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RELATIVE RIGIDITY IN ABSTRACT WITT RINGS

§1. Introduction

This section will be devoted to a presentation of definitions and

introductory material that will be used in the sequel. All notation

is that of standard quadratic form theory, such as is found in the

texts [L] or [M].

Let F be a field with characteristic F 2 and F = F - {0}. A

quadratic form of dimension n over F is a second-degree homogeneous

polynomial in n variables over F. Thus, it has the form

n

f(X) = E a .X.X. c FIX
1
,..,X

n
] = FIX].

i,j=1 i3 1 3

Alternatively, f(X) = X
t
MfX where Mf = (aii) and X

t
is the row matrix

[X1 X2 ... X
n
]. If f and g are quadratic forms over F of the same

dimension n, f is isometric to g if there exists a nonsingular nx n

matrix B such that f(X) = g(BX). As is well known from elementary

linear algebra (see [L] or [M]), every quadratic form is isometric

to one of the type f(X) = a1X1 2 + a2X2
2
+ + anXn2 with a ,a

n
c F.

In this case, f is said to be diagonalized and will be abbreviated

as <al,a2,...,an>.

A quadratic form f is said to be isotropic if there exists an

x c F
n with x # (0,...,0) such that f(x) = 0; f is called anistropic

otherwise. The Witt-Grothendieck ring of quadratic forms over F,

denoted W(F), is the Grothendieck ring of differences of isometry

classes of quadratic forms defined over F with addition given

by the direct sum and multiplication induced by the tensor product.

For example, we have <al,....,a
n
> <b1,....,bm>
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1 n 1 1 1 m

<a
1
b1". '

. a
1
b
m

a
n
b1" ..,a

n
b1" ..,a

n
b
m
>. The Witt ring, W(F), is"

the quotient W(F) /H where H W(F) is the ideal of W(F) generated by the

hyperbolic plane <1,-1>. It is then a consequence of Witt's cancellation

theorem (c.f.[L]) that each element of W(F) corresponds to a single

isometry class of anisotropic quadratic forms.

An element y c F is represented by a quadratic form f if there

exists an x c Fn such that f(x) = y. Denote by D(f) the set of elements

in P represented by f. For an n-tuple of elements a
l'

,a
n

F,

<<a
1
,a ...,a

n
>> will denote the 2

n
-dimensional quadratic form

n
f = Qx <1,a > = <1,a

1
,a

n
,a

1
a
2
,...,a

1
a
2
...a

n
>, called an n-fold

i=1

Pfister form. In the special case of Pfister forms, the set D(f) is

actually a subgroup of the multiplicative group F (c.f.[L]).

It is important to consider Witt rings from the abstract (or

axiomatic) point of view. Here, we describe a class of rings called

abstract Witt rings, which arise without reference to any field. It

is not known whether every abstract Witt ring arises as the Witt ring

of a field; however, every Witt ring of a field is an abstract Witt

ring. The approach we take is via abstract quaternionic structures

which was introduced in [MY].

An abstract quaternionic structure, or Q-structure, is defined

to be a triple (G,Q,q) where G is an abelian group of exponent two

(that is, x
2
= 1 for all x c G) with a distinguished element denoted

by -1, Q is an abelian group of exponent 2, and q :GxG-4-Qisamap

satisfying the following four properties:
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Ql: (Symmetry) q(a,b) = q(b,a) for all a, b c G;

Q2: q(a,- a) = 0 for all a c G;

Q3: (Bilinearity) q(a,bc) = q(a,b) + q(a,c);

Q4: (Linkage) q(a,b) = q(c,d) implies that there exists an

X E G such that q(a,b) = q(a,x) and q(c,d) = q(c,x).

The following results, which will be used extensively without reference,

follow immediately:

(i) q(a,l) = 0

(ii) q(a,-ab) = q(a, b).

Let (G,Q,q) be a Q-structure. A quadratic form of dimension n> 1

over G is an n-tuple f = <a
l'

a2" ". a
n
> where al,a2,...,an E G. The

sum of f and a form g = <bi,...,bm> is defined by f E) g = <al,...an,

bl,...,bm> and their product is f Q g = <aibl,...,albm,...,anbm>.

Two forms are isometric (denoted z) under the following conditions

(1) <a> z <b> if and only if a = b,

(2) <al,a2> z <bi,b2> if and only if ala2 = bib2 and q(al,a2) =

q(bi,b2),

(3) for n 3 isometry is defined inductively by:

<al,...,an
> = <b1,...,bn> if and only if there exist

a,b,c3,...,cn c G such that

<a
2
,a

3 n
> z <a,c3,..,cn> , <al,a> z <brb> and

<b2,b3,...,bn> <b,c3,...,cn>.

Exactly as in the field case, one now obtains an abstract Witt-

Grothendieck ring W and an abstract Witt ring W associated to the

quaternionic structure.
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An element x eG is represented by a form f of dimension n if

there exist x
2
,...,x

n
E G such that f = <x,x2,...,xn>. Denote by D(f)

the set of elements in G that are represented by f. Equivalently,

in the case of a 1-fold Pfister form, D<<a>> = {x E G I q(-a,x) = 0).

It is also true for the Witt ring of a quaternionic structure, that

D<<al,...,an>> is a subgroup of G. If D(f) = G, then f is said to be

universal.

It should be noted that there is a linked quaternionic pairing

associated with the Witt ring of a field. Let F be a field with

-

characteristic not 2, G = F/F
2

, -1 = [-1] in G and Q = I
2
F/I

3
F where

IF is the ideal of even dimensional forms in W(F). It follows from

results in [L] that the pairing q :G x G Q given by q(a,b) =

<<-a,-b>> mod I
3

iF is a linked quaterionic pairing and the Witt ring

associated to this pairing is precisely W(F). Throughout the remainder

of the paper we shall work with abstract Witt rings R, keeping this

association in mind. Further, we shall use GR, QR and qR to denote

the associated linked quaterionic pairing qR:GR x GR QR as

necessary, dropping the subscripts when no confusion may arise.

REMARK 1.1: Other versions of "abstract Witt rings" have appeared

in the literature. However, all axiomatizations considered have

been shown to describe the same class of rings as those arising as

Witt rings of linked quaternionic pairings. For details, see [M].

As an example of a Witt ring over a field, suppose F =1R (or

any real-closed field) and consider a form f c W(Il2). Since f is

anisotropiz, it cannot have coefficients of mixed signs in its
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diagonalization. Thus, at every dimension n there are exactly two

anisotropic forms: n < 1 > and n< -1 >, which implies that W(IR) is

isomorphic to Z as commutative rings.

Now consider an abstract quaternionic structure and its associated

Witt ring. Suppose IGI = 1, so G = {1), and -1 = 1. Then q(1,1) = 0

so Q = {0}. Forms over G are of the type <1,1,...,1> but since -1 = 1,

the only anisotropic forms are 0 (the empty form) and <1>. Hence,

R Z /2Z. This Q-structure is realized as the Q-structure of any

algebraically closed field F, in particular, the complex field.

REMARK 1.2: The definitions made for linked quaternionic pairings

which don't involve the linkage property may also be applied to

arbitrary bilinear pairings. They will be used in this manner whenever

convenient.
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§2: Witt Rings of Elementary Type

We can extend the number of examples of Witt rings by considering

a direct product and the usual group ring in the category of Witt rings.

For details see [M]. Let (G Q, q) be a linked quaternionic pairing
S

and S its associated abstract Witt ring. Let be any group of

exponent two and form the group ring R = S[A]. Then R is the Witt ring

of a quaternionic structure with GR = Gs x L. Now suppose (GR,Q1,q1)

and (GR2,Q2,q2) are linked quaternionic pairings with Witt rings

Ri and R2. Define R1 x R2 to be the Witt ring associated to the pairing

q : (G
R

e G R) x (G
R

SGR ) -0- Qi 0-Q2 given by q((al,b1), (a2,b2)) =
2

(q1(al,a2), q2(bl,b2)). That q is linked can be found in [M].

In the study of Witt rings one problem, which has received a

great deal of attention, is to classify the finitely generated Witt

rings (ie. 1GRI < 00). A finitely generated Witt ring is said to be of

elementary type if it is isomorphic to a Witt ring obtained from the

Witt rings of a finite field, a local field, the reals or the complexes

using iteratively the operations of direct product and group ring

formation. One possible characterization of finitely generated Witt

rings (often referred to as the elementary type conjecture) is that

every finitely generated Witt ring is of elementary type. Carson and

Marshall [CM] have shown, with the aid of a computer, that every Witt

ring with IG1 <- 32 is of elementary type, but the general case seems

to be beyond the reach of current techniques.
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§3: Relatively Rigid Elements

Throughout the remainder of this paper, we treat Witt rings R

that satisfy -1 = 1 in GR. (This corresponds to /71 c F in the case

of a Witt ring over a field F). Fix an integer n 2. Whenever

ti,t2,...,tn E G are linearly independent let [ti,t2,...,t
n

] denote

the 2
n
products 11,t

1
,t

2
,...,t1 t2,...,t1 t2.--tnl and [t1 ,t2,...tn]0 =

[t
1,

t
n

] - {I}.

DEFINITION 3.1: An element a E GR is rigid if D<l,a> = {1,a }.

FACT 3.2: If A is an elementary 2-group, S and R = S[L] are Witt

rings, then every element in GR - Gs is rigid.

PROOF: c.f.[Mb 0

DEFINITION 3.3: ti,t2,...,tn E GR are relatively rigid in R if

(i) «-ti,-t2,...,-tn>> 0 0,

(ii) for all g c [tl,t2,..tn)0,

D « -g» n ( TI D«-h») =
he[ti,...,tnlo

h g

Definition 3.3 is introduced in [J2], where an axiomatization of

Witt rings of 2- Henselian dyadic valued fields is described.

PROPOSITION 3.4: Let R
1
,R

2
be any Witt rings with 1G I > 2 and

R1

1GR1 > 2. Then the Witt ring R = R1 x R2 contains no relatively rigid
2

elements ti,t2.



8

PROOF: Assume that R has two relatively rigid elements, say t1 =

(u1,v1), t2 = (u2,v2). If (u1,v1) = (1,v1), by applying the definitions

of §2 we have that (u2,1) e D<<ti>> and (u2,1) e D<<t2>>. This is a

contradiction if u
2

0 1. If u
2
= 1, then (w,l)e D<<t

1
>>()D<<t

2
>> for any

w 1, w e GR, which is also a contradiction. Thus, by symmetry,

u
1
,u

2
,v

1
, v2 1.

Then, D<<t
1
>> {(1,1), (u 1), (1,v

1
), (u1,v1)}

D«t2>> 2 {(1,1), (u2,1) , (1,v2) , (u2,v2))

D«t
1
t
2
>> -0{(1,1), (u

1 2'
1), (1

'

v
1
v
2
), (u1u2,v1v2) }.

Thus, {(1,1), (111,1), (1,v1) , (u1,v1)}c.D«ti>n(D«t2» D<<tit2>>)

which contradicts the definition of relative rigidity. 0

One notices that this argument applies to any product of Witt rings

R = R
1

x x R. Fact 3.2 and Proposition 3.4 immediately give:

COROLLARY 3.5: If there exists a finite Witt ring with no rigid

elements and at least two relatively rigid elements, then the elementary

type conjecture is false.

The preceeding corollary is the motivation for the remainder of

this paper.

We conclude this section with some observations which provide a

lower bound on the order of GR whenever t1,...,tn are relatively rigid

in R and R has no rigid elements. Since no element of [t1,...,t
n

]

0
is

rigid, we assume in the proof that there exist S.,S..,...E G - {1} such
ij

thats.,t.},si{l,t.t.}, etc. and
11

D<<-t.» {1, tis.1 , t1 .s1 .}

D<<t.t.>> {l, t.t., S.., t.t.S..}
1 1 3 3.3 3. 3.3

D<<t t t >> {1 t t s1
2 r ' 1 r' 1..-r'
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THEOREM 3.6: If t
1

t
r

are relatively rigid and not rigid, then"
dim ( D«g>>) > 2

r
- 1 + r, r z 2.

ge[t t ]
r 0

PROOF: Proceed by induction. Suppose r = 2, that is, t1,t2 are

relatively rigid but neither is rigid. Then D<<t
1
>> {1, t

1,
s
1,

t
1
s
1
}.

Clearly, si ¢ [tl, t2] which implies [ti, t2, sl] is 3-dimensional.

Also, s2 ¢ [tl, t2, sl] which implies [t1, t2, sl, s2] is 4-dimensional.

By definition of relative rigidity, D<<t1t2>>(-) (D<<ti>> D<<t2>>) =

{1, t
1
t
2
} which implies S

12
[t

1,
t2, s

1,
s
2

] since D<<t
1
>> D<<t

2
>>142

[tl, t2, Si, s2]. Therefore, [t1, t2, sl, s2, s12] is 5-dimensional,

that is, dim ( n D<<g>>) 5 = 22 - 1 + 2. Now assume this
gc[t

1
,t

2
]

0

result is true for t1,...,tr_1, that is, dim ( II D«g>>) 2

ge [ti , ,tr_i]

2
r-1

- 1 + (r - 1). Let t
1
,...,t

r-1
, t

r
be relatively rigid and not

rigid.

Claim: ( II D<<g>>) (1 D<<tr>> = {1}.

ge[t
1
,...,t

r-1
]

0

Since <<t
1
,...,t

r-1
t
r
>> 0 0 we have t

r
D<<g>>.

gE[t1,...,tr_1]0

Also, t1,...,t
r
are relatively rigid so that s D<<g>>,

ge[t t ]

r-1 0

whenever s e D<<t
r
>>, s ¢ {1,t

r
}, thereby establishing the claim.

Since t
r

and s
r

are independent of each other, we have dim

[( II D<<g») D«t
r
>>] > 2

r-1
-1 + (r-1) + 2 = 2

r-1
-1+ r + 1.

ge[t ...,t
r-1

]

0

Since D<<t
1
t
r
»r1( II D<<g>>) D<<t

r
>>5; {1, t

1
t
r

}

ge[t
1
,...,t

r-1
]

0
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by relative rigidity, this implies s
lr ge[t ...,t

r-1
]

0

D<<g>>

D<<t
r
>>. Thus, dim [( R D«g>>) D<<tr>> D«titr>>] >

ge[t
1
,...,t

r-1 0

2
r-1

- 1 + r + 2. Continue in this manner, adding one element at a time

from the set [t1,...,tr_1] tr, which has 2
r-1

elements. Thus, one

D<<g>>) > 2
r-1

obtains, dim ( R -1 + r + 2
r-1

= 2
r
-1+ r.1-1_

gc[t1,...,t,10

As an immediate consequence, we obtain the following

COROLLARY 3.7: If t
1 r

are relatively rigid and 1G
R

I = 2
d

then the Witt ring R has a rigid element if d < 2
r

- 1 + r.
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§4. 3-Box Structures

In this section, we introduce an object that arises naturally in

the study of relative rigidity in abstract Witt rings. Let

q :G x G Q be any linked quaternionic pairing. Let t1,t2 E G

(not necessarily relatively rigid in this section). Set G, = D<<ti>>,

G
2
= D<<t

2
>> and G

3
= D<<t

1
t
2
>>.

We now introduce the 3-box. For a E G1, b E G
2
and c E G

3

the 3-box [a, b, c] will represent the relationship q(a,b) + q(b,c) +

q(a,c) = q(a,t2). Similarly, [a,b,c] represents q(a,b) + q(b,c) +

q(a,c) = q(b,t1) and [a,b,c] represents q(a,b) + q(b,c) + q(a,c) =

q(c,t
1

) = q(c,t
2
).

LEMMA 4.1: Suppose a E Gi, b E G2 , c G3. Then the following are

equivalent:

(i) [a,b,c)

(ii) [a, b,c t
1
t
2

]

(iii) [a tl, b, c t1t2

(iv) [a t1, b t2, c ti t2]

(v) [a t
1,

b t
2

, c]

(vi) [a, b t , c
2

PROOF: [a, b, c] if and only if q(a,b) + q(a,c) + q(b,c) = q(a,t2)

if and only if q(a,b) + q(a,c) + q(b,c) + q(a,t2) + q(b,t1) = q(b,t1)

if and only if q(a,b) + q(a,ctit2) + q(b,ctit2) = q(b,t1)

if and only if [a,b,ctit2) .

The other implications follow in an analogous manner.
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PROPOSITION 4.2: Suppose t
1
,t

2
eG,q:GxG.+Q is a linked

quaternionic pairing and the notation is as above, then

(i) for all a e G1, b c G2 there exist c, c', c" e G
3
such that

[a,b,c], [a,b,c'] and [a,b,c" ] hold.

(ii) for all a c G2, c e G3 there exist b, b" e G
3

such that

[a,b,c], [a,b',c] and [a,b", c] hold.

(iii) for all b e G2, c e G3 there exist a, a', a E G
1

such that

[a,b,c], [a1,b,c] and [a", b,c] hold.

PROOF: (i) Since a c Gi and b c G2, we have q(ti,a) = q(t2,b) = 0

and q(t b) = q(t
1
,ab) = q(t

1
t
2
,b). Since q is a linked quaternionic

pairing, there exists an x E G such that q(t b) = q(t
1
t
2
,b) =

q(t
1
t
2
,x) = q(ab, x). Thus, q(tit2,xb) = 0, which implies xb e G

3

Set c = xb. Then,

q(a,b) + q(a,e) + q(b,4 = q(a,b) + q(a,xb) + q(b,xb)

= q(a,x) + q(b,x)

= q(ab,x)

= q(t
1
,b).

Thus, [a,b,xb] holds. Choose c = ct t
2

and apply Lemma 4.1 to see

that [a, b, xbt,t2] holds.

Next apply what we have just shown to find c"c G3 so that

[tla,b,c"] holds. By Lemma 4.1 [a,b,c"] holds. This proves

(i); (ii) and (iii) follow from (i) by symmetry. 0
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This leads to the following:

DEFINITION 4.3: If q: G x G - Q is a bilinear pairing (not

necessarily linked); t1,t2 e G; G1 = D«ti», G2 = D«t2»

and G3 = D<<t1t2>>(with the obvious definition); and G = G1 G2 G3

then q : G x G - Q is a 3 -box structure over tl,t2 if (i), (ii), and

(iii) from Proposition 4.2 hold.

It is unknown under what conditions the converse of this proposi-

tion is true, ie. what assumptions are necessary for a 3-box structure

to be a linked quaternionic pairing. As will be seen, one of the major

advantages in working with a 3-box structure is that it gives us a

concrete way to study some of the relationships in a linked quaternionic

pairing that arise from the linkage property. Moreover, we have:

THEOREM 4.4: If q :GxG-+-Q is a 3 -box structure over t1, t
2'

then

for any homomorphism h' : Q Q' , the induced pairing q'= h°q: G x

is a 3-box structure over tl, t2.

PROOF: Since q is a bilinear pairing and h is a homomorphism, q'=h°q is

bilinear. Now suppose aEG1, beG2. Since q:GxG-*Q is a 3-box structure,

there exists ceG3 such that [a,b,c] holds. Since h is a homomorphism,

h°q(a,b) + h°q(a,c)+h°q(b,c) = h°q(a,t2). Thus, [a,b,c] holds in Q' as

well. Similarly for all other 3-boxes; hence, q':GxG -'Q' is a 3-box

structure. [I

REMARK 4.5: In general, the analogue of Theorem 4.4 fails for linked

quaternionic pairings. For this reason, I believe that 3-box structures

may be a useful tool in the study of abstract Witt rings.
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§5. Examples of 3-Box Structures

The remainder of this paper will be devoted to the study of

abstract Witt rings R which contain two relatively rigid elements,

t, and t2, in GR = G1 G2 G3 where G1 = D<<tl>> = [tl,u.]
1 c I'

= [u.] G
1
/<t

1
>) , G

2
= D<<t

2
>> = [t

2'
v
j

]

.

, =
1 .

1 e I 3 J
[vj] G

2
/<t

2
>), G

3
= D<<t

1
t
2
>> =

2 Wk3k EK' 6-3

[w k] k e K
G
3
/<t

1
t
2
>), and I, J, K are some indexing sets. The

order of I, J, and K will be represented by III, IJI and IKI and

dimG
1
= 1 + III, dimG

2
= 1 + 131, dimG

3
= 1 + IKI. It will be assumed

that R contains no rigid elements. Such rings exist (see below), but

in all known examples GR is infinite. As observed in §3, should

some Witt ring exist with GR finite, one would have a counterexample

to the elementary type conjecture. To begin, we prove:

PROPOSITION 5.1: Ifq:GxG-)-Qisalinked quaternionic

pairing with t
1

, t
2

relatively rigid, then the

elements {q(t
1 3
,v.), q(t

1
,w
k
), q(t2,ui), q(t1,t2)} jeJ, keK

must be linearly independent in Q.

PROOF: Suppose .E E. q(t1,vj)
keK ykcl(tl'wk ) + dq(ti,t) = 0

3eJ

'

where ej y
k'

6 E {0,1}. Then by bilinearity, q(t
1 3
,.II

k 3
v. ejw

k
ykt

2

6
) = 0

,

Implies jlic vj
Ej

wk
y
k t2 e D«ti»

which contradicts the relative rigidity of t1 and t2 if any of the

ej , yk or 6 are 1. Similarly, suppose .11
i
6
j
q(t

2
,u.) = 0, then

le 1

q(t2, = 0, implying u.
1

6
i E D<<t2>>, a contradiction.

1
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Finally, suppose ,E3ci q(tvvi)+ Zyk q(tl,wk)+6q(tl,t2)+ idi q(t2,ui) = 0

an datleastoneofthecyyk,ordarenormeroandoneoftheL1 is
E-4 6- x 6

nonzero. Then, q(t
71.

v. Jw
k
Kt

2
') = q(t

2' 1
u. 1). Since we

j

have a linked pairing, there exists an x c G such that q(ti,x) =

di
q(t2,x)=q(t2,Eu.). But then q(t

1
t
2'
x) = 0 implies x E G

1 3'

6. 6. 6.

q(t2,x1.111.)=OimpliesxlIu.1cG2whileIlu.1c
G1I 1

64 6, 64

Hence1Iu.'=x*xEu.'-c Gin (G2 G3) implies E u. = 1 or t
I 1 I 1 11

a contradiction. 0

A 3-box structure is called unramified if there exist CIG and
2 2

Z3S: G3 with t2 s G2, tit2 G3 and q(G2, G3) = 0. The terminology

"unramified" was chosen to be in accordance with that of Witt rings

of dyadic valued fields, (c.f. Example 5.2). The main problem of

56 is to study relative rigidity in Witt rings R where GR is

finite by considering the 3-box structure in the unramified case.

We now give some examples.

EXAMPLE 5.2: Let v : F Z be a 2-Henselian, discretely valued field

with c F and nonperfect residue class field F satisfying char if = 2,

F = 172(7E) for t c F and P(F) = F. Here, F is the residue

class field of F and T(x) = x
2
+ x is the Artin-Schreier operator.

Choose an element r c F such that v(r) = 1. Then it is a consequence

of the results of [J1) that W(F) = R satisfies the conditions

described in the beginning of this section with t1 = t and t2 = 7.

EXAMPLE 5.3: This example comes from the unramified case of the

above. Let5 be a field with char = 2 and 1-= -;2 + ei where 5.2
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is the subfield of squares of '7; and tE `J-°J.2. Set G
1

= (13/.,52, -),

G2 = 2, +), G3 = (t°32, +), t
1
=tEG

1
and let t

2
be a formal

element denoted by it in the sequel. Set G = <11> x G1 x G2 x G3 and

Q= G x 5(e Gi x x t e' G1 x G2 x G3). Specify the pairing

q : G x G + Q by defining it on basis elements as follows:

(i) = 0,

(ii) q(ir,g1) = (g1,0) in Q for gl E G1

(iii) q(t,g2) = (0,g2) and q(t,g3) = (0,g3) for g2 E G2, g3 E G3

(iv) g(gl,g2) + q(gi,g3) = ca(gi,g2+g3) = (0, (g2+g3)gi
-1

) for gi

g
1
# [t], g

2
E

2
and g

3
E

31

(v) q(G1,G1) = q(G2,G2) = q(G3,G3) = O.

Then we have:

FACT 5.4: The following 3-boxes hold

(a) [1, g2,g3] for all g2 c G2, g3 e G3

(b) [1 + tx
2

, y
2

, tx
2
y
2

]

(c) [1 + tx
2

, x
2
y
2
t
2

, ty
2

]

PROOF: (a) This follows immediately from (i).

(b) q(1 + tx
2

, y
2

) + q(1 + tx
2

, tx
2
y
2

) + q(y
2

, tx
2
y
2

)

= q(1 + tx
2

, y
2
+ tx

2
y
2

)

-1

= (0, (y
2
+ tx

2
y
2
) (1 + tx

2
) )

= (0, y2).

Thus, [1 + tx
2
,y

2
, tx2y2] holds.

,

(c) q(1 + tx
2

, x
2
y
2
t
2

) + q(x
2
y
2
t
2

, ty
2

) + q(1 + tx2, ty
2

)

= g(1 + tx
2

, x
2
y
2
t
2
+ ty

2
)

= (0, ty
2
(1 + tx

2
) (1 + tx

2
)

-1
)

= (0, ty
2)
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Thus, [1 + tx
2

, x
2
y
2
t
2

, ty
2

] holds. 0

From Lemma 4.1, Fact 5.4 and some elementary considerations it follows

that q : G x G ± Q is a 3 -box structure. (In fact, it is "reduced",

c.f. Def. 6.7).
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§6. The Unramified Case

The goal of this section is to study in the unramified case

(ie. q(E2, G3) = 0) the properties of any finite G with a 3-box

structure. We first establish the notation.

Let G = G1 G2 G3 be as described in §5 and let q: G x C i Q

be a 3-box structure over tl, t2. By symmetry, we can assume without

loss of generality, that dim G
2

dim G3. Let V be a (1 + III +

1J1 IK1 1I11J1+1I11K1) - dimensional V2Z-vector space with basis

f(t1,t2), (t,,vj), (tlwk), (t2,ui), (ui,vj), (ui,wk)},,J,K. Let

V be the (1 + 1I1 + 1,31 + 1K1) - dimensional subspace generated

by {(ti,t2), (ti,vj), (ti,wk),
1I,J,K.

We can map V to Q

specializing in the obvious manner (ie. map (u.,v.3 ) P4' q(ui , v.3 ) and so

on).

We use the 3-box notation to identify elements in V as follows:

[u,v,w] represents the element (t
2
u) + (u,v) + (u,w), [u,v,t

1
t
2
w]

represents the element (u,v) + (u,w) + (t2,u) + (t1,v) + (ti,t2) +

(ti,w), and so on. Let T denote the subspace of V generated by all

the 3-boxes that arise in G x G Q. We now prove results which

give a lower bound for dim T. In the following, let E = (t
1
,G

2
) C V.

LEMMA 6.1: Let ul c G1, vl, v2 E C2, wi, w2 e G3.

(i) If [ul, vl, w1], [u1, v2, w2] c T + E.

then [u1, viv2, wiw2] e T + E

(ii) If [u1, vl, w1], [ul, v2, w2] c T + E

then [u
1,

v1v2, wl w2] e T + E.

PROOF: Immediate, expand by the definitions. CI
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Fix u
1

c
1.

Define r
3
= {w c G

3
I there exists v E 6

2
with

[u
1,

v, w] e T + E} and r
3

= {(1 E G
3

there exists v c G
2

with

[ul, v, i] E T + E }. Notice that F3 and r3 are nonempty subgroups

of G
3
by Lemma 6.1.

LEMMA 6.2: Notation as above. One of the following must hold

(i) r
3

= G
3

(ii) r
3

= G
3

(iii) P
3

= r
3
and [G

3
: r

3
1 = 2.

PROOF: Suppose r3 G3, r3 # G3 and fix w cG3 - r3, w E G3 -

* *

(a) Let w E r3. Then ww , w ¢ r3. By Definition 4.3, we can find

v, v' c G2 with [ul, t2v, w ], [u t2v', ww ] c T. Then one has

[ul, t2v, w
*

] + [ul, t
2
v', ww*] = [ul, vv', w] + (t2, w) mod E.

In particular, [ul, vv', w] + (t2, w) E [u1, vv', w] c T + E.

which implies w E r3, ie. r3 .g F3.

(b) We obtain
3 3

in an analogous manners Let (1)
3.

Then

* *
(1(1 , w ¢ 1"3. Find v, v' c G2 with [111, t2v, w ], [Ili, t2v', ww ] c T.

Adding the two relations yields [ul, vv', (1] + (t2, 63) c T + E.

Hence, [ul, vv', (1] c T + E and (1 E r3.

(c) Now suppose [03 : r3) Z 4. Choose wi, w2c G3 - F3 with

wiw2 ¢ r3. Pick vl, v2 c G2 so that [ul, t2v1, col] and

[u
11

t2v2, w
2

] c T. Then, as above, [ul, v1v2, w1w2] e T + E which

implies wiw2 E r3. This is a contradiction since r3 = r3.
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PROPOSITION 6.3: Suppose [G3 : r3] - 2, v1,...,vm is a basis for

G
2

and n = dim G3. (Recall m n). Then, relabeling if necessary,

there exists w
ij

G linearly independent with [u v
1,

w
11

[u1, vn, w1n1
T + E.

PROOF: Let K = {w E r
3

1 [u 1, w] c T + E}. Let F be the

relation in G2 x r of all pairs (v,w) such that [ul, v, w] c

3

T + E. Lemma 6.1 implies that for fixed v e G2 with (v,w) e F

that (v, w') c F if and only if wwle K. Denote the class w(mod K)

by f(v) whenever (v,w) e F. Thus, we obtain a function f: G
2

4-- 1.

3
/K

which is linear by Lemma 6.1 and is surjective by the definition of

r3. Relabeling if necessary, we have a basis vl, v2,...,vm
of G2

so that f(v1),...,f(v ) (s m) forms a basis of T3/K. Choose any

w1i f(vi). This means [u , v., w .] e T + E.
wll''''wls E r3, 13.

For each of v s+1'''''vn
1

express f(v.) = .11 f(vi)61j, j = s +

n and Eij e {0,1}. Since dim r3 n, dim r3/K = s, we can choose

ws+1 '' 'wn e K to be independent in K. Lemma 6.1 guarantees that

f-
[u v., ( .n

1
w9 )w

j
] ET+Eas both [ul, w ] and [u v., .111 w Lili ]

ij =
s

e T + E. Set w
lj = (1=1 j

w 9)w . Evidently, w

are linearly independent in T3, proving the proposition. 0

PROPOSITION 6.4: Suppose [G
3

: T3] S 2, v v
m

is a basis for G2

and n = dim G3. Then, relabeling if necessary, there exists Wlj E G3,

linearly independent, with [1.11, vl, 111]'''''[u1
ryn

] c T + E.

PROOF: The proof is formally identical.to the proof of Proposition

6.3 and hence is omitted. 0
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If {u.}. is a basis for G , {v }£J is a basis for G
2'

dimG
2

= in
1 lel 1 j 3eJ

and dimZ = n (recall m 2 n) , consider the set of I IIIJ 1 +1 I IIK1

elements {[u1 .,v
j ij
,w ],

13
T + E constructed as follows:

For each idI define ri,3, ri,3 as in r3, r3 above (1=1). If dim

ri,3Zn,byProposition6.3,choosewij to be linearly independent

for some subset of n j's in J with
3

[u1 .,v.,w1..] T + E. For all jeJ
--3

choose
13 1

with [u.,v.,w..] ET + E. This gives in + n elements. If
13

dimri,3<n,byProposition6.2r.1
3

= G3, so do the same as above,
,

reversingtherolesofr.andr. . Set T
o 1 g

= span {[u.,v.,w..],
1,3 1,3 13

3
[u.1 ,v.,w1..]}C: T + E.

--

THEOREM 6.5: dim( (T
o
+ E)/E) = III1J1 + 11111(1, in particular, dim T

.'- 1'11,71 1'111(1.

PROOF: Step 1: It is shown that for each i I and any B2.--; J,

-

.11 1. Consider + T
o
+E.

DES
i

13 13 1-0 13 1 13 Expand-

ing by the definition and collecting terms, this is congruent mod E to

(u
1, S1

i

w
ip

AT) ) + (tl, n
i

Er)

ij
) E T

o
+ E. Suppose 7 w..(7)

ij
= 1.

ij S S. 13

This means that (t1, £ To E, that is q(t1, W,j)
i

q(t
1

) in Q. This contradicts relative rigidity unless II = 1.
S
i

ij

But then n w = 1 also, contradicting the independence assumptions.
S
i

ij

Step 2: Suppose that
331.E.(a1..[u.1

,v.,w..] + b1.. fu1 .,v.,w..]) e E,
,3 3 13 13

Consideration of the factors (u.y.) in the usual basis expansion in

V shows that aij = bij for all Sie I, j e J. Set S. = {j EJ I a. =
ij

bij = 1}. Then, we have Z(.E
DES

i
1

([u.,v
j
,w

ij 1
] + [u.,v

j
,w
13
.1)) £ E.

1
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Expanding, we have :( (u , .E
S i

w . .w ) + (t
1' ij

.11 w..)) e E.i 3e3 3eS

Then, by the description of V, we must have .11 w
ij
.w
ij

= 1 for all
i

jeS

i d I. By Step 1, Si = 0 for all i d I. El

COROLLARY 6.6: Hypotheses and notation as above. If Qo = im (V-->Q)

then dim Q0 S 1 + III + 1,71 + IKI.

PROOF: The result follows from Theorem 6.5 (recalling TC: ker (V.4-Q)).

DEFINITION 6.7: Let (G, Q, q) be a 3-box structure over t
1
ft

2.
If

dim Q = 1 + III+ IJI + IKI and trt2 are relatively rigid, then (G, Q, q)

is called a reduced relatively rigid 3-box structure. If Q->-Q/L is an

epimorphism and if the induced 3-box structure (G, Q/ , q') is a

reduced relatively rigid 3-box structure, we call (G, Q/L, q') a

reduction of (G, Q, q).

That a 3-box structure is reduced is equivalent to saying that in a

linked quaternionic pairing, Q has the minimum possible dimension.

(c.f. Proposition 5.1).

THEOREM 6.8: If there exists a 3-box structure (G, Q, q) with two

relatively rigid elements and no rigid elements, then there exists a

reduction of (G, Q, q).

PROOF: Let Q
o

= im (17.±Q). Choose elements ql,...,qr e {q(G1,G1),

q(G2,G2), q(G3,G3)1 such that {q1,...,qr} is a basis of Q/Qo. Set

= <q1,...,qr>1 the subgroup spanned by the basis. Then the map

q' : GxG Q.+ Q/L is a bilinear pairing. It is clear from the

choice of 0 that dim (Q/L) = 1 + III + IJI I IK,,and the relative

rigidity of ti,t2 follows since the composition Qo Q Q/l is an



isomorphism. Thus, (G, Q/L, q') is a reduced relatively rigid 3-box

structure over tl, t2. 0

THEOREM 6.9: If there exists a 3-box structure (G, Q, q), inside a

linked quaternionic pairing, with two relatively rigid elements and

no rigid elements, then there is a reduction of 3-box structures

(G, Q/L, q) of (G, Q, q) with S = Q/A.

PROOF: Since images of the basis of S must be linearly independent

in Q by Proposition 5.1, the map S Q must be injective. The proof

of Theorem 6.8 shows that S Q/t remains injective. Surjectivity

follows as dim S = 1 + III + IJI IKI = dim Q /L. 0
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CONCLUDING REMARK 6.10: It would have been nice to conclusively

resolve the existence or nonexistence of a reduced, relatively rigid

finite 3-box structure. In the future, if the question is resolved

in the negative, then it would imply by Proposition 4.2 that a

finite abstract Witt ring with the same properties does not exist.

Should it be answered constructively in the affirmative where S = Qe

then one would have a starting point to look for a counterexample to the

elementary type conjecture. More importantly however, I believe that

some of the techniques introduced here may prove useful in studying

finite abstract Witt rings.



24

BIBLIOGRAPHY

[CM] A.B. Carson and M. Marshall, Decomposition of Witt Rings,

Can. J. of Math., Vol. 34, no. 6, 1276-1302 (1982).

[J1] B. Jacob, Quadratic Forms over Dyadic Valued Fields I, The

Graded Witt Ring, to appear.

[J2] B. Jacob, Quadratic Forms over Dyadic Valued Fields II,

Relative Rigidity and Galois Cohomology, in preparation.

[M] M. Marshall, Abstract Witt Rings, Queens University Lecture

Notes #57, Kingston, Ontario (1980).

[MY) M. Marshall and J. Yucas, Linked Quaternionic Mappings and

Their Associated Witt Rings, Pac. J. Math., Vol. 95, no. 2,

411-426 (1981).

[L] T.Y. Lam, Algebraic Theory of Quadratic Forms, W.A. Benjamin

Inc. (1973)


