regression results, a discrepancy can be 

noted. For the first 26 patients, there are significant differences between the times and baseline 

for CDKN1A, FDXR, GADD45A, XPC, BCLXL, STAT5B, BAX, DDB2, MDM2, and BIM. 

But, in the multiple regression analysis, only CDKN1A, FDXR, BAX, DDB2, and BCLXL 

showed significant differences between baseline and time. The genes that did not remain 

significant in the multiple regression analysis were influenced by the introduction of 

chemotherapy into the analysis. XPC and BIM both had strong significant differences between 

mIBG-only therapy and therapy using Irinotecan. 

 

4.3.2 p53 responsive genes as a Model for Response to Ionizing Radiation  

 Classifying the gene expression within cells after exposure to IR is of the upmost 

importance when trying to decide upon a model that best reflects the amount of energy deposited 

in a given system. To this point, internal dosimetry and molecular biology are linked. As can be 

seen, then IR is incident upon a white blood cell, a host of p53-dependent genes are activated, as 

well others in other response pathways. While the p53 pathway appears to hold great promise as 

a great predictor of dose, it is possible that other pathways such as JNK and FAS could be used 

as well. In this study, two segments of the p53 pathway were looked at by targeting genes that 

are known to arrest a cell’s cycle as well as ones that are known to induce (or protect against) 

apoptosis.  
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4.3.2.1 Cell-Cycle Arrest 

 CDKN1A (or p21) is a critical target of p53 once p53 is activated. It encodes CDK1 

which renders cyclin and Cdk complexes inactivated, thus leading to an accumulation of 

hypophosphorylated Rb proteins. In such a state, Rb is unable to break its association with 

transcription factors such as E2F which means E2F responsive genes cannot be activated and the 

cell cannot move into S phase. In this way, CDKN1A acts as a checkpoint for the G1/S phase 

(Somasundaram & El-Deiry, 2000). In studies using in vitro models, CDKN1A was also shown 

to bind with PCNA, blocking DNA replication (Somasundaram & El-Deiry, 2000). CDKN1A 

has been shown to be a very robust and highly significant response gene to ionizing radiation 

exposure (Amundson et al., 1998; Amundson, Grace, Mcleland, et al., 2004; Budworth et al., 

2012; S Paul & Amundson, 2008; Tucker et al., 2014; Tucker, Vadapalli, et al., 2013).  

 

Figure 4-1 CDKN1A Modulation over Time CDKN1A reaches a peak average value at 72 
hours and its modulation decays over time.  

 
 CDKN1A has a strong increase in fold change after exposure to IR. In this study, 

CDKN1A showed the strong increase in fold change, but did not show a significant change in 
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fold change with increasing dose. There is one reason for this that can be seen in this study, 

compared to others. As time lapses after an initial exposure, each cell undergoes critical 

decisions after CDKN1A halts cell cycle progression. Cells can repair themselves, undergo 

apoptosis, or become senescent. And, even though accumulated absorbed dose is increasing over 

time, the dose rate is decreasing. In this study, time after exposure becomes a stronger factor in 

determining the amount of CDKN1A expression in white blood cells after 72 hours of 

exponentially decreasing exposure.  

 From a systems point-of-view in this study, CDKN1A expression is a combined result of 

the amount of dose received and the time elapsed since initial exposure.  CDKN1A has shown to 

increase in modulation with increasing dose (Amundson et al., 1998; Amundson, Grace, 

Mcleland, et al., 2004; Tucker et al., 2014; Tucker, Divine, et al., 2013) and in this study, time 

after initial exposure shows to decrease the amount of expression. Combining previous results 

with the results in this study, it appears that CDKN1A’s expression is a polynomial curve 

generated by two competing functions of dose and time after exposure. The peak of the curve is 

depending on the initial dose-rate and then the shape of the decay is depending on time and 

decay rate of the dose-rate. 

 GADD45A is another p53 target gene that activates the G2/M cell cycle checkpoint 

inhibiting the activity of CyclinB1/Cdc2 complex. In other studies, GADD45A had strong 

responses after exposure to IR. Budworth et al. found that GADD45A increased strongly 24 

hours after exposure to 2 Gy (Budworth et al., 2012). Paul and Amundson found that GADD45A 

had a dose-response signature in microassay experiments using patients undergoing TBI, but did 

not find a signature in peripheral blood lymphocytes (Amundson, Grace, Mcleland, et al., 2004; 

S Paul & Amundson, 2008). The results in this study showed that GADD45A did not respond 
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with any dose-effect just as Amundson noted in 2008. GADD45A expression also did not appear 

to be significant in regards to time as well. But, when including an interaction term, GADD45A 

showed a strong interaction between time and dose.    

 

4.3.2.2 Apoptosis 

  The BCL2 family is a group of genes that form proteins that regulate apoptosis, whether 

through inducing or inhibiting it. This study looked at four genes (BCL2, BCLXL, BIM, and 

BAX) initially, before looking at BAX and BCLXL for the entire set of patients.  After DNA 

damage occurs during IR exposure, p53 is directly localized to the mitochondria where is 

interacts with members of the BCL2 family. BAX and BCLXL oppose one another when 

induced by cellular stress. BCLXL suppresses apoptosis by sequestering cytoplasmic p53. 

Nuclear p53 then transcribes PUMA which binds to BCLXL and displaces p53 so that it can 

directly activate BAX, which promotes apoptosis (Zinkel et al., 2006). This balancing act 

determines whether a cell has determined to live or die. After BAX is activated, it induces 

mitochondrial permeabilization by oxidizing the mitochondrial pores, leading to cytochrome c 

release (Zinkel et al., 2006). BAX alone, though is not enough for radiation-induced apoptosis, 

there are more factors (Amundson et al., 1998).  
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Figure 4-2 BAX Modulation over Time BAX reaches a peak average value at 72 hours with a 
decay as time increases.  

 
 In this study, BCLXL was down-regulated significantly at 72 hours after injection while 

BAX was up-regulated significantly.  This shows that the population of white blood cells in the 

samples was more likely to, on average, undergo apoptosis rather than stay alive. BCLXL was 

one of the few genes to have a strong effect as time passed while undergoing the treatment with 

the average response increasing its down-regulation significantly. This could represent that 

damage to the DNA was so severe that even after halting the cell cycle, the damage was 

unrepairable and so the average response was to still undergo apoptosis. This would mean that a 

sustained IR dose over time would still have an effect on cells. 
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Figure 4-3 BCLXL Modulation over Time BCLXL shows to have a decline in value signifying 
an  increasing down-regulation of the gene over time.  

 
 FDXR creates a protein called FR that is involved with the electron transfer from 

NADPH to cytochrome P450 in the mitochondria (Knops et al., 2012). FDXR is activated by p53 

once cellular stresses induce Reactive Oxygen Species (ROS). These ROS, which were described 

earlier as having a strong effect on DNA, may also cause oxidation of mitochondria pores. This 

may upset the membrane potential and lead to a release of cytochrome c – the end result of the 

caspase cascade that eventually leads to apoptosis. This could also be caused by the synthesis of 

FR, the protein product of FDXR, which sensitizes cells to ROS-mediated apoptosis (Liu & 

Chen, 2002).  
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Figure 4-4 FDXR Modulation over Time FDXR shows a very strong peak at 72 hours where it 
decays off.  

 
 Because FDXR appears to directly lead to apoptosis, the amount of FDXR produced is 

likely directly proportional to the number of cells undergoing apoptosis within a sample. While 

the BCL-2 family could be metaphorically a game of tug-and-war between apoptosis and anti-

apoptosis forces, FDXR either bypasses this game completely, or is a representation of who is 

winning. FDXR had the same response pattern as CDKN1A, with a peak value at 72 hours and a 

lower one at 96 hours. But, FDXR’s fold increase was larger than CDKN1A’s possibly showing 

that the dose-rate exhibited by the mIBG was inducing an apoptotic bias on the cells.  

 

4.3.3 Internal exposure from mIBG as a model for biodosimetry 

 In this study, 4 genes were selected by a stepwise regression to represent the overall 

behavior of the data in response to increasing dose. Including time in the function was necessary 

because there were obvious differences in the genes’ responses at 72 hours and 96 hours. The 

function is empirical and based solely on the values in this study and so could only possibly be 
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used in another neuroblastoma study with similar patients and absorbed doses. Even with that 

limitation, there is a lot to be understood by looking at the model. The values in the empirical 

model are weighed contributions to the final dose estimate. Because the model is based on mIBG 

radiotherapy, absorbed dose increases over time therefore the contribution of time to the model is 

logical. CDKN1A, FDXR, and GADD45A have been shown to increase based on increasing 

prompt dose and in this study also show to have non-zero fold changes as absorbed dose 

accumulates over time. BAX has a negative coefficient in the model which could represent a 

couple ideas. One, it might take time for the BCL-2 Family to determine whether to transcript for 

apoptosis or survival functions. Two, BAX has multi-domain functions involving cell-cycle 

arrest and apoptosis decisions (Zinkel et al., 2006), therefore with increasing dose (and 

subsequent increasing DNA damage), BAX is less likely to promote moving from G1 to S phase. 

So, in summary, the model is saying that increasing dose causes more cell-cycle arrest, more 

apoptosis, less proliferation, and less survival. 

 

Table 4.1 Summary of Gene Modulation over Time in Study 

 72 Hours 96 Hours 120 Hours 

CDKN1A ↑↑ ↑↑ ↑↑ 

FDXR ↑↑ ↑↑ ↑↑ 

GADD45A ↑ ↑ ↑ 

BCLXL ↓↓ ↓↓ ↓↓ 

BAX ↑ ↑ ↑ 

STAT5B ↑ ↑ ↑ 
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4.4 Future Direction 

While the knowledge of genomics is increasing every day, many knowledge gaps still 

exist in regards to gene expression.  We know that CDKN1A as very responsive to IR exposure 

and studies have shown that its increase in behavior is close to linear with increasing dose. But 

these studies only deal with acute doses. This would be useful for determining doses from total 

body irradiation therapy and possibly criticality accidents, but for targeted radiotherapy or 

nuclear accidents, these studies are less useful. Instead, a study like this one is needed that takes 

into account the exponential decay of activity after an uptake of a radionuclide. In this study, 

CDKN1A had a peak at 72 hours and subsequent decay to 96 and 120 hours (as did FDXR and 

most other genes in the study).   

While this study takes great strides towards developing a biodosimetry model, there are 

aspects that cannot be controlled for, particularly because of a lack of knowledge in the area. It 

does not need to be explained further, but human beings are complex animals and at the genomic 

level, there are greater levels of complexity that are yet to be understood.  One example of this 

complexity is the bystander effect where unexposed cells adjacent to exposed cells inexplicably 

also die (Asur et al., 2009; Morgan & Bair, 2013; Schaue et al., 2012). One possible cause for 

this is that the death of a cell from IR causes cytokines to be released into the intercellular fluid, 

which are then taken in by healthy cells and then undergo apoptosis (Schaue et al., 2012). 

Cytokines are also released for other reasons, such as oxidative stress, bacteria, viruses, and the 

list goes on. With evidence of this intercellular communication, each individual sample could be 

drastically changed by unknown variables in the patient.  
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While genes in this study represent good IR-responsive genes, there are possibly better 

ones out that, or at least better combination of genes to use in a model. Preferentially, a good 

model will have as few genes as possible and as consistent of responses as possible. In the 

situation of radiotherapy patients, a gene’s expression that directly represents the max dose rate 

and a gene’s expression that directly represents the time that has elapsed since the max dose rate 

occurred. This could also be useful in the case of an uncontrolled release of radioisotopes. If the 

radioisotope is known, then the biokinetic model is also and therefore, this model could be used 

as well to determine the dose to an exposed person.  

Fold change was used as the comparing tool in this study, but the ΔCT value would be a 

better estimate. There were some benefits for using fold change rather than just the ΔCT values. 

As can be seen in Table 3.1, the raw RNA yields for the first 26 patients were a lot less and so, 

the raw CT values would be different between the first 26 patients and the last 15. So, to 

compensate for that, fold changes allow for normalization of the data based on its comparisons to 

time and the normalization housekeeping gene, GAPDH. The downside of this strategy is that in 

order to calculate a fold change, one must have a base value. In the case of a nuclear incident, the 

base value would be unknown and so the fold change model would not work.  

One of p53’s mechanisms was not explored in this study. None of the selected DNA 

repair genes proved to be significant over time and therefore were not used in developing the 

model. And as microarray studies have shown, there are a lot of other genes besides p53 

responsive genes that are responsive towards IR exposure. Other systems could be as important, 

and potentially more important, to describe biological effects of radiation. 
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5.0 CONCLUSION 

 In summary, this thesis shows that biodosimetry models can be created to predict 

absorbed dose based on blood-based gene expression. Even when taking into account the 

different environments of radiosensitivity within the patients, a model could predict a dose that 

was at worse within 40% and at best a fraction of 1%. This thesis also shows the importance of a 

proper dosimetry model for patients when evaluating the predictability of a model. Future work 

still needs to be done to understand the possible confounding factors that may still be yet to be 

discovered, relationships that have not yet been realized. Further studies utilizing targeted 

radiotherapy patients will not only help us develop methods for personalizing treatment for 

enhanced therapeutic results, but will also help us better understand effects of ionizing radiation 

at the molecular level. In the end, this could provide a stronger knowledge basis for radiation 

protection. 

 



 78 

Appendix A
International Neuroblastoma Staging System & Proposed Neuroblastoma Risk Groups (Adapted from Wolden, 2007) 

Description Low Risk Intermediate 
Risk 

High Risk 

Stage 
1 

Localized tumor with complete gross excision, with or without 
microscopic residual disease; representative ipsilateral lymph nodes 
negative for tumor 

All None None 

Stage 
2A 

Localized tumor with incomplete gross excision; representative 
nonadherent lymph nodes negative for tumor microscopically 

Age <1 yr 
Age 1-21 yr; 
MYCN 
nonAMP 
Age 1-21 yr; 
MYCN AMP; 
FH 
 

None Age 1-21 yr; 
MYCN AMP; 
UH 

Stage 
2B 

Localized tumor with or without complete gross excision, with 
ipsilateral, nonadherent lymph nodes positive for tumor. Enlarged 
contralateral lymph nodes must be negative microscopically   

Stage 
3 

Unresectable unilateral tumor infiltrating across the midline, with or 
without regional lymph node involvement; or localized unilateral tumor 
with contralateral regional lymph node involvement; or midline tumor 
with bilateral extension bt infilatration (unresectable) or by lymph node 
involvement 

None Age <1 yr; 
MYCN nonAMP 
Age 1-21 yr; 
MYCN 
nonAMP; FH 

Age 0-21; 
MYCN AMP 
Age 1-21 yr; 
MYCN 
nonAMP; UH 

Stage 
4 

Any primary tumor with dissemination to distant lymph nodes , bone, 
bone marrow, liver, skin, and/or other organs (except as defined in stage 
4S) 

None Age <1 yr; 
MYCN 
NonAMP 

Age <1 yr; 
MYCN AMP 
Age 1-21 yr 

Stage 
4S 

Localized primary tumor (as defined for stage 1, 2A, or 2B) with 
dissemination limited to skin, liver, and/or bone marrow (limited to 
infants <1 years of age) 

MYCN 
nonAMP; 
FH, DI>1 

MYCN 
nonAMP; UH 

MYCN AMP 
MYCN 
nonAMP; 
DI=1 
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