
AN ABSTRACT OF THE THESIS OF

Kirt Alan Winter for the degree of Master of Science in

Computer Science presented on March 18, 1988.

Title: A Prototype Intelligent Prettwrinter

Abstract approved:
Redacted for privacy

Curtis R. Cook

Prettyprinters are software tools that format

program source code so that it conforms to certain

standards of consistency and hence improves readability.

Traditionally, these standards were fixed for a

particular prettyprinter as indicated by a literature

survey, with very little or no supporting evidence that

the formatting style improves readability. Given these

uncertanties, IPP (Intelligent PrettyPrinter), a

prettyprinter described in this thesis, was designed in

an effort to introduce flexibility to prettyprinters.

This thesis describes a flexible prototype

prettyprinter that learns the user's preferred format

style from a sample program supplied by the user.

Although IPP was designed for Pascal, the concepts and

techniques appear extensible to other programming

languages.

A Prototype Intelligent Prettyprinter

by

Kirt Alan Winter

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Completed March 18, 1988

Commencement June 1988

APPROVED:

Redacted for privacy
Professor of Computer Science in charge of major

Redacted for privacy
Head of Department of Computer Science

Redacted for privacy
Dean of G!fuate Sclol

Date thesis is presented March 18, 1988

TABLE OF CONTENTS

1. Introduction 1

2. Prettyprinters and Formatting Style 3

2.1. Prettyprinter Functionality 3

2.2. Choosing a Formatting Style 4

2.3. Current Prettyprinters 5
2.4. Style & Comprehension 6
2.5. Flexibility Needed 7

3. Specifying a Formatting Style 9
3.1. A Menu System 9
3.2. An ASCII "Style Specification" File 10
3.3. Learning From a Code Sample 11

4. Design and Implementation of IPP 15
4.1. IPP Capabilities 15
4.2. Whitespace Tokens 16
4.3. IPP Source Code Module Functions 19

5. Issues and Limitations 22
5.1. Why Pascal? 22
5.2. Consistency in IPP 22
5.3. Inclusion of Error Messages 24
5.4. Syntax Error Checking 24
5.5. Inconsistent Style Samples 24
5.6. Absolute Alignment Techniques 25
5.7. Extendability To Other Languages 28

6. Conclusions 30
6.1. Summary of Contributions 30
6.2. Applications of Intelligent

Prettyprinters 30
6.3. Suggestions for Further Investigation

in Prettyprinting 33

BIBLIOGRAPHY 35

APPENDIX A: Map of Whitespace Tokens 37

APPENDIX B: A Sample Session 38

APPENDIX C: A Complete "Learn" File 49

APPENDIX D: Complete IPP Source Code Listing 51

LIST OF FIGURES

Figure Page

2-1 Examples of IF Formatting Styles 6

3-1 A Style For IPP to Learn 12

3-2 A Piece of Code For IPP to Format 12

3-3 Applying a Formatting Style 13

4-1 A FOR Statement and IPP's Whitespace
Extensions 17

4-2 What IPP Learns From an Example FOR
Statement 18

4-3 Data Flow in IPP 19

5-1 Absolutely Aligned Comment Blocks 25

5-2 Problems With Preceeding Comments 26

5-3 Manifestation of Comment Problems 27

A PROTOTYPE INTELLIGENT PRETTYPRINTER

1. INTRODUCTION

The term "prettyprinting" was defined by Ledgard as:

"...the spacing of a program to illuminate its logical

structure."[LEDG75] Thus, a prettyprinter is a program

that formats a source code listing to illuminate its

structure. A prettyprinter allows a programmer t

concentrate on the functionality of the code and not how

it is formatted.

There is no commonly accepted program source code

format or layout for most if not all programming

languages. Therefore, individual preferences have led to

a wide variety of formatting styles. Prettyprinters have

to this point tended to reflect the formatting

preferences of the prettyprinter's designer.

This thesis will describe some of the issues

involved in prettyprinting, as well as the implementation

of a prototype intelligent prettyprinter (IPP) for Pascal

source code. IPP "learns" the style preferred by the

user by examining a piece of sample source code formatted

in the preferred style.

The second chapter describes the issues behind

prettyprinting and formatting style, and motivates the

development of a flexible prettyprinter. The third

chapter examines the user interface issues that underlie

a flexible prettyprinter implementation. Chapter four

2

takes a look at the IPP's capabilities and design. In

chapter five, the problems and limitations that exist

within IPP (and perhaps flexible prettyprinters in

general) are discussed. It also discusses the

extendibility of IPP to other programming languages.

Finally, chapter six reviews IPP's contributions to

prettyprinting, and discusses possible future directions

for research in programming style and prettyprinting.

3

2. PRETTYPRINTERS AND FORMATTING STYLE

As mentioned in the introduction, prettyprinting is

an effort to illuminate the logical structure of a

program, and thereby improve its readability.[LEDG75]

There have been many articles which describe various

prettyprinters and/or formatting styles for the Pascal

programming language ([BATE81], [CRID78], [GROG79],

[MARC81], [PETE77]). In the following discussion, we

will also concentrate on prettyprinting issues as they

relate to Pascal.

This chapter describes the functions of a pretty-

printer, source code formatting style guidelines, and the

inflexibility of current prettyprinters.

2.1. PRETTYPRINTER FUNCTIONALITY

In changing the spacing of a program, a

prettyprinter needs much of the functionality of a

language compiler. The prettyprinter must recognize

keywords, language constructions, and the white spaces

that appear between them. The prettyprinter replaces the

white spaces (carriage returns, tabs and spaces) in the

program using formatting instructions that specify what

layout the source code listing should have. In this

manner, the format of the program is transformed into the

style known by the prettyprinter. There are numerous

prettyprinters available for most languages, each having

different formatting conventions which the implementer

believes best displays the logical structure of the

program. A basic question is how does one go about

choosing a particular set of formatting conventions or

guidelines for formatting?

2.2. CHOOSING A FORMATTING STYLE

In Software Maintenance: The Problem and Its

Solution [MART83], the authors devote an entire chapter

to programming style issues, stating (among other things)

the following:

"A good style is simple, consistent, and
complies with standard conventions. ... Above
all, it clarifies, not obscures what the author
is communicating."[MART83]

This implies that a style should in some manner improve

the readability of the source code. Martin and McClure

also emphasize that consistency is a major goal.

"A basic principle of structured programming is
that standardization of the program will
improve its readability." [MART83]

For the most part, language textbooks suggest very

little when it comes to formatting style, except for

consistency.

When you write programs, try to approximate the
format of programs shown in this book. Above
all, be consistent. [COOP85]

However, consistency is difficult to define. Is a

programmer who indents single statements four spaces in

an IF construction but five spaces in a WHILE

construction practicing consistent style? What about a

programmer who indents one space extra for each level of

indentation (four for the first control structure, five

5

for the second, etc.)? What if the programmer places the

BEGIN of a BEGIN-END block on the same line as the WHILE

keyword, but on the next line after an IF keyword?

Hence, there are two guidelines to follow in the

design of any prettyprinter. First, according to

Ledgard's original goal [LEDG75], it should improve the

readability of the program. Second, it should enforce

some form of consistent style.

2.3. CURRENT PRETTYPRINTERS

Enforcement of formatting consistency seems to be

the major function of most prettyprinters. The

"consistent" style rules are generally ones that are

chosen by the author of the prettyprinter. The choice of

formatting style (and the resulting layout of the source

code) range from the expected to the slightly bizzare as

shown by the IF statement examples in Figure 2-1.

For the most part, the originator of the style

offers little support that his/her style rules improve

readability. No experimental or empirical data

supporting the choice of a particular set of style rules

is mentioned.

6

A) [BATE81]
if condition
then begin

statement
; statement
; statement
end {if}

B) [GROG79]
if condition

then begin
statement;
statement;
statement

end

C) [PETE77]
if condition then

begin
statement;
statement;
statement

end

Figure 2-1 Examples of IF Formatting Styles

2.4. STYLE AND COMPREHENSION

If we assume that there is no difference in the

effort required to produce any particular formatting

style (as suggested by using a prettyprinter), then one

could argue that comprehension should be the deciding

factor in choosing a programming style.

However, at this point in time, the contribution of

formatting style to the comprehension of source code is

only partially understood. There is some evidence that

layout or typographic style affects readability

([OMAN87], [HANS85]), but the magnitude of its impact is

not known. Certainly no one has found an ideal style.

7

In one experiment [OMAN87], students were given a

comprehension test involving functionally identical

pieces of Pascal source code differing only in formatting

style. The subjects were also asked to give their

opinion of the style that the sample was written in. One

of the three format styles led to better understanding

(more correct answers in less time) of the function of

the source code, but interestingly, there was no

significant difference in the students' opinions of the

three styles.

It would seem highly unlikely that there is a "best"

format for comprehension, in the sense that a majority

will have superior comprehension for that style compared

to all others. It would seem more plausible that no one

style will be best for any sizable group and that a

majority will have different preferences. Hence, format

style seems highly individualistic.

Given these observations, we now turn to the main

limitation of most current prettyprinters.

2.5. FLEXIBILITY NEEDED

It has been this author's experience that when pre-

sented with the question: "Why don't you use the brand X

prettyprinter on your code?" the usual response is in the

form: "Because it doesn't put the darn <tokenl> in the

right spot after the <token2>."

Even if a prettyprinter's designer believes he/she

has developed THE correct way to format a program, a user

8

may prefer a different format. And since we as yet do

not know which style is "best," we have no way of knowing

whether the programmer's choice of spots for <token2> is

better or worse than anyone else's.

What appears to be needed is a prettyprinter with

the flexibility to allow a user to specify the formatting

style that he/she prefers. It would provide all the

consistency advantages of traditional prettyprinters plus

it would allow users to specify the format style they

prefer.

One notable exception to the inflexible

prettyprinters produced up to this point is a LISP

prettyprinter that allows the user to control the

appearance of the output [WATE83]. This prettyprinter

(written in LISP) allows users to specify their own

"deformat" functions that provide a template for various

types of control structures and functions. However,

writing a "deformat" function could hardly be described

as a trivial task, at least for a new user.

IPP (Intelligent Prettyprinter), the prototype

prettyprinter described in this thesis, is a flexible

prettyprinter for Pascal source code. IPP can produce a

wide range of formatting styles because it learns the

user's preferred style conventions from a sample of code

supplied by the user.

9

3. SPECIFYING A FORMATTING STYLE

Formatting styles are composed of numerous rules.

What is the best way to actually go about specifying

these rules to a prettyprinter? It would seem to depend

heavily on the formatting method used by the pretty-

printer. In IPP, for example, it was determined early

that the "whitespace token" method would be used to

capture the formatting style. A whitespace token is

defined as the collection of newlines, tabs, and spaces

that lie between keywords, symbols, or language

constructions in a language source program. By capturing

the rules for these whitespace tokens, a prettyprinter

can duplicate a particular formatting style. A quick

count showed that at least 40 of these tokens would be

required to capture just the control structures of the

Pascal language.

The problem addressed in this chapter is how the

user can conveniently specify these tokens to the

prettyprinter.

3.1. A MENU SYSTEM

One can envision a menu system that would allow a

user to set up an formatting style by multiple menu

selections, each followed by some type of "dialog" box

which would allow the specification of one or more

whitespace tokens. Since each whitespace token consists

of two values (more on this later), simple arithmetic

shows that at least 80 values must be entered (or checked

10

if some default method is used) to specify one formatting

style.

While one could probably imagine a friendlier way

(as opposed to typing integers) to select the tokens,

there is still a considerable amount of information that

has to be entered into the formatter. Menus certainly

are part of the state of the art in user interfaces

(Macintosh OS, Microsoft Windows, IBM Presentation

Manager), but it would be tedious and burdensome for the

user to have to specify whitespace token rules in this

manner.

To insure the widest possible coverage of language

users, the final target systems of a prettyprinter should

include the command line environments as well (UNIX, VMS,

MS-DOS). This is another argument against embedding

whitespace token specification in layers of menus and

dialogs that can be quite cumbersome in the more

traditional environment where menus often require

extensive keyboard interaction for a user to select

options. While user-interface designs do (as they

probably should) change depending upon the target system,

it does seem that depending on too many features of one

type of interface would limit the portability of a

prettyprinter.

3.2. AN ASCII "STYLE SPECIFICATION" FILE

Another specification form that was considered was a

simple ASCII file that defined the required whitespace

11

token rules. This would allow a user much the same

utility of a menu system that used defaults (a user only

has to change parts of the file). This kind of interface

is adaptable to both command-line and window/menu

systems. However, users would still have to examine each

of the possible settings to determine if they would need

to be modified to specify a new style rule.

3 3 LEARNING FROM A CODE SAMPLE

From a programmer's standpoint one can best describe

one's source code format style by showing another person

what it looks like. The question arises: Why couldn't a

similar method be used to specify formatting style to a

pretty-printer?

The answer (within some limits) is that it can. In

parsing a source program for output, a prettyprinter rec-

ognizes the spaces between keywords in control structures

and replaces them. By extending the prettyprinter so

that it not only recognizes, but analyzes and saves

whitespace tokens in another file, one can create a

prettyprinter that "learns" a style from a code sample

provided to it. This is the method that is used to

specify a particular formatting style to IPP.

The code sample can be any program with the desired

formatting style. It may be a program written by the

user or another programmer. Or it may be the special

program supplied with IPP that contains instances of all

whitespace token rules that IPP recognizes. All the user

12

has to do is to use an editor to format this program in

the style that he/she prefers.

program learn_if_elses;

begin

if (color = yellow) then

paint_it
else

dont_paint_it;
if not running then
begin

fix_it;

check it
end
else if not(running_well) then

tune_it_up
else

begin

end
end.

brag_to_friends;
take_care_of_it

Figure 3 -i A Style For IPP to Learn

program
test_if_elses;

begin

if crying then begin
feed baby;
if baby_not_full then feed_it_more
else put_bottle_away;
burp baby
end

else if wet then change_baby
else begin

play_with_baby;
talk_to baby
end

end.

Figure 3-2 A Piece of Code For IPP to Format

13

program test_if_elses;

begin

if crying then
begin

feed baby;
if baby_not_full then

feed_it_more
else

put_bottle_away;

burp baby
end

else if wet then
change_baby

else

begin
play_with_baby;

talk_to_baby
end

end.

Figure 3-3 Applying a Formatting Style

If we tell IPP to learn the style from the small

program in Fig. 3-1 using the default settings for tab

expansion (four spaces) and have it format the program in

Fig. 3-2, then the resulting output is shown in Fig. 3-3.

Note that many source code editors allow a tab character

to be defined in terms of spaces. To allow for this kind

of editor and to make IPP's job easier (only spaces and

newlines have to be considered), the tab expansion size

is left as a command line option, with a default of four

spaces.

So, what did IPP learn from the code in Fig. 3-1?

First, IPP learned that the name of the program should

follow the keyword PROGRAM with one space between them.

Other things that IPP learned were where a begin should

appear in IF and ELSE constructions, that the components

of a compound statement should line up one tab stop

deeper than their controlling BEGIN, as well as where to

14

put THEN keywords, and how to handle ELSE-IF

constructions.

A current limitation of this "show me" type of

learning is the absolute (as opposed to relative)

alignment of source code. Examples of this type of

formatting are often found in comment blocks and case

statements. This will be more fully discussed in the

"Issues and Limitations" chapter.

15

4. DESIGN AND IMPLEMENTATION OF IPP

IPP was designed and implemented with Marca's four

rules of formatter design in mind [MARC81]. They are:

1. Be consistent in generating output
2. Allow easy specification of input
3. Never lose text because it cannot properly

format
4. Work at a reasonable speed

4.1. IPP CAPABILITIES

IPP is targeted for the Turbo Pascal dialect of the

Pascal language and thus supports standard Pascal. It is

intended to show the feasibility of developing a truly

flexible and modifiable prettyprinter. By alternatively

analyzing and replacing "whitespace tokens" in source

files, IPP can emulate a wide variety of different

formatting styles. While IPP is certainly an interesting

exercise in prettyprinter development, it is not intended

as a finished product but as a tool to facilitate further

study of the issues it raises.

Currently, IPP recognizes and uses 48 whitespace to-

kens (each composed of two integers) to capture

formatting style. (These whitespace tokens are listed in

Appendix A.) IPP does not analyze data declarations, nor

does it analyze anything below the statement level.

However, it should become clear that the concepts used to

capture other control structures' layouts could easily be

extended to these two cases as well.

IPP has been developed as a command-line executed

program which uses redirection as its source code

16

input/output form. Options from the command line control

the tab to space conversion, and mode (learn or format).

For example, if we wanted IPP to learn the formatting

style in the file "stylel.pas," then the command line

would be (the "L" meaning "learn," and the "-3" meaning

that tab stops occur every 3 spaces):

ipp L <stylel.pas -3

After executing this command IPP is now ready to

apply the style that it learned from " stylel.pas." If we

wish IPP to format the file "messypro.pas" and create a

formatted file called "neatpro.pas," then the following

command line would be used:

ipp <messypro.pas >neatpro.pas

In the learn mode, IPP is given a source file to

analyze in order to imitate its format. IPP identifies

and analyzes whitespace tokens, storing them in a style

sheet that is later written to disk.

In the format mode, IPP is given a source file to

format. IPP identifies whitespace tokens and replaces

them in the output stream with those previously stored in

its "style sheet" file. This changes the source file's

original format to the formatting style previously

learned by IPP.

4.2. WHITESPACE TOKENS

The whitespace in a source program file is (in

freely formatable languages) completely ignored by the

compiler. Thus, any number of "whitespace" characters

17

can be used between keywords and symbols. Whitespace

only serves as a delimiter between the tokens of the

language. However, the way in which one uses whitespace

can have a great effect on the visual layout of the

source code.

For IPP, a whitespace token consists of two integer

values. One is for the number of newline characters, and

the other for the change of indentation from the previous

line. For example, consider the Pascal FOR statement

(labeled with "(a)") in Fig. 4.1.

(a) FOR id := value TO value DO

(b) FOR <FOR1> id := value <FOR2> TO <FOR3> value <FOR4> DO <FOR5 or FOR6>

Figure 4-1 A FOR Statement and IPP's Whitespace
Extensions

There are several places (represented by spaces in

Fig. 4-1(a)) that we could choose to examine for

whitespace tokens. In IPP, this Pascal construction is

represented in Fig. 4-1(b). The areas enclosed <FOR1>,

<FOR2>, <FOR6> signify where IPP looks for

whitespace. Fig. 4-2 a formatted FOR statement and its

whitespace token values.

18

FOR X := 1 to 5

DO
BEGIN

Whitespace Token Change Newlines
<FOR1> +1 0

<FOR2> +1 0
<FOR3> +1 0

<FOR4> +1 1

<FOR5> +2 1

Figure 4-2 What IPP learns From an Example FOR Statement

In the example, the <FOR5> and <FOR6> tokens are

used depending upon whether the FOR's code is a single

statement or a BEGIN-END block. If IPP is in the output

mode, then it simply finds and replaces whitespace tokens

with ones previously learned. For other areas of

whitespace, the whitespace is either placed directly in

the output, or modified to line up with the beginning of

the previous line, depending on the situation.

It is certainly possible to look for more instances

of whitespace than IPP does. In fact, for a truly usable

prettyprinter one would probably consider adding many

more. For example, IPP does not look below the statement

level to format. This means that arithmetic expressions,

function or procedure calls, boolean expressions, and

several other features that could be formatted are not.

19

4.3. IPP SOURCE CODE MODULE FUNCTIONS

IPP consists of six separately compilable C modules

and was developed on an MS-DOS system using Microsoft C

4.0. The total size of the source code is approximately

45,000 bytes. The complete IPP source code is included

in Appendix B.

Figure 4-3 Data Flow in IPP

4.3.1. NLEX.0

The NLEX.0 module is responsible for the basic

lexical analysis of the source code. In addition to the

operations performed by most lexical analyzers, NLEX

returns whitespace tokens that are used and/or replaced

by the PPBRAIN.0 module. It is also necessary to look

ahead up to two tokens in the input stream in some cases,

and NLEX contains the code necessary to perform this

operation.

4.3.2. SYMTAB.0

SYMTAB.0 is a simple module that simply serves to

identify keywords in identifiers returned by NLEX. Since

20

the number of keywords that need to be identified in

Pascal is small, a simple binary search is used to

determine if a given identifier is in fact a keyword.

4.3.3. FORMFILE.0

FORMFILE.0 performs all input and output associated

with style files. A style file is simply a collection of

approximately 100 integers which describe the formatting

characteristics that are to be used by the prettyprinter.

4.3.4. QUEUE.0

QUEUE.0 is a reusable module developed to implement

the queue abstract data type. It is used to hold tokens

that were retrieved from the lexer in look-ahead

operations. It uses LISP-like pointer structures to

implement a very general queue.

4.3.5. PPBRAIN.0

PPBRAIN.0 contains the functions which perform the

low-level formatting transformations. Functions are

provided to allow easy look-ahead for particular tokens,

as well as for input and output of Pascal source code.

Most of the functionality required by the recursive

decent parser for learn and output is defined here. In

fact, this module is the only one which interprets

whether the prettyprinter is in learn or output mode.

4.3.6. IPP.0

IPP.0 consists of the main program and the recursive

decent parser for Pascal. It currently implements all

Pascal control structures, but does not parse below the

21

statement level. It frequently calls a look-ahead

function to insure that the appropriate places for

whitespace tokens are recognized.

Various other files are used to declare structures

and enumerated types that are used by the other modules.

22

5. ISSUES AND LIMITATIONS

IPP was passed on to several "beta testers" to

collect their comments. In general, they were quite

pleased with the results. One tester used it to format a

program written by a programmer who was just learning

Pascal (having been a FORTRAN programmer for some years)

and lined everything up at the left hand margin. There

was clearly some excitement in his eyes as the previously

unreadable code was reformatted to reflect his personal

style, as he was in charge of maintaining that program.

In this chapter, some of the issues raised by IPP's

use are discussed.

5.1. WHY PASCAL?

Early in the development of IPP, it was determined

that one language should be targeted for ease of

development and experimentation. Pascal was chosen for

two major reasons. First, Pascal has an LL(1) grammar,

making it easy to construct a recursive decent parser

that recognizes it. Second, since Pascal is similar to

other programming languages with roots in ALGOL, obser-

vations that apply to Pascal should be easily extendible

to similar programming languages, if not to languages in

general.

5.2. CONSISTENCY IN IPP

While a consistent formatting style is widely

accepted as important for program comprehension, we have

seen that there is some difficulty in deciding where to

23

draw the line for consistency when it comes to a specific

language. IPP does draw a few of these. For example,

IPP expects the statements enclosed by BEGIN-END pairs to

all have the same indentation from the BEGIN keyword, and

expects all BEGIN-END pairs to be done in the same way.

The method in general does not place any restrictions on

this (and even IPP could be easily modified to allow

BEGIN-END pairs controlled by an IF to be indented

differently than those controlled by a WHILE, for

example), but designing a prettyprinter with the ultimate

in flexibility may require larger sample files than

anyone is prepared to provide. It may even become

prohibitive to store all of the whitespace tokens.

IPP also ignores any physical line length. Unless

the source file breaks up a long statement into two or

more lines, IPP will not. Extending IPP to handle these

conditions was not within the scope of the prototype, but

could probably be added by including two cases of

whitespace within statements, or in some manner

designating which tokens or constructions are fair game

to split on.

Another limitation of IPP is the fact that all

whitespace tokens are stored in relative terms as the

change in indentation from the previous line. Certain

formatting features could be characterized as more

"absolute" than "relative"; a common example is the

24

alignment of comments in some programmers' code. This is

discussed in detail in section 5.6.

5.3. INCLUSION OF ERROR MESSAGES

IPP, being a prototype, is a simplification in many

respects. Error messages are not provided, and errors

may cause unpredictable results, depending on the type.

5.4. SYNTAX ERROR CHECKING

IPP assumes a syntactically correct source program.

In many cases, IPP will "hang" if a syntactically

incorrect program is given to it in either phase. For a

production model it would be advisable to detect errors

and at least terminate gracefully.

5.5. INCONSISTENT STYLE SAMPLES

As discussed in an earlier section, inconsistency of

style is a difficult problem. A prettyprinter like IPP

will inevitably be faced with a programmer who uses two

different formatting styles at some point. To IPP, this

means replacing a previously defined whitespace token

with another. This is easy enough to detect, and an

appropriate error message could be provided, but IPP

simply replaces the previous value of the token without a

message. The current advantage of this is that while

comments may cause problems in learning, IPP only

remembers the last method used; the programmer's intent

will be preserved as long as the last example used is

understandable.

25

Going one step further, one might choose to allow

more flexibility than is usually considered consistent.

For example, one might wish to allow a user to indent

BEGIN-END pairs of IF statements differently than those

of FOR statements. In this case, a check of several

related whitespace tokens could be used to warn of a

potentially inconsistent style. IPP could choose to warn

users who place the BEGIN on the same line as the IF, but

on the line after a WHILE, that their style was

inconsistent. Options could be included on the command

line to control how "picky" the prettyprinter will b

This would create a prettyprinter of real value in

detecting the presence of inconsistent formatting

practices.

5.6. ABSOLUTE ALIGNMENT TECHNIQUES

It appears that the most serious impediment to the

method used by IPP to store whitespace tokens is the

comment block. Consider the code example in Fig. 5-1.

for x := 1 to 10 do
begin

(do check) check014);
compute_upon(j[x])

end;

(for all items)
(do these steps)
(examines limits)
(add to totals)

Figure 5-1 Absolutely Aligned Comment Blocks

First of all, we have a series of comments that are

lined up at an absolute point (which doesn't depend on

the indentation of the code). Second, comments occur in

26

the areas previously assumed to only contain whitespace.

This brings up a sticky problem. IPP's lexer returns the

comment block within the whitespace token, but which area

of whitespace (the one before the comment, the one after

after the comment, or perhaps some combination of the

two) is the whitespace token that the programmer

intended?

Looking between the DO and BEGIN keywords of Fig.

5-1 above illustrates the problem that occurs if we learn

the first case (the one before the comment). The first

whitespace token is simply a series of spaces. We can

tell that the programmer probably intends it to be

specifically for the alignment of the comment, but how

would a prettyprinter determine that? If we instead

choose to learn the second whitespace (the one after the

comment), that causes problems with a comment that occurs

on the same line as, but before the statement that should

be aligned (see Fig. 5-2). What about the case when we

have "WS comment WS comment WS" (as in Fig. 5-1 between

the BEGIN and the first statement in the block, where the

programmer would probably have the prettyprinter learn

the second whitespace token)?

(Learn Sample) (Possible Misinterpretation)
for x := 1 to 10 do for x := 1 to 10 do
begin begin (do check) check(jEx3);
(do check) check(gx3); compute_upon(gx])

compute_upon(gxl) end;
end;

Fiaure 5-2 Problems With Preceding Comments

27

Of the possible methods of handling these

situations, IPP chooses to ignore all whitespace and

comments until the last whitespace before the token.

Fortunately, the absolutely aligned comment that precedes

a statement seems to occur much less frequently than the

one absolutely aligned at the end, so IPP usually does a

reasonable job of formatting these cases.

The aforementioned area of difficulty is less

prevelant in the output mode, where (in IPP) the last

whitespace is the one that is replaced. If IPP learned

the correct method originally from the example in Fig.

5-1 (the second whitespace being chosen), then the output

of this particular statement would be...

for x := 1 to 10 do
begin

(do check)
check(gxl);
compute_upon(jtx])

end;

(examines limits)

(for all items)
(do these steps)

(add to totals)

Fiaure 5-3 Manifestation of Comment Problems

While it does not look exactly as we would like, it at

least has all statements aligned between the BEGIN and

END.

This is the essence of the problem. To correctly

handle cases like this, one needs a more global view of

the source code in order to make intelligent decisions

about where to put comments. This problem is even more

28

formidable in the learn mode, where it is difficult to

condense the whitespace and comment series into the

indentation truly desired by the programmer. It is this

sort of difficulty that suggests that the file that is

fed to IPP-like prettyprinters in the learn mode should

be devoid of these comments until a better way of

handling them is developed. This might even require a

two-pass prettyprinter.

This problem of absolutely aligned comment blocks

and other "absolute" features of formatting style

certainly deserve further work. In particular, correct

interpretation of them during the learn phase requires

special consideration.

5.7. EXTENDIBILITY TO OTHER LANGUAGES

To prettyprint another language in an IPP-like

manner, one must simply modify the grammar's language to

include whitespace tokens in the appropriate place. The

advantage of Pascal is that it is an LL(1) grammar (LL(2)

with the addition of whitespace tokens) and a recursive

descent parser can easily be made for it. It is somewhat

more difficult for languages that do not fall into this

category (C for example).

The ultimate solution is probably some sort of

toolset that can be used with a YACC-like program. The

problem with YACC is that unlike the recursive descent

parser which is top down, YACC is bottom up. This means

that one would most likely have to construct some sort of

29

parse tree and then print when the appropriate level is

reached. For a series of nested statements, this point

is hard to determine, and may require the construction of

very large parse trees. The essence of the problem is:

IPP-like prettyprinters need to pass information down

while YACC-like parser generators are good at passing

information up.

30

6. CONCLUSIONS

6.1 SUMMARY OF CONTRIBUTIONS

This thesis has described the need for, and the

development of a flexible prettyprinter for Pascal source

code. To summarize, IPP represents two advances in the

evolution of prettyprinter thought.

6.1.1. FLEXIBILITY

IPP is flexible, it can learn a wide variety of

formatting styles. While there has been at least one

other flexible prettyprinter developed for LISP [WATE83],

IPP is apparently the first flexible Pascal pretty-

printer.

6.1.2. USER INTERFACE

As was discussed earlier in this thesis, the

specification of a formatting style to a prettyprinter

raised some interesting user interface issues. IPP

solves the problem of the volume of information that has

to be given to the prettyprinter by learning a formatting

style from a sample piece of code. This is much more

convenient for the user than the LISP example [WATE83]

discussed earlier.

6.2. APPLICATIONS OF INTELLIGENT PRETTYPRINTERS

Intelligent prettyprinters like IPP have many

applications, just as traditional prettyprinters do.

However, the flexibility of a prettyprinter can do more

than encourage its use. The following sections describe

briefly some possible uses of IPP-like prettyprinters.

31

6.2.1. ADHERENCE TO STYLE STANDARDS

In a company that enforces certain formatting rules

to insure that all source code is consistent and readable

could simply feed a sample file to an IPP-like pretty-

printer and then require that all source code be by the

prettyprinter before being accepted.

IPP makes it possible for members of development

teams who find that the company's style causes them

difficulty in understanding or maintaining the code to

choose to keep their own style file available and work

with source code in a style they prefer. While it is

still unclear as to what styles lead to better

comprehension (and what productivity factors lie

therein), there are clearly differences. Hence IPP

accommodates both a company standard and individual

preferences.

6.2.2. STYLE VS. COMPREHENSION RESEARCH TOOL

IPP could be used to easily develop experimental

material for studies of the effects of formatting style

on comprehension. There are several interesting

possibilities in this area.

One might choose to examine novice programmers in an

attempt to learn which textbooks in Pascal use formats

that lead to better comprehension. Are these conclusions

applicable to experts, and if not, what styles are better

for experts? If more than one good style exists, are

32

there some common formatting features that can be

identified?

Another study could look at a person's "personal"

style and whether it is a good style for his/her compre-

hension. If so, to what degree can the style vary before

a comprehension difference is noted, and is this a sharp

line, or a gradual drop off?

6.2.3. IDENTIFICATION OF AUTHORSHIP

If IPP-like prettyprinters can be extended to the

point that comments can be handled gracefully in the

learn phase, can they be used to identify a particular

author of a program? In this case the style files

generated by the prettyprinter could be compared to

determine how close one style is to another.

According to [OMAN87A), formatting style factors

(among them formatting style) are in fact a good

identifying tool to use in determining the authors of

programs. He also points out that using traditional

software complexity metrics for identifying authors is

unreliable when seeking to identify possible instances of

student plagiarism on programming assignments.

Are programmers' styles different enough to use

their IPP style sheets as fingerprints? In the IPP

example, there exist N48 different style files, with N

itself theoretically being infinite, but practically much

smaller. It seems like style files would be a good

identifier, but it might depend on how much a programmer

33

"develops" their style, and how much they imitate another

one.

Another interesting exercise would be to examine

students beginning with their first exposure to a

language, and following them through several years of

experience. How dynamic is one's style? At what point

(if any) does it start to become more static? At what

point could a prettyprinter be used to detect plagiarism

in student programming assignments?

6.3. SUGGESTIONS FOR FURTHER PRETTYPRINTER RESEARCH

IPP is certainly not the last word in prettyprinter

development. At best, IPP can serve to focus attention

on the issues behind formatting style, as opposed to just

arbitrarily advocating one style over another.

As mentioned earlier, IPP has some trouble with

comment blocks and other absolutely aligned style

features. These problems, and especially how to properly

interpret them in the learn mode deserves some study.

It would be an extremely informative exercise to

implement an IPP-like prettyprinter for a language other

than Pascal. While it appears that the techniques

learned in developing IPP for formatting Pascal are

directly applicable to other languages, there will no

doubt be some sticky implementation details to work out.

These could lead to a refinement of the method itself.

34

In particular it would be interesting to attempt to

apply IPP's ideas to a non ALGOL-like language or non-

procedural languages.

35

BIBLIOGRAPHY

[BATE81] Bates, R. M. (1981) A Pascal Prettyprinter With
a Different Purpose. Association for Computing
Machinery SIGPLAN Notices, Vol. 16, No. 3.

[COOP85] Cooper, D. and Clancy, M. (1985) "Oh! Pascal!"
W. W. Norton & Company, New York.

[CRID78] Crider, J. E. (1978) Structured Formatting of
Pascal Programs. Association for Computing
Machinery SIGPLAN Notices, Vol. 13, No. 11.

[GROG79] Grogono, P. (1979) On Layout, Identifiers and
Semicolons in Pascal Programs. Association for
Computing Machinery SIGPLAN Notices, Vol. 14, No. 4.

[HANS85] Hansen, J. and Sands, B. (1985) Some Design
Considerations for a "C" Source Code Pretty Printer.
Association for Computing Machinery SIGSMALL/PC
Notes, Vol. 11, No. 2.

[KERN78] Kernighan, B. W. and Plauger, P. J. (1978) "The
Elements of Programming Style" McGraw-Hill, New
York.

[LEDG75] Ledgard, H. F. (1975) "Programming Proverbs."
Hayden, Rochelle Park, New Jersey.

[MARC81] Marca, D. (1981) Some Pascal Style Guidelines.
Association for Computing Machinery SIGPLAN Notices,
Vol. 16, No. 4.

[MART83] Martin, J. and McClure, C. (1983) "Software
Maintenance: The Problem and Its Solutions"
Prentice-Hall, New Jersey.

[OMAN87] Oman, P. and Cook, C. (1987) A Paradigm for
Programming Style Research. Oregon State University
Computer Science Department Technical Report. 87-
60-7.

[OMAN87A] Oman, P. and Cook, C. (1987) Programming Style
Authorship Analysis. Oregon State University
Computer Science Department Technical Report. 87-
60-11.

36

[PETE77] Peterson, J. L. (1977) On the Formatting of
Pascal Programs. Association for Computing
Machinery SIGPLAN Notices, Vol. 12, No. 12.

[WATE83] Waters, R. C. (1983) User Format Control in a
LISP Prettyprinter. Association for Computing
Machinery Transactions on Programming Languages and
Systems, Vol. 5, No. 4.

Appendices

37

APPENDIX A: MAP OF WHITESPACE TOKENS

The locations of IPP's 48 whitespace tokens are

indicated in BNF formalism by the following

constructions. Note that this is not a complete grammar

of the language that IPP recognizes, but rather a guide

to show the locations that IPP learns whitespace.

compound-statement ::= BEGIN <BEGIN1> statement (; statement) <BEGIN2> END

program ::= PROGRAM <PROG1> id <PROG2> (parameters) <PROG3> ; <PROG4>
PROGRAM <PROG1> id <PROG2> ; <PROG4>

procedure PROCEDURE <PROC1> id <PROC2> (parameters) <PROC3> ; <PROC4>
1 PROCEDURE <PROC1> id <PROC2> ; <PROC4>

function ::= FUNCTION <FUNC1> id <FUNC2> (parameters) <FUNC3> : <FUNC4>
id <FUNC5> ; <FUNC6>

FUNCTION <FUNC1> id <FUNC2> : <FUNC4> id <FUNC5> ; <FUNC6>

while WHILE <WHILE1> condition <WHILE2> DO <WHILE3> compound-statement
1 WHILE <WHILE1> condition <WHILE2> DO <WHILE4> single-statement

repeat ::= REPEAT <REPEAT1> statement (; statement) (;) <REPEAT2> UNTIL
<REPEAT3> condition

if IF <IF1> condition <IF2> THEN <IF3> compound-statement (else)
1 IF <IF1> condition <IF2> THEN <IF4> single-statement (else)

else ::= ELSE <ELSE1> (if)
1 ELSE <ELSE2> compound-statement
1 ELSE <ELSE3> single-statement

with ::= WITH <WITH1> record-variable-list <WITH2> DO <WITH3>
compound-statement

WITH <WITH1> record-variable-list <WITH2> DO <WITH4>
single-statement

for ::= FOR <FOR1> assignment <FOR2> TO <FOR3> id <FOR4> DO <FOR5>
compound-statement

FOR <FOR1> assignment <FOR2> TO <FOR3> id <FOR4> DO <FOR6>
single-statement

case ::= CASE <CASE1> id <CASE2> OF <CASE3> case-list (; case-list)
(else) <CASE6> END

case-list ::= : <CASE4> compound-statement
1 : <CASES> single-statement

38

APPENDIX B: A SAMPLE SESSION

In this section a sample of IPP reformatting a

Pascal source code file is presented.

We will assume that all files are located in the

same directory. First, we will have IPP learn the style

reflected in the program file "style.pas." Note that

this program does not make semantic sense, but since IPP

is only concerned with it being syntactically correct, it

doesn't matter. Also, the command line option -n (in

this case -4) tells IPP how far apart tab stops should

be, as IPP expands tabs to their equivalent amount of

spaces.

Next, we will give IPP a program to format. The

files ("example.in," "example.out") are listed in their

entirety in this appendix, while the file "style.pas" is

listed in Appendix C.

39

C> ipp L <style.pas -4
program learn_everything (arglist);

procedure learn_case (arglist);

begin
case choice of

,D,, ,d, :

statement;
iml,

begin
statementl;

statement2
end;

else

writeln
end

end;

SAMPLE SESSION

function learn_if_elses (arglist) : return_type;

begin
if condition then

statement
else

statement;
if condition then
begin

statement;

statement
end
else if condition then

statement
else
begin

statement;
statement

end
end;

procedure learn_whiles_n_repeat_untils;

begin
while condition do

statement;

while condition do
begin

repeat

statement;
statement

until condition;
statement

end
end;

40
function learn_fors_n_withs : return_type;

begin

statement;

for variable := initial to limit do
statement;

with variable_name do
begin

statement;

for variable := initial to limit do
begin

statement;
statement

end;

statement;

statement
end;

with variable_name do
statement;

statement
end;

begin
statement

end.

C> ipp <example.in >example.out

C>

41
EXAMPLE. IN

(SU+)

PROGRAM sssianal (input, output);

CONST

Num_Operators = 163;
Plus_Sign = 1+1;

Star = I*1.

Dollar_Sign = 'S';
Space I;

Colon = 1:i;

Dot = g.i;

Comma = .,1;

Tab = #9;

LineFeed = #10;
cha = .,1
chz = ')';

TYPE

Operator_Rec = RECORD
Name : STRING(8];
Freq : INTEGER;

END;
Nametype = STRING[8];

VAR

Char_Values : ARRAY[cha..chz,0..4] OF INTEGER;
Offset ARRAY(0..4] OF INTEGER;
Command : ARRAY [1..Num Operators] OF Operator_Rec;
Comment_count,
Misc_count,

Blank_count,

Varlist_count,
Line_count : INTEGER;
i,j,k,p : INTEGER;
In_File,

Out_File : TEXT;
InFileName,
Out_FileName STRING[14];
Line,

InputLine : STRING [126];
FirstCh : CHAR;

Name : Nametype;
ch : CHAR;
No command,
flag,

Morelnput,

More_of_Command : BOOLEAN;

FUNCTION segment(word: Nametype): INTEGER;
VAR

j, k, prime, value : INTEGER;
BEGIN

prime := 1009;
value := 0;
j := length(word);
FOR i := 1 to j DO

BEGIN
k := ord(word[i]) ord('A') + 1;
IF (k < 0) OR (k > 26)
THEN

k := 27;

value := ((value * 27) MOD prime) + k;
END;

value := (value MOD prime) MOD 191;
value := (((value * 59) MOD 191) + 131) MOD 191;
segment := value MOD 5;

END; (segment)

BEGIN

42

(Housekeeping)

Comment_count := 0;
Misc_count := 0;
Blank count := 0;
Line_count := 0;
Varlist_count := 0;

(Input character value assignments, offsets, and hash table word)

assign(In_File,,C:sssihash.wds');
reset(In_File);
FOR ch := cha TO chz DO

BEGIN
FOR i := 0 TO 4 DO
BEGIN

read(In_File,CharyaluesIch,U);
END;

readln(In_File);
END;

FOR i := 0 TO 4 DO

BEGIN
read(In_File,OffsetEil);

END;

(Input Command Names and set frequencies to 0)

readln(In_File);
FOR i := 1 TO Nun_Operators DO

BEGIN

readln(In Fite,Command[iLneme);
Commandfii.freq := 0;

END;

(Start to process DB/C program file)

write('Please enter input file name 1);
readln(In_FileName);
writeln(lst);

writeln(lst,'Name of input file is ', In_FileName);
assign(In_File, In_FileName);
reset(In_File);
WHILE NOT EOF(In_File) DO

BEGIN
readln(In_File,Line);

LineILength(Line)3 := Space;

Line_count := Line_count + 1;
FirstCh := Linen];
More_of_Command := TRUE;
i := 1;

IF (FirstCh = Dot) OR (FirstCh = Star)
THEN Increment comment line count)

Comment_count := Comment_count + 1
ELSE (Process Command line)

BEGIN
IF FirstCh <> Space
THEN

BEGIN (Read past label)

i := pos(Space,Line);
Delete(Line,1,i-1);
i := 1

END;

(See if rest of line blank)

43
No_command := TRUE;
FOR j := 1 TO Length(Line) DO

IF Line[j] <> Space
THEN

No command := FALSE;
IF No_command
THEN

Blank_count := Blank_count + 1
ELSE

BEGIN

t Find Command name)

REPEAT
i := i + 1;

UNTIL Line[i] <> Space;
Delete(Line,1,i-1); (Delete spaces before command name)
i := 1;

j := pos(Space,Line);

(Assign Name the command name)

IF j = 0
THEN

writeln(Ist,'Error in command length name line = ',Line)
ELSE

BEGIN

Name := copy(Line,1,j-1);
Delete(Line,1,j-1)

END;

Increment frequency of operation Name)

j := segment(Name);
k := Char_Values[Name[1],j] + Char_Values[Namellength(Name)Ljl

+ Length(Name) + Offset[j];
IF Command[k].Name = Name
THEN

Command[k].Freq := Command[k].Freq + 1
ELSE

BEGIN
Misc_count := Misc_count + 1;
writeln(lst,Line);

END;

(See if command continues to next line)

i := Length(Line);

WHILE Line[i] = Space DO
i := i - 1;

IF Lineti] <> Colon
THEN

More_of_Command := FALSE;

t Count operands in LOAD, STORE, and CLEAR Operators)

IF (Name = 'LOAD') OR (Name = 'STORE') OR (Name = 'CLEAR')
THEN

BEGIN
REPEAT

j := pos(Comma,Line);
IF j > 0
THEN

BEGIN

Varlist_count := Varlist_count + 1;

Delete(Line,1,j)
END

UNTIL j = 0;

44
WHILE More_of_Command DO

BEGIN
Readln(In_File,Line);

Line_count := Line_count + 1;
Line := Line + Space;

(See if command continues to next line)

i := Length(Line);

WHILE Line[i] = Space DO
i ;= i - 1;

IF Line[i] <> Colon
THEN

More_of_Command := FALSE;

(Count operands in line)

REPEAT

j := pos(Comma,Line);
IF j > 0

THEN
BEGIN

Varlist_count := Varlist_count
Delete(Line,1,j)

END

UNTIL j = 0;
END;

END;

WHILE More_of_Command DO
BEGIN

readln(In_File,Line);
Line_count := Line_count + 1;
LinefLength(Line)) := Space;

END;

END;

(See if command continues to next tine)

i := Length(Line);

WHILE Line[i] = Space DO
i := i - 1;

IF Line[i] <> Colon
THEN

More_of_Command := FALSE;
END;

+ 1;

END;
close(In_File);

(Output report of counts)

FOR i := 1 TO Num Operators DO
IF Command(i).Freq > 0

THEN
writeln(lst,CommandtiLname:10,Commandril.freq:4);
writeln(lst,'LC = ',Line_count:5,1 CC = ',Comment_count:5,1 BC =

Blank_count:5,' MC = 1,misc_count:5,1 Varlist = ',Varlist_count:6);
END.

45

EXAMPLE.OUT

(SU+)

PROGRAM sssianal (input, output);

CONST
Num Operators = 163;
Plus_Sign = 1+1;

Star

Dollar_Sign =

Space .
Colon = 1:1
Dot = 1.1;

Comma = .,.;

Tab = #9;

LineFeed = #10;
cha = III;
chz = .).;

TYPE

Operator_Rec = RECORD
Name : STRING[8];
Freq : INTEGER;

END;

Nametype = STRING[8];

VAR
Char_Values : ARRAY[cha..chz,0..4] OF INTEGER;
Offset : ARRAY(0..4] OF INTEGER;
Command : ARRAY (1..Num_Operators] OF Operator_Rec;
Comment count,

Misc_count,
Blank count,
Vartist_count,
Line count : INTEGER;
i,j,k,p : INTEGER;

In file,
Out_File : TEXT;
In FileName,
Out_FileName : STRING(14];
Line,

InputLine : STRING (126);
FirstCh : CHAR;
Name : Nametype;
ch : CHAR;

No command,
flag,

Morelnput,
More_of_Command : BOOLEAN;

FUNCTION segment (word: Nametype) : INTEGER;

VAR
j, k, prime, value : INTEGER;

BEGIN

prime := 1009;
value := 0;
j := length(word);
FOR i := 1 to j DO

BEGIN

k := ord(wordEil) - ord('A') + 1;
IF (k < 0) OR (k > 26) THEN

k := 27;

value := ((value * 27) MOD prime) + k;
END;

value := (value MOD prime) MOD 191;
value := (((value * 59) MOD 191) + 131) MOD 191;
segment := value MOD 5;

END; C segment

BEGIN

46

C Housekeeping)

Comment_count := 0;
Misc_count := 0;
Blank count := 0;
line count := 0;

Varlist_count := 0;

(Input character value assignments, offsets, and hash table word)

assign(In_File,,C:sssihash.wds1);
reset(In_File);

FOR ch := cha TO chz DO
BEGIN

FOR i := 0 TO 4 DO
BEGIN

read(In_File,Char_Values(ch,in;
END;

readln(In_File);
END;

FOR i := 0 TO 4 DO
BEGIN

read(In_Fite,Offset03);
END;

C Input Command Names and set frequencies to 0)

readln(In_File);
FOR i := 1 TO Nun Operators DO
BEGIN

readIn(InFile,Command[i].name);
Command(iLfreq := 0;

END;

(Start to process DB/C program file)

write(Tlease enter input file name 1);
readln(In_FileName);
writeln(lst);

writeln(Ist,1Name of input file is ',In_FileName);
assign(In_File, In_FileName);
reset(In_File);

WHILE NOT EOF(Infile) DO
BEGIN

readln(In_File,Line);
Line[Length(Line)) := Space;
Line_count := Line count + 1;
FirstCh := Line[1];
More_of_Command := TRUE;
i := 1;

IF (FirstCh = Dot) OR (FirstCh = Star) THEN C Increment comment line count)

Comment_count := Comment_count + 1
ELSE (Process Command line)
BEGIN

IF FirstCh <> Space THEN
BEGIN (Read past Label)

i := pos(Space,Line);

Delete(Line,1,1-1);
i := 1

END;

See if rest of line blank)

47
No_command := TRUE;
FOR j := 1 TO Length(Line) DO

IF Line[j] <> Space THEN
No_command := FALSE;

IF No_command THEN

Blank_count := Blank_count + 1
ELSE
BEGIN

(Find Command name)
REPEAT

i := i + 1;

UNTIL Line[i] <> Space;
Delete(Line,1,i-1); (Delete spaces before command name)
i := 1;

j := pos(Space,Line);

(Assign Name the command name)

IF j = 0 THEN

writeln(lst,'Error in command length name line = ',Line)
ELSE
BEGIN

Name := copy(Line,l,j-1);
Delete(Line,1,j-1)

END;

(Increment frequency of operation Name)

j := segment(Name);

k := Char_Values[NameIll,j] + Char_ValuesINamerlength(Name)],p
+ Length(Name) + Offset[j];

IF Command(10.Name = Name THEN
Command[k].Freq := CommandIk).Freq + 1

ELSE
BEGIN

Misc_count := Misc_count + 1;
writeln(lst,Line);

END;

(See if command continues to next line)

i := Length(Line);

WHILE Line[i] = Space DO
i := i - 1;

IF Line[i] <> Colon THEN
More_of_Command := FALSE;

f Count operands in LOAD, STORE, and CLEAR Operators

IF (Name = 'LOAD') OR (Name = 'STORE') OR (Name = 'CLEAR') THEN
BEGIN

REPEAT
j := pos(Comma,Line);
IF j > 0 THEN

BEGIN

Varlist_count := Varlist_count + 1;
Delete(Line,1,j)

END

UNTIL j = 0;

48
WHILE More_of_Command DO
BEGIN

Readln(In_File,Line);

Line_count := Line_count + 1;
Line := Line + Space;

(See if command continues to next line)

i := Length(Line);
WHILE Line[i] = Space DO

i := i - 1;

IF Line[i] <> Colon THEN
More_of_Command := FALSE;

(Count operands in line)

REPEAT

j := pos(Comma,Line);
IF j > 0 THEN
BEGIN

Varlist count := Varlist_count + 1;
Delete(Line,1,j)

END

UNTIL j = 0;
END;

END;

WHILE More_of_Command DO
BEGIN

readln(In File,Line);
Line count := Line_count + 1;

LineTLength(Line)3 := Space;

(See if command continues to next line)

i := Length(Line);

WHILE Line[i] = Space DO
i := i - 1;

IF Line[i] <> Colon THEN
More_of_Command := FALSE;

END;

END;

END;

END;

close(In_File);

(Output report of counts)

FOR i := 1 TO Num Operators DO
IF Command[i].Freq > 0 THEN

writeln(lst,Command[i].name:10,Command[i].freq:4);

writeln(lst,'LC = ',Linecount:5,' CC = ',Comment_count:5,1 BC =
Blank_count:5,' MC = 1,misccount:5,1 Varlist = ',Varlist_count:6);

END.

49

APPENDIX C: A COMPLETE "LEARN" FILE

The following piece of code contains all instances

of whitespace that IPP learns. Thus, a simple way to

teach IPP a formatting style is to format this file in

the desired form, and pass it to IPP in the "learn" mode.

Other samples of code may be used, but they may leave

some whitespace tokens undefined.

program learn_ everything (arglist);

procedure learn_case (arglist);

begin

case choice of
'D', 'd' :

statement;
1M1, 'm'

begin

statementl;
statement2

end;

else
writeln

end
end;

function learn_ifelses (arglist) : return_type;

begin
if condition then

statement
else

statement;

if condition then
begin

statement;
statement

end
else if condition then

statement
else
begin

statement;

statement
end

end;

50

procedure learn_whiles_n_repeat_untils;

begin
while condition do

statement;

while condition do
begin

repeat

statement;
statement

until condition;
statement

end
end;

function learn_fors_n_withs : return_type;

begin

statement;
for variable := initial to limit do

statement;
with variable_name do
begin

statement;

for variable := initial to limit do
begin

statement;
statement

end;

statement;

statement
end;

with variable_name do
statement;

statement
end;

begin
statement

end.

51
APPENDIX D: IPP SOURCE CODE LISTING

IPP.0

#inctude <stdio.h>
#include "nlex.h"
#include "whitedef.h"

#include "ipp.def"

extern void store array(struct spc *);
extern void init Texer(void);
extern struct lex_struct *tex(int ,int);

extern struct lex_struct *took ahead(int ,int ,int);
extern struct tex_struct *new_Tex_ptr(void);

extern struct tex_struct *dispose_tex_ptr(struct tex_struct *);
extern void output_white(struct tex_struct *);
extern void output(struct lex_struct *,int ,int ,int);
extern void setup_array(struct spc *);
extern void white_manage(int ,int ,struct lex_struct *);
extern void rw_until(int ,int ,int ,int ,int);
extern void rw_until_took(int ,int ,int ,int ,int);
extern void rw_untit_took_1(int ,int ,int ,int ,int);
extern int do_white_space(int ,int ,int ,int);

void do_for();
void do while();
void do_if();

void do_repeat();
void do_with();
void do_case();
void do_function();
void do_procedureO;

SPACE white_stor(FEND);

void do_arg_tist(expand, indent, input)
int expand, indent, input;

rw_until(RPAREN, expand, indent, FALSE, input);

void dostatement(expand, indent, input)
int expand, indent, input;

LEX_PTR lex_ret;
int done = FALSE;

lex_ret = look_ahead(1, expand, indent);
if(lex_ret->token == WHITE_SPACE)

lex ret = look_ahead(2, expand, indent);
while(laone)

C

switch(lex_ret->token)
C

case CASEkw: rw_until(CASEkw, expand, indent, TRUE, input);
do_case(expand, indent, input);
lex_ret = look_ahead(2, expand, indent);
done = TRUE;
break;

case IFkw: rw_until(IFkw, expand, indent, TRUE, input);
do_if(expand, indent, input);
lex_ret = look_ahead(2, expand, indent);
done = TRUE;
break;

case WHILEkw: rw_until(WHILEkw, expand, indent, TRUE, input);
do_while(expand, indent, input);
lex_ret = look_ahead(2, expand, indent);
done = TRUE;
break;

case FORkw:

case WITHkw:

rwuntil(FORkw, expand, indent, TRUE, input);
do__for(expand, indent, input);

lex_ret = look_ahead(2, expand, indent);
done = TRUE;
break;

rw_until(WITHkw, expand, indent, TRUE, input);
do_with(expand, indent, input);
lex_ret = look_ahead(2, expand, indent);
done = TRUE;
break;

case REPEATkw: rwuntil(REPEATkw, expand, indent, TRUE, input);
do__repeat(expand, indent, input);

lex_ret = look_ahead(2, expand, indent);
done = TRUE;
break;

case SEMI:

case ELSEkw:
case UNTILkw:
case ENDkw:

default:

rw_until_look_1(SEMI, expand, indent, TRUE, input);
done = TRUE;
break;

done = TRUE;
break;

lex_ret = lex(expand, indent);
output(lex_ret, indent, TRUE, input);

lex_ret = look_ahead(1, expand, indent);
if((lex_ret->token == SEMI) II (lex_ret->token == ENDkw))

done = TRUE;

lex_ret = look_ahead(2, expand, indent);
break;

52

53
void do_statement_series(expand, indent, input)
int expand, indent, input;

LEX_PTR lex_ret;
int done = FALSE;

while(!done)

C

do_statement(expand, indent, input);
lex_ret = look_ahead(1, expand, indent);

if(lexret->token 1= SEMI)
done = TRUE;

else

rw_until(SEMI, expand, indent, FALSE, input);

)

void do_begin_end(expand, indent, input)
int expand, indent, input;

C

indent = do_white_space(BEGIN1, expand, indent, input);
do_statement_series(expand, indent, input);
indent = do_white_space(BEGIN2, expand, indent, input);
rw_until(ENDkw, expand, indent, TRUE, input);

)

void do_sub clause(tok1, tok2, expand, indent, input)
int tok1, tok2, expand, indent, input;
C

LEX_PTR lex_ret;

lex_ret = look ahead(2, expand, input);
if(Tex_ret->toien == BEGINkw)
C

indent = do white_space(tok1, expand, indent, input);

rw_until(BEZINkw, expand, indent, FALSE, input);
do_begin_end(expand, indent, input);

)
else

C

indent = do white space(tok2, expand, indent, input);
do_statement(expand, indent, input);

)

void do_internals(expand, indent, input)
int expand, indent, input;

LEX_PTR lex_ret;

int done = FALSE;

tex_ret = look_ahead(1, expand, indent);
while(!done)

switch(lex_ret->token)
C

case PROCEDUREkw: lex_ret = lex(expand, indent);
output(lex_ret, indent, TRUE, input);
do_procedure(expand, indent, input);
lex_ret = look_ahead(1, expand, indent);
break;

case BEGINkw: tex_ret = tex(expand, indent);
output(lex_ret, indent, TRUE, input);
do_begin_end(expand, indent, input);
done = TRUE;
break;

case FUNCTIONkw: lex_ret = lex(expand, indent);
output(lex_ret, indent, TRUE, input);

do_function(expand, indent, input);
lex_ret = look_ahead(1, expand, indent);
break;

default: lex_ret = lex(expand, indent);

output(lex_ret, indent, FALSE, input);
lexret = lookahead(1, expand, indent);
break;

void do_program(expand, indent, input)
int expand, indent, input;
C

LEX_PTR lex_ret;

rw_until(PROGRAMkw, expand, indent, FALSE, input);
indent = do white space(PROG1, expand, indent, input);
rw_untit(ID, expand, indent, FALSE, input);

indent = do_white_space(PROG2, expand, indent, input);
tex_ret = look_ahead(1, expand, indent);
if(lexret->token != SEMI)
C

rw until(LPAREN, expand, indent, FALSE, input);
do=arg_list(expand, indent, input);
indent = do_white space(PROG3, expand, indent, input);
rw_until(SEMI, expand, indent, FALSE, input);

)

else

rw until(SEMI, expand, indent, FALSE, input);
do_whiTe_space(PROG4, expand, indent, input);
do_internals(expand, indent, input);
rw_untit(PERIOD, expand, indent, FALSE, input);

)

54

void do_casebody(expand, indent, input)
iint expand, indent, input;

LEX_PTR lex_ret;

do

C

rw_untiL(COLON, expand, indent, TRUE, input);
do_sub cLause(CASE4, CASES, expand, indent, input);
lex_ret =Look ahead(3, expand, indent);
if(Tex_ret->toien == ELSEkw)

rw_untiL_Look(ELSEkw, expand, indent, TRUE, input);
lex_ret = look_ahead(2, expand, indent);

while((Lex_ret->token != ENDkw) && (Lex_ret->token != ELSEkw));
)

void do_case(expand, indent, input)
int expand, indent, input;

C

LEX_PTR Lex_ret;

indent = do_white_space(CASE1, expand, indent, input);
rw_until_took(OFkw, expand, indent, FALSE, input);
indent = do_white_space(CASE2, expand, indent, input);
rw_untiL(OFkw, expand, indent, FALSE, input);
indent = do_white_space(CASE3, expand, indent, input);
do_case_body(expand, indent, input);
Lex_ret = took_ahead(2, expand, indent);
if(Lex_ret->token == ELSEkw)

doelse(expand, indent, input);
rw_untiL_Look(ENDkw, expand, indent, FALSE, input);
do_white_space(CASE6, expand, indent, input);
rw untiL(ENDkw, expand, indent, FALSE, input);

)

void do_for(expand, indent, input)
int expand, indent, input;
C

indent = do_white_space(FOR1, expand, indent, input);
rw_until_look(TOkw, expand, indent, FALSE, input);
indent = do_white_space(FOR2, expand, indent, input);
rw_untiL(TOkw, expand, indent, FALSE, input);
indent = do_white_space(FOR3, expand, indent, input);
rw until look(DOkw, expand, indent, FALSE, input);

indent =do_white_space(FOR4, expand, indent, input);
rw_untiL(DOkw, expand, indent, FALSE, input);
do_sub clause(FOR5, FORE, expand, indent, input);

)

void do whiLe(expand, indent, input)
int indent, expand, input;
C

LEX_PTR lex_ret;

indent = do_white_space(WHILE1, expand, indent, input);
rw_until_Look(DOkw, expand, indent, FALSE, input);
indent = do_white_space(WHILE2, expand, indent, input);
rw_until(DOkw, expand, indent, FALSE, input);
do sub clause(WHILE3, WHILE4, expand, indent, input);

)

55

void do if(expand, indent, input)
int indent, expand, input;

LEX_PTR lex_ret, lex_ret1;

indent = do_white_space(IF1, expand, indent, input);
rw_until_look(THENkw, expand, indent, FALSE, input);
indent = do_white_space(IF2, expand, indent, input);
rw_until(THENkw, expand, indent, FALSE, input);
do_sub_clause(IF3, IF4, expand, indent, input);
lexret1 =look expand, indent);
lex_ret = look_ahead(2, expand, indent);
if((lex_ret->token == ELSEkw) (lex_ret1->token == ELSEkw))

do_else(expand, indent, input);
)

void doetse(expand, indent, input)
int indent, expand, input;

LEX_PTR lex_ret;

do_white_space(IF6, expand, indent, input);
rw_until(ELSEkw, expand, indent, FALSE, input);
tex_ret = took_ahead(2, expand, indent);
if(lex_ret->token == IFkw)

indent = do_white_space(ELSE1, expand, indent, input);
rw_until(IFkw, expand, indent, FALSE, input);
do_if(expand, indent, input);

else

do_sub_clause(ELSE2, ELSE3, expand, indent, input);
)

void do_repeat(expand, indent, input)
int indent, expand, input;

indent = do white_space(REPEAT1, expand, indent, input);

do_statement_series(expand, indent, input);
indent = do_white_space(REPEAT2, expand, indent, input);
rw_until(UNTILkw, expand, indent, FALSE, input);
indent = do_white_space(REPEAT3, expand, indent, input);
do

C

lex_ret = look_ahead(2, expand, indent);

output(lex(expand, indent), indent, TRUE, input);

while((tex_ret->token != ENDkw) && (lex_ret->token I= SEMI));
if(lex_ret->token == SEMI)

rw_until_look_1(SEMI, expand, indent, FALSE, input);
)

void do_with(expand, indent, input)
int indent, expand, input;

C

LEX_PTR lex_ret;

indent = do_white_space(WITH1, expand, indent, input);
rw_until_look(DOkw, expand, indent, FALSE, input);
indent = do_white_space(WITH2, expand, indent, input);
rw_until(DOkw, expand, indent, FALSE, input);
do sub clause(WITH3, WITH4, expand, indent, input);

)

56

57
void do_procedure(expand, indent, input)
int indent, expand, input;

LEX_PTR lex_ret;

indent = do_white_space(PROC1, expand, indent, input);
rw_until(ID, expand, indent, FALSE, input);
indent = do white space(PROC2, expand, indent, input);
lex_ret = look_ahead(1, expand, indent);
if(lex_ret->token I= SEMI)

C

rw_until(LPAREN, expand, indent, FALSE, input);
do_arg_list(expand, indent, input);
indent = do_white_space(PROC3, expand, indent, input);
rw_until(SEMI, expand, indent, FALSE, input);

else
rw until(SEM1, expand, indent, FALSE, input);

do_white_space(PROC4, expand, indent, input);
do_internals(expand, indent, input);

rw_until(SEMI, expand, indent, FALSE, input);
)

void do_function(expand, indent, input)
int indent, expand, input;

C

LEX_PTR lex_ret;

indent = do_white_space(FUNC1, expand, indent, input);
rw_until(ID, expand, indent, FALSE, input);

indent = do_white_space(FUNC2, expand, indent, input);
lex ret = look ahead(1, expand, indent);
if(Tex_ret->token != COLON)
C

rw_until(LPAREN, expand, indent, FALSE, input);
do_arg_list(expand, indent, input);
indent = do_white_space(FUNC3, expand, indent, input);
rw_until(COLON, expand, indent, FALSE, input);

else

rw until(COLON, expand, indent, FALSE, input);
do_whiie_space(FUNC4, expand, indent, input);
rw_until(ID, expand, indent, FALSE, input);
do_white_space(FUNC5, expand, indent, input);
rw_until(SEM1, expand, indent, FALSE, input);

do_white_space(FUNC6, expand, indent, input);
do_internats(expand, indent, input);
rw_until(SEMI, expand, indent, FALSE, input);

58
main(argc, argv)
int argc;

char *argv[];

int expand = 4, indent = 0, learn = FALSE, count;

init_lexer();

for(count = 1; count <= argc; count++)

if(argv(count)[0] == 'L')
learn = TRUE;

if(argvEcountlf01 ==
expand = argv[count][1] - '0';

if (!learn)

C

else

C

clean_array(white_stor, FEND);
read_array(white_stor);

do_program(expand, indent, learn);

clean_array(white_stor, FEND);
do_program(expand, indent, Learn);
store_array(white_stor);

close_lexer();
return(0);

59

PPBRAIN.0

#include <stdio.h>
#include "nlex.h"
#include "whitedef.h"

#define DEBUG2 1

extern void store array(struct spc *);
extern void init Texer(void);

extern struct lex_struct *lex(int ,int);
extern struct lexstruct *look ahead(int ,int ,int);
extern struct lex_struct *newTex_ptr(void);
extern struct lex_struct *dispose_lex_ptr(struct lex_struct *);
extern char *new_copy(char *);

extern SPACE white_stor[FEND];

/**** ******** **

* Given a LEX_PTR that contains a WHITE_SPACE token, output_ *

* white simply sends the space to the stdout.

void output_white(white)
LEX_PTR white;
C

int count;

for(count = 0; count < white->rets; count++)
printf("\n");

for(count = 0; count < white->change; count++)
printf(" ");

* Takes the token given and outputs it to the screen if the *
* input argument is FALSE (== 0). If it is a whitespace and *

* the replace argument is TRUE, and it has one or more returns *
* associated with it, then the change field of the token is *

* replaced with the number passed in indent.

void output(tokn, indent, replace, input)
LEX_PTR tokn;
int indent, replace, input;

C

if(!input II DEBUG2) /* DEBUG2 TRUE MEANS */
/* TO OUTPUT ON LEARN */

printf("Xs ", tokn->buffer);

if(tokn->token == WHITE_SPACE)

if(reptace && tokn->rets)
tokn->change = indent;

output_white(tokn);
)

)

tokn = dispose_lex_ptr(tokn);

/*** ** * ** **

* Clears the array that stores the white space tokens. *

void setup array(white_stor)
SPACE white_stor[];
C

int count;

for(count = 0; count < FEND; count++)

white_storIcountLchange = white_stor[count].rets = 0;

60
/** ***** * ******* ******** ********* ********** ********* ************

* Manages the array that stores the white space tokens. This *
* allows a change in the data structure that the tokens are *

* stored in without affecting any other parts of the program. *
***/

void white_manage(input, white_loc, value)
int input, white_loc;
LEX_PTR value;

if(input)

C

white_stor[white_loc].rets = value->rets;
white_stor(white_locl.change = value->change;

)

else

C

value->rets = white_stor(white_locLrets;
value->change = white_storEwhite_locLchange;

)

* Reads input tokens directly (and outputs them) until it has *

* read and output the token specified in the argument "token". *

void rw_until(token, expand, indent, replace, input)
int token, expand, indent, replace, input;
C

LEX_PTR lex_ret;

lex ret = lex(expand, indent);
whiTe(lex_ret->token != token)

C

output(lex_ret, indent, replace, input);
lex_ret = ex(expand, indent);

)

output(lex_ret, indent, replace, input);

/************* ***** **

* Reads tokens until the second token in the queue matches the *
* token argument passed to it. Outputs those that fall off *
* the front of the queue.

void rw_until_look(token, expand, indent, replace, input)
int token, expand, indent, replace, input;
C

LEX_PTR lex_ret;

lex_ret = look_ahead(2, expand, indent);

while(lex_ret->token != token)
C

lex_ret = Lex(expand, indent);
output(lex_ret, indent, replace, input);
lex_ret = look_ahead(2, expand, indent);

)

61

* Reads tokens until the next token in the queue matches the *
* token argument passed to it. Outputs those that fall off
* the front of the queue.
******************************** ********* ***********************/

void rw_until_look_1(token, expand, indent, replace, input)
int token, expand, indent, replace, input;

LEX_PTR lex_ret;

lex_ret = look_ahead(1, expand, indent);
while(lex_ret->token != token)
C

lex_ret = lex(expand, indent);

output(lex_ret, indent, replace, input);
lex_ret = look_ahead(1, expand, indent);

* If the next token in the input is a WHITE_SPACE it is pulled *
* from the input. Otherwise, a WHITE SPACE token is created *
* and set to 0 rets, 0 change. The white manage function is *
* then called to make changes to either the token or the
* stored style file, depending on whether we are inputing or *
* outputting. If the indentation changes as a result of reading *
* or retrieving WHITE_SPACE tokens, then the new indentation is *
* passed back by the function (and even if there isn't).
*** ***** ***/

int do_white_space(white_loc, expand, indent, input)
int white_loc, expand, indent, input;
C

LEX_PTR lex_ret;

lex ret = look_ahead(1, expand, indent);
if(lex_ret->token == WHITE SPACE)

lex i_ret = lex(expand, indent);
else

C

lex_ret = new_lex_ptr();
lex_ret->token = WHITE_SPACE;
lex_ret->buffer = new copy(H\Ou);

lex_ret->rets = lex_ret->change = 0;

white_manage(input, white_loc, lex_ret);
if(lex_ret->rets)

indent += lex_ret->change;
output(lex_ret, indent, TRUE, input);
return(indent);

FORMFILE.0

#include <stdio.h>
#include "whitedef.h"

#include "formfile.def"

extern SPACE white_stor(FEND];

#define FORM_FILE "current.frm"
#define TEST FILE "test.frm"

* Given a filename write stor writes the style sheet in stor to *
* that file.
************************************* ***** * ***** *****************/

int write_stor(filename, stor, size)
char *filename;
SPACE stor();
int size;

C
FILE *stream;
int count;

stream = fopen(filename, "w");
for(count = 0; count < size; count++)
C

putw(stor(countLrets, stream);
putw(storIcount].change, stream);

fclose(stream);
)

*********************** * *** * ** * * * * * * * **** *** * * * *r ** * **

* Given a filename read stor reads the style sheet in that file *
* into the array passed as stor.

int read stor(filename, stor, size)
char *filename;
SPACE stor();
int size;

C

FILE *stream;
int count;

stream = fopen(filename, "r");
for(count = 0; count < size; count++)
C

stor[count].rets = getw(stream);
stortcount7.change = getw(stream);

fclose(stream);

)

void store_array(out)
SPACE out();

C

write_stor(FORM_FILE, out, FEND);
)

void read_array(in)
SPACE in[];

C

read_stor(FORM_FILE, in, FEND);

)

62

void clean_array(stor, size)
SPACE stor();
int size;

int count;

for(count = 0; count < size; count++)

storIcount3.rets = 0;
storEcount3.change = 0;

)

63

#include "nlex.h"
#include "symtab.def"

#define TOKEN COUNT 23

extern char lexbuf[IDSIZE];
extern int linen;
extern int line_offs;

extern int token nm;

static char *keywords[TOKEN_COUNT] =
C

"ARRAY",

"BEGIN",
"CASE",

"CON ST ",

"DO",

"ELSE",

"END",
"FOR",
"FUNCTION",

"IF",
"NOT",

"OF",
"PROCEDURE",
"PROGRAM",
"RECORD",

"REPEAT",

"THEN",
"TO",

"TYPE",

"UNTIL",

"VAR",

"WHILE",

"WITH"

) ;

enum tokens tokenyal[TOKEN_COUNT] =

C
ARRAYkw,
BEGINkw,
CASEkw,

CONSTkw,

DOkw,

ELSEkw,

ENDkw,

FORkw,

FUNCTIONkw,

IFkw,

NOTkw,

OFkw,

PROCEDUREkw,

PROGRAMkw,

RECORDkw,
REPEATkw,
THENkw,

TOkw,

TYPEkw,

UNTILkw,
VARkw,

WHILEkw,

WITHkw

) ;

SYMTAB.0

64

65
/******* ***** ***

* Uses a simple binary search to determine if an identifier is a *

* keyword or not. Based on the search function described in K&R. *
* **/

int symtab lookup(identifier)
char *identifier;

C

int half, low = 0, high = TOKEN_COUNT, compare, count, length;
char copy[IDSIZE];

length = strlen(identifier);
strcpy(copy, identifier);
for(count = 0; count < length; count++)

copyIcount] = toupper(copyIcountl);
high--;

while(low <= high)
C

half = (low + high) / 2;
compare = strcmp(copy, keywords half]);
if (compare < 0)

high = half - 1;

else if (compare > 0)
low = half + 1;

else
return((int) tokenval[half]);

return(ID);

66

NLEX. C

#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include <malloc.h>
#include "nlex.h"
#include "queue.h"
#include "ntex.def"

#define CMT_BEGIN ' {'

#define CMT_END ')'
#define DEC POINT

#define FALSE 0
#define TRUE 1

#define SINGLE QUOTE '\047'
#define MAX LOOK 10

int tineno = 1, token_nm = 0, line_offs = 1;
char lexbuf[IDSIZE];
QUEUE token_q;

extern int symtab_lookup(char *);

int allocated strings = 0, allocated_LEX_PTRs = 0;
int freed_strings = 0, freed_LEX_PTRs = 0;
LEX_PTR lex_array[MAX_LOOK];
int lex_alloc[MAX_LOOK];

void malloc_stats()

fprintf(stderr,

fprintf(stderr,

fprintf(stderr,
)

"\nLEX_PTRs: UM allocated %d\t freed", allocated_LEX_PTRs,
freed LEX PTRs);_ _

"\nstrings : %d\t allocated %d \t freed", allocated_strings,
freed_strings);

"\nQ Items : %d\t items in the queue", queue size(token q));

* When given a string, new_copy allocates memory and creates a *
* copy of the string.

char *new_copy(str)
char *str;

C

char *temp;

temp = (char *) malloc((strlen(lexbuf) + 1) * sizeof(char));
ifttemp == NULL)

C

fprintf(stderr, "\n***->Memory Allocation Error in new
matloc_stats();

exit(1);

)

else

C

strcpy(temp, str);
allocated_strings++;
return(temp);

/************** ******* *******************

* Allocates the storage for one token. *

LEX_PTR new_lex_ptr()

C

LEX_PTR temp;

temp = (LEX_PTR) malloc(sizeof(LEX_STRUCT));
if(temp == NULL)
C

fprintf(stderr, "\n*** Memory Allocation Error in new_lex_ptr()");
malloc_stats();
exit(1);

)

else

C

temp->buffer = NULL;

allocatedLEXPTRs++;
return(temp);

/***

* Returns the storage associated with one token to the system *

LEX_PTR dispose_lex_ptr(trash_ptr)
LEX_PTR trash_ptr;

C

if(trash_ptr->buffer != NULL)

C

free(trash_ptr- >buffer);
freed strings + +;

)

free(trash_ptr);
freed_LEX_PTRs++;
return(NULL);

)

/**

* Initalizes the lexical analyzer. Creates a queue that is used *
* for looking ahead in the input.
*********************************** ****** ** * * ***** ** * *************/

void init_lexer()

C

token_q = new queue();

)
/*** ************ ******** *** ***** *** * ** **** *****************
* Empties the Lexer's queue before a normal termination. *

void close_lexer()
C

int count;

LEX_PTR temp;

count = queue_size(token_q);
while(count-- > 0)
C

temp = dequeue(token_q);
di spose_lex_ptr(temp);

)
token_q = det_queue(token_q);

)

67

/************************************** ******* ****************

* Expands tab characters to a series of spaces, given the *

* distance between tab stops through the tab size argument. *
********************************** *********;****************/

int tab_expand(line_offs, tab_size)

int line_offs, tab_size;

return(((line_offs / tab_size + 1) * tab_size + 1) - line_offs);

/***** ***** **

* The lexical analyzer. Updates global variables to reflect *
* the current token in the input queue.
**/

int lexan(tab size)

int tab size;

C

int t, b;

while(TRUE)

C

t = getchar();
switch (t)

C

case 1-1:
case EOF:

return(END_INPUT);
case 1,1:

strcpy(lexbuf, ",");
return(COMMA);

case 1(1:
strcpy(lexbuf, "(");
return(LPAREN);

case 1)1:
strcpy(lexbuf, ")");
return(RPAREN);

case '1':
strcpy(lexbuf, op);

return(LBRACK);
case '3':

strcpy(lexbuf,
return(RBRACK);

case ';':
strcpy(lexbuf, ";");
return(SEMI);

case 1:1:
lexbuf[07 = t;
t = getchar();

if (t == 1=')

C

lexbuf[1] = t;

lexbuf(23 = '\0';
return(ASSIGNOP);

}

else

C
ungetc(t, stdin);

lexbuf(13 = 1\0';
return(COLON);

}

case 1=1:
strcpy(lexbuf, "=");
return(EQ);

case '$':
strcpy(lexbuf, "S");

return(EQ);
case ' #':

strcpy(lexbuf, " # ");

return(EQ);

/* A kludge to get $ in */

/* Likewise for # */

68

69

case 1"1:
strcpy(lexbuf, "A");
return(EQ);

case ' <':

lexbuf[0] = t;
t = getchar();
if (t == 1=1)

strcpy(lexbuf,
return(LE);

)

else if (t == '>')

strcpy(lexbuf, =<>11);

return(NE);

)

else

C

ungetc(t, stdin);
strcpy(lexbuf, "<");
return(LT);

)

case 1.1:

lexbuf[0] = t;
t = getchar();

if (t == 1=1)
C

strcpy(lexbuf, 11==);

return(GE);

)

ease if (t == '<')
C

strcpy(lexbuf, =<>m);
return(NE);

)

else

ungetc(t, stdin);

strcpy(lexbuf, ">");
return(GT);

/* Likewise for A */

)
case I.':

strcpy(lexbuf, ".");
return(PERIOD);

case 1*1:

case '/':

lexbuf[0] = t;

lexbuf[l] = 1\01;
return(MULOP);

case '+':
case "1:

lexbuf[0] = t;
lexbuf[l] = 1\01;
return(ADDOP);

case CMT_BEGIN:

case ":
case '\t':

case '\n': return(get_white_space(t, tab_size));
break;

case SINGLE_QUOTE: /* Single Quote */

C

ungetc(t, stdin);
return(get_string());

)

default:

if(isdigit(t))

C

ungetc(t, stdin);
return(get_number());

)

70

else if(isalpha(t) II (t == 1_1))
{

ungetc(t, stdin);
return(get_id());

/*********** ****** ***

* Returns the change in indentation and number of carriage returns *

* in a WHITE_SPACE token when given the white space string. Updates *
* the current indentation level. All information returned in the
* "result" argument.
********* ******* ****** ****** **/

void calc_space(result, indent)
LEX_PTR result;
int indent;

int ctr, length, count = 0, crs = 0, spot = 0;

length = strlen(result->buffer);
if(length > 0)

/* Determine string length */

ctr = length - 1;

while((result->bufferEctr] != CMT_END) && (ctr >= 0))
ctr--; /* Find beginning or CMT_END */

spot = ctr + 1; /* But we go one too far back */
for(ctr = spot; ctr < length; ctr++) /* Loop to count CRs and SPC */

C

if(result->bufferEctr) != '\n') /* Add to space count? */
count++;

else /* No, add to CR count. */

C

count = 0;

crs++;

)

result->buffer(spot] = ' \O';

result->rets = crs;
if(crs > 0)

result->change = count - indent;

else
result->change = count;

/* Remove tokenized whitespace */
/* Return # of CRs and */

/* change in indentation */

/* just spaces here */

/**

* If previous look_aheads have filled the queue, then the first item *
* in the queue is returned. Otherwise it calls Texan to get the

* next token.

LEX_PTR tex(expand, indent)
int expand, indent;

C

LEX_PTR ret_val;

if(queue_size(token_q) > 0)
ret_val = dequeue(token_q);

else

C
ret_val = new_lex_ptr();
ret_val->token = lexan(expand);
ret_val->buffer = new_copy(lexbuf);

)

if(ret_val->token == WHITE_SPACE)
calc_space(ret_val, indent);

return(ret_val);

/*************************** ****** ***************************************

* Looks ahead in the input n tokens. If there are already n tokens in *
* the queue, then the nth one is returned. Otherwise, lex is called *

* to get the appropriate number of tokens from the input stream.
******************************* ******** *********** ***** *****************/

LEX_PTR look_ahead(n, expand, indent)
int n, expand, indent;

int count, look_for, new_token;
LEX_PTR temp;

if(n > queue_size(token_q))

look_for = n - queue_size(token_q);
while((look_for- > 0) && ((new_token = lexan(expand)) 1= END_INPUT))
C

temp = new_lex_ptr();

temp->token = new_token;
temp->buffer= new_copy(lexbuf);
enqueue(temp, token_q);

)

return(queue_item(n-1, token_q));

* Collects whitespace and comments into a single token. *

int get_white_space(t, tab size)
int t, tab_size;

C

int b, temp, count;

b = 0;

do

lexbuf(b++3 = t;

if(t == '\t')
C

temp = tab_expand(line_offs, tab_size);
b--;

for(count = 0; count < temp; count++)
lexbuf(b+41 = ";

line_offs += temp;

if(t == 1\n')

C

lineno++;

line offs = 1;

if(t == CMTBEBIN)
b = do_comment(t, b);

)

while(isspace(t = getchar()) II (t == CMT_BEGIN));
ungetc(t, stdin);

lexbuf(b] = \0;
return(WHITE_SPACE);

)

71

/****************** ********** ***** ****** ***********

* Inserts a comment into the current whitespace. *

int do_coffeent(t, count)

int t, count;

C

while((t = getchar()) != CMT_END)

C

lexbufIcount++] = t;
line_offs++;

if (t == 1\n')

C

lineno++;

line_offs = 1;

)

lexbuf[count++] = t;
return(count);

/***

* Used by Texan to get a Pascal string. *
***/

int get_string()

C

int t, b = 0, done = 0;

lexbuf(b++] = getchar();
while (!done)
C

t = getchar();
if (t == SINGLE_QUOTE)

C

t = getchar();
if (t == SINGLE_QUOTE)

lexbuf[b++] = t;
else

)

else

C

ungetc(t, stdin);
done = 1;

lexbuf[b++] = t;
)

lexbuf(b++3 = SINGLE_QUOTE;
lexbuf(b] = 1\0';
return(STRING);

72

73
/**

* Used by Texan to get numeric tokens. *
**/

int get_number()

C

int t, b = 0;

t = getchar();

lexbuf[b++] = t;
while (isdigit(t = getchar()))

lexbuf(b++) = t;
if(t == DEC_POINT)
C

lexbuf[b++] = t;

while (isdigit(t = getchar()))
lexbuf[b++] = t;

if('E' == toupper(t))

C

lexbuf[b++] = t;
t = getchar();

if ((t == '+') II (t == '-'))
lexbuf[b+-1] = t;

else
ungetc(t, stdin);

while(isdigit(t = getchar()))

lexbuf[b++] = t;
ungetc(t, stdin);

)

else

ungetc(t, stdin);

lexbuf[b] = 1\0';
return(REAL);

)

else
ungetc(t, stdin);

lexbuf[b] = 1\01;
return(INTEGER);

/*********** ** ** * *** ***** *******************

* Used by Texan to get identifier tokens. *

int get_id()

C

int t, b = 0;

t = getchar();
while (isalnum(t) II (t == 1_1))

C

lexbuftb++7 = t;

t = getchar();
)

ungetc(t, stdin);
lexbuf[b] = '\0';
return(symtab_lookup(lexbuf));

QUEUE . C

#include <stdio.h>
#include <malloc.h>
#include "queue.def"

struct [node C
char *data; /* Points to item in the list */
struct [node *next; /* Points to the next item */

) ;

typedef struct q_def C
struct [node *rem; /* Points to the removal end of the queue */
struct [node *add; /* Points to the addition end of the queue */
int count; /* Total # of items now in the array */

struct [node *last_ptr; /* Points to the last item accessed w/o removing */
int last_count; /* Rank (starts at 0) of last item accessed */

) QUEUE, *QUEUE_PTR;

struct [node *l free(item)
struct [node *item;

C

free(item);

return(NULL);

)

struct [node *l_alloc(item)
char *item;

C

struct [node *new_l;

new _l = (struct lnode *) malloc(sizeof(struct [node));
if (new_[!= NULL)

C

new_[->data = item;

new_[->next = NULL;

return(new_l);

)

/* Returns a pointer to an initialized new queue. The queue is */
/* initially empty, since both the head and tail pointers are */

/* set to NULL, and the count is set to 0. The interesting thing */
/* about designing the queue in this manner, is that you have one */
/* set of functions which can operate on multiple queues. Also, */
/* by using casts in the proper places, these functions wilt work */
/* on any data type! */

QUEUE_PTR new_queue()

C
QUEUE_PTR new_q;

new_q = (QUEUE_PTR) malloc(sizeof(QUEUE));
if (new_q != NULL)

C

new_q->add = new_q->rem = new_q->last_ptr = NULL;
new_q->count = new_q->last_count = 0;

)
return(new_q);

)

74

/* Returns the memory taken up by a queue to the system. */
/* Note that it even works correctly if the queue isn't */
/* yet empty by moving down the item list and freeing it.*/
/******************** ****** *******************************/

QUEUE_PTR del_queue(que)
QUEUE_PTR que;

C

struct lnode *next, *crnt;
int count;

for (count = 1, crnt = que->rem; count <= que->count; count++)
C

next = crnt->next;
free(crnt->data);

crnt = l_free(crnt);
crnt = next;

)

free(que);
return(NULL);

)
/************** ****** * * ***************** ********* **** * ******* ********/
/* Adds the vat pointer to the queue. If the count == 0, we know */
/* that we must write over the add pointer, and set the rem pointer */
/* to also point to the item just added. In this way, we don't */
/* have to compare raw pointer values to determine when we reach */
/* end of the data stored in the queue. */
/***** ***** * * * ***** **/

void enqueue(val, que)
char *vat;
QUEUE_PTR que;

C

struct lnode *new;

new = lalloc(val);
if (new != NULL)

C

)

)

if (que->count > 0)
que->add->next = new;

else
que->rem = new;

que->add = new;
que->count++;

/ /
/* Returns a pointer to a character, the first one to have */
/* entered the queue after first checking count to make */

/* certain that there are actually values in the queue. */
/***/

char *dequeue(que)
QUEUE_PTR que;

C

struct lnode *junk;
char *item;

if (que->count > 0)

C

junk = que->rem;
item = junk->data;

que->rem = que->rem->next; /* if that was last, then it is */
que->count--; /* set to NULL automatically */
junk = l_free(junk);

return(item);

)

else
return(NULL);

)

75

76
/*********************** ******* *****************************/

/* Returns a pointer to the nth member of the queue list. */
/* NOTE: Numbering of the items begins at O. */

/****** ***** ******************************** ***** ***********/

struct mode *queuemember(n, que)
int n;

QUEUE_PTR que;

C

struct lnode *crnt;
int count;

crnt = que->rem;
if(n == 0)

return(crnt);
else

C

for(count = 1; count <= n; count++)

C

crnt = crnt->next;
if(crnt == NULL)

return(NULL);

return(crnt);

)

/********************* ***** * ***** ************ ******* /

/* Returns a pointer to the nth item in the queue. */
/* NOTE: Numbering of the items begins at O. */

char *queue_item(n, que)
int n;

QUEUE PTR que;

C

struct lnode *current;

current = queue_member(n, que);
return(current->data);

77
/**/

/* Deletes the nth item in the queue, and returns its */
/* associated storage blocks to the system. */

void del_item(n, que)
QUEUE PTR que;
int n;

C

struct lnode *target, *pred;

if(n < que->count)

C

if(n > 0)

C

pred = queue_member(n-1, que);
target = pred->next;
pred->next = target->next;
que->count--;
free(target->data);
target = l_free(target);

else if(n = 0)

C
target = que->rem;
que->rem = target->next;
que->count--;
free(target->data);
target = l_free(target);

)

/***/

/* Returns the current size of the queue passed to it. */

int queue_size(que)
QUELIE_PIR que;

C

return(que->count);

NLEX.H

#define IDSIZE 5000
#define TRUE 1
#define FALSE 0
#define STOR 1
#define RETR 0

enum tokens

MULOP,

RE LOP,

ADDOP,

ASSIGNOP,
ARRAYkw,
BEGINkw,
BOOLEANkw,
CASEkw,

CONSTkw,

DOkw,
ELSEkw,

ENDkw,
FORkw,

FUNCTIONkw,

IFkw,

INTEGERkw,

NOTkw,

OFkw,

PROCEDUREkw,

PROGRAMkw,
REALkw,

RECORDkw,
REPEATkw,
THENkw,

TOkw,
TYPEkw,

UNTILkw,
VARkw,

WHILEkw,

WITHkw,
PERIOD,

COMMA,

LPAREN,

RPAREN,

COLON,
SEMI,

LBRACK,
RBRACK,

ID,

INTEGER,

REAL,

PLUS,

MINUS,

OR,

UNKNOWN,
END_INPUT,
EQ,

NE,

LT,

LE,

GT,

GE,

STRING,

WHITE SPACE

78

typedef struct lex_struct

int token;

char *buffer;

int rets;

int change;

} LEX_STRUCT, *LEX_PTR;

/* Holds the token's ID number */
/* Holds the ASCII rep. of the token */
/* If WHITE_SPACE, it holds the # of <cr>s */

/* Holds the change in indentation (or spaces) */

79

80

WHITEDEF.H

typedef struct spc

C

int rets; /* # of <CR>s in the white space string */

int change; /* Total # of spaces to add (+) or subtract (-) */

) SPACE, *SPACE_PTR;

enum space names

C

PROG1,
PROG2,

PROG3,

PROG4,

BEGIN1,

BEGIN2,
PROC1,

PROC2,

PROC3,

PROC4,

FUNC1,

FUNC2,

FUNC3,

FUNC4,

FUNC5,

FUNC6,

WHILE1,
WHILE2,
WHILE3,
WHILE4,

REPEAT1,
REPEAT2,

REPEATS,

IF1,

IF2,

IF3,

IF4,

IF5,

IF6,

ELSE1,

ELSE2,
ELSE3,

WITH1,
WITH2,

WITH3,

WITH4,
FOR1,

FOR2,

FORS,

FOR4,

FOR5,

FORE,

CASE1,

CASE2,

CASE3,

CASE4,
CASE5,

CASE6,

FEND

) dummy;

81

QUEUE . H

typedef char *QUEUE;

extern QUEUE new_queue();
extern QUEUE del_queue(char *);
extern void enqueue(struct lex_struct *, char *);
extern LEX_PTR dequeue(char *);
extern LEX_PTR queue_item(int, char *);
extern int queue_size(char *);

82

IPP.DEF

/*global*/ void do_arg_list(int ,int ,int);
/*global*/ void do_statement(int ,int ,int);
/*global*/ void do_statement_series(int ,int ,int);
/*global*/ void do_begin_end(int ,int ,int);
/*global*/ void do_sub_clause(int ,int ,int ,int ,int);
/*global*/ void do_internals(int ,int ,int);
/*global*/ void do_program(int ,int ,int);
/*global*/ void do_for(int ,int ,int);
/*global*/ void do_while(int ,int ,int);
/*global*/ void do_if(int ,int ,int);
/*global*/ void do_else(int ,int ,int);
/*global*/ void do_repeat(int ,int ,int);
/*global*/ void do_with(int ,int ,int);
/*global*/ void do_procedure(int ,int ,int);
/*global*/ void do_function(int ,int ,int);
/*global*/ int main(int ,char * *);

83

PPBRAIN.DEF

/*global*/ void output_white(struct lex_struct *);
/*global*/ void output(struct lex_struct *,int ,int ,int);
/*global*/ void setup_array(struct spc *);
/*global*/ void white_manage(int ,int ,struct lex_struct *);
/*global*/ void rwuntil(int ,int ,int ,int ,int);
/*global*/ void rw_untillook(int ,int ,int ,int ,int);
/*global*/ void rw_until__look_1(int ,int ,int ,int ,int);
/*global*/ int do_white_space(int ,int ,int ,int);

84

FORMFILE.DEF

/*global*/ int write_stor(char *,struct spc *,int);

/*global*/ int read_stor(char *,struct spc *,int);

/*global*/ void store_array(struct spc *);

/*global*/ void read_array(struct spc *);
/*global*/ void fill_array(struct spc *,int);

/*global*/ void clean_array(struct spc *,int);

/*global*/ void test_array(struct spc *);

SYMTAB.DEF

/*global*/ int symtab_lookup(char *);

85

86

NLEX.DEF

/*global*/ void malLoc_stats(void);
/*global*/ char *new copy(char *);
/*global*/ struct lex_struct *new_lex_ptr(void);
/*global*/ struct lexstruct *dispose_lex_ptr(struct lex_struct *);
/*global*/ void init_lexer(void);
/*global*/ void close_lexer(void);
/*global*/ int tab expand(int ,int);
/*global*/ int lexan(int);

/*global*/ void calc_space(struct lexstruct *,int);
/*global*/ struct lexstruct *lex(int ,int);
/*global*/ struct lex_struct *look_ahead(int ,int ,int);
/*global*/ int get_string(void);

/*global*/ int get_number(void);

/*global*/ int get_id(void);

