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Preface

In the Pacific Northwest of the United States, several runs of wild salmon have been listed

under the Endangered Species Act (ESA) as threatened or endangered during the past

decade. Dams constitute major obstacles for migrating fish and adversely affect their sur-

vival rates. In extreme cases, dams not only affect the structure of a river, but also its

water chemistry and temperature regime.

One such dam is the Cougar Dam on the South Fork of the McKenzie River in Oregon.

Since its construction by the Army Corps of Engineers in 1963 there has been no fish passage

above the dam, and consequently the wild anadromous fish populations above the dam

have become extinct. In 1999, spring-run Chinook salmon (Oncorhynchus tshawytscha)

below the Cougar Dam were ESA-listed, and it was believed that the dam was directly

responsible for this. The reservoir outlet was at the base of the reservoir, meaning that the

water being released downstream was unnaturally cold during the summer and unnaturally

warm during the winter. By “unnaturally cold” and “unnaturally warm,” we mean that

the water temperatures below the dam differed from the temperature of the water flowing

into the reservoir, which we call the “natural” temperature regime of the river in the area.

In an effort to revive populations of wild Chinook salmon, the Army Corps of Engineers

installed a $52 million water temperature control structure in the reservoir which became

operational in 2004. This structure makes it possible to draw water from different levels in

the water column, enabling the engineers to control the water temperature below the dam

and allowing them to implement a water temperature regime which mimics the natural

temperature regime. It is hoped that the more natural temperature regime will increase

the rate of survival of Chinook in the South Fork of the McKenzie.



The Effect of Temperature on the Survival of

Chinook Eggs and Fry

1 Introduction

The early life histories of Chinook salmon are heavily temperature-dependent. Spring-run

Chinook in the South Fork of the McKenzie River begin their upstream migration when

river temperatures have warmed suitably and river flow is high enough to permit access to

upper reaches of streams. McKenzie River salmon spawn in the fall, approximately between

the 15th of August and the 15th of October, with a spawning peak in September [16]. The

fertilized eggs then incubate in redds - nests that the females dig into the gravel river bed -

until late February or early March [16]. Generally there is high mortality in the egg stage

as a result of predation, and also from competition among females for the best nesting sites.

Once a Chinook egg hatches, the larval fish (known as an alevin) lives in the gravel for a

few weeks, subsisting entirely on its yolk-sac. When the yolk-sac is absorbed, the young fish

“swims-up” from the gravel and begins feeding. These fish are known as fry and they grow

during the spring and summer months, after which - depending on genetic predisposition

- they either immediately migrate downstream to the open ocean or remain in freshwater

over the winter and migrate to the ocean the following year.

The effect of water temperature on the growth of Pacific salmon eggs and juveniles

has been studied extensively ([13], [3], [4], [14], [1], [18], [20], [10]). Decades of labora-

tory and hatchery research have yielded substantial information about the conditions for

optimum fish growth. However, this information is largely based on experiments in which

temperatures are held constant over all or part of the fish’s lifetime. Relationships between

temperature and growth are then extrapolated from this data. It is unknown if these equa-

tions have been tested in the field in order to verify their accuracy in predicting fish weight

in a variable temperature regime.
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1.1 The “Egg-Fry Conflict”

In general, the eggs of salmon incubate better in colder water, whereas fry fare better in

warmer water. For instance, normal embryonic growth for Chinook salmon lies between

4.5 ◦ and 14.2 ◦C (average 9.35 ◦C), and optimum fry growth occurs between 15.6 ◦ and

19 ◦C (average 17.3 ◦C) [20]. Additionally, it has been observed that eggs incubated in

colder waters have lower mortality rates than fish that have incubated at warmer temper-

atures, even though they often hatch slower and smaller than their warm-water incubated

counterparts [20]. This temperature trade-off has been termed the “egg-fry conflict” [17].

Thus it is the author’s intention to construct a model of the egg-fry system and to use

this model to analyze the ways in which differing water temperature regimes may affect the

survival and fitness of a single generation of salmon. In the process, it is hoped that the

“egg-fry conflict” will come into clearer focus.

1.2 Summer Model

In the summer of 2007 the author had the opportunity to begin her work on this problem at

the H.J. Andrews Experimental Forest in Blue River, Oregon as a part of the EcoInformatics

Summer Institute (EISI). Over the course of ten weeks a rough initial model was built, which

which we will call the “summer model” [19].

One measure of a generation’s fitness is its biomass. In general, it is assumed that a

large number of big fish will produce more viable offspring than a small number of small

fish. Biomass can be estimated by multiplying the mean weight of the population by the

number of individuals in the population. The summer model focuses heavily on finding an

expression for the expected value of the weight of the fry at some time tm after spawning.

The summer model makes several assumptions about the egg-fry system. Firstly, it

assumes that all spawning in the reach occurs on the same day every year, the 1st of

September. Additionally, water temperature is assumed to be constant during September

and October of each year, since one of the inputs of the summer model is the (constant)

incubation temperature for an egg. Furthermore, water temperature is also assumed to be
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constant during in-stream fry growth, which, for the salmon in this system, occurs over the

course of a full calendar year. These constant temperatures are obtained by averaging mean

monthly temperatures.

In the summer model, time of hatching is assumed to be a random variable denoted

by Th that depends on incubation temperature1, T , and has a probability density function

fTh(t, T ). Equations in the literature ([7], [13], [1]) give the time (in days) to fifty percent

hatching - in other words, the median hatching time - as a function of temperature, denoted

D2(T ). The form of these functions is D2(T ) = γ(T +β)c, where T is temperature in degrees

Celsius, and γ, β and c are constants. In the summer model, the distribution of hatching

times is assumed to be triangular, peaking at D2(T ).

Additional assumptions in the summer model are that fry and alevin have the same

growth rates, i.e. once an egg hatches it is essentially a fry. Furthermore, growth is assumed

to be density independent.

Under these assumptions, the author formulated an expression for the expected value

and variance of fish weight at some time tm after spawning. Using USGS water temperature

data from two gauges - one situated above the reservoir (14159200) and the other below

the Cougar Dam (14159500) - the model was implemented for each temperature regime and

expected values of the fish weights were calculated and compared. What the author had

hoped for was that the model would predict a higher biomass for the “natural” tempera-

ture regime, and a smaller biomass of fish for the “unnatural” temperature regime below

the dam; the spring-run Chinook salmon in the McKenzie River have, after all, evolved

to grow optimally in the historically natural temperature regime of the river. A higher

biomass from the “natural” temperature regime would have lent support to the idea that

the water temperature control structure installed at the Cougar Dam will help to increase

the probability of survival of Chinook salmon.

Unfortunately, the summer model did not give the desired results. According to the

summer model, the“unnatural” water temperature regime below the dam will produce a
1Please note that although temperature is denoted by T in the summer model, we shall be using the

symbol θ further on.
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higher biomass of fish than the “natural” temperature regime above the reservoir! This

is certainly not what has been observed in reality, and so it is obvious that the summer

model’s assumptions are too unrealistic, since the model failed to reflect even the qualitative

aspects of the system.
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2 Objectives

One of the primary reasons for the failure of the summer model may be that temperature

is defined too coarsely (constant incubation temperature, constant fry growth tempera-

ture). Additionally, the underlying physical processes - spawning, incubation, hatching,

and temperature-dependent growth - are not all represented.

The overall objective of this thesis is to improve upon the summer model and obtain a

model which more closely represents reality, at least qualitatively. Since we believe temper-

ature to be the major culprit in the downfall of the summer model, our first objective is to

better understand the temperature data we are working with. This will mean performing a

time series analysis of temperature data gathered from the USGS water temperature gauges

located above and below the dam, and fitting an auto-regressive moving average (ARMA)

model to each set of data.

Additionally, we will use MATLAB to build an individual-based simulation model that

is capable of using a record of daily water temperatures to essentially “grow” a fish. The

output will be the weight of a fish at some time tm after hatching. This model will incor-

porate several things that the summer model did not (e.g. spawning, alevin life stage, daily

temperature inputs).

The final step will be to run the MATLAB script several times, “growing” several

hundred fish in each temperature regime. We will look for differences in the resulting

histograms of fish weights.

We will also briefly analyze the supposed “egg-fry conflict” and attempt to characterize

it mathematically.
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3 Methods

3.1 Empirical versus Mechanistic Models

Empirical (predictive) models are based on statistics and are good for predicting values

of response variables within the range of data obtained, but not very good for predicting

values outside of the data range, or into future, because these models only look at the ways

in which response variables change with respect to (supposed) explanatory variables, but

make no attempt to explain the underlying reasons for the observed relation. For example,

a linear regression is a type of empirical model for predicting the value of a response variable

given the value of the independent variable.

Mechanistic (explanatory) models, on the other hand, are based entirely on the under-

lying physical processes of the system, relating response and explanatory variables with

equations that come from the observed interactions between them. A classic example of

a mechanistic model is Newton’s Law of Cooling. These models are usually much more

difficult to construct. The pay-off, however, is that the modelers can feel confident about

using their model to predict values of response variables outside of the data range and into

the future [5].

Empirical models predicting egg survival, incubation time and juvenile growth based on

water temperature do exist ([7], [8], [4], [1]), however, to date there has been relatively little

effort to relate these equations to one another in a meaningful way. More recently, mech-

anistic models relating temperature and salmon growth have been appearing, for example

[11], [5]. Predictably, they are extremely complicated and highly parameterized, requiring

numerical methods for their implementation. Both types of models are useful, and we use

both types in our simulation.
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3.2 Introduction to Autoregressive Integrated Moving Average (ARIMA)

Models

We would like to describe the behavior of the temperature regimes above and below the

Cougar Dam. We do this by performing a time-series analysis of the temperature records

and producing an autoregressive integrated moving average (ARIMA) model for each data

set.

The idea behind univariate time-series models is that given some series of observations

Θ = {θt | t = 0, 1, . . .} the tth element in the series can be described as a function of

previous elements in the time series. For example, we can say that today’s water tempera-

ture depends (to some extent) on yesterday’s water temperature, and perhaps also on the

temperature two days ago, or three, and so on. This is known as an autoregressive series,

and is said to be of order p if each element of the series at most depends on the p previous

elements in a sense made more precise below.

At each time step, a small amount of stochasticity is included in the time series by

adding a white-noise disturbance term in the form of a random number drawn from a

normal distribution with mean zero and variance σ2. If, say, the tth element of our time

series depends not only on the white-noise disturbance term at time t, but also on the

disturbance term at time t− 1, and t− 2, all the way back to time t− q, then we say that

our time series is a moving average process of order q.

In the event that our time series exhibits certain undesirable behaviors, such as nonsta-

tionarity (we will discuss this phenomenon below), then it is often possible to transform the

original series into a more well-behaved series by removing, or “differencing out” trends.

For example, if our time series had a first-order (linear) trend and we wished to remove this

trend, we let

θ1
t ≡ ∆θt = θt − θt−1 (1)

and work with the transformed series Θ1 = {θ1
t | t = 1, 2 . . .}. If the trend is quadratic,

then we let θ2
t ≡ ∆θ1

t , and so on. The order of the trend in a time series is denoted d, and
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such a process is called an integrated series. Thus the shorthand for an p-order autoregres-

sive, d-order integrated, and q-order moving average time series is ARIMA(p,d,q). If we

assume that our time series is not integrated, or if we are working with a transformed series

in which the trend has already been differenced out, then we may ignore the “integrated”

component of the ARIMA model and our model reduces to an ARMA(p,q) model. The

functional form of the ARMA(p,q) model is

θt = m + α1θt−1 + α2θt−2 + · · ·+ αpθt−p + (εt − β1εt−1 − · · · − βqεt−q) (2)

where m is the mean of the series, αi and βi are constants, and εi, i = t, t− 1, . . . , t− q is a

white noise process that is a sequence of independently and identically distributed normal

variables with mean zero and variance σ2 (denoted iid N(0,σ)).

It is important to note that the ARMA(p,q) model given in Equation 2 can only be

applied to our time series if we assume that our process satisfies stationarity. In a sta-

tionary time series the mean and variance of the sequence are independent of time. For

example, if we imagine our time series being plotted as a movie running forward in time,

then stationarity implies that our time series will hover around a single mean rather than

slowly increase or decrease over time; additionally, the variance around this single mean will

remain constant for all time, i.e. the path of the time series will not tend to get further and

further (or closer and closer) to the mean. This is called first moment stationarity. More

generally, if we define the autocovariance coefficients of our series to be

ρ(k) = E(θtθt−k), k = 0, 1, 2, . . .

then second moment stationarity means that ρ(k) will remain the same regardless of the

time t. As an example, if we have a time series of length 10, then

ρ(5) = E(θ10θ5) = E(θ6θ1).
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We note that ρ(0) = E(θ2
t ) gives us the variance, and stationarity assumes that this remains

constant for all t.

The concepts underlying the construction of an ARMA(p,q) model can be understood

by restricting ourselves to the ARMA(1,0) model, better known as the AR(1) model, which

contains only two parameters. Although the algebra involved is much simpler than for the

general ARMA(p,q) case, the ideas can easily be extended to cover the entire class of models

(for a more thorough introduction to modeling ARMA(p,q) processes see [12]).

We can express the white noise terms in Equation 2 as εi = σzi, i = t, t − 1, . . . , t − q,

and thus the AR(1) model with zero mean has the form

θt = αθt−1 + σzt (3)

where zt is iid N(0,1). The two parameters we must estimate are α and σ. We do this by

squaring both sides of Equation 3 and taking expectations, which yields

ρ(0) = α2E(θ2
t−1) + E(σ2z2

t ) + 2αE(θt−1σzt) (4)

The AR(1) model requires that θt−1 and zt are independent of each other, and thus the last

term in Equation 4 can be written as

2αE(θt−1)E(σzt) = 2ασE(θt−1)E(zt).

We recall from above that since zt is iid N(0,1), then E(zt) = 0 and thus the last term in

Equation 4 vanishes, leaving

ρ(0) = α2ρ(0) + σ2 (5)

=
σ2

1− α2
(6)
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We also calculate the lag-1 covariance:

ρ(1) = E(θtθt−1) (7)

= E [(αθt−1 + σzt)θt−1] (8)

= αE(θ2
t−1) + 0 (9)

ρ(1) = αρ(0) (10)

Thus we find

α =
ρ(1)
ρ(0)

(11)

σ2 = ρ(0)

[
1−

(
ρ(1)
ρ(0)

)2
]

(12)

The values of the parameters ρ(0), ρ(1) are estimated from the data using the Yule-Walker

Estimates [12],

ρ(0) ≈ ρ̂(0) =
1
n

n∑

j=1

θ2
j (13)

ρ(1) ≈ ρ̂(1) =
1
n

n∑

j=2

θjθj−1 (14)

and from these it is possible to calculate approximate values for α and σ.

3.3 Construction of the ARMA Model

The computation of the ARMA specifications and parameter values is best done by statis-

tical software; we use SAS 9.1 to compute our time-series model. The three steps in ARMA

modeling are as follows [12]:

1. Check for stationarity. If the series is nonstationary, induce stationarity by transform-

ing the series or differencing out trends.

2. Using the autocorrelation properties as guides, choose a few ARMA models for esti-
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mation and testing, arriving at a preferred model with white noise residuals.

3. Use the preferred model to produce forecasts.

3.3.1 Below the Dam

We wish to fit an ARMA model to temperatures below the Cougar Dam (gauge 14159500).

We begin by making sure we have the correct data to work with. In early April of 2002 the

Cougar Reservoir was drawn down in order to begin construction on the temperature control

structure. Since we are interested in comparing the “unnatural” temperature regime pro-

duced by the dam to the “natural” regime above the dam, we do not want to contaminate

our data with temperature records during the construction or operation of the tempera-

ture control structure. Thus we obtain data from USGS for the daily mean temperatures,

averaged from 1978 to 2001.

We first check the data for evidence of non-stationarity. In practice, this is done by using

various statistical tests (e.g. augmented Dickey-Fuller and Phillips-Perron) to check for a

unit root in the autoregressive part of the model [12]. This property of having a unit root

(“unit” meaning “equal to 1”) is undesirable because it induces time-dependence. Consider

again the AR(1) model in Equation 3. If we disregard the σzt we can treat Equation 3 as

a recurrence relation of the form

θt = αθt−1 (15)

To find the solution to this recurrence – that is, if we wished to remove dependency on

previous elements in the series [9] – we use the ansatz θt = rt and obtain

rt = αrt−1 (16)

By dividing through by rt−1 we find that r = α. This is the characteristic equation of

our recurrence relation, and we observe that it is linear. In our case, a unit root in the

characteristic equation implies that α = 1. When we substitute this back into Equation 3,
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we obtain

θt = θt−1 + σzt.

Expanding the term θt−1 as a telescoping series, we can rewrite the above as

θt = θ0 + σ

t∑

j=1

zj (17)

Recall that each zj is independent and is drawn from N(0,1), and thus if we square both

sides of Equation 17 and take expectations, we find that

V ar(θt) = σ2t + V ar(θ0) (18)

We observe that the variance is not independent of time, and thus a series with a unit root

does not satisfy stationarity.

Our initial exploration indicates that we do not have sufficient evidence to reject the

null hypothesis that we have a unit root (all test statistics are greater than 0.05), so we take

the first difference of our data in an attempt to transform it into a stationary time series.

By “differencing” we mean the process described above in Equation 1. Using the same unit

root tests as above, we find that the first-differenced data exhibits stationarity.

We now perform the ARMA procedure in SAS to estimate possible ARMA(p,q) models

for our first-differenced data using a few approximation techniques. We decide that the

ARMA(1,2) model is sufficient because the ARMA procedure statistics indicate that it is

a good fit. We note that this is in fact an ARIMA(1,1,2) model, since we are fitting an

ARMA(1,2) model to the first-differenced data. SAS gives us the values of the autoregressive

and moving average coefficients for this model, and thus for the temperature data below

the dam we have

wt = µ(1 + α1)− α1wt−1 + εt + β1εt−1 + β2εt−2 (19)

where
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• wi is the difference between the temperature on day i and day i− 1.

• µ = −0.02277 is the mean of the differenced series.

• α1 = −0.98824 is the first autoregressive coefficient.

• εi is the error term in the ith time step.

• β1 = −1.14192 is the first moving average coefficient.

• β2 = 0.30612 is the second moving average coefficient.

The set of values wt given by Equation 19 are the modeled first-differences of the temper-

ature regime. If we wish to compare our model to the observed data, we must now do the

following. Let us define Θ̄ to be the overall (grand) mean of the temperature data, and let

νt ≡ θt − Θ̄.

Then the value wt in Equation 19 can be represented by wt = νt − νt−1, t = 1, 2, . . . We

now observe that we can write the term νt as a telescoping series, that is,

νt =
t∑

j=1

(νj − νj−1) + ν0 (20)

Using this yields

θt = νt + Θ̄ (21)

=
t∑

j=1

(νj − νj−1) + ν0 + Θ̄ (22)

=
t∑

j=1

wj + ν0 + Θ̄ (23)

=
t∑

j=1

wj + θ0 (24)

Based on our data in the series Θt = {θs : s ≤ t}, we now compute the value ŵt =
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E(wt|Θt−1). The value ŵt is the predicted or average value of wt based on the data in Θ.

Using this data, we compute the expected value of Equation 19. Recalling that E(εt) = 0

we have the deterministic equation for the predicted mean values as

ŵt = µ(1 + α1)− α1wt−1 + β1 ˆεt−1 + β2 ˆεt−2 (25)

for t = 1, 2, . . .. We now perform an in-sample fit of our ARMA model via the following

algorithm. We first let w0 = ν0 = θ0 − Θ̄ and proceed thus:

ŵ1 = µ(1 + α1)− α1w0 (26)

ε̂1 = w1 − ŵ1 (27)

ŵ2 = µ(1 + α1)− α1w1 + β1ε̂1 (28)

ε̂2 = w2 − ŵ2 (29)

ŵ3 = µ(1 + α1)− α1w2 + β1ε̂2 + β2ε̂1 (30)

For all succeeding estimates we can write

ŵt = µ(1 + α1)− α1wt−1 + β1 ˆεt−1 + β2 ˆεt−2 (31)

Finally we plot the values θ̂t =
∑t

j=1 ŵj + θ0 for each t. The result is shown in Figure 1.

True temperature data is plotted as the dotted line, and the in-sample ARIMA(1,1,2) fit is

shown as the solid line. We see that the fit to the true data is quite good.

3.3.2 Above the Dam

To fit an ARMA model to temperature data from USGS gauge 14159200, which lies above

the Cougar Reservoir, we follow a nearly identical procedure as that described in Section

3.3.1. We find that the series is nonstationary and that differencing once transforms the

data into a stationary series. Once again we estimate possible ARMA(p,q) models for our

first-differenced data and discover that the model with the best fit to the differenced-data
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Figure 1: ARIMA(1,1,2) model for temperatures below the dam.

is ARMA(9,7), which gives us an ARIMA(9,1,7) model. We plot the observed temperature

data along with our ARIMA(9,1,7) model approximation in Figure 2. The dotted line

represents the true temperature data, and the solid line represents the ARIMA(9,1,7) in-

sample fit.

Note on the ARMA Procedure

Our goal with constructing the ARMA models was to generate hypothetical temperature

records that behave similarly to the true temperature time series, at least in regards to the

underlying correlations. Using these simulated temperature regimes, we would be able to use

our code (see below; also see Appendix A) to “grow” our fish in slightly different temperature

regimes each year, strengthening our conclusions about the distributions of fish weights

above and below the dam. Unfortunately, the ARMA procedure is not an appropriate

method of generating hypothetical temperature records, that is, forecasting. This is because

a crucial element of a yearly temperature record is that the temperature on December 31

of one year must be similar to the temperature on January 1 of the following year; in

essence, we require periodic boundary conditions for our deterministic model. Although an

in-sample fit of the data approximates the true data well, Figure 3 shows the difficulty in
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Figure 2: ARIMA(9,1,7) model for temperatures above the dam.

using the ARMA model to forecast temperatures beyond a few days (true temperature data

shown as dotted line, simulated temperature regimes shown as solid lines). For comparison,

see Figure 4, in which we observe the natural year-to-year variation in daily temperatures

below the dam. Although the ARMA model is able to capture the average behavior of our

temperature time series, it is not able to describe the fluctuations. Since we are not able

to generate realistic hypothetical temperature regimes using our ARMA models, for the

remainder of this project we use the raw daily temperature data obtained from USGS.

3.4 Modeling Growth

Simulation models intending to “grow” a fish have been built before, for example see [11],

[5]. The author’s intention, however, is slightly different than these previous models. There

are several variables that contribute to in-stream salmon growth, such as food availability

and population density, but for the purposes of this model these will be disregarded. Ad-

ditionally, habitat variables that affect the early life histories of salmon, such as river flow

and stream-bed composition, will be ignored as well. We are purely interested in the effect

of temperature on the growth of Chinook eggs and fry.

Furthermore, this study is comparative, focusing on the temperature regimes above and
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Figure 3: Simulated out-of-sample temperature regimes below the dam using ARIMA(1,1,2)
forecasts.

below the Cougar Dam on the South Fork of the McKenzie River. As noted above in

Section 2, the only intention is to see how the distributions of fish weights differ depending

on which temperature regime is used, and not to see how closely these distributions reflect

the true distributions of fish weights observed above and below the dam. This would be

impossible, since the wild anadromous fish populations above the dam became extinct after

the construction of the dam. Thus, our simulation model will be very specific to this system,

and not necessarily generalizable to other rivers or salmon populations.

3.4.1 Growth Equations

The first step, coded in MATLAB as the function

[Th,Ta,wt] = fishalevin(Ts,Tm,site),

“grows” an individual fish, modeling its development from spawning all the way through to

the fry stage (here we include the alevin life stage). The inputs for this function are the time

of spawning (Ts), the time at which we wish to know the final fish weight (Tm), and the

site number of the USGS gauge whose temperature data we will be using (one of 14159200

or 14159500). The outputs will be the time of hatching (Th), time of alevin swim-up (Ta),
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Figure 4: Several years of daily temperature data from below the dam.

and weight at time Tm, denoted wt (see Appendix A for this and other MATLAB codes).

The growth of the fish is broken up into three distinct phases: incubation, alevin, and fry.

The equations used to calculate growth depend on the life stage of the fish.

As noted above, length of incubation is temperature-dependent. We calculate length of

incubation according to the log-inverse Bělehrádek equation given in [1].

ln P = ln k + b ln(θ − c) (32)

This equation gives the percentage development P per day of the egg for a given temperature

θ. In fact, P is defined as P = 100/t, where t is incubation time to 50% hatch; that is,

t is the average incubation time. By “development” we mean progress towards hatching.

The total percentage development of the fish egg at day T is given by summing the daily

percentages from Tinit to T. Equation 32 is one of several possible empirical models presented

in [1] to calculate incubation time. Each of these models is fit to pooled data to obtain

the parameter estimates, and Equation 32 is the expression with the best fit. Coding

this method of calculating incubation time is done by keeping track of the accumulated

development percentage and stopping the loop when this value exceeds 100.
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While incubating, we assume that the embryo and yolk sac grow according to the system

of differential equations (3) given in [6]. These differential equations are mechanistic since

they are based on the anabolism and catabolism of the fish, which is temperature-dependent.

As in [6], we assume that both embryo and yolk sac are spherical and are connected by the

embryo’s vitelline system. If we let p be the radius of the yolk sac in millimeters at time t,

and r be the radius of the embryo in millimeters at time t, we have

dr

dt
=

acA

r2
− br (33)

dp

dt
= −aA

p2
(34)

In the above,

• a = α1 exp(α2θ), where α1, α2 are constants and θ is temperature. From [6] we have

approximations to the parameter values α1, α2. These are given by

• α1 = 0.01024

• α2 = 0.1315

• b = β1 exp(β2θ), where β1, β2 are constants. From [6] we have

• β1 = 0.000464

• β2 = 0.1906

• c is the water absorption coefficient. It is assumed that before hatching c = 1, and

after hatching c = 2.433.

• A = At = min(r2
t , p

2
t ).

The computational forms of Equations 33 and 34 are derived using the Forward Eu-

ler numerical method [2], which is a finite difference scheme that approximates the first
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derivatives in Equations 33 and 34 by:

dr

dt
≈ rt+1 − rt

∆t
(35)

dp

dt
≈ pt+1 − pt

∆t
(36)

Thus we have from [5] that

rt+1 = rt +
(

ac
At

r2
t

− brt

)
·∆t (37)

pt+1 = pt − aAt

p2
t

·∆t (38)

The weight of the embryo together with the yolk sac is calculated as density × volume, and

assuming that embryo and yolk sac have the same density ρ, the weight (in milligrams) at

time t is given by

wt = ρ · 4π

3
(r3

t + p3
t ) (39)

In implementing Equations 37, 38 and 39, we take parameter values from [6]:

• Time step is ∆t = 0.25 days

• Initial radius of embryo is r0 = 0 mm

• Initial radius of yolk sac is p0 = 4.46 mm

• Density of embryo and yolk sac is ρ = 1.05

• Additionally, the parameters a and b are temperature-dependent; that is, we actually

have a = a(θ) and b = b(θ). More precisely, since our temperature data is measured

daily (rather than 4 times per day, our time step ∆t), we observe that for t being a

multiple of four, a(θt) = a(θt+1) = a(θt+2) = a(θt+3) and similarly for b(θt).
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Thus for the incubation stage, Equations 37 and 38 take the form

rt+1 = rt + (a(θt)− b(θt)rt) ·∆t (40)

pt+1 = pt − a(θt)
r2
t

p2
t

·∆t (41)

Alevin growth is also calculated using Equations 37, 38 and 39; however, this life stage

is divided into two parts for computation, and growth during each part is modeled slightly

differently. As long as the radius r of the embryo (now referred to as the larva) is smaller

than the radius p of the yolk sac, the equations governing growth of the alevin are

rt+1 = rt + (2.433 a(θt)− b(θt)rt) ·∆t (42)

pt+1 = pt − a(θt)
r2
t

p2
t

·∆t (43)

As soon as the larva grows larger than its yolk sac, the equations of growth are given by

rt+1 = rt +
(

2.433 a(θt)
p2

t

r2
t

− b(θt)rt

)
·∆t (44)

pt+1 = pt − a(θt) ·∆t (45)

Alevin remain in the stream-bed gravel and subsist entirely on their yolk sacs until

they reach what is referred to as “maximum alevin wet weight”, or MAWW. Nicholas

Beer (1999) states that “maximum alevin wet weight is a key point in a chinook salmon’s

development because it is physiologically significant, easy to identify, and seems to coincide

chronologically with emergence from the gravel” [5]. Once the alevin emerges, or “swims-

up,” it begins external feeding, and it is at this point that we decide the fish is physiologically

a fry, and thus grows according to the fry growth equation given in equation (2) of [8]. We

assume that the fry feed to satiation and that growth is not density-dependent. We also

assume no predation, nor any mortality whatsoever. Given these assumptions, the weight
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(in grams) of the fish at time t is denoted Wt and is given by

Wt =
[
W b

0 + bc
(θt − θLIM )t

100 (θM − θLIM )

]1/b

(46)

where

• W0 is the initial weight of the fish.

• b and c are parameters.

• θt is the temperature at time t.

• θM is the optimal growing temperature for the species of fish.

• θLIM is a value that changes depending on the water temperature. If we let θU be

the upper temperature limit for growth, and θL be the lower temperature limit for

growth, then θLIM = θL when θ ≤ θM , and θLIM = θU when θ > θM .

Equation 46 is an empirical model for fry growth, which contrasts with our earlier mech-

anistic model for egg and alevin growth. Although bioenergetic (mechanistic) models for

fry growth do exist – the University of Wisconsin Center for Limnology and the Wisconsin

Sea Grant Institute have created software entitled Fish Bioenergetics 3.0 which computes

fish growth in terms of bioenergetics – we will be using Equation 46 because it is generally

accepted to be a good model for fish growth [7], and it is relatively simple to implement.

The computational form of Equation 46 we use is actually given by the Forward Euler

approximation to the derivative

d(W b)
dt

≈ W b
t+1 −W b

t

dt
(47)

and since our time step dt is taken to be one day, we have

Wt+1 =
[
W b

t + bc
(θt − θLIM )

100 (θM − θLIM )

]1/b

. (48)



23

The parameter values we use are for Atlantic salmon (Salmo salar) because we are unable

to find parameter values for Chinook salmon. Although Pacific and Atlantic salmon are

different, we assume that they are close enough relatives that we can use Atlantic salmon

parameter values as estimates of Chinook salmon parameter values [7]. From [8] we have

• b = 0.31

• c = 3.53

• θM = 15.94

• θL = 5.99

• θU = 22.51

In implementing the above growth equations to “grow” our fish, we take the final conditions

of one life stage to be the initial conditions for the next life stage.

3.4.2 Weight Distribution

The second step of the simulation model is the MATLAB file

[M,S,Q,K]= FishDistribution(T,site).

This function returns the mean, standard deviation, skewness, and kurtosis of fish weights

at day T, which is the Julian day of year 1 (the spawning year is taken to be year 0). The

distribution of spawning times is assumed normal with standard deviation σ = 15.3333 days

and mean 274 (Julian day of the year corresponding to September 30) [16]. The site input

is one of 14159200 or 14159500. We grow 200 fish in the specified temperature regime and

plot a histogram of fish weights at day T .

4 Results

We begin by first looking at our model for fish growth. Figure 5 is a plot of the weight of a

fish from egg to fry (weight is measured in milligrams). Egg and alevin stages are plotted
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Figure 5: Growth of fish above and below the dam.
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Figure 6: Temperatures experienced during growth of fish above and below the dam.

as solid lines, and the fry stage is plotted as a dashed line. In each plot the spawning day

is taken to be September 21 and the fish grow for one year. We also plot the temperatures

experienced during the growth of each of these fish in Figure 6.

Interestingly, we observe a possible indication of the egg-fry conflict in Figure 5. We

notice in both plots of fish weight that as soon as the fish hatches (becomes a fry), growth

slows and becomes negative for a short period before increasing. Whether or not such weight

loss may be physically possible, it supports experimental observations [13] that while eggs

and alevin seem to tolerate the cold winter temperatures well (as evidenced by positive

growth),the fry do not tolerate it well, as evidenced by a decreased growth rate.

We now turn to the distribution of fish weight. We chose 30 time points between April

20th and the December 16th which will be our values for T, the inputs for the code described

in Section 3.4.2. For each value of T we “grow” 200 fish in each temperature regime. For
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Figure 7: Histograms of fish weights above and below the dam on October 1, corresponding
to the beginning of smolt outmigration [16].
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Figure 8: Histograms of fish weights above and below the dam on October 15, corresponding
to the beginning of the peak of smolt outmigration [16].

the generated data, including the mean and standard deviation of fish weights above and

below the dam, see Appendix B. We show, as an example, four of pairs of histograms (see

Figures 7, 8, 9, 10). Each pair of histograms shows the distribution of fish weights at time

T depending on whether the 200 fish were “grown” above the dam or below the dam.

By observation it is clear that the distributions of fish weights above and below the

dam are different. We especially note that the skewness of the above-dam data seems to

be much different than the skewness of the below-dam data. To verify this we will use the

two-sample t-tests to compare the first through fourth moments of each distribution; that

is, the mean, standard deviation, skewness, and kurtosis (a measure of the “peakedness”

of a distribution [15]) of the below-dam and above-dam weight distributions. We note that
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Figure 9: Histograms of fish weights above and below the dam on November 15, corre-
sponding to the middle of the peak of smolt outmigration [16].
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Figure 10: Histograms of fish weights above and below the dam on December 15, corre-
sponding to the end of the peak of smolt outmigration [16].

in-sample and between-group independence is preserved since the model uses deterministic

individual growth.

In order to conclude that the distributions of fish weights above and below the dam are

different, only one of our four two-sample t-tests must be deemed statistically significant. We

do, however, change the p-value that determines significance to p < 0.05/4, or approximately

0.01. This is called a Bonferroni correction [21]. We find that although the two-sample t-

test performed on the means returns an insignificant p-value (p = 0.16), the three remaining

two-sample t-tests gives us strong evidence to reject the null hypothesis that the above and

below dam weight distributions are the same (for standard deviation: p = 3.85e − 4; for

skewness: p = 9.25e − 89; for kurtosis: p = 1.83e − 76). Thus we conclude that our



27

distributions above and below the dam are very different.

Furthermore, we observe that fish grown above the dam tend to be larger than fish grown

below the dam for the majority of the growing period. We use a Wilcoxon signed-rank test

to see if the vector M = Ma−Mb has a mean significantly different from zero, where Ma

is a vector of mean weights above the dam recorded at regular time intervals, and Mb is

a vector of mean weights below the dam recorded at regular time intervals. We find that

indeed, the vector M does have a mean significantly different from zero (p = 2.6744e-004).

The average of the vector Ma is 2.633 grams, and the average of vector Mb is 2.0305 grams.
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5 Conclusions

Since the vector M = Ma−Mb (where Ma is a vector of mean weights above the dam and

Mb is a vector of mean weights below the dam) has a mean significantly different from zero,

and also since the mean of Ma is greater than Mb, we can conclude that the temperatures

above the dam tend to produce fish that are larger for most of the growing period than the

temperature regime below the dam. If we assume that larger fish have a higher chance of

survival, then our model shows that the temperature regime below the dam is less conducive

to the survival of Chinook fry than the temperature regime above.

We note, however, that this assumption of “larger fish” being “fitter fish,” i.e. more

capable of surviving and reproducing, may not be true for all life stages of the salmon;

in fact we mentioned in Section 1.1 that smaller fry, if they incubated as eggs at lower

temperatures, tend to have a lower mortality rate than larger fry that incubated as eggs in

warmer water [20].

We were not able to explicitly find a way to characterize the “egg-fry conflict,” other

than to observe that temperatures that promote positive growth in egg and alevin life

stages may not promote positive growth in the fry life stage. One possible improvement

to the current model would be to describe fry growth using a bioenergetic model. If this

bioenergetic model included terms that modeled the temperature-dependent metabolism of

the fish, then this term could be compared to the anabolism and catabolism terms in the

embryo-yolk sac system described in [6]. This comparison might help to reveal the “egg-fry

conflict.”

Another improvement to the current model would be to implement a method of gen-

erating hypothetical temperature records that is more appropriate than ARMA modeling.

For instance, we might instead construct a Markov chain with serial dependence, otherwise

known as a Markov Chain of order m. This method requires decades’ worth of daily tem-

perature data, which gives us many temperature readings for each day of the calendar year.

We determine conditional probabilities for each day that can be colloquially described as
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“given the probability that yesterday’s temperature was above (or below) the mean tem-

perature for that day of the year, what is the probability that today’s temperature is above

(or below) the mean?” We do not have to restrict ourselves to looking back only one day,

however, we can look back as far as m days, hence the Markov chain of order m. Once we

have these conditional probabilities for each day of the year, we choose whether or not “to-

day’s” temperature will be above (or below) the mean. When we have decided (by selecting

from a bag of white and red beads, or using a computer program, or any other suitable

method), we randomly select a value for today’s temperature drawn from the distribution

of temperatures that have (historically) occurred on this day. If the temperature we select

agrees with our decision for today (that the temperature today will be above – or below –

the mean), then we choose this to be today’s temperature. If it does not agree with our

decision, we “throw out” our value and draw again until we have a temperature reading

that agrees with our decision.

This is a highly involved process and our simulated temperature regimes will be rather

noisy. However, we can be guaranteed that our simulated temperature on any given day

will be within the historically accepted temperature range for that day. We will not get the

types of impossible temperature regimes that the ARMA(p,q) models produce.

The results of this model are much more believable than the results of the summer

model. This is because the underlying physical processes of the system are represented and

the temperature inputs are more realistic. But, as mentioned before, this model applies

to a very specific system and thus may not be generalizable to other temperature regimes,

other geographic locations, or other salmon species. This model is merely to be used as a

tool to compare different temperature regimes.
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Appendices

A MATLAB Code

A.1 fishalevin.m

function [Th,Ta,wt]=fishalevin(Ts,Tf,site)

%

% function [Th,Ta,wt]=fishalevin(Ts,Tf,site)

% The function fishalevin.m calculates the weight of a single fish Tf days

% after spawning on day Ts, having experienced the thermal regime recorded

% at the specified site.

%

% INPUTS

% Ts = time of spawning [integer day of the year]

% Tf = number of days after spawning at which you wish to know the

% weight of the fish [days since spawning]

% site = one of ’14159500’(below dam) or ’14159200’ (above dam)

%

% OUTPUTS

% Th = time of hatching [integer day of year]

% Ta = time of alevin swim-up [integer day of year]

% wt = fish weight at time Tm [grams]

%

% Sample call sequence:

%

% [Th,Ta,wt]=fishalevin(264,365,14159500)

%

% Length of incubation is calculated using the log-inverse Belehradek

% equation from Alderdice and Velsen (1978). Embryo growth during egg and

% alevin stages is calculated using Eqns (3) in Beer & Anderson (1997). Fry

% growth calculated using eqn 2 from Elliott & Hurley (1997).

%% Step 0: Decide which temperature regime we’re using.

if site == 14159500

theta_n = [5 ... 5];

thetaN = zeros(1,2*length(theta_n));

thetaN(1:length(theta_n)) = theta_n;

thetaN(length(theta_n)+1:length(thetaN)) = theta_n;

elseif site == 14159200

theta_n = [4.3 ... 4.4]’;

thetaN = zeros(1,2*length(theta_n));

thetaN(1:length(theta_n)) = theta_n;

thetaN(length(theta_n)+1:length(thetaN)) = theta_n;

else
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disp(’ERROR: Invalid Site Selection.’)

Th = NaN; Ta = NaN; wt = NaN;

return

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Set-up

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

P = 0; % percent embryonic development

p = [];

p(1) = 4.46; % radius of yolk sac, in millimeters

r = [];

r(1) = 0; % radius of embryo, in millimeters

W = [];

rho = 1.05; % density of yolk and embryo (assumed to be equal)

W(1) = rho*(4/3)*pi*(p(1)^3+r(1)^3);

dt = 0.25;

kbel = 0.08646; % these are paramters in log-inv Belehradek: pooled data

bbel = 1.23473; %

cbel = -2.26721; %

a = [];

b = [];

a1 = 0.01024; % these are parameters in eqns (3) of Beer & And (1997)

a2 = 0.1315; %

b1 = 0.0006464; %

b2 = 0.1906; %

c = 2.433; %

for i=1:(1/dt):2*length(thetaN)

time = (i-1)*dt + Ts;

a(i:i+3) = a1*exp(a2*thetaN(time)); % parameter a changes with temp

b(i:i+3) = b1*exp(b2*thetaN(time)); % parameber b changes with temp

end

Tm = Tf + Ts;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Incubation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

day = 0; % days since fertilization

for j = 2:500

P = P + kbel*(thetaN(j-2+Ts)-cbel)^bbel; % calculate the hatching day

day = day + 1;

if P > 100

break

end

end
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jmax = day/dt;

for j=2:jmax

r(j) = r(j-1) + (a(j-1)-b(j-1)*r(j-1))*dt; % radius of embryo

emb(j) = rho*(4/3)*pi*(r(j))^3; % weight of embryo

p(j) = p(j-1) - ((a(j-1)*r(j-1)^2)/p(j-1)^2)*dt; % radius of yolk

yolk(j) = rho*(4/3)*pi*(p(j))^3; % weight of yolk

W(j) = emb(j) + yolk(j); % weight of fish

end

Th = Ts + day; % time of hatching = time of spawning+length of incubation

%% Possibility of Tm < Th

if Tm < Th

k = (Tm-Ts)/dt;

Th = NaN; Ta = NaN;

disp(’Pre-hatching weight’)

wt = W(k)*0.001; % convert milligrams to grams

return

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Alevin

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

jinit = jmax + 1;

jmax2 = jmax*3;

day2 = 0; % day2 is the number of days since hatching

% Part one: Yolk sac is larger than embryo

for j=jinit:jmax2

p(j) = p(j-1) - (a(j)*r(j-1)^2/p(j-1)^2)*dt;

r(j) = r(j-1) + (a(j)*c - b(j)*r(j-1))*dt;

W(j) = rho*(4/3)*pi*(p(j)^3+r(j)^3);

if r(j)^2 > p(j)^2

break

end

day2 = day2 + dt;

end

Q = day + day2;

jinit2 = Q/dt + 1;

jmax3 = (Tm-Ts)/dt;

% Part two: Embryo is larger than yolk sac



35

for j=jinit2:jmax3

p(j) = p(j-1) - a(j)*dt;

r(j) = r(j-1) + ((a(j)*c*(p(j-1)^2/r(j-1)^2) - b(j)*r(j-1)))*dt;

W(j) = rho*(4/3)*pi*(p(j-1)^3+r(j-1)^3);

if W(j) < W(j-1)

break

end

day2 = day2 + dt;

end

% Q = day + day2;

maxtime = (length(W)-1)*dt;

t = (0:dt:maxtime) + Ts;

plot(t,W)

hold on

[C,I] = max(W); % Find the maximum alevin weight C (in mg) and also...

% the time I in days*dt (after fertilization) this occurs

F = ceil(I*dt);

Ta = Ts + F; % Ta is the day of swim-up

%% Possibility of Tm < Ta

if Tm < Ta

k = (Tm-Ts)/dt

Ta = NaN;

disp(’Pre-emergence weight’)

wt = W(k)*0.001; % convert milligrams to grams

return

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Fry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

B = 0.31; % Parameter values for fry growth eqn from Elliott & Hurley (1997)

c = 3.53; % We use an empirical growth equation rather than a bioenergetic...

theta_M = 15.94; % growth model for simplicity

theta_L = 5.99; %

theta_U = 22.51; %

w = [];

w(1:Ta-1) = 0;

w(Ta) = 0.001*max(W); % set initial fry weight to be weight at swim-up (grams)

t2 = Ta:Tm;
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for j=Ta+1:Tm

if thetaN(j-1) <= theta_M

theta_LIM = theta_L;

else theta_LIM = theta_U;

end

w(j) = (w(j-1)^B + (B*c/100)*(thetaN(j-1)-theta_LIM)/(theta_M - theta_LIM))^(1/B);

end

wt = w(Tm); % weight in grams

plot(t2,1000*w(Ta:Tm),’r--’)

hold off

A.2 FishDistribution.m

function [M,S,Q,K]= FishDistribution(T,site)

% function [M,S,Q,K]= FishDistribution(T,site)

% Returns the mean, standard deviation, skewness, and kurtosis of fish weights at day

% T, which is the Julian day of the year *after* spawning occurs. Spawning times are

% randomly chosen from a discrete normal distribution with mean 274

% (Julian day of the year corresponding to September 30) and st.dev. of

% 15.3333 days. Site is one of 14159200 or 14159500. Sample call sequence:

% [M,S,Q,K]= FishDistribution(200,14159500)

%% Initialize vectors

Ts = [];

Th = [];

wt = [];

randn(’state’,100);

% Assume mean spawning day is September 30rd, standard deviation of

% spawning is 15.3333 days.

R = 15.3333*randn(1,500) + 274;

%% Define spawning distribution and grow 500 fish according to fishalevin.m algorithm.

for k = 1:200

Ts(k) = round(R(k));

Tf = (366 - Ts(k)) + T;

[Th(k),Ta(k),wt(k)] = fishalevin(Ts(k),Tf,site);

end

%% Find first through fourth central moments of wt

M = mean(wt);

S = std(wt);

Q = skewness(wt);

K = kurtosis(wt);

%% plot results

% figure;
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% hist(wt,30)

A.3 FishHistogramData.m

Ma = [];

Sa = [];

Qa = [];

Ka = [];

Mb = [];

Sb = [];

Qb = [];

Kb = [];

s = 110;

dt = 8;

f = 350;

D = s:dt:f;

d = [];

d(1) = s;

disp(sprintf(’day \t Ma \t\t Mb \t\t Sa \t\t Sb \t\t Qa \t\t Qb \t\t Ka \t\t Kb’))

for i=1:length(D)

[Ma(i),Sa(i),Qa(i),Ka(i)] = FishDistribution(D(i),14159200);

[Mb(i),Sb(i),Qb(i),Kb(i)] = FishDistribution(D(i),14159500);

d(i+1) = s + dt*i;

disp(sprintf(’%d \t%0.5f \t%0.5f \t%0.5f \t%0.5f \t%0.5f \t%0.5f \t%0.5f ...

\t%0.5f’,d(i),Ma(i),Mb(i),Sa(i),Sb(i),Qa(i),Qb(i),Ka(i),Kb(i)))

end
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B Simulation Output

day Ma Mb Sa Sb Qa Qb Ka Kb
110 0.60179 0.50224 0.03696 0.07537 -3.92336 -0.24968 23.75996 2.0689
118 0.60898 0.49784 0.0369 0.07526 -4.05057 -0.23201 24.81245 2.07826
126 0.62489 0.49827 0.03761 0.07537 -4.00053 -0.22898 24.58527 2.0802
134 0.65003 0.50326 0.03918 0.07587 -3.83128 -0.23079 23.25107 2.07966
142 0.69147 0.51275 0.0413 0.07687 -3.76921 -0.23175 22.61187 2.0802
150 0.74473 0.52804 0.04357 0.07846 -3.7824 -0.23326 22.74818 2.08105
158 0.8173 0.54924 0.04658 0.08064 -3.79853 -0.23525 22.91531 2.08219
166 0.90616 0.57851 0.05015 0.08362 -3.81595 -0.23785 23.09609 2.08367
174 1.02077 0.61768 0.05462 0.08753 -3.8354 -0.24106 23.29868 2.08553
182 1.17884 0.66932 0.06055 0.09257 -3.85805 -0.24492 23.53514 2.08779
190 1.35873 0.73241 0.06702 0.09856 -3.87947 -0.24912 23.75959 2.09029
198 1.5688 0.80314 0.07425 0.1051 -3.90026 -0.25331 23.97813 2.09281
206 1.80666 0.8869 0.08211 0.11262 -3.91984 -0.25768 24.18453 2.09548
214 2.07065 0.98455 0.09048 0.12112 -3.938 -0.26215 24.37645 2.09823
222 2.33839 1.09542 0.09865 0.13045 -3.95358 -0.26656 24.54154 2.101
230 2.63325 1.22274 0.10733 0.14083 -3.96827 -0.27095 24.69745 2.10379
238 2.9163 1.37047 0.11539 0.15246 -3.98048 -0.27535 24.8274 2.10663
246 3.20856 1.54106 0.12347 0.16541 -3.99158 -0.27972 24.94561 2.10947
254 3.47917 1.74443 0.13076 0.1803 -4.00074 -0.28416 25.04336 2.11241
262 3.72192 1.99344 0.13715 0.19782 -4.0082 -0.28876 25.12309 2.11549
270 3.93763 2.29541 0.14273 0.21818 -4.01432 -0.29342 25.18852 2.11865
278 4.13908 2.65806 0.14786 0.24158 -4.01966 -0.29805 25.2456 2.12183
286 4.31243 3.07459 0.15221 0.26727 -4.02399 -0.30244 25.29193 2.12489
294 4.44291 3.51891 0.15545 0.29352 -4.0271 -0.30634 25.32525 2.12763
302 4.55383 3.96337 0.15818 0.31877 -4.02965 -0.30964 25.3526 2.12998
310 4.61347 4.37213 0.15964 0.34124 -4.03099 -0.31227 25.36695 2.13186
318 4.6255 4.72163 0.15994 0.35993 -4.03125 -0.31428 25.36982 2.13331
326 4.62122 4.98716 0.15983 0.37385 -4.03116 -0.31568 25.3688 2.13432
334 4.55807 5.13784 0.15829 0.38165 -4.02974 -0.31644 25.35363 2.13487
342 4.48553 5.19045 0.1565 0.38436 -4.02809 -0.31669 25.33586 2.13506
350 4.39899 5.19465 0.15436 0.38457 -4.02606 -0.31671 25.31417 2.13507

Table 1: FishHistogramData.m Output
Ma is mean weight above the dam. Mb is mean weight below the dam. Sa is standard deviation of weights above the

dam. Sb is standard deviation of weights below the dam. Qa is skewness of weights above the dam. Qb is skewness of

weights below the dam. Ka is kurtosis of weight data above the dam. Kb is kurtosis of weight data below the dam.


