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The task of mapping spelled English words into strings of phonemes and stresses

("reading aloud") has many practical applications. Several commercial systems

perform this task by applying a knowledge base of expert-supplied letter-to-sound

rules. This dissertation presents a set of machine learning methods for automat-

ically constructing letter-to-sound rules by analyzing a dictionary of words and

their pronunciations. Taken together, these methods provide a substantial per-

formance improvement over the best commercial systemDECtalk from Digital

Equipment Corporation. In a performance test, the learning methods were trained

on a dictionary of 19,002 words. Then, human subjects were asked to compare the

performance of the resulting letter-to-sound rules against the dictionary for an ad-

ditional 1,000 words not used during training. In a blind procedure, the subjects

rated the pronunciations of both the learned rules and the DECtalk rules according

to whether they were noticeably different from the dictionary pronunciation. The

error rate for the learned rules was 28.8% (288 words noticeably different), while

the error rate for the DECta]Jc rules was 44.3% (443 words noticeably different). If,

instead of using human judges, we required that the pronunciations of the letter-

to-sound rules exactly match the dictionary to be counted correct, then the error

rate for our learned rules is 35.2% and the error rate for DECtalk is 63.6%. Similar

results were observed at the level of individual letters, phonemes, and stresses.



To achieve these results, several techniques were combined. The key learning

technique represents the output classes by the codewords of an error-correcting

code. Boolean concept learning methods, such as the standard 1D3 decision-tree

algorithm, can be applied to learn the individual bits of these codewords. This

converts the multiclass learning problem into a number of boolean concept learning

problems. This method is shown to be superior to several other methods: multi-

class 1D3, one-tree-per-class 1D3, the domain-specific distributed code employed by

T. Sejnowski and C. Rosenberg in their NETtalk system, and a method developed

by D. Wolpert. Similar results in the domain of isolated-letter speech recognition

with the backpropagation algorithm show that error-correcting output codes pro-

vide a domain-independent, algorithm-independent approach to multiclass learning

problems.
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Converting English Text to Speech:
A Machine Learning Approach

Chapter 1

Introduction

This chapter gives an overview of the setting in which this research was conducted

and the motivation behind pursuing this line of research. It is intended to aid the

reader in developing a frame of mind suitable for reading the remaining chapters.

1.1 Text to Speech: An Overview

The automatic conversion of English text to synthetic speech is an important task

that has a wide range of practical applications [Klatt87}. In spite of their curren-

t limitations, devices capable of performing this task are beginning to find their

way to commercial applications ranging from telephone access to information and

computerized data bases (such as weather, ski conditions, yellow pages, airline

schedules, etc.) to talking warning and alarm systems (e.g. in an airplane cock-

pit), systems that can not only alert the pilot in case of any malfunction, but that

can potentially guide him/her through a sequence of diagnostic steps as suggested

by the on-board computerized diagnostic expert system. Besides these commercial



'500 to 1000 rules are typical for this application.

2Expandable by the user.
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applications, such text to speech devices also have a number of unique humani-

tarian applications such as their use as reading aids for the blind and/or talking

aids for the vocally handicapped. The interested reader is referred to Section V of

[Klatt87] for a more detailed discussion of these and other applications.

The overall process of converting English text into speech is quite difficult and

involved. Figure 1 illustrates the various steps involved in the conversion process

as performed by DEC talk, a typical system commercially available for performing

this task. One particularly difficult step involves mapping words (i.e strings of let-

ters) into strings of phonemes and stresses. This mapping is typically performed

by a large1 rule based system that is hand-crafted to handle the "regular" conver-

sions, while an exception dictionary is relied upon to take care of those irregular

words that defy the rule base. DECtalk, for example, provides a built-in dictio-

nary containing some 6,0002 common words, abreviations and exceptions. To map

any word to its corresponding string of phonemes and stresses, the dictionary is

searched first. If a match is found, the pronunciation is taken from the dictionary

entry. Otherwise, the rule base is invoked to perform the required mapping. The

overall performance of the system for any particular application can be arbitrarily

increased over the performance of the rule base alone by incorporating more and

more of the words commonly encountered in that application as part of the excep-

tion dictionary. Nevertheless, it is essential to have an accurate (competent) rule

base in order to limit the exception dictionary to a reasonable size.

This thesis explores the feasibility of utilizing machine learning techniques to

automatically build a "rule base" suitable for performing the mapping of isolated

English words onto strings of phonemes and stresses. In order to simplify the

exposition in the rest of the thesis, we will refer to this mapping task as text

to speech mapping, even though it is strictly only one stepalbeit an important

onein the overall process of text to speech conversion. We will be taking a
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machine learning approach, and will cast the mapping problem in the framework

of inductive learning, or more precisely: Learning multiple valued functions from

examples.

1.2 Objectives

The objectives of this research were two fold:

Domain objective: The automatic generation of a high performance rule base

that can compete with current expert systems for converting isolated English words

to strings of phonemes and stresses.

Main objective: Even though the domain objective is an important goal in its

own right, our primary motivation for pursuing this line of research was to use this

domain as a test bed for developing general machine learning techniques for the

task of learning multiple valued functions from examples. Our goal was to develop

efficient algorithms and/or techniques that outperform existing methods for this

task.

In the next section we will present a formal definition of the learning task.

Section 1.4 will then outline the typical procedure followed in order to cast the

problem of text to speech mapping in the framework of learning from examples.

1.3 Learning from Examples

In recent years, several advances have been made in machine learning in the area

of learning from examples by inductive inference.

The technology of building decision trees from examples is fairly robust for the

case of boolean functions expressed in terms of boolean features [Quinlan86}. Sever-

al enhancements to Quinlan's basic algorithm for building decision trees have been

proposedenhancements that allow it to deal with noisy data, missing features,

as well as procedures for extracting and refining production rules from decision



trees. Methods for learning boolean concepts expressed in other representations

(e.g. decision lists, [Rivest87]) have also been developed.

On the theoretical side, a formal model for the task of inductive learning from

examples has emerged [Valiant84]. This model gained wide-spread acceptance in

the machine learning community, since it was the first model that provided a much

needed insight into the complexity of the learning task. Since its introduction, the

Valiant model spurred a flurry of activity in this field. Researchers like [Haus-

sler88], [Blum87a] and [Blum87b] extended the model, proved upper and lower

bounds on the number of examples needed for learning and introduced what is

known as the class of Occam algorithms; a formal justification for Occam's razor.

Other researchers working with the Valiant model have published results on the

learnability of various classes of concepts. On another front, progress is being

made toward the characterization of "optimal coverage" inductive learning, and

theoretical bounds are being computed on the number of concepts learnable by a

hypothetical optimal coverage algorithm [Dietterich89a, Almuallim9O}.

Despite the progress made in the above areas, little work has been done to

tackle several challenging inductive learning tasks that arise in real life. The main

reason for this is that most of the earlier work in inductive learning has been

restricted to the task of learning boolean functions: where the values the functions

can take are restricted to be either 1 or 0. The general problem of learning discrete

multi-valued functions is to a large extent left untackled and, until recently, little

experimental work was done to extend the well known boolean learning algorithms

to cover the more general case of learning multi-valued functions.

1.3.1 Problem Definition

We are interested in the general problem of learning multiple-valued functions from

examples. Our goal is to develop efficient algorithms that outperform all existing

methods for this task.

Let us introduce a formal definition of the learning task.
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Assume that there are n features, {aja2 .. . a1j, characterizing a given domain,

and let D be the set of allowable values for feature i, i = 1,.. . , n. We then define

the event space X as:

XD1xD2x...xD.
Let there be a mapping function g : X -i V = {vi,. . . , vc}. Hence, V is the

set consisting of C elements comprising the output values that the function g is

allowed to take.

Our task can be stated as learning a mapping function f which is an approxi-

mation of g from a limited number of examples, each of the form: (ä, v) where

is an attribute (feature) vector:(xix2 . . . x,) E X and,

v E V.

Our learning algorithm will take as input a set of examples and produce as

output a mapping function f in some representation language (e.g. a decision

tree).

We will normally restrict the features to be boolean3 , i.e. each x E {O, 1}(ã E

{O, 1}). Following the above notation, each D is the set {O,1} andX is {O, 1}'.

Hence, the task can be re-stated as learning the mapping function:

f: {O,1}' -+ V.

The set V of allowable values for the function f is often called the set of output

classes and each v V is the name of an output class. Hence, this learning task

can also be referred to as the multiclass learning problem.

It is often convenient to give each output value (class name v) a unique number

{ 1,. . . , C} that we will refer to as the class number Since there is a one-to-one

correspondence between {1,. . . , C} and {v1, .. . , vc}, we can learn the equivalent

mapping function

f: {O,1}' -p {1,...,C}.
3This restriction does not impose any serious limitations in practice as will become evident in the

next sections. Reasons for preferring binary attributes are discussed at length in [Lucassen83j.
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Hence, C is also referred to as the number of classes in the domain.

In this work, we will allow the number of classes to be arbitrarily large. (Note

that C = 2 corresponds to the special case of boolean concept learning.)

1.3.2 General Approaches to the Multiclass Learning Prob-
lem

A few techniques have already been developed for multiclass learning problems.

Each of these techniques involves finding a way to apply existing boolean concept

learning algorithms, such as 1D3 [Quinlan86], the perceptron algorithm [Rosen-

blatt58}, and Backpropagation [Rumelhart86}, to multiclass problems We will

describe each approach briefly. More details will be given in later sections.

The Direct Multiclass Approach

A straightforward method that can be applied to some symbolic learning algo-

rithms such as 1D3, FRINGE [Pagallo88], and GROVE [Pagallo88], is to general-

ize these to algorithms that handle multiclass learning directly without the need

for converting the problem first to boolean classes. The algorithms can be easily

modified to store (and output upon evaluation) an integer class number instead of

a boolean class. We will refer to this kind of algorithm as a Multiclass Algorithm

The One-per-class Approach

Another approach for dealing with multiclass learning is to learn one boolean

function f for every output class i, i E {1,. . . , C}, where C is the number of classes

in the domain Each function f should decide whether a particular example is a

member of that class or not. The functions can be learned by the application of

well established binary concept learning algorithms such as 1D3. Problems arise

in this approach when several functions (or none) classify a novel instance as a

member of the class they represent. Some means of resolving the class ambiguity



that results in such cases will be needed.

The Distributed Coding Approach

We can reformulate the problem definition given in Section 1.3.1 by choosing a

suitable boolean encoding for the classes. Let m be the codeword length so

that each class is represented by a unique codeword: (u1u2. . . Urn) where each

u E {O, 1},j = 1,.. . ,m. The code is sparse if C <<2m, i.e. the number of classes

is much smaller than the space of codewords. The learning task can then be stated

as learning the mapping function:

f: {O,1}" {O,1}m

Since the individual bits of the class codes can be learned separately, the prob-

lem is now reduced to learning the collection of m boolean functions:

fi : {O,1} {O,1} I fi()

12: {O,1}' {O,1} I f(i) u2

fm: {O,1}" + {O,1} I frn() = Urn

However, this method introduces another "decoding phase" after evaluation,

since the bit vector (uiu2 . . . Urn) evaluated from Ii to frn must be mapped to a

single class U. This leads to two new problems that must be addressed:

The aggregation problem: Since the correctness criterion is that all the bits of

U be correct, a severe requirement is imposed on the accuracy of the learning of

each of the individual functions f to fm because a small probability of error of a

few percent in each of the individual boolean functions can result in a significant

overall probability of error in the final class. Suppose m = 25 and each f is 99%

correct. The overall rate is (0.99)25 = 0.78, only 78% correct.

8
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The need for a decoding strategy: The bit vector (u1u2. . . Urn) may not cor-

respond to any legal codeword for any of the classes {1,.. . , C}. A strategy for

mapping such a bit vector to the class that best matches may lead to some im-

provement in the performance of the learning method.

1.4 Domain

As mentioned in the previous sections, we intend to test our ideas in the domain

of text to speech conversion. The learning task will be to discover mappings of

isolated English words from a dictionary to a string of phonemes and stresses

that can be pronounced by a hardware device, such as the DECtalk machine. This

domain is challenging and serves as a representative real life domain of a multiclass

learning problem in which C, the number of classes, is very large.4

To achieve perfect performance in this task, one has to understand the structure

of the English text in order to determine the correct pronunciation of a word. In

the sentence "I have read that many people can't read.", the pronunciation of the

word "read" depends on its grammatical context. However, this is an extreme

case. The pronunciation for most other words can be determined by looking at the

spelling independently of context. In this section we will introduce the domain. A

more detailed description can be found in [11i1d89].

A dictionary of 20,002 English words and their pronunciations was made avail-

able to us by T. Sejnowski [Sejnowski87]. Following [Sejnowski87l, we will refer to

this dictionary as the "NETtalk dictionary" and to the domain as the "NETtalk

domain".

Each entry in the dictionary consists of four fields:

A character string representing the English word.

A string of "phonemes".

4For the general case, C will be the number of English words (with distinct pronunciations) in

the dictionary.
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A string of "stresses".

An integer in {0 ,1 ,2 } indicating whether the word is regular (0), irregular (1)

or foreign (2).

Example:

abandon xb@ndxn O>1<>O< 0

In our functional notation, this can be written as:

f("abandon") = ("xb©ndxn" ,

For the purposes of the rest of the subsections, Let

A be the set containing the 26 letters and the three symbols "-", "", and "."

1' be the set of 54 phonemes as defined in [Sejnowski87].

S be the set of 6 stress symbols: {o ,1,2,>, <,-}.

1.4.1 Representation of Pronunciation Rules

If we represented pronunciation rules at the full word level, i.e. in the form:

f("abandon") = ("xb©ndxn" ,

they would be uninteresting, since there would be as many rules as there are words

in the dictionary. Furthermore, f defined in such a manner is a very complex

discrete mapping with a very large range. If we assume no word contains more

than 28 letters (the length of "antidisestablishmentarianism"), this range would

contain more than 1070 elements.

One approach to representing pronunciation rules is to write them in terms of

individual letters. For example, we could try to learn rules of the form:

f( "a")
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Such a rule would correctly pronounce the first letter in "abandon". Unfortunately,

individual letters can be pronounced many different ways in English, depending

on context. Hence, the approach that we will take in most of our experiments is to

learn rules that map from a letter and some context around it to the pronunciation

for that letter. The context will be typically depicted by 3 letters on each side of

the letter, hence, the function we want to learn is the mapping from a 7-letter

window to a phoneme/stress pair:

f:A7*PxS.

For example, mapping the first letter in "abandon" will be represented as:

f("---aban") = ("x" , "0").

This representation was introduced by [Sejnowski87}. Sejnowski also experimented

with windows of various sizes, and found that a seven letter window is adequate for

capturing most of the context, even though it is not large enough in some cases.5

A more detailed analysis by [11i1d89] found a 7-letter window to be adequate for

uniquely determining the mappings of 98.5% of all letters in the various contexts

they occur in the 20,002 word NETtalk dictionary. We will be using a 7-letter

window for most of our experiments. Larger window sizes will be considered in

Chapter 6 where the best performance of each learning algorithm is sought for

comparisons with DECtalk.

1.4.2 Decomposing the Dictionary Entries into Learning
Examples

Each entry in the dictionary corresponding to a k-letter word is converted to k

examples; one for each letter of the word. For each letter L in the word, a 7-letter

window is created consisting of L at the center, the 3-letters preceding L and the

5Distinguishing between the pronunciations of the first letter in "thought" and "though", for

example, will require more than 3 letters on each side.
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three letters following L. The character "-" (symbol for space) is used if there

are not enough neighbors on either side of the letter L to complete the number of

letters on each side to be 3. The 7-letter windows play the part of the feature-vector

(after converting them to a binary encoding). The output is the pair of phoneme

and stress symbols that L maps to in this particular word. Throughout the thesis,

we will refer to Lthe letter at the center of the windowas the current letter.

As an example, the following entry in the dictionary

("aback" "xb@k-" "o>i<<")

will generate the following examples

("---abac" x 0)

("--aback" b >)

("-aback-" 1)

("aback--" k <)

("back---" -

1.4.3 Converting the Letters to Binary Representation

The feature vector (the 7-letter window) of a learning example is converted into a

binary feature vector by transforming each letter into a binary representation. The

encoding that we will adopt in most of our experiments will be that employed by

[Sejnowski87], since it was also found to be a good representation by [Hild89] and

[Shavlik89]. In this representation, every letter of the 7-letter window is encoded

as a 29-bit vector. The letter in the alphabet A is represented by a bit-vector

(b1 . . . b. .. b29) in which all but the bit are set to 0. By concatenating the

seven 29-bit-vectors we obtain a 203-bit-vector that represents the entire 7-letter

window. Hence, the mapping we want to learn can be stated as:

f : {0, 1}203 ___+ 77 x S.

Chapter 4 explores several alternatives to this standard input representration.



1.4.4 Representing the Classes

Potentially, there are 54 x 6 324 phoneme/stress pairs. However, only 163 such

pairs appear as valid pronunciations in the NETtalk dictionary.6 We can consider

each of these 163 pairs of phonemes and stress symbols as a class, and learn one

function to do the mapping:

f: {O,i}203 {1,. 163}

Alternatively, we can learn two separate functions. One to map the 7-letter window

to one of the 54 phonemes and another to map the 7-letter window to one of the

6 stress symbols:

f:{O,1}203{i,...,54}

f: {O,1}203 {i,. ..,6}

We will refer to the former case as the combined-ps (combined phoneme/stress

approach) and to the latter as the separate-ps approach.

1.4.5 Binary Output Codes

As outlined in Section 1.3.2, we can reformulate the multiclass problem by assigning

to each class a unique binary string (or simply a binary code) of length m. We

can then apply Boolean concept learning algorithms to learn m binary functions:

one for each bit position in these binary codes. Several such encoding schemes are

possible. For example, selecting a local encoding of the C classes (i.e. a C-bit

weight-i code for each class i, in which all but the ith bit are 0) will be equivalent

to the one-per-class approach since learning the individual bits of this code will be

the same as learning an individual membership function for each class.

Another possible scheme is to employ the binary code developed by Sejnowski

and Rosenberg [Sejnowski87j. They code each possible phoneme/stress pair as a

13

6Out of these, only 126 pairs appear in our "standard" 1000-word training set.
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26-bit string, 21 bits for the phoneme and 5 bits for the stress. The bits are "mean-

ingful" in the sense that each bit corresponds to some property of the phoneme

or stress. Each bit in the 21-bit code employed for the phoneme encodes some

articulatory feature of the phoneme. These describe physiological properties of the

phoneme (or the way it is articulated) such as "vowel height" or "position in the

mouth" (see Appendix B). The 5-bit code employed for the stress encodes word

and syllable boundary and whether the first vowel in a nucleus of a syllable is

receiving primary, secondary or no stress. The code is sparse since 226>> 163, the

total number of phoneme/stress combinations appearing in the entire dictionary.

We will refer to this output code as the "standard distributed code" or as the

"Sejnowski & Rosenberg distributed code".

During learning, 26 separate Boolean functions, fi, . . . , will be learned:

one for each of the 26 bits of the code. Each function f maps from a seven-

letter window to {O, 1}. During evaluation, we assign a phoneme and stress to a

window by a 2-step process. First, all 26 functions are evaluated to produce a 26-bit

string. This string is then mapped to the nearest of the 126 bit strings representing

observed phoneme/stress pairs. We use the Hamming distance between two strings

to measure distance. Ties are broken in favor of the phoneme/stress pair that

appeared more frequently in the training data. In [Dietterich9Oa,b], we called this

"observed decoding." Several other decoding strategies for mapping the 26-bit

output string to a legal phoneme/stress pair are possible. The impact of these

strategies will be discussed in Section 2.4.

Figure 2 gives an overview of the NETtalk data and their decomposition into

learning examples.

In this section we define a standard configuration that will be used as a benchmark

for guaging the effectiveness of all subsequent modifications. This will keep things
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in perspective and focus our attention on variations of only certain major aspects

of the standard configuration in each subsequent chapter. It will also summarize

the "defaults" that can be assumed to hold (in the absence of explicit references

to the contrary) throughout the thesis.

The base configuration will be characterized by the following:

Window size: A 7-letter window is employed to represent the context of the

current letter: the letter itself (at the center of the window), the 3 letters to its

left, and the 3 letters to its right.

Test Set: A test set consisting of 1000 words (drawn randomly and without

replacement from the 20,002-word NETtalk dictionary) will be used. We will refer

to this as the "standard test set". Unless otherwise stated, all the performance

results reported in this thesis will be the performance of the learning system on

this 1000-word test set which produces 7,242 windows that need to be classified.

Training Set: A training set consisting of 1000 words (drawn randomly and

without replacement from the 19,002-word NETtalk dictionary remaining after re-

moving the "standard test set" from the full dictionary) will be used. We will refer

to this as the "standard training set". Unless otherwise stated, all the experiments

reported in this thesis will be performed using this "standard training set". These

1000 words produce 7,229 examples, or classified windows.

Input Representation: The input representation scheme introduced by Sejnow-

ski and Rosenberg for the seven-letter windows will be employed. This represen-

tation was discussed in more detail in Section 1.4.3.

Output Representation: The standard distributed output code developed by

Sejnowski & Rosenberg (described in the previous section) will be employed.

Separate-ps: The above output representation encodes each phoneme and stress

separately. This is in contrast to another equally feasible scheme: giving every

phoneme/stress pair a unique code. Thiscombined-ps approach introduced in



Section 1.4.4will also be investigated in subsequent chapters.

Observed Decoding: Unless otherwise stated, observed decoding will be used

throughout this thesis. In this scheme, a list is maintained of all the phoneme/stress

pairs (ps-pairs) observed in the training set, along with their frequency of occur-

rence. Upon evaluation, the bit-vector output by the learning system is mapped

to the ps-pairfrom the observed listwhose corresponding bit-vector has the

smallest Hamming distance with the output vector. Ties are broken in favour of

the most frequent ps-pair.

Algorithm: The algorithm employed is 1D3, a simple decision-tree learning algo-

rithm developed by Ross Quinlan [Quinlan83, Quinlan86b}. It constructs a decision

tree recursively, starting at the root. At each node, it selects, as the feature to

be tested at that node, the feature a whose mutual information with the output

classification is greatest (this is sometimes called the information gain criterion).

The training examples are then partitioned into those examples where a = 0 and

those where a = 1. The algorithm is then invoked recursively on these two sub-

sets of training examples. The algorithm halts when all examples at a node fall in

the same class. At this point, a leaf node is created and labelled with the class in

question. The basic operation of 1D3 is quite similar to the CART algorithm devel-

oped by [Breiman84] and to the tree-growing method developed by [Lucassen83l.

Appendix A covers the 1D3 algorithm in more detail.

In our implementation of 1D3, we did not employ windowing [Quinlan83], CIII-

square forward pruning [Quinlan86a], or any kind of reverse pruning [Quinlan87].

Early experiments in [Dietterich90a,b] showed that these pruning methods did not

improve performance.

We did apply one simple kind of forward pruning to handle inconsistencies

in the training data: If all training examples agreed on the value of the chosen

feature, then growth of the tree was terminated in a leaf and the class having

more training examples was chosen as the label for that leaf (in case of a tie, the

17
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Table 1. Performance of the base configuration described in this section on the standard training

and testing data sets.

leaf is assigned to class 0). Note that if all of the examples agree on the value of

this feature, then the feature has zero mutual information with the output class

(and hence, since this was the best feature, every other feature must also have zero

mutual information).

The performance of the base configuration is shown in Table 1. This will be

the general format we use throughout the thesis to report the performance of our

learning systems in this domain. Correctness data are measured by comparing

the phonemes and stresses found by the learning system for each windowafter

mapping to the nearest phoneme/stress pair, if necessarywith the correct answers

as given in the dictionary. The meaning of the correctness figures reported for

different levels of aggregation are as follows:

Bit: The average correctness of all phoneme and stress bits (after mapping to the

nearest phoneme/stress pair, if necessary)

Stress: Percentage of the windows mapped by the learning system to a correct

stress (according to the dictionary).

Phoneme: Percentage of the windows mapped by the learning system to a correct

phoneme (according to the dictionary).

Letter: Percentage of the windows mapped by the learning system to a phoneme

and a stress that are both correct.

Data set used

for evaluation

% correct (1000-word data set) Decision Tree

data (mean)Level of Aggregation

Word Letter Phoneme Stress Bit (mean) Leaves Depth

Training set

Test set

96.6

12.5

99.5

69.6

99.8

81.3

99.6

79.2

100.0

96.3

269.9

269.9

29.3

29.3
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Word: Percentage of the words correctly classified by the learning system. A

word is correct when all its letters are correct. This implies that for a k-letter

word all the k windows generated from it must be mapped by the learning system

to correct phonemes and stresses.

The decision tree statistics shown are:

Leaves: The average number of leaves contained in all the decision trees built by

1D3 for the phoneme and stress bits.

Depth: The average maximum depth of all phoneme and stress 1D3-trees.

There are several things to note in Table 1. First, the performance of the learn-

ing system on the training set is uninteresting. Decision tree building algorithms

such as 1D3 always perform extremely well on the training set. In fact, had it not

been for the presence of some inconsistencies in the training set, all the perfor-

mance figures shown in the first row of Table 1 would have been 100% . For this

reason, we will not report the performance of our learning systems on the training

set in the rest of this thesis. Second, due to the aggregation problem mentioned

earlier, performance at higher levels of aggregation (e.g. the word level) is disap-

pointingly low when compared with the performance at lower levels of aggregation

such as the stress or phoneme level. Another thing to observe is that the bit-level

performance of 96.6% is somewhat misleading since only 3 to 5 bits in the 21-bit

phoneme vector are set to '1'. Hence, guessing constantly '0' will already achieve

a correctness higher than 85%.

1.6 A Reader's Guide to the Thesis

This thesis examines numerous variations to several of the parameters charac-

tensing the base configuration discussed in the previous section. The following

summary may help readers interested in specific issues.

Chapter 2 reviews some of the previous work relevant to this thesis. Emphasis
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will be on the more recent work that deals with the application of machine learning

techniques to the text-to-speech domain.

Chapter 3 explores several alternatives to the standard output representation

employed in the base configuration. The three approaches for multiclass learning

are compared to a newsuperiortechnique in which BCH error-correcting codes

are employed as a distributed output representation. Random codes are also con-

sidered. Experiments are performed to determine which properties of these codes

lead to the improved performance. Finally, the impact of employing voting among

several sets of decision trees is examined for a number of the multiclass learning

methods.

Chapter 4 explores several alternatives to the standard input representation

employed in the base configuration. We investigate the effects of incorporating the

output bits accumulated so far as part of the context for the current letter. We

then show the impact of extending the context by including the phonetic context

of the preceding letters as part of the context for the current letter. We also

address the consequences of abandoning the weight-i input encoding and explore

an information theoretic approach7 to defining a "good" set of binary attributes

to represent the extended context. The effects of enlarging the window size and

processing the letters of the words in reverse are also explored. Finally, we combine

the input techniques developed in this chapter with the error-correcting output

technique and the voting method introduced in Chapter 3. The results show that

the benefits offered by the output techniques of Chapter 3 are nearly orthogonal to

the benefits provided by the improved input techniques developed in this chapter.

We conclude by presenting the results of the best performing learning system we

have studied in this domain (trained on our standard 1000-word training set).

Chapter 5 evaluates the performance of a recent method introduced by David

Wolpert for the NETtalk task [Wolpert9oc]. We improve on this method and show

7This was an attempt to reproduce the experimental conditions reported in [Lucassen83] so

that a fair comparison of their methods to ours could be made.
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thateven with our enhancementsit still performs worse on this task than 1D3

when combined with our technique of using distributed error-correcting codes for

the output.

In all the experiments reported in chapters 1 to 5, learning is accomplished

by training on our standard 1000-word training set. However, Chapter 6 is per-

formance oriented. The results of the best performing learning systems trained

on 19,002 words are compared with the performance of the DECtalk rule-base on

our standard 1000-word test set. Chapter 7 presents the conclusions and discusses

several possible directions for future work.

The appendices include descriptions of several algorithms discussed in the the-

sis, details of some of the codes used as part of the input or output representations,

statistics on the NETtalk dictionary and the training set employed, as well as var-

ious mutual information data calculated between the elements of the extended

context and the desired outputs.



Chapter 2

Previous Work

Several early attempts for the automatic generation of phonemes and/or stresses

are reported in the literature. Dennis Klatt and David Shipman [Klatt82], for ex-

ample, attempted the development of a semi-automatic procedure for discovering

letter-to-phoneme rules in 1982. Kenneth Church covered the stress assignment

problem for letter-to-sound rules in [Church85}. A host of other attempts are cit-

ed in [Klatt87}, which contains an extensive bibliograghy of the overall process of

text-to-speech conversion. Rather than clutter this survey of previous work with

these early attempts, we will focus only on the most recent work that emphasized

the machine learning approach to the task of text to speech conversion. With

the exception of the work of Lucassen & Mercer presented in Section 2.1.1, these

will primarily be concentrated on results published after Sejnowski & Rosenberg's

pioneering work on NETtalk [Sejnowski87}. Their work must be credited with pop-

ularizing this task and providing a systematic way of applying standard machine

learning techniques to tackle it.

In Section 1.3.2, we described three general approaches to the multiclass learn-

ing problem. In this chapter, we will present the results of previous studies that

have applied these approaches in the English text to speech conversion domain.

These will include some of our own results, obtained early in this project. These

22
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early results were documented elsewhere8, and hence, will not be emphasized in

this thesis.

Appendix A describes the various algorithms that are discussed in the sections

that follow.

2.1 The Direct Multiclass Approach

2.1.1 Lucassen & Mercer's Multiclass Decision Trees

In 1980, a project was initiated at the Speech Processing Group at the IBM Thomas

J. Watson Research Center with the objective of finding some way of generating

ba.seforms9 for new words automatically. Their system was to utilize the spelling of

the word along with a few sample utterences of it (possibly by different speakers) to

determine the baseform. One part of the system would determine a set of possible

baseforms (with likelihood estimates) from the spelling of the word. The second

part would then attempt to narrow down the choices by taking advantage of the

sample utterences of the word.

Only the first part of their system is relevant to this discussion. They used a

70,000-word phonemic dictionary as their starting point, generating some 500,000

examples as their training set. They employed a 9-letter window and included the

phonemes of the four letters to the left of the current letter (letter at the cen-

ter of the window) in the context for the current letter. These phonemes can be

obtained, during execution, from the letters that have already been pronounced

during a left-to-right scan. They converted this extended context to a binary rep-

resentation by employing a minimum set of features (or binary questions in their

words), defined through an elaborate procedure aimed at maximizing the mutual

information between these features and the output phonemes (we will reproduce

8See [11i1d89], [Dietterich9O] and [Dietterich9lj

9The (phonemic) baseform of a word is a string of phonemes that describe the normal pronun-

ciation of the word.
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their work on feature set selection in Chapter 4).

The basic operation of the tree-growing method developed by Lucassen and

Mercer was quite similar to 1D3. The main differences were that a host of ad-

hoc mechanisms were employed to limit the growth of the decision trees and that

the leaves of the trees were assigned a collection of classes (phonemes) with a

probability estimate on each class.

The performance of this component of their system (tested on a 500-word test

set) was reported as better than 79%10

One weakness of the work reported in [Lucassen83] is that it presents the per-

formance results for one particular choice of input and output representations. In

our work, we tried to reproduce their results (as closely as feasible) under standard

conditions that can be easily compared with other methods that we investigated.

We show, for example, that their elaborate method for selecting "good" binary

features is inferior to the simple choice of selecting a local encoding (i.e. weight-i

codes) for the letters, phonemes and stresses used as part of the extended context."

Similarly, we present in Chapter 3 several higher performance alternatives to the

direct multiclass approach employed in their study. On the other hand, their deci-

sion to incorporate the phonetic context of the previous letters in the context for

the current letter proved to have mixed results. Including the left phonetic context

did not help, but incorporating the right phonetic context of the previous letters in

the context for the current letter proved to be a judicious decision offering a sub-

10An error rate of 21% was reported in [Lucassen83], but several reasons were given as to why

the actual error rate was probably slightly lower.
111n fairness to Lucassen's work, we must point out that a weight-i code for the elements in the

extended context for the current letter results in a substantial number of features-383 for the

weight-i codes compared with 90 for our version of the code developed by their technique, for

a window size of 7. This results in a substantial difference in the running times of decision

tree building algorithms running on the two alternative coding schemes, and it may have been

an important factor in their decision to search for as few input features as possiblegiven the

huge number of training examples and the computing power available in 1983.
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stantial improvement in the overall performance in this domain. Similarly, their

idea of utilizing the mutual information between each letter, phoneme and stress

and the output for the current letter is exploited in Section 5.2 as a justifiable

means of computing a "good" set of weights for the Wolpert method [Wolpert9oc].

2.1.2 Multiclass 1D3

Multiclass 1D3 is a generalized version of 1D3 that stores integer class numbers at

the leaves. [Shavlik89] applied this algorithm to the NETtalk domain and used it

to construct a single tree to classify the 115 classes (phoneme/ stress combinations)

present in an 808-word training set used in their experiments. In early experiments

during the course of this work, we also employed our implemention of Multiclass

1D3 to learn two trees: One to predict the 54 phonemes and another (separate) tree

to classify the 6 stresses. These, unlike others reported in this thesis, were trained

using the 1000 words in the NETtalk dictionary that were most common according

to [Kuchera67] as the training set. The performance results of 64.9% obtained by

us were nearly indistinguishable from the 64.2% reported in [Shavlik89]. The slight

disparity may be due to the fact that [Shavlik89I was using a training set of 808

words instead of 1000. These figures measured correctness at the letter level on

the test set.'2

2.2 The One-per-class Approach

[Shavlik89] assigned a class number to each distinct phoneme/stress pair appearing

in the 808 words selected from the NETtalk dictionary to be their training set. The

above strategy was then used to learn the resulting 115 classes using the Perceptron

and the Backpropagation learning algorithms.

'2We used a 19000-word test set, while [Shavlik89] was using a 1000-word test set in the experi-

ments being compared.



2.2.1 Perceptron

One perceptron was trained for each of the 115 classes. The collection of per-

ceptrons was then tested on a 1000-word test set. Each example was classified

by passing it through all the perceptrons and assigning it to the class whose per-

ceptron's output exceeded its threshold by the largest amount. A classification

performance of 49.2% on the test set was reported. The bad performance of the

perceptron is understandable in such a complex domain, since perceptrons are only

capable of learning concepts that are linearly separable.13

2.2.2 Backpropagation

[Shavlik89] also used the Backpropagation algorithm to train a connectionist net-

work with 115 units in the output layer: one for each class. This method of

using Backpropagation was found substantially inferior14 to that discussed in Sec-

tion 2.3.1, so we will not elaborate on it any further.

2.3 The Distributed Coding Approach

As discussed in Section 1.4.5, we can reformulate the multiclass problem by choos-

ing a suitable boolean encoding for the classes. In the following sub-sections, we

present the results obtained by applying various binary learning algorithms to the

NETtalk domain using this ditributed coding approach. The particular output

encoding employed is the 26-bit distributed code adopted from [Sejnowski87} as

detailed in Section 1.4.5.

Several decoding strategies for mapping the 26-bit output vector produced by

the classifier to a legal phoneme/stress pair are discussed in Section 2.4. The

decoding strategy "best guess (1)" is followed in the results reported below. That

26

'3Only 60 out of the 115 perceptrons converged in these experiments [Shavlik89], so 55 of the

classes were not (easily) linearly separable.

1463.0% vs. 72.3% correctness on the test set.
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is, if the output vector does not correspond to any legal phoneme/stress pair, then

it is mapped to the phoneme/stress pair having the smallest Hamming distance

with the output vector.

2.3.1 NETtalk

Sejnowski and Rosenberg were the first to apply a connectionist learning method to

the problem of English text-to-speech conversion. In fact, the data and its format

as introduced in Section 1.4 are due to [Sejnowski87}.

Sejnowski's NETtalk: The network used in the NETtalk experiment had

three layers: an input layer, one hidden layer and an output layer. The input layer

was built from 203 processing elements, one for each bit in the input vector (i.e.

the binary representation of a 7-letter word given in Section 1.4.3). The hidden

layer had 120 processing elements and the output layer 26 (21 of which encoded

the phonemes and the remaining 5 encoded the stresses). The network was fully

connected, thus requiring 27,809 weights.15 Figure 3 depicts the architecture of

the network.

The Backpropagation algorithm [Rumelhart86} was applied to train the weights.

Even though [Sejnowski87] describes the network outputs in terms of both phonemes

and stresses, the task is defined as "converting strings of letters to strings of

phonemes." Performance figures of 98% (77%) on the training (test) set are

reported.16 These are the percentage of correct phonemes predicted by the net-

work.

Backpropagation training was repeated more recently by [Shavlik89J and IDiet-

'5There are 203 + 120 + 26 = 329 processing elements and 203 x 120 = 24, 360 connections

between input and hidden layer and 120 x 26 = 3,120 connections between the hidden and the

output layer. With one additional weight per node for the "bias term" this sums up to a total

of 329 + 24, 360 + 3120 = 27, 809 weights.
'6The test set they employed was the whole dictionary which included the training set. Therefore

the above figures are about 5% higher than what they would have beenhad the test set been

disjoint from the training set.



Figure 3. Network architecture used in the NETtalk experiment.

terich89b}. [Sbavlik89] reported performance figures of 96% (72%) on the training

(test) set. These figures are correctness at the letter level. [Dietterich89b] achieved

99.7% (78.7%) correctness on the training (test) set at the phoneme level and 99.4%

(65.6%) correctness on the training (test) set at the letter level. [Sejnowski87] and

[Dietterich89b} used as a training set, the 1000 words in the NETtalk dictionary

that were most common according to IKuchera67l, while ISbavlik891 used only the

808 most common English words as the training set. The decoding strategies used

by [ShavIik89I were also slightly different from the ones used by [Dietterich89bl.
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2.3.2 1D3 / FRINGE

Using the same output encoding as that of [Sejnowski87], the 1D3 algorithm was

employed to build 26 trees: one for each of the 26 bits used to code the phonemes

and stresses [Shavlik89, 11i1d89]. As was done for the connectionist network, the

outputs of the trees were mapped to the nearest phoneme/stress pairs for perfor-

mance evaluation. We also applied the FRINGE algorithm to the NETtalk data.

Figure 4 compares the performance of the three algorithms: 1D3, FRINGE

and Backpropagation, on a test set of 1000 words, at the phoneme, stress, letter

and word level as a function of the size of the training set used for learning. The

algorithms were trained using the 1000 words in the NETtalk dictionary that were

most common according to [Kuchera67l.

2.4 Decoding Strategies

[11i1d89] investigated the impact of various decoding strategies on the performance

of 1D3 applied to the NETtalk domain as described in the previous section.

Recall that in the testing phase, the 7-letter window corresponding to the letter

we want to classify is presented to the system as a 203-bit vector. The system

outputs two bit vectors: a 21-bit vector representing the output phoneme and a

5-bit vector representing the output stress associated with the given input vector.

Since there are only 54 phonemes and 6 stress symbols, it follows that not all the

221(25) potential answers for a phoneme (stress) bit vector will represent a legal

phoneme (stress). Let P be the phoneme bit vector found by the algorithm and

LP be the set of the 54 legal phoneme vectors. To find a legal phoneme for an

arbitrary phoneme bit vector, one of the following "best guess" strategies can be

applied:

(0) Do nothing. P is considered wrong if P ' LP
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Find a legal phoneme vector P,, E LP with the smallest Hamming distance 17

to P. Ties are broken arbitrarily.

As in (1). Additionally, if there is more than one candidate having the smallest

Hamming distance, we choose the more likely one. In order to know the

likelihood of a particular candidate, the following statistic is maintained. For

every letter L in the training set, we count how often the letter is mapped

to each phoneme. The relative frequency of the pair (L, P) is interpreted as

the probability that the letter L maps to the phoneme P1.

To find the best guess, we consider only the phonemes to which the current

letter was observed to map to in the training set. Again the more likely

phoneme is used in the case of a tie.

As in (3). Additionally, if the letter is part of a larger common blockgroup

of letters such as "ous", "tion"outputs corresponding to the letters of the

entire block are decoded by considering only the group of phonemes to which

the current block of letters was observed to map to in the training set.

Similar schemes can be applied to find the closest stress vector.

Table 2 (reproduced from [Hi1d89}) shows the impact of the above "best guess"

strategies on performance at different levels of aggregation. These results clearly

show that exploiting statistical information present in the training data can sig-

nificantly improve the classification performance of 1D3 on the NETtalk domain.

It should be noted that the Backpropagation experiments reported in Sec-

tion 2.3.1 employ best guess (1) above as a decoding strategy. Hence, their results

have to be compared with the second line of the above table. Based on this com-

parison, the Backpropagation algorithm outperforms 1D3 by several percentage

points.

'7The Euclidean and ilamming distances are equivalent measures for comparing distances be-

tween bit vectors.
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Figure 4. Performance on a 1000-word test set measured as % of: Phonemes, Stresses, Letters

and Words, correctly predicted.
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Table 2. Impact of different "best guess" (decoding) strategies on performance.
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The above discussion assumes that the closest phoneme and stress vectors

are found independently. An alternative approach is to treat the concatenated

phoneme/stress vector PS as an entity and try to find the closest phoneme/stress

vector CI'S from a set APS of allowable phoneme/stress bit vectors. Depend-

ing on the choice of the elements in the set APS, several decoding strategies are

possible:

Legal Decoding: All the possible 324 (legal) phoneme/stress vectors'8 are al-

lowed in the set APS. (This is the same as "best guess (1)" discussed

earlier.)

Observed Decoding: Only the phoneme/stress vectors observed in the training

set are allowed in the set APS. Additionally, if there is more than one

candidate for the closest phoneme/stress vector CPS, we choose the more

likely one (more frequent in the training set).

Observed Decoding Given the Current Letter: Only the phoneme/stress

vectors to which the current letter was observed to map in the training set

are allowed in the set APS. Again we choose the more frequent CPS to

'8The cross product of the 54 phoneme vectors concatentented with the 6 stress vectors.

% correct (19003-word test set) Decision Tree

data (mean)Level of Aggregation

Decoding strategy Word Letter Phoneme Stress Bit (mean) Leaves Depth

best guess (0) 6.0 57.0 69.9 73.3 96.0 165.3 23.1

best guess (1) 9.1 60.8 75.4 74.4 95.8 165.3 23.1

best guess (2) 11.9 66.1 78.4 78.0 96.2 165.3 23.1

best guess (3) 12.9 67.2 79.9 78.0 96.2 165.3 23.1

best guess (4) 15.8 69.3 80.3 78.6 96.2 165.3 23.1



break ties.

Block Decoding: As above, but if the letter is part of a larger common block

group of letters such as "ous", "tion" outputs correspondng to the letters of

the entire block are decoded by considering only the group of phoneme/stress

pairs to which the current block of letters was observed to map in the training

set.

We will employ observed decoding for all the experiments reported in this

thesis. The reported results can be made marginally better by employing observed

decoding given the current letter. Block decoding was not fully investigated because

it was not directly compatible with the extended context discussed in Chapter 4.

2.5 Choice of the Training Set

Most of the previous work reported in earlier sections, employed a training set

consisting of the 1000 most comn-ion English words according to [Kuchera67].19 On

the other hand, our standard training set used throughout this thesis contains 1000

words randomly selected (and without replacement) from the 20,003-word NETtalk

dictionary. We decided to employ a training set of randomly selected words after

initial experiments (see [Hild89]) showed that randomly selected training sets of

1000 words invariably perform better than the most common 1000 English words.

This is understandable for two reasons:

1. Most common English words are also the most irregular. A case in point is

the pronunciation of the letter "f". Letter "f" maps to phoneme /f/ in all

but the word "of", one of the more common English words.

33

'91n our case, the most common 1000 English words were extracted from the 20,003 dictionary

obtained from [Sejnowski87] by scanning the most common words reported in [Kuchera67}

in order, and including in the training set those words that also appeared in the NETtalk

dictionary. The scanning stopped once we gathered 1000 words in the training set.
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2. Common English words are short in general. Hence the number of training

examples obtained from a 1000-word randomly selected training set is sig-

nificantly more than the number of examples obtained from the 1000 most

common English words.2°

2.6 ID3talk vs NETtalk

Experiments run on the NETtalk domain show that backpropagation performed

noticeably better than 1D3. This was the case in the experiments reported in the

previous sections which used the most common 1000 English words as a training

set. A more careful study is reported in [Dietterich90a,b]. In this section we will

discuss the main findings of that study. The interested reader is referred to the

subject reference for further details.

Table 3 (reproduced from [Dietterich90b]) compares the performance of the

two algorithms 1D3 and Backpropagation (BP) on the NETtalk task. In these

experiments, training was performed using our standard 1000-word training set,

and performance was tested on our standard (disjoint) test set. The decoding

strategy employed was what we term "legal" decodingcorresponding to best-

guess (1) in Section 2.4. It is clear from these figures that BP outperforms ID3 on

this task. Furthermore, virtually every difference in the table at the word, letter,

phoneme, and stress levels is statistically significant.

To explain the differences between 1D3 and BP, we formulated three hypothesis:

Hypothesis 1: Overfitting. 1D3 has overfit the training data, because it seeks

complete consistency. This results in poor generalization and causes 1D3 to make

more errors on the test set.

Hypothesis 2: Sharing. The ability of BP to share hidden units among all of the

output functions being learned (Ii), allows it to reduce the aggregation problem

207,229 examples from our standard training set vs. 5,521 examples produced from the 1000

most common English words.



Table 3. Performance of 1D3 and Backpropagation with "legal" decoding.

Difference in the cell significant at p < .05*, .005**, .001

at the bit level and hence perform better.

Hypothesis 3: Statistics. The numerical parameters in the BP network allow

it to capture statistical information that is not captured by 1D3.

We performed experiments to test these hypotheses as follows:

Tests of Hypothesis 1: Overfitting. We implemented and tested three meth-

ods covering three basic strategies reported in the literature for dealing with the

overfitting problem in 1D3-Iike algorithms. None of these techniques improved the

performance of 1D3 on this task. This suggests that Hypothesis 1 is incorrect.

Tests of Hypothesis 2: Sharing. To test this hypothesis, we decided to remove

sharing from backpropagation, by training 26 independent networks, each having

only one output unit, to learn the 26 f, mappings. If Hypothesis 2 is correct,

then, because there is no sharing among these separate networks, we should see

a drop in performance compared to the single network with shared hidden units.

Furthermore, the decrease in performance should decrease the differences between

BP and 1D3. This did not turn out to be the case. Removing sharing from BP

did not make BP and 1D3 more alike. We conclude that sharing does not explain

why 1D3 and BP are performing differently on this task. Hence Hypothesis 2 is

also incorrect.
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Tests of Hypothesis 3: Statistics. The ability of the numerical parameters in

Method

% correct (1000-word test set)

Level of Aggregation

Word Letter Phoneme Stress Bit (mean)

1D3

BP

9.6

13.6**

65.6

70.6***

78.7

80.8***

77.2

81.3***

96.1

96.7*



Table 4. Performance of 1D3 and BP with "observed" and "block" decoding strategies.

21Values> .5 were mapped to 1, values < .5 were mapped to 0.
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the BP network to capture statistical informationnot captured by 1D3turned

out to be the main reason for the observed differences in the performance of BP

and 1D3 on this task. Several experiments supported this. One experiment showed

that thresholding the outputs of the Backpropagation network 21 before mapping

to the nearest legal phoneme/stress pair significantly drops the performance of

Backpropagation. Other experiments showed that more sophisticated decoding

techniques that utilize the statistical information present in the training set (such

as "observed" and "block" decodind) significantly improve the performance of [D3

but does not improve the performance of BP by nearly as much. These decoding

strategies bring the performance of the two algorithms to nearly the same level, as

shown in Table 4.

2.7 Choice of the Algorithm

Even though we will be demonstrating the effectiveness of the techniques we de-

velop in the following chapters mainly through the use of the basic 1D3 algorithm,

or through some variation of it, it must be stressed that these techniques are to a

Decoding Method % correct (1000-word test set)

Learning

Algorithm

Level of Aggregation

Word Letter Phoneme Stress Bit (mean)

Observed decoding:

1D3

BP

13.0

14.3

70.1

71.5

81.5

82.0

79.2

81.4

96.4

96.7

Block decoding:

1D3

BP

17.5

19.3

73.2

73.7

83.8

83.6

80.4

81.4

96.7

96.7
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large extent independent of the particular learning algorithm employed. Efficien-

cy considerations are the primary reason for restricting ourselves to 1D3 variants.

Unlike, Backpropagation, for example, 1D3 scales very well with the number of

training examples and the number of features selected to represent each exam-

ple, both of which can become very large in our experiments. Furthermore, the

faster runtime of 1D3 runs (at least 60 times faster than comparable BP runs) al-

lows us to make a large number of runs under varying experimental conditions in a

"reasonable"22 time period. The comparable results of the performance of 1D3 and

BP with observed decodingas shown in Table 4 in the previous sectionsuggests

that similar results would be obtained with backpropagation.

22Even with 1D3, some of the larger runs described in Chapter 6 take several CPU-weeks to

train. For example, building the 127 decision trees for the 127-bit, d = 63 BCII output code

from a training set of 19,002 words with a window size of 15 takes about 3 CPU-weeks on

a SUN 4 workstation. A similar run using backpropagation is not feasible with the current

computational facilities under our control.



Chapter 3

Output Techniques

Three general approaches to the multiclass learning problem were discussed in

Section 1.3.2. These were (a) the direct application of multiclass algorithms such

as the decision-tree algorithms 1D3 and CART, (b) application of binary concept

learning algorithms to learn individual binary functions for each of the C classes,

and (c) application of binary concept learning algorithms with distributed output

codes such as those employed in our base configuration introduced in Section 1.5.

This chapter compares these three approaches to a new technique in which

B011 error-correcting codes are employed as a distributed output representation.

We show that these output representations improve the performance of 1D3 on the

NETtalk domain with our standard input representation.23

Following this, we will evaluate the performance of randomly-generated output

codes and show that it is only slightly worse than that of BCH error correcting

codes. We perform experiments to show that good error-correcting codes can be

designed by generating random binary strings, instead of by using BCH methods.

Finally in Section 3.6 we explore the impact of employing voting among several

sets of decision trees on the performance of these methods.

38

23The next chapter generalizes this result and shows that employing error-correcting codes as a

distributed output representation improves the performance of 1D3 on the NETtalk domain

irrespective of the feature set used to represent the input.
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The input representation employed throughout this chapter is the binary rep-

resentation of the standard 7-letter window discussed in Section 1.5. Combining

the output techniques developed here with alternative input representions will be

covered in Chapter 4.

3.1 Multiclass 1D3

In the direct multiclass approach, the Multiclass 1D3 algorithm is applied once to

produce a decision tree whose leaves are labelled with one of the 126 phoneme/stress

classes. This is the combined-ps (combined phoneme/stress) approach. The other

alternative is to apply Multiclass 1D3 twice to learn two multiclass trees: One

labeled with one of 54 phoneme classes and the other labeled with one of 6 stress

classes. This is the separate-ps approach.

Table 5 compares the performance of the above two methods of applying mul-

ticlass 1D3 to the performance of our base configuration. There are a couple of

things to observe. First, the direct multiclass and distributed output codes em-

ployed in our base configuration performed equally wellgiven the same standard

input encoding. Indeed, the statistical test for the difference of two proportions

cannot distinguish them. Another thing to note is the difference in the performance

figures for the combined-ps and the separate-ps approaches. The combined-ps ap-

proach generally give better performance results at the letter and word levels of

aggregation, while the separate-ps approach seems to do slightly better at the

individual phoneme and stress levels.

3.2 One-per-class Output Codes

In the one-per-class approach, 1D3 is applied 126 times to learn a separate decision

tree for each class. When learning class i, all training examples in other classes

are considered to be "negative examples" for this class. When the 126 trees are
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Table 5. Comparison of the performance of two methods of applying multiclass 1D3 to the

performance of the base configuration

applied to classify examples from the test set, ties are broken in favor of the

more-frequently-occurring phoneme/stress pair (as observed in the training set).

In particular, if none of the trees classifies a test case as positive, then the most

frequently occurring phoneme/stress pair is guessed.

The above discussion assumes the combined-ps approach. Alternatively, we

could apply the one-per-class approach on the phonemes and stresses separately.

In this case, 1D3 is applied 60 times to learn a separate decision tree for each of

the 54 phonemes and the 6 stresses. This is the separate-ps approach. When the

60 trees are applied to classify examples from the test set, rather than breaking

ties for the phonemes and stresses separately, our implementation still breaks ties

in favor of the more-frequently-occurring phoneme/stress pair (as observed in the

training set).24

Table 6 compares the performance of the above two methods of applying the

one-per-class approach to the performance of our base configuration. The one-per-

class, combined-ps method performed markedly worse. In fact, all the differences

between this method and the other two (the distributed representation employed

24This is conveniently achieved by mapping the 60-bit string output by the decision trees to the

nearest 60-bit vector from a set S of vectors corresponding to phoneme/stress pairs observed in

the training set. Each vector in S is the concatenation of a 54-bit, weight-i vector representing

a phoneme and a 6-bit, weight-i vector representing a stress.

Number

of

% correct (1000-word test set) Decision Tree

data (mean)Level of Aggregation

Configuration Trees Word Letter Phoneme Stress Leaves Depth

Multiclass (combined-ps) 1 13.5 70.8 81.1 78.3 1987.0 54.9

Multiclass (separate-ps) 2 13.0 69.7 82.4 79.5 1305.0 48.0

Base Configuration 26 12.5 69.6 81.3 79.2 269.9 29.3
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Table 6. Comparison of the performance of two methods of applying the one-per-class approach

to the performance of the base configuration

in the base configuration and the multiclass method) are statistically significant

at or below the .01 level. The separate-ps case of the one-per-class approach fares

much better than the combined-ps case. The main reason for this could be that

many more training examples can be obtained from the 1000-word training set for

each phoneme and stress separately than for each phoneme/stress taken as a pair.

Still, the performance of even the separate-ps case lags (slightly) behind that of

our configuration. We will cover an effective method of boosting the performance

of this approach to multiclass learning in Section 3.6.

3.3 Decision Tree Statistics

Let us consider the relative difficulty of training for each of the multiclass meth-

ods, as measured by the sizes of the decision trees produced. Table 7 reproduces

the decison tree statistics for the various approaches discussed earlier: the base

configuration, multiclass and one-per-class. The smallest decision trees are those

learned by the one-per-class approach. On the average, the members of one class

can be discriminated from all of the others by a tree having 34.9 leaves for the

combined-ps case (90.4 leaves for the separate-ps case). When we move to the dis-

tributed output code, the individual decision trees become larger, and hence, more

Number

of

% correct (1000-word test set) Decision Tree

data (mean)Level of Aggregation

Configuration Trees Word Letter Phon. Stress Bit Leaves Depth

One-per-class:

combined-ps: 126 8.7 66.7 76.4 74.5 99.5 34.9 10.5

separate-ps: 60 11.8 69.5 80.6 78.9 98.7 90.4 14.0

Base Configuration: 26 12.5 69.6 81.3 79.2 96.3 269.9 29.3
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difficult to learn. Each of these trees had an average of 270 leaves. Hence, when

we shift from recognizing a single class to recognizing a disjunction of classes, the

learning generally task becomes more difficult. Finally, when we must discriminate

among all 126 classes simultaneously, the decision tree grows to have 1,987 leaves.

On the other hand, the total complexity of the hypotheses produced by each

methodas measured by the total number of leaves in all of the decision trees

shows that the simplest hypothesis is produced by the direct multiclass approach

(combined-ps case) with 1,987 leaves. The one-per-class approach produces a total

of 4,397 leaves for the combined-ps case (5,424 leaves for the separate-ps case), and

the distributed output approach uses 7,017 leaves!

3.4 Error-correcting Codes

Closer examination of the distributed output code approach suggests that a bet-

ter distributed output code could be designed using error-correcting code methods.

Good error-correcting codes choose the individual codewords so that they are well-

separated in Hamming distance. The potential benefit of such error correction is

Number

of

Decision Tree Statistics

Average Total

Configuration Trees Leaves Depth Leaves

Multiclass:

combined-ps: 1 1987.0 54.9 1987

separate-ps: 2 1305.0 48.0 2610

One-per-class:

combined-ps: 126 34.9 10.5 4397

separate-ps: 60 90.4 14.0 5424

Base Configuration: 26 269.9 29.3 7017
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that the system could recover from errors made in learning the individual binary

functions. However, unlike the distributed code shown in Appendix B, the individ-

ual bit positions of such error-correcting codes are not meaningful in the domain.

Hence, the individual binary functions to be learned correspond to arbitrary dis-

junctions of the original C classes. If these functions are difficult to learn, then

they may negate the benefit of the error correction.

In the following subsections we investigate this approach using error-correcting

codes designed via the BCH method (Bose, Chaudhuri and Hocquenghem [Bose6O,

Hocquenghem59}). We will first show how to generate and select good BCH error-

correcting codes. Following that we present the results of applying codes of varying

length designed using these procedures to the text to speech mapping domain. The

results will show that while the individual bits (binary functions) of these codes

are indeed more difficult to learn, the generalization performance of the system is

improved. Furthermore, as the length of the code n is increased, additional per-

formance improvements are obtained. We will also show that these improvements

are orthogonal to the size of the sets used during the training phase and to the

particular assignment of codewords to individual classes.

Finally we present three limitations of the approach and suggest possible means

of overcoming these limitations in Section 3.4.8.

3.4.1 Generating BCH Codes

We used Appendix C of [Lin83] as our starting point for generating BCH codes.

This appendix lists for each value of n, k and t the generator polynomial that can

be used to generate n-bit codewords that are at least a distance d = 2t+ 1 from

one another. The BCH method guarantees that all the rows of the code (i.e., the

codewords) will be separated from each other by the specified minimum Hamming

distance d. Consequently, any t = [(d - 1)/2] errors will be corrected, because if

at most t errors have occurred, the nearest codeword is still the correct codeword.

In contrast, the minimum Hamming distance between any two codewords in the
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Sejnowski-Rosenberg output code is 1, since many phoneme pairs differ only by

whether or not they are voiced. Similarly, in the one-per-class and class-tree ap-

proaches, an error in any one of the learned binary functions causes new examples

to be misclassified.

To make the code generation procedure concrete, let us examine in some detail

the generation of C = 54 codewords of distance 15 for our 54 phonemes. First, we

find the value of k such that 2c C. In this case k = 6 is adequate to produce

26 = 64 codewords. Next the value of i is trivially computed from the desired d of

15, since t = - 1)/2] = 7. The table is then looked up for the closest match

for k and i = 7. In this case an exact match is found as follows:

n k t Generator Polynomial

31 6 7 313365047

If, on the other hand, we were looking for distance d = 5 and the same 54

codewords, then the closest match for k and t = 2 would be

n k t Generator Polynomial

157 2 721

which generates 2 = 128 codewords.

The generator polynomial obtained from the appendix is represented in octal.

When the octal representation is expanded in binary, the binary digits are the

coefficients of the polynomial, with the high order coefficients at the left. For

example, the generator polynomial corresponding to the octal representation 721

(or binary 111 010 001) is

g(X)=X8-I-X7+X6-{-X4-I-1

A simple routine written in C (see Appendix C) 25 is used to generate the 2's'

codewords. This routine takes as input the values of n, k and t and the binary

25We thank Dr. Sulairnan Al-Bassam for providing us with this C routine.
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representation of the generator polynomial and prints out the full set of codewords.

As an example, the input to the program for the first case (d = 15) will be as

follows:

31 6 7

11 001 011 011 110 101 000 100 111

Note that the left most zero introduced when 313365047 was converted from

octal to binary was omitted from the input to the program.

3.4.2 The Code Selection Procedure

The above method of generating BCH codes produces the complete 2' codewords.

This is often more than the desired number of words for the classes, and hence

a subset of these must be extracted to encode the C classes. Careful selection

of this subset is necessary since arbitrary elimination of some codewords from the

set may result in the remaining codeword matrix having identical or complimented

columns. This presents a difficulty since the columns of the code, which correspond

to the binary functions to be learned, must be substantially different from one

another to avoid high correlations between the errors in the individual functions.

In particular, as a result of arbitrary elimination of some codewords from the set, it

can occur that two columns are complementary. Both 1D3 and back propagation

have the property that they behave identically when learning a binary function

if the class labels on the training examples are interchanged (i.e., all members of

class 1 are switched to class 0 and vice versa). The consequence of this is that

the errors conmiitted in these two columns will be identical and hence, the code

will not be as effective. To eliminate this problem, we wrote several routines that

employed a heuristic evaluation function to select codewords one at a time in a

greedy fashion that attempts to eliminate the above difficulties. These routines also

broke ties26 in favour of the codeword that had the maximum distance with other
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Table 8. Performance (% correct on 1000-word test set) of various BCH codes. n is the codeword

length and d is the minimum inter-word Hamming distance between all codewords.

codewords that had been seleced so far. The procedure was heuristic and hence

was not completely successful in every case. For this reason, once a good subset

was selected, the column distances were checked to ensure that no complimentary

or identical columns were present.

3.4.3 Results

Table 8 shows the results of training 1D3 with distributed error-correcting output

codes of varying lengths. Phonemes and stresses were encoded separately, although

this turns out to be unimportant. Columns headed n show the length of the code,

and columns headed d show the minimum Hamming distance between any two

codewords.

The first thing to note is that the performance of even the simplest (19-bit)

BCH code is superior to the 26-bit Sejnowski-Rosenberg code at the letter and

word levels. Better still, performance improves monotonically as the length (and

error-correcting power) of the code increases. The long codes perform much better

BCH Code Data % correct (1000-wod test set) Decision Tree

data (mean)PHONEME STRESS Level of Aggregation

n d n d Word Letter Phoneme Stress Bit (mean) Leaves Depth

10 3 9 3 13.3 69.8 80.3 80.6 90.8 677.4 51.9

14 5 11 5 14.4 70.9 82.3 80.3 91.0 684.7 53.1

21 7 13 7 17.2 72.2 83.9 80.4 91.2 681.4 53.9

26 11 13 11 17.5 72.3 84.2 80.4 91.0 700.5 56.4

31 15 30 15 19.9 73.8 84.8 81.5 91.6 667.8 52.7

62 31 30 15 20.6 74.1 85.4 81.6 92.0 669.9 53.3

127 63 30 15 20.8 74.4 85.7 81.6 92.4 661.6 54.8
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than either the direct multiclass or Sejnowski-Rosenberg approaches at all lev-

els of aggregation (e.g., 74.4% correct at the letter level versus 70.8% for direct

multiclass).

Not surprisingly, the individual bits of these error-correcting codes are much

more difficult to learn than the bits in the one-per-class approach or the Sejnowski-

Rosenberg distributed code. Specifically, the average number of leaves in each

tree in the error-correcting codes is roughly 665, whereas the one-per-class trees

had only 35 leaves and the Sejnowski-Rosenberg trees had 270 leaves. Clearly

distributed output codes do not produce results that are easy to understand!

The fact that performance continues to improve as the code gets longer sug-

gests that we could obtain arbitrarily good performance if we used arbitrarily long

codes. Indeed, Shannon's [Shannon48} theorem in information theory proves this

under the assumption that the errors in the various bit positions are independent.

Unfortunately, this is not the case in practice. In Section 3.4.8, we will discuss

these and other limitations of the error-correcting output coding approach and

suggest possible means of overcoming some of these limitations.

3.4.4 Error-correcting Codes and Small Training Sets

Given that the individual binary functions require much larger decision trees for

the error-correcting codes than for the other methods, it is important to ask

whether error-correcting codes can work well with smaller sample27 sizes. It is well-

established that small training samples cannot support very complex hypotheses.

The more data that one has available, the more complex the hypotheses that can

be statistically supported.

To address this question, Figure 5 shows learning curves for the distributed

output code and for the 93-bit error-correcting code (63 phoneme bits with d 31,

30 stress bits with d = 15). The data for this figure are shown in Table 9. At
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Figure 5. Learning curves for the distributed output code and for the 93-bit error-correcting

code (63 phoneme bits with d = 31, 30 stress bits with d = 15).

all sample sizes, the performance of the error-correcting configuration is better

than the Sejnowski-Rosenberg distributed code. Hence, even at small samples,

error-correcting codes can be recommended.

3.4.5 Relationship to Other Methods of Improving Per-
formance

In Chapter 4, we will explore several techniques for improving the overall perfor-

mance of learning in this domain. These methods include extending the context of

the current letter and altering the encoding employed for converting the context

to binary representation.

An interesting question is whether the benefits provided by error-correcting

output codes are independent of the benefits provided by these other improve-

48
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Table 9. Learning curve data for the distributed output code and for the 93-bit error-correcting

code (63 phoneme bits with d = 31, 30 stress bits with d = 15).

Words in

training

set (m)

Type of

output

code

% correct (1000-word test set) Decision Tree

data (mean)Level of Aggregation

Word Letter Phoneme Stress Bit (mean) Leaves Depth

m = 50 Std. 1.6 50.7 63.5 69.3 93.6 22.8 8.6

Ecc. 3.0 54.7 67.4 71.6 84.2 59.7 23.9

m 100 Std. 2.9 54.1 66.1 71.9 94.2 39.4 11.4

Ecc. 6.7 59.2 71.7 74.6 86.2 103.7 29.5

m = 200 Std. 5.6 59.6 72.6 73.4 95.1 65.1 14.1

Ecc. 11.0 64.7 77.1 76.8 88.4 175.6 34.3

m = 400 Std. 8.5 63.8 75.9 75.8 95.8 117.2 18.2

Ecc. 15.6 69.4 81.2 79.3 90.2 315.1 42.9

m = 800 Std. 13.4 68.2 80.1 78.0 96.4 207.2 24.2

Eec. 19.8 73.5 84.7 81.3 91.7 554.6 49.4

m = 1600 Std. 15.5 71.9 83.3 80.3 96.9 366.0 28.6

Eec. 22.5 76.4 87.4 83.1 92.9 1004.2 59.3
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ments. The answer, as shown in Table 43 (in the next chapter) is unambiguously

"yes." The combination of error-correcting output codes with these additional

input features provides the best performing text-to-speech system that we have

studied.

3.4.6 Error-correcting Codes and Combined Phoneme/
Stress

In our previous discussion we presented results of applying separate error correct-

ing codes for the phonemes and the stresses. We can of course apply the error-

correcting coding technique equally well to the combined-ps case. In this scheme,

we generate 127 codewords of length n bits and interword minimum Hamming

distance d. The 126 phoneme/stress pairs (classes) observed in the training set

are each assigned to one of these 127 codewords. The remaining codeword is as-

signed to a default or "others" class, in order to take care of other phoneme/stress

combinations that were not present in the training set but may appear in the test

set.28

Table 10 shows the results of applying the combined-ps method described above

for three, relatively large, values of n and d. The performance figures for the

n = 63, d = 31 combined-ps case (first line in the table) nearly matches that of the

separate phoneme code pn = 62, pd = 31 with the stress code sn = 30, sd = 15

shown in Table 8at the letter and word levels of aggregation. Further increase

in the length (and interword Hamming distances) of the codes employed in the

combined-ps case leads to further performance gains at the letter and word 1ev-

28This is required in our implementation because the evaluation routines are extensive and

gatheramong other thingsbit-correctness statistics. For that, these routines compare

the bit-vector computed from the learning algorithm with the cornci bit-vector obtained by

looking up the desired phoneme/stress pair in the codeword assignment table. So, when a

phoneme/stress pair is given which is not in the table, it is assigned to this extra (unique)

codeword for "others" and the bit-correctness evaluations can then proceed as normal.
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Table 10. Performance of error-correcting codes applied to the combined phoneme/stress case.

els. The letter level performance goes up from 74.4% to 75.5%, and the word

level performance jumps from 20.8% to 22.4%. This is not the case, however,

for performance at the phoneme level. The best phoneme performance of 85.2%

in the combined-ps case still does not match the best phoneme performance of

85.7% shown in Table 8 for the separate-ps case. The best stress level performance

remains the same in both cases.

There are several other reasons for employing the combined-ps scheme instead

of the separate-ps schemebesides their good performance at higher levels of ag-

gregation. One advantage is that we deal with one set of codewords instead of two,

which allows us to characterize all the codewords with the same parameters (e.g.

code length, interword Hamming distances, etc.). This proves to be useful when

setting up experiments to determine the effects of varying these parameters. An-

other advantage is that we can overcome the limitations on the maximum "useful"

length for the error-correcting codes that can be employed for the 6 stress symbols.

(This and other limitations are discussed in Section 3.4.8).

3.4.7 Effect of Codeword Assignment

An interesting question that arises in the error-correcting coding approach is

whether any thought should go into the process of assigning codewords to in-

dividual classes. On the one hand, distance considerations suggest that all such

Code

Length

Interword

Distance

% correct (1000-word test set) Decision Tree

data (mean)Level of Aggregation

n d (miii.) Word Letter Phoneme Stress Bit (mean) Leaves Depth

63 31 20.3 74.3 83.8 80.3 87.4 1000.0 68.7

127 63 22.3 75.5 85.2 81.5 87.8 1002.9 68.3

255 127 22.4 75.5 85.2 81.6 87.8 1014.4 68.8
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assignments should be equally good if the interword Hamming distance d is suf-

ficiently high, since each BCH codeword is guaranteed to be at least a distance

d from all others. On the other hand, each assignment of codewords to classes

results in variations in the columns of the codeword matrix which correspond to

the individual binary functions that must be learned by the learning algorithm.

Hence it is possible that certain assignments might lead to functions that are easier

to learn than other assignments.

To address the above question, we made 11 experimental runs on the 127 bit,

d = 63 code employed in the previous section for the combined-ps case. In each run,

the individual codewords were randomly assigned to corresponding phoneme/stress

pairs (classes). The results, shown in Table 11, indicate that while some assign-

ments are slightly better than others, the differences are not significant enough to

warrant an elaborate method for the process of assigning codewords to individual

classes.

3.4.8 Limitations of the Error-correcting Code Approach

In the error-correcting coding approach, the fact that performance continues to

improve as the code gets longer may suggest to some that we could obtain arbi-

trarily good performance if we used arbitrarily long codes. This, however, is not

the case. In practice, there are limitations to the error-correcting coding approach

for the multiclass learning task. The discussion that follows covers three of these

limitations and suggests possible means of overcoming them.

(1) Limitations due to bit-error correlations: Shannon's [Shannon48] theo-

rem in information theory which shows that transmission errors can be arbitrarily

reduced by employing longer and longer codes assumes that errors in the various

bit positions are independent. However, because each of the bits is learned using

the same body of training examples, it is clear that the errors are not independent.

Table 12 shows the correlations between the errors committed at each bit position

for the 21-bit, d = 7 phoneme code employed in the third row of Table 8. All of
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Table 11. Effect of 11 random assignments of the 126 codewords to classes on the performance

of the d = 63 error-correcting code (combined-ps).

Random % correct (1000-word test set) Decision Tree

data (mean)Assignment

Number

Level of Aggregation

Word Letter Phoneme Stress Bit (mean) Leaves Depth

1 22.3 75.5 85.2 81.5 87.8 1002.9 68.3

2 22.2 75.8 85.1 81.7 88.1 998.2 68.8

3 21.8 75.5 85.0 81.8 87.9 995.7 66.9

4 22.2 75.7 85.0 81.5 88.0 996.6 66.9

5 22.2 75.5 85.2 81.6 87.9 994.7 68.1

6 21.4 75.5 85.3 81.4 88.0 996.5 69.4

7 21.0 75.6 85.3 81.4 88.0 998.6 68.8

8 22.4 75.6 85.3 81.5 88.0 999.3 67.7

9 23.1 75.7 85.6 81.7 88.0 999.8 68.9

10 23.1 75.8 85.4 81.6 88.1 991.1 67.9

11 21.5 75.5 85.4 81.5 88.0 998.3 69.7
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the correlation coefficients are positive, and many of them are larger than 0.30.

Hence, there must come a point of diminishing returns where further increases in

code length do not improve performance.

One way of overcoming the limitations due to bit-error correlationsin domains

where there is an abundance of training examplesis to learn each bit of the

codeword from a different set of training examples. To see that this in fact works,

we trained each of the 127 bits of the d = 63 code employed in Section 3.4.6 on

a different subset of 1000 words selected randomly from a pool of 19,002 words

(the complete NETtalk dictionary less the standard test set). Table 13 shows

the dramatic effect of this reduction in bit-error correlation on the performance

of error-correcting codes. Word-level performance jumped from 22.3% for the

normal case (of all bits being trained on the same set of training examples) to

36.5% when each bit was trained on a different set of 1000 randomly selected

words! Performance at all other levels of aggregation is significantly improved.

For comparison purposes, we applied the same techniquc of training each bit on

a different set of 1000 randomly selected wordsto two other coding schemes: The

Sejnowski & Rosenburg distributed code employed in our base configuration and

the 126-bit, weight-i code employed in the combined-ps case for the one-per-class

approach. The results, also shown in table 13, do not indicate a similar benifit for

these other coding schemes. For both the Sejnowski & Rosenburg distributed code,

and the one-per-class case, performance at all but the word levels of aggregation

dropped as a result of training the individual bits on different training sets.

(2) Limitations due to the small number of classes: Since the number of bits

in any column of the codeword matrix is C, there are at most 2 distinct columns

that can be used in the construction of the C-word code matrix. Furthermore, half

of these are compliments of the other half, so must be eliminated from consideration

leaving us with oniy possible distinct columns. Also the all 1 (or all 0) column

must be removed. Hence the maximum length code that we can construct for C

classes is of length n 2C1 - 1 bits. Requirements for having some minimum
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Table 12. Pairwise bit error correlations for a 21-bit, d = 7 phoneme code. Values are multiplied

by 100 then rounded for clarity.

Table 13. Effect of training each bit of the output code on a different set of 1000 randomly

selected words.

Correlation (xlOO) between errors in bit positions i (rows) and j (columns).
i 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 19 35 16 25 29 23 25 24 20 25 25 24 25 31 20 27 24 24 29 13

2 19 . 32 25 11 17 32 22 21 29 14 28 35 21 25 27 22 19 14 30 30

3 35 32 . 21 19 36 16 28 32 19 27 32 28 26 25 23 27 25 27 28 17

4 16 25 21 29 24 18 36 19 31 27 32 27 25 30 30 29 24 24 27 29

5 25 11 19 29 24 16 29 20 20 29 27 14 14 30 17 15 24 17 17 23

6 29 17 36 24 24 12 31 25 26 28 31 27 24 26 17 28 27 27 22 17

7 23 32 16 18 16 12 19 13 32 8 36 31 32 26 27 24 14 12 29 28

8 25 22 28 36 29 31 19 . 26 27 29 29 19 24 28 24 35 30 27 23 26

9 24 21 32 19 20 25 13 26 . 19 32 31 22 25 22 21 30 25 29 26 12

10 20 29 19 31 20 26 32 27 19 22 31 34 28 30 37 28 31 30 31 26

11 25 14 27 27 29 26 8 29 32 22 - 42 18 30 29 15 27 31 33 21 19

12 25 28 32 32 27 31 36 29 31 31 42 - 32 40 34 27 27 32 31 32 26

13 24 35 28 27 14 27 31 19 22 34 18 32 . 30 36 21 22 17 18 39 24

14 25 21 26 25 14 24 32 24 25 28 30 40 30 25 23 25 24 21 33 24

15 31 25 25 30 30 26 26 28 22 30 29 34 36 25 20 21 22 24 39 29

16 20 27 23 30 17 17 27 24 21 37 15 27 21 23 20 25 18 22 25 21

17 27 22 27 29 15 28 24 35 30 28 27 27 22 25 21 25 . 38 26 28 17

18 24 19 25 24 24 27 14 30 25 31 31 32 17 24 22 18 36 26 19 19

19 24 14 27 24 17 27 12 27 29 30 33 31 18 21 24 22 26 26 23 19

20 29 30 28 27 17 22 29 23 26 31 21 32 39 33 39 25 28 19 23 . 26

21 13 30 17 29 23 17 28 26 1226 19 26 24 24 29 21 17 19 19 26

Output Coding Method

Number % correct (1000-word test set)

of Level of Aggregation

Training set trees Word Letter Phoneme Stress Bit

(1) d = 63 Error-correcting code

Separate for each bit 127 36.5 78.8 87.2 83.8 89.3

Common for all bits 127 22.3 75.5 85.2 81.5 87.6

(2) Std (Sejnowski) distributed code

Separate for each bit 26 15.9 65.9 78.8 76.5 96.0

Common for all bits 26 12.5 69.6 81.3 79.2 96.3

(3) One-per-class (combined-ps)

Separate for each bit 126 10.7 62.5 71.7 72.7 99.4

Common for all bits 126 8.7 66.7 76.4 74.5 99.5
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Table 14. A set of 6 codewords generated by concatenating all possible 6-bit, weight-2 columns.

distance between the codewords will further restrict the possible length for the

number of bits in each codeword.

In our domain, the above does not impose any practical limitation on the length

of error-correcting codes we can construct for the 54 phonemes. This is not the

case, however, for the 6 stresses. Constructing a good29 set of BCH error-correcting

codes with a large number of bits and only 6 words in the set proved difficult, so

other methods for designing such codes were investigated. These methods start

from the columns of the codeword matrix. One such method is to concatenate all

possible columns of the code having only two out of the six bits on (i.e. weight-

2 columns). There are 15 such columns, (6 choose 2), and the code (shown in

Table 14) has a uniform distance of 8 between every codeword and the other.

Trying the above procedure with weight-3 columns gives rise to longer code-

words, but they are not useful for learning since half of the columns turn out to

be compliments of the other half.

Another method for designing the least number of the longest codewords possi-

ble for a good error-correcting code is to list all possible columns of length C - 1,

(where C is the number of codewords required) and then add one more codeword
29 consider an error-correcting codeword set to be "good" if the minimum distance between

the codewords is nearly equal to half the number of bits in the code.

i 1 2 3 4 5 6

Bit position

7 8 9 10 11 12 13 14 1511111100000000002100001111 00000030100010001 1100040010001001001105000100010010101600001000100101 1



Table 15. Generating 6 error-correcting codewords of maximal length

Note that the last column of the code is useless and must be removed.

with all its bits set to 1 (or all its bits set to 0 if you so desire). For our 6 stresses,

we have 2 = 32 possible columns, creating a 32-bit code (shown in Table 15) with

a uniform interword Hamming distance of 16. Note that the last column of the

code (the all 1 column) must be removed resulting in a 31-bit code.

Still, the above methods can take you only so far. Another possible means of

overcoming the limitations due to the small number of classes is to learn at higher

levels of aggregation. Assigning a unique class number to each phoneme/stress

combination (i.e. the combined-ps approach discussed in section 3.4.6 ) is an

example of this technique. One can also go further and map groups of letters to

groups of phoneme/stress pairs. This will certainly drive up the number of classes,

but it may not be very useful in this domain due to the much smaller number of

training examples that are available when learning at these larger grain sizes.

(3) Limitations due to bit accuracy: Even ignoring the problem of bit-error

correlations, there is a minimum value for the bit accuracy needed for error cor-

rection to take over. To see this, let us assume that we can learn the individual

bits in the code to have probability q of being correct. This of course is an over-

simplification since different bits have different such probabilities in practice, but

let us set aside this issue and consider q to be the average of these probabilities. If

we have a TI-error correcting code, then the probability that we will get the right
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i The codeword set Method of generation

1 01010101010101010101010101010101 repeat 01(16 times)

2 00110011001100110011001100110011 repeat 0011 (8 times)

3 00001111000011110000111100001111 repeat 00001111 (4 times)

4 00000000111111110000000011111111 repeat 0000000011111111 (twice)

5 00000000000000001111111111111111

6 11111111111111111111111111111111 add all l's codeword
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answer after decoding using the BCH error-correcting code is the probability of

making i or fewer errors out of n bits. This probability can be calculated (from

the binomial distribution, assuming our errors are independent) as follows:

p(t or fewer errors)
= ( ) (1

Table 16 shows the overall success rate calculated from the above formula for

q ranging from 0.5 to 0.95 and values of n and t typical for BCH codes. There are

several things to note here. First, the table shows that error-correcting codes do not

become useful until q, the probability of individual bits being correct, approahes

0.8. Even then, it takes a 63-bit code that corrects up to 15 errors to raise the

overall performance to a level beyond the value of q of 0.8. Once q crosses .8, error

correction starts to take over, and once we get q > .85, it appears that we can

drive the correctness arbitrarily high by using longer and longer codes. A second

thing we can observe from the data shown is that there are short error-correcting

codes that are more efficient than longer ones. Consider the columns of the table

for values of q between 0.8 and 0.9. It is clear that the n = 31, t = 7 code is more

efficient in terms of error-correcting capability than the next code: n = 45, t 8.

This can be explained by the fact that for a substantial increase in the length of

the code from 31 to 45, we did not gain a comparable improvement in the error-

correcting capacity of the code: t only increased from 7 to 8. In general, the most

efficient BCH codes are the ones for which t is roughly equal to one fourth of the

length n. Hence the codes n = 31, t = 7 and n = 63, t = 15 are considered "good"

error-correcting codes.

There is no simple way of overcoming the limitations due to the low accuracy

of learning the individual bits. Hence, the solution must be to beef up the bit-

correctness to acceptable levels by including more and more training examples in

the learning phase.



3.5 Random Codes

In addition to testing the performance of BCH codes, we also evaluated the per-

formance of randomly-generated output codes. There were two reasons for con-

sidering random codes. First, randomly-generated codes are much easier to design

than BCH codes. Second, it is interesting to ask whether biological systems might

employ error-correcting codes as distributed representations. If so, some random

way of generating such codes would be much more biologically plausible than using

the highly specialized BCII method.

Consequently, we generated random codewords with lengths matching the BCH

codes employed in Section 3.4.3. Table 17 shows the results when 1D3 was trained

using these random codewords (on our standard 1000-word training set and tested

on our standard 1000-word test set).

The results show that randomly generated codes perform only slightly worse

than the BCH codes of equal length. This raises an interesting question: What do

these two kinds of codes have in common and why do they improve the performance

of learning systems?
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Table 16. Overall (global) success rate for error-correcting codes calculated assuming the bino-

mial model

q = Average probability of bit correctness

n t q=O.5 q=O.6 q-O.7 q=O.8 q=O.85 q=O.9 q=O.95

6 0 0.0156 0.0467 0.118 0.262 0.377 0.531 0.735

15 2 0.0037 0.027 0.127 0.398 0.604 0.816 0.964

21 3 0.00074 0.011 0.086 0.370 0.611 0.848 0.981

31 7 0.0017 0.033 0.245 0.730 0.918 0.990 0.9999

45 8 0.00001 0.001 0.047 0.441 0.775 0.968 0.9997

51 11 0.00003 0.004 0.121 0.685 0.929 0.996 0.99999

63 15 0.00002 0.005 0.175 0.821 0.979 0.9996 1.00000
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Table 17. Performance of random codes of equal length to the BCH codes employed in Table 8.

We have four hypotheses to explain the reasons for the improved performance

of these codes:

Hypothesis 1: Error-correcting Capability. Random codes do as well as BCH

error-correcting codes, because generating bit strings randomly produces code-

words with inter-word Hamming distances comparable with those of equal length

BCII codes. Hence these random codes will have a comparable error-correcting

capability.

Hypothesis 2: Code Length. Longer codes perform better than shorter codes.

Hence random codes do as well as B011 codes of equal length.

Hypothesis 3: Balanced Rows. Random codes do as well as BCH error-

correcting codes, because both methods produce codeword matrices whose rows

(i.e. the codewords) are almost balanced; having nearly as many zeros as they

have ones.

Hypothesis 4: Balanced Columns. Random codes do as well as BCH error-

correcting codes because both methods produce codeword matrices whose columns

Code Length % correct (1000-word test set) Decision Tree

data (mean)PHONEME STRESS Level of Aggregation

pn sn Word Letter Phoneme Stress Bit (maen) Leaves Depth

10 9 12.3 69.0 79.9 79.7 91.5 598.9 48.5

14 11 14.2 70.8 82.0 80.5 92.1 597.8 49.8

21 13 16.5 71.8 83.2 80.6 92.0 624.9 48.9

26 13 18.2 72.4 84.3 80.8 92.0 619.3 45.9

31 30 19.1 72.7 84.2 80.9 92.6 587.9 47.4

62 30 20.5 73.9 85.3 81.5 91.8 681.8 56.3

127 30 20.1 73.4 85.4 81.1 92.3 656.1 55.6
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are nearly balanced. It is commonly believed that binary learning algorithms work

best when the frequencies of positive and negative examples are balanced.

These hypotheses are neither mutually exclusive nor exhaustive.

The following three subsections present the results of experiments we performed

to test the validity of these hypotheses.

3.5.1 Test of Hypothesis 1 (Error-correcting Capability)

To test our first hypothesis, we mea-sured the inter-word Hamming distances for

all random codes used in Table 17 and compared them to the distances of the

corresponding BCH codes. Tables 18 and 19 summarize these statistics. The

average distances (for the BCH codes and the random codes of equal length) track

each other very well as can be seen from the first table. This makes sense, since

the Hamming distance between any two randomly-generated n-bit strings is bino-

mially distributed with a mean of n/2. However the average distance between all

codewords is not necessarilly a good indicator of the error correction capability of

any code.3° To achieve good error correction, the minimum inter-word Hamming

distances among codewords is what counts. Based on this measure, Table 19 shows

that the random codes we used did in fact have error correction capability even

though it was not nearly as much as their corresponding BCH codes. This sug-

gests that Hypothesis 1 is correct. Furthermore, we claim that the slight inferior

performance of random codes to their BCH counter-parts could be attributed to

the disparity between the error correction capability of these two sets of codes.

Evidence to support this claim will come in the next section.

3.5.2 Test of Hypothesis 2 (Code Length)

One obvious way to test our second hypothesis would be to develop codes of differ-

ent lengths, but having the same minimum inter-word Hamming distance, and test

30This will be apparent from the experiments of the next section.



Table 18. Average distances between the codes employed in Sections 3.4 and 3.5.

Distances shown in columns 2 and 4 are the minimum for BCH codes only.

Table 19. Minimum distances between the codes employed in Sections 3.4 and 3.5

pn (sn) is the code length for phonemes (stresses
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Average Distances

PHONEME STRESS PHONEME STRESS

n d n d BCH Random BCH Random

10 3 9 3 5.1 5.0 4.5 5.3

14 5 11 5 7.1 7.0 5.8 5.2

21 7 13 7 10.7 10.4 7.5 5.7

26 11 13 11 13.2 13.1 12.8 11.5

31 15 30 15 15.7 15.4 15.7 13.7

62 31 30 15 31.5 31.0 15.7 15.9

127 63 30 15 63.5 63.5 15.7 15.5

Overall Mininum Average of Minimums

PHONEME Stresses PHONEME Stresses

pn sn BCH Random BCH Random BCH Random BCH Random
10 9 3 0 4 3 3.0 1.6 4.0 3.7

14 11 5 1 5 3 5.0 2.7 5.0 3.7

21 13 7 2 7 2 7.0 5.2 7.0 3.2

26 23 11 6 11 9 11.0 7.5 11.0 9.7

31 30 15 8 15 11 15.0 9.6 15.0 11.2

62 30 31 18 16 10 31.0 21.7 16.0 12.8

127 30 63 44 16 13 63.0 50.3 16.0 13.8
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their performance to see the effect of code length. Generating such codes turned

out to be impractical for two reasons:

BCH codes: To generate BCH codes of various length and the same minimum

inter-word Haniming distance, one must choose a reasonably short distance

(e.g. 5) so that codes with length as small as 15 bits can be constructed.

The problem then becomes generating the longer codes. Our routines when

employed for generating longer codewords with that distance would produce

an astronomical number of codewords. For example, for distance 5, they

will generate 251 codewords of length 63 and 2113 codewords of length 127.

Attempts to modify the routine to produce only a subset of those codewords

produced codes with undesirable properties for learning.

Random codes: Our attempts to generate random codes of various lengths

and the same minimum inter-word Hamming distance failed. We found that

the distances between the randomly generated codewords increase consis-

tently with the length of the code.

As an alternative, we decided to generate several sets of codes of the same

length but with varying inter-word Hamming distances. Again the same difficulties

mentioned above were faced. So we decided to generate "biased" random codes,

where a certain portion of the bits are randomly set to zero or one (flip a coin),

while the rest of the bits are always set to zero. Which bits are to be randomized

and which are to be biased toward zero were again determined by a random process

determined by a parameter, random-portion in the range 0.0 to 1.0 (1.0 meaning

completely random).

We employed the algorithm biased-random shown in Table 20 to generate 127

codewords (for ps-pairs in the training setthe combined-ps case), each of length

127 bits long. We varied random-portion from 0.01 to 1.00 in steps of 0.01 and

generated 5 sets of codewords for each value of random-portion, a total of 500

sets. Each codeword set generated was passed through a routine that calculates
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Table 20. Algorithm biased-random employed to generate "biased" random codes, where a

certain portion of the bits are randomly set to zero or one (flip a coin), while the rest of the bits

are always set to zero.

algorithm: biased-random

input: num-words, num-bits, ran dom-portion

output: num-words codewords each of length num-biis

begin { biased-random }

A vg-num-biLs-o-randomize := num-bits x random-portion

for J = 1 to num-words do

begin

{ generate a codeword of length num-bits as follows: }

for i = 1 to num-bits do

begin

set random-number = generate a random number

betweeen 0 and num-bits less 1

if random-number < Avg-num-biis-Lo-randomize then

set bit1 randomly to zero or 1;

else

set bit1 to zero.

end;

output the codeword;

end;

end {biased-random}

the average, average of the minimums and the overall minimum distances. The

results were a general steady increase of the distances from close to zero to 63.5

(average), 45 (overall minimum), as random-portion was increased towards 1.00.

From the 500 sets of codewords, we selected 6 good sets that have the following

minimum distances: 2, 5, 9, 15, 31, and 45. The criterion for "goodness" was to

have the difference between the minimum and average distances calculated for the
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Table 21. Performance of "biased random codes" of equal length (127 bits) and various in-

ter-word Hamming distances.

codeword set as low as possible, so that the codeword set was the best represen-

tative of the distance-label it was assigned to. It should be observed that these

codewords are still random in every sense of the word, and hence they are expected

to be good codes for the learning algorithm in the sense that no two columns are

likely to be identical, compliments or excessively correlated.

The results shown in Table 21 unambiguously confirm our first hypothesis-

that distances between the codewords (error-correcting capability) and not the

codeword length-is the factor responsible for the performance improvement when

using error-correcting or random codes. Hence Hypothesis 2 is incorrect.

The above results also suggest that a generate and test approach similar to

the one used in this experiment is an attractive method for generating variable

distance codewords sets, when the number of bits in each word is large, i.e. when

the space of possible codewords is huge compared to the number of codewords

required.

Inter-word

distances

% correct (1000-word test set) Decision Tree

data (mean)Level of Aggregation

Mi Avg-mm Avg Word Letter Phoneme Stress Bit (maen) Leaves Depth

2 4.2 8.2 9.2 67.2 76.0 75.6 98.2 136.1 19.6

5 9.6 16.0 12.8 69.8 79.0 77.0 96.7 247.9 27.0

9 13.8 21.5 14.4 71.0 80.3 78.0 95.6 341.4 31.9

15 20.3 29.8 15.2 72.6 82.2 79.2 93.8 480.1 39.4

31 36.0 48.3 20.1 74.8 84.7 80.8 90.4 778.5 55.1

45 48.9 63.5 22.2 75.7 85.3 81.5 88.0 998.6 68.5
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3.5.3 Tests of Hypothesis 3 and 4 (Balanced Rows or
Columns)

To test these hypothesis, we ran experiments with two sets of codewords of length

127 bits each, and minimum Hamming distance 2, constructed in such away that:

One had nearly as many zeros as there are ones in each row of the codeword

matrix.

The other had nearly as many zeros as there are ones in each column of the

codeword matrix.

The first set was easy to construct. Starting with one nearly balanced 127-bit

codeword, CW, we generated the 126 additional codewords needed to encode the

classes for the combined-ps case. To generate the codeword, we copied CW,

then complimented the 1th bit.

To construct the second set of codewords, we started with one nearly balanced

column, CC, of the codeword matrix and generated the ih additional cloumn by

copying CC, then complimenting the th bit or in some cases complimenting the

i and the i + 1 bits (of the column vector). In this manner all the 127 required

columns were generated. This construction produced codewords that had the

following properties:

Half of the codewords in the set had a very large distance (124 bits) with

codewords in the other half.

Codewords within each half were a distance 2 or 4 from one another.

The overall average distance between all codewords was 64, but,

The overall minimum distance was 2, as was the mean of the minimum

distances.



3.5.4 Random Codes: An Alternative to BCH?
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Table 22. Performance of balanced output codes of length 127 and inter-word Hamming distance

2 compared to the one-per-class approach.

Table 22 compares the results of using these two output codes with the one-per-

class approach discussed in Section 3.2. There are several points to notice here.

First, the performance of (A) and (C) are exactly identical. A little scrutiny of

the codewords used in both cases convinced us that this should be the case since

the colimms in both sets of codewords were identical, and 1D3 does not care what

the number of zeros (ones) are in the codeword. It cares about the number of

zeros (ones) in the columns of the codeword matrix, since they determine which

concepts are being learned. However, the concepts in the balanced columns case

(B) were entirely different. They were much more difficult to learn as evidenced by

the huge size of the trees built compared with the one-per-class case. Nevertheless,

they did not perform any better.

We therefore conclude that both Hypothesis 3 and 4 are incorrect. Balanced

codes do not help and balancing the class frequencies has no effect.

This once again strengthens our belief in Hypothesis 1, that error correction

capability is the key to the improved performance of both BCH and random codes.

The results of our experiments with random codes suggest that a reasonably good

startegy for generating good error-correcting codes is to randomly generate and

Type of output

code employed

% correct (1000-word test set) Decision Tree

data (mean)Level of Aggregation

Word Letter Phoneme Stress Bit (maen) Leaves Depth

(A) Balanced Rows

(B) Balanced Columns

(C) One-per-class

8.7

8.6

8.7

66.7

66.7

66.7

76.4

75.6

76.4

74.5

75.1

74.5

99.5

94.2

99.5

34.4

410.4

34.4

10.3

34.5

10.3



Overall Average Distance: 16.0

testkeeping the best sets. We can argue for this case by comparing the distance

matrices for an "optimal" maximal length code of distance 16 (for the 6 words we

need for the stresses) with corresponding codes generated randomly. The reason

for choosing the codes for the stresses to perform this experiment is that the

codewords are small and manageable (i.e. fit on a page). Experiments with larger

sets of codewords and larger number of bits in each word gave similar results.

The "optimal" maximal length code is generated by concatenating all possible

(distinct) columns of length 5, creating 5 codewords of length 2 = 32, then adding

a sixth codeword of all ones to prevent the resulting 6-bit columns from being

compliments of each other, and finally, removing the all 1 column. This results in

6 sets of 31-bit codewords with a uniform interword Hamming distance of 16 as

shown in Table 23.

Randomly generated codewords of length 31 bits gave an overall average dis-

tance ranging from 15.1 to 16.2 (in 10 runs). The best run had the distance

statistics shown in Table 24 which is very close to the optimal!
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Table 23. An "optimal" set of 6 codewords for the stresses and their inter-word Hamming

distance statistics.

i

The codeword set

Inter-word distance between

codewords I & j (below)

Row

Summaries

1 2 3 4 5 6 Mm. Avg. Max.

1 01010101O1O1O10101010101O101010 0 16 16 16 16 16 16 16.0 16

2 0011001100110011001100110011001 16 0 16 16 16 16 16 16.0 16

3 0000111100001111000011110000l11 16 16 0 16 16 16 16 16.0 16

4 0000000011111111000000001111111 16 16 16 0 16 16 16 16.0 16

5 0000000000000000111111111111111 16 16 16 16 0 16 16 16.0 16

6 1111111111111111111111111111111 16 16 16 16 16 0 16 16.0 16



Overall Average Distance: 16.2

Hence, we can conclude this section by asserting that random codes do almost

as well as BCH codes, because they produce error-correcting codes. They are an

attractive easy alternative to BCH codes.

3.6 Voting: Multiple Trees per Bit

One of the shortcomings of the one-per-class approachas employed in our exper-

imentsis that the decision trees built for the classes returnupon evaluation

binary decisions. Trees decides whether or not a given example is a member of

class without giving any indication of the strength of the belief in its decision.

One way to overcome this is to modify the tree building algorithm to store in

each leaf of the tree a probability estimate reflecting the conditional probability

that the example belongs to elassgiven the features tested along the path to

that leaf. [Buntine9Ol and ILucassen84l each give a possible method of estimating

such conditional probabilities.31 Another approach that we explored is to retain
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Table 24. Inter-word Hamming distance statistics for the best of 10 randomly generated sets of

6 codewords each and length 31 bits.

31The straight forward approach of assuming that the required conditional probability is simply

the fraction of examples in the training set that reach the leaf is not a good idea, since these

Inter-word distance between

codewords i & j (below)

Row

Summaries

i 1 2 3 4 5 6 Mm. Avg. Max.

1 0 15 19 13 17 13 13 15.4 19

2 15 0 18 14 16 14 14 15.4 18

3 19 18 0 20 20 14 14 18.2 20

4 13 14 20 0 16 16 13 15.8 20

5 17 16 20 16 0 18 16 17.4 20

6 13 14 14 16 18 0 13 15.0 18



70

the binary nature of the decision trees but build x trees for each class. We can

then resolve any conflicts between the x trees by taking the majority vote. This

by itself, will increase the confidence in the individual class membership decisions,

since a majority vote among the x trees is more likely to be correct than any single

trec other things being equal. We can further enhance the voting procedure

by returning a real number v, reflecting the strength of our belief in the class

membership decisionwhere v is simply the fraction of the x trees that voted

"yes". This will allow us to resolve ties in favour of the class with the highest

confidence level v.

In the previous discussion we argued the case for employing voting among

several sets of trees by focussing on the one-per-class approach. However, there is

no reason why voting should not be employed in general regardless of the particular

scheme followed in coding the output. In particular, voting can be combined with

distributed codes just as well, by building several trees for each bit of the code.

The decoding phase that maps the output bits to the nearest legal (or observed)

codeword remains the same if the results of the voting are returned as binary

decisions reflecting the majority vote. However, should we decide to return the

results of the voting as real numbers between 0 and 1 instead of binary digits,

then the distance metric employed in the decoding phase must be slightly altered.

In this case we used the following distance measure: d(x, !7) = >i Ix - y4. This

reduces to the Hamming distance when and il are Boolean vectors.

3.6.1 Constructing x Sets of Trees

1D3, unlike Backpropagation, is a deterministic algorithm. Given the same set of

examples, 1D3 always constructs the same decision tree for each output function.

Hence, to force 1D3 to build a different tree we must somehow give it a different

set of examples every time. However, in order to have an objective evaluation of

fractions tend to be very small and the estimates too biased to the particular training set used

to build the tree.
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the effect of voting independent of the number of examples present in the training

set, we have to constrain our experiments so that all the examples are drawn from

the same pool: our standard 1000-word training set. There are a number of ways

of meeting these constraints. We tested two:

Subdivide the training set, Saii into x subsets: S1 to S. Build x sets of

trees T1 to T, where the training set used to build T2 is Saji concatenated

with S2. This method of including some of the examples twice in the training

set will alter the distribution of the positive and negative examples for the

output functions, and hence the 1D3 selection criteria is likely to favour

different features thereby producing different sets of trees. This method has

the advantage that all the sets of trees see all the examples in the training

set.

Subdivide the training set, Saij into x subsets: S1 to S as above. Build x

sets of trees T1 to T, where the training set used to build T is:

OSjjl,ji
That is tree set 7', is built using all the subsets but S as a training set.

This method of building the trees is slightly faster since each tree sees a

smaller set of examples. However, because of this very reason, the individual

performance of each set of trees may suffer.

All our experiments for voting were done with the value of x, the number of

trees built for each bit, being equal to or greater than 5. For these values of x,

we found no noticeable difference between the performance of the collection of

trees generated by either of the above methods. Hence we abandoned the first

method and opted for the second more efficient alternative. Thus all the results

reported in this section were obtained by using the second method described above

for generating the x collection of trees.



3.6.2 Voting: Performance Results

Table 25 shows the results of applying the techniques described above for employing

voting among x=5 trees (per bit) for three kinds of output encoding: the one-per-

class approach, the standard distributed code of Sejnowski and Rosenburg, and a

93-bit BCH error-correcting code (a 63 bit, d = 31 code for phonemes, and a 30 bit,

d = 15 code for stresses). Each set of trees was constructed from a different subset

of 800 words out of the 1000-word training set. Table 26 shows similar results but

with x = 9 trees voting (each built from 888-word subsets of the training set). For

each kind of output code, these tables show three lines:

The first row (marked lxl000) shows the results for a single tree built using

the full 1000-word training set (no voting).

The next row (marked 5x800 or 9x888) shows the results for 5 (respectively

9) trees voting. The results of the vote are thresholded and returned as a

binary decision reflecting the consensus among the majority of the trees.

The third row (marked 5x800 float or 9x888 float) shows the results for 5

(respectively 9) trees voting as in (B), but with the results of the voting

returned as a real number (the fraction of the trees that voted "yes" as

explained in section 3.6).

There are several things to note in both tables. First, voting improves the per-

formance in general regardless of the method of output encoding employed. Second,

returning the results of voting as real (floating point) numbers is always better than

thresholding it prematurely to binary. Third, the one-per-class approach benefits

the most from voting. Fourth, the best performance of the one-per-class approach

with voting does not quite match the performance of the error-correcting output

code employed in these experimentseven if voting is not employed for the latter.

Sixth, the peformance figures in Table 26 (9 trees voting) are generally superior to

those shown in Table 25 (5 trees voting).
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Table 25. Effect of employing voting among 5 sets of trees for different methods of encoding the

output

% correct (1000-word test set) Decision Tree

data (mean)Output Coding Method Level of Aggregation

Configuration Word Letter Phon. Stress Bit Leaves Depth

(1) One-per-class

(Al) - 1x1000 11.8 69.5 80.6 78.9 98.7 90.4 14.0

(Bi) - 5x800 14.4 71.6 82.2 80.1 98.8 78.1 13.4

(Cl) - 5x800 float 16.7 72.9 84.2 81.1 98.9 78.1 13.4

(2) (S & R) distributed code

(A2) - 1x1000 12.5 69.6 81.3 79.2 96.3 269.9 29.3

(B2) - 5x800 14.3 71.2 82.5 80.3 96.7 232.3 26.6

(C2) - 5x800 float 14.7 71.7 83.3 80.8 96.8 232.3 26.6

(3) Ecc code: pd = 31,sd = 15

(A3) - lxl000 20.6 74.1 85.4 81.6 91.8 684.3 54.4

(B3) - 5x800 21.6 75.1 85.9 82.5 92.1 591.6 51.3

(C3) - 5x800 float 22.1 75.2 86.1 82.7 92.2 591.6 51.3
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Table 26. Effect of employing voting among 9 sets of trees for different methods of encoding the

output

% correct (1000-word test set) Decision Tree

data (mean)Output Coding Method Level of Aggregation

Configuration Word Letter Phon. Stress Bit Leaves Depth

(1) One-per-class

(Al) - lxl000 11.8 69.5 80.6 78.9 98.7 90.4 14.0

(Bi) - 9x888 14.6 71.7 81.8 80.2 98.8 82.6 13.6

(Cl) - 9x888 float 19.2 73.3 84.7 81.5 98.9 82.6 13.6

(2) (S & It) distributed code

(A2) - lxl000 12.5 69.6 81.3 79.2 96.3 269.9 29.3

(B2) - 9x888 14.6 71.7 82.6 80.6 96.7 246.4 27.8

(C2) - 9x888 float 16.1 72.3 83.7 81.0 96.8 246.4 27.8

(3)Ecc code: pd=31,sd= 15

(A3) - lxl000 20.6 74.1 85.4 81.6 91.8 684.3 54.4

(B3) - 9x888 22.2 75.1 86.0 82.3 92.1 627.1 52.3

(C3) - 9x888 float 23.6 75.0 86.2 82.3 92.2 627.1 52.3
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Let us now take a closer look at the difference between rows (Bi , Cl) and

(B3 , C3) in Table 26. Whether or not we prematurely threshold the result of the

voting has a dramatic impact on the performance of the one-per-class approach.

This is understandable, since thresholding the result of voting for each bit makes

a final commitment based on information local to that bit, whereas delaying such

final commitments until the results for all the bits are in and it is time to map to

the nearest codeword is bound to be a wiser decision. Another way to look at these

results is that they suggest that breaking ties between classes based on the strength

of the vote is a much better strategy than breaking ties based on the frequency of

the classes (or prior probability of each class). The effect of thresholding is much

less pronounced when we employ error-correcting output codes. This shows the

power of error correction, since even if premature decisions lead to errors in certain

bits, the code will be able to correct for these errors if they are within its error

correction capability.

There are two possible reasons for the superior performance shown when the

number of trees voting is increased from 5 to 9:

Each tree in the 5-tree case is built from 800 words providing examples for

the training set, while in the 9-tree case each tree is built from 888 words

providing examples for the training set. This may account for the better

performance of the latter since the individual trees perform better. If this is

true, we should expect that 5-trees voting each built from 888 instead of 800

words should perform equally well to the 9-tree case.

As the number of trees voting is increased, performance generally improves.

Performance is not sensitive to the number of examples used to build each

tree.

To test the validity of the first explanation, we repeated our voting experiments

with 5 trees voting but with each tree built from 888 words instead of 800 words.
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Table 27. Effect of employing voting among 5 sets of trees each built with 888 words in the

training set. These decision trees were differen2 from the ones employed in the previous table.

The results-shown in Table 27-are generally better than those in Table 25, which

indicates that our first explanation is at least partially correct.

To test the validity of our second explanation-that the number of trees voting

is the major factor for the improved performance, we combined the trees used in

Tables 25 through 27 (19 trees total)32 and measured the performance of those

when the number of trees voting is gradually reduced from 19 down to 3. The

results corresponding to row (C)-the float case (no thresholding)-are shown in

Table 28. There seems to be little gain in having a larger number of trees contribute

in the voting process. The best performance is seen when about 9 to 11 trees vote.
32 5 sets of trees shown in Table 27 were numbered 1 to 5, the 5 sets of trees shown in

Table 25 were numbered 6 to 10, and the 9 sets of trees shown in Table 26 were numbered 11

to 19. "x trees voting" in Table 28 means that trees 1 through x participated in the voting.

Output Coding Method

% correct (1000-word test set) Decision Tree

data (mean)Level of Aggregation

Configuration Word Letter Phon. Stress Bit Leaves Depth

(1) One-per-class

(Al) - lxl000 11.8 69.5 80.6 78.9 98.7 90.4 14.0

(Bi) - 5x888 14.9 71.4 81.4 80.4 98.8 80.2 13.4

(Cl) - 5x888 float 18.2 73.3 84.1 81.6 98.9 80.2 13.4

(2) (S & It) distributed code

(A2) - lxl000 12.5 69.6 81.3 79.2 96.3 269.9 29.3

(B2) - 5x888 13.4 71.5 82.3 80.8 96.6 239.6 27.4

(C2) - 5x888 float 15.8 72.6 83.3 81.5 96.8 239.6 27.4

(3) Ecc code: pd = 31,sd = 15

(A3) - lxl000 20.6 74.1 85.4 81.6 91.8 684.3 54.4

(B3) - 5x888 21.8 75.1 86.0 82.4 92.1 609.2 51.6

(C3) - 5x888 float 22.2 75.0 86.2 82.4 92.2 609.2 51.6



Beyond that there can be a slight degradation of performance in some cases.

3.7 Summary

In this chapter, we introduced a new approach to multiclass learning problems;

one in which BCH error-correcting codes are employed as a distributed output

representation. By comparing the performance of several previous approaches to

the multiclass learning task to this new technique, we showed that error-correcting

output codes provide an excellent method for applying binary learning algorithms

to multiclass learning problems. In particular, we demonstrated that the standard

1D3 algorithm coupled with error-correcting output codes outperforms the direct

multiclass method, the one-per-class method, and a domain-specific distributed

output code (the Sejnowski-Rosenberg code) in the NETtalk domain. We also

discussed several limitations of the error-correcting code approach and suggested

possible means of overcoming some of these limitations.

Following that, we evaluated the performance of randomly-generated output

codes and showed that it is only slightly worse than that of BCH error correcting

codes. We performed experiments to identify which properties of these codes lead

to the improved performance. We demonstrated that the error-correcting capa-

bility is the key factor and that good error-correcting codes can be designed by

generating random binary strings, instead of by using BCH methods. The results

suggest that random codes provide an attractive alternative to BCH methods in

practical applications.

Finally, we showed that the error-correcting code method is superior to the

approach of generating multiple hypotheses and employing some form of voting

among them.
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Table 28. Effect of the number of trees voting on performance. Results of the voting are returned

as a real number (fraction) without thresholding.

% correct (1000-word test set)

Output Coding Method Level of Aggregation

Number of trees Word Letter Phoneme Stress Bit (mean)

(1) One-per-class

19 trees voting 18.6 73.2 84.5 81.8 98.9

17 trees voting 18.7 73.2 84.6 81.7 98.9

15 trees voting 19.0 73.2 84.6 81.6 98.9

13 trees voting 18.9 73.3 84.6 81.7 98.9

11 trees voting 18.9 73.4 84.6 81.8 98.9

9 trees voting 18.8 73.5 84.6 81.8 98.9

7 trees voting 18.8 73.5 84.4 81.9 98.9

5 trees voting 18.2 73.3 84.1 81.6 98.9

3 trees voting 17.1 73.1 83.6 81.6 98.9

(2) Std (Sejnowski) distributed code

19 trees voting 16.0 72.4 83.6 81.3 97.1

17 trees voting 16.2 725 83.7 81.3 97.1

15 trees voting 15.8 72.4 83.6 81.3 97.0

13 trees voting 15.9 72.4 83.7 81.4 97.0

11 trees voting 15.6 72.6 83.5 81.6 97.1

9 trees voting 15.7 72.7 83.6 81.7 97.1

7 trees voting 15.6 72.5 83.4 81.6 97.1

5 trees voting 15.8 72.6 83.3 81.5 97.0

3 trees voting 15.6 72.0 83.0 81.1 96.9

(3) Ecc code: pd = 31,sd = 15

19 trees voting 22.9 75.0 86.2 82.4 92.4

17 trees voting 22.6 75.1 86.2 82.5 92.4

15 trees voting 22.6 75.1 86.2 82.6 92.4

13 trees voting 22.2 75.2 86.2 82.6 92.4

11 trees voting 22.1 75.1 86.2 82.6 92.4

9 trees voting 22.3 75.2 86.1 82.8 92.4

7 trees voting 22.2 75.2 86.2 82.7 92.4

5 trees voting 22.2 75.0 86.2 82.4 92.4

3 trees voting 22.7 75.1 86.1 82.7 92.4



Chapter 4

Input Techniques

In our base configuration (Section 1.5), we chose to represent the context for each

letter to be pronounced by a 7-letter window: the letter itself, the 3 letters to

its left and the 3 letters to its right. Following Sejnowski & Rosenberg, we also

encoded each letter by a weight-i (local), 29-bit code. In this chapter, we will

explore several alternatives to both of these decisions.

Section 4.1 investigates the effects of incorporating the output bits accumulated

so far as part of the context for the current letter. Following that, Section 4.1.4

shows that this input technique is not compatible with the error-correcting output

coding method introduced in the previous chapter.

Section 4.2 explores the effect of including the phonetic outputs of the preceding

letters as part of the context for the current letter. We refer to that as the extended

context. In that section, we will also address the consequences of abandoning

the weight-i input encoding and explore an information theoretic approach to

defining a "good" set of binary attributes to represent the extended context. After

examining several binary representations of the extended context in Section 4.2,

we conclude that for all levels of aggregation except the word level, utilizing the

left phonetic context substantially degrades the generalization performance of the

learning system. All is not lost however, since in Section 4.2.4 we establish that

certain binary representations of the extended context coupled with processing the
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letters of the words in a right-to-left order (i.e. utilizing the right phonetic context)

substantially improves the performance at all levels of aggregation in this domain.

The final sections in this chapter explore (briefly) the effects of combining the

extended context (with the right phonetic context) with several other techniques

previously introduced. Section 4.3 combines extended context with the sequential

evaluation method (of Section 4.1.1) for incorporating the output bits of other

functions as input features. Sections 4.4 and 4.5 combine extended context with

the error-correcting output technique and the voting method introduced in the

previous chapter. The results show that the benefits offered by the output tech-

niques of the previous chapter are nearly orthogonal to the benefits provided by

the improved input techniques developed here.

Finally, Section 4.6 explores the effect of enlarging the standard 7-letter win-

dow that we have been employing----so farin our experiments. We conclude the

chapter by showing the best performing learning system we have studied in this

domain (trained on our standard 1000-word training set).

4.1 Output Bits of Other Functions as Input Features

One of the three hypotheses formulated in Section 2.6 to explain the differences be-

tween 1D3 and Backpropagation was the sharing hypothesis. There, we suggested

that the ability of BP to share hidden units among all of the ft being learned

may allow it to reduce the aggregation problem at the bit level and hence perform

better. We therefore thought of several possible methods for the introduction of

sharing among the concepts learned by 1D3. One such method is learning each

output function based not only on the primitive given input features, but also on

the values of the rest of the output functions. In the Sejnowski & Rosenburg dis-

tributed output representation employed for the text-to-speech domain, to learn

f, for example, we would use as input features values of fi through f8 and fio

through f26 in addition to the original attributes: 1 through 203. A problem
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arises when this method is used in classifying novel instances, since for these, only

the original attributes are available. In particular a situation may arise in which

evaluating function i requires the knowledge of the output of function j and vice

versa. Hence, some output values may not be computable directly. The next three

sections present the results of two methods for utilizing the output bits of other

functions in a manner that avoids this race condition during evaluation.

4.1.1 Sequential Evaluation

This method of sharing the output values (bits) of the other functions by 1D3,

avoids the race condition described above by building the trees in a certain order,

say tree1 to tree26. We use only the input features to build tree1, the original input

features and the output of tree1 to build tree2, and in general the input features

and the outputs of tree1 through tree_1 to build the i tree. Evaluation of output

values for new examples is then possible in the same order: tree1 to tree26, since

the output of tree1 to tree_1 will become available by the time we are ready to

compute the output of the th tree.

The problem with this is two-fold:

Performance results are sensitive to the order in which the trees are built. In

particular, if trees for some of the bits that are more difficult to learn than

others happen to be the first ones to be built, then introducing their noisy

output to the learning system when building trees for subsequent bits may

not help the performance at all. In fact, there is a possibility that it may

hurt the learning process.

Sharing is not fully present. The first tree built, for example, cannot use

knowledge of any of the output functions in determining the value of the

function it is computing.

The next two sections cover two methods for overcoming the above problems.



4.1.2 Optimal Sequential Evaluation

The solution to the first problem mentioned in the previous section is to measure

the individual bit-error ratesfor trees built without any sharingon an alternate

test set. Then, an "optimal" sequence for building the trees would be to build

them in the order of the observed bit-error rates on the alternate test set (with the

trees corresponding to the least bit-errors built first, of course). In our case, we

measured these bit error rates by testing the performance of the trees built without

sharing on a second test set of 1000-words randomly selected from the 18,002 words

remaining in the dictionary after removing the standard training and test sets.

The bit-error measurements were "raw", i.e. done without any kind of mapping

to the nearest phoneme/stress vector. Table 29 shows these error (or rather the

correctness) rates33 and the corresponding "optimal" tree building sequence for the

standard (Sejnowski) distributed code. Table 30 compares the performance results

of employing this optimal sequence of building the trees to a straight sequence

of building them: 1 to 26. The table also includes the performance of our base

configuration, for ease of comparison.

There are several things to note. First, sharing of previously processed output

bits results in a slight reduction in the accuracy at the bit level. This is under-

standable since now an error in an early bit in the sequence may lead to an error

in a subsequent bit which may have selected that bit to test during the learning

process. Second, there is some small benefit at the word and letter level even when

using a straight (arbitrary) sequence for building the trees. The effects, however,

are more pronounced when an optimal sequence for building the trees is employed.

Third, the performance at the phoneme and stress levels move in opposite direc-

tions. To understand this, we need to recognize that bits 21 to 26 are the stress

bits. In both sequences employed, these are among the very last trees to be built
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33The 3 bits with a 100 % correctness in the table correspond to word boundary information

needed for continuous text and do not change in our data set. These were kept for consistency

with the codes used by other researchers.
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Table 29. Bit correctness rates and tree building sequence for the standard (Sejnowski) dis-

tributed output code.

Table 30. Effect of including the previously processed output bits, bit1 to bit as additional

input features when learning the bit.

and hence are more susceptable to the propagation of previous bit-errors. Finally,

the dramatic reduction in the average size of the decision trees indicates that the

output bits included as part of the input feature-set proved to be very relevant to

the learning process.

It should be pointed out that even though we determined an optimal sequence

for building the trees in our experiments by testing the "raw" bit-level performance

% Correct is the bit correctness on a 1000-word test set.

% Correct

Bit

Number % Correct

Bit

Number % Correct

Bit

Number

100.0 26 98.5 14 93.8 13

100.0 20 98.0 3 93.1 2

100.0 19 97.5 6 93.1 23

99.9 11 96.3 1 92.8 25

99.9 10 95.9 16 92.1 22

99.5 9 95.2 15 91.3 5

99.5 8 95.1 4 91.1 17

99.5 7 94.5 21 90.1 24

99.3 12 94.5 18

Tree building

sequence

% correct (1000-word data set) Decision Tree

data (mean)Level of Aggregation

Word Letter Phoneme Stress Bit (mean) Leaves Depth

Straight (1 to 26)

Optimal sequence

13.1

14.4

70.4

71.1

81.7

82.3

77.8

78.5

96.1

96.2

113.6

114.2

20.0

18.6

Base configuration 12.5 69.6 81.3 79.2 96.3 269.9 29.3
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on an alternate test set, the availability of this additional test set is not a necessary

requirement. An alternative method that may be employed in the absence of

this alternate test setin domains in which training examples are scarceis cross

validation. To carry out cross validation runs, the standard training set is split into

two: a "subtraining" set and a "cross-validation" set. Learning is done from the

subtraining set, and bit error (or correctness) rates are measured from evaluating

the performance of the resulting trees on the cross-validation set.

4.1.3 Relaxation Methods

One drawback of the above sequential method of sharing the output bits of other

functions is that sharing is not fully present. An alternative, more complicated

approach, is to build the tree using the original input attributes plus values

of all the output functions except the it1' one. Classification can then be made

through an iterative procedure described by the algorithm relaxation (shown in

Table 31). This algorithm basically cycles through any race conditions that may

arise (due to output bit interdependencies ) until an "equilibrium state" is reached

in which all output bits are consistent with one another. We applied this relaxation

technique with max-allowed-iterations limited34 to 10. Four initialization methods

are mentioned in Table 31. We did not try initialization method (a)treating f(0)

as missingbut performance with the other two initialization methods (b) and (c)

(which are based on frequency information) were totally disappointing, even on the

training set. Table 32 presents the performance results with initialization method

(d): computing f(0) from a set of trees learned from the original input features

only without any sharing of output bits. The first row in the table presents the

results of applying a modified relaxation procedure that uses the values of f(k - 1)

in each iteration after mapping to the nearest phoneme/stress using the observed

decoding strategy. The second row shows the results when no such decoding is

in most cases the outputs either converged after 3 or 4 iterations or continued until the lO'
iteration without convergence.



85

Table 31. The relaxation algorithm for including all output bits (except bii) as additional input

features when learning the jth bit.

algorithm: Relaxaiion

Noie: f1(k) means the value of f in the k iteration.

f(0) means the initial value of f.

begin { Relaxaiion}

Initialize: Set values of f(0) as detailed further below.

k 1

repeat
ouipuis-converge = irue

{Optional Step: Adjust the values of f(/c - 1) by mapping to the nearest phoneme!

stress vector.}

for i := 1 to max-otapta-funciion-number do

begin

compute f(k) using the values of f1(k - 1)

if f(k) f1(k- 1) then
ouipuis-converge := false

end

k := k + 1

until oulpnis-converge or k = maz-allowed-iieraiions

end {Relazaiion}

Initialization Methods:

The initialization mentioned above can be performed in many ways e.g.

Treat f(0) as missing and use the techniques reported in the literature for handling missing

values during classification using decision trees [QUINLAN86J.

Use the most common value for each f as f(0). (This is 0 for all the 26 functions in the

standard distributed output representation in the text-to-speech domain).

In the text-to-speech domain, use the values of f corresponding to the most frequent

phoneme and the most frequent stress symbols.

Compute f(0) from a set of trees learned from the original input features only williowl any

sharing of output bits.
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Table 32. Performance of the relaxation method for including all output bits (except bit1) as

additional input features when learning the bit.

done except at the last stage. These results indicate thatconsidering their added

complexity, relaxation methods do not seem to do any better than the optimal

sequential evaluation method discussed earlier. The only noticeable difference is

that the size of the trees produced is significantly reduced. We must remember

however, that a standard set of trees (obtained from our base configuration) was

used for initialization purposes.

4.1.4 Shared Output Bits & Error-correcting Codes

In previous sections, we have shown that including the output bits of other func-

tions as input features may lead to some (marginal) improvement in performance.

This performance improvement is sensitive, however, to the order of building the

treeswhich in turn reflects the disparity in the accuracy of the individual out-

put bits being shared. With this in mind, one may wonder about the wisdom of

employing this technique with error-correcting output codes. The individual bits

of these codes are generally more difficult to learn; hence, these bits have higher

bit-error rates than bits in other output coding techniques. To answer this ques-

tion, Table 33 compares the performancewith and without sharing of output

bitsof BCH error-correcting codes of various lengths (and inter-word Hamming

distances). Sharing of output bits was accomplished by the optimal sequential

Decoding strategy

(after each iteration)

% correct (1000-word data set) Decision Tree

data (mean)Level of Aggregation

Word Letter Phoneme Stress Bit (mean) Leaves Depth

Observed decoding

No decoding

(except last stage)

14.9

13.6

69.6

68.9

81.5

80.0

78.7

78.6

96.2

96.0

31.6

31.6

8.5

8.5

Base configuration 12.5 69.6 81.3 79.2 96.3 269.9 29.3
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Table 33. Performance of various BCII error-correcting codes with (first rows) and without

(second rows) sharing of output bits. For the second rows, optimal sequential evaluation is

employed as described in Section 4.1.2.

evaluation method described in Section 4.1.2. The results indicate that while in-

cluding the output bits of other functions as input features may improve the perfor-

mance of short error-correcting codes, it is generally not recommended to use this

technique even with optimal sequential evaluation-with error-correcting output

codes.

4.2 Previous Commitments as Input Features: The Ex-
tended Context

This section explores the effects of including the phonetic context of the letters

previously processed as part of the context for the current letter. With this ex-

tended context, the function that we must learn (assuming a 7-letter window) has

the following form:

BCH Code Data Output

Bit

% correct (1000-wod test set) Decision Tree

data (mean)Phoneme Stress Level of Aggregation

n d n d Sharing Word Letter Phon. Stress Bit Leaves Depth

10 3 9 3 YES 15.9 71.4 82.4 78.9 90.4 150.0 19.4

NO 13.3 69.8 80.3 80.6 90.8 677.4 51.9

14 5 11 5 YES 14.7 70.1 81.6 78.8 90.1 121.6 16.3

NO 14.4 70.9 82.3 80.3 91.0 684.7 53.1

21 7 13 7 YES 14.7 70.5 81.1 79.2 90.0 97.8 13.3

NO 17.2 72.2 83.9 80.4 91.2 681.4 53.9

26 11 13 11 YES 15.8 70.5 81.4 78.7 89.7 64.4 8.9

NO 17.5 72.3 84.2 80.4 91.0 700.5 56.4

31 15 30 15 YES 15.5 71.1 82.4 78.4 90.2 54.3 9.0

NO 19.9 73.8 84.8 81.5 91.6 667.8 52.7



f(L_3, L_2, L_1, L0, L+1, L+2, L+3, P_3, S_3, P_2, S_2, P_1, S_1) = P0S0

where

L is the letter at position i,

(0 being the position of the current letter,

negative indices indicating letters i positions to the left and

positive indices indicating letters i positions to the right),

P2 is the phoneme to which L is mapped and,

S1 is the stress to which L, is mapped.

Including the phonetic context in the manner described above at learning time

will not present problems during performance evaluation. Because the letters of

the word are processed in sequence, when it comes time to pronounce the letter at

position i in the word, all letters to the left of it have already been pronounced,

so their phonemes and stresses are available as inputs to the classifier. However,

the extended context does introduce several additional degrees of freedom into the

learning problem. For one thing, the phonemes and stresseswhich are now part

of the contextmust be converted to binary by choosing a suitable representation.

This binary representation for the phonemes and stresses when used as input fea-

tures may not necessarily be the same as the representation used for the output

phonemes and stresses. Another degree of freedom is the possibility of processing

the letters of the word starting at the end of the word and working towards the first

letter. In this case, the right phonetic context is included as part of the extended

context. In Section 4.2.4 we will show that this reverse processing of the letters in

the word offers some improvement in the overall performance.

The following sub-sections will address the binary representation of the extend-

ed context. We will first cover the method followed by Mercer & Lucassen to define

"good" (dense) binary representations for the letters, phonemes, and stresses that

are included in the extended context. Section 4.2.3 will then compare the per-

formance of the input representations developed by this method to that of other
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binary representations.

4.2.1 An Information Theoretic Approach for Defining
Input Features

As discussed in Section 2.1.1, Lucassen i Mercer employed a 9-letter window

and included the phonemes of the four letters to the left of the current letter

in the context for the current letter. To convert this extended context to binary

representation, Lucassen & Mercer employed a minimum set of features (or binary

questionsin their words), defined through a procedure aimed at maximizing the

mutual information between these features and the output phonemes. We have

replicated their feature set selection procedure and employed it to define a set of

binary features for each letter, phoneme and stress which is part of the extended

context. In the following discussion of our implementation of this procedure, we

will skip over much of the reasoning and motivation for the various steps involved.

The interested reader is referred to [Lucassen83} for a more thorough discussion.

Questions About the Current Letter

Let us first examine the output of the feature set selection procedure when it is

employed for defining a set of binary features for the current letter L. L can

be regarded as a discrete random variable taking one of 26 values from the set A

containing the 26 English letters: A through Z. Let the probability mass function

of L be p(L). Let Y denote the pronunciation of the current letter. Y can also

be regarded as a discrete random variable taking values from the set Y containing

the 126 phoneme/stress pairs observed in the training set with an associated joint

probability mass function p(L, Y(L)).

We want the feature selection procedure to define the single most informative

binary question Q(L) about a letter L: that which maximizes
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351i\Te removed the other three symbols "-", "..", and "." when defining features in this way,

since these do not appear in our data sets.



MJ(Q(L) ; Y),

where MI stands for mutual information. Following [Lucassen83j, we will call

this question QL1 (Question about the current letter, No. 1). By definition, this

choice of QL1 minimizes the conditional entropy, or the remaining uncertainty, of

the pronunciation of a letter L given QL1(L). The question QL1 obtained by this

method is shown below:

QL1 is "true" for(AEGHIJLO U WY)
QL1 is "false" for ( 13 CD FK MNP Q RST VXZ)

After QL1 is found, we determine the most informative second question about

the letter L - QL2: that which maximizes

MI(QL2(L) ; Y QL(L)).

The question QL2 obtained by this method is shown below:

QL2 is "true" for (AB C DEIKOQ ST YZ)

QL2 is "false" for ( FG HJL MNP RU V WX)

Together, QL1(L) and QL2(L) divide the alphabet A into four groups, or four

partitions:

(GHJLUW)
(AEIOY)
(FMNPRVX)
(BCDKQSTZ)

We continue to generate new questions, QL(L), while maximizing

MI(QL(L) ; Y QL1(L), ..., QL_1(L))

This process is continued until every letter L is completely specified by the

answers to each of the questions about it, i.e. each of the partitions defined by the

combination of answers to the questions
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QL1(L), QL2(L), ..., QL(L)

contains a single letter. The full set of questions (features) defined in this manner

are shown in Table 83 of Appendix D.

The procedure

We will now consider the algorithm followed to define new questions, QL(L), while

maximizing

MI(QL2(L) ; Y QL1(L), ... , QL....(L))

Recall that QL1(L), ... , QL1_1(L) taken together divide the alphabet A into a

set of partitions which we will call partitions-so-far. Our goal now is to come

up with a new clustering of the alphabet into two sets representing a new binary

question QL(L). This is achieved by calling the recursive define-feature algorithm

shown in Table 34 with clusters-list initially having as many clusters as there

are letters in the alphabet (i.e. each letter in a separate cluster). The algorithm

merges clusters in a greedy fashion with the objective of maximizing the conditional

mutual information between the resulting clusters and Y given partitions-so-far.

The procedure terminates when there are only two clusters remaining representing

answers to the binary question QLZ(L).

The objective function

Instead of maximizing the additional MI between the clusters, X, and the out-

put, Y, after knowing partitions-so-far6, we chose to maximize the total MI after

knowing both X and partitions-so-far taken jointly:

MI(Y; X,partitions-so-far)

These differ from one another by a constant because of the additive property of

MI, so the results of maximizing either objective function should be identical.

36This was done in [Lucassen83].
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The formula we used was37

Mltotat = P(y, x, z) log
zEpartitions xEX yEY (Y) I

where the various probabilities are calculated from joint-prob-tablealso input

to the define-feature algorithmwhich gives estimates for the joint probability

between each letter and output phoneme/stress as calculated from the 1000-word

training set.

Swapping and Moving Elements

In an attempt to further improve the binary partition obtained by the define-

feature algorithm, the clustering program is followed by a procedure that considers

all possible ways of moving a single letter from one cluster to another, as well as

all possible ways of swapping two letters that are in opposite clusters. The swap

or move that improves the value of the objective function by the greatest amount

is performed. This process of swapping and/or moving continues until no single

swap or move can further increase the value of the objective function.

Questions About the Letter to the Left

In a manner similar to the one described above, a set of binary features is defined

to encode the letter to the left of the current letter (LL). The objective function

in this case is slightly more complicated:

> P(l,y,x,z)Iog
P(l,y,x,z)

IEL zEpartitions xEX yEY P(y)P(l, x, z)

and requires the joint probability distribution

p(L, LL, Y(L))

where L is the current letter, LL is the letter to its left, and Y(L) is its pronunci-

ation. The resulting binary featuresshown in Table 83 of Appendix Dare used

to represent all letters to the left of the current letter.

.Mitotai =

3TSee page 126 of {Abramson63] for additional details.
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Table 34. Algorithm: define-feature. Input: clusters-list partitions-so-far, joini-prob-iable.

Output: clusters-list after reduction to only two clusters.

begin { define-feature }

if clusters-list contains only two clusters then

Return clusters-list

else

begin

Initialize candidates-to-merge to null

Initialize best-MI to some negative number

{ Consider merging every possible pair in clusters-list }

for i = 1 to number of clusters in clusters-list less 1 do

for j = i + I to number of clusters in clusters-list do

begin

Let MI = The conditional mutual information between the clusters and Y given

partitions-so-far when the number of clusters in clusters-list

is reduced by 1 as a result of merging clttsters5.

if MI> best-MI then

begin

set best-MI to MI

set candidates-to-merge to clusters

end

else if MI = best-MI then

add clusters to can didat es-to-merge

end;

if there is more than one pair of clusters in candidates-to-merge then

resolve ties in favour of merging the cluster pair whose merging results in

maximizing the unconditional mutual information between X and Y.

Hence reduce candidates-to-merge to one pair of clusters.

Let new-clusters-list be the clusters remaining after merging the pair of clusters in

candidates-to-merge

{Call the algorithm recursively with the new-clusters-list. }

define-feature (new-clusters-list, partitions-so-far, joint-pro b-table)

end

end { define-feature }



Questions About the Letter to the Right

Similarly, a set of binary features is defined to encode the letter to the right of the

current letter (LR). The joint probability distribution used in this case is:

p(L, LR, Y(L))

where L is the current letter, LR is the letter to its right, and Y(L) is its pronun-

ciation. The resulting binary featuresshown in Table 83 of Appendix Dis used

to represent all the letters to the right of the current letter.

Questions About the Phonemes to the Left

The same clustering algorithm described above was also applied to the 54 phonemes

constituting the phoneme alphabet. This time, the objective was to identify good

binary questions about the phoneme, LP, corresponding to the letter that imme-

diately precedes the current letter. The objective function, the mutual information

between LP and the pronunciation of the current letter, Y(L), was computed from

the joint probability distribution:

p(LP, Y(L))

The resulting binary featuresshown in Table 84 of Appendix Dare used to

represent all of the phonemes corresponding to the letters preceding the current

letter.

Questions About the Stresses to the Left

Finally, the clustering algorithm described above was applied to the 6 stress sym-

bols with the objective of identifying good binary questions about the stress, LS,

corresponding to the letter that immediately precedes the current letter. The ob-

jective function, the mutual information between LS and the pronunciation of the

current letter, Y(L), was computed from the joint probability distribution
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The resulting binary featuresshown in Table 85 of Appendix Dare used to

represent all of the stresses corresponding to the letters preceding the current

letter.

4.2.2 Performance Results

Table 35 shows the performance results when the codes developed by the infor-

mation theoretic approach described in the previous sections are employed with

three output techniques: The distributed code method with the standard (Se-

jnowski & Rosenburg) output code, the multiclass approach, and the one-per-class

approach. Phonemes and stresses are considered separately in these experiments

(the separate-ps approach). To separate the effects of utilizing the left phonetic

context from the effect of the different representations employed to convert the

context to binary, we have evaluated the performance of each method with both

the standard 7-letter context, "StdContext", and with the extended context, "Ext-

Context", which includes the phonemes and stresses corresponding to the 3 letters

to the left, in addition to the standard 7-letter context. These results show that,

for all levels of aggregation except the word level, utilizing the left phonetic context

substantially degrades the generalization performance of the learning system. More

importantly, the performance at the stress, phoneme and letter levelswith "Std-

Context" or "ExtContext"is worse than that of our base configuration. These

observations are valid for all three output techniques compared. Only the perfor-

mance at the word level shows an improvement with ExtContext over StdContext.

Even then, the improvement is barely enough to match the word level performance

of our base configuration. Despite the performance results, features of the phonetic

context seem to be significant for learning as evidenced by the reduced size of the

trees built with "ExtContext" compared to the ones built with "StdContext".

Let us now focus our attention only on the impact of the representation em-

ployed for converting the standard context to binary. Table 36 reproduces the

lines marked with "StdContext" from Table 35 together with the performance of



Table 35. Impact of the input encoding developed by Mercer & Lucassen's information theoretic

approach for defining input features.

StdContext means the standard 7-letter window context.

ExtContext = StdContext + the phonetic context of the previous 3-letters.

96

Output Coding Method

% correct (1000-word test set) Decision Tree

data (mean)Level of Aggregation

Context employed Word Letter Phoneme Stress Bit Leaves Depth

Std (S & R) distributed code:

StdContext 10.9 67.5 79.0 78.3 96.0 315.1 16.7

ExtContext 12.7 61.5 74.4 73.7 95.2 245.0 15.6

Multiclass (Separate-ps):

StdContext 10.0 66.4 80.0 77.1 N/A 1446.0 20.4

ExtContext 11.8 61.9 75.8 75.2 N/A 1118.4 23.0

One-per-class (Separate-ps):

StdContext 11.6 68.2 78.9 78.5 98.6 106.1 13.1

ExtContext 12.6 61.9 74.1 74.4 98.2 79.4 12.3

Base configuration 12.5 69.6 81.3 79.2 96.3 269.9 29.3
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Table 36. Comparing the input encoding developed by Mercer & Lucassen's approach for the

7-letter window only (without the phonetic context) with the weight-i code employed in our base

representation.

the same three output methods when the standard 29-bit, weight-i (local) code

-employed in our base configuration-is used to convert the 7-letter window to

binary. The results in this case are even more conclusive. At all levels of aggrega-

tion and for all of the three output methods considered, the binary codes obtained

by the information theoretic approach of Mercer & Lucassen (M & L) for the let-

ters perform worse than the simple 29-bit local encoding employed in our base

configuration. The only favourable effect of the (M & L) codes is that they tend

to produce trees that are "shallower" on the average. They require fewer tests to

classify a new example. The trees, however, generally contain a larger number of

leaves.

Output Coding Method

% correct (1000-word test set) Decision Tree

data (mean)Level of Aggregation

Context employed Word Letter Phoneme Stress Bit Leaves Depth

Std (S & R) distributed code:

Dense (M & L) code 10.9 67.5 79.0 78.3 96.0 315.1 16.7

Std (weight-i) code 12.5 69.6 81.3 79.2 96.3 269.9 29.3

Multiclass (Separate-ps):

Dense (M & L) code 10.0 66.4 80.0 77.1 N/A 1446.0 20.4

Std (weight-i) code 13.0 69.7 82.4 79.5 N/A 1305.0 48.0

One-per-class (Separate-ps):

Dense (M & L) code 11.6 68.2 78.9 78.5 98.6 106.1 13.1

Std (weight_i) code 11.8 69.5 80.6 78.9 98.7 90.4 14.0
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4.2.3 Other Binary Representations for the Extended Con-
text

The superior performance of the local encoding for converting the letters of the

context to binaryover the (M & L) codesuggested that a search for better

representations of the extended context might be fruitful. We decided to embark

on this search for one output technique: The distributed (Sejnowski & Rosenburg)

output code employed in our base configuration.

Table 37 shows the performance figures when several schemes for converting

the extended context to binary representation are employed. An explanation of

each of the schemes shown in the table follows:

ExtContext(M & L): This scheme employs the codes (or the features) developed

by the Mercer & Lucassen method described earlier. Recall that each part of the

extended context is converted separately to binary as follows:

The current letter is converted using the feature set shown in the second

column of Table 83 of Appendix D.

The three letters to its left are converted using the feature set shown in first

column of Table 83 of Appendix D.

The three letters to its right are converted using the feature set shown in

third column of Table 83 of Appendix D.

The three phonemes corresponding to the letters to the left of the current

letter are converted using the feature set shown in Table 84 of Appendix D.

The three stresses corresponding to the letters to the left of the current letter

are converted using the feature set shown in Table 85 of Appendix D.

ExtContext(1): In this scheme, all the letters in the context are converted to

binary using a 29-bit weight-i (local) code as employed in our base configuration.
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The left phonemes and left stresses which are part of the extended context are

converted to binary using the same code as that used for the output phonemes and

stresses. (In this case 21-bits for each phoneme and 5 bits for each stress).

ExtContext(2): Here, weight-i codes are employed throughout for all the ele-

ments of the extended context:

All the letters in the context are converted to binary using the standard

29-bit weight-i (local) code as usual.

The three left phonemes are converted to binary by employing a 54-bit

wieght-i code corresponding to the 54 phonemes. The codeword for phoneme

will have all, but the th bit, set to 0.

The three left stresses are converted to binary by employing a 6-bit wieght-1

code corresponding to the 6 stresses. The codeword for stress2 will have all,

but the jth bit, set to 0.

ExtContext(3): Combines the representation of ExtContext(L & M) with Ext-

Context(2). In this scheme, each element of the extended context is converted

to binary using a code obtained by concatenating the codes employed in Ext-

Context(L & M) with those employed in ExtContext(2) for that element of the

context.

ExtContext(4): As in ExtContext(2). Additionally, a 30th bit is added to the

code for each letter or input symbol:

Bit30 is "false" for (A E I 0 U Y -

Bit30 is "true" for all other letters.

This bit should make it easier for the learning system to distinguish consonants

from vowels or semi-vowels.

ExtContext(5): As in ExtContext(2). Additionally, a 7th1 bit is added to the

code for each stress symbol in the extended context:



Bit7 is "false" for (< > -)

Bit7 is "true" for (1 2 0)

ExtContext(6): Combines ExtContext(2) with the additional bits employed in

both ExtContext(4) & ExtContext(5).

ExtContext(7): As in ExtContext(6). Additionally:

One bit is added to the code for each phoneme in the extended context, to

produce a 55-bit code:

B it55 is "true" for phonemes (a e i o u A 0 W Y)

Bit55 is "false" for all other phonemes.

This bit encodes whether the vowel (phoneme) is "tense" or "lax" ("non-

tense"). Linguists frequently make this distinction in their rules for English

stress.

A 31st bit is added to the code for each letter or input symbol:

Bit31 is "true" for (E I 0 U)

Bit31 is "false" for all other letters (or input symbols).

This bit distinguishes the "non-low vowels" from all others.

An 8th bit is added to the code for each stress symbol in the extended context:

Bit8 is "true" for (1 2)

Bit8 is "false" for (< > - 0) This bit indicates whether the letter

is stressed or not.

The results shown in Table 37 reveal several interesting points (besides the

obvious fact that input representation has a profound effect on the performance of

learning systems):
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Table 37. Impact of alternative schemes for converting the extended context to binary represe-

uation. See text for explanation.

Including the left phonetic context degrades the performance at the bit, stress,

phoneme and letter levels for all the schemes employed to convert the ex-

tended context to binary. However, it consistently improves the word level

performance.

Including the left phonetic context results invariably in smaller trees com-

pared to the base configuration.

ExtContext(7) nearly compensates for the negative effect of the left phonetic

context as far as the phoneme performance is concerned. The 81.2% phoneme

correctness achieved nearly matches that of the base configuration. This

is encouraging since it indicates that by a suitable scheme for the binary

representation of the extended context, we can have an improved word-level

performance without sacrificing the performance at the phoneme level.

4. ExtContext(6) gives the best stress performance of 77.7%. This, however,

Input

Representation

% correct (1000-word test set) Decision Tree

data (mean)Level of Aggregation

Word Letter Phoneme Stress Bit Leaves Depth

ExtContext(M & L) 12.7 61.5 74.4 73.7 95.1 245.0 15.6

ExtContext(1) 15.1 66.5 79.5 76.3 96.0 213.7 27.6

ExtContext(2) 15.2 66.2 78.5 76.3 95.8 225.0 27.1

ExtContext(3) 16.6 66.8 79.1 77.3 96.0 192.6 19.3

ExtContext(4) 17.0 67.5 80.5 77.4 96.2 209.4 22.5

ExtContext(5) 14.5 66.0 78.7 76.2 95.8 222.8 26.9

ExtContext(6) 17.1 68.1 80.8 77.7 96.2 209.8 23.6

ExtContext(7) 17.0 67.9 81.2 77.1 96.2 207.2 24.2

Base Configuration 12.5 69.6 81.3 79.2 96.3 269.9 29.3
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still falls short of the 79.2% correctness achieved without an extended con-

text.

4.2.4 Forward vs. Backward Processing

Another degree of freedom introduced by employing an extended context is whether

to process the letters of the words first-to-last (forward) and hence to include

the pronunciations of the letters to the left of the current letter or vice versa:

process the letters of the words last-to-first (backward) and hence include the

pronunciations of the letters to the right of the current letter in the extended

context.

This point was (briefly) investigated in the work of Mercer & Lucassen. The

result of their investigation can best be described by the following quote from

[Lucassen83], page 11:

The [system] operates on a word from left to right, predicting phones

in left-to-right order. This decision was made after preliminary testing

failed to indicate any advantage to either direction. The left-to-right

direction was chosen to simplify the interface to the linguistic decoder,

as well as because of its intuitive appeal.

Our findings were entirely different. Table 38 reproduces Table 37 and, in addi-

tion, shows the effects of processing the letters of the words in a last-to-first order

for each of the input representations investigated. The results unambiguously indi-

cate that processing the letters of the word backwardin a right-to-left manneris

far superior to the "normal" left-to-right processing. Performance improvement is

observed at all levels of aggregation and for all the schemes employed to convert

the extended context to binary. Furthermore, the decision trees produced as a

result of this backward processing are smaller than their counterparts produced

with normal processing. This indicates that the right phonetic context is more

relevant than the left phonetic context if we want to learn rules for the pronun-
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Table 38. Impact of processing the letters of the words backward (in right-to-left order) on the

performance of the input represenations employed in Table 37

Order of % correct (1000-word test set) Decision Tree

Input letter Level of Aggregation data (mean)

Representation processing Word Letter Phoneme Stress Bit Leaves Depth

ExtContext Forward 12.7 61.5 74.4 73.7 95.1 245.0 15.6

(M & L) Backward 15.3 69.7 80.1 80.4 96.2 226.5 15.4

ExtContext(1) Forward 15.1 66.5 79.5 76.3 96.0 213.7 27.6

Backward 18.4 70.5 81.8 79.7 96.4 200.3 20.9

ExtContext(2) Forward 15.2 66.2 78.5 76.3 95.8 225.0 27.1

Backward 19.7 71.5 82.2 80.7 96.4 198.1 23.8

ExtContext(3) Forward 16.6 66.8 79.1 77.3 96.0 192.6 19.3

Backward 19.7 73.1 82.7 82.4 96.6 171.2 18.8

ExtContext(4) Forward 17.0 67.5 80.5 77.4 96.2 209.4 22.5

Backward 23.8 73.9 83.7 82.3 96.7 183.2 22.5

ExtContext(5) Forward 14.5 66.0 78.7 76.2 95.8 222.8 26.9

Backward 20.3 71.7 82.7 80.6 96.5 213.0 23.6

ExtContext(6) Forward 17.1 68.1 80.8 77.7 96.2 209.8 23.6

Backward 23.9 73.9 83.7 82.2 96.8 182.0 22.3

ExtContext(7) Forward 17.0 67.9 81.2 77.1 96.2 207.2 24.2

Backward 24.4 74.2 83.9 82.6 96.9 180.1 22.0

Base Configuration 12.5 69.6 81.3 79.2 96.3 269.9 29.3
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ciation of the current letter. This finding is consistent with the fact that several

researchers working on predicting English word-stress have come up with rules

that refer to certain properties of the syllables of the words taken in a right-to-left

order. Examples of such rules are (see lHalle7l] for a complete list):

If the last vowel is nontense, primary stress goes on the antepenultimate

vowel when the penultimate vowel is nontense and followed by no more

than one consonant.

If the last vowel is nontense, primary stress goes on the penult when the

penult is itself tense or when it is followed by two (or more) consonants.

If the last vowel is tense, it bears primary stress.

It should be noted that the combination of extended context, backward process-

ing of the letters of the words and improved binary represenation for the extended

context have now raised the performance at all levels of aggregation when com-

pared to the base configuration. ExtContext(7), with words processed backwards,

(or "ExtContext(7-BW)" for short) emerged as a winner38 of this "contest", and

hence, will be adopted in reporting the results of most of our experiments with the

extended context throughout the remainder of this thesis. However, we must first

justify this decision by showing that "ExtContext(7-BW)" is also a good choice

when other output techniques are employed. This is done in Table 39 for the

multiclass (separate-ps) approach and Table 40 for the one-per-class (separate-ps)

approach. The same general trends seen for the distribited code case are also

apparent in these two tables. In particular:

38The natural choices are "ExtContext(2-BW)" or "ExtContext(7-BW)". "ExtContext(2-BW)"

is to be prefered as a domain independent method for input encoding while "ExtContext(7-

BW)" is a performance booster for this domain. There are various reasons for excluding some

of the others. "ExtContext(1-BW)", for example, is not general enoughbeing dependent on

the particular outpu codes employed. It will not be applicable, for instance, to the multiclass

approach. "ExtContext(3-BW)" requires the feature set employed in ExtContext(M & L)

which requires an elaborate procedure to compute.



ExtContext(M & L) lags way behind the other input representations.

Processing the letters of the words backwards in a right-to-left fashion offers

a substantial improvement over normal left-to-right processing.

ExtContext(7-BW) results in the best stress, letter, and word level perfor-

mance in all cases.

ExtContext(2-BW) seems to result in the best phoneme level performance

of 83.7% for the multiclass (separate-ps) case, compared with 82.8% for

ExtContext(7-BW). However, the improved stress level performance of Ext-

Context(7-BW)--83.0% vs. 80.1%more than compensates for that at the

letter and word levels.

Hence our decision to adopt "ExtContext(7-BW)" as the input representation for

subsequent experiments is experimentally justified. Nevertheless, we will show

wherever feasible performance figures for the extended context with both "Ext-

Context (2-BW)" and "ExtContext(7-BW)" representations.

4.3 Sharing of Output Bits & Extended Context

In Section 4.1, we showed that including the output bits of other functions as

input features may lead to some (marginal) improvement in performance when our

standard input representation is employed. To evaluate the effectiveness of this

technique when combined with extended context, better binary representations

and right-to-left (BW) processing of the letters of the word, we combined the

sequential evaluation method described in Section 4.1.1 with "ExtContext(2-BW)"

and "ExtContext(7-BW)". Tables 41 and 42 show the results when:

A straight sequence of building the decision trees is employed,
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The decision trees are built in an optimal sequence obtained by the method

described in Section 4.1.2, and



Table 39. Impact of several binary representations of the extended context on the performance

of the multiclass (separate-ps) approach.

* Sequence of processing the letters of the words

Forward = left-to-right, Backward = right-to-left sequence.
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% correct (1000-word test set) Decision Tree

data (mean)Input Represenation Level of Aggregation

Processing Direction* Word Letter Phoneme Stress Leaves Depth

ExtContext(M & L):

Forward 11.8 61.9 75.8 75.2 1118.4 23.0

Backward 13.3 67.7 79.9 78.6 1016.4 21.0

ExtContext(2)

Forward 18.5 66.3 81.1 75.9 1039.4 48.0

Backward 21.2 71.9 83.7 80.1 935.4 44.4

ExtContext(7)

Forward 17.1 68.1 81.5 77.1 950.0 35.0

Backward 22.1 73.0 82.8 83.0 884.0 31.4

Base configuration 12.5 69.6 81.3 79.2 269.9 29.3



* Sequence of processing the letters of the words

Forward = left-to-right, Backward = right-to-left sequence.
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Table 40. Impact of several binary representations of the extended context on the performance

of the one-per-class (separate-ps) approach.

Input Represenation

% correct (1000-word test set) Decision Tree

data (mean)Level of Aggregation

Processing Direction* Word Letter Phoneme Stress Bit Leaves Depth

ExtContext(M & L):

Forward 12.5 62.1 74.1 74.6 98.2 79.4 12.3

Backward 16.9 70.5 80.2 79.9 98.7 75.8 11.9

ExtContext(2)

Forward 15.3 67.2 79.2 77.1 98.6 71.7 14.0

Backward 19.0 70.8 81.1 80.2 98.8 65.2 11.4

ExtContext(7)

Forward 19.7 68.2 80.7 77.3 98.6 66.9 12.1

Backward 24.3 74.7 83.9 83.2 98.9 59.3 11.7

Base configuration 12.5 69.6 81.3 79.2 96.3 269.9 29.3



No sharing of output bits is employed (for comparison purposes).

Our standard (S & R) distributed output code was employed in these experiments.

Results similar to those obtained for the standard input representation are general-

ly observed. These include a substantial reduction in the size of the decision trees

and (for the optimal sequential method) some improvement in the performance at

the phoneme level at the expense of stress level performance. The letter and word

level performance also improve for "ExtContext(2-BW)" (Table 41) but remain

essentially unchanged for "ExtContext(7-BW)" (Table 42). This suggests that a

good set of input features may make the improvements offered by the sharing of

output bits redundant.
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Table 41. Effect of sharing the previously processed output bits (by the sequential evaluation

method) combined with "ExtContext(2-BW)" input representation.

Table 42. Effect of sharing the previously processed output bits (by the sequential evaluation

method) combined with "ExtContext(7-BW)" input representation.

Tree building

sequence

% correct (1000-word test set) Decision Tree

data (mean)Level of Aggregation

Word Letter Phoneme Stress Bit (mean) Leaves Depth

Straight (1 to 26)

Optimal sequence

22.1

23.0

71.4

71.7

82.3

83.2

78.6

78.2

96.1

96.2

86.3

86.0

15.1

15.9

Base (No Sharing) 19.7 71.5 82.2 80.7 96.1 213.3 25.6

Tree building

sequence

% correct (1000-word test set) Decision Tree

data (mean)Level of Aggregation

Word Letter Phoneme Stress Bit (mean) Leaves Depth

Straight (1 to 26)

Optimal sequence

23.9

23.5

74.0

74.0

83.5

84.0

81.4

81.1

96.6

96.7

81.6

79.6

15.0

15.0

Base (No Sharing) 24.4 74.2 83.9 82.6 96.7 193.9 23.7



4.4 Error Correcting-codes & Extended Context

In Chapter 3, we introduced a new technique for improving the overall performance

of learning systems by employing BCII error-correcting codes as a distributed out-

put representation. We showed that these output representations improve the

performance of 1D3 on the text-to-speech domain with our standard input repre-

sentation.

In the previous sections, we explored several alternative methods to boost the

performance in this domain. These include extending the context of the cur-

rent letter, selecting a favourable encoding for converting the context to binary

representation, and processing the letters of the words backwards (right-to-left).

We coined the terms "ExtContext(2-BW)" and "ExtContext(7-BW)" to refer to

this new combination of input representation and processing sequence. (See Sec-

tion 4.2.3).

An interesting question is whether the benefits provided by error-correcting

output codes are independent of the benefits provided by "ExtContext(2-BW)" or

"ExtContext(7-BW)". The answer, as shown in Table 43 (for the separate-ps case)

and Table 44 (for the combined-ps case), is unambiguously "yes." The combination

of error-correcting output codes with these improved input techniques provides the

best performing text-to-speech system that we have studied.

4.5 Voting & Extended Context

In the previous chapter (Section 3.6), we showed that the performance of deci-

sion tree building algorithms could be substantially improved by employing voting

among several sets of decision trees. This was shownfor our standard input

representationregardless of the output coding technique employed.

With the substantial improvements obtained by the input techniques presented

in this chapternamely an extended context, better binary representations and
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Table 43. Performance of various BCH error-correcting codes with and without extended context

and right-to-left (BW) processing of the letters of the words. See text for a precise meaning of

"ExtContext(2-BW)" and "ExtContext(7-BW)". Phonemes and stresses are coded separately

(the separate-ps case).

BCII Code Data % correct (1000-wed test set) Decision Tree

Phoneme Stress Input Level of Aggregation data (mean)

n d n d Representation Word Letter Phon. Stress Leaves Depth

10 3 9 3 StdContext 13.3 69.8 80.3 80.6 677.4 51.9

ExtContext(2-BW) 24.3 72.9 82.0 82.3 476.4 40.1

ExtContext(7-BW) 26.6 74.8 83.4 83.7 431.0 32.0

14 5 11 5 StdContext 14.4 70.9 82.3 80.3 684.7 53.1

ExtContext(2-BW) 24.3 73.2 83.1 81.6 503.8 42.8

ExtContext(7-BW) 27.2 75.2 84.6 83.3 453.1 34.0

21 7 13 7 StdContext 17.2 72.2 83.9 80.4 681.4 53.9

ExtContext(2-BW) 26.1 74.8 84.9 82.4 494.4 39.7

ExtContext(7-BW) 28.9 76.6 86.0 83.9 453.3 37.1

26 11 13 11 StdContext 17.5 72.3 84.2 80.4 700.5 56.4

ExtContext(2-BW) 27.0 74.5 85.1 82.0 504.9 41.7

ExtContext(7-BW) 29.3 76.4 86.2 83.7 456.3 36.8

31 15 30 15 StdContext 19.9 73.8 84.8 81.5 667.8 52.7

ExtContext(2-BW) 29.7 76.9 86.2 83.8 483.8 40.1

ExtContext(7-BW) 31.5 77.8 86.7 85.0 441.5 35.9

62 31 30 15 StdContext 20.6 74.1 85.4 81.6 669.9 53.3

ExtContext(2-BW) 29.7 77.0 86.6 84.0 495.6 41.5

ExtContext(7-BW) 32.6 78.1 87.3 84.9 444.5 35.7

127 63 30 15 StdContext 20.8 74.4 85.7 81.6 661.6 54.8

ExtContext(2-BW) 30.2 77.2 86.6 84.1 495.7 41.9

ExtContext(7-BW) 32.2 78.1 87.3 84.9 458.9 36.9
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Table 44. Performance of BCH error-correcting codes with and without extended context and

right-to-left (BW) processing of the letters of the words for the combined phoneme/stress case.

right-to-left (BW) processing of the letters of the words-one may wonder whether

the benefits provided by voting are independent of those provided by these other

input techniques.

To answer this question, we repeated two of the voting experiments reported

in Section 3.6, but with "ExtContext(7-BW)"--our best performing input repre-

sentation combined with the superior right-to-left (BW) processing of the letters

of the words. Tables 45 and 46 present the results of these experiments for 5 (re-

spectively 9) sets of trees voting. The figures shown in these tables unambiguously

suggest that the benefits provided by voting are orthogonal to those provided by

the improved input techniques. Hence, we can generalize the results of Section 3.6

even further: Voting can be employed to improve the performance of decision tree

building algorithms regardless of the input or output coding technique employed.

Code Interword % correct (1000-word test set) Decision Tree

Length Distance Input Level of Aggregation data (mean)

n d (mm.) Representation Word Letter Phon. Stress Leaves Depth

63 31 StdContext 20.3 74.3 83.8 80.3 1000.0 68.7

ExtContext(2-BW) 29.3 76.4 85.3 82.3 774.3 53.5

ExtContext(7-BW) 31.3 77.7 85.8 83.3 733.0 46.3

127 63 StdContext 22.3 75.5 85.2 81.5 1002.9 68.3

ExtContext(2-BW) 29.0 77.1 86.0 83.2 782.9 53.9

ExtContext(7-BW) 32.2 78.1 86.8 83.7 739.8 46.5

255 127 StdContext 22.4 75.5 85.2 81.6 1014.4 68.8

ExtContext(2-BW) 30.6 77.3 86.3 83.1 792.9 55.3

ExtContext(7-BW) 33.5 78.5 87.1 83.8 745.8 46.9
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Table 45. Effect of employing voting among 5 sets of trees each built with 800 words in the

training set and "ExtContext(7-BW)" input representation.

Output Coding Method

% correct (1000-word test set) Decision Tree

data (mean)Level of Aggregation

Configuration Word Letter Phon. Stress Bit Leaves Depth

(1) One-per-class

(Al) - lxl000 24.3 74.7 83.9 83.2 98.9 61.2 12.1

(Bi) - 5x800 26.4 76.0 84.9 83.9 99.0 52.1 11.1

(Cl) - 5x800 float 31.0 78.1 86.6 85.3 99.1 52.1 11.1

(2) (S & R) distributed code

(A2) - lxl000 24.4 74.2 83.9 82.6 96.7 193.9 23.7

(B2) - 5x800 27.1 75.8 85.0 83.8 97.1 159.5 21.1

(C2) - 5x800 float 28.3 76.6 86.0 84.0 97.2 159.5 21.1

(3) Ecc code: pd=31sd_- 15

(A3) - lxl000 32.6 78.1 87.3 84.9 93.2 454.0 36.5

(B3) - 5x800 32.2 78.7 87.6 85.2 93.2 407.4 36.4

(C3) - 5x800 float 33.4 78.7 87.7 85.3 93.3 407.4 36.4
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Table 46. Effect of employing voting among 9 sets of trees each built with 888 words in the

training set and "ExtContext(7-BW)" input represenation.

Output Coding Method

% correct (1000-word test set) Decision Tree

data (mean)Level of Aggregation

Configuration Word Letter Phon. Stress Bit Leaves Depth

(1) One-per-class

(Al) - 1x1000 24.3 74.7 83.9 83.2 98.9 61.2 12.1

(Bi) - 9x888 26.1 75.8 84.9 83.3 99.0 54.6 11.3

(Cl) - 9x888 float 30.1 78.0 86.6 85.1 99.1 54.6 11.3

(2) (S & R) distributed code

(A2) - lxl000 24.4 74.2 83.9 82.6 96.7 193.9 23.7

(B2) - 9x888 27.4 75.4 84.5 83.3 97.0 167.2 21.7

(C2) - 9x888 float 29.0 76.8 86.1 84.3 97.2 167.2 21.7

(3) Ecc code: pd = 31,sd = 15

(A3) - lxl000 32.6 78.1 87.3 84.9 93.2 454.0 36.5

(B3) - 9x888 32.7 78.6 87.5 85.1 93.3 428.6 36.5

(C3) - 9x888 float 33.2 78.6 87.6 85.2 93.3 428.6 36.5



4.6 Effect of Window Size

In all the experiments reported so far, we have been employing a 7-letter window.

In this section, we will explore the effect of enlarging the window size on the

performance of several configurations that employ distributed output codes.

Table 47 shows the impact of enlarging the window when the standard (Se-

jnowski & Rosenberg) output code is employedboth with "StdContext" and

"ExtContext(7-BW)". Table 48 presents similar data but for a 92-bit BCH error-

correcting output code (a 62 bit, d = 31 code for phonemes, and a 30 bit, d = 15

code for stresses). Note that with the extended context, the phonetic context of i

letters to the right of the current letter is included, where i = [w/2j, w being the

size of the window.

There is no uniform (general) trend that can be tracked regarding the impact

of enlarging the size of the window on performance. Depending on the particular

input/output configuration employed, "optimal" performance for each level of ag-

gregation may occur with a window size ranging anywhere from 7 to 15. Hence,

in general, cross validation techniques should be used to arrive at the "optimal"

window size for each method and configuration.39 Having said that, let us focus

on one particular input/output configuration: that with error-correcting output

codes and "ExtContext(7-BW)" (bottom half of Table 48). There, it seems that a

larger window size w slightly benefits stress performance while marginally degrad-

ing phoneme performance. Letter and word level performance, however, gradually

improve and reach their peak performance at w = 13.

We will conclude this chapter by considering the effect of a larger window size

for the combined phoneme/stress case with several long BCII error-correcting codes

and "ExtContext(7-BW)". The performance figures for these configurations and

tw'o window sizes (7 and 13) are compared in Table 49. Once again, these results
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39We will follow this path in Chapter 6 where the best configurations for several learning methods

are sought to be compared with the performance of DECtalk's rule-base.



StdContext means the standard w-letter window context.

ExtContext = StdContext + the phonetic context of the righi w/2j letters.
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Table 47. Impact of enlarging the window when the standard (Sejnowski & Rosenberg) output

code is employed-both with "StdContext" and "ExtContext(7-BW)".

Window % correct (1000-word test set) Decision Tree

Context Size Level of Aggregation data (mean)

employed w Word Letter Phoneme Stress Bit Leaves Depth

StdContext

7 12.5 69.6 81.3 79.2 96.3 269.9 29.3

9 12.9 69.0 80.9 79.1 96.6 236.0 25.2

11 14.5 68.7 81.0 78.6 96.6 228.7 24.1

13 14.0 68.5 80.4 79.0 96.5 225.5 23.5

15 13.9 68.7 80.3 79.1 96.5 223.4 24.1

ExtContext(7)

letters 7 24.4 74.2 83.9 82.6 96.9 180.1 22.0

processed 9 25.1 72.9 82.8 82.2 96.9 158.5 20.1

righi 11 25.4 73.4 82.9 82.5 97.0 155.3 19.9

to 13 26.2 73.4 82.8 82.6 97.0 152.7 19.5

left 15 25.9 73.4 82.7 82.7 96.9 151.9 19.1



StdContext means the standard w-letter window context.

ExtContext = StdContext + the phonetic context of the righi w/2j letters.

116

Table 48. Impact of enlarging the window when a 92-bit BCII error-correcting output code is

employed (a 62 bit, d = 31 code for phonemes, and a 30 bit, d 15 code for stresses)-both with

"StdContext" and "ExtContext(7-BW)".

Window % correct (1000-word test set) Decision Tree

Context Size Level of Aggregation data (mean)

employed w Word Letter Phoneme Stress Bit Leaves Depth

StdContext

7 20.6 74.1 85.4 81.6 92.0 669.9 53.3

9 21.8 74.4 85.9 82.1 92.2 633.1 50.7

11 22.3 74.1 85.6 82.2 92.2 613.0 48.9

13 22.6 74.5 85.7 82.6 92.3 602.6 47.8

15 22.8 74.5 85.5 83.0 92.3 597.1 48.5

ExtContext(7)

letters 7 32.6 78.1 87.3 84.9 93.3 444.5 35.7

processed 9 34.8 78.1 87.3 85.1 93.3 418.5 33.1

righi 11 34.5 78.3 87.2 85.5 93.4 407.1 33.3

to 13 35.6 78.6 87.2 85.9 93.5 399.7 33.0

left 15 35.4 78.3 87.0 85.7 93.4 398.1 33.2
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Table 49. Impact of enlarging the window for the combined phoneme/stress case when several

long BCH error-correcting codes and "ExtContext(7-BW)" are employed.

indicate that unlike the phoneme performance, the stress performance benefits

from the larger window size. Moreover, the improved stress performance is more

than enough to offset the reduction in phoneme performance, resulting in an overall

improvement at the letter and word levels for the larger window size of 13.

It is instructive to compare the best performance figures shown in the above

table with those of our base configuration (Table 1 of Chapter 1). The word level

correctness of 36.4% (achieved by the n = 255, d = 127 code and w = 13) is nearly

three times the 12.5% correctness figure that we started out with. Performance

figures at other levels of aggregation (phoneme, stress, and letter levels) have also

dramatically increased. Indeed, we have come a long way!

Equally impressive is the fact that the machine learning techniques we have

developed reached this level of performance (when tested on 1000 unseen words)

after training on only 1000 words. If the reader at this point becomes curious

to learn the best performance when larger training sets are employed, a peek at

Table 72 in Chapter 6 should satisfy that curiosity.

Code

Length

n

Interword

Distance

d (mm.)

Window

Size

w

% correct (1000-word test set) Decision Tree

data (mean)Level of Aggregation

Word Letter Phon. Stress Leaves Depth

63 31 w = 7 31.3 77.7 85.8 83.3 733.0 46.3

w = 13 35.4 78.1 85.4 84.3 667.8 44.8

127 63 w = 7 32.2 78.1 86.8 83.7 739.8 46.5

w = 13 36.0 78.5 86.3 84.5 673.5 45.7

255 127 w = 7 33.5 78.5 87.1 83.8 745.8 46.9

to = 13 36.4 79.1 86.5 85.4 680.7 46.1



Chapter 5

The Wolpert Method

In the past few years, several researchers have suggested that learning and gen-

eralization are closely related to classical approximation theory. [Poggio89], for

example, argued that networks currently used for learning an input-output map-

ping from a set of examples can be considered as specific methods of approximation

and hence, the problem of learning should be approached from the point of view

of classical approximation theory. In their work, Poggio and Girosi addressed the

generalization issue within the framework of regularization theory which views gen-

eralization as surface-fitting. Based on these notions, they developed a technique

called GRBFs (Generalized Radial Basis Functions) which map to a class of 3-layer

neural networks.4°

More recently, David Wolpertin a series of papers [Wolpert89a, Wolpert9Oa,

Wolpert9Ob]presented what he called a "partial vision of a broad mathematical

theory of generalization". The primary objection that Wolpert voiced against

viewing regularization theory as the theory of generalization was that regularization

theory is too wedded to viewing generalization as surface fitting, and thatin his

wordsit is not clear why the regularizers commonly used in the theory (e.g.,

fit the points of the training set with a surface of minimal integrated curvature)

should be related to good generalization in the real world.

40For details on the performance of GRBFs on the NETtalk task see [Wettschereck9O].
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In his theory of generalization, Wolpert coined the term HERBIE (HEuRistic

Binary Engine) to refer to a class of generalizers whose sets of mapping functions

g{i}from inputs and i training examples to outputspossess certain desirable

properties for improved generalization. In a more recent article that appeared in

Neural Networks (1990) [Wolpert9oc}, Wolpert also introduced a form of a nearest

neighbour algorithm for the text-to-speech mapping task based on the notion of

HERBIEs. He referred to the algorithm as "a generalizer for the task of reading

aloud" or "a self-guessing, metric-based HERBIE". He also reported that his simple

method outperformed Sejnowski and Rosenberg's NETtalk on this task, and cited

error rates of 18% compared with 22% for NETtalk.41

We have implemented Wolpert's generalizer for the text-to-speech domain and

experimented with several variations of it in this domain. In the following section,

we will describe our implementation (henceforth refered to as "Wolpert's HER-

BIE" or simply "Wolpert"). Following that, we will discuss the procedure that

we followed to set the required parameters for the Wolpert method. Finally, in

Section 5.3, we present the performance results obtained by applying the standard

methodand several enhancements that we investigatedto our standard 1000-

word training and test sets. Results of applying the Wolpert method to the 19,002

words (full dictionary less the test set) will be presented in Chapter 6.

5.1 Wolpert's HERBIEs

In his theory of generalization {Wolpert89a, Wolpert9Oa, Wolpert90b, Wolpert

defines a HERBIE (HEuRistic BInary Engine) as any generalizer whose sets of

mapping functions g{i}from inputs and i training examples to outputssatisfy

the following properties:

41These results correspond to performance figures of 82% (Wolpert) and 78% (NETtalk) which

must be correctness at the phoneme level. The training and test data were taken from the

transcribed speech of a 6-year--old child [Carterette74].
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All g{i} are invariant under rotation, translation, scaling, or parity inversion

of the input space and/or the output space.

All g{i} are invariant under reordering of the elements of the training set.

Taken together, the g{i} always reproduce the training set.

Based on these general notions, Wolpert argued that the Backpropagation algorithm

has poor generalization power when compared to HER.BIEs, and he presented sev-

eral comparative studies to support his claim. The most recent such study covered

the text-to-speech conversion task. In [Wolpert9Oc], Wolpert introduced a form of

a nearest neighbour algorithm for this mapping task that can be described by the

following general statement:

Given a question = {qi . . . q7} (i.e. a 7-letter window to classify), Wolpert's

HERBIEs would guess the class (phoneme/stress)42 to be assigned to the current

letter as the "center of mass" of the four elements of the training set whose input

(i.e. 7-letter window) lies nearest to the question .

There are several terms that need to be defined in order to make the above

general statement more precise. First, a distance measure must be selected so that

the four nearest neighbours could be determined based on this metric. The distance

measure employed is a weighted Hamming distance in the seven dimensional input

space defined by the 7-letter windows. More precisely, the distance between two

7-letter windows and is defined by

d(x,q - 8(x,q)]

where S(.,.) is the Kronecker delta function (8(x, qj) = 1 if x = qj, qj) = 0

otherwise), and {Pi . . . p} is a set of real numbers (weights). We will discuss several

methods for determining these weights in Section 5.2.

42Wolpert's work covered only phoneme classification. We, of course, employed both phonemes

and stresses in our implementation.
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Next, we need to define a "mass" and a "position" for each element of the

training set so that the "center of mass" can be calculated from the four nearest

neighbours to the question . The "mass" of each element of the training set

was taken as the reciprocal of its input-space distance to as defined above. To

define a "position" for each element of the training set, we need to decide on a

binary representation of the ouput classes. For the purposes of this discussion, let

us assume that the standard (Sejnowski & Rosenberg), 26-bit distributed code is

employed. Hence, each example in the training set will have the form (, ii), where

is a 7-letter window as described earlier, and

ii = {u .. . . . . u26} is the binary representation of the phoneme/stress

that the 7-letter window maps to.

We now define the "position" of each element of the training setwhen computing

the "center of mass" for output bit kas Uk.

With the necessary definitions now in place, we can describe the Wolpert

method for classifying a question as follows:

Scan the training set, calculating the distance between each element (, i)

and by the metric described above. Keep track of the nearest four neigh-

bours to the question Call these (ii, uj) through (4 u).

Compute the value of the kt1' bit of the ouput code to be assigned as the

answer to by the formula

{u1/d(i', )}fk-

where

d( , is the distance metric defined earlier,

i runs over the four "nearest neighbours", and

k runs over the 26 bits defining each output vector.
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The computed values, fi . . . f26, will be real numbers between 0 and 1. They can

each be rounded to an integer and then the resulting binary vector mapped to

the nearest observed43 phoneme/stress pair. We will identify this scheme in our

table entries by the label "thresholded". Alternatively, we can treat Ii .. . f26 as a

vector of real numbers and map it to the nearest observed phoneme/stress pair by

employing a modified distance measure: d(, = >, - y4. The latter method

was found to be superior. Hence, in all the experiments reported in this thesis

for the Wolpert method, it can be assumed that "thresholding" is not employed

unless explicitly stated.

5.2 Determining the parameters Pj

A key factor that greatly influences the performance of the Wolpert method is the

value assigned to each of the weights p through p. Wolpert employed knowledge

of the domain to come up with a number of potentially "good" set of weights. He

then chose among these sets through cross validation techniques.44 The "best"

set of weights that Wolpert arrived at with this method is shown in Table 86 of

Appendix E. We refer to this set of weights as Wolpert weights.

We decided to adopt a more formal approach to come up with a good set

of values for the weights Pi through p7. For each letter position j in the 7-letter

window,45 we set p3 equal to the mutual information between the letter at position j

43We employed observed decoding throughout the experiments reported in this thesis. Other

decoding strategies (such as legal or even block decoding) work just as well. These were tested

but will not be reported to avoid introducing yet another dimension to an already crowded set

of degrees of freedom.
44To carry out cross validation runs, the standard training set is split into two: a "subtraining"

set and a "cross-validation" set. Learning is done from the subtraining set, and the best set

of weights is chosen as the set that provides the best performance when evaluated on the

cross-validation set.
45j these discussions, we assume that a standard 7-letter window is employed. However, in our

work, we have computed weights for windows containing up to 15-letters with these methods.
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in the window and the output. All the required frequency (probability) information

was gathered from our standard 1000-word training set. We repeated the mutual

information computations three times for each letter position; once considering

the outputs to be phoneme/stress pairs to get what we will refer to as combined-

ps weights, a second time considering the outputs to consist of phonemes only

(phoneme-weights) and a third time considering the outputs to consist only of the

stresses (stress-weights). These weights are documented in Table 87 of Appendix E.

5.2.1 Base Configuration: Wolpert

Table 50 shows the results of applying the Wolpert method with a standard 7-

letter window context and the Sejnowski & Rosenberg 26-bit distributed output

code. Results of employing several sets of weights are shown, each with and without

thresholding of the resulting output bits before mapping to the nearest observed

phoneme/stress pair. An explanation of each set of weights46 employed follows:

Wolpert weights are the weights employed by Wolpert in his original reported

study.

(M & L) MI weights are the mutual information values between each letter

position and the output phonemes as reported in [Lucassen83].

Combined-ps weights are the mutual information values between each letter

position and the output phoneme/stress pairs. These were computed from

our standard 1000-word training as indicated in Section 5.2.

Separate-ps weights indicates that the phoneme-weights are employed when

determining the phoneme bits and the stress-weights are employed when

determining the stress bits. Recall from Section 5.2 that these weights are

mutual information values between each letter position and the phonemes

(respectively stresses) taken as being the outputs. These were computed

46See Appendix E for the actual values of the various set of weights employed.



124

Table 50. Performance of the Wolpert method with a standard 7-letter window context and the

Sejnowski & Rosenberg 26-bit distributed output code. See text for explanation of the various

set of weights employed.

from our standard 1000-word training set. Note that unlike the other cases,

employing separate weights for the phoneme and stress bits requires that

the search for the four nearest neighbours be performed twice, once for the

phonemes and a second time for the stresses.

There are several things to note in Table 50. First, the performance of the

Wolpert method with all the weights that are based on the mutual information

computations is superior to the performance of the method with the "best" weights

obtained by Wolpert through cross validation runs. This is exciting, since it indi-

cates that the mutual information values constitute the best known set of weights,

which might make a comprehensive search of the weight space redundant!

Next, let us look at the impact of "thresholding"-i.e. rounding the output

values computed for each bit to binary-before mapping to the nearest observed

phoneme/stress pair. At all levels of aggregation and, for all the sets of weights

considered, "threshoiding" degrades the performance of the Wolpert method. This

Threshold % correct (1000-word test set)

Weights output Level of Aggregation

employed bits? Word Letter Phoneme Stress Bit

Wolpert weights YES 13.0 71.1 80.6 80.2 96.6

NO 13.9 72.0 81.8 80.7 96.6

(M & L) MI weights YES 14.9 72.2 82.3 80.3 96.7

NO 14.9 72.5 82.9 80.4 96.7

Combined-ps weights YES 15.4 72.6 82.2 80.8 96.7

NO 15.6 72.9 82.8 81.1 96.7

Separate-ps weights YES 15.1 72.3 82.0 80.8 96.7

NO 15.6 72.7 82.8 81.1 96.7
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Table 51. Comparing the performance of the "base configuration" for the Wolpert method with

that for the 1D3 and the Backpropagation algorithms

was also found to be the case in all the variations of the Wolpert method that we

experimented with. Hence, in reporting the results of these variations (Section 5.3),

we will only show the results when "thresholding" is not employed.

Finally, we note that the best stress, letter and word level performance shown

in Table 50 is that with the Combined-ps weights (without "thresholding"). The

more expensive case of employing separate-ps weights for phonemes and stresses

did not offer any improvement in performance Hence, we will adopt this set of

weights in our "base configuration" for the Wolpert method.

Now that we have defined what we mean by a "base configuration" for the

Wolpert method, let us focus our attention on the performance of this configuration

relative to our base configuration for the 1D3 algorithm defined in Chapter 1, and to

that of the Backpropagation algorithm (evaluated under comparable conditions).

These performance figures are shown in Table 51. It is striking that the Wolpert

method significantly outperforms the basic 1D3 method at all levels of aggregation

in the text-to-speech domain. The performance figures, however, are not so striking

when compared to that of BP. BP slightly outperforms the Wolpert method at the

stress level. The latter comes out in the lead (but not by wide margins) at the

phoneme, letter and word levels of aggregation.

Base

configuration

for

% correct (1000-word test set)

Level of Aggregation

Word Letter Phoneme Stress Bit

Wolpert

1D3

BP

15.6

12.5

14.3

72.9

69.6

71.5

82.8

81.3

82.0

81.1

79.2

81.4

96.4

96.3

96.7



5.2.2 Wolpert vs. Backpropagation

The previous comparison of the Backpropagation (BP) algorithm and the Wolpert

method compared our base configuration of Wolpert with BP. However, in order to

properly determine the validity of Wolpert's claims regarding the superiority of his

method to BP, one must compare the performance figures of the Wolpert method

when the original Wolpert weights are employed and not when oursuperior-

set of weights are used. Table 52 shows the performance of the Wolpert method

with Wolpert weights together with the performance of the Backpropagation al-

gorithm when both methods are trained on our standard 1000-word training-set

and tested on the standard 1000-word test set. The same input encoding, output

encoding, and, decoding strategy were employed for both methods. Based on this

comparison, we believe that Wolpert's claims of having a generalizer "superior" to

NETtalk were greatly exaggerated. The performance of the two methods is statis-

tically indistinguishable, specially at the phoneme level which Wolpert considered

in his study.

We attribute the discrepancies between our findings and Wolpert's pusblished

results to the following:

1. Wolpert chose a slightly different domain for his study than the NETtalk

domain under our consideration. The training sets and test sets employed

were entirely different than ours.
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Table 52. Comparing the performance of the Wolpert method with Wolpert's original weights

with that for the Backpropagation algorithm.

Method

% correct (1000-word test set)

Level of Aggregation

Word Letter Phoneme Stress Bit

Wolpert

BP

13.9

14.3

72.0

71.5

81.8

82.0

80.7

81.4

96.6

96.7
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2. Wolpert processed the training set he employed to remove any inconsisten-

cies present [Dietterich9Oc]. He alluded to this in his paper [Wolpert9oc} as

follows:

Only the first of the two pairs of learning sets that Sejnowski and

Rosenberg indicate they used (once suitably modified for use by

the center of mass HERBIE) was used to teach the center of mass

IIERBIE system.

This processing of the training set (we believe) gave the Wolpert method an unfair

advantage over Backpropagation.

5.3 Variations

In Chapters 3 and 4, we developed several techniques that considerably enhance

the performance of decision tree building algorithms on the text-to-speech task.

In this section, we will exploreamong other thingsthe impact of these tech-

niques when applied to the Wolpert method. First, we will investigate the effect of

varying some of the parameters that were "fixed" in our dicussion of the Wolpert's

method (Section 5.1) in order to simplify the exposition. In the following two

sections, we will explore the impact on performance of varying two of these pa-

rameters: the number of nearest neighbours considered in the "center of mass"

computations (previously four), and the size of the window (previously seven).

Following that (Section 5.3.3), we will abandon the standard 26-bit distributed

output code and consider instead distributed BCH error-correcting output codes.

Section 5.3.4 then considers extending the 7-letter context to include the phonetic

context of the 3-letters to the left (right) of the current letter, corresponding to pro-

cessing the letters of the words in a left-to-right (right-to-left) sequence. Finally,

in Section 5.3.5, we consider the effect of extending the input space even further

by including the additional features that we made available to the 1D3 algorithm



with "ExtContext(7)".

5.3.1 Number of Nearest Neighbours

Table 53 shows the impact of varying the number of nearest neighbours considered

in the "center of mass" computations on the performance of the Wolpert method.

In the experiments shown in this table, values for other parameters are kept the

same as for the "base configuration" identified in the previous section. These

include a standard 7-letter window, the Sejnowski & Rosenberg 26-bit distributed

output code and employing the combined-ps weights described in earlier sections.

The results show that while considering as many as six nearest neighbours (nn =

6) may offer a slight improvement in phoneme and stress level correctness, the

differences are insignificant when compared with the nn = 4 case. nn = 4 (5)

seems to offer the best letter (word) level performance. The results suggest that

any small value for nn E {4, 5, 6} will do just as well.

5.3.2 Window Size
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Table 53. Impact of varying the number of nearest neighbours considered on the performance

of the Wolpert method.

Table 54 shows the impact of varying the window size w on the performance of

the Wolpert method. As always, values for other parameters are kept the same as

Number of % correct (1000-word test set)

neighbours Level of Aggregation

considered (nn) Word Letter Phoneme Stress Bit

3 15.4 72.4 82.6 80.6 96.7

4 15.6 72.9 82.8 81.1 96.7

5 15.7 72.7 83.0 81.0 96.8

6 14.9 72.7 83.0 81.2 96.8

7 14.1 71.9 82.3 81.0 96.7
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Table 54. Impact of varying the window size on the performance of the Wolpert method.

for the "base configuration" identified earlier. The results show that enlarging the

window offers a slightbut consistentincrease in the stress level performance.

The phoneme and letter level performance peaks at w = 9, then reverses direc-

tion. Word level performance remains essentially unchanged for w 9. We can

therefore conclude that the Wolpert method with weights derived by the mutual

information methodis not very sensitive to enlarging the size of the window.

5.3.3 The Wolpert Method & Error-correcting Codes

In Section 5.1, we described the Wolpert method assuming that the output code

employed is our standard (Sejnowski & Rosenberg) 26-bit distributed output code.

The discussion, however, generalizes readily to the case where any arbitrary binary

code is employed for the outputs. An interesting question is whether employing

BCH error-correcting output codes will offer improvements in the performance of

the Wolpert method similar to those observed for 1D3 in Chapter 3. To answer this

question, Table 55 compares the performance of the Wolpert method when several

BCH error-correcting output codesof various lengths and inter-word Hamming

distancesare employed with that when the standard (Sejnowski & Rosenberg)

26-bit distributed output code is employed as an output representation. The re-

suits show that employing error-correcting codes degrades the performance at the

Window

size

% correct (1000-word test set)

Level of Aggregation

w Word Letter Phoneme Stress Bit

7 15.6 72.9 82.8 81.1 96.7

9 16.7 73.2 83.1 81.3 96.8

11 16.7 73.1 83.0 81.4 96.8

13 16.5 72.9 82.6 81.7 96.8

15 16.6 72.9 82.6 81.8 96.8
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Table 55. Comparing the performance of the Wolpert method with and without BCII er-

ror-correcting output codes.

stress level while offering some (slight) improvement at the phoneme, letter and

word levels. These improvements, however, are minor when compared with those

obtained by the 1D3 method in Chapter 3.

The relative ineffectiveness of error-correcting output codes with the Wolpert

method is discouraging, but understandable. Because all of the bits are computed

in this method using the same four nearest neighbours, the individual bit errors

are expected to be extremely highly correlated. We found in Section 3.4.8, how-

ever, that for error-correcting codes to be effective the individual bit errors must

be independent from one another. Table 56 shows that the situation is not any

better if separate weights are employed for the phonemes and stresses. Despite

the "potential" for choosing a different set of four neighbours when computing the

phoneme bits than when computing the stress bits in this case, bit error correla-

tions do not seem to be any lower. We have measured these correlations and found

that they are indeed very high (in the 0.4 to 0.5 range in general). Comparing

these with the bit error correlation data reported in Table 12 for 1D3, shows that

the Wolpert figures are consistently higher.

Code

Length

Interword

Distance

% correct (1000-word test set)

Level of Aggregation

n d (miii.) Word Letter Phoneme Stress Bit

63 31 16.2 73.1 82.9 80.3 86.8

127 63 16.4 73.1 82.9 80.4 86.6

255 127 16.5 73.2 83.0 80.4 86.6

(S z It) 26-bit code 15.6 72.9 82.8 81.1 96.7
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Table 56. Comparing the performance of the Wolpert method with and without BCH er-

ror-correcting output codes when separate weights are employed for phonemes and stresses.

5.3.4 The Wolpert Method & Extended Context

In Chapter 4, we explored several input techniques to boost the performance of

decision tree building algorithms in the text-to-speech domain. These included

extending the context of the current letter, selecting a favourable encoding for

converting the context to binary representation, and processing the letters of the

words backwards (right-to-left). A natural question that comes to mind is whether

or not similar techniques could be employed to improve the performance of the

Wolpert method in this domain.

Extending the context for the Wolpert method to include the phonetic context

(phonemes and stresses) of the letters to the left (or to the right) of the current

letter is straight forward, since the method as described in Section 5.1, does not

care whether the input space consists of letters only, or of a combination of letters,

phonemes and stresses. All we need to do is to assign the proper weight p3 to the
th element of the context and let j run over all the elements of the context when

computing the distance measures d(x, ).

As was done for the letters (See Section 5.2), we decided to set the weights

for the phonemes (stresses) when they are part of the input space equal to the

mutual information between these phonemes (stresses) and the output. For this

Code

Length

Interword

Distance

% correct (1000-word test set)

Level of Aggregation

n d (mm.) Word Letter Phoneme Stress Bit

63 31 15.0 72.8 82.7 80.0 86.6

127 63 15.2 72.8 82.7 80.1 86.5

255 127 15.2 72.8 82.8 80.0 86.4

(S & R) 26-bit code 15.6 72.7 82.8 81.1 96.7
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purpose, we computed the mutual information data between phonemes (stresses)

corresponding to letters j positions away from the current letter (in a 15-letter win-

dow) and the output class of the current letter. The computations were repeated

three times for each phoneme (stress) position; once considering the outputs to be

phoneme/stress pairs to get the combined-ps weights, a second time considering

the outputs to consist of phonemes only (phoneme-weights) and a third time con-

sidering the outputs to consist oniy of the stresses (stress-weights). These weights

are given in Appendix E. Table 88 shows the data that applies to phonemes in

the input space while Table 89 shows similar databut for stresses that are part

of the input space.

Table 57 shows the performance of the Wolpert method when extended context

is employed. Results for both "forward" (left-to-right) processing and "backward"

(right-to-left) processing of the letters of the words are shown; once with the stan-

dard (Sejnowski & Rosenberg) 26-bit distributed output code, and again with an

n = 63, d 31 B CT-I error-correcting output code. In these experiments, a stan-

dard 7-letter window was employed. This implies that the input space consisted

of 13 elements: 7 letters, 3 phonemes and 3 stresses corresponding to the letters to

the left (right) of the current letter. Common weights (the combined-ps weights)

were employed when determining both the phoneme and the stress bits. Finally,

the number of nearest neighbours (nn) considered was 4, and the output bits were

not thresholded before mapping to the nearest observed phoneme/stress pair.

The results shown in Table 57 unambiguously indicate thatas was the case for

1D3including the left phonetic context degrades the performance of the Wolpert

method in this domain at all levels of aggregation. The results also suggest that

the Wolpert method may not be able to take advantage even of the right phonetic

context in the same way that 1D3 does.

Before making a final judgement, however, we decided to examine the effect

of varying the relative magnitude of the weights assigned to the phonemes and

stresses (in the extended context) to the weights assigned to the letters in the
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Table 57. Performance of the Wolpert method when ezended contezl is employed. Effects of

including the phonetic conexi of the letters to the left (processing forward) as well as the phonelic

conexi of the letters to the righi (processing backwards) are shown.

context. In the experiments reported in Table 58, we fixed the magnitude of the

weights assigned to the letters in the context to be the combined-ps weights as

before. The weights used for the phonemes and stresses (in the extended context)

were reduced47 by multiplying them by a fraction p. p was varied from 0.5 down

to 0.1 in increments of 0.1. This procedure resulted in an improved performance

for all values of p between 0.5 and 0.1 when compared to the performance with

the original weights computed for the phonemes and stresses (p = 1.0 in the

table). This suggests that the weights assigned to these other elements of the

context should be based on the additional mutual information contributed by these

elements given the information provided by their corresponding letters.

With the modified weights for some of the elements of the extended context,

we can now see some advantage in utilizing the right phonetic context and error-

correcting codes with the Wolpert method. However, the best performance of

18.9% (74.0%) at the word (letter) levels shown in Table 58 should be compared

with the 29.3% (76.4%) corresponding figures for 1D3 (Table 44 for the combined-

47Upon examination of the weights assigned to the phonemes and stresses by the mutual infor-

mation computations, we decided that the magnitudes of these weights were too high compared

to the magnitudes of the weights assigned to the letters.

Output

code

Direction

of

% correct (1000-word test set)

Level of Aggregation

employed processing Word Letter Phoneme Stress Bit

Standard (S & R) FORWARD 11.5 65.9 76.2 78.2 95.8

26-bit code BACKWARD 15.6 70.5 80.2 80.3 96.3

Error-correcting FORWARD 12.9 65.8 76.0 77.4 83.1

code, (n = 63, d = 31) BACKWARD 16.0 70.7 80.2 79.6 85.5
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Table 58. Performance of the Wolpert method when extended context is employed, and the

weights used for the phonemes and stresses (in the extended context) are reduced by multip'ying

them by a parameter p. Letters of the words are processed backward, i.e. in a right-to-left

sequence.

PS case and the same error-correcting codc n = 63, d = 31-employed above

and, ExtContext(2-BW)). Based on this comparison, the Wolpert method lags

far behind 1D3 in this domain, when both are augmented with our techniques of

error-correcting output codes and an extended context.

5.3.5 The Wolpert Method & ExtContext(7-BW)

In the previous section, we saw that-for certain combinations of weights and

output coding techniques-the Wolpert method may benefit (slightly) from an ex-

tended context. In this section, we consider the effect of extending the input space

even further by including the additional features that we made available to the

Output

code

employed p

% correct (1000-word test set)

Level of Aggregation

Word Letter Phoneme Stress Bit

Standard (S & R) 1.0 15.6 70.5 80.2 80.3 96.3

26-bit code 0.5 17.9 73.3 83.5 81.8 96.8

0.4 17.6 73.4 83.5 81.8 96.8

0.3 17.8 73.5 83.6 81.5 96.9

0.2 17.1 73.4 83.7 81.4 96.9

0.1 16.9 73.5 83.5 81.5 96.8

Error-correcting 1.0 16.0 70.7 80.2 79.6 85.5

code, (n = 63, d = 31) 0.5 18.8 73.8 83.6 81.3 87.1

0.4 18.6 73.9 83.7 81.5 87.2

0.3 18.9 74.0 83.8 81.3 87.2

0.2 17.8 74.0 83.8 81.1 87.2

0.1 18.2 73.9 83.6 81d 87.2
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1D3 algorithm with the "ExtContext(7)" representation defined in Section 4.2.3.

For the Wolpert method, ExtContext(7-BW) implies that the same information

conveyed by the extra bits in ExtContext(7) is made available in the representation

of the windows, and that the letters of the words were processed in a right-to-left

order. Hence, a 7-letter extended context for this method means that each window

consists of a 36-character string as follows:

L. 7 characters (each E A, where A is the set containing the 26 letters and the

three symbols "-", ".", and ".") representing the 7 letters in the window.

7 characters (each E {O,1}) indicating whether each of the 7 letters in the

window is a consonant, (0), or not, (1).

7 characters (each E {O,1}) indicating whether each of the 7 letters in the

window is a non-low vowel (1), or not, (0).

P. 3 characters (each E 2, where 1 is the set of 54 phonemes defined earlier)

representing the 3 right phonemes which are part of the extended context.

P11. 3 characters (each E {O,1}) indicating whether each of the above right phonemes

is tense, (1) or not (i.e. lax), (0).

S. 3 characters (each E 8, where $ = {o ,1,2,> ,<, -} is the set of 6 stress symbols

employed in the NETtalk dictionary) representing the 3 right stresses which

are part of the extended context.

Sj,. 3 characters (each E {0,1}) indicating whether each of the above right stresses

is {O,1,2}, (1) or not, (0).

S12. 3 characters (each E {0,1}) indicating whether each of the above right stresses

is E {1,2}, (1) or not, (0).

Weights to be assigned to the "extra" elementsL11, L12, Sf1, and Sf2-

introduced as part the input space were set (as usual) to the value of the mutual
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Table 59. Performance of the Wolpert method when extended context is employed, the weights

used for the phonemes and stresses (in the extended context) are redziced by multiplying them by

a parameter p, and the extra features defined by ExtContext(7) are included in the mput space.

Letters of the words are processed backward, i.e. in a right-to-left sequence.

information between that element and the output phoneme/stress pairs. These

mutual information values for letters i positions to the left or to the right of the

current letter (i E {0, 7}) are shown in Tables 90 through 92 of Appendix E.

Table 59 shows the performance of the Wolpert method when this input space-

equivalent to "ExtContext(7-BW)"-is employed. The results generally show a

marked improvement over those of Table 58. However, we see once again that the

best configuration for the Wolpert method lags behind the best comparable config-

uration for 1D3 in the NETtalk domain. Table 60 shows this direct comparison.

Output

code

employed p

% correct (1000-word test set)

Level of Aggregation

Word Letter Phoneme Stress Bit

Standard (S & R) 1.0 18.4 72.6 81.6 82.4 96.6

26-bit code 0.5 19.7 74.2 83.7 82.7 96.9

0.4 19.8 74.7 84.2 82.9 97.0

0.3 19.9 75.1 84.6 82.8 97.1

0.2 19.4 75.0 84.6 82.8 97.1

0.1 19.1 74.9 84.4 82.8 97.1

Error-correcting 1.0 18.5 72.6 81.8 81.5 86.5

code, (n = 63, d = 31) 0.5 21.4 74.8 84.0 82.6 87.6

0.4 20.9 75.3 84.3 82.7 87.9

0.3 20.8 75.7 84.8 83.0 88.1

0.2 21.1 75.7 84.8 82.8 88.1

0.1 20.3 75.5 84.6 82.6 88.0
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Table 60. A comparison of some of the "best" configurations for the Wolpert method with

comparable configurations for 1D3 in the NETtalk domain. For both, an n = 63, d 31 BCII

Error-correcting code and extended context is employed. Letters of the words are processed

backward, i.e. in a right-to-left sequence. Combined-ps.

% correct (1000-word test set)

Context Learning Level of Aggregation

employed Method Word Letter Phoneme Stress Bit

ExtContext(2-BW) Wolpert 18.9 74.0 83.8 81.3 87.2

1D3 29.3 76.4 85.3 82.3 88.4

ExtContext(7-BW) Wolpert 21.1 75.7 84.8 82.8 88.1

1D3 31.3 77.7 85.8 83.3 89.0



Chapter 6

Comparison with DECtalk

In all the experiments reported in chapters 1 to 5, learning is accomplished by

training on our standard 1000-word training set. This chapter, however, is perfor-

mance oriented. The results of the best performing learning systems trained on

19,002 words are compared with the performance of the human-developed letter-to-

sound rules incorporated in DECtalk; a commercially available device, marketed by

Digital Equipment Corporation (DEC) for the English text-to-speech conversion

task.

To carry out this comparison, we had to obtain the pronunciations output by

DECtalk's rule-base on our standard 1000-word test set.48 However, before a valid

comparison was possible, a number of obstacles had to be overcome. For one thing,

the format of the outputs from DECtalk's rule-base was entirely different from the

outputs of our learning systems. All the "silent" phonemes and "no-stress" symbols

do not appear in the former, and the primary and secondary stress symbols are

intermixed with the remaining phonemes. This means that the phoneme/stress

string is not aligned with the letters of the words, which makes the performance

evaluation at the phoneme, stress and letter levels nearly impossible. Other, less

138

48 thank Tony Vitali of Digital Equipment Corporation (DEC), for running the entire NETtalk

dictionary through DECtalk and providing us with the outputs from DECtalk's rule-base on

all the words in the dictionary.
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serious problems, included the disparity between some of the phonemes and stresses

employed by the two systems. The solution we adopted was to painstakingly re-

align the outputs of DECtalk's rule-base for all the 1000 words in our standard test

set. Section 6.1 details the original format for the outputs of DECtalk's rule-base

and the procedure we employed to convert these to the standard aligned format

used in the NETtalk dictionary.

Another difference that had to be eliminated before a valid comparison of

our learning systems and DECtalk's rule-base could be made was the differences

in stress information. DECtalk's outputonce re-aligned--contained only three

stress symbols corresponding to primary, secondary and no stress. NETtalk's

dictionary, on the other hand, used three additional symbols which encoded syl-

lable boundary information. These additional symbols were eliminated from the

NETtalk dictionary for all the experiments reported in this chapter. We refer to

this reduction of stress symbols to only three (primary, secondary and no stress) as

simplified stresses. Section 6.2 presents the performance results (on our standard

test set) of some of our earlier configurations when these simplified stresses are

employed.

Section 6.3 then embarks on a hill climbing search to find the "best" con-

figuration for three learning methods that we chose to compare with DECtalk:

multiclass 1D3, Wolpert and the error-correcting output code method. In this

search, the learning systems were trained on our standard 1000-word training set

but the testing was done on an alternate test setdisjoint from both the train-

ing set and our standard test set. Section 6.4 then compares the performance of

the best configurations obtained as a result of this searchbut trained on 19,002

wordsto the performance of DECtalk's rule-base.

All the comaprative studies considered thus far employed a strict correctness

criteria which required phonemes and stresses to match exactly. Section 6.5, how-

ever, presents the results of a different kind of comparative study: one in which

human subjects were asked to judge the quality of the pronunciations output by
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each of the methods considered.

We conclude this chapter by presenting results of "brain damage" experiments

similar to those reported in the connectionist literature. We show that 1D3 trees

built when error-correcting codes are employed to encode the classesexhibit the

same resistance to "brain damage" and the same gradual degradation in perfor-

mance with increased noise levels as that observed in Backpropagation networks.

6.1 Outputs from DECtalk's Rule-base

As mentioned earlier, we decided to evaluate our learning methods by comparing

their performance with that of the human-developed letter-to-sound rules incor-

porated in DECtalk. For that, we obtainedthrough the valued assistance of Mr.

Tony Vitali of Digital Equipment Corporation, (DEC)the outputs of DECtalk's

rule-base on our standard 1000-word test set. The original format of the outputs

obtained can be seen from a sample shown in Table 61. Notice that this format

is entirely different from that of the NETtalk dictionary also shown in that table

for comparison purposes. In DECtalk's outputs, all the "silent" phonemes and

"no-stress" symbols do not appear, and the primary and secondary stress symbols

(the symbols ' and ' respectively) are intermixed with the remaining phonemes.

Unlike the outputs in the NETtalk dictionary, there is no longer a one-to-one cor-

respondence between the individual characters in the DECtalk's output strings

and the letters of the words, making the performance evaluation at the phoneme,

stress and letter levels extremely difficult.

Furthermore, there were some differences in the symbols employed to encode the

phonemes in the two systems. The symbol "*", for example, was used in DECtalk's

outputs to indicate a boundary between compound words such as "counterclaim"

(see Table 61), but in the NETtalk dictionary it is the phoneme corresponding to

the pronunciation of the letter "w" in words like "while" and "whistle". Several

other such phoneme symbol disparities existed. Table 62 lists all the phoneme
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Table 61. Comparing the original format of the outputs from DECtalk's rule-base with the

format employed in the NETtalk dictionary.

WORDS

DECtalk's

Outputs

NETtalk Dictionary Outputs Simplified

StressesPhonemes Stresses

AFFIDAVIT xVldxvlt if-xdevxt 2<>O>1>O< 2----1---
AUXILIARY cksflx'eri c-#Ily-Ri O<<1<O<>O ---1

BIMETALLISM b'Imxtclxzxm bAmEt-L-IzM >O>1<O<>2<O --12
CONVEX kxnv'Eks kanvEX >1<>1< -1--i-

CONSTITUTIVE kxnst'Ityutxv kanstxtYtiv- >1<>>O>O<O<< -1

COUNTERCLAIM k'WntR*kl'em kW-nt-Rkle-m >1<<<O<>>2<< -1 2--
ELECTIONEER xlEkSxn' ir I1EkS-xnl-r O>2<>O<>1<< 2 1

EXEMPLAR xks ' EmpiR I#Emplar O<1<>>2<

FAILURE Velyur fe-lYr- >1<<O<< -1

FUNICULAR fyun' IkyLR fYnIkYl-R >0>1<0>0< ---1

PURISM p'Rxzxm pYrIzM >1<2<0 12
UNPROFITABLE 'nprxVAtxbL nprafxtxbL- 1<>>1<0<0>>0
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Table 62. Phoneme symbols that appeared in DECtalk's outputs and required special processing.

The "Action to take" column shows the action recommended by Tony Vitali in order to "equate"

these outputs with the phoneme symbols employed in the NETt.alk dictionary.

symbols that appeared in DECtalk's outputs and that required special processing,

along with the action reconmiended by Tony Vitali in order to "equate" the outputs

of the two systems.

Because we wanted our evaluation of the learning methodsand the com-

parison with DECtalkto be valid and comprehensive, we decided to convert

DECtalk's outputs to the standard aligned format employed in the NETtalk dic-

tionary. The next section details the procedure we followed to do this conversion.

DECtalk's Phoneme

symbol

Action

to Take

NETtalk's phoneme

symbol

Group A:

*

I

Y

Delete.

Delete.

Convert to:

Convert to:

None.

None.

x

yu

Group B:

kS

kw

ks

ts
gz

Convert to:

Convert to:

Convert to:

Convert to:

Convert to:

Convert to:

K

X

*



6.1.1 Aligning DECtalk's Outputs

Our starting point for the format conversion (or re-aligning) process was a program

(called Kiattize) written by Charles Rosenberg49 that did the reverse of what

we were after: convert a string of phonemes and a string of stresses from the

format employed by the NETtalk dictionary to that employed by DECtalk. To

simplify the exposition, we will refer to the format employed by DECtalk as the

"Kiattized" format and the format employed by the NETtalk dictionary as the

"aligned" format.

Given a k-letter word ii and the corresponding output from DECtalk's rule-

base Dklattized, our goal is to come up with a string of phonemes PD,alsgned and a

string of stresses SD,aligned such that

Dklattized Klattize(PD,a1ig,,d, SD,aligncd)

where

Klattize(.,.) is the function described in the previous paragragh,

PD,aligned and $D,aUgned are strings of length k each and,

Each of the k symbols in 1D,a1igned aiid SD,ali.gned must correspond to

the pronunciation of one of the k letters of W.

Note that in order to achieve the one-to-one correspondence required above, silent

phonemes and no-stress symbols must be introduced. Furthermore, if there is more

than one choice5° (for PD,aligned or SD,aligned) that satisfies the above requirements,

then the choice that is closest to the "correct" pronunciation (i.e. the pronunciation

found in the NETtalk dictionary) would be selected.

Let
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49These programs are distributed by Thinking Machines Corporation as one of their example

applications.
50This is possible because a silent phoneme (for example) for a two letter combination such as

"wh" in "where" could be assigned to either letter and, we would still get the same Kiattized

format after passing it through the function Kiattize.



PCorrect and Scorrect be the correct (i.e. dictionary) aligned pronuncia-

tion of the word T and,

Cklaitized = Klattize(Prrect, correct)

The procedure we followed in order to determine FD,aiigned and SD,aligned can then

be summarized as follows:

Check if any substitutions outlined in Table 62 should be made5' on

If so, apply these substitutions.

Compare Dklatt;zed (possibly modified after the above step) with dklattized.

Identify a list of phoneme and/or stress substitutions that when applied to

Cklattized will make it the same as Dklattized.

Apply the substitutions determined by the above step to Aorreci and §correct

thereby producing the re-aligned outputs for DECtalk's rule-base: FD,ojjgned

and SD,aligned.

Almost all of the above procedure was automated to ensure that the required string

comparisons and substitutions were accurately performed. However, the results

of each comparison, and a suggested substitution list, were always presented to

the user for confirmation and for possibly requesting a re-alignment of any two

strings being compared. We will clarify these points and some of the difficulties

we encountered in the re-alignment process by considering some examples.

Consider the simple word "ACTION", for which Dk1aitid was "'@kSxn". The

Kiattized version of the pronunciation of the NETtalk dictionary is also "@kSxn",

so the dictionary pronunciations Fcorrect ="kS-xn" and bcorreci = "1 " are

taken as 'D,a1igned and 8D,aligned respectively without any substitutions. Note that
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51The first 3 actions outlined in Table 62 (2 deletions and one substitution) were performed on

all the words in advance. The other substitutions were only made if they were appropriate to

the particular word Here "appropriate" means that it will make DECtalk's output closer

to the dictionary.
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this means we did not apply the substitution of "kS" with "K" as suggested in

Table 62. In general, all the substitutions suggested in that table were made only

if they were appropriate. Several examples of situations in which the substitu-

tions should be made are shown in Table 61. "ks" in DECtalk's pronunciation of

"AUXILIARY", for example, would be converted to "-X" because that would be

compared during the evaluation process (at a later stage) with the correct "-#"

corresponding to it. This would result in counting only one phoneme error instead

of the two that would be counted if "ks" was compared with "-#" which would be

the case had the substitution not been carried out. Similarly consider the word

"CONVEX". Replacing "ks" with "X" in DECtalk's pronunciation of "CONVEX"

would be appropriate judging from the dictionary pronunciation also shown in Ta-

ble 61. Several examples of other appropriate substitutions also appear in that

table.

Next, let us consider a more difficult word, "AFFIDAVIT", for which

DECtalk's output Dklattjzed was "xf' Idxvlt" and,

NETtalk's output Ôklattized was "fxd' evxt".

Comparing these two suggested that the following substitutions were necessary:

(@- x) (x - I) (e - x) (x - I)

Applying these substitutions to = "@f-xdevxt" yields

PD,aligned ="xf-Idxvlt"

A straight forward procedure tailor-made to determine the aligned stresses when

only primary stress is present in Dklattjzed52 suggested that

52When only primary stress is present, it is only necessary to determine the posiiion of that

stress. A simple routine that tries all the possible k positions and selects the one that results

in a match between the final Klattized strings does the job. Care was taken to ensure that

when there is more than one position that satisfies this condition, the user would be asked to

intervene and select the best choice.



SD,aligned ="1

As a final example let us consider the word "BIMETALLISM" , for which

DECtalk's output DklaUjzed was "b' Imxtclxzxiu" and,

NETtalk's output Cklaitized was "bArn' EtL' IzM'.

This word illustrates another difficulty that we encountered. Consider the phoneme

substitutions (and other actions) necessary to make Ckjajjjzed the same as Dkla,tjzed:

(A + I) (E - x) (insert c) (L - 1) (I x) (insert x) (M m)

Note that in addition to the 5 substitutions required, two insertions are also needed.

Insertions, however, are only allowed if a silent phoneme exists at the position in

question which can be changed into the required symbol to be inserted. Otherwise,

the length of the resulting phoneme string will be longer than kthe number

of letters in the wordand we will lose the one-to-one correspondence that we

desperately try to preserve. In this case, the correct aligned phoneme string is

Pcorrect ="bArnEt-L-IzM",

which enables us to transform the silent phoneme "-" between the "t" and the

"L" to the required "c" which needs to be inserted. Inserting the "x" between the

"z" and the "M" however would not be allowed. Hence the final aligned outputs

assigned were

'D,a1igned "blmxtclxzrn" and,

Q-'D,altgned -

The above examples should be enough to convince the reader that the process

of re-aligning DECtalk's outputs was involved, to say the least. Nevertheless, we

took extreme care53 to ensure that the outputs for every wordof the 1000-word

53The conversion routines that the author wrote were designed to be fool-proof, not allowing the

user to make a mistake even if he wanted to.
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test set that we convertedwere correctly re-aligned. In rare situations where

that was not possible (due to the one-to-one correspondence requirement between

the aligned phonemes and the letters of the words), the resulting omission of a

phoneme (similar to that seen in the last example) would translate to counting

one less phoneme error against DECtalk.

The performance figures for DECtalk's aligned outputs are presented in Ta-

ble 72 (Section 6.4), where they are compared with the "best" performance of

three selected learning methods.

6.2 Effects of Simplified Stresses on Performance

Table 63 shows the effect of simplified stresses on several learning methods when

the separate-ps approach is employed. Table 64 presents similar results, but for the

combined-ps case. The results shown in both tables indicate that employing simpli-

fied stresses gives rise to an improved performance at the stress (and consequently

the letter) level of performance. Phoneme and word level performance, however,

vary depending on the method and configuration employed. These figures are

slightly reduced (with simplified stresses) when distributed output codes are com-

bined with the separate-ps approach;54 they are slightly improved when multiclass

1D3 is employed with the separate-ps approach; but they are significantly improved

with the combined-ps approach whether multiclass 1D3 or error-correcting codes

are employed.

6.3 Best Configurations

In this section, we will undertake a brief "hill climbing" search to find the "best"

configuration for three learning methods that we chose to compare with DECtalk:

multiclass 1D3, Wolpert, and 1D3 with the error-correcting output code method.

540ne reason for this is the loss of the syllable boundary information which is part of the extended

coniexi when full stresses are employed.



Table 64. Effect of simplified stresses on several learning methods when the combined-ps ap-

proach is employed.
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Table 63. Effect of simplified stresses on several learning methods when the separate-ps approach

is employed.

Learning Method

% correct (1000-word test set) Decision Tree

data (mean)Level of Aggregation

STRESSES Word Letter Phon. Stress Bit Leaves Depth

Distributed (S & R) code

Full stresses 24.4 74.2 83.9 82.6 96.9 180.1 22.0

Simplified Stresses 22.4 78.3 83.1 88.9 96.3 212.5 25.1

Multiclass

Full stresses 22.1 73.0 82.8 83.0 N/A 884.0 31.4

Simplified Stresses 23.5 77.7 83.1 88.4 N/A 781.4 37.4

Ecc code: pd=31,sd= 15

Full stresses 32.6 78.1 87.3 84.9 93.2 454.1 36.5

Simplified Stresses 30.5 81.2 87.0 88.9 93.8 437.7 38.1

Learning Method

% correct (1000-word test set) Decision Tree

data (mean)Level of Aggregation

STRESSES Word Letter Phon. Stress Bit Leaves Depth

Multiclass

Full stresses 21.9 73.0 81.5 81.8 N/A 1468.0 30.9

Simplified Stresses 26.6 79.8 83.6 88.8 N/A 1270.9 39.0

Ecc code: n=127,d=63

Full stresses 32.2 78.1 86.8 83.7 88.9 739.8 46.5

Simplified Stresses 35.1 82.9 87.0 90.1 91.5 612.7 48.9
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For the experiments conducted as part of this search, the learning systems were

trained on our standard 1000-word training set, but the testing was done on an al-

ternate test setdisjoint from both the training set and our standard test set.

Except for the Wolpert method, the input configuration will not be included

as a parameter to be set as part of this search since Chapter 4 showedrather

conclusivelythat "ExtContext(7-BW)" is the best input configuration for the

other two methods. The result of testing the best configurations obtained as a

result of this searchbut trained on 19,002 wordswill be postponed until Sec-

tion 6.4. There, we will present these results and compare them to the performance

of DECtalk's rule-base.

6.3.1 Best Configuration: Multiclass

Having established earlier that the "best" input configuration for the multiclass

methodas for all the othersis "ExtContext(7-BW)", the only remaining pa-

rameters to be fixed for the multiclass approach are the window size and whether

to build one decision tree that classifies phonemes and stresses taken as pairs (the

combined-ps case) or to build two separate trees: one to classify stresses and the

other to classify phonemes (the separate-ps case). Table 65 shows the performance

of the multiclass methodon our alternate test set, with simplified stresses, and

"ExtContext(7-BW)"--for both the combined-ps and the separate-ps case. The

results for both window sizes compared show that the combined-ps case performs

equal or better at all levels of aggregation and significantly better at the letter and

word levels. Hence, we decided to drop the separate-ps case from the race.

To decide on the best value for the window size, Table 66 shows the perfor-

mance of the multiclass combined-ps approachagain tested on our alternate test

set, with simplified stresses and "ExtContext(7-BW)"for several values of the

parameter window size. These results show that a standard 7-letter window gives

the best performance at the phoneme, stress and letter levels of aggregation. It

also gives essentially the same word-level performance as that for the 15-letter



Table 66. Effect of window size on the performance of the combined-ps multiclass

method-tested on our alternate test set, with simplified stresses, and "ExtContext(7-BW)".
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Table 65. Comparison of the performance of the combined-ps and the separate-ps multiclass

methods-on our alternate lest set, with simplified stresses, and "ExtContext(7-BW)"-for win-

dow sizes of seven and fifteen.

window. Furthermore, the training time for a 15-letter window is at least twice

that of a 7-letter window. We will therefore adopt a window size of 7 in our "best"

configuration for the multiclass approach.

Number

of

% correct (1000-word test set(2)) Decision Tree

data (mean)Level of Aggregation

Configuration Trees Word Letter Phoneme Stress Leaves Depth

window size= 7:

combined-ps: 1 26.6 79.8 83.6 88.8 1270.9 39.0

separate-ps: 2 23.0 77.6 83.4 88.5 781.4 37.4

window size= 15:

combined-ps: 1 26.7 79.2 82.3 88.7 1174.9 36.0

separate-ps: 2 24.3 77.5 82.3 89.1 690.0 36.4

% correct (1000-word test set(2)) Decision Tree

Window Level of Aggregation data (mean)

size Word Letter Phoneme Stress Leaves Depth

7 26.6 79.8 83.6 88.8 1270.9 39.0

9 24.4 78.8 82.5 88.4 1207.9 36.0

11 25.3 78.9 82.4 88.2 1200.1 36.9

15 26.7 79.2 82.3 88.7 1174.9 36.0



6.3.2 Best Configuration: Error-correcting Codes

In order to overcome the limitations discussed in Section 3.4.8 on the length of the

stress codes, we decided to adopt the combined-ps case in the best configuration for

the error-correcting code technique. This decision was also motivated by the fact

that, in our earlier experiments, better performance was associated with longer

codes (achieved through the combined-ps approach) having better error correcting

capability. Having made that decision, the remaining parameters to be set were

the length of the error-correcting code and the size of the window to be employed.

To decide on the best value for the window size to be employed, we constructed

Table 67, which shows the performance of the n = 63, d = 31 (combined-ps)

error-correcting codetested on our alternate test set, with simplified stresses and

"ExtContext(7-BW)"for several values of the parameter window size. These

results show that increasing the window size from 7 towards 15 gradually enhances

the stress performance, while at the same time slightly degrading the phoneme

performance. Stress performance seems to peak at window size = 13, but the word

level performance is best for the largest window size considered.55 We decided to

adopt a window size of 15 in our best configuration for the error-correcting code

technique.

To determine the length of the error-correcting code to be employed, we eval-

uated the performance of several efficient56 BCH error-correcting codes of various

lengths (Table 68). The performance for all the codes was tested on our alternate

test set, with a window size of 15, simplified stresses and "ExtContext(7-BW)".

While it is true that the longest code (ii = 511, d = 255 code) attains the highest

performance at all levels of aggregation, the much shorter code (n = 127, d = 63)
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55Limitations on the available virival storage capacity on our machines (128 mega-bytes) pre-

vented us from considering windows larger than 15 when training on 19,002 words.
56We consider an error-correcting code to be efficieni if the mininum inter-word Hamming dis-

tance, d, is roughly equal to half the length of the code, n. This enables the code to correct

errors in t bits, where is approximately one-fourth the length n.
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Table 67. Effect of window size on the performance of n = 63, d = 31 (combined-ps) er-

ror-correcting code-tested on our alternate test set, with simplified stresses, and "ExtCon-

text(7-BW)".

does not lag very far behind. In fact the differences between the performances of

the two codes are not statistically significant at any level of aggregation. Con-

sidering also that the (n = 511, d = 255) code takes at least four times longer

to train than the (n = 127, d = 63) code,57 it was an easy decision to adopt the

(n = 127, d = 63) BCH code in our "best" configuration for the error-correcting

code technique.

6.3.3 Best Configuration: Wolpert

We saw in Chapter 5 that employing error-correcting output codes marginally im-

proved the performance of the Wolpert method. Hence, we decided to employ the

same n = 127, d = 63 BCH error-correcting code that would be employed with 1D3

(discussed in the previous section) for the Wolpert method. Furthermore, we de-

cided to employ common weights (the combined-ps weights) when computing the

phoneme and the stress bits. This decision was made due to efficiency consider-

571t took about three CPU-WEEKS on a SUN4 work-station to build the 127 decision trees

required for the (n = 127, d = 63) code, trained on 19,002 words with the configuration

adopted here, i.e. "ExtContext(7-BW)" with a window size of 15.

Window

size

% correct (1000-word test set(2)) Decision Tree

data (mean)Level of Aggregation

Word Letter Phoneme Stress Bit Leaves Depth

7 33.9 82.8 86.5 90.2 91.2 638.5 50.9

9 35.0 82.7 86.2 90.3 91.2 598.8 47.9

11 35.6 83.0 86.1 90.5 91.3 581.8 48.5

13 35.9 83.0 86.0 90.8 91.3 570.7 48.5

15 36.7 83.0 86.0 90.6 91.3 568.1 49.2
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Table 68. Performance of several efficient BCH error-correcting codes of various lengths-tested

on our alternate lest set, with a window size of 15, simplified stresses and "ExtContext(7-BW)".

The combined-ps approach is employed.

ations, since the alternative-employing separate weights for computing phoneme

and stress bits-would take twice as long and was not found to offer any perfor-

mance improvement. Finally, all the weights employed will be those derived from

the mutual information data as detailed in Chapter 5. These mutual information

values were re-computed for all the elements of the extended context for the case

when simplified stresses are employed. These are shown in Tables 93 through 98

of Appendix E.

Having made these decisions, the remaining parameters to be fixed for the

Wolpert method were the number of "nearest neighbours" (nn) to be considered,

the window size (w) and whether to employ a standard or an extended context.

For the extended context, we will continue to use the labels "ExtContext(2-BW)"

and "ExtContext(7-BW)" 58

Let us first consider the standard context case. Table 69 shows the effect of

varying the window size w on the performance of the Wolpert method-tested

58"ExtContext(2-BW)" refers to the case in which the input space consists of w letters, [w/2j

right phonemes and jw/2j right stresses. "ExtContext(7-BW)" means that-in addition to

these-the additional features defined by "ExtContext(7-BW)" are included in the input space.

See Section 5.3.5 for more details.

Code

Length

Interword

Distance

% correct (1000-word test set(2)) Decision Tree

data (mean)Level of Aggregation

n d (mm.) Word Letter Phoneme Stress Bit Leaves Depth

63 31 36.7 83.0 86.0 90.6 91.3 568.1 49.2

127 63 37.3 83.9 86.9 91.6 92.0 550.1 45.9

255 127 37.3 83.8 86.8 91.3 91.8 557.6 46.6

511 255 38.0 84.1 86.9 91.8 92.1 551.1 47.7
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Table 69. Impact of varying the window size on the performance of the Wolpert method-tested

on our aliernae iest sei, with simplified stresses, standard context and BCH error-correcting

output code (n = 127, d = 31). Four nearest nighbours are considered in these experiments.

on our alternate test set and with simplified stresses. The best performance is

observed for w = 13. Next, Table 70 shows the effect of varying nn-the number

of nearest neighbours considered in the "center of mass" computations-when a

13-letter window is employed. nn = 4 seems to offer the best performance in this

table. Hence, we decided to adopt these values for w and nn in subsequent tests.

Finally, to choose between standard and extended context, Table 71 compares

the best performance observed with standard context with that obtained with

ExtContext(2-BW) and ExtContext(7-BW). For each of these configurations, two

results are shown. The first-marked by p = 1.0-is when the original values for

the mutual information between the phonemes (stresses) in the extended context

are used as weights for the corresponding phonemes (stresses) in the input space.

The second-marked by p = 0.2-is when these values are reduced by multiplying

them by p. Several values for p were tried. p = 0.2 seemed to offer the best

performance. These results suggested that the "best" configuration to be adopted

for the Wolpert method should employ ExtContext(7-BW), w 13 and nn = 4.

Window

size

% correct (1000-word test set(2))

Level of Aggregation

w Word Letter Phoneme Stress Bit

7 20.5 79.2 83.0 87.7 89.7

9 21.6 79.7 83.3 88.6 90.0

11 22.4 79.6 83.1 88.7 89.9

13 23.1 79.9 83.3 89.0 90.1

15 22.9 79.8 83.3 89.0 90.1
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Table 70. Impact of varying the number of nearest neighbours considered on the performance of

the Wolpert method-tested on our altern ate test set, with simplified stresses, standard context

and BCH error-correcting output code (n = 127, d = 31). The window size w is set to 13 in these

experiments.

Table 71. Performance of the Wolpert method with w = 13, nn = 4 both when standard and

extended context are employed-tested on our alternate test set, with simplified stresses and

BCH error-correcting output code (n = 127, d = 31). See text for additional details.

Number of

neighbours

% correct (1000-word test set(2))

Level of Aggregation

considered (nn) Word Letter Phoneme Stress Bit

3 22.4 79.4 82.9 88.7 89.8

4 23.1 79.9 83.3 89.0 90.1

5 22.0 79.7 83.2 89.0 90.0

6 22.1 79.4 83.0 88.8 89.9

7 21.1 79.2 82.7 88.6 89.8

% correct (1000-word test set(2))

Context Level of Aggregation

employed p Word Letter Phoneme Stress Bit

StdContext N/A 23.1 79.9 83.3 89.0 90.1

ExtContext(2-BW) 1.0 20.4 78.0 81.6 88.5 89.2

0.2 23.3 80.3 83.8 89.4 90.3

ExtContext(7-BW) 1.0 22.6 79.2 82.9 89.2 89.8

0.2 25.5 80.9 84.5 89.5 90.6



6.4 Results

The best configurations determined in the previous secion for each of the three

learning methodsmulticlass 1D3, Wolpert and the error-correcting output code

methodwere employed in the results reported in this section. Training was done

for all the learning methods on 19,002 wordsthe full NETtalk dictionary less our

standard 1000-word test set. These generated 139,671 examples (or equivalently,

"classified windows"). Testing was done on our standard 1000-word test set

disjoint from the training set. For all the three methods, extended context was

employed, with the letters of the words processed backwards in a right-to-left

sequence. This implies that the extended context included the phonetic context of

the letters to the right of the current letter. For the multiclass 1D3 and the error-

correcting code methods, the extended context was converted to binary using the

"ExtContext(7)" representation defined in Section 4.2.3. In this representation:

Each letter of the extended context is replaced with a 31-bit binary string.

Each phoneme of the extended context is replaced with a 55-bit binary string.

Each stress of the extended context is replaced with an 8-bit binary string.59

Hence, each 7-letter window employed in the multiclass configuration was con-

verted to a 406-bit6° binary feature-vector, while each 15-letter window employed

for the error-correcting code method was converted to a 906-bit6' binary feature-

vector!

For the Wolpert method, ExtContext(7-BW) meant that the same information

conveyed by the extra bits in ExtContext(7) was made available in the repre-
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59With the stresses simplified to only three symbols representing primary, secondary and no

stress, we could have reduced the ExtContext(7) representation for each stress to an equivalent

representation with oniy 4 bits instead of 8. This reduction was minor and was not carried out

in these experiments.

607 letters x31 + 3 phonemes x55 -{- 3 stresses x8.

6115 letters x31 + 7 phonemes x55 + 7 stresses x8.
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sentation of the windows, and that the letters of the words were processed in a

right-to-left order. Hence, the 13-letter extended context employed for this method

meant that each window consisted of a 63-character string as follows:

13 characters (each A, where A is the set containing the 26 letters and the

three symbols "-", "", and ".") representing the 13 letters in the window.

13 characters (each {O,1}) indicating whether each of the 13 letters in the

window is a consonant, (0), or not, (1).

13 characters (each {0,1}) indicating whether each of the 13 letters in the

window is a non-low vowel (1), or not, (0).

6 characters (each 2, where P is the set of 54 phonemes defined earlier)

representing the 6 right phonemes which are part of the extended context.

6 characters (each {O,1 }) indicating whether each of the above right pho-

nemes is tense, (1) or not, (0).

6 characters (each S, where S = {1,2,-} is the set of 3 stress symbols

representing the simplified stresses defined earlier) representing the 6 right

stresses which are part of the extended context.

6 characters (each e {0,1}) indicating whether each of the above right stresses

is "-", (0) or not, (1).

The above representation of the windows for the Wolpert method made the clas-

sification of the words in the test set extremely costly. A typical word generates

an average of seven windows. To classify each window w, the Wolpert method

requires that the 63-character string representing w be compared with each of the

139,671 63-character strings representing classified windows generated from the

training set. This expensive nearest neighbours matching process resulted in a
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Table 72. Comparison of the performance of the best configurations of three learning systems

with the performance of DECtalk's rule-base on our standard 1000-word test set.

classification time of about 15 minutes for a typical word.62 By contrast, the other

(decision tree) methods take only a fraction of a second to classify a new word,

but they require a much longer time to build the decision trees.

Table 72 shows the performance of the three learning systemswith the con-

figurations detailed abovealong with the performance of DECtalk's rule-base on

our standard 1000-word test set.

Let us first concentrate on the three learning methods compared. Of these three,

multiclass 1D3's performance is the worst at all levels of aggregation. Wolpert's

performance is slightly better, especially at the phoneme and letter levels. The

most impressive performance of all is that of 1D3 with error-correcting codes. This

method outperforms the other two by a wide margin, specially at the stress and

word levels. The stress level performance of 95.1% is a significant improvement on

the 91.3% (91.9%) performance of the multiclass (Wolpert) methods. In terms of

62Techniques for speeding-up nearest neighbour searches are available (See [Bentley75], for ex-

ample), but they were not employed in our implementation of the Wolpert method.

System

and

Configuration

Window

Size

% correct (1000-word test set) Decision Tree

data (mean)Level of Aggregation

Word Letter Phoneme Stress Bit Leaves Depth

1D3 & Error

Correcting Codes

15 64.8 91.4 93.7 95.1 95.7 5678 71.2

Wolpert & Error

Correcting Codes

13 45.6 88.1 92.7 91.9 94.0 N/A N/A

Multiclass 1D3

(combined-ps)

7 44.1 86.8 91.5 91.3 N/A 13,703 65.1

DECtalk's

rule-base

N/A 36.4 83.3 87.4 91.8 N/A N/A N/A
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error rates, this reflects a reduction in the stress error-rate from 8.7% (8.3%) to

only 4.9%, a reduction of 43.7% (39.5%) over the multiclass (Wolpert) methods.

Similarly, the correctness figure of 64.8% at the full-word level is a radical improve-

ment over the 44.1% (45.6%) achieved by the multiclass (Wolpert) methods. In

terms of error rates, these represent a reduction of 37.0% (35.3%) over the multi-

class (Wolpert) methods. Errors at the phoneme and letter levels are also reduced.

Phoneme error rates are reduced by 25.9% (13.7%), while letter error rates are

reduced by 34.8% (27.7%) compared to the multiclass (Wolpert) methods.

Even though the results presented in Table 72 clearly indicate that 1D3 when

coupled with error-correcting output codes outperforms the other learning meth-

ods in this domain, one may still wonder whether or not this method subsumes the

other two. To answer this question, we decided to study exactly how each of the

7,242 windows (corresponding to letters to be mapped to phoneme/stress pairs) in

the test set are handled by each of the learning methods. Table 73 categorizes each

of these windows according to whether it was correctly classified by all methods, by

only two of the methods, by only one of the methods, or by none of the methods.

These data are depicted pictorially in Figure 6, in which each of the methods is

represented by a circle. The numbers shown in the intersection of all the circles

represent the windows classified correctly by all the methods, those shown in the

intersection of only two circles represent the windows classified correctly the cor-

responding two methods, those appearing in only one circle represent the windows

classified correctly only by that method and none of the others. The windows not

classified correctly by any of the methods appear outside all the circles but within

the rectangular boundary encompassing all the 7,242 windows present in the test

set.

These results show that the windows correctly learned by the error-correcting

code method do not form a superset of those learned by either of the other two

methods. Instead, the three methods share 5,939 correct windows, and then each

method correctly classifies several windows that the other method (or methods)
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Figure 6. Classification of test set windows by three learning methods: 1D3 with error-correcting

codes, Wolpert and Multiclass 1D3.

Error- correc Codes

193(2.67%)

211(2.91%)

Multic

278 (3.84%) 5,939 (82.01%) 58(0.8%)

79(1.09%)

85(1.17%)

Wol

Windows not classified correctly by any niethod 399 (S1%)



6358 for Multiclass + 85 for Wolpert + 193 for the error-correcting code method 3.
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get(s) wrong. However, the number of windows correctly classified by the error-

correcting code method and missed by the other two is 193 compared to cor-

responding numbers of 58 (respectively 85) for the multiclass (respectively, the

Wolpert) method.

An interesting "thought" experiment can be performed to determine whether

employing voting among the three methods would lead to any improvement in

the performance at the letter level. With voting, we would correctly classify the

5,939 windows in the shared region among all the circles and the windows in the

three areas common to any two circles, i.e. 211 + 278 + 79 additional windows.

With regard to the areas where only one method classifies the windows correctly,

there are two possibilities. The first possibility is that when one method classifies

the window correctly and the other two misclassify it, they map it to the same

wrong output. In this case the voting will force this window to be misciassied

and hence none of these windows should be added to the number of successfully

classified windows. The other possibility is that when one method classifies the

window correctly and the other two misclassify it, they map it to a different wrong

output. In this case, there will be a 3-way tie, which we can assume will be

broken by choosing one output at random. Since there is a 1 in 3 chance of

randomly selecting the correct output, we could add to the number of successfully

classified windows as much as one-third of the windows correctly classified by only

one method. This, at best, will add 112 additional63 windows. The total windows

correctly classified with voting will amount to 6,619 windows (at best), or, 91.4% of

all the 7,242 windows present in the test set. Compare this with the performance of

the best methodthe error-correcting code methodtaken alone, which amounts

to adding the four figures appearing in the circle corresponding to that method:

193+278+5,939+211 6,621, or 91.4% of the total windows. Hence, even voting

across methods does not outperform the performance of the error-correcting code
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Table 73. Classification of test set windows by three learning methods: 1D3 with error-correcting

codes, Wolpert and Multiclass 1D3.

method taken alone!

Let us now turn our attention to the performance of DECtalk's rule-base. The

dismal word level correctness figure of 37% should tell us that our correctness

criteria are too stringent. We consider a word to be mispronounced if any of

its letters were mapped to either an incorrect phoneme or an incorrect stress

regardless of the seriousness of the errors committed. This criterion, however

stringent, is nevertheless straight forward and very objective. By contrast, previous

evaluations of text-to-speech systems reported oniy "serious" error rates. Table 74

shows error rates as relayed to us by [Vitali9O] for three commercial text-to-speech

systems based on thisrather subjectivemeasure. It is unfortunate that we can

not go much beyond simply reporting these figures, since we do not know precisely

what constitutes a serious error and what does not.

It is surprising that all the three learning methods outperform DECtalk's rule-

base at the phoneme, stress, letter and word levels of aggregation. While one can

argue that the lower phoneme level performance for DECtalk64 could be attributed

"The particular version of DECtalk that is referred to throughout this chapter is DECtalk3.

System correctly classifies all w windows Number of

Windows (w)

% of total

(7,242 windows)1D3 & ECC Wolpert Multiclass 1D3

NO NO NO 399 5.51

NO NO YES 58 0.80

NO YES NO 85 1.17

NO YES YES 79 1.09

YES NO NO 193 2.67

YES NO YES 211 2.91

YES YES NO 278 3.84

YES YES YES 5,939 82.01
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Table 74. Serious error-rates for three commercial text-to-speech systems based on a 1987 study

by Bill Huggins at BBN (Bolt, Baranek, and Newman). The test was over a set of 1,678 poly-

syllabic inflected forms, like "reinforce".

to the manner in which DECtalk's phonetic rules were encoded, no such argu-

ment can be made in the case of the stresses. The stress error rate of 4.9% for the

best learning method represents a reduction of 40.2% from the 8.2% error rates

committed by DECtalk's rules for determining the stresses. This unambiguously

suggests that the machine learning techniques developed as part of this research

work compete rather well with human-engineered rules for the text-to-speech do-

main.

A four way detailed categorization of how each of the four systems classifies

each of the 7,242 "windows" in the test set is shown in Table 75. These data

show that while there are 280 windows (3.87%) correctly classified by DECtalk's

rule-base that are missed by all the three learning methods, there are 935 windows

(12.9 1%) correctly classified by all the three learning methods that are misclassified

by DECtalk's rule-base. The four systems agree on 5,123 windows (70.74%); they

all correctly classify 5,004 windows (69.10%) and all misclassify only 119 windows

(1.64%).

Table 76 narrows the comparison down to two: DECtalk's rule base and the

error-correcting code learning method. Here, the learning method correctly clas-

65These rules may be biased towards some particular acceni or way of pronunciation of certain

words which may not be entirely wrong but nevertheless different from the way the NETtalk

dictionary encodes these pronunciations. This point will be re-visited at a later stage.

System

"Serious"

Error Rate

DECtalk2

Speech+ calltext 3

DECtalk3

12.9%

8.3%

5.1%
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Table 75. Classification of test set windows by the three learning methods-1D3 with er-

ror-correcting codes, Wolpert and Multiclass 1D3and DECtalk's rule-base.

System correctly classifies all w windows Number of

Windows (w)

% of total

(7,242 windows)1D3 & ECC Wolpert Multiclass 1D3 DECtalk rules

NO NO NO NO 119 1.64

NO NO NO YES 280 3.87

NO NO YES NO 11 0.15

NO NO YES YES 47 0.65

NO YES NO NO 19 0.26

NO YES NO YES 66 0.91

NO YES YES NO 14 0.19

NO YES YES YES 65 0.90

YES NO NO NO 25 0.35

YES NO NO YES 168 2.32

YES NO YES NO 37 0.51

YES NO YES YES 174 2.40

YES YES NO NO 50 0.69

YES YES NO YES 228 3.15

YES YES YES NO 935 12.91

YES YES YES YES 5,004 69.10



Correct

DECtalk's

Rule-base

Incorrect

Disagree: 1,505 (20.78%)

Agree: 5,737 (79.22%)
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Table 76. Classification of test set windows by the 1D3 & error-correcting codes learning method

and DECtalk's rule-base.

Error-correcting Codes

Correct Incorrect

sifies 1,047 windows (14.46%) that are missed by DECtalk's rule-base, while the

latter correctly classifies 458 windows (6.32%) that are missed by the learning

method.

6.5 A Human Study Comparison

The criteria for correctness employed in the comparative study of the previous

section were very strict: the phoneme and stress classes were required to match

exactly. A little thought shows that this is overly strict. Some phoneme errors

(e.g., substituting 1k! for /e/) are very serious, while others (e.g., substituting

Ix! for /@/) are virtually indistinguishable in the pronunciation of some words.

Similarly, some stress errors (e.g., substituting primary stress with no stress) are

generally much more serious than other stress errors (e.g., substituting primary

stress with secondary stress). Hence, while these comparisons are valuable, the

performance figures shown in the previous section do not give a good indication

of the quality of the speech produced by the learning systems relative to that

produced by DEC talk's rule-base.

In the next subsection, we present results of a different kind of comparative

5,574 458

(76 .97%) (6.32%)

1,047 163

(14.46%) 2.25%
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study: one in which the correctness criteria were relaxed to consider pronuncia-

tions that sound similar to human subjects. These results give further support to

the validity of the previous strict comparison and show that the machine learning

systems considered outperform the human-developed letter-to-sound rules incor-

porated in DECtalk's rule-base regardless of the correctness criteria employed.

6.5.1 Evaluations by Human Subjects: The procedure

In order to get a good indication of the quality of the speech produced by the learn-

ing systemsconsidered in this chapterrelative to that produced by DECtalk's

rule-base, we decided to let human subjects judge the "correctness" of the pronun-

ciation of each system when played through DECtalk's hardware.66

For each of the methods considered, three subjects were asked to compare how

close the pronunciation output by the methodfor each of the 1000 words in our

standard test setcompared with the correct (NETtallc dictionary) pronunciation.67

The subjects were allowed to listen to the correct (NETtalk dictionary) pronunci-

ation of each word followed by the method's pronunciation. Then, they were asked

to select among one of the following responses:

There is No difference between the two pronunciations, or,

There is a Noticeable difference between the two pronunciations, or,

There is a Serious difference between the two pronunciations, or,

The method's pronunciation is better than the dictionary pronunciation.

(Therefore, count the method's pronunciation as correct.)

66The DECtalk machine optionally allows passing the Klaffized format of the pronunciations

(see Section 6.1.1) of the words through the speech synthesis hardware, by-passing DECtalk's

dictionary and rule-base.
671f the method's pronunciation (phoneme/stress strings) matched the dictionary ezacily, the

word was aniomaiically considered correct.



167

Each of the three subjects was free to respond with any of the above, so the

responses had the form: 111, 122, 233, etc. Majority vote was taken, so that 122

would be counted as 2, 233 would be counted as 3, and so on.

The procedure described above would give us a basis for evaluating errors at

the word level but not at the individual phoneme, stress, or, letter levels. To get

a subjective evaluation of the performance at these lower levels of aggregation, we

extended the above experimental procedure to count the individual phoneme/stress

errors as follows:

If the word-response was 1 or 4, the Phonemes and Stresses corresponding

to All the letters of the word was taken as correct.

Otherwise (i.e. word-response was 2 or 3):

The method's phoneme/stress list was compared with the dictionary

phoneme/stress list to find ali the errors (differences). Then,

The dictionary phoneme/stress list was mutated with one error at a time

(either a phoneme or a stress error), and the resulting pronunciation was

presented to the subjects (through DECtalk's hardware as before) for

them to judge the seriousness of the particular phoneme or stress error.

Acceptable responses were the same as explained in the previous para-

gragh.

Table 77 illustrates the second and third steps of the above procedure, applied

to the pronunciation of the word "AFFIDAVIT". Note that in this example, the

subjects were asked to judge seven additional (hypothetical) pronunciations of

"AFFIDAVIT" in order to determine the severity of each of the seven individual

phoneme/stress errors within their present context.
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Table 77. Format of the pronunciations presented to human subjects (through DECtalk hard-

ware) for evaluating the individual phoneme/stress errors in the word "AFFIDAVIT".

6.5.2 Evaluations by Human Subjects: Results

Responses from the 3 subjects were gatheredas described in the previous section

for errors committed by each of the four methods on the 1000 words in our test set,

and for the individual phoneme/stress errors in the 7,242 corresponding letters in

these words. The results are compiled in Tables 78 and 79. Table 78 shows the per-

formance figures if an error is counted when the majority of the subjects' responses

was either 2 (noticeable difference) or 3 (serious difference). Table 79, on the other

hand, shows the performance figures if an error is counted only when the majority

of the subjects' responses was 3: serious difference. In both tables, the column

marked with "Direct Words Correct" shows performance figures directly computed

from the subjects' responses reflecting how close the method's pronunciation (for

the full word, of course) was to the correct pronunciation, independent from their

responses reflecting the seriousness of the individual phoneme or stress errors taken

in isolation. The other four columns, on the other hand, are all derived from the

subjects' responses reflecting the severity of the individual phoneme/stress errors

Pronunciation: Original Presented to Subjects

Pronunciation Source Phonemes Stresses Phonemes Stresses

Method: xf-Idxvlt ---1 xf-Idxvlt ---1
Dictionary: f-xdevxt 2----1--- f-xdevxt 2----1
Dict. + Error (1): xf-xdevxt 2----1

Dict. + Error (2): x-I f-Idevxt 2--"--1

Dict. + Error (3): e-x f-xdxvxt 2----1
Dict. + Error (4): x-I Cf-xdevlt 2----1
Dict. + Error (5): 2-- f-xdevxt 1---
Dict. + Error (6): ---1 f-xdevxt 2--i-i---
Dict. + Error (7): i-- t-xdevxt 2
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Table 78. Results of the human subject comparative study if an error is counted when the

majority of the subjects responses was either 2 (noticeable difference) or 3 (serious difference).

See text for details.

taken in isolation.

There are several things to note in Tables 78 and 79. First, comparing both

tables with Table 72 for the strict evaluation case, we find that the performance

of all the methods improves (by varying degrees) when the correctness criteria

are relaxed. However, the order of the performance of the methods relative to one

another remains essentially unchanged. Second, the methods that commit the most

mistakes arepredictably--the ones that benefit the most from the increasingly

more forgiving correctness criteria employed in these latter tables.

Next, let us focus our attention on the differences between the "direct words"

correctness figures and the word-level correctness figures computed from the sub-

jects' responses reflecting the severity of the individual phoneme/stress errors taken

in isolation. Note that these differences are more pronounced in Table 79 than in

Table 78. This is understandable, since multiple phoneme and/or stress errors in

the same word might interact in a manner that influences the subjects to decide

that the pronunciation of the word is seriously different from the correct pronun-

System

and

Configuration

Direct

Words

Correct

% correct (1000-word test set)

Level of Aggregation

Word Letter Phon. Stress

1D3 & Error

Correcting Codes

71.2 72.9 93.9 95.1 97.3

Wolpert & Error

Correcting Codes

56.7 61.2 92.1 94.4 95.8

Multiclass 1D3

(combined-ps)

57.0 60.6 90.9 93.2 95.6

DECtalk's

rule-base

55.7 58.5 90.1 91.7 96.5
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Table 79. Results of the human subject comparative study if an error is counted only when the

majority of the subjects responses was 3: serious difference. See text for details.

ciation. However, when each of the errors is listened to in isolation, the subjects

may judge all the individual errors as noticeable rather than serious.

Another puzzling observation is the stress level correctness figures in Table 79.

It is striking that the subjects hardly ever considered a stress error as serious,

contrary to the general notion held by domain experts. This could be partially

explained by the personal observation of the author that the subjects were ex-

tremely hesitantin generalto label errors as serious. Hence, it is the opinion

of the author that the performance figures shown in Table 78 are more credible

than those shown in Table 79. Another possible explanationfor the extremely

low serious stress errorsmight be due to the fact that only first order effects of

each error (in isolation) were being judged by the subjects. For the case of stresses,

this often meant judging the effect of having primary stress placed on the nucleus

of two syllables of the word instead of just one (see the row marked "Dict. + Error

(6)" in Table 77 as an example). This may not be as serious as shifting the primary

stress to a new syllable in the word.

System

and

Configuration

Direct

Words

Correct

% correct (1000-word test set)

Level of Aggregation

Word Letter Phon. Stress

1D3 & Error

Correcting Codes

83.3 85.3 97.6 97.7 99.8

Wolpert & Error

Correcting Codes

79.5 84.6 97.5 97.7 99.6

Multiclass 1D3

(combined-ps)

76.2 81.1 96.7 97.0 99.5

DECtalk's

rule-base

73.9 81.6 97.1 97.2 99.7



6.5.3 Inter-subject Agreement Data

* Example: 332 means two subjects responded with 3, and the third responded with 2.

To summarize, one can conclude that the results of the aboverather subjective

study give further support to the validity of the strict comparison presented in

earlier sections. They show that the machine learning systems considered outper-

form the human-developed letter-to-sound rules incorporated in DECtalk's rule-

base regardless of the correctness criteria employed. The effect of relaxing the

correctness criteria is to merely blur the differences between the methods, espe-

cially the differences between the learning systems.

171

Table 80. Breakdown of the individual subject responses when evaluating correctness at the

word level. Figures shown reflect the cumulative responses for all the four systems compared.

As with any study that involves human subjects, the data presented in the

Majority

Response

Individual

Response?

Actual

Count

% of

Total

% of all

2,088 Responses

(1) No difference:

1

1

1

111

112

113

426

68

0

86.2%

13.8%

0.0%

23.66%Total: 494 (100%)

(2) Noticeable difference:

2

2

2

221

222

223

87

505

131

12.0%

69.9%

18.1%

34.63%Total: 723 (100%)

(3) Serious difference:

3

3

3

331

332

333

2

114

755

0.2%

13.1%

86.7%

41.71%Total: 871 (100%)
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previous section are necessarily dependent (to some degree) on the particular sub-

jects involved in that study. To get an idea as to the extent of this dependency,

Table 80 shows the breakdown of the individual responses obtained from the three

subjects when evaluating correctness at the word level. The figures shown in the

table reflect the cumulative responses obtained for all the four systems compared.68

The results are encouraging. Out of the 494 responses that were classified as (1),

(i.e. no difference), 426 (86.2%) were by a unanimous decision. Similarly, out of

the 871 responses that were classified as (3), (i.e. serious difference), 755 (86.7%)

were by a unanimous vote.

The situation, however, is not so clear cut for responses classified as (2), (i.e.

noticeable difference). Only 505 of the 723 such cases (69.9%) were by a unanimous

decision. The rest (218 cases), by a vote of two out of three. In 131 out of these 218

cases (60.1% of the time), the third subject who disagreed thought that difference

is serious rather than noticeable, while in the remaining (39.9% of the 218 cases)

the subject who disagreed thought that difference is negligible.

It is interesting that there were no cases of the "113" response (two subjects

responding with "1", the third with a "3"), only 2 cases of "331", and only one

case of a "123" response (which was later changed to a "222"). Furthermore,

all the three subjects agreed on 1,686 responses69 out of 2,088 (80.7%). These

observations suggest that the results of the human study presented in the previous

section are fairly robust against variations caused by differences between individual

human subjects.

68The responses add up to 2,088 only instead of 4,000 (1000 words in our test set x 4 systems

compared with the dictionary). The "supposedly" missing 1,912 responses represent cases in

which the pronunciation output by each system was exactly matching that of the dictionary.

As explained in Section 6.5.1, these were by-passed and were automatically assumed to be

correct.

69426 + 505 + 755 from Table 80.
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6.6 Robustness of the Error-correcting Code Approach

An interesting point that is often raised by proponents of neural networks is the

networks' resistance to "brain damage" and the gradual degradation in perfor-

mance they exhibit as more and more of the weights are altered or "corrupted".

In this section we show that the same kind of behavior can be observed with 1D3

trees when error-correcting codes are employed to encode the classes.

For this experiment, we used our best performing configuration with the n =

127, d = 63 BCH error-correcting code employed in Section 6.4. To simulate "brain

damage", we would replace a portion of the 127-trees with a random number

generator that flips a coin to decide whether that bit is to be classified as 0 or

1. The portion that would be randomized was controlled by a parameter random-

portion. Which bit positions to randomize was also determined randomly. The

algorithm shown in Table 81 was used to return a bit-vector, i, of the same length

as the number of trees used. The classification routine would then check bit of

this bit vector ti to decide whether tree2 should be used to determine this bit (if

bit is 1 ii) or whether the bit should be randomized.

We employed the above procedure and incresed random-portion from 0.05 to

0.9 in steps of 0.5. The results are shown in Table 82 and graphed in Figure 7.

Notice that the performance holds fairly stable until about 50% of the trees are

randomized, then it starts declining. This is not surprising, since the particular

output code employed is capable of correcting errors in about one fourth of the

output bits, or 32 bits. Each randomized bit has a 50% chance of being correct,

so with 50% of the bits randomized, only one-fourth will be wrong. Hence the

code still performs fairly well. Beyond this point, a sharp drop in the performance

is observed, as it becomes impossible to correct for the overwhelming number of

output bits that are in error. While these results are completely predictable, they

show the extent to which error-correction could go should the individual bit-error

rates be truly independent from one another.



Table 81. Algorithm classify-or-randomize.

algorithm: classify-or-randomize

input: num-trees, random-portion

output: bit-vector of length num-trees

begin {classify-or-randomize }

Avg-num-irees-io-randomize := nnm-trees x random-portion

generate a bit-vector bit-vector of length ni.im-trees

for i = 1 to num-trees do

begin

set random-number = generate a random number

betweeen 0 and num-trees less 1

if random-number < Avg-num-trees-to-randomize then

set bit1 bit-vector of to 0; {randomize}

else

set bit1 bit-vector to 1; {classify}

end;

Return the bii-vector

end {classify-or-randomize }
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Figure 7. Performance of 1D3 and error-correcting codes when a certain portion of the trees is

randomized.
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Table 82. Effect of damaging various portions of the decision trees on the performance of er-

ror-correcting output codes.

Portion of

the trees

Randomized (%)

% correct (1000-word test set)

Level of Aggregation

Word Letter Phoneme Stress Bit (maen)

5 64.6 91.4 93.7 95.1 95.8

10 64.6 91.4 93.7 95.0 95.8

15 64.6 91.4 93.8 95.0 95.8

20 64.8 91.5 93.8 95.0 95.8

25 63.5 91.1 93.4 95.0 95.6

30 64.2 91.2 93.4 94.9 95.7

35 64.0 91.1 93.4 94.9 95.6

40 62.1 90.8 93.2 94.8 95.5

45 61.8 90.5 92.8 94.4 95.3

50 59.6 90.0 92.1 94.1 95.1

55 55.5 88.8 90.9 93.4 94.5

60 47.6 86.4 88.4 91.7 93.3

65 37.5 81.0 82.7 89.2 90.7

70 14.3 68.4 70.3 82.0 84.4

75 4.5 49.2 51.1 71.6 75.0

80 1.1 34.0 35.3 64.4 67.5

85 0.1 18.6 20.1 57.1 60.0

90 0.0 7.9 8.9 52.2 54.7



Chapter 7

Conclusions and Future Work

In Chapter 1 we formulated two objectives that we were striving to achieve at

the outset of this research: a main objective and a domain objective. The main

objective was to develop machine learning algorithms and/or techniques for the

task of learning discrete multi-valued functions from examples (multiclass learn-

ing); techniques that are general, efficient and outperform existing methods for this

task. The domain objective was the automatic generation of a high performance

rule base that can compete with current expert systems for the task of converting

isolated English words to strings of phonemes and stresses.

We have achieved both of these objectives.

The following two sections will address the contributions of this research to

both of the above tasks. Section 7.3 will then discuss several directions that can

be pursued for extending the work presented in this dissertation.

7.1 Multiclass Learning

A theme underlying this thesis has been that error-correcting output codes pro-

vide an excellent method for applying binary learning algorithms to multiclass

learning problems. In particular, we have demonstrated that the standard 1D3

algorithm coupled with error-correcting output codes outperforms the direct mul-

ticlass method, the one-per-class method, a domain-specific distributed output

177
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code (the Sejnowski-Rosenberg code), and the Wolpert method in the NETtalk

domain. These results were shown to hold regardless of the feature set employed

to encode the context in this domain.

Furthermore, in [Bakiri9la}, we show that error-correcting output codes also

improve performance in a very different domainthe isolated letter speech recog-

nition task [Cole9O, Lang9O]and with a quite different learning a1gorithm the

Backpropagation algorithm used to train connectionist networks. These additional

results suggest that error-correcting output codes provide a domain-independent,

algorithm-independent approach to multiclass learning problems.

We also demonstrated that codes generated at random can act as excellent

error-correcting codes. Indeed, random codes provide an attractive alternative

to BCH methods in practical applications. However, regardless of the method

employed to generate the code, it is important to ensure that no two columns of

the code are complementary.

We discussed several limitations of the error-correcting output coding technique

and demonstrated that, for it to be effective, errors in the individual bit positions

of the error-correcting codes employed should not be highly correlated with one

another. This explained why error-correcting codes offered only a marginal im-

provement when combined with the Wolpert method. The fact that all the bit

values of each output code are computed from the same four nearest neighbours

in the Wolpert method results in a high value for these bit-error correlations, ren-

dering the method ineffective.

Finally, we showed that the error-correcting code method is superior to the

approach of generating multiple hypotheses and employing some form of voting

among them.

Let us leave this section with the thought that error-correcting codes may

explain part of the success of biological neural networks. If these networks employ

distributed representations, some random way of generating the codes of such

representations is biologically plausible, and we have shown that such randomly



generated codes are in fact excellent error-correcting codes!

7.2 The Text-to-Speech Domain

For the task of mapping isolated English words to strings of phonemes and stresses

representing their pronunciations, we have demonstrated that machine learning

techniques can compete effectively with human-developed letter-to-sound rules.

The best machine learning system that we developed substantially outperformed

the expert-developed letter-to-sound rules incorporated in DECtalk7° in all the

comparative tests we performed. These tests included comparing performance

results at the phoneme, stress, letter and word levels of aggregation both when

the correctness criteria required a strict (exact) match and when the correctness

criteria were relaxed to consider pronunciations which differed but sounded similar

to human subjects. This is a significant finding (in our opinion), as it opens the

door to applying similar machine learning techniques to the task of discovering

pronunciation rules in other languages. We expect that only a few months would

be required to apply machine learning methods to build a text-to-speech system for

a new language. In contrast, we would expect that several years would be needed

to construct an expert rule-based system for each new language. One disadvantage

of the "rules" derived through machine learning techniques is that they are too

complex to be understandable by human experts.

In addition to our main contribution described above in the English text-to-

speech domain, other (smaller) contributions stem from the fact that during the

course of our investigations in this domain, we replicated the efforts of several

other researchers who had previously tackled this task, but we applied a uniform

yard-s tick to evaluate the effectiveness of the techniques they proposed and/or

employed. We replicated the original works reported in [Sej flows ki871, [Shavlik89],
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as DECtalk3.
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[Lucassen83}, and [Wolpert90c], but with all the systems trained with our standard

1000-word training set and tested on our standard (disjoint) 1000-word test set.

Some of our findings as a result of these replications will be described in the

following paragraphs.

Early in this project, we replicated the work of [Sejnowski87] and [Shavlik89]

and compared the performance of the 1D3 and the Backpropagation (BP) algo-

rithrns in this domain. In [Dietterich9oa,b} we investigated several possible sources

for the differences observed between 1D3 and BP, and concluded that the ability of

the numerical parameters in the BP network to capture statistical information

not captured by 1D3was the main reason for the observed differences in the

performance of BP and 1D3 in this domain. We showed that augmenting 1D3

with improved decoding strategies such as observed or block decoding brings the

performance of the two algorithms to nearly the same levels.

One weakness of the work reported in [Lucassen83] was that it presented the

performance results for one particular choice of input and output representations.

In our work, we reproduced their results (as closely as feasible) under standard con-

ditions that could be easily compared with other methods that we investigated.

We showed, for example, that their elaborate method for selecting "good" binary

features to represent the input was inferior to the simple choice of selecting a local

encoding (i.e. weight-i codes) for the letters, phonemes and stresses used as part of

the extended context. Similarly, we presented in Chapter 3 several higher perfor-

mance alternatives to the direct multiclass approach employed in their study. We

also showed that their decision to incorporate the phonetic context of the previous

letters in the context for the current letter actually hurt the performance of their

system when the left phonetic context was employed. On the other hand, we found

that their decision proved to be a judicious one when combined with processing

the letters of the words backwardsin a right-to-left sequence. Including the right

phonetic context in this manner offered a substantial improvement in the overall

performancemainly at the stress levelin this domain. This finding is consis-
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tent with what the linguists have suspected all along: that the stress patterns in

English words can best be described by rules that refer to certain properties of the

syllables of the words taken in a right-to-left order [Halle7l].

We also implemented Wolpert's method and found that Wolpert's claim that

his method outperformed Sejnowski's NETtalk were exaggeratedgiven the ex-

perimental data available to him at the time. On the other hand, we showed that

with the improved weights that we employed, his method did outperform the basic

1D3 algorithm and to a lesser extent the Backpropagation algorithm on this task.

Furthermore, we investigated several enhancements to the Wolpert method. First,

we showed that a good assignment for the required "weights" in the method could

be made by setting the weight for each letter position j in the w-letter window

equal to the mutual information between the letter at position j in the window and

the output (pronunciation of the current letter). Next we enhanced the method

by incorporating error-correcting codes on the output side and extended context on

the input side. We found that despite the superiority of the basic method over 1D3

in this domain, the Wolpert method was not able to utilize the extended context as

effectively as 1D3. It was also unable to capture the complex patterns required to

learn the stresses, andfor reasons briefly touched upon in the previous section

was marginally able to take advantage of the performance boost normally offered

by the error-correcting output code technique to other learning algorithms.

7.3 Future Work

There are several directions that can be pursued for extending the work presented

in this thesis. We will first cover (in the next section) several suggestions for future

work related to the general technique of applying error-correcting codes in the field

of machine learning. Next, in Section 7.3.2, we present several directions that can

be explored for improving the performance of machine learning algorithms in the

English text-to-speech domain. Future work in other related domains are briefly



considered in Section 7.3.3.

7.3.1 Error-correcting Codes

Despite the fact that error-correcting codes have long been applied in the commu-

nications field, their application in machine learning poses additional requirements

mainly because attention must be paid not only to the separation between the

codewords (i.e. rows of the codeword matrix) but also between the columns of

the codeword matrix, which correspond to the boolean concepts that need to be

learned. Having identical columns or even columns which are complimentary to

one another in the codeword matrix would result in errors that are 100% correlated

with one anotherthereby reducing the effectiveness of the error-correcting codes

employed.

Even though the BCH method we employed, for generating error-correcting

codes generate 2" codewords which do not have identical or complimented columns,

the process of selecting only a subset of these for coding the C classes that need

to be learned could potentially introduce the identical or complimented column

problem in the subset of the codewords selected. Coding theory techniques are

available that allow the generation of a specified number, C, of codewords with

good row and column separations. However, more work is needed to encapsulate

these ideas in a straight forward algorithm that could be readily employed by

machine learning researchers.

Another area that can be the subject of future investigation is determining the

"optimum" length for the codewords to be employed in any particular multiclass

learning situation. To tackle this problem, one has to have an idea about the aver-

age values for bit-error rates and inter-bit correlations. These could be measured

by preliminary tests on random codes generated for this purpose. The question

would then be: Given these values, how long a code will still improve performance?

A third area for future workon the application of error-correcting codes in the

text-to-speech domainis investigating the possibility of correcting single letter
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errors. In the communications field, there is a technique called block transmission

used for correcting burst errors during transmission.71 It would be intriguing to

come up with a similar technique for output encoding that will allow us to correct

for single letter errors within a wordthe letter in question corresponding to a

burst error. If successful, this scheme can then be combined with the normal error-

correcting coding techniques to come up with a code that combines the power of

correcting bit errors with that of correcting single letter errors. Another possible

approach to correcting single letter errors is to employ Reed-Solomon block codes

[Lin83].

Finally, employing error-correcting codes in machine learning applications has

proven to be extremely successful in the two domains that we have studied (Con-

verting English text to speech, and the the isolated letter speech recognition task)

and for two learning algorithms (1D3 and Backpropagation). Further work is

needed to extend this technique to other domains, and to employ it with other

known boolean learning algorithms.

7.3.2 The Text-to-Speech Domain

There are several directions that can be explored for further improving the perfor-

mance of learning systems on the task of converting English text to speech. In the

following discussion, we will first try to point out some of the special difficulties

encountered in this domain, and then we will propose some means of overcoming

these difficulties.

[Klatt87] points out three properties of the domain that present special chal-

lenges to inductive learning methods:

(1) the considerable extent of letter context that can influence stress

patterns in a long word (and hence affect vowel quality in words like

71A burst error is a transmission error that corrupts a sequence of consecuiive bits rather than

bit positions at random.



"photograph/photography"), (2) the confusion caused by some letter

pairs, like CII, which function as a single letter in a deep sense, and

thus misalign any relevant letters occurring further from the vowel,

and (3) the difficulty of dealing with compound words (such as "house-

boat" with its silent "e"), i.e., compounds act as if a space were hidden

between two of the letters inside the word.

Besides the above problems, several additional features are necessary to discriminat

alternative pronunciations of identical letter strings. These include grammatical

tense to distinguish between the two pronunciations of "read" for instance, and

the part of speech to select among the different pronunciations of "perfect" in "The

weather is perfect today" and "to perfect something".

Long-distance interactions pose a difficult problem for computationally expen-

sive learning algorithms such as Backpropagation, since capturing them presum-

ably requires a very wide window. This in turn requires a very large network

with many weights, and these will be much more difficult and time-consuming to

train. 1D3, on the other hand, scales very well as the number of irrelevant features

grows, so we have been able to apply it to much wider windows without problems.

General solutions to the other two problems mentioned by Dennis Klatt appear to

be quite challenging. Nevertheless, we will attempt to sketch below some possible

means of getting around these problems.

One technique to be pursued is to refine the block decoding method discussed in

[Hild9O, Dietterich9Oa, Dietterich9Ob]. As it is, the block decoding technique is not

compatible with extended context, since the latter requires that the pronunciations

for the previous letters be known before an attempt is made to pronounce the

current letter. Block decoding on the other hand delays the decoding phase, and

attempts to decode a group of letters together as a unit or a "block". To bring

these two conflicting methods together, we propose that blocks should be selected

carefully, perhaps around a vowel or vowel group (V), and only if treating the vowel
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as part of the larger group would further constrain the mapping of that vowel or

vowel group. Once a method is devised that can uniquely and unambiguously

breaks the words into their constituent blocks, these blocks can be then each be

treated as a unit which should alleviate the misalignment problem alluded to by

Klatt.

Another technique to be pursued is to learn first how to identify syllable bound-

aries, then employ these (along with the normal features) to learn the pronunci-

ations of the letters of the words. We started to work on this path, but found

that the syllable boundary information encoded in the NETtalk dictionary as part

of the stresses was not always correct. As a result, we were only able to learn

the syllable boundaries with an accuracy of 92.6% when trained on 19,002 words

(Syllable boundaries for 75.1% of the words in the 1000-word test set were guessed

completely right). We concluded that these accuracy figures were too low and

would degrade the performance of the next stage if it was based on these learned

syllable boundaries. We also decided that the encoding of syllable information in

the NETtalk dictionary needed to be double checked before a more serious attempt

at this technique is warranted.

A third directionthat we also pursued brieflyis to employ the knowledge of

the domain to define more complex features and present these as additional inputs

to the learning systems. Some of these additional attributes that we have had a

modest success with are:

One bit each to encode whether the word has a suffix which is normally

auto-stressed, pre-stressed-1, or pre-stressed-2. See [llalle7l] for details.

One bit to indicate if the center letter is a consonant between two vowels.

One bit to indicate if the word final is a doubled consonant. For this purpose,

"CK", "TCH", and "DGE" are considered doubled consonants.

One bit each to indicate if the center letter is the first (second) letter of a



doubled consonant.

Five bits to encode in unary the number of vowel groups in the word (up to

five allowed for).

Five bits to encode in unary the number of consonant groups in the word

(up to five allowed for).

Five bits to encode in unary the value of n, where n is such that the center

letter is the flhh vowel group from word-final.

We did not investigate the separate effects of each of these features, nor did we

employ them together with the additional features that we introduced in ExtCon-

text(7). However, these features are easy to compute, and they should be included

along with possibly others derived from the knowledge of the domain if they are

found to boost the performance of the learning methods.

A fourth direction that we have not yet pursued is to implement one of the pub-

lished methods for obtaining class probability estimates from decision trees. [Bun-

tine9O}, for example, presents an algorithm that provides fairly accurate probability

estimates at the leaves of a decision tree, rather than the simple binary outputs

that we employed. This could eliminate the need for "observed" decoding.

7.3.3 Other Domains

The impressive performance of the machine learning systems that we developed

for the task of English text-to-speech conversion should encourage researchers to

consider applying similar machine learning techniques to the task of discovering

pronunciation rules in other languages. It should also prompt them to consider

these techniques for tackling similar or related tasks such as the pronunciations of

proper names.
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Appendix A

A Brief Introduction to some Machine Learning
Algorithms

This appendix will give the reader a brief introduction to the 1D3, FRINGE, Per-

ceptron and the Backpropagation algorithms discussed primarily in Chapter 2.

A.1 The 1D3 Algorithm

1D3 is a learning algorithm of the TDIDT (Top-Down Induction of Decision Trees)

family [Quinlan86]. Given a subset of the learning examples (called the training

set), the algorithm constructs a decision tree that can then be employed to classify

all the examples of a particular concept. A learning example is a pair: (, v) where

is a vector of attributes: (x1, x2,.. . , x,)72 and v is the class associated with .

In the general case, the features x and the outcome v can be multivalued. For

simplicity, we will talk about a particular version of the 1D3-algorithm that applies

only to binary feature vectors and binary classes.
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72We will use a1,a2, .. . ,a to refer to the names of the attributes, and (x1,x2, .. .,x) to refer
to the vector of values for these attributes.
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Sketch of the 1D3 algorithm:

Function build-tree (fraining-sei)

INPUT: A fraining-sei of m training examples. Each example is a pair: (j, v) where xj is an

n dimensional binary attribute (feature) vector: (r1, x2,.. . , x,), zj e {O, 1} and v E {+, -}

giving the binary class associated with 1j. An example is called positive if v is +, and negative

otherwise.

OUTPUT: A (binary) decision tree.

The decision tree is formed recursively as follows:

begin { build-ree}

If the training-set consists only of positive examples then

output a leaf node marked +.

else if the training-set consists only of negative examples then

output a leaf node marked

else

Select one of the attributes a1, a2, .. . , a, to be at the root of the tree.

(The criterion for the selection will be detailed later.)

Call that attribute besi-a.

Divide the training-set to two sets:

The zero-set containing all examples that have a value of zero for attribute bes1-a.

The one-sei containing all examples that have a value of one for attribute best-a.

Mark attribute best-a as already used.

Let:

zero-set-subiree := build-tree(zero-sei)

on e-sei-subtree : build-tree( one-sei)

(Note that above are two recursive calls to build-tree)

Output a binary tree with besi-a as the root,

the zero-se-subtree as the left subtree, and

the one-set-sub free as the right subtree.

end. {build-tree}
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Figure 8 shows how a decision tree is built from a simple training set consisting of 6 examples

and 4 attributes: a1,...,a4.

We will now turn our attention to the criterion for determining which attribute should be

tested at the root of a (sub)tree and hence serve as the basis for further splitting the examples

reaching that node. This criterion in 1D3 is biased to select attributes that will lead to a smaller

decision tree. It is a heuristic, so 1D3 is not guaranieed to come up with the smallest possible

decision tree for a given set of training examples.

To detail the attribute selection criterion, we will consider some node in the tree with a set

of p positive and n negative training examples reaching that node. The uncertainty in the class

value to be assigned for that node is measured by the entropy function:

enfr(n,p) = log2 - 1og2

The above formula is intuitively appealing, since it assigns a maximum value (1) for class uncer-

tainty when the sample is split evenly between negative and positive examples (n = p), and a

minimum value (0) for the uncertainty when the sample consists of only one type of examples:

either positive (n = 0) or negative (p = 0).

1D3 selects the feature that provides the most information about the class value, i.e. the one

that minimizes the uncertainty in the class after the splitcalculated as the weighted average of

the entropies of the zero-set and the one-sei:

' fll+P1 entr(ni,pi)unc(a1) = t2oP0enfr(no,Po)+
n+J,

where

n, p = number of negative, positive examples in the training set reaching the node

= attribute being considered as a basis for the split

no, Po = number of negative, positive examples in the zero-set, and

fli, Pi = number of negative, positive examples in the one-set.

The uncertainty is calculated for all the attributes (not yet tested on the path from the root to

the current node) and the one that minimizes the uncertainty is selected as best-a.

Generalizations of the above attribute selection criterion to handle non-boolean classes and/or

non-boolean values for the attributes are found in [Breiman84, Pagallo88].
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Figure 8. An 1D3 example. Building a decision tree from 6 examples and 4 features: a1, , a4.



A.2 The FRINGE Algorithm

FRINGE is an algorithm that dynamically creates and uses new features defined as boolean

combinations of the original (primitive) features [Pagallo88]. The algorithm begins with a set V

of primitive attributes and employs 1D3 to build a decision tree for a set of training examples

expressed only in terms of the variables in V. Then, an ezirac-feature heuristic generates new

features as Boolean combinations of the variables that are tested in the nodes near the fringe of

the tree. This heuristic will be described in more detail below. The set of new features is added

to the variable set, V, and the training examples are augmented to include the newly defined

features. 1D3 is again called upon to build a decision tree using the expanded feature set, V.

The process is repeated until one of the following occurs:

No new features are defined by the extract-feature procedure, or

The decision trees output by 1D3 are identical for two successive iterations, or,

A predefined maximum number of iterations is reached, or,

A predefined maximum number of newly defined features is reached.

The ectrac-feaiure procedure takes as input a binary decision tree and outputs the set of newly-

defined features. It scans the tree, and, for every positive leaf 1 (at depth > 1 from the root), it

defines a new feature as a conjuncLion involving the variables tested at the parent node, p, and

the grand-parent node, g, of the leaf 1 as follows:

let v, and v0 be the test variables at nodes p and g respectively.

if I is on the right subtree of p and p is on the right subtree of g then

define vv9 as a new feature

else if 1 is on the right subtree of p and p is on the left subtree of g then

define as a new feature

else if 1 is on the left subtree of p and p is on the right subtree of g then

define i,v5 as a new feature

else 1 must be on the left subtree of p and p on the right subtree of g

define as a new feature.

(The above assumes that the decision tree adopts the convention that the left edge represents

the negative or 0 outcome of the variable tested at the node, and the right edge represents the

positive or 1 outcome.)

The procedure generates simple features at each step, but it adaptively assembles more

complex combinations of the attributes through the iterative process. So, the kt iteration may
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produce variables of size up to 21c The algorithm was conceived to solve the replication problem

in decision trees (The replication problem means that the same sequence of tests leading to a

positive leaf is replicated in the tree, making it unnecessarily large. See [Pagallo88] for a more

detailed description of this problem).

[Pagallo88] tested the FRINGE algorithm on various random boolean concepts in disjunctive

normal form (DNF), and found that it outperforms the standard decision tree learning algorithm

1D3 on those concepts. The algorithm is yet to be tested on real life domains to verify the

generality of these results. It should also be noted that FRINGE requires considerably more

computer resources (both space and time) than 1D3. This may render the algorithm impractical

for large tasks (e.g. the NETtalk domain).

A.3 The Perceptron Algorithm

The perceptron learning algorithm is a method for adjusting the weights of a single linear thresh-

old unit (Figure 9), so that it converges on the correct outputs for a set of training examples.

The output of each linear threshold unit (perceptron) is related to its input by the relation:

0p WIXpI -

where the the subscript p refers to a particular training example: (,, ti,),

ip = (x1, x2, .. . ,x,), x1 E {O, 1} being the feature vector part of the training example, and

e {O, 1} the desired output.

To handle the threshold, , cleanly, a new vector = {1, x1, x2,.. . , x,} is normally defined.

The weight vector ü will be a vector of real-valued weights of the same length as . The first

element in ü will then play the role of the threshold. A given r classify an example as positive

(Os, is considered 1) if i1. y, > 0, and negative (Or, is considered 0) otherwise.

The learning algorithm begins with all elements of ñ equal to zero. is then trained on all

the examples in the training set as follows: For each example, p, the vector is constructed

and the output, O, calculated as described above. If O, turned out the same as t, the target

or desired output, then no change to the weights are made. Otherwise, each component of the

weight vector, w,, is changed by the amount

= y(t - Op)



Figure 9. A linear threshold unit (perceptron).

where y is the corresponding element of ü, i = 1,. .. , (1 + n). The process is iterated until t

classifies all the training examples correctly, i.e. until convergence, or until a maximum number

of iterations is reached.

The above procedure performs gradient descent (i.e. hill climbing) in weight space in an

attempt to minimize the sum of the squares of the errors across all the training examples. It is

guaranteed to converge only if the data are linearly separable [Minsky88}.

A.4 The Backpropagation Algorithm

Many of the limitations of perceptrons can be overcome by multi-layer networks: Networks that

have one or more layer(s) of hidden units (in addition to the input and output layers). A hidden

unit is one that neither receives external input nor produces external output. These multi-layer

networks can learn much more complicated functions than networks that lack hidden units, but

the learning is generally much slower, because it must explore the space of possible ways of using

the hidden units [Hinton87].

Backpropagation (also called the generalized delta rule) {Rumelhart86] is the most popular

algorithm employed to train multi-layer Neural Networks, and it has been tested on several large-

scale problems [Sejnowski87, Tesauro89j. The algorithm uses gradient descent in an attempt to
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1 + e>-i

where wjj is the weight from unit i to unit j and 4'j is the threshold for unit j . The weights

for each unit are changed after the presentation of each example (input! output pattern) p by

back-propagating error measures layer by layer from the output back to the input according to

the following equations:

i±pWjj = 7)Si3Oi, + aJ.i,_1w1

where

= Oi,(1 - Oi,1)(ti,1 - Oi,) if j is an output unit, and

- Oi,) lk deltai,kwk1 if j is a hidden unit.

Note that the sum over k means the sum over all the units that unit j feeds into. ij is a

parameter called the learning rate73; a is a parameter called the momentum term constant74

which reduces fluctuations during hill climbing; ti,3 is the target output for output unit j for

pattern p; and 6i,j measures the error of the output of unit j for pattern p.

The training process is extremely expensive, since it requires many passes75 through the

training set, and all the weights in the network have to be updated for every single example in

every pass. The process is not guaranteed to converge, since the algorithm may get stuck at local

minima instead of the global minimum error state desired. However, work done on the NETtalk

domain shows that this does not seem to present serious problems in practice.

1
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minimize the sum of the squares of the errors across all of the training inputs. For the method

to work, the thresholding function of each unit must be smoothed so that it is everywhere

differentiable. The most common output function used is the sigmoid function presented below.

For each unit j, its output Oi,, for an input/output pair p is:

73A value of 0.25 is typically used for the learning rate in practice.

74A value of 0.9 is typically used for the momentum term constant in practice.

75Each pass is called an epoch. Up to 100 epochs have been used on the NETtalk task.



Appendix B

The 26-bit Code for Phoneme/Stress Pairs
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Sejnowski and Rosenberg developed the following distributed code for representing the phonemes
and stresses. The examples were supplied with their database.

Phmn Code
Phoneme Codeword Examples

Ia! 000010000000100100000 wAd, dOt, Odd

/b/ 000l00000001010000000 Bad

Ic! 00000100000000o0i0000 Or, cAUght

/d! 10000000000101 0000000 aDd

/e/ Ol0000000000i000i0000 Angel, blAde, wAy

/f! 00010001 0000000000000 Farm

/g! 000001000001010000000 Gap

/h/ OO100000i000000000000 Hot, WHo

lu 000i000000ooioi000000 Eve, bEe

/}' 000001 000001 000000000 Cab, Keep

/1/ 010000000100010000000 Lad

/mJ 0001 00000010010000000 Man, iMp

/n,' 100000000010010000000 GNat, aNd

1°! 001000000000100010000 Only, Own

IF! 000100000001000000000 Pad, aPt

In 000010000100010000000 Rap

/s/ 100000010000000000000 Cent, aSk

It! 100000000001000000000 Tab

/u/ 001000000000101000000 bOOt, OOae, yOU



203

PIxxiim Code
Phoneme Codeword Examples

fyI 000100010000010000000 Vat

fyI 000100001000010000000 We, liqUid

Iii 0000i00000000000i0000 pirAte, welcOme

fyi 0000i000l0000i0000000 Yes, senIor

/z/ 100000010000010000000 Zoo, goeS

/ A/ ii0000000000i000i0000 Ice, hEIght, EYe

IC! 0000101 00000000000000 CHart, Cello

/Dl 0i00000i00000i0000000 THe, moTHer

/E/ 010100000000000010000 mAny, End, bEAd

/G/ 000001000010010000000 leNGth, loNG, baNk

/1/ 000100000000001000000 gIve, bUsy, captAIn

/3/ 000010100000010000000 Jam, Gem

/K/ 000011110000000000000 aNXious, seXual

ILl 100000000100010000000 eviL, abLe

/1(/ 010000000010010000000 chasM

/N! 00001000001 001 0000000 shorteN, basiN

/0/ 100010000000100010000 011, bOY

/Qf 000101100001010000000 Quilt

Ia! 000001000100010000000 honeR, afteR, satyR

/S/ 000010010000000000000 oCean, wiSH

IT/ 010000010000000000000 THaw, baTH

/U/ 000001000000001000000 wOOd, cOUld, pUt

/11/ 000011000000101010000 oUT, toWel, hoUse

Ill 110000100000000000000 miXture, anneX

Ml 110100000000101000000 Use, fEUd, nEw

/Z/ 000010010000010000000 uSual, viSion

Ia! 010000000000000100000 cAb, plAId

I!! 010100100000000000000 naZi, piZZa

/*! 000011100000010000000 auXifiary, eXist

/*/ 100100001000010100000 WHat

f_I i00000000000000i00000 Up, sOn, blOOd

1+! 000000000000000000000 abattOir, mademOIselle

I-f 000000000000000001001 silence

/_/ 000000000000000001010 word-boundary

I .1 000000000000000000110 period



Here are the meanings of the individual bit positions:

The stress code actually encodes syllable boundary information as well as stresses.
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Bit Position Meaning

1 Alveolar = Centrall

2 Dental = Front2

3 Glottal = Back2

4 Labial = Fronti

5 Palatal = Central2

6 Velar = Backi

7 Aifricative

8 Fricative

9 Glide

10 Liquid

11 Nasal

12 Stop

13 Tensed

14 Voiced

15 High

16 Low

17 Medium

18 Elide

19 FullStop

20 Pause

21 Silent

Strs Code
Stress Codeword Meaning

10000 a consonant or vowel following the first

vowel of the syllable nudeus.

> 01000 a consonant prior to a syllable nucleus.

0 00010 the first vowel in the nucleus of

an unstressed syllable.

2 00100 the first vowel in the nucleus of a

syllable receiving secondary stress.

1 00110 the first vowel in the nucleus of a

syllable receiving primary stress.

- 11001 silence



Appendix C

Generating BCH Codewords

Below is the C program that we employed76 to generate the full set of 2' BCH

codewords, where k is the number of information bits. This routine takes as input

the values of n, k and t and the binary representation of the generator polynomial

and prints out the full set of codewords (See Appendix C in [Lin83} for details).

As an example, the input to the program for the case

ii k t Generator Polynomial (Octal)

31 6 7 313365047

will be as follows:

31 6 7

11 001 011 011 110 101 000 100 111

Note that the left most zero introduced when 313365047 was converted from octal

to binary was omitted from the input to the program.

76\re thank Dr. Sulaiman Al-Bassam for providing us with this C routine.

205



mt g[20] [1025]. cword[1025];

mt n,k,d,r,i,j ,twok,x,y,t,count;

main()

{

printfC'Enter n k and t > ");

scanfC'%d '/.d %d",&n,&k,&t);

r=n-k; d2*t+1;

prmntfC'Enter the generator polynomial of degree %d --> ",r);

for (1=0; i<=r; i++) scant C'%d",&g{O][i]);

for (1=1; i<k; i++) for (ji; j<k+r; j++) g[i][j] = g[i-1][j-1];

printfC';;k = %d r = %d and d = Id \n",k,r,d);

printf("(setq *distant-codes-k=%d--d=%d-r4d* (\n",k,d,r);

for (i=0, twok=1; i<k; i++) twok 2*twok;

for (x=0; x<twok; x++) { /* generate all 2**k words *1

printfC'(#%d*" ,k+r);

for (j=0; j<k+r; j++) {

yx;

for (cword[j]=0, 1=0; i<k; i++, y = y>>l) {

cword[j] = cword[j] ((y&1) && g[i][j]);

}

prmntf("°hd" ,cword[j]);

}

printf(")\n");

}

printf("))\n"),

}

206



Appendix D

Feature Sets Defined by the Method of Mercer
& Lucassen

This appendix presents the feature sets defined by the information theoretic ap-

proach of Mercer & Lucassen (discussed in Section 4.2.1) for the current letter, the

letter to the left, the letter to the right, the phonemes corresponding to letters to

the left of the current letter, and, the stresses corresponding to letters to the left

of the current letter.
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Table 83. Values for binary features (questions) about the current letter, the letter to the

left and the letter to the right, defined by the information theoretic approach adopted from

[Lucassen83]. Values shown for the last 2 rows (the last three rows for the current letter) were

assigned arbiirarily since these symbols did not appear in our data set.

Letter

or input
Letter to the left Current Letter Letter to the right

QLL1 through QLL6 QL1 through QL6 QLR1 through QLRS

symbol 1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 6 7 8

A 0

B 0

C 0

D 1

E 0

F 1

G 1

H 0

I

J 0

K 1

L 0

M 1

N 0

0 0

p 1

Q 1

R 1

S 0

T 0

U 0

V 0

w 1

x 0

Y 0

z 0

1

I

1
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Table 84. Values for binary features (questions) about the phonemes corresponding to letters

to the left of the current letter, defined by the information theoretic approach adopted from

[Lucassen83}. Values shown for ".", "Q" and "M" were assigned arbitrarily since these symbols

did not appear in our data set.

Phon.

QP1 through QP1O

1 2 3 4 5 6 7 8 9 1010111 0010 1
* 11 001 1010 1
* 1 1 10001 10 1

+ 1 1 1000000 1
- 00001 1010 1
@ 01 0010100 0
A 01 1001011 0
C 1100011 10 1

D 1 1 1000101 1
E 01001 1000 0
G 01 011 0000 1
I 01 0000000 0
J 11 0101011 1
K 11 0000010 1
L 1 1 00001 00 1

N 1 1 1 1 1 0 0 1 1 1

0 11 1000000 0
It 01 1001001 0
S 1 1 0001010 1
T 1 1 10001 11 1

U 01 0100000 0
W 1 1 1000001 1
I 10101001 1 1

Y 01 1001 1 11 0

Z 1 1 0000000 101 001 0000 01 0011 0011 0

QP1 through QP1O

Phon. 1 2 3 4 5 6 7 8 9 10

a 01001 1 100 0
b 1 1001011 0 1

c 010101 000 0
d 1 10010000 1
* 01101001 1 0110010100 1
g 1 1001111 1 1

h 1 1010001 1 1

1 1 11101 01 1 0

k 1 1001 1 001 1

1 110111 011 1
m 110101 11 1 1

n 1 11 111011 1
o 011000000 0
p 1 10010111 1
r 1 1011001 1 1

s 1 1 1 01001 1 1

t 1 10010001 1
u 1 1100001 1 1

v 1 1001001 1 11 1010011 1 1

x 0 1 1 1 1 0 000 0
y 001 010001 1
z 1 11 001 000 1000000000 0
Q 1 1 1 1 1 1 11 1 1

N 000001 11 1 1
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Table 85. Values for binary features (questions) about the stresses corresponding to letters

to the left of the current letter, defined by the information theoretic approach adopted from

{Lucassen83].

Stress

symbol QS1 QS2 QS3 QS4

- 1 0 0 0

0 0 0 0 0

1 0 0 1 1

2 0 0 1 0

< 0 1 1 1

> 1 1 0 0



Appendix E

Mutual Information Data

This appendix presents the values for the weights employed in the various configu-

rations of the Wolpert method employed in Chapters 5 and 6. Table 86 shows the

original set of weights that Wolpert arrived at through cross-validation techniques.

Tables 87 through 92 show the mutual information weights when full stresses are

employed (Chapter 5), while Tables 93 through 98 present the mutual information

weights when simplified stresses are employed (Chapter 6).
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Table 86. The "best" set of weights that Wolpert arrived at through cross-validation techniques.

Letter

position

i

Which

side

Wolpert's

Weights

-3 Letters 1.0

-2 to the 1.0

-1 Left. 2.0

0 Current Letter 5.0

+1 Letters 2.0

+2 to the 1.0

+3 Right. 1.0
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Table 87. Mutual information data between the letters i positions away from the current letter

(in a 15-letter window) and the output class of the current letter. Three values are shown for each

letter position corresponding to the output being considered as phoneme/stress pairs, phonemes

only or stresses oniy.

Letter

position

i

Which

side

Output Considered

Phoneme!

Stress pairs

Phonemes

Only

Stresses

Only

-7 0.210421 0.120230 0.065382

-6 Letters 0.272027 0.146963 0.074936

-5 to 0.321749 0.172124 0.091272

-4 the 0.394367 0.209157 0.111120

-3 Left. 0.472386 0.258011 0.132691

-2 0.646019 0.361062 0.203981

-1 1.175573 0.799755 0.561864

0 Current Letter 3.387800 3.250498 0.788493

+1 1.352364 0.937440 0.506969

+2 0.787762 0.439971 0.300070

+3 Letters 0.536494 0.279319 0.186361

+4 to 0.402002 0.211752 0.105923

+5 the 0.316185 0.169647 0,072892

+6 right 0.256352 0.136780 0.055075

+7 0.205849 0.109149 0.046244



213

Table 88. Mutual information data between phonemes corresponding to letters i positions away

from the current letter (in a 15-letter window) and the output class of the current letter. Three

values are shown for each phoneme position corresponding to the output being considered as

phoneme/stress pairs, phonemes only or stresses only.

Phoneme

position

i

Which

side

Output Considered

Phoneme!

Stress pairs

Phonemes

Only

Stresses

Only

-7 0.238805 0.142476 0.070655

-6 Phonemes 0.318173 0.182300 0.084393

-5 to 0.392106 0.221002 0.103524

-4 the 0.490989 0.275235 0.130538

-3 Left. 0.626356 0.351652 0.171562

-2 0.860354 0.510260 0.282594

-1 1.473031 1.017784 0.633474

0 Current Phoneme 4.744520 4.744520 1.021150

+1 1.537205 1.038414 0.638245

+2 0.923165 0.529978 0.346896

+3 Phonemes 0.658606 0.350298 0.218635

+4 to 0.484380 0.268148 0.121293

+5 the 0.385824 0.217712 0.088757

+6 right 0.308311 0.175743 0.066142

+7 0.229530 0.129057 0.054136
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Table 89. Mutual information data between sfresses corresponding to letters i positions away

from the current letter (in a 15-letter window) and the output class of the current letter.

Three values are shown for each stress position corresponding to the output being considered

as phoneme/stress pairs, phonemes only or stresses only.

Stress

position

i

Output Considered

Which

side

Phoneme/

Stress pairs

Phonemes

Only

Stresses

Only

-7 0.140473 0.074596 0.058028

-6 Stresses 0.184422 0.091415 0.082377

-5 to 0.223616 0.111539 0.106448

-4 the 0.273866 0.138958 0.117482

-3 Left. 0.346596 0.180724 0.140518

-2 0.485113 0.252028 0.249313

-1 0.968124 0.589386 0.692403

0 Current Stress 2.074696 1.021150 2.074696

+1 1.046594 0.606069 0.693227

+2 0.569097 0.270679 0.312549

+3 Stresses 0.385126 0.180858 0.189079

+4 to 0.252142 0.122241 0.098607

-1-5 the 0.199157 0.095190 0.078622

+6 right 0.151356 0.072373 0.051641

+7 0.111284 0.053625 0.033957
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Table 90. Mutual information data between the features L11 and L12 for letters i positions

away from the current letter (in a 15-letter window) and the output class of the current letter.

Three values are shown for each letter position corresponding to the output being considered as

phoneme/stress pairs, phonemes only or stresses only. See Section 5.3.5 for a definition of L11

and L12.

Letter Output Considered As

position Which Phoneme Stress pairs Phonemes Only Stresses Only

i side L12 L11 L12 L11 L12

-7 0.061863 0.033022 0.031072 0.017257 0.031461 0.014327

-6 Letters 0.077281 0.033928 0.035753 0.017211 0.037114 0.014980

-5 to 0.085919 0.040848 0.044834 0.019882 0.044247 0.017444

-4 the 0.087428 0.047375 0.040088 0.025401 0.038871 0.020913

-3 Left. 0.092152 0.049317 0.050462 0.024385 0.043900 0.010816

-2 0.136013 0.072339 0.057989 0.048807 0.070843 0.015248

-1 0.420121 0.289716 0.319242 0.183141 0.266210 0.220013

0 Current Letter 0.897993 0.631529 0.837232 0.573052 0.681713 0.329940

+1 0.399681 0.254041 0.324966 0.181176 0.195822 0.144907

+2 0.197969 0.108871 0.084425 0.078051 0.111343 0.015793

+3 Letters 0.114572 0.071465 0.060366 0.024901 0.052148 0.034427

+4 to 0.078823 0.053513 0.038132 0.023958 0.026511 0.023982

+5 the 0.070426 0.042731 0.037442 0.020840 0.029431 0.011622

+6 right 0.054394 0.033882 0.031173 0.016252 0.017838 0.009252

+7 0.042467 0.032320 0.018417 0.018836 0.014560 0.010512
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Table 91. Mutual information data between the feature P11 for phonemes corresponding to

letters i positions away from the current letter (in a 15-letter window) and the output class of

the current letter. Three values are shown for each letter position corresponding to the output

being considered as phoneme/stress pairs, phonemes only or stresses only. See Section 5.3.5 for

a definition of P11.

Phoneme

position

i

Output Considered

Which

side

Phoneme!

Stress pairs

Phonemes

Only

Stresses

Only

-7 0.011187 0.005593 0.003174

-6 Phonemes 0.014898 0.008119 0.004667

-5 to 0.017848 0.007130 0.006853

-4 the 0.024507 0.014363 0.008630

-3 Left. 0.031864 0.015795 0.005873

-2 0.052141 0.033388 0.018055

-1 0.078337 0.048753 0.033503

0 Current Phoneme 0.505651 0.505651 0.193877

+1 0.154284 0.089839 0.109193

+2 0.055195 0.031707 0.007973

+3 Phonemes 0.026438 0.012418 0.001859

+4 to 0.026561 0.016432 0.005193

+5 the 0.019775 0.009690 0.004418

+6 right 0.021173 0.008527 0.006003

+7 0.014605 0.006146 0.004171
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Table 92. Mutual information data between the features Sjj and S12 for sfresses corresponding

to letters i positions away from the current letter (in a 15-letter window) and the output class of

the current letter. Three values are shown for each letter position corresponding to the output

being considered as phoneme/stress pairs, phonemes only or stresses only. See Section 5.3.5 for

a definition of S11 and 5/2.

Letter

position Which

Output Considered As

Phoneme Stress pairs Phonemes Only Stresses Only

i side 5/1 Sj Sji S12 Sji 5/2

-7 0.041196 0.025943 0.021231 0.014170 0.018117 0.010343

-6 Stresses 0.042750 0.030482 0.021518 0.015627 0.020512 0.009820

-5 to 0.048827 0.033764 0.024015 0.017105 0.020890 0.011564

-4 the 0.064772 0.051740 0.037468 0.029208 0.029045 0.017982

-3 Left. 0.066380 0.085730 0.031511 0.038516 0.017577 0.033095

-2 0.100676 0.118852 0.072824 0.083446 0.020557 0.056947

-1 0.374650 0.280030 0.217383 0.125936 0.292535 0.211813

0 Current Stress 0.931302 0.689304 0.736214 0.488113 0.931302 0.689304

+1 0.511399 0.347710 0.286095 0.166143 0.400033 0.294165

+2 0.124193 0.097700 0.074989 0.056482 0.011864 0.032351

+3 Stresses 0.077051 0.038706 0.038072 0.017718 0.024235 0.005831

+4 to 0.069031 0.032249 0.037639 0.021100 0.025004 0.007082

+5 the 0.050129 0.027898 0.025220 0.014402 0.014294 0.009311

+6 right 0.038508 0.028228 0.017021 0.009439 0.013430 0.012100

+7 0.031345 0.015665 0.014709 0.006930 0.011386 0.005216
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Table 93. Mutual information data between the letters i positions away from the current letter

(in a 15-letter window) and the output class of the current letter when simplified siresses are

employed. Three values are shown for each letter position corresponding to the output being

considered as phoneme/stress pairs, phonemes only or stresses only.

Letter

position

i

Which

side

Output Considered

Phoneme!

Stress pairs

Phonemes

Only

Stresses

Only

-7 0.144952 0.120230 0.021559

-6 Letters 0.189612 0.146963 0.022161

-5 to 0.231189 0.172124 0.034464

-4 the 0.282440 0.209157 0.042405

-3 Left. 0.342375 0.258011 0.046520

-2 0.445944 0.361062 0.052500

-1 0.885255 0.799755 0.162515

0 Current Letter 3.295792 3.250498 0.295007

+1 1.027048 0.937440 0.129404

+2 0.541750 0.439971 0.091921

+3 Letters 0.351334 0.279319 0.033402

+4 to 0.280576 0.211752 0.026638

+5 the 0.225033 0.169647 0.011880

+6 right 0.187223 0.136780 0.012363

+7 0.155412 0.109149 0.017902
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Table 94. Mutual information data between phonemes corresponding to letters i positions away

from the current letter (in a 15-letter window) and the output class of the current letter when

simplified sfresses are employed. Three values are shown for each phoneme position corresponding

to the output being considered as phoneme/stress pairs, phonemes only or stresses only.

Phoneme

position

i

Which

side

Output Considered

Phoneme!

Stress pairs

Phonemes

Only

Stresses

Only

-7 0.168572 0.142476 0.023400

-6 Phonemes 0.227810 0.182300 0.026309

-5 to 0.285919 0.221002 0.039142

-4 the 0.358774 0.275235 0.049240

-3 Left. 0.447846 0.351652 0.057021

-2 0.606616 0.510260 0.090379

-1 1.103489 1.017784 0.173562

0 Current Phoneme 4.744520 4.744520 0.495562

+1 1.142475 1.038414 0.177778

+2 0.637798 0.529978 0.116034

+3 Phonemes 0.444175 0.350298 0.043911

+4 to 0.348521 0.268148 0.035083

+5 the 0.286341 0.217712 0.020079

+6 right 0.234836 0.175743 0.019206

+7 0.176188 0.129057 0.020552
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Table 95. Mutual information data between stresses corresponding to letters i positions away

from the current letter (in a 15-letter window) and the output class of the current letter when

simplified stresses are employed. Three values are shown for each stress position corresponding

to the output being considered as phoneme/stress pairs, phonemes only or stresses only.

Stress

position

i

Output Considered

Which

side

Phoneme!

Stress pairs

Phonemes

Only

Stresses

Only

-7 0.025167 0.021979 0.004770

-6 Stresses 0.035141 0.025947 0.009218

-5 to 0.044225 0.026839 0.017224

-4 the 0.060901 0.036770 0.019946

-3 Left. 0.065243 0.043957 0.019687

-2 0.117843 0.092358 0.043098

-1 0.144014 0.134001 0.058652

0 Current Stress 0.835408 0.495562 0.835408

+1 0.180948 0.172494 0.053384

+2 0.085050 0.063808 0.021168

+3 Stresses 0.048548 0.027724 0.007624

+4 to 0.040354 0.026672 0.011921

+5 the 0.036561 0.017261 0.014226

+6 right 0.029850 0.013466 0.010800

+7 0.015277 0.010288 0.002167
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Table 96. Mutual information data between the features L11 and L12 for letters i positions away

from the current letter (in a 15-letter window) and the output class of the current letter when

simplified stresses are employed. Three values are shown for each letter position corresponding

to the output being considered as phoneme/stress pairs, phonemes only or stresses only. See

Section 5.3.5 for a definition of L11 and L12.

Letter Output Considered As

position Which Phoneme Stress pairs Phonemes Only Stresses Only

i side L11 L12 L12 L12

-7 0.038826 0.020788 0.031072 0.017257 0.008585 0.004627

-6 Letters 0.049083 0.022863 0.035753 0.017211 0.011715 0.004024

-5 to 0.062508 0.027236 0.044834 0.019882 0.016039 0.007193

-4 the 0.056164 0.035366 0.040088 0.025401 0.013555 0.007429

-3 Left. 0.069644 0.030348 0.050462 0.024385 0.018528 0.003467

-2 0.062380 0.060176 0.057989 0.048807 0.005661 0.006782

-1 0.331755 0.190556 0.319242 0.183141 0.107688 0.073356

0 Current Letter 0.844558 0.594100 0.837232 0.573052 0.274116 0.105774

+1 0.337031 0.186358 0.324966 0.181176 0.096008 0.033595

+2 0.102362 0.089928 0.084425 0.078051 0.007612 0.014406

+3 Letters 0.067439 0.038467 0.060366 0.024901 0.001304 0.008609

+4 to 0.052512 0.028563 0.038132 0.023958 0.006167 0.000441

+5 the 0.043314 0.030022 0.037442 0.020840 0.002085 0.000965

+6 right 0.036879 0.022974 0.031173 0.016252 0.000624 0.001615

+7 0.025841 0.026876 0.018417 0.018836 0.001887 0.004260
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Table 97. Mutual information data between the feature P11 for phonemes corresponding to

letters i positions away from the current letter (in a 15-letter window) and the output class of

the current letter when simplified stresses are employed. Three values are shown for each letter

position corresponding to the output being considered as phoneme/stress pairs, phonemes only

or stresses only. See Section 5.3.5 for a definition of Pji.

Phoneme

position

i

Which

side

Output Considered

Phoneme/

Stress pairs

Phonemes

Only

Stresses

Only

-7 0.007030 0.005593 0.000720

-6 Phonemes 0.010451 0.008119 0.001089

-5 to 0.011639 0.007130 0.001963

-4 the 0.020811 0.014363 0.003632

-3 Left. 0.020506 0.015795 0.003684

-2 0.042164 0.033388 0.006898

-1 0.051296 0.048753 0.016073

0 Current Phoneme 0.505651 0.505651 0.127744

+1 0.091985 0.089839 0.024259

+2 0.039340 0.031707 0.001018

+3 Phonemes 0.017526 0.012418 0.000204

+4 to 0.019370 0.016432 0.001616

+5 the 0.012327 0.009690 0.000306

+6 right 0.013483 0.008527 0.001183

+7 0.008678 0.006146 0.000715
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Table 98. Mutual information data between the feature S11 for siresses corresponding to letters

i positions away from the current letter (in a 15-letter window) and the output class of the

current letter when simplified stresses are employed. Three values are shown for each letter

position corresponding to the output being considered as phoneme/stress pairs, phonemes only

or stresses only. See Section 5.3.5 for a definition of S11.

Phoneme

position

i

Which

side

Output Considered

Phoneme!

Stress pairs

Phonemes

Only

Stresses

Only

-7 0.016550 0.014170 0.003534

-6 Stresses 0.019564 0.015627 0.000995

-5 to 0.024799 0.017105 0.004791

-4 the 0.045358 0.029208 0.011276

-3 Left. 0.057404 0.038516 0.017514

-2 0.108265 0.083446 0.042774

-1 0.135776 0.125936 0.058599

0 Current Stress 0.689304 0.488113 0.689304

+1 0.174464 0.166143 0.053094

+2 0.073258 0.056482 0.018132

+3 Stresses 0.029009 0.017718 0.001878

+4 to 0.025021 0.021100 0.001905

+5 the 0.022413 0.014402 0.003468

+6 right 0.019805 0.009439 0.004505

+7 0.010880 0.006930 0.001050


