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Abstract: 

 We report zero kinetic energy (ZEKE) photoelectron spectroscopy via resonantly 

enhanced multiphoton ionization (REMPI) for benzo[e]pyrene. Extensive vibronic coupling 

between the first electronically excited state and a nearby state allows b2 symmetric modes to be 

observed which would normally be Franck-Condon (FC) disallowed. These vibronic modes are 

comparable in intensity to the FC allowed a1 modes. Gaussian 09 is able to qualitatively simulate 

the vibronic spectra of the REMPI and the ZEKE experiment using density functional methods.  

The ZEKE spectra demonstrate propensity in preserving the vibrational excitation of the 

intermediate electronic state. These results suggest a remarkable structural stability of BeP in 

accommodating the additional charge.  
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Introduction 

 Polycyclic aromatic hydrocarbons (PAHs) are a group of molecules that are observed in 

pollution, in comet tails, and possibly in the interstellar medium.  In biology, PAHs are lipophilic 

and many are known carcinogens.[1-3] In astrobiology, it has been hypothesized that PAHs could 

be related to the origin of life by forming the first primitive organic molecules including amino 

acids in the pre-DNA world.[4-6] In astrophysics, PAHs have been observed in a wide range of 

galactic and extragalactic environments.[7-8]  They are considered responsible for a range of 

spectroscopic absorption and emission features, and hence their rovibronic quantum states have 

substantial implications to the energy balance in the universe.[9-16]  

Many spectroscopic studies of neutral and cationic PAHs have been motivated by 

astrophysical modeling.[17-24]  Both the infrared and visible/ultraviolet regions have been 

extensively investigated using photoionization spectroscopy, cavity ringdown, as well as infrared 

absorption and emission spectroscopy techniques.[18, 25-29] The far-infrared (FIR) region has 

been largely untouched because of issues related to the detector sensitivity and light source 

intensity. On the other hand, the FIR region is occupied by skeletal vibrations of the molecular 

frame, and it is considered the “finger-print region” for spectroscopic identification of 

astrophysical PAHs.  

The technique of zero kinetic energy (ZEKE) photoelectron spectroscopy offers an 

indirect solution to the challenges in the FIR for laboratory astrophysics.[30] In recent years, we 

have undertaken the mission of mapping out the low frequency vibrational modes of PAHs using 

ZEKE spectroscopy.[31-36]  So far we have reported 3 peri-condensed species including pyrene, 

benzo[a]pyrene (BaP), benzo[g,h,i]perylene (BghiP), and 3 cata-condensed species including 

tetracene, pentacene, and chrysene.[31-36] In this report, we investigate the vibronic spectra of 



benzo[e]pyrene, an isomer of BaP as shown in the inset of Figure 1. While the highly 

carcinogenic isomer BaP has been extensively investigated previously,[36-41] BeP has only been 

reported in a few studies.[21, 42-43] We use resonantly enhanced multiphoton ionization 

(REMPI) to probe the vibronic structure of the first excited electronic state S1, and the ZEKE 

technique to probe the skeletal modes of the cationic state D0.  Additional insights can be 

obtained from comparisons with other PAHs and theoretical calculations.     

 

Experimental setup 

The experimental apparatus is a differentially pumped molecular beam machine, with the 

detection chamber enclosed inside the source chamber.[32, 44]  A time-of-flight mass 

spectrometer in the detection chamber also serves as the pulsed field ionization zero kinetic 

energy photoelectron spectrometer. The sample benzo[e]perylene (Aldrich) was housed and 

heated to 260 ºC in the pulsed valve located in the source chamber to achieve sufficient vapor 

pressure. The vapor was seeded in 400 torr of argon and co-expanded into vacuum through a 

pulsed valve with a 1 mm orifice.  After passing through a 2 mm skimmer, the cooled sample 

reached the detection chamber for laser excitation and ionization. The laser systems for the 

REMPI experiment included two Nd:YAG (Spectra Physics, GCR 190 and GCR 230) pumped 

dye lasers (Laser Analytical System, LDL 20505 and LDL 2051), both equipped with frequency 

doublers. The excitation laser in the 370 - 350 nm range had a typical pulse energy of > 1.0 

mJ/pulse with a bandwidth of 0.5 cm
-1

. The ionization laser in the 300 - 309 nm range had a 

pulse energy of ~1 mJ/pulse with a bandwidth of 0.3 cm
-1

. The absolute wavelength of each laser 

was calibrated using an iron hollow-cathode lamp filled with neon. The pump laser and 

ionization laser were set to counter-propagate, and the light path, the flight tube, and the 



molecular beam were mutually perpendicular. Two delay generators (Stanford Research, DG 

535) controlled the timing of the lasers, and the optimal signal was obtained under temporal 

overlap between the pump and ionization lasers. In the ZEKE experiment, molecules were 

excited to high Rydberg states for 600 ns in the presence of a small constant DC spoiling field, 

after which ionization and extraction were achieved by a pulsed electric field of ~2 V/cm.  

The Gaussian 09 suite [45]was used to optimize the molecular structure, to obtain 

vibrational frequencies, and to simulate the observed vibronic structures from REMPI and 

ZEKE.[45]  For the ground state of the neutral and the cationic state, density functional theory 

(DFT) calculations using the B3LYP functional were performed with the 6-311G basis set. The 

excited state S1 was calculated using both time dependent density functional theory (TD-DFT) 

with the B3LYP functional and the 6-311G basis set and the configuration interaction singles 

(CIS) with the 6-31G basis set. Details of the calculations will be provided in the following.  

 

Results 

Two-color 1+1’ REMPI spectroscopy 

The 1+1’ REMPI spectrum was collected near the origin of the S1 ← S0 electronic 

transition of BeP and is displayed in Figure 1. The ionization laser was set at 33,000 cm
-1

 and 

was temporally and spatially overlapped with the scanning resonant laser.  The origin was 

observed to be 26,983 ± 5 cm
-1

, which is 9 cm
-1

 higher than the origin reported by Misawa et. al. 

(no uncertainty was reported in this reference).[43] The other observed vibronic transitions are 

listed in Table I, with the labeling scheme following the Herzberg convention. For clarity, the 

molecular axes have been included in an inset of the figure. 

Based on our previous experience, PAHs are prone to vibronic coupling.[32-36, 44]  



Fortunately, Gaussian 09 incorporates a new feature of Herzberg-Teller (HT) coupling, which in 

general, yields outstanding accuracy in transition frequencies and vibrational intensity 

distribution. Figure 2 shows the comparison of calculation results with the experimental 

spectrum.  Given the possibility of order switching in the calculated electronic states,[33-36, 46-

48] we performed two calculations, one to the putative S1 (A1) state with the keyword root = 1 

and the other to the putative S2 (B2) state with root = 2.  Both were at the B3LYP/6-311G level 

for the excited electronic state.  In Fig. 2, the transition to the S1 (A1) state is clearly a better 

match to the experimental spectrum, with a diminished origin band and an intense cluster of 

bands at ~ 750 cm
-1

.  The calculation for the S1 (A1)  S0 (A1) transition also states that the 

oscillator strength derives from the near degenerate pairs of LUMO  HOMO-1 and LUMO+1 

 HOMO, where HOMO and LUMO represent the highest occupied molecular orbital and the 

lowest unoccupied molecular orbital respectively.  The transition to the S2 state, on the other 

hand, is of LUMO  HOMO in nature. 

While the agreement between calculation and experiment is not quantitative, it is good 

enough for a general guidance regarding vibrational assignment.  In Table I and Fig. 1, most 

bands are assigned as a1 or b2 modes of the C2V point group, and the presence of the latter modes 

is a pure result of vibronic coupling with the nearby S2 (B2) state.  The current assignment further 

results in a scaling factor of 0.973 for the theoretical frequencies.  Overall the spectrum has a 

weak origin band, and the relative intensities of the Franck-Condon (FC) allowed a1 bands and 

the FC forbidden but vibronic allowed HT bands are similar.   

Assignment of the vibronic structure is straightforward for the first few low frequency 

modes, but high energy bands are problematic.  The cluster of peaks at 750 cm
-1

 is challenging to 

assign for several reasons. The theoretical calculation could only reproduce the first two peaks of 



the triplet feature (inset of Fig. 2c), which can be assigned as mode 84 (7b2) and 26 (6a1).  In 

Table I, the second harmonic of mode 2a1 and the fundamental frequency of 6a1 are essentially 

degenerate, and both are higher than the 7b2 band by ~5 cm
-1

.  We believe that the high intensity 

of the 2a1
2 
band is related to the complication of this Fermi resonance among all three bands.  

The band at 917 cm
-1

 could be assigned as a combination of 2a1 and 4a1, but based on the 

calculation, it probably belongs to a 8b2 band, which has a larger deviation (12 cm
-1

) than the 

combination band (7 cm
-1

).  A few other bands, such as those at 1282, 1378, and 1571 cm
-1

, can 

also be assigned as combination bands or fundamental bands of higher frequency modes.  Unlike 

the 8b2 bands, however, these bands are not reproduced from the simulation spectrum and hence 

the only criterion for their assignment comes from the theoretical frequencies.  The listed 

assignment in Table I is therefore tentative for these bands. 

All observed modes are in-plane deformation modes.  Similar to our previous observation 

on BaP,[36] the modes of BeP can be categorized into three groups, including two groups 

localized in the pyrene (modes 30, 89, and 28) and the benzene (modes 90) moieties, and the 

overall skeletal deformation of the molecular frame (modes 84, and 26).[31, 36]  The lowest 

frequency mode 90 is essentially wagging of the benzene ring around the short axis of the pyrene 

backbone.  The next three low frequency modes are in-plane deformations or wagging of the 

pyrene moiety, with the additional benzene ring tagging along and making no observable internal 

structural changes. It is interesting to note that while BaP and BeP belong to very different point 

groups, they both seem to surrender to the extreme stability of the pyrene moiety in exhibiting 

localized vibrational modes on pyrene or the additional benzene ring.[36, 44]   

 

ZEKE Spectroscopy 



By setting the first laser at one of the intermediate states identified in the above experiment and 

scanning the second laser, we were able to observe the vibrational bands of the D0 electronic 

state using pulsed field ionization ZEKE. Figures 3 and 4 show the ZEKE spectra collected from 

the eight intermediate states labeled in Fig. 1 in bold-phased fonts.  Unfortunately, efforts of 

recording more ZEKE spectra for intermediate levels with more than 800 cm
-1

 vibrational 

energies were unsuccessful, particularly for the 16a1 band at 1312 cm
-1

, which is the strongest 

band in the REMPI spectrum.  The spectral assignment, together with the calculation results 

scaled by 0.9697, is listed in Table II.  The spectrum from the origin band of Fig. 1a corresponds 

to the origin of the cation, which results in an adiabatic ionization threshold of 59,766 ± 7 cm
-1

, 

including corrections due to the pulsed electric field.  This value is about 100 cm
-1

 below what 

reported by Clar and Schmidt based on photoelectron spectroscopy (7.41 eV).[49] 

The most striking feature of Figure 3 is the lack of any vibrational structure beyond the 

single transition corresponding to the same vibrational mode (termed diagonal bands in the 

following) of the intermediate state.  This simplicity in the ZEKE spectra is an exemplary case of 

propensity reported in our studies of substituted aromatic compounds and a few PAHs.[32-36, 

44, 50-51]  The dominance of the diagonal band manifests the diagonal Franck-Condon factor 

between the intermediate state and the cationic state.  This means that the geometry and normal 

modes of BeP do not change upon ionization.  Based on this belief, assignment of the ZEKE 

spectra in Figure 4 relies on the correlation with the mode of the resonant state.  For example, 

similar to the REMPI spectrum, the cluster of vibrational bands near 750 cm
-1

 is again congested 

with many closely spaced transitions.  In Table II, although the 7b2 and 2a1
2
 bands are degenerate 

from calculation, the transition in Fig. 4d at 759 cm
-1

 is assigned 2a1
2
 because of the identity of 

the intermediate vibronic state.   



Simulation of the ZEKE transition from the origin of the intermediate state is shown in 

the inset of Fig. 3a.  The simulated ZEKE spectrum has an intense origin, with essentially no 

other observed transitions on the scale of the inset. Although vibronic coupling plays an 

important role in the REMPI process, the next step of ionization strictly follows the Franck-

Condon principle.  Moreover, there is minimal structural change upon elimination of the excited 

electron from S1. 

 

Discussions  

Vibrational band distributions and implications in geometry variation  

The REMPI spectrum contains both Franck-Condon allowed a1 bands and vibronic 

allowed b2 bands, and overall the two types of bands are of comparable intensity.  In addition, the 

origin band is considerably weaker than a few of the vibronic bands.  While the former 

observation implies extensive vibronic coupling, the latter seems to imply large geometry 

changes upon electronic excitation.  Upon ionization, the ZEKE spectra contain almost 

exclusively diagonal bands, alluding to an invariant molecular frame with the removal of the 

electron from the intermediate state.  In addition, the vibrational frequencies of the 

corresponding modes of the S1 and D0 states are similar.  Although one electron is missing 

between the two states, the bond strengths, at least for those related to the skeletal motions below 

1500 cm
-1

, remain largely unchanged.  

Our calculated molecular structures, on the other hand, paint a picture of stability of BeP 

for all three related electronic states.  The overall length and width of the molecular structure 

vary less than 1% in all cases, similar to the degree of variation for tetracene and pentacene, and 

slightly larger than the other peri-condensed systems we have reported (~0.5%).[32-34, 36, 44]  



The weak origin band thus seems to be not related to large geometry changes.   

The extensive vibronic coupling in the REMPI spectrum of BeP is confirmed from the 

Franck-Condon calculation without the HT option in Fig. 2b.  The resulting origin band becomes 

so strong that it dominates the REMPI spectrum.  Among all the peri-condensed PAHs we have 

investigated,[34, 36, 44] the degree of vibronic coupling in BeP is by far the most extensive.  For 

cata-condensed species, an even more extreme case was observed in pentacene.[32-33, 35]  

While our Gaussian calculation with and without HT both predicted overwhelmingly strong 

totally symmetric a1 modes for the REMPI spectrum of pentacene, the experimental spectrum 

contained only FC forbidden out-of-plane waving modes. On the other hand, the electronic 

transition in pentacene was fully symmetry allowed, and the S2 state was over 5000 cm
-1

 higher 

in energy than the S1 state.  The energy gaps between the two lowest excited electronic states 

vary from 2000 cm
-1

 to over 5000 cm
-1

 among Bep, Bap, Bghip, pyrene, tetracene, chrysene, and 

pyrene, and these values do not seem to have a direct correlation with the degree of HT 

coupling.[32-36, 44] Currently, we do not have an explanation for the seemingly extraordinary 

degree of vibronic coupling in BeP and in pentacene.   

All observed modes are in plane deformation modes, and all are IR active for this C2V 

system.  The vibrational levels of the neutral ground state S0 and the cationic state D0 of BeP 

have been probed by gas chromatography/Fourier transform infrared spectroscopy (GC/FT-IR) 

and matrix isolation spectroscopy (MIS) in the region above 600 cm
-1

.[17, 21] Neither groups 

performed high level ab initio or density functional calculations, hence the vibrational 

assignment was based on comparisons with other PAHs.  For the S0 state, several bands between 

700 and 900 cm
-1

 were considered out-of-plane C-H bending modes, and one band at ~700 cm
-1

 

was assigned as C-C in-plane bending.  The corresponding modes of the D0 state were compared 



with those of the S0 states, and the result was regarded as unusual by the authors.[17]  While the 

C-C in-plane mode was red shifted by 62 cm
-1

, the C-H out-of-plane modes were blue shifted  by 

nearly ~80 cm
-1

.  Furthermore, the intensities of these bands were also an order of magnitude too 

low compared with those of their neutral counterparts.  Within the region of spectral overlap, 

unfortunately, we did not observe any common modes with the previous studies, hence no direct 

frequency comparisons are possible.  We do notice interestingly that the general spectral intensity 

distribution of the GC/FT-IR spectrum is somewhat similar to our REMPI spectrum of Fig. 1, 

with intense activities between 700 and 900 cm
-1

.  Since the two techniques probe two different 

electronic states and follow completely different selection rules, this similarity should be a mere 

coincidence.  Nevertheless, bands in this region seem to be particularly sensitive to any changes 

in the internal energy of the molecular system, as observed in our other studies of PAHs.[32-36, 

44]  As to the unusual vibrational frequency shifts in the D0 state,[17] the similarity in frequency 

between the neutral and the cationic state of our gas phase experiment implies nothing 

extraordinary in the force field and molecular structure of BeP.  Most likely, these shifts were due 

to the influence of the argon matrix in the MIS experiment. 

 The geometry, Mulliken charge distribution and IR spectroscopy have all been calculated 

in a separate work by Pathak and Rastogi for both the neutral and cation using B3LYP/4-

31G.[52] The reported geometries and charge distributions can be related to our results by a 

scaling factor, arising from the difference in the two basis sets.  

  

Comparisons with other PAHs 

Most of the peri-condensed PAHs that we have investigated so far, including BaP, BeP, 

and BghiP, have been reasonably successful for vibrational assignment and spectral simulation, 



particularly with the vibronic coupling feature of Gaussian 09.[34, 36, 45]  All peri-condensed 

PAHs and chrysene have at least two closely spaced excited electronic states.  In many cases, 

CIS calculations from Gaussian suffer from the confusion of the closely spaced states, and a 

keyword has to be set artificially to avoid the problem.[44, 46-48] Even with this confusion, on 

the other hand, HT calculations based on the displacement vectors and frequencies are still 

satisfactory in reproducing the observed REMPI spectrum, and with the use of scaling factors, 

the observed vibrational bands for both S1 and D0 can be assigned.   

This situation is somewhat different for the cata-condensed species including tetracene, 

pentacene, and chrysene.[32-33, 35]  While tetracene is an example of mostly Franck-Condon 

behavior for REMPI, chrysene, an isomer with just a kink in the ribbon structure, could not be 

reproduced satisfactorily in vibronic transition intensities.[32, 35]  With an additional ring than 

tetracene, pentacene is an extreme with no Franck-Condon allowed vibrational bands observable 

in the REMPI spectrum and no calculation methods were able to even qualitatively reproduce the 

vibronic features.[32-33]  However, the vibrational frequencies for cationic tetracene and 

pentacene obtained from DFT calculations are so close to the experimental values that no scaling 

factors are necessary.  Moreover, neither molecule has closely spaced excited electronic states for 

vibronic coupling. 

Although seemingly simple, the above comparison alludes to the fact that each PAH has 

its unique situation, and a generalization of properties is questionable at this stage.  Overall, the 

HT feature in Gaussian 09 has dramatically improved our abilities in modeling the REMPI and 

ZEKE spectroscopy of peri-condensed species.  However, human interference is still necessary 

for the choice of the correct electronic state and for vibrational scaling.  The cata-condensed 

systems are still difficult to model for ab initio or DFT calculations.   



An interesting observation in the ZEKE experiment of the PAHs is the existence of a 

cutoff energy of the intermediate state: when the excess vibrational energy of the intermediate 

state is above a certain value, for example, 800 cm
-1

 for BeP, no more ZEKE signal can be 

observed from the intermediate state.  In chrysene, we also observed mode selectivity in the 

overall ZEKE signal.[35]  The cutoff energy does not seem to have a direct correlation with the 

size of the molecular system; for the largest molecule BghiP among our studies, we were able to 

record ZEKE spectrum from bands with nearly 1100 cm
-1

 vibrational energy.[34]   

 

Conclusion 

 The vibrational spectra of benzo[e]pyrene were recorded for both the first electronically 

excited state and the ground state of the cation. Vibronic coupling was observed to play a major 

role in the REMPI spectrum, and the intensities of FC forbidden but vibronic allowed bands are 

similar to those of FC allowed bands.  Using the relatively new feature of Gaussian 09, we were 

able to include Herzberg-Teller coupling for the simulation of the REMPI spectrum with 

satisfactory results. The ZEKE spectra demonstrate a propensity for preserving the vibrational 

excitation of the intermediate state, but as the energy excess from the origin of the S1 state 

increases to ~800 cm
-1

, no more ZEKE signal was observable, similar to our previous report on 

BghiP and chrysene.  All observed modes are IR active, but a direct comparison with results 

from matrix isolation spectroscopy is impossible due to lack of common vibrational modes. 

Nevertheless, the small variation of vibrational frequency from S1 to D0 of our experiment does 

reveal some unsettling effect of the argon matrix in shifting the frequency and changing the 

transition intensity.  
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Figure captions 

Figure 1.  REMPI spectrum of benzo[e]pyrene. The spectrum is shifted by 26,983 cm
-1

 -- the 

origin of the S1← S0 transition -- to emphasize the frequencies of the different vibrational modes 

of the S1 state. The molecular structure and the definition of molecular axes are also shown in the 

inset. 

Figure 2. Comparison between different calculations of the vibronic spectra using Gaussian 09 

for both the S1 ← S0 (b & c) and the S2 ← S0 transitions (a) with the experiment (d).  The 

calculation without Herzberg-Teller coupling for the S1 ← S0 transition (b) is also shown for 

comparison. An inset is included in the calculation with HT coupling (c) to show the detail in the 

730-765 cm
-1

 region. 

Figure 3. Two-color ZEKE spectra of BeP recorded via the following vibrational levels of the S1 

state as intermediate states: (a) 0
0
, (b) 90

1
, (c) 30

1
, and (d) 89

1
. The energy in the figure is 

relative to the ionization threshold at 59,766 cm
-1

. The assignment in the figure refers to the 

vibrational levels of the cation, and the corresponding vibrational level of the intermediate state 

is labeled by a black dot in each panel. An inset is included in (a) to show the Franck-Condon 

result from the origin band of S1.  

Figure 4. Two-color ZEKE spectra of BeP recorded via the following vibrational levels of the S1 

state as intermediate states: (a) 28
1
, (b) 84

1
, (c) 26

1
, and (d) 30

2
. The energy in the figure is 

relative to the ionization threshold at 59,766 cm
-1

. The assignment in the figure refers to the 

vibrational levels of the cation, and the corresponding vibrational level of the intermediate state 

is labeled by a black dot in each panel. 
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Table I Observed and calculated vibrational frequencies of the S1 state of benzo[e]pyrene. 

Experimental Calculation* Assignment Symmetry 

251 245 90
1
 1b2 

374 377 30
1
 2a1 

401 402 89
1
 2b2 

537 533 28
1
 4a1 

746 748 84
1
 7b2 

753 753 26
1
 6a1 

755 754 30
2
 2a1

2
 

917 929 83
1
 8b2 

1200 1199 78
1
 13b2 

1282 1266 76
1
 15b2 

1312 1305 16
1
 16a1 

1321 1317 15
1
 17a1 

1378 1386 73
1
 18b2 

1415 1397 13
1
 19a1 

1478 1480 70
1
 21b2 

1571 1586 7
1
 25a1 

 

*The calculation result includes a scaling factor of 0.973.  



Table II Observed and calculated vibrational frequencies of BeP cation. 

0 90
1
 30

1
 89

1
 28

1
 84

1
 26

1
 30

2
 Calc* Assignment 

0        0 0 

 248       247  90
1
 (1b2) 

  379      379  30
1
 (2a1) 

   394     394  89
1
 (2b2) 

    542    544  28
1
 (4a1) 

    555    558  87
1
 (4b2) 

     753   753  84
1
 (7b2) 

       759 753  30
2
 (2a1

2
) 

     766   768  89
1
30

1
 (2b2+2a1) 

     775 777  771  26
1
 (6a1) 

     801 801 796 801  90
1
87

1
 (1b2+4b2) 

    1084    1083  28
2
 (4a1

2
) 

    1094    1098  87
1
28

1
 (4b2+4a1) 

     1295   1297  84
1
28

1
 (7b2+4a1) 

     1306   1307  89
1
30

1
28

1
 

 

*The calculation result includes a scaling factor of 0.9697. 
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