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number of features that were pioneered in the original National Aeronautics and Space Administration
(NASA) EAARL system (e.g., low energy, short pulse width, narrow receiver field of view, green-only laser
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and depth measurement range (up to 44 min clear water). In 2014, the EAARL-B was used to acquire
bathymetric data in the U.S. Virgin Islands (USVI), in support of the National Oceanic and Atmospheric
Administration (NOAA) Center for Coastal Monitoring and Assessment (CCMA) Biogeography Branch.
The enhanced capabilities of the EAARL-B system, combined with updated algorithms in the processing
software, provided high-quality data covering over 600 km? in the USVI, filling critical data gaps.
However, the EAARL-B processing software and workflows were lacking a set of tools and procedures to
exploit return waveforms (digitized samples of the backscattered signal) for generating seafloor
reflectance mosaics and characterizing seafloor composition. This functionality is of significant interest
to CCMA to support benthic habitat mapping and management of coral reef ecosystems. While seafloor
reflectance mapping and waveform feature extraction tools do exist, in varying degrees and forms, for
other bathymetric lidar systems, the extension of these capabilities to the EAARL-B is challenging, due to
the system’s unique design. The goal of this study was to address this need, through development and
testing of a new set of processing procedures and algorithms for generating seafloor relative reflectance
mosaics and gridded waveform features from EAARL-B data. The procedures were developed using data
from two test sites: Barnegat Bay, New Jersey, and Buck Island, north of Saint Croix. After testing and

refining the methods, a seafloor relative reflectance mosaic was generated for a large site south of Saint



Thomas. Additionally, raster grids of waveform shape features were produced for a smaller study site
encompassing Flat Cays, south of Charlotte Amalie, Saint Thomas. The procedures have been
demonstrated to enable generation of seamless seafloor data products, in which the effects of
confounding variables, such as depth, incidence angle, and flight direction, have been virtually
eliminated. Current research, led by project partners at NOAA CCMA and the University of New
Hampshire, is focusing on using the results of this work to predict species richness, canopy cover,
complexity, and coral health (including disease and bleaching) and other parameters for the USVI

project sites.
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1. INTRODUCTION

1.1 Benthic Habitat Mapping

Benthic habitat maps, which depict the spatial extents and distributions of coral reefs and other seafloor
habitats, are valuable to coastal management offices and policy makers in managing coastal ecosystems
and assessing changes over time (Mumby & Harbone, 1999; Costa et al., 2009 (a); Brown et al., 2011).
For example, benthic habitat maps can help inform policy decisions related to the placement or
modification of marine protected areas (MPAs) and the prioritization of areas for further study (Monaco
et al., 2012). Coral reef ecosystems are particularly vulnerable to environmental stressors, leading to a
need to accurately delineate coral reef boundaries such that change can be assessed, and management
decisions can be made. In the U.S. Virgin Islands (USVI), coral reefs provide a range of ecosystem
services, from shoreline protection to fishing and tourism, but are currently in a state of decline

(Catanzaro et al., 2002; Jeffrey et al., 2005; Rothenberger et al., 2008).

Since 2000, the National Oceanic and Atmospheric Administration (NOAA) has been charged with
leading federal efforts to generate comprehensive habitat maps of all U.S. shallow-water coral reef
ecosystems (Monaco et al., 2012). Within NOAA, the National Ocean Service (NOS), National Centers for
Coastal Ocean Science (NCCOS), Center for Coastal Monitoring and Assessment (CCMA) Biogeography
Branch is actively involved in conducting biogeographic assessments and producing habitat maps. The
production and management of a large suite of habitat maps necessitates ongoing research into new

mapping tools and techniques (Costa et al., 2009 (a); Pittman & Brown, 2011; Brown et al., 2011).

1.2 Seafloor Composition Mapping Technologies

Mapping seafloor composition is inherently difficult for a number of reasons. Direct, in situ observation
and measurement (for example, by divers), is generally infeasible, due to the amount of time it would
take to map even a moderately-sized area. In addition to the expense, diving can be logistically
challenging and even dangerous in a number of areas. Therefore, shipborne, airborne, and spaceborne
remote sensing technologies, such as airborne bathymetric lidar, multibeam echosounding (MBES),
hyperspectral imaging, aerial photography, and satellite imaging provide the most practical means of
seafloor mapping over large spatial extents. While acoustic techniques (i.e., sonar) are most effective in
deeper water, bathymetric or topographic-bathymetric lidar is often an effective and cost-efficient

technology for mapping nearshore bathymetry.



Airborne lidar and multibeam sonar are two commonly compared bathymetric mapping techniques. In
some projects, the cost of mapping with airborne lidar can be between one fifth and one half of
mapping the same region with sonar (Guenther et al 2000). This is primarily due to the increased speed
that a plane can travel, and wider swath width. Airborne lidar also has the advantage in very shallow,
near-shore regions in which it would be unsafe to collect data on a boat (Guenther et al., 2000). Many
bathymetric lidar systems also have the capability to map topography, allowing seamless topo-bathy

products to be created.

While airborne lidar is advantageous in shallow regions, multibeam sonar can be used under much
deeper conditions, and at a higher resolution. Both techniques have a measurable backscatter, or
“intensity,” value associated with the return signal. The surface characteristic information that can be
inferred from each signal return amplitude differs (Costa et al., 2009 (a)). Where multibeam backscatter
gives information about the hardness of the surface, the lidar peak bottom return amplitude gives
information about the reflectivity of the surface at the laser wavelength. Because both of these
techniques have unique advantages in the environment they can collect in, the information about
surface characteristics they can provide, it important to plan missions accordingly to ensure the

appropriate sensor—or combination of sensors—is selected.

Lidar utilizes the two-way travel time of an emitted laser pulse, based on the knowledge of the speed of
light through air and/or water to calculate ranges. These ranges are combined with post-processed
position and orientation data from a GNSS-aided inertial navigation system (INS), scan angles, and other
data to produce X, Y, Z point clouds. Recording a time-series of return pulse amplitude, along with the
use of a green laser (532 nm wavelength) allows bathymetric lidar systems the capability of calculating
depth values in shallow water environments. Figure 1-1 shows an idealized bathymetric lidar return
waveform. This waveform can be broken down into three components. The water surface return
provides information about the pulse interaction with the water surface. Water column backscattering
results from a portion of the incident pulse being scattered back in the direction of the receiver from
particulate matter in the water column as the pulse travels through the water. Exponential attenuation
of the downwelling irradiance also occurs within the water column. The bottom return, which can be
obscured by the water column backscatter in deep water or in low reflectivity situations, is the portion

of the return signal corresponding to the interaction of the pulse with the seafloor.
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Figure 1-1: Idealized bathymetric lidar return waveform (adapted from Wang & Philpot 2006 and Gary
Guenther)

The seafloor characteristics that can be derived from the bathymetric lidar waveform extend beyond
depth. Bathymetric lidar data provides information about the structure of the seafloor. Together with
products generated from bathymetry such as slope, rugosity and curvature, the seafloor morphology
can be characterized. Additional metrics generated from the shape of bathymetric lidar returns, such as
peak amplitude, area under the curve, skewness, and standard deviation, have the potential of assisting
in benthic habitat characterization (Collin et al., 2011). Before the utility of these metrics can be

assessed, artifacts which can dominate the return waveform must be accounted for.

Correction and processing procedures are needed to prepare the bottom return peak amplitude values
to be used as input to an object-oriented classification procedure for producing benthic habitat maps.
While, the amplitude of the bottom return contains information related to seafloor reflectance,
unfortunately, there are a number of systematic and environmental factors that influence the shape of
the waveform. Figure 1-2 illustrates the collection geometry of bathymetric lidar and how the pulse

interacts with its environment throughout the scanning process.
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Figure 1-2: Typical bathymetric lidar acquisition geometry (Kashani et al., 2015).

The dominant factors affecting amplitude are scattering and absorption within the water column, which
cause the amplitude to decay exponentially at a rate associated with the clarity of the water and laser
wavelength (typically, 532 nm for bathymetric lidar). The angle at which the incident pulse interacts with
the seafloor surface also significantly impacts the shape of the bottom return, due to specular
components of the bottom reflectance and pulse stretching (Wang and Philpot, 2002). Rigorous

correction of the received signal to yield true seafloor reflectance requires extensive knowledge of the



system used to collect the data, and the environment the data were collected, both of which may not be
available. As a practical alternative to true seafloor reflectance, so-called “relative reflectance” provides
an arbitrarily-scaled measure of a location’s brightness relative to other locations on the surface in
arbitrary units of digital numbers (DN) (e.g., 0-255 for an 8-bit relative reflectance image). Relative
reflectance mosaics can provide valuable information for applications in which knowledge of seafloor

composition is important.

1.3 EAARL-B Overview

The topo-bathy lidar system focused on in this work is the Experimental Advanced Airborne Research
Lidar - B (EAARL-B), developed by C. Wayne Wright at the U.S. Geological Survey (USGS) and pictured in
Figure 1-3. Compared to the first edition EAARL system, the EAARL-B features an increased point density
due to the emitted laser pulse being split into three pulses. Depth capabilities were also enhanced from
approximately 27 meters to 44 meters by increasing the total peak laser power by a factor of 10, and by

including a deep-water, wider field of view (FOV) receiver channel (Wright et al., 2016).

The EAARL-B system differs from other commonly used topo-bathymetric lidar system in a number of
ways, including its small receiver field of view, scan geometry and transmit power. Quandros (2013)
provide an organized figure outlining differences in bathymetric lidar sensor specifications. These
differing system designs and specifications affect the measurement capabilities of the systems (e.g.,
minimum and maximum depth measurement capabilities, point densities, and accuracies) and also

affect the types of corrections that may need to be applied to return waveformes.



Figure 1-3: Mounted EAARL-B System (image courtesy of C. Wayne Wright).

The three incident laser pulses reach the water surface with nominal diameter of 30 cm at the typical
flight altitude of 300 meters. Each spot has a corresponding receiver channel with an approximate field
of regard of 60 cm (diameter). The deep-water receiver channel is designed to encompass all of the
shallow-water specific channels and views a 5-m diameter region at the water surface. The narrow
receiver FOV for the shallow channels follows the pioneering design of the original EAARL system, which
represented a design departure from conventional bathymetric lidar systems that used much wider
receiver FOVs (Feygels et al., 2003 (a)). As incident light is either scattered or absorbed by particulate
matter in the water column, receiver size is (in conventional bathymetric lidar systems) more commonly
kept large to increase the likelihood that a return pulse will be detected, and, therefore, increase the

maximum depth measurement capability.



Post-processing of data collected with the EAARL-B is done in the Airborne Lidar Processing System
(ALPS). This software analyzes the lidar return waveform, aircraft position and orientation data to
produce a point cloud of the target surface. Waveform analysis is performed through three different
surface detection methods. Each detection method is designed for a specific surface type, such as
unvegetated topography, vegetated topography, and submerged topography (i.e., bathymetry) (Nagle &
Wright, 2016).

For the shallow receiver water channels’ waveforms, the water column backscatter is modeled by fitting
an exponential decay function to the waveform. For deep water receiver channels, the water column
backscatter is modeled by fitting a log-normal function to the waveform. Different backscatter removal
algorithms are needed for the system because of optical differences in the design of the deep and
shallow channels. A detailed description of waveform processing algorithms with pseudocode can be

found in Nagle & Wright (2016).

1.4 Previous USVI Mapping Projects

Past habitat mapping efforts in the U.S. Virgin Islands have utilized multiple data sources to delineate
habitat types. Early work to create the first shallow-water coral reef inventory relied on visual
interpretation of orthorectified aerial photographs acquired in 1999. This work resulted in the creation
of the Habitat Digitizer ArcView extension, a tool which allows for hierarchical classification schemes to
be created and for habitat polygons to be rapidly delineated (Kendall et al. 2001). This work covered a
large area, but was limited by: 1) the use of visual interpretation, which involves some level of
subjectivity and can limit the repeatability of the results, and 2) the limited depth range associated with

passive remote sensing methods.

From 2008 to 2009, benthic habitat maps for shallow depth (<30 m) and moderate depth (30-60 m)
regions were generated for areas surrounding St. John (Zitello et al., 2009 and Costa et al., 2009 (b)).
Shallow depth mapping utilized techniques consistent with Kendall et al. 2001. Aerial and satellite
imagery were used to visually interpret habitat classifications. This served as an improvement over past
efforts in that the classification scheme was enhanced, and the minimum mapping unit (MMU) was
reduced. Moderate depth regions were mapped using acoustic backscatter data from a multi-beam
echosounder. Metrics derived from depth information given by the sonar, along with the intensity of

returns, were used to delineate habitat types using a semi-automated approach. This approach involved



an edge detection algorithm, which removed the subjectivity of edges being delineated by visual
interpretation. This new approach also proved to produce results seven times more time efficiently than
past methods (Costa et al., 2009 (b)). With this new, semi-automated method, it is still necessary for a
cartographer to verify results, and edit results in areas which the algorithm misclassified edges or

attributes.

Habitat mapping efforts for the U.S. Virgin Islands continued with benthic habitat maps being generated
for the Buck Island Reef National Monument (BIRNM), north of St. Croix beginning in April 2010 and
ending in January 2012 (Costa et al. 2012). Classification in this region was conducted using a
combination of aerial photography, lidar, and four different multi-beam echosounders, at depths
ranging from 0-1,830 meters. Classification accuracy assessment was conducted for regions of depth
less than 50 meters (approximately the maximum depth measured with lidar), and the results showed
overall classification accuracy ranging from 81.4% to 94.4%. Habitat delineation and classification were
performed with the same semi-automated approach, with lidar reflectance used as an ancillary data
source. These lidar reflectance proved valuable, assisting in identifying differing habitat types not

apparent in acoustic imagery.

Benthic habitat maps generated thus far have covered much of the Virgin Island Coral Reef National
Monument. Results of this research will be used to update many regions that have not been mapped
since 2001, and to fill in gaps in previous habitat maps previously classified as ‘unknown.” In total, > 119
square kilometers of underwater regions have been mapped with the EAARL-B as a part of this effort,
approximately 33 square kilometers of that representing previously unmapped or ‘unknown’

classification.

1.5 Review of Related Work

The use of waveform features (shape-based metrics that can be computed from the return waveform),
beyond amplitude, to provide additional information about surface characteristics and other parameters
of the sensed environment, is a topic that has been explored in previous research. Collin et al. 2011 used
return waveform features, along with features derived from the bathymetric surface, as predictors for
epi-macrobenthic species diversity metrics in a project site in the Gulf of Saint-Lawrence, Quebec.
Parrish et al. 2014 investigated the use additional waveform features to model uncertainty in coastal

salt marsh environments, and found pulse width to account for over 50% vertical uncertainty between



lidar derived positions and ground control points. Rogers et al. 2015 further explored the use of lidar
waveform features to predict salt marsh vegetation biophysical parameters. Parrish et al. 2016 (b) used
Riegl reflectance and pulse shape deviation values from a Riegl VQ-820-G data set acquired by NOAA’s
National Geodetic Survey (NGS) with minimal post processing to produce seagrass habitat maps for
Barnegat Bay, New Jersey. This research aims to extend these capabilities to EAARL-B waveforms and to
improve the predictive capability of lidar waveform derived metrics through the use of radiometric

calibration, to aid in the ability to describe complex coral reef ecosystems.

Bottom reflectivity can be derived from bottom return peak amplitude by inverting the bathymetric lidar
range equation. Estimating field-of-view loss, the loss in signal strength due to photons being scattered
outside the receiver field of view, can be difficult, as it is a function of optical properties of the water
column, water depth, the receiver field-of-view, flying altitude, the initial diameter of the transmitted
beam, and the divergence of the transmitted beam (Tuell & Carr 2013). One method of approximating
the full field-of-view loss expression using a simplified proxy equation with a look-up table containing
coefficients (Tuell & Carr 2013, and Carr & Tuell 2014). Feygels et al. 2003b approximated scattering
coefficients and inherent optical parameters of the water using variable, or multiple, field-of-view
receivers simultaneously to derive scattering coefficients. This required the use of narrow, wide, and

intermediate field-of-views.

Because inverting the bathymetric lidar equation to solve for surface reflectance requires extensive
knowledge of both the system and environmental conditions at the time of data collection, it is common
to instead focus on the relative reflectance of the bottom return. Rather than give a direct value of the
reflectance of the bottom surface, relative reflectance provides an indication of reflectance with respect
to surrounding points. Narayanan et al (2009) calculates this value by taking the ratio of the bottom
return for one point, to each other point within a 20 meter radius. Bottom returns are corrected using a
fixed assumed attenuation coefficient. Then various statistics (minimum, maximum, average, median
and standard deviation) are calculated for distribution of relative bottom reflectance values at each

point.

Wang and Philpot (2007) apply two peak bottom amplitude corrections related to the angle of the
incident pulse with respect to the normal vector of the seafloor. The first is a correction for retro-
reflectance, in which they determine correction parameters using laboratory measurements with an

assumption that all that all bottom materials are equally diffusive. The second angle of incidence
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correction is for pulse stretching, which is based on the analytical simulations of Steinvall and Koppari
(1996). The direct applicability of these corrections to other project sites and systems may be limited
though, due to the correction coefficients being derived in a lab environment with an assumed

diffusivity.

The predominant byproduct of bathymetric lidar reflectance products is a shallow water habitat map
(Collin et al., 2008; Chust et al., 2010; Costa et al., 2009 (b)). Different approaches described in the
published literature to date vary in terms of: 1) the waveform properties/features used in classification,
2) the level to which the waveform features are calibrated, and 3) the habitat classification scheme.
Collin et al. 2008 used data collected with the Optech Scanning Hydrographic Airborne Lidar Survey
(SHOALS) system to classify habitats using principal component analysis (PCA). First a set of ten
waveform features were calculated from the return signal, then these features were regressed against
depth and the residuals were used to perform classification. The correction and waveform generation
procedures developed in Collin et al. 2008 have been used for a variety of applications. Long et al. 2010
used waveform features derived using the Collin et al. 2008 procedures to assess the correlation
between bathymetric lidar waveforms and bedform morphology. Collin et al. 2012 used topographic and
bathymetric waveform features to create a seamless habitat map of above water submerged regions.
While these studies have shown that the full-waveform capabilities of bathymetric lidar have a broad
range of applications when it comes to characterizing coastal regions, the artifact correction is limited to
a non-linear regression against depth, without the incidence angle of the laser beam on the seafloor
being accounted for. Data for each of the above studies were collected with the SHOALS, which has a
fixed 20° forward scan angle. The forward scanning design of this system results in an incident pulse that
has a nearly uniform angle from vertical across the width of the swath, thus mitigating artifacts that are

more apparent in a system that scans back and forth, nearly through nadir, such as the EAARL-B.

1.6 Contributions of this Research

The motivation of this research lies not only in the immediate downstream products that it will be used
to generate, but also in the methods being developed. Prohibitively-large data volumes are an inherent
problem when working with waveform lidar. The procedures developed in this study were created to be
passed on and used in future projects involving the EAARL-B system. The EAARL-B was not designed to
be used for reflectance mapping, as will be addressed in in section 1.2. With the procedures outlined in

this thesis, the functionality of the system is expanded. Adding products that the EAARL-B can be used
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to create increases the versatility of the system, allowing for a wider variety of research projects to be

conducted in the future.
The specific goals of this research are as follows:

e Design, implement and test correction procedures for the EAARL-B bottom return peak
amplitude values.

e Generate relative reflectance mosaics for the area to the south of St. Thomas and St. John, U.S.
Virgin Islands.

® Generate waveform feature surfaces from additional waveform features (area under the curve,
skewness, standard deviation), as well as procedures for producing waveform feature products

that can be passed on to other researchers.

The methodology outlined in this thesis serves as the culmination of years of research and
experimentation to reach the optimal intensity correction workflow outlined in subsequent chapters.
The importance of past efforts to perfect not only the correction applied to raw peak bottom return
amplitude values, but also to generate tools and procedures to generate relative reflectance mosaics

cannot be understated.

Initial processing methods, evaluated using data from Superstorm Sandy mapping efforts (Kinney et al.
2016), resulted in development of initial angle of incidence correction methods, correction of waveform
feature exporting issues within ALPS, and development of histogram normalization and batch gridding
tools (Parrish and Wilson (2015)). Early work with U.S. Virgin Islands data, limited to the shallow water
region surrounding Buck Island, north of St. Croix, necessitated the development of a depth correction,
as this location contained a much more highly variable depth range (~0-30m) compared to that of the
Superstorm Sandy project (~0-4m) (Parrish, Forfinski and Wilson, 2016). Work on the St. Croix project

site also led to improved gridding procedures.
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2. METHODS

2.1 Workflow

The final workflow for generating relative reflectance mosaics, developed as a part of this research, is
depicted in green in Figure 2-1. Correction, histogram normalization, and gridding procedures are
described in subsequent sections. It should be noted that this workflow is intended for very large
datasets, in which the semi-automated histogram normalization in Swath Normalize may require data to
first be gridded at a coarse resolution (10-20 m GSD), in order for the program to be able to render
contrast and brightness adjustments without crashing, or taking a long time to apply user specified
adjustments. The object based image classification, in which the mosaics generated by this research are

an input, is a topic of future work and is not assessed in this research.
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Figure 2-1: Workflow diagram for generating relative reflectance mosaics.

2.2 Corrections

Calibrating waveform peak amplitude returns to give true bottom reflectance requires extensive
knowledge of both the system used to collect the data, and the environment in which the data are
collected. The full bathymetric lidar range equation (Eg. (2)) (Kashani et al., 2015) contains terms that

are not readily available in most circumstances. There are multiple versions of this equation, each with
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different levels of simplification and assumptions (Collin et al.; 2008, Narayanan et al.; 2009, Tuell &
Carr, 2013; Tuell et al., 2015, Wang & Philpot, 2002), and each generally similar to the following:
_ (m)PTUPFpArCOSZ(Q)

Pr = exp(—2n(s, wy, O)KDsec(¢)) (2)

(ny,H+D)?2

where, P, = received power, Pr=transmitted power, n = system optical efficiency factor, p = reflectance
of bottom, F, = loss due to insufficient FOV, A, = effective area of receiver optics, ¢ = off nadir transmit
angle, ny, = index of refraction of water, H = altitude of lidar above water, D = bottom depth, n(s, wo, 3) =
pulse stretching factor, s = scattering coefficient, wo = single scattering albedo, K = diffuse attenuation
coefficient of water, and ¢ = nadir angle of lidar after entering the water. Solving equation 2 for bottom
reflectance would yield true bottom reflectance. However, factors relating to the lidar system (P, n, Fp)
are not always given by the manufacturer, and factors relating to the environment (n(s, wgg, 8 ), s, wy, 6,
K) can be difficult to measure and may not be consistent across projects covering large areas with data

collected over multiple days.

In this work, a data-driven approach is taken to correct artifacts in the data: the data itself is used to
drive correction coefficient determination. A two-step correction procedure is used (Parrish and Wilson,
2015). The first step is to apply intensity corrections, corresponding to Level 1 processing, as defined in

Kashani et al. (2015). Specifically, corrections are applied for: 1) depth, and 2) angle of incidence.

2.2.1 Depth Correction
A simplified version of the lidar range equation adapted from Guenther (1985) is:
Pr = PprWpexp(—2KDsec(¢)) (3)

This equation is adapted from the full lidar range equation, with simplifying assumptions being made.
Using this equation requires the assumption that systematic losses from the lidar system, the nadir
angle of the beam after entering the water, and that the altitude of flying height above the water is
relatively large compared to depth. Taking the natural log of Eq. (3) as shown in Wang and Philpot
(2007), yields:

In(Pg) = In(PrW) + In(p) — 2KDsec(¢) (4)
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With the assumption that the transmit power and system losses are constant throughout the survey, the
natural log of the bottom reflectance is linearly related to the natural log of the received power at a rate
that is a function of the diffuse attenuation coefficient of the water, K, and the slope length of the lidar

pulse in the water (Dsec(¢)).

Determining the rate at which the natural log of the received power is deteriorating through the water
column is done through calculating the linear regression of natural log of the bottom return against
slope length. Figure 2-2 shows a heatmap created using points from entire day of data collection with
the resulting linear best fit line. These heatmaps have been used throughout this research as a tool to
visualize trends in large amounts of data. The color scale can be interpreted as the ‘hotter’ regions being
those of high point concentration, with dark regions containing relatively low concentration of points.

Exact color scale values are dependent on the amount of points used to generate each heatmap.

Log of Peak Bottom Amplitude

10 15 20 25 30 35
Depth (m)

Figure 2-2: Heatmap of the natural log of the peak bottom return amplitude against depth.

Using the slope and intercept of the linear best fit shown above, the correction equation is given as

follows:

I' = In(I)/(a- D -sec(¢) + b) (5)
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2.2.2 Angle of Incidence Correction

One of the simplifying assumptions to using Eq. (3) is that the system collects data with a scan geometry
containing a nearly constant nadir angle. With many systems, the geometry is such that on the pulse is
emitted in a forward tilted direction, and the angle from vertical on the water surface is consistent
across the width of the swath. The EAARL-B has a very small forward scan angle, resulting in a highly
variable nadir angle. This creates a pronounced reduction in received power as the scan angle increases

towards the outer edges of the swath.

Similarly to the way in which the depth correction parameters are determined and applied, corrections
for angle of incidence are determined through a data-driven approach. The trend of intensity values that
have been corrected against depth are regressed against angle of incidence to determine correction

parameters. The incidence angle correction is computed as follows:
I" = I'/(a % cos?'(0)) (6)

where a’ and b’ are parameters determined as described above, that describe the “shininess” (specular
or non-Lambertian nature) of the material. This correction represents a simplified version of the Phong
reflectance model (Jutzi & Gross, 2009 and Phong 1975). The Phong reflectance model is an empirical
method, originally designed for computer graphics, of representing how much light is reflected from a
source to a receiver, dependent on the angle between the incident light, the reflectance vector to the
receiver, and the surface normal. With an assumed vertical surface normal, and with the incident pulse
and receiver field of view located coaxially, the angle of interest becomes the nadir angle, also described
as the angle of incidence. Figure 2-3 shows a heatmap of peak bottom amplitude values corrected for

depth against the angle of incidence.
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Peak Bottom Amplitude Corrected for Depth

5 10 15 20 25
Angle of Incidence (degrees from vertical)

Figure 2-3: Heatmap of the peak bottom amplitude corrected for depth against angle of incidence.

2.2.3 Iteration

An underlying assumption in the correction procedures described above is that the points used to derive
the correction parameters have the same “true” reflectance; hence, it is important that the subsets of
points used as input are collected from a homogeneous bottom type. One of the advantages of using
bathymetric lidar over conventional passive remote sensing mapping techniques is the extended depth
range. This becomes a disadvantage for delineating regions of uniform bottom type in project sites that
have only been characterized by aerial or satellite photography, have out-of-date habitat maps, or have

not been mapped previously.

For the EAARL-B deep receiver channel, an initial approximation of correction parameters can be made
using all of the points calculated for given day. Then the resulting point cloud can be used to assist in
delineation of uniform bottom type, typically sand. The points of uniform bottom type can then be used

to determine final correction parameters.
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2.3 Histogram Normalization

The next step in our procedure is to apply a histogram normalization, corresponding to Level 2
processing, as defined in Kashani et al. (2015). This is achieved by first matching points of overlapping
point clouds that are within 1 meter of each other, with the assumption that points within 1 meter of
each other should be representative of the same bottom type. The distribution of each set of match
points is analyzed, then the standard deviation and mean of each is used to perform the initial
normalization. Because this normalization procedure only uses points that are near each other, it is

important to combine regions with sufficient overlap.

A second histogram normalization step is taken to ensure seamless final mosaics are created. This is
achieved using custom software called Swath Normalize, depicted in Figure 2-4, which was developed as
part of this research. Swath Normalize applies semi-automated histogram scaling and shifting to adjust
the contrast and brightness across adjacent rasters. Overlapping gridded data are adjusted by the user
until overlapping regions visually match. Contrast and brightness adjustments are then applied to the

point clouds, combined with each other, and the final grids are created.
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Figure 2-4: Swath Normalize, semi-automated histogram normalization program.

2.4 Gridding

An inverse distance weighted method was chosen for gridding the relative reflectance products created
in this research. Using inverse distance weighting is advantageous in gridding these types of products for
a number of reasons. Seamline artifacts between overlapping flightlines are reduced, creating a more
uniform representation of regions in which the angle of incidence correction has been either over- or
under-applied. Combining multiple days’ worth of data and gridding them together results in a blended

final mosaic, and reduces the effect of outliers that may be present in one dataset, but not another.
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The effect of combining flightlines before gridding can be seen in Figure 2-5. Visual inspection shows
that seamline artifacts across flightlines are effectively reduced, allowing actual bottom type variation to
be more effectively represented. Coordinates depicted in Figure 2-5 and all subsequent map figures are

referenced to NAD 83 and projected in UTM Zone 20 N.
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Figure 2-5: Gridded relative reflectance of St. Croix. Top: Flightlines gridded individually. Bottom:
Flightlines combined before gridding.
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3. EXPERIMENT

3.1 Study Site

The area of interest of this research is located to the south of St. Thomas and St. John in the U.S. Virgin
Islands. This area is of high interest to the local population, especially including those who rely on the

coral reef ecosystems in the region for tourism, fishing, and recreation.

In March of 2014, the U.S. Geological Survey (USGS) in cooperation with the National Oceanic and
Atmospheric Administration (NOAA) Coral Reef Conservation Program collected bathymetric lidar data
for the regions with the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B).
Processing of digital elevation models of the region has already been conducted (Fredericks et al. 2015)
by USGS, but relative reflectance products are needed to assist with benthic habitat classification

procedures.

GNSS
Measurements
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Measurement
Data

Digitized Lidar
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Datum
Transformation
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Figure 3-1: ALPS Lidar waveform processing procedure.
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The processing procedure used to generate the point cloud data that form the input to our workflow is
depicted graphically in Figure 3-1. First, the digitized lidar waveforms are combined with GPS and inertial
measurement data to generate point positions and calculate waveform features. The resulting point
cloud can contain a significant amount of noise. These noise points are created from the bottom
detection algorithm misinterpreting a part of the waveform as a surface. The ALPS program also includes
a random consensus filter, modeled after the random sample consensus (RANSAC) paradigm (Fischler &
Bolles, 1981) to remove noise. The filter works by first partitioning the data into grid cells. The
distribution of elevation values within each grid cell is used to form a consensus of what the elevation of
the grid cell should be, then all points outside a set elevation range are removed. The function also has
the capability to shift the grid cell boundary when forming a consensus. This shift allows for points at the
edge of the cell boundaries to be less likely misclassified as noise. Position values are then referenced to
NAD 83 and projected in Universal Transverse Mercator (UTM) (Zone 20 N in the USVI). Lastly, position
and waveform feature information are exported to an ASCII file, which is then used as the input for this

research.

The methods described in the previous chapter were tested in two different areas of interest (AOls): a
smaller AOI for the waveform feature mapping and a larger AOI for relative reflectance mapping. The
small AOI comprised a 1.5 km? region roughly centered on Flat Cays, south of St. Thomas. This area was
selected for its high diversity in known habitat types, its large depth range (0-28 m) over a relatively
small spatial extent, and because the region was covered on multiple flight dates, resulting in a high
point density ranging from 1-4 points per square meter (Costa et al. 2016). This project site will serve to
analyze the usefulness of corrected waveform products in fine scale habitat complexity characterization.
In situ data has since been collected for the region, and will be used in later project phases for enhanced
ecological mapping and analysis. Meanwhile, the larger AOI (which fully encompasses the smaller AOI)
consists of the entire ~550 km? area mapped by USGS with the EAARL-B south of St. Thomas and St. John
in March 2014. The analysis for this larger AOI focused solely on relative reflectance mapping, rather

than generation and analysis of the full suite of bottom return waveform features.

3.2 Data Collection

The airborne lidar data were collected using the EAARL-B system described previously. The data
acquisition parameters (Fredericks et al. 2015; Wright et al., 2016) are summarized in Table 3-1. Data

were collected for the St. Thomas and St. John project site on March 7th, 8th, 11th, 12th, 13th, 14th,



17th, 18th and 24th of 2014. Extents of data collected can be seen in Figure 3-2. Data were collected

with both the EAARL-B deep (large FOV) and three shallow (small FOV) receiver channels, enabling

seamless mapping in depths of up to approximately 35 meters.

Table 3-1: Data acquisition parameters.
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Acquisition parameter

Setting/value

Flight altitude

300 m

Flying speed

55 m/s (110 kts)

Scan angle

5° forward, 22° across-track

Measurement rate

15-30 kilohertz

Aircraft

Cessna 310

Swath width

240 m

Point spacing

0.5-1.6 meters

Laser footprint 30cm

Pulse width 900 ps

Laser wavelength 532 nm
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Figure 3-2: Project location and extents for data processed as a part of this experiment.
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3.3 Flat Cays Full Waveform Features

Project extents for the Flat Cays region of interest can be seen in Figure 3-3. Viewing the ESRI World
Imagery available for the area illustrates the need for reflectance products for deep regions. Shallow
regions near the island could likely be classified solely from imagery, as the seafloor is visible in the
imagery. However, in the deeper portions of the site, the bottom cannot be seen in passive, optical

imagery, while the bottom was detected in the EAARL-B data.

This submerged area represents approximately 1.5 km?, and was covered on three separate collection
dates. After noise removal, a total of 1.4 million points were used to generate corrected waveform

products.
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Figure 3-3: Flat Cays area of interest project extents with ESRI basemap.
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Methods described in this research were primarily designed and tested for correcting for artifacts
affecting peak bottom return amplitude values. Investigation into other features derived from the
bottom return waveform shape revealed similar trends for each feature relative to depth and angle of
incidence. Therefore, as a first pass, the methodology described in Chapter 2 was applied to create
corrected waveform feature products, and for normalizing results across different collection dates and
for combining data across deep and shallow receiver channels. Future work may involve dedicated
corrections for each individual waveform feature (see Conclusions). Gridded waveform feature products

for the Flat Cays region of interest can be seen in Figure 3-4.
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Figure 3-4: Gridded uncorrected waveform features for Flat Cays.



25

3.4 St. Thomas Relative Reflectance Mosaic

Representing approximately 119 km? of submerged area, habitat maps to be generated using relative
reflectance products represent an extensive update to the current habitat maps of the region. After
automated and manual removal steps, approximately 84.4 million points were used to generate final

relative reflectance mosaics with a 3 meter cell size.

Because correction parameters are derived from the data, emphasis was placed on ensuring that
outliers were removed from the data prior to processing. This was done by iterating the random
consensus filter parameters until noise was sufficiently removed for both the deep and shallow
receivers, and by manually removing all other outliers and land points that made it through the filter.
Parameters used in the random consensus filter area as follows, as defined in Nagle & Wright (2016):

buffer = 600 cm, width = 60 cm, n = 3, factor = 4.

Histogram normalization across different collection dates was accomplished by assessing the amount of
overlap there was across each coverage. This process increased the number of match points between

different data sets to ensure a large sample size of match points.
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4. RESULTS

The outputs of the methods described above include seafloor relative mosaics and gridded waveform
feature data sets. While these data products are, from the perspective of this project, “outputs,” it is
important to note that they constitute “inputs” to the benthic habitat mapping and ecological
assessments to be conducted by NOAA NCCOS. The final assessment of the results of this work will be in
the form of classification accuracy assessments performed on the habitat maps and analysis of other
downstream products. For assessing the data products generated in this research (i.e., seafloor relative
reflectance mosaics and gridded waveform features), reference data (or “ground truth”) are limited.
Therefore, our assessments focus on: 1) visual assessment (e.g., confirming visually that our data
products look consistent and are free of salient artifacts, such as seamlines, data voids and aberrant
discontinuities), 2) internal consistency (e.g., agreement of relative reflectance or waveform features
across deep/shallow regions within a single collection date, and across multiple dates), and 3) metrics
for the correction performance (depth and angle of incidence). Particular emphasis is placed on criteria
deemed to be of high importance in the generation of downstream products. While control reflectance
measurements are not available for the St. Thomas area of interest, seafloor reference spectra were
collected in July, 2012 around the Buck Island Reef National Monument. EAARL-B data collected as a
part of this effort includes coverage of the area surrounding Buck Island, and were used to quantitatively

assess methods developed as a part of this research.

4.1 Flat Cays Full Waveform

Results for the Flat Cays region of interest can be seen in Figure 4-1. The high density of points in this
region, due to it being covered with multiple flightline passes, allowed for a small grid cell size to be
used (0.5 m). Preliminary assessment of the results indicates a significant improvement the ability to
detect seafloor bottom type variation over the uncorrected waveform feature values. These results also
show a limitation to using a simplified, data driven correction method, in that unaccounted for

environmental factors can impact the quality of the corrections.
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Figure 4-1: Flat Cays corrected waveform feature grids. All final grid values have been scaled to 0-255.

Coverage of this region over multiple days, and under varying conditions, allows the effect of certain
environmental conditions to be examined. Bottom return peak amplitude values for one collection date
exhibited across flightline artifacts not consistent with the other two collection dates over
approximately the same region, even with parallel flight paths. Examination aerial photographs taken at
the time of collection revealed a significant amount of sun glint, consistent with artifacts found in the

waveform feature products generated from the deep-water receiver.

Because this sun glint artifact is dependent on collection geometry in relation to the elevation angle of
the sun and solar azimuth at time of collection, the fitted curve used to correct for angle of incidence
artifacts has a less pronounced trend to model. This resulted in some across flightline artifacts persisting

in the final results.



Figure 4-2: Aerial photography showing sun glint at time lidar collection.
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Figure 4-3: Cross section showing artifacts present in relative reflectance products collected at a time

when sun glint is present (green), but not in overlapping data sets collected with the sun at a lower
elevation angle.
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4.2 St. Thomas Relative Reflectance Mosaic

A final relative reflectance mosaic was generated for the St. Thomas and St. John region, using a total of
84.4 million points and covering 119 square kilometers. The final mosaic represents a subset of the
complete region in which data were collected as a part of this effort. This region was selected because it
was deemed that this region has the corrections working the best. The assumption that a single
correction parameter can be used to correct for depth and angle of incidence for an entire day presents

issues with projects that have very large extents
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Figure 4-4: St. Thomas relative reflectance mosaic.

4.3 Quality Assessment

One of the benefits to using bathymetric lidar over aerial photography is that greater depths can be
measured, which makes validation of deep-water seafloor reflectance products difficult. Assessment of
position values can be done using acoustic data, but acoustic backscatter cannot be directly related to
lidar reflectance. The primary method of quality assessment of results for both the Flat Cays full

waveform products, and the St. Thomas and St. John mosaic was through visual inspection. This was



30

done through a four step process to assess the results of each correction that was applied, the

histogram normalization, and through comparison to uncorrected waveform products.

4.3.1 Evaluation of Depth Correction

Evaluation of the depth correction performance was primarily done using heatmap plots showing the
natural log of bottom return peak amplitude values against depth. If a uniform bottom type is used for
the depth correction, this plot should show a linear trend. Non-linear trends found in this plot give
indication that either multiple bottom types were used in this step, or environmental conditions have
changed throughout the survey. This could be caused by localized water clarity differences or changing

sea-surface conditions.

4.3.2 Evaluation of Angle of Incidence Correction

Remaining artifacts associated with angle of incidence are typically easy to differentiate from natural
seafloor reflectance changes as they present parallel seam lines in the direction of flight path. Reduction
or elimination of these seam lines indicates that the angle of incidence correction is working well. Cross
sections across multiple flightlines were also used to check the quality of this correction. Plotting relative
reflectance on the vertical of cross sections shows how well the reflectance values of overlapping

flightlines intersect.
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Figure 4-5: Example cross section taken perpendicular to flight paths, colored by collection date. The
top cross section shows peak bottom return amplitude, the bottom cross section shows the same
points after depth and angle of incidence corrections, and histogram normalization. It can be seen
that the corrections had the desired effects of flattening the curves and greatly improving the
consistency between the data collected on different dates.

4.3.3 Evaluation of Histogram Normalization

Histogram normalization results were evaluated using cross sections of overlapping regions. Vertical
offsets, or differences in the spread of reflectance values indicate poor normalization results. Localized
artifacts present in one dataset, but not another, can cause the automated histogram normalization
procedure to adjust values in an unanticipated way. Adjusting contrast and brightness in Swath

Normalize provides a way to visually correct and make fine-tune adjustments to adjacent datasets.
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Figure 4-6: Example cross-section location (top) and cross section (bottom) used to evaluate
normalization between reflectance products generated from shallow depth channels across multiple
collections dates.
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Figure 4-7: Example cross-section location (top) and cross section (bottom) used to evaluate
normalization between reflectance products generated from deep and shallow depth receiver
channels.
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4.3.4 Comparison of Corrected to Uncorrected Results

Qualitative visual assessment was conducted as a final step in evaluating results. Comparison of relative
reflectance, or other corrected waveform feature values, to uncorrected values can show features that
are identifiable in final products that were not visible or hard to detect in the uncorrected products.
Though some artifacts may remain in the final products, as identified in the quality assessment

procedures above, an improvement in feature detection capability is seen as an improved product.

Figure 4-8 shows relative reflectance products generated from the EAARL-B deep water channel for a
single flight date. In this region, seamline artifacts have been reduced, or eliminated, in most areas.
Depth artifacts have been reduced, such that changes in bottom type can likely be distinguished and

delineated.
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Figure 4-8: Peak bottom return amplitude (top) and relative reflectance (bottom) generated from
deep channel data.

Figure 4-9 shows a region in which seafloor textures can be distinguished in relative reflectance

products that had previously been obscured due to depth artifacts.
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Figure 4-9: Seafloor textures visible in relative reflectance products (right) which are not
distinguishable in uncorrected peak bottom return products (left).

Figure 4-10 shows a region in which angle of incidence artifacts are still present in final relative
reflectance products. The rate at which intensity falls off relative to incidence angle is a function of how
specular the bottom type is. Because correction parameters are determined from trends in the data,
regions like this where corrections have been either overapplied, or underapplied, remain in the final

product.
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Figure 4-10: Some seamline artifacts remain in final relative reflectance products (bottom), though
these are more localized relative to raw peak bottom return products (top)

4.3.5 Quantitative Assessment

In July of 2012, seafloor reflectance spectra measurements, measured at 532 nm, were collected using

2025500 2026000

2025000

2025500 2026000

2025000

an Ocean Optics USB2000 spectrometer as part of a field validation of the EAARL-B. The method used to

collect these seafloor spectra is described in Pe’eri et al. (2013). Briefly, the method consisted of
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mounting the spectrometer probe to an underwater camera frame, which could be lowered from the

deck of a small boat (Figure 4-11).

Figure 4-11: Equipment used for obtaining seafloor reflectance spectra (shown operated by Stephen
White of NOAA's National Geodetic Survey, Remote Sensing Division).

The spectrometer probe was connected to the instrument on the boat by a 25-m fiber optic cable.
Additionally, a white reference panel, controlled by a pneumatic actuator, was used to obtain reference
spectra to normalize the seafloor spectra, correcting for variable downwelling irradiance. Temporal
changes in benthic habitat boundaries during the two year span between data collections limited the
applicability of the control spectra measurements. Prior to conducting quantitative assessment, historic
Google Earth imagery was used to reject control spectra values that were either (1) within a region in
which the bottom type has changed, or (2) over a region between two adjacent bottom types. Figure

4-12 shows reference spectra location used as a part of this assessment.
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Figure 4-12: Control spectra measurements acquired in 2012 and used as a part of quantitative
assessment.

The remaining points were used as control measurements in order to quantify the improvement in the
correlation of relative reflectance products to true reflectance, comparatively to the uncorrected peak
bottom return amplitude values collected with the EAARL-B. Reference spectra measurements were
collected up to approximately 10 meters, limiting their use utility as control reflectance values to data

collected with the EAARL-B shallow depth receiver channel.
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Figure 4-13: Bottom return peak amplitude and relative reflectance regressed against reference
spectra measurements with associated R? values.

The regressions shown in Figure 4-13 show an improvement in R? value from 0.46 to 0.73. This increase

in R? indicates an improvement in how well relative reflectance products relate to true seafloor bottom

reflectance compared to peak bottom return amplitude. It is reasonable to assume the fit would have

been even better, if not for the two-year time span between the reference data acquisition and EAARL-B

overflights, during which time seagrass density changed quite significantly, as noted in Google Earth

imagery.



41

5. CONCLUSIONS

Bathymetric lidar has already been well established as a useful tool for benthic habitat mapping,
enabling efficient data acquisition in shallow to moderate depth ranges, including many of the coral reef
habitats mapped and monitored by NOAA’s Center for Coastal Monitoring and Assessment (CCMA).
Previous research has documented the ability to supplement lidar bathymetry and enhance its utility for
benthic habitat mapping through the generation of additional data products (beyond bathymetric
surfaces) from return lidar waveforms. Notable examples of such products include seafloor relative
reflectance mosaics, which can be produced by applying corrections to bottom return “intensity” data,

and are already in fairly widespread use by CCMA and others for seafloor habitat mapping.

The USGS EAARL-B system, which was used to acquire data in priority USVI coral reef habitat areas for
NOAA CCMA in 2014, features a novel design and provides a number of performance enhancements
over the original EAARL system. However, like its predecessor, the EAARL-B lacked functionality for
generating seafloor relative reflectance products. Furthermore, the EAARL-B’s unique design
characteristics, including its scan pattern, were considered to impose some challenges for relative
reflectance mapping. This research has taken significant steps to address these challenges through
development and testing of new algorithms and procedures for generating relative reflectance mosaics
from EAARL-B data. The procedures were first developed and evaluated using data acquired in Barnegat
Bay, New Jersey, and Buck Island, St. Croix, USVI and then extended to a much larger project site south
of St. Thomas, USVI. Detailed analysis of the results confirms that the EAARL-B can be effectively used
for seafloor relative reflectance mapping, one of the primary findings of this research. Visual, qualitative
analysis of the outputs indicates that seamlines and other salient artifacts have been largely eliminated,
and quantitative comparison of data in areas of swath overlap (including data from multiple days’
flights) confirms that the confounding effects of variable depth and incidence angle have been greatly
reduced through the processing procedures developed in this work. The algorithms and procedures are
being provided to NOAA to enable relative reflectance mosaics to be generated for all future projects

involving data acquisition with the EAARL-B and/or similar topographic-bathymetric lidar systems.

Another contribution of this work was the development of procedures for generating additional
waveform-shape based features from EAARL-B data. These features include grids generated from
bottom return peak amplitude, skewness, and area under the curve. Waveform feature grids were

generated for a subset of the St. Thomas EAARL-B data covering Flat Cays, south of Charlotte Amalie.
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The same corrections developed for the relative reflectance products—namely, depth and incidence
angle—were adapted to these additional waveform features. Although these new products have only
been visually assessed to date, they appear to contain additional information (beyond depth and

relative reflectance) that may be helpful in seafloor characterization.

Next steps in our long-range research program will include work to be led by project partners in CCMA’s
Biogeography Branch and at the University of New Hampshire Center for Coastal and Ocean Mapping —
Joint Hydrographic Center (CCOM-JHC). The USVI relative reflectance mosaics will be integrated with
existing data by CCMA and used to update USVI benthic habitat maps. Additionally, the waveform
features for Flat Cays will be evaluated for seascape habitat complexity and composition analysis that
extends beyond current habitat mapping capabilities. For example, these additional waveform feature
products may prove useful in predicting species richness, canopy cover, coral heights, coral health and
other biophysical parameters of interest to NOAA. It is anticipated that this additional information will
contribute to management of coral reef ecosystems. These capabilities will be evaluated by the NOAA-
UNH-OSU project team using field data (underwater video and diver observations) collected by NOAA in

September of 2016 for the Flat Cays region.

This research has also led to a number of recommendations for follow-on studies. To facilitate further
guantitative assessment of the reflectance products, it is recommended underwater spectra, collected
with an Analytical Spectral Devices (ASD) DiveSpec or Ocean Optics spectrometer following procedures
of Pe’eri et al. (2013), be obtained concurrently with lidar acquisition. Additionally, it is recommended
that the underwater reflectance spectra be collected in deeper waters, if feasible, such that relative
reflectance from the deep water receiver channel can also be quantitatively assessed. Another
interesting finding of this work is the effect of ambient sunlight (especially, sun glint) on relative
reflectance and other waveform-derived products. It is highly recommended that these effects be
further quantified in future work, such that additional corrections can be applied. To the knowledge of
the project team, such corrections have not previously been developed for bathymetric lidar relative
reflectance data, yet the effects of sunlight were clearly identifiable in our results. Yet another
suggested enhancement to the methods developed in this research is to eliminate the simplifying
assumption of a flat seafloor, which is used in the incidence correction. Specifically, elevation values of
points could be used to approximate surface normals, and provide a better angle of incidence correction

in areas of large relief.
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Relative reflectance MATLAB scripts

Correction function:

function [] =
correct_bottom _intensity deep(inputFile,outputFile,skipRow,downsamplelnt)

%%6%%%6%%%0%%%%%6%%6%%%6%%%6%%6%% 6% %6%% %% % %% %% % Y6% % %% %% % %% %% % 6% % %% %% % %% %6 %% %% % %% %% % %% %

% correct _bottom_intensity_deep %
% %
% This program applies two correctons to EAARL-B "bottom intensity" %
% (i.e., bottom return peak amplitude): 1) a depth correction and 2) an %
% incidence angle correction. %
% After corrrections are applied, a rough outlier removal is applied, %

% removing all points greater than 3 standard deviations away from the %
% mean. Final corrected values are scaled to 0-255. This script is the %
% same as correct _bottom_intensity_shallow, but with a filter to remove %

% saturated points. %
% %
% Adjustable Parameters: %
% inputFile = the directory conpaining EAARL-B waveform features files.%
% The expected format of each file is comma-delimited %
% with the following fields: x,y,z,depth,skew,auc, %
% stdev, peak, soe, raster,channel ,pulse,aoi,aoih,aoiv %
% outputFile = the directory in which files containing X,y,elev,depth, %
% peak_raw,depth_corrected,aoi_corrected will be stored %
% skipRow = amount of rows to skip when reading files, set as %
% 1 if there is a single line header. %
% downsamplelnt = integer value to downsample input Ffile for %
% correction determination. Every nth sample starting with%
% the First sample is kept. This is only for determination%
% of correction values, output will include full data set.%
% Set to 1 to use all samples. %
% %
% N. Wilson, email: wilsonn2@oregonstate.edu %
% C. Parrish, email: Christopher.Parrish@oregonstate.edu %
% Created: 7/10/2015 %
% Modified: 1/19/2017 %

%6%9%%%%6%6%6%%%% % %6%6%6%%%% % %%6%6%6%%% % % %6%6%6% %% % % 6%6%6%%% % % %6%6%6%% % % % %%6%6%6%% % % % %6%6%%% % % % %%%%
format long g

%% Read the EAARL-B waveform features file

M = dImread(inputFile, ",", skipRow, 0);

% remove saturated points, points with intensity greater than 230 or at
% less than 10 meters depth.

indx_remove = M(:,8) ==0 | M(:,8)>230 | M(:,4) < 10;

M(indx_remove,:) = []; % remove these array elements
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Mdownsample = downsample(M,downsamplelnt);

% Downsample these fields to make correction derivation faster
depth= Mdownsample(:,4);

peak= Mdownsample(:,8);

aoih= Mdownsample(:,14);

peak log = log(peak);

slope_dist = depth ./ cosd(aoih);

depthAll= M(:,4);

peakAll= M(:,8);

aoihAll= M(:,14);

peak _log_all = log(peakAll);

slope_dist_all = depthAll ./ cosd(aoihAll);

%% Depth Correction

% Limit coefficient derivation values to prevent outliers from taking over
mvall = mean(peak_log);

svall = std(peak log);

limvall = mvall + 2*svall;

indx = peak log<limvall;

[~,fitresultl,gof _depth] = depth_correct(slope_dist(indx),peak_log(indx));
coeffs = coeffvalues(fitresultl);

a
b

coeffs(1l);
coeffs(2);

%% Apply the depth correction.
IntCorrl = peak log./(a-*slope_dist +b);
IntCorrl_all = peak log_all./(a-*slope_dist_all +b);

%% Determine angle of incidence correction
[~,fitresult2,gof_aoi] = aoi_correct(aoih(indx), IntCorrl1(indx));

coeffsAOl = coeffvalues(fitresult2);

aA0l
bAOI

coeffsAOI(1);
coeffsAOl(2);

%% Apply the angle of incidence correction
IntCorr2_all = IntCorrl_all./(aA0l_*cosd(aoihAll) . ~(bAOI));

%% Remove outliers that are greater than 3 standard devations away from mean
stdDev = std(IntCorr2_all);

average = mean(IntCorr2_all);

upperLim = average + 3*stdDev;

lowerLim = average - 3*stdDev;

I = find(IntCorr2_all>upperLim | IntCorr2_all < lowerLim);



M(1,:) = [1; % remove these array elements

IntCorrl_all(D= [];
IntCorr2_all(D= [1;

eastingAll = M(:,1);
northingAll = M(:,2);
elevAll = M(:,3);
depthAll= M(:,4);
peakAll= M(:,8);
soeAll= M(:,9);

%% Scale values to 0-255
[depth_corrected] = scale_min_max_f(IntCorrl_all);

[aoi_corrected] = scale_min_max_Ff(IntCorr2_all);
%% Write values to output file

title = "x,y,elev,depth,soe,peak_raw,depth_corrected,aoi_corrected”;
write_vals = [eastingAll northingAll elevAll depthAll soeAll peakAll
depth_corrected aoi_corrected];

filelD = fopen(outputFile,"w");

fprintF(filelD, "%s\n" ,title);

fprintf(filelD, "%.2F,%.2F,%.2F,%.2F,%.4F,%.2F,%.2F,%.2A\n" ,write_vals™);

fclose(filelD);

disp("Done--the file with corrected bottom intensities has been created!")

Depth correction function:

function [peak_corrected,fitresult,gof] = depth_correct(depth,peak)
[xData, yData] = prepareCurveData( depth, peak );

% Set up fittype and options.
ft = fittype( "polyl® );

% Fit model to data.
[Fitresult, gof] = fit( xData, yData, ft );

coeffs = coeffvalues(fitresult);

a
b

coeffs(l);
coeffs(2);

%% Apply the depth correction.
peak _corrected = peak./(a-*depth +b);
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Incidence angle correction function:

function [peak_corrected, fitresult,gof] = aoi_correct(aoi,peak)
[xData, yData] = prepareCurveData( aoi, peak );

% Set up Fittype and options.

ft = fittype( "a*cosd(x)™N(b)", "independent®, "x", "dependent®, "z" );
opts = Fitoptions( "Method®, “NonlinearlLeastSquares” );

opts.Display = "Off";

opts.StartPoint = [0.381558457093008 0];

% Fit model to data.
[Ffitresult, gof] = fit( xData, yData, ft, opts );

coeffsAOl = coeffvalues(fitresult);

aA0l
bAOI

coeffsAOI(1);
coeffsAOI(2);

%% Apply the angle of incidence correction

peak corrected = peak./(aA0l .*cosd(aoi) -~(bACIL));
Normalization function:

function [vall_norm] = normalize f(x1,yl,rl,x2,y2,r2)

%%%%%6%%%0%%%%%6%%%%%6%%%0%%6%% 6% %6 %% %6%% %% %% % 6% % %% %% % %% %% % 6% % %% %% % %% %% % 6% % %% %% % %% %

% normalize_ f %
% %
% Function to normalize points from overlapping datasets. rl values are %
% adjusted so that the mean and standard deviation match with r2. %
% wvall norm are normalized rl1 values. Only points within 1 meter of %
% eachother are used for normalization. %
% %
% N. Wilson, email: wilsonn2@oregonstate.edu %
% Created: 01/03/2017 %
%%9%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%% %6%6% % Y6%6% % Y6%6% % Y6%6% % Y6%6% % Y6%6% % Y%6%6% % Y6%6% % %% % %6%6% % %%6% % %
coordsl = [x1 y1];

coords2 = [x2 y2];

% k is the closest point in X for each point in XI. d is the distance beween
% those points.

[k,d] = knnsearch(coordsl,coords?2);

% all points within 1 meter of another
indx = d<1;



vall
val2

ri(k(indx),:);
r2(indx, :);

% At these indices calculate the difference in intensity values
sigmaRef = std(val2);
sigmaAdjust = std(vall);

muRef = mean(val2);
muAdjust = mean(vall);

r1 _normalized2 = (sigmaRef/sigmaAdjust)*(rl - muAdjust) + muRef;

vall norm = (sigmaRef/sigmaAdjust)*(rl - muAdjust) + muReT;

disp(“Done!")
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