AN ABSTRACT OF THE THESIS OF

RICHARD ALAN HORNING for the MASTER OF SCIENCE (Degree) (Name) in CIVIL ENGINEERING presented on October 19, 1971 (Date) (Major) Title: EXPERIMENTAL BEHAVIOR OF WIDE-FLANGE BEAMS WITH WEB HOLES Redacted for privacy Abstract approved: _

T.J. McClellan

Two built-up wide-flange beams with several large holes in each beam were tested to failure. Strains were measured by strain gages at various levels, located at the ends and center of typical holes, and deflections were measured optically at two points on each beam. Lateral bracing was provided to prevent lateral-torsional buckling of the compression flange.

The first beam, with a ratio of hole depth to beam depth of twothirds, failed by buckling of a web post between adjacent holes. The second beam, with a ratio of hole depth to beam depth of four-fifths, deflected so much that the lateral bracing system failed and the beam failed by lateral buckling of the compression flange. No tearing of the web was observed, due to the rounding of the corners of the holes.

The results of the beam tests correlated well with the Vierendeel theory in the elastic range of stresses, for holes at which there was a

shear force. For holes at which there was no shear, the couple-plustee bending theory was somewhat more accurate. Bower's criteria for yielding of the beam section and his lower bound solution for the ultimate strength of the beams were investigated and compared with the loads at which yield actually occurred at each hole. The yield criteria were found to be quite unconservative for these beams, but the predicted ultimate loads for holes with shear forces correlated well with the actual deflections and strains. The points of inflection in the tee sections did not appear to shift significantly from the centerlines of the holes, within the precision of the strain readings.

Deflections were calculated as the sum of the simple beam deflection of the net beam section and deflection of the tee sections as fixed-end beams. The calculated values were 4% to 28% less than the actual deflections in the elastic range.

Experimental Behavior of Wide-Flange Beams with Web Holes

by

Richard Alan Horning

A THESIS

submitted to

Oregon State University

in partial fulfillment of the requirements for the degree of

Master of Science

June 1972

APPROVED:

Redacted for privacy

Professor of Civil Engineering

in charge of major

Redacted for privacy

Head of Department of Civil Engineering

Redacted for privacy

Dean of Graduate School

Date thesis is presented October 19, 1971

Typed by Clover Redfern for _____ Richard Alan Horning

ACKNOWLEDGMENT

The writer is indebted to Professors Thomas J. McClellan, John Peterson, and Harold I. Laursen for their advice and assistance in conducting the test program and interpreting the results. Appreciation is also expressed to Fought & Co., Inc., who built and furnished the test specimens, and to Rose' and Breedlove, Inc., who also assisted in the series of projects of which this is a part. The writer also wishes to thank Mr. Edwin Bryan and Mr. John Kellogg for lending tools and assistance in constructing the lateral bracing system and preparing the beams for instrumentation.

Last but not least, thanks to the writer's wife for accepting the role of "thesis widow" without complaint.

TABLE OF CONTENTS

I. INTRODUCTION	1
II. REVIEW OF THEORY	3
III. APPARATUS AND PROCEDURES	7
 IV. RESULTS AND DISCUSSION A. General Observations B. Comparison of Theoretical and Measured Strains C. Prediction of Yield Load D. Prediction of Ultimate Load E. Deflections 	14 14 17 33 36 39
V. CONCLUSIONS	43
BIBLIOGRAPHY	45
APPENDICES	46

LIST OF FIGURES

Figu	re	Page
1.	Theories of structural action.	4
2.	Test specimen dimensions and loading system.	8
3.	Lateral bracing details.	10
4.	Strain gage locations.	11
5.	Typical method of applying load and arrangement of equipment	12
6.	Typical arrangement of equipment.	12
7.	Beam "E." Buckling of first interior web post. Total load = 24.5 kips.	15
8.	Beam "E." Buckling of interior web post. Total load = 24.5 kips.	15
9.	Beam "E," total load = 24.5 kips. Plastic hinges at corners of end hole.	16
10.	Beam "E." Residual deflections after load was completely released.	16
11.	Beam "F," total load = 17.3 kips. Lateral buckling of compression flange.	18
12.	Beam "F," total load = 17.3 kips. Extreme deflection of beam has rendered lateral bracing at near end and center of beam ineffective, resulting in lateral buckling.	18
13.	Beam "F." Residual deflection.	19
14.	Beam "F." Residual deflection.	19
15.	Beam "E," gage L-4, load vs. strain.	20
16.	Beam "E," gage L-16, load vs. strain.	21
17.	Beam "E," gage L-21, load vs. strain.	22

Figure	Page
18. Beam "E," gages L-37, 51. Load vs. strain.	23
19. Beam "F," gage L-3. Load vs. strain.	24
20. Beam "F," gage L-6. Load vs. strain.	25
21. Beam "F," gage L-33. Load vs. strain.	26
22. Beam "F," gages L-41, 42, 51. Load vs. strain.	27
23. Beam "E." Location of inflection points.	31
24. Beam "F." Location of inflection points.	32
25. Bower's lower bound solution for ultimate strength.	37
26. Beam "E." Load vs. deflection.	40
27. Beam "F." Load vs. deflection.	41

LIST OF TABLES

Table	Page
1. Beam properties for elastic analysis.	29
2. Beam properties and results for Bower's equations.	35
3 Calculated vs. measured deflections.	42

EXPERIMENTAL BEHAVIOR OF WIDE-FLANGE BEAMS WITH WEB HOLES

I. INTRODUCTION

It is obvious that a hole cut through the middle of a steel beam will affect its strength, even if only insignificantly. Several people have conducted research into this problem, to determine quantitatively the size and configuration of hole required to produce an appreciable effect and to measure the magnitude of this effect.

The problem arises when mechanical piping and electrical conduits must be routed through the beams of a building frame. The alternative, to suspend piping under the beams, increases the wasted space between the ceiling of one story and the floor of the next. Thus the owner must buy more building for the same usable space. In order to reduce this dead space and, secondarily, to reduce the dead weight of the steel beams, engineers have resorted to designing the beams with holes sufficiently large to accommodate all piping and conduits. Because of the scarcity of knowledge of the effect of these holes, they are often reinforced with stiffener plates at increased expense. With the increasing use of air conditioning systems the holes must be made larger than previously. The Standard Plaza Building in Portland, Oregon is an example of a building designed with large holes in the beams for mechanical conduits. The purpose of this study is to enlarge the body of knowledge of this subject by testing actual specimens and comparing measured strains and deflections with computed values. In particular, this study should help verify or disprove the Vierendeel theory (discussed below) and provide some information about the inelastic behavior of beams with holes.

The present study is a continuation of research performed by Cato, Landers and Russell (7, 9, and 12) under the direction of Professor T.J. McClellan. All test specimens were of the same cross section and, except for Cato's, of the same length, differing only in the size of holes. Two beams were tested in this study. Strains were measured at various points by electrical resistance type gages, up to the limit of the reading equipment or the gage adhesive, and deflections were measured optically at two points. The beams were loaded well into the inelastic range and local inelastic strains were measured before a buckling failure occurred.

II. REVIEW OF THEORY

Several different methods of predicting the stresses in a beam with web holes have been advanced. Perhaps one of the simplest idealizes the action in the vicinity of the hole as that of a couple acting through the centroidal axes of the upper and lower tees, plus the tees themselves acting as fixed-end beams under a shear type loading (8, p. 34). (See Figure la.). The Vierendeel theory assumes that the stresses on any cross-section are equal to the algebraic sum of the flexural stress in the beam as a whole, based on the net section (i.e., excluding the hole), and the flexural stress on the tee sections as cantilever beams caused by the shear at the center of the hole (11, p. 160; 12, p. 24). (See Figure 1b.) Opinion varies as to the division of the shear between upper and lower tees, whether it be based on the areas, flexural stiffnesses, or shear stiffnesses of the tee sections (2, p. 803); however, for tees of identical crosssection the results are the same, as is the case in this study. Russell discovered that the Vierendeel theory becomes more accurate if the point of inflection in the tees is not assumed to be above and below the center of the hole, as is the customary practice. For his beams, which were built and loaded similarly to those the writer tested, Russell discovered that the point of inflection shifts from the centerline of the hole toward the end where the bending moment is lesser (12, p. 27).

a) Couple plus tee-bending theory

Neither theory described above accounts for the stress concentrations present at the corners of the holes. Bower has reported a method based on the theory of elasticity which gives reasonably accurate predictions of the octahedral shear stresses at the corners of the holes (3,4). The significance of octahedral shear stresses is that they give the best combination of simplicity of analysis and accuracy of prediction of yielding for ductile metals such as structural steel. One disadvantage of the method is that it appears to be quite complicated and dependent upon a computer analysis. There is also the question of whether these stress concentrations at the corners of the holes are the controlling factor in failure of beams with web holes.

Although the subject of stress analysis has received much attention, there does not appear to be any guideline as to what limits should be placed on these stresses, whether the nominal flexural stresses in the tee sections or the stress concentrations at the corners of the holes. The writer infers that the nominal flexural stresses calculated by Vierendeel theory or other method should be limited to the allowable flexural stress in a beam without web holes, and that the stress concentrations at the corners should be limited to the yielding shear stress divided by an appropriate factor of safety.

Bower (2, p. 793) has proposed a design procedure based upon an interaction diagram for flexural and shear stresses calculated on the gross cross section of the beam, but modified according to the

geometry of the hole and certain properties of the beam cross-section. The boundaries of the interaction diagram are the ratios of the allowable stresses for beams with web holes to the allowable stresses for beams without holes, giving the design engineer a convenient method of checking the adequacy of a beam. Bower states that the method as it applies to rectangular holes is based on the Vierendeel analysis but makes no attempt to include the effect of stress concentrations at the corners of the holes, because these are of such a large magnitude that design against yielding is impractical.

The writer has found little information on deflections of beams with web holes, whether methods of calculation or experimental results. Russell discovered that the effect of the holes is a significant increase in deflection from that which would be predicted for beams without holes (12, p. 15). By including the beam action of the tees above and below the holes, Russell was able to better predict the deflections of his beams, especially when the actual width of the web post between adjacent holes was taken into account.

III. APPARATUS AND PROCEDURES

Two test specimens were fabricated from A-36 steel plate, welded to form 15-inch by 4-inch I-beams 12 feet long. Five holes were cut in the web of each beam after fabrication, symmetrically placed about the centerlines of the beams. The corners of each hole were cut smoothly to a one-inch radius. The remaining length of web plate between each hole was six inches; the length of web at the ends of the beams was also six inches. The beam dimensions and configuration of the holes are shown in Figure 2. The basic cross-section is the same as in previous research by Cato, Landers and Russell, and except for the length and height of the holes, the test beams are identical with Russell's beams. After completion of the testing program, one-half inch square coupons were cut from the flanges of the beams and their yield stress in tension determined. The value determined experimentally was approximately 36 kips per square inch (ksi).

The test beams were loaded in a Riehle screw-type testing machine of 150-kip capacity, using a system of beams and rollers to distribute the load equally into four parts, as indicated in Figures 2 and 5. Two small A-frames built up from angles were fastened to the floor beside the testing machine with concrete anchors to provide lateral bracing. Additional bracing was provided at the center of the beam by angles and flat bars wedged into openings in the testing

a) Beam "E" and loading system

b) Beam "F"

Figure 2. Test specimen dimensions and loading system.

machine column. U-shaped clips were then fastened to the upper flange of the beam and connected to the A-frames and the testing machine column. The bracing scheme is illustrated in Figure 3. Strains were measured by Baldwin-Lima-Hamilton electrical resistance strain gages type SR-4, cemented to the beams in the locations indicated in Figure 4. A BLH strain gage converter and several switching units gave a digital readout of strains to a potential precision of \pm 25 microinches per inch. Strips of graph paper were cemented to the web plates between holes at the horizontal centerlines of the beams, and a thin wire stretched from end to end of the beams at their centerlines. By sighting through small telescopes on fixed stands, the deflections of the beams were optically measured as the movement of the graph lines relative to the wire, which was assumed not to move. The arrangement of test equipment is shown in Figures 5 and 6.

For each beam, increments of load were applied up to the anticipated yield point of the most highly stressed part of the beam, then released and the strains at zero load read. Several such cycles were conducted for each beam to determine its behavior in the elastic range. Then increments of load were applied and the beams tested to failure, although in each case the loading had to be halted during the series due to time limitations. Beam "E," with the smaller holes, was loaded in increments of 2 kips at a rate of 0.103 inches per

b) Detail @ center of beam

Figure 5. Typical method of applying load and arrangement of equipment.

Figure 6. Typical arrangement of equipment.

minute motion of the loading head up to a total of 8 kips of load; in the final series, it was loaded in the same increments at a rate of 0.056 inches per minute to a total of 22 kips, the load released for three days, the beam loaded to 24 kips, the load released for three hours, and the beam finally loaded to failure. Beam "F" was loaded in increments of 1 kip at a rate of 0.103 inches/min. to 3 kips for several cycles, then at a rate of 0.056 inches/min. to total loads of 6, 7 and 8 kips, the load was released for three days, and finally the beam was loaded to failure. A typical cycle of applying an increment of load and reading the strains and deflections required approximately half an hour. The order of steps was: apply the load, read and record strains going from the end of the beam to the center, and read and record deflections. No attempt was made to maintain the load constant during the readings, even though deflection of the beam during the 25 minutes or so required to read strains resulted in gradual reduction of the load in the inelastic range.

IV. RESULTS AND DISCUSSION

A. General Observations

Beam "E" began to show noticeable deflection at a total load of about 22 kips. As deflection progressed, the rate of loading in kips per minute decreased either due to formation of plastic hinges or buckling of the web posts between adjacent holes. At a total load of 29.1 kips, deflection occurred at the same rate as application of load or faster, and the load on the beam gradually decreased. At somewhat less than the maximum load, the writer noticed severe buckling of the first interior web post on the non-instrumented end of the beam. There was slight local buckling at one corner of the end hole at the instrumented end of the beam. (See Figures 7-10.)

Beam "F" began to show noticeable deflection at a total load of about 11 kips. Deflections were considerably greater than for Beam "E," and rendered the lateral bracing system ineffective. At two or three levels of loading the load remained constant or dropped momentarily, then increased again as the rate of deflection diminished. When the beam "bottomed out" on the bed of the testing machine (a deflection of 8-1/2 inches!), the writer inspected it and discovered severe lateral buckling of the upper flange. However, the beam had been accepting an increasing load at the same rate of loading head motion and carried a total of 17.3 kips just before it ran out of room

Figure 7. Beam "E." Buckling of first interior web post. Total load = 24.5 kips.

Figure 8. Beam "E." Buckling of interior web post. Total load = 24.5 kips.

Figure 9. Beam "E, "total load = 24.5 kips. Plastic hinges at corners of end hole.

Figure 10. Beam "E." Residual deflections after load was completely released. (Paper strips inside web holes indicate original location of beam centerline.) to deflect. (See Figures 11-14.) The strains at the corners of the end hole were apparently large enough to cause failure of the strain gage adhesive in two places, making it necessary to cement new gages on the opposite side of the web. Despite the severe distortion of the tee sections in both beams, no tearing of the webs was observed and only a small degree of buckling at one corner was apparent.

B. Comparison of Theoretical and Measured Strains

As noted in Figure 1, the Vierendeel theory predicts the stresses in the tee section as

$$f_{b} = \frac{My}{I_{b}} + \frac{Vxy_{t}}{2I_{t}}$$
(1)

where I_b and I_t are the moments of inertia of the net beam section and the tee section respectively, and x, y and y_t are distances to the point in question from the point of inflection in the tee and from the centroidal axes of the beam and the tee, with signs determined by the direction to the point in question. The longitudinal strain is given by

$$\epsilon = \frac{f}{E}$$

Figures 15 through 22 show typical examples of the variation of the measured strains with the applied load and the relation predicted by

Figure 11. Beam "F, "total load = 17.3 kips. Lateral buckling of compression flange.

Figure 12. Beam "F, "total load = 17.3 kips. Extreme deflection of beam has rendered lateral bracing at near end and center of beam ineffective, resulting in lateral buckling.

Figure 13. Beam "F." Residual deflection.

Figure 14. Beam "F." Residual deflection.

Strain, microinches/inch

Figure 16. Beam "E," gage L-16, load vs. strain.

Figure 17. Beam "E," gage L-21, load vs. strain.

Strain, microinches/inch

Figure 21. Beam "F," gage L-33. Load vs. strain.

Strain, microinches/inch

the Vierendeel theory for elastic stresses. As indicated, the correlation of actual and theoretical strains was good for the two holes in each beam for which $V \neq 0$. For the center hole in each beam, at which there was no shear, the predicted strains were consistently greater than the actual strains in Beam "E" (see Figure 18); for Beam "F," there was no such consistency, with theoretical strains being greater than actual at some gages, lesser at other gages, and in good agreement at the remainder. The pattern of variation also differed from one side of the hole to the other. (See Figure 22 for typical examples.) Also indicated on the charts is the strain at which yielding should begin at each gage (indicated as 1200 microinches per inch; more accurately, $\epsilon_y = F_y/E = 36 \text{ ksi}/29000 \text{ ksi} = 1240 \text{ microinches}$ per inch). Note that for many gages, yielding did not begin until strains had considerably exceeded this level.

An alternate theory visualizes the beam as a Vierendeel truss, for which (see Figure 1)

$$f_{t} = f_{a} + f_{b} = \frac{M}{A_{t}(D-2c_{t})} + \frac{Vxy_{t}}{2I_{t}}$$
 (2)

in which A_t is the area of one tee and $(D-2c_t)$ is the distance between the centroidal axes of the upper and lower tee sections. Note that the second term of the expression is identical with that for the Vierendeel theory. In fact, for Beams "E" and "F" this term

accounted for most of the strain at the gages where a shear force existed. In Figures 15, 16, 19, 20 and 21 the Vierendeel theory and "couple plus tee-bending theory" gave the same results at the scale of the chart. For the center holes of the beams, where V = 0 and the second term of the stress equation vanishes, the latter equation appeared to be in better agreement with measured strains than the Vierendeel theory, with a few exceptions. In general, the "couple plus tee-bending theory" was either in good agreement with the actual strains or less conservative than the Vierendeel theory (see Figures 18 and 22).

	D	I _G	I B	At	C _t	I t		v	M/V		
Beam	in.	in. ⁴	in.4	in. ²	in.	1 in. ⁴	Hole	P	in.		
E	15	267.50	246.67	35.00	.50	.8333	End Ctr.	.50 .25 0	4.76-20.24 53.24-74.8 ∞		
F	15	267.50	231.50	32.26	.33	.1875	End Ctr.	.50 .25 0	4.76-20.24 53.24-74.8 ∞		

Table 1. Beam properties for elastic analysis.

A basic assumption in the presentation above is that the point of inflection in the tee sections from which the dimension "x" is measured is at the centerline of the hole. In order to determine the actual location of the point of inflection, strain gages were applied in three rows and three columns to the tees above and below three holes

in each beam. The most significant part of the stress equation is the term $V_{xy_{t}}/2I_{t}$; at the point of inflection x = 0 and this term vanishes. Also, for gages at the same level but on opposite sides of and equal distances from the point of inflection, the values of this term must be equal and opposite. If the strains for all the gages on a tee are plotted at the horizontal location of the gages, the results should be three straight lines connecting the strains at each level of the tee; furthermore, these lines should intersect in a common point, at the location of the inflection point. (The term $M/(A_{+}(D-2c_{+}))$ is a constant for any point in the tee; the term My/I_{b} varies slightly, but makes up only a fraction of the total stress, therefore its variation should be negligible.) Figures 23 and 24 show these strains plotted for Beams "E" and "F" respectively, for the holes where $V \neq 0$. A slight shift of the inflection point from the centerline of the hole can be observed for some of the tees, but the effect appears to be insignificant, and unwarranted for a hand computation. For the holes for which V = 0, there should be no point of inflection in the tees and the stresses should be uniform along the tees at any given level. This was observed for the center hole in Beam "E," within the precision of the gage readings; the measured strains were not uniform at the center hole in Beam "F," but because of the low magnitudes of the strains the significance of this observation is doubtful. The strain differences at the maximum load were only twice the possible error in the gage

Figure 23. Beam "E." Location of inflection points.

Figure 24. Beam "F." Location of inflection points.

readings (± 25 microinches per inch).

Rosette gages were applied to the web at the upper and lower corners of the low-moment edge of each hole. The principal strains recorded were in most cases less than the measured strains for the adjacent linear gages. Research has shown that significant stress concentrations exist at the corners of the holes (see Refs. 3 and 4), but they were apparently undetected by the rosettes. Because the data available from these gages do not appear to provide any significant information, none of the data has been presented here.

C. Prediction of Yield Load

Because of the good agreement between the Vierendeel theory and measured strains, it would be reasonable to expect the yield load for the beams to be the load at which the Vierendeel stresses reach the yield stress of the grade of steel being used. This load is indicated in Figures 15 through 22, 26 and 27. For Beam "E," the measured strains and deflections indicate yielding at a load of approximately 12 kips, compared to 8.73 kips predicted by theory. For Beam "F" the agreement is better, with the yield load being about 4 kips compared to 4.74 kips predicted.

Bower (2, p. 784) has published equations for yielding of beams with rectangular web holes based on the von Mises and Vierendeel theories. On the low-moment side of the hole, at the edge of the hole,

the yield criterion is

$$\left(\frac{H}{D}\right)\left(\frac{a}{H}\right)\left(\frac{a}{H}\right)\left(\frac{4A_{f}}{M}-\frac{H}{D}\right)\frac{1}{\left(1-\frac{H}{D}\right)^{2}\left(1+\frac{8A_{f}}{M}-\frac{H}{D}\right)}\left(\frac{f_{vg}}{F_{v}}+\frac{H}{D}\right)\left(\frac{1+\frac{6A_{f}}{M}}{1+\frac{G}{M}-\frac{H}{D}}\right)\frac{f_{bg}}{F_{b}}=\frac{5}{3}$$
(3)

where f_{vg} and f_{bg} are the shear and bending stresses computed using the gross beam cross section, a is half the length of the hole, and H is the height of the hole. On the high-moment side of the hole, at the intersection of the web and the flange, the yield criterion is

$$\frac{\frac{4}{3} + \frac{64(\frac{H}{D})^{2}(\frac{a}{H})^{2}}{(1+\frac{H}{A}-\frac{H}{D})^{2}}}{(1-\frac{H}{D})^{2}} \left((\frac{f_{vg}}{F_{v}})^{2} + \frac{16(\frac{H}{D})(\frac{a}{H})(1+\frac{6A_{f}}{A_{w}})}{(1-\frac{H}{D})(1+\frac{8A_{f}}{A_{w}} - \frac{H}{D})(1+\frac{6A_{f}}{A_{w}} - (\frac{H}{D})^{3})}\right)} \times (\frac{f_{vg}}{F_{v}}) (\frac{f_{bg}}{F_{b}}) + \frac{1+\frac{6A_{f}}{A_{w}}}{(1+\frac{6A_{f}}{A_{w}} - (\frac{H}{D})^{3})} (\frac{f_{bg}}{F_{b}})^{2} = \frac{25}{9}$$
(4)

By substituting f_{vg} and f_{bg} as functions of the load P into these equations, together with the known properties of the beams (see Table 2), each equation can be solved for the yield load P_y directly. Bower's equations have been verified for beams with ratios of H/D of 0.6 or less. For beams outside this range (such as the writer tested) Equation 4 appears to be the applicable criterion (2, p. 790). As the results indicate (Table 2), the yield load predicted by Equation 4 appears to agree better with the actual behavior of the beams than the load predicted by Equation 3. Neither criterion predicted the actual yield loads, perhaps because of the premature buckling described above.

Beam	H D	Hole	<u>a</u> H	P , kips y (Eq. 3)	P, kips y (Eq. 4)	P _u , kips (Eqs. 5-8)
E	. 67	End Ctr.	. 90 1. 20 1. 20	73.0 73.0 131.0	31.5 39.8 70.5	12.06 18.72 64.4
F	. 80	End Ctr.	.75 1.00 1.00	27.8 32.6 88.1	19.6 28.0 66.1	4.42 6.24 59.8
for both b	eams,	A _f /A _w Fv Fb V p M	= 0.533 = 14.5 k = 22.0 k = 78.0 k = 1484 ir	si si ips ach-kips	Observed y Beam E Beam F	ield loads 12 kips <u>+</u> 4 kips <u>+</u>

Table 2. Beam properties and results for Bower's equations.

For comparison, the yield load of the solid beam, assuming no buckling occurred, would be 65 kips.

D. Prediction of Ultimate Load

A simple method of predicting the ultimate load of the beams would be to calculate the plastic moment of the tee sections and equate this to the bending moment expressed as a function of the applied load. For Beams "E" and "F" respectively, the plastic moments of the tees are 30.9 and 15.4 inch kips, and the corresponding ultimate loads are 13.7 and 6.8 kips. These values are slightly greater than the actual yield loads, but much lower than the failure loads of the beams, even with buckling as the mode of failure.

Bower has published a lower bound solution for the ultimate strength of beams with rectangular web holes which experimental results indicate to be conservative (2, p. 795; see also Figure 25). The solution leads to a system of four equations:

$$\left(\frac{V}{V_{p}}\right)^{2} = k_{2}^{2} - \left(2k_{1}\frac{A_{f}}{A_{w}}\right)^{2}$$
(5)
$$k_{2}^{2} = \left(\frac{2k_{1}A_{f}}{A_{w}}\right)^{2} \left[1 + \frac{0.75(1 - \frac{H}{D} - \frac{1}{2}k_{2})^{2}}{(\frac{H}{D})^{2}(\frac{a}{H})^{2}}\right]$$
(6)
$$\frac{M}{M_{p}} = 1 - \left[\frac{\frac{4k_{1}A_{f}}{A_{w}} + (\frac{H}{D} + k_{2})^{2}}{(\frac{H}{D} + k_{2})^{2}}\right]$$
(7)

Figure 25. Bower's lower bound solution for ultimate strength.

$$k_2 \leq 1 - \frac{H}{D}$$

where V_{p} and M_{p} are the plastic shear and moment of the gross beam section and k_1 and k_2 are defined as indicated in Figure 25. The writer solved these equations by assuming values of k_2 between 0 and l - H/D, substituting these into Equation 6 to find k_1 , then substituting corresponding values of k_1 and k_2 into Equations 5 and 7 to find V/V_p and M/M_p . The result is an interaction diagram for a particular hole in a beam. For any given load, the shear and bending moment and thus V/V_{p} and M/M_{p} can be found; the shear and moment ratios for any other load will lie along a line through this point and the origin of the interaction diagram. The ultimate load can then be located as the intersection of the interaction diagram with the line describing the shear-moment relationship for the loading applied. For the beams tested by the writer, the ultimate load fell in the region of the interaction diagram controlled by the shear alone $(k_2 > 1 - H/D)$ for holes where and for the center holes V = 0 and $k_2 = k_1 = 0$, which V ≠ 0, greatly simplified the solution of the equations for the ultimate load. The results are presented in Table 2. Surprisingly, the ultimate loads predicted for three of the holes agree well with the actual yielding of the gages For the first interior hole in Beam "F," some gages recorded yielding at lesser loads and some at greater loads.

(8)

Bower's solution did indeed conservatively predict the ultimate load of both beams, even though both failed by different forms of buckling. (See Figures 15 through 22, 26 and 27.)

For comparison, the ultimate load of the beams based on their reaching the plastic moment is 75.2 kips.

E. Deflections

For hand computation, a simple way to estimate the deflection of the beams is as the sum of the deflection of the corresponding solid beam plus the deflection of each tee section acting as a fixed-end beam under a shear loading. For the latter component, the deflection is

$$\Delta = \frac{VL^3}{12E(2I_t)} + \frac{1.2VL}{2A_tG}$$
(9)

The results are presented in Table 3 and Figures 26 and 27. The errors varied from 4% to 28% of the measured deflections, the smaller errors being for Beam "F" where the deflections were larger. It is the writer's belief that part of the error is due to rotation of the web posts between holes, making the assumption of full fixity at the ends of the tees invalid. T.J. McClellan (10) has suggested that another error may be due to including the moment of inertia of the flange twice, once in each part of the deflection. It is also worth noting that the precision of measuring the deflections is $\pm .05$ " at best, and

Figure 26. Beam "E." Load vs. deflection.

Figure 27. Beam "F." Load vs. deflection.

actually probably closer to \pm .10"; the errors at yield load in each beam are no larger than this, and probably insignificant for design purposes.

		Deflection per Unit Load, inches per kip								
Beam	Hole	Measured	Calculated	Error						
E	End Ctr.	.0121 .0223	.0087 .0179	. 0034 . 0044						
F	End Ctr	. 029 . 058	. 0 26 . 056	003						

Table 3. Calculated vs. measu	red def	lections
-------------------------------	---------	----------

V. CONCLUSIONS

The Vierendeel theory appears to be valid for predicting elastic stresses for beams with ratios of hole depth to beam depth up to . 80 and hole length to width up to 2.4, where $V \neq 0$. (Where V = 0, the "couple plus tee-bending theory" may be better, but in any case the effect of the holes will be much less severe than where a shear exists at the hole.) For analysis by hand, the precision involved in trying to locate the exact position of the inflection point in the tee sections does not appear to be warranted for design purposes. Although large stress concentrations are known to exist at the corners of the holes, they did not appear to affect the strength of the beams tested in this project. Bower himself has admitted that "... it would not be practicable in most cases of statically loaded beams, to design against yielding!' (2, p. 791). It is not known whether Bower's yielding criteria are applicable to beams in this range, but his solution for the ultimate strength of such beams proved to be conservative. Deflections of the beams can be estimated with sufficient accuracy for design purposes as the sum of the deflections of the corresponding solid beams and the deflections of the tee sections as fixed-end beams under a shear loading. The tee sections do not appear to become unstable under large stresses, nor do the corners of the holes appear critical if cut to a small radius as those described herein were;

however, buckling of the web needs to be considered where holes are spaced closely together, and as with any beam, lateral bracing must be provided to prevent flange buckling.

The writer suggests that further research in this area be directed toward examination of Bower's yield strength and ultimate strength criteria, and especially toward testing of beams with holes eccentric to the centroidal axis, about which little is known even today.

BIBLIOGRAPHY

- Baes, Louis. Rigid frames without diagonals (the Vierendeel truss). Transactions of the American Society of Civil Engineers 107:1215-1228. 1942.
- Bower, John E. Design of beams with web openings. Journal of the Structural Division, American Society of Civil Engineers 94:783-807. March, 1968.
- Elastic stresses around holes in the web of wide-flange beams. Journal of the Structural Division. American Society of Civil Engineers 92:85-101. April, 1966.
- 4. Experimental elastic stresses in wide-flange beams with web holes. Journal of the Structural Division, American Society of Civil Engineers 92:167-186. Oct., 1966.
- 5. Suggestions for research holes in beam webs. Committee correspondence, Subcommittee 5 - Castellated beams, Monroeville, Pa. January 19, 1966.
- 6. Ultimate strength of beams with rectangular holes. Journal of the Structural Division, American Society of Civil Engineers 94:1315-1337. June, 1968.
- Cato, Stuart Leslie. Web buckling failure of built-up girders with rectangular holes. Master's thesis. Corvallis, Oregon State University, 1964. 37 numb. leaves.
- Hosain, M. U., and W. G. Speirs. Failure of Castelated (sic) beams due to rupture of welded joints. Acier-Stahl-Steel (Brussels) 36:34-40. Jan., 1971.
- Landers, William. Web stresses in Vierendeel girders. Unpublished research. Corvallis, Oregon State University Engineering Experiment Station, 1965.
- 10. McClellan, Thomas J. Private communication. 1971.
- Roark, Raymond J. Formulas for stress and strain. 4th ed. New York, McGraw-Hill, 1965. 432 p.
- Russell, William Clyde, Experimental studies of Vierendeel beam analysis. Master's thesis. Corvallis, Oregon State University, 1966. 62 numb. leaves.

APPENDICES

NOTATION

= bp = area of one flange $\mathbf{A}_{\mathbf{f}}$ = cross-sectional area of the tee section above or below a hole $\mathbf{A}_{\mathbf{f}}$ = Dt = gross web area A___ = axial compression acting on a tee section according to the С couple-plus-tee bending theory = beam depth D E = modulus of elasticity (29 million psi) F_b = bending stress allowed by AISC Design Specification = shear stress allowed by AISC Design Specification F., Fv = yield point of steel G = shear modulus (assumed to be $0.4 \times E$) Η = depth of hole Ľ = moment of inertia of the beam taken at a hole I, = moment of inertia of the tee section Μ = bending moment = plastic bending moment of the gross beam section Mg Ρ = total load on the beam (see Figure 2a) = axial tension acting on a tee section according to the couple-Т plus-tee bending theory v = shear force = plastic shear force of the gross beam section (taken as v $(\mathbf{F}_{v}/\sqrt{3}) \times \mathbf{A}_{w}$ = half length of a hole а

- b = flange width
- c_t = distance from centroid of tee to outside face of flange (see Figure la)
- d = half depth of beam
- $f_a = axial stress in the beam$
- f_{b} = bending stress in the beam
- $f_{\rm ho}$ = bending stress at a hole, computed using the gross beam section
- $f_t = total longitudinal stress (axial plus bending) in the beam$
- f_{vg} = shear stress at a hole, computed using the gross beam section
- h = half depth of hole
- k₁ = distance from outside face of flange to plastic neutral axis (see Figure 25)
- k₂ = fraction of web depth yielded in combined bending and shear at a hole (see Figure 25)
- p = flange thickness
- t = web thickness
- x = horizontal distance from point of inflection in tee section to point at which bending stress is computed
- y = vertical distance from centroid of net beam section to point at which bending stress is computed
- y_t = vertical distance from centroid of tee section to point at which bending stress is computed
- ϵ = strain
- σ = bending stress in beam web
- τ = shear stress in beam web
 subscript u indicates plastic condition
 subscript y indicates yield condition

Load		· · ·	Gages										
P	• L-1		L-2 L-3		L-4	L-5	L-6	L-7		L-8	L-9		
	 	1.8	- 45	- 72	- 279	+ 283	+ 72	- 1	0	- 10	- 14		
2	Ŧ	10 74	-10 76	145	558	564	145	2	20	24	29		
4		24	100	21.9	831	842	219	2	27	36	44		
0 2		22 22	123	291	1101	1114	292	3	88	46	57		
10		16	149	362	1370	1380	373	4	9	55	70		
12		13	172	443	1691	1642	462	5	66	68	88		
14		9	190	601	2454	1930	601		13	103	188		
16	+	1	210	970	3970	5776	1752	-	7	162	341		
18	_	9	226	2015	7612	8944	35 39	+ :	.2	205	455		
20		22	231	4148	12972	13906	5742		31	247	570		
1 /		19	149	6022	17914	16558	8068		73	243	606		
14		10	166	6100	18199	16833	8142	(55	253	624		
10		20	202	6166	18456	17085	8213	Į	58	268	640		
18		22	202	6220	18750	17374	82.95		1 9	277	657		
20		22	244	6244	10186	17793	8426		46	288	670		
22		51	240	10049	20201	17755	1 3091	4	55	330	768		
24 26	-	52 44	- 211	-15958	29301		+ 19877	+ '	70	- 378	- 876		

BEAM	"E"	STRAINS	

(microinches per inch)

Load	3				Gages																	
P	L	L-10		L-11		L-11		L-11		·12	L-13		L-14		L-15		L-16		L-17		L-18	8
		 Q	+	7	+	13	-	104	+	58	+	281	-	262	-	56	+ 1	06				
2	т	14	•	14		24		209		115		558		527	14	112	2	10				
4				19		36		313		173		833		786		168	3	09				
8		22		25		46	· · ·	414		227		1105	1	046		221	4	11				
10		25		33		59		509		290		1374	1	293		273	5	16				
10	+	30		38		74		619		366		1657	1	554		345	6	21				
14	-	28	• +	25		105		878		849		3199	2	004		471	8	378				
16		180	-	27		169		1416		2379		6559	2	859		804	11	86				
18		287		61		216		2115		3935		10478	6	928	1	736	19	08				
20		207 394		92		262		3484		6638		1 6 9 92	12	611	3	638	30)31				
14		468		123		251		4993		9407			17	244	5	932	4 0)28				
16		468		121		261		5103		9471			17	513	5	9 90	41	.25				
18		470		119		268		5201		9529			17	757	6	045	42	213				
20		465		118		282		5309		9604			18	044	6	105	43	310				
20		455		115		289		5430		9710			18	439	6	194	44	1 21				
24				110		350		8375	1	4159			28	000	9	647	68	370				
26	_	580	-	133	+	390	-	6873	+ 2	0873					-14	577						

Load	1			Gages											
P	P L-19		L-20	L-21	L-22	L-	-23	L	-24	Ŀ	-2 5	L	-26	Ŀ	-27
2	+	33	- 70	- 204	+ 210	+	66	-	33	-	30	-	26	-	21
4		63	141	410	413		131		64		62		54		44
5		94	210	613	617		200		98		94		81		64
8		127	280	820	818		263		130		122		106		88
10		162	354	1021	1026		325		1 62		154		128		108
12		104	420	1226	1231		390		197		183		154		128
14		228	485	1432	1401		445		221		207		182		152
14		267	568	1685	1605		515		249		241		212		182
10		207	500 647	1929	1772		573		27 5		266		244		201
20		355	741	2275	1984		651		306		303		264		217
14		281	583	1869	1428		489		208		211		192		169
16		314	654	2087	1626		548		249		248		222		192
18		344	719	2275	1814		602		281		274		247		210
20		377	793	2485	2019		668		317		303		272		234
22		413	871	2722	2230		732		352		333		297		252
24		555	1292	3841	2551		860		350		367		306		232
26	+	<u>811</u>	- 2077	- 5949	+ 3003	+	988	-	410	-	443		326		195

BEAM "E" STRAINS

Load	1									Gages						
P	L-	-28	Ŀ	-29	L-	-30	L	-31	L-	-32	L-33	:	L-34	L	-35	L-36
~	+	20	+	2.9	+	29	_	91	+	21	+ 17	4 -	171		18	+ 100
4	•	41		53		58		187		40	34	0	342		38	194
- 6		59		77		88		277		58	51	0	509		58	283
8		77		98		115		358		82	67	8	679		. 77	375
10		97		120		147		447		102	84	1	843	-	92	361
12		116		143		179		537		111	101	5	996		119	5 55
14		129		166		204		621		130	116	7	1143		137	634
16		145		195		238		728		154	135	2	1321		157	730
18		158		218		264		810		177	151	0	1476		177	820
20		171		243		305		918		212	169	6	1670		204	927
14		109		179		228		663		153	122	0	1194		136	702
16		125		198		254		755		191	138	0	1366		160	792
18		144		219		287		848		186	153	4	1529		183	8 66
20		156		234		307		939		222	169	3	1699		211	951
20		174		265		339		1032		246	186	3	1875		232	1039
24		176		297		384		1254		265	219	8	2167		236	1283
24	т	70	+	294	+	481	_	1686	+	417	+ 287	8 -	- 3210	-	501	+ 1593

Load	t									Gages								
P	L-	-37	L-	-38	Ŀ	-39	L	-40	L-	-41	L-	-42	Ŀ	-43	L	-44	L-	-45
2	_	40	-	32	-	17	+	18	+	28	+	39	-	39		32	-	26
4		79		70		40		35		56		78		78		65		52
6		109		109		71		53		85		113		117		99		78
ŝ		146		141		93		77		116		151		153		1 30		102
10		176		171		114		95		146		190		194		160		125
12		213		203		136		115		172		229		230		192		151
14		248		233		160		129		201		261		264		218		174
16		294		268		174		149		232		303		307		257		200
18		333		298		192		175		261		337		339		287		226
20		374		336		221		211		298		376		381		322		257
14		261		236		148		187		231		278		272		233		191
16		297		267		168		204		257		317		309		264		21 2
18		340		305		201		212		276		338		343		2 92		238
20		379		333		219		226		301		372		379		324		265
22		414		364		242		239		326		407		415		35 2		289
24		452		402		275		301		383		461		453		398		332
26	-	556	-	484	-	330	+	319	+	4 10	+	493	-	546	-	446	-	373

BEAM "E" SIRAD	NS
----------------	----

Load	1									Gages								
<u></u>	L	-46	L	-47	Ŀ	-48	Ŀ	-49	L	-50	L-	-51	Ĺ	-52	Ŀ	-53	L	-54
2	+	23	+	30	+	35		38	-	34	-	24	+	26	+	32	+	34
4		47		62		73		73		58		51		51		62		68
6		68		92		109		110		99		75		76		93		103
8		92		122		147		145		133		98		99		125		140
10		115		154		176		183		164		123		114	¢	166		177
12		139		186		212		215		197		150		136		196		214
14		163		215		245		254		228		173		157		224		247
16		177		244		289		286		264		2 05		181		255		284
18		202		273		323		316		296		239		186		280		317
20		228		308		365		352		331		273		190		312		362
14		172		237		279		253		240		201		124		2 29		279
16		196		270		312		291		274		226		150		261		309
18		200		283		334	:	322		303		251		153		272		332
20		221		311		369		355		335		278		172		301		364
22		243		339		406		389		367		306		19 2		330		397
24		269		389		474		466		433		340	۲.	198		368		464
26	+	277	+	422	+	525	-	539	-	490	-	395	+	187	+	387	+	515

Loa	d					Gag	es			
P	R-1 - H	R-	1- V	R-1-30 ⁹	R-1-150 ⁰	R-2- H	R-2- V	R-2-30°	R-2-150	о _{R-3- Н}
2	- 138	+	18	~ 105	- 200	+ 129	+ 24	+ 219	+ 97	- 87
4	277		24	208	400	257	41	427	195	173
6	412		24	303	604	388	49	631	290	257
8	544		22	403	812	520	56	83 5	386	339
10	677		26	507	1014	640	57	1038	485	423
12	823		22	617	1231	819	81	1416	637	50 3
14	982		20	744	1493	1118	263	2502	1042	592
16	1303	+	22	999	2039	1 3 9 6	422	1215	508	700
18	1785	-	5	1448	2934	1167	588	944	+ 366	782
20	2895		71	2556	5254	868	944	627	- 28	893
14	4140		103	1136	4784	114	1275	300	+ 249	662
16	4271		109	1178	4922	157	1 2 7 1	322	274	746
18	4 3 85		109	1214	5037	188	1278	343	300	835
20	4515		116	1257	5183	215	1281	343	306	921
22	4755		128	1308	5450	237	1325	343	296	1002
24	5289	-	346	- 830	5313	+ 201	1499	329	397	1073
26	- 1839	+	116	+ 360	- 21 35	+ 245	+ 1193	+ 166	+ 358	- 1118

BEAM "E" SI	KAINS.
-------------	--------

Load	đ							Gag	es								
P	R-	3- V	R-3-120	R-3-240	, R-	-4- H	R	-4- V	R-	4-30	R ~	4- 150 °	R-	-5-H	R-	5- V	
2	+	4	- 72	- 20	+	83	+	33	+	148	+	74	-	12	+	13	
4	-	10	169	48		164		63		295		149		18	+	7	
6		33	269	78		244		90		440		220		26	~	6	
8		51	372	113		328		119		585		294		33		20	
10		74	468	153		403		145		732		360		40		39	
12		100	574	186		487		177		867		433		49		58	
14		112	676	203		547		223		985		494		55		78	
16		139	806	235		613		284		1132		564		58		104	
18		168	925	252		679		341		1293		625		60		128	
20		201	1112	277		755		405		1512		698		70		151	
14		142	848	179		564		319		1585		489		48		105	
16		169	962	210		642		350		1 3 2 9		564		53		127	
18		194	1075	236		700		375		1453		615		66		146	
20		222	1176	282		780		41 3		1594		684		73		170	
22		257	1312	308		860		449		1760		751		79		186	
24		322	1494	355		1171		745		2674		849		88		226	
26	-	413	- 1811	- 399	+	1700	+	1058	+	4378	+	1312	-	108		263	

Load						Ga	ges				
P	R-5-30	R-5-150	R-(6- H	R-6	5- V	R-6	5-30 0	R-6	-150 ⁰	
2	- 20	+ 3	+	1	+	21	+	9	+	10	
4	35	- 4		5		39		18		20	
б	51	14		11		50		28		31	
8	66	25		20		62		37		46	
10	83	41		25		72		41		54	
12	98	52		32		88		56		63	
14	112	66		41		98		63		76	
16	129	73		40		107		67		90	
18	139	90		52		124		84		99	
20	158	107		66		127		104		113	
14	117	74		74		101		108		89	
16	134	84	+	71		114		110		101	
18	146	104		66		115		110		99	
20	162	122		65		133		120		104	
22	172	134		69		144		123		115	
24	193	160		94		158		165		140	
26	- 221	- 198	+	98	+	201	+	194	+	1 39	

BEAM "E" STRAINS

BEAM "E" DEFLECTIONS (inches)

 Р	Δ_{A}	Δ_{B}	
2	.02	. 05	-
4	.05	. 09	
6	. 07	.14	
8	.10	.18	
10	.12	. 22	
12	.14	. 26	
14	. 18	. 31	
16	. 24	. 41	
18	. 34	. 51	
20	. 49	. 70	
21	. 55	. 76	
22	. 65	. 87	
14	. 58	. 72	
14	. 61	. 80	
16	. 64	. 84	
18	• 65	. 87	
20	. 68	. 91	
22	. 70	. 96	
24	1.04	1.34	
26	1.41	1.77	
26	1.49	1.87	
0	2.72	3. 44	

Load	à.				Gage	25					
Р	L-1	L-2	L-3	L-4	L-4A	L-5	L-6	L	-7	L	8
1	+ 123	- 190	- 341	+ 326		+ 183	- 121		5		4
2	240	365	662	632		354	236		11		7
3	362	551	992	948		532	352		17	an,	12
4	501	751	1361	1522		810	497		73	+	61
5	699	1104	1882	+ 2618		+ 1604	740		37	-	22
6	914	1568	2489				1018	4	9		104
0	183	451	478				300				
3				999		552					
3				984		543					
3				959		529					
4	669	1242	1876	1290		710	- 805	-	54	+	17
5	794	1437	2215	1616		896	925		60		13
6	927	1671	2590	2019		1122	1053		67	+	4
7	1224	2175	3275	3650		2226	1373	-	31	-	67
0	+ 354	- 659	- 806	+ 1417		+ 1005	520				
6	1128	1900	2950	3478		2159	- 1262	-	47	+	26
7	1274	2211	3380	3958		2435	1413		52	+	16
8	1599	2847	4417			3044	1952		20	-	60
0	565	1319	1519				991	•			
3				+ 1037	+ 1090	+ 566					
2	821	1708	2225	686	708	373	- 1236		6	-	5
4	1066	2099	2920	1 361	1 41 3	739	1477		24		16
6	1333	2557	3717	21 25	2224	1165	1741		36		24
7	1484	2821	4158	2555	2701	1408	1875		41		26
8	1658	3 179	4732	+ 3136	3360	1747	2040		45		34
9	2353	4577	7233	****	+ 6527	+ 4151	3345	-	10		101
10	+ 3769	71 37	-11916				5981	+	27		186
11		- 7687				_ = = = -	11001		63		268
12							16117		95		326
13							-21191	+	119	-	385

BEAM "F" STRAINS (microinches per inch)

Loa	ıd							_	Ga	ges			
P	L	9	L	-10	L-	·11	L-	12	L-13	L-14	L~15	L-15A	L-16
1		6	+	8	+	6	+	3	- 129	+ 180	+ 258		- 308
2		.11		14		11		6	253	349	495		597
3	-	18		19		15		9	378	525	728		894
4	+	94		134		81		32	532	788	1113		1239
5	-	36	+	24	+	16	+	16	830	tag mai kik			1780
6		168		88	-	44	+	69	1223		una dazi Gili Kap		1506
0									446				640
3										516	953		
3										507	937		
3										494	915		
4	+	28	+	75	+	49	-	16	- 992	+ 658	+ 1224		- 1912
5		23		78		50		11	1120	845	1590		2266
6	+	9	+	78	+	47	-	8	1266	1057	1938		2576
7	-	105	-	20	-	5	+	40	1703	2006			3359
0									768	658			1110
3											953		
6	+	32	+	8	+	78	+	10	1577	1734	1980		3056
7	+	17	+	107		78		15	1738	1995	2442		3472
. 8	-	 99	-	3		14	+	71	2355		_ 10 = 44		4 510
0									- 1296				- 1836
3										561	1054	+ 1031	
2	-	17	+	14	+	13	+	9	- 1559	+ 371	+ 689	+ 675	- 2469
4		30		22		19		15	1821	.730	1376	1348	2500
6		45		31		30		23	2106	1160	2167	2128	3804
7		47		38		32		30	2253	1410	2619	2582	41 91
8		57	+	38	+	38		38	2430	1771	+ 3241	+ 3196	4691
9		163	-	57	-	18		94	3360	+ 4069			6895
10		296		184		92		151	5456				-10569
11		423		297		159		200	9286				
12		519		376		200		227	14623				1111111111111
12	-	598	_	443	-	241	+	259	-20901				

BEAM "F" STRAINS

Load					Gage	S			
P	L-17	L-18	L-19	L-20	L-21	L-22	L-23	L-24	L-25
1	- 165	+ 128	+ 71	- 151	- 244	+ 233	+ 125	- 72	- 15
2	318	253	135	290	474	444	238	140	29
3	479	376	203	431	704	656	353	205	41
4	663	529	243	588	962	962	532	224	77
5	975	828	338	795	1291	+ 1730	998	351	69
6	1391	1097	+ 453	1022	1646		1445	485	63
Ő	376	340		143	216		723		~
3						839	374		
3						866	371		
3						849	363		
4	1071	838	251	758	1202	1426	+ 474	- 251	- 72
5	1264	982	328	920	1470	2287	612	327	85
6	1438	1099	392	1050	1678	3353	728	392	96
7	1727	1490	+ 503	1319	2029		1156	- 533	- 86
0	676	567		279	353		306	-	
3									
6	- 1735	+ 1356	+ 432	- 1189	- 1821		1054	432	88
7	1972	1514	504	1 355	2074		1213	518	99
8	2578	1951	651	1683	2454		1797	668	85
0	1122	860		475	507		59		
3			224			708			
2	1462	1125	147	791	1019	476	302	148	27
4	1803	1379	283	1084	1498	927	526	291	54
6	2192	1659	427	1392	1991	1398	765	437	82
7	2402	1804	501	1549	2238	1646	892	508	96
8	2689	1974	578	1723	2487	1939	1037	583	106
9	3900	2642	698	2057	2854	2838	1475	727	9 2
10	- 6398	+ 4316	907	2494	4350	4263	2313	1019	65
11		~~~~	1143	3034	3974	5159	3181	1322	47
12			1611	4354	5569	6294	4192	1722	27
13			+ 2225	- 5716	- 7833	+ 7584	+ 5465	- 2287	- 3

BEAM "F" STRAINS

Load	1	_	Gages												
P L-26		L	-27	L	-28	L-	29	Ŀ	-30	L-31	L-32	L-33	L-34		
1	- 18	_	20	+	9	+	13	+	20	- 104	+ 126	+ 221	- 202		
2	34		38		19		25		32	199	243	424	389		
3	52		56		29		35		47	302	358	630	581		
4	33		14		106		82		43	415	534	903	790		
5	89		94	+	48		57		78	583	981	1571	1041		
6	149		179	-	10		24		126	765	1463	2237	1334		
0										156	737	988	166		
3															
3															
3															
													070		
4	54	-	52	+	69		62		44	584	1213	1817	970		
5	74		73		82		67		60	698	1357	2064	1193		
6	91		80		86		84		73	793	1478	2268	1369		
7	156	-	178	+	35		62		112	1040	1522		1726		
0					• •• ••					335			333		
3											365	658			
_			100		6F		74		05	962	741	1 328	1560		
6	113		123		05		07		114	1085	922	1643	1797		
7	138		151		65		87		114	1 206	1627	2705	2210		
8	207		251		14		01		100	546	637	2705	578		
U										540	007				
3							-,					704			
2	35		41		24		0		46	767	887	452	1000		
4	75		80		42		45		73	973	1121	896	1399		
6	114		126		65		47		107	1181	1382	1359	1810		
7	133		146		76		69		124	1292	1508	1584	2007		
8	151		167		77		84		146	1414	1664	1881	2243		
9	215		258	+	44		57		199	1698	2294	2867	2712		
10	301		382	-	2 5	+	27		245	2113	3232	4377	3302		
11	379		491		96	-	3		281	2731	4325	6110	3991		
12	462		608		173		41		367	3688	5827	8529	4990		
13	540	-	717	-	237		77	+	432	- 5052	+ 6633	+ 3470	- 7147		

BEAM "F" STRAINS

Load					Gages			- Marine - Company and Anna - Company	
P	L-35	L-36	L-37	L-38	L-39	L-40	L-41	L-42	L-43
1	- 100	+ 100	- 18	- 13	- 11	+ 11	+ 13	+ 22	- 22
2	196	190	46	22	16	15	23	43	42
3	293	281	69	36	24	17	31	64	62
4	394	373	84	39	29	25	44	89	77
5	526	490	106	55	46	37	55	109	102
6	676	587	123	75	62	46	69	130	120
0	95	507	125	,0	02				
3									
3									
3									
4	504	366	92	46	35	22	41	84	86
5	616	474	117	65	50	36	55	104	109
6	707	554	132	79	65	41	62	122	128
7	887	687	154	95	77	44	71	150	150
0	195			:					
3									
6	806	590	137	78	58	48	70	133	114
7	928	692	161	84	67	53	80	161	137
8	1149	951	178	97	69	56	89	193	154
0	335	164							
3									
2	543	354	45	35	30	23	20	4 4	44
4	736	359	86	58	48	43	44	82	86
6	948	756	132	86	68	55	69	128	124
7	1055	851	161	96	74	56	78	151	146
8	1174	953	184	110	87	59	86	174	163
.9	1428	1153	204	141	119	87	116	204	187
10	1752	1466	224	163	143	96	130	2 29	206
11	2154	1799	235	189	180	126	151	2.41	224
12	2705	2149	255	205	195	120	165	270	245
13	- 3861	+ 2858	- 267	- 220	- 207	+ 126	+ 183	+ 293	- 256

BEAM "F" STRAINS

Load	1				Gag				
P	L-44	L-45	L-46	L-47	L-48	L-49	L-50	L-51	L-52
1	- 18	- 15	+ 18	+ 19	+ 21	- 18	- 20	- 23	+ 25
2	34	33	32	34	38	33	43	51	5 3
3	52	48	44	46	52	47	67	80	78
4	70	64	58	65	76	64	92	103	108
5	90	84	75	86	99	86	112	131	125
6	102	100	85	99	115	102	127	146	140
Ō									
3									
3								,	
3									
4	74	66	58	64	77	68	94	110	109
5	93	84	77	86	99	88	115	136	127
6	109	98	81	92	106	105	132	152	145
7	126	116	100	106	121	120	158	182	171
0					•				
3									
6	97	85	97	97	113	.91	123	146	154
7	112	104	113	116	135	107	149	176	187
8	132	119	133	136	158	121	170	206	222
0				· . ·					
3									
2	38	34	29	33	39	40	41	49	47
4	72	66	62	68	81	73	82	96	95
6	106	101	93	97	120	107	127	151	145
7	123	115	108	114	133	122	150	180	172
8	141	130	122	127	147	134	173	204	193
9	163	151	149	152	176	161	186	216	209
10	181	171	166	173	205	181	205	234	229
11	198	186	177	191	225	204	212	237	224
12	216	204	192	202	247	224	238	266	244
13	- 233	- 222	+ 210	+ 230	+ 264	- 243	- 243	- 2 58	+ 244

BEAM "F" STRAINS

Load		Gages																
P	L-5	3	L	54	R	-1 - H	R- 3	1 - V	R-	1-3150	R	-2- H	R	-2- V	R-	2-450	R-3	- H
1	+	23	+	19	_	139	+	3	, m	74	+	131	+	15	+	75	-	97
2		44		35		270	-	1		149		255		14		135	1	86
3		62		43		405		0		224		381		16		203	2	282
4		87		58		553	+	3		307		524		35		312	3	82
5	1	107		82		754		9		442		684		151		552	5	\$15
6	1	19		95		949		17		607	+	531		276		816	6	553
0						132	+	13		132	-	112		261		397		87
3											+	432		61		298		
3												426		66		293		
3												413		66		285		
4		91		57		708	-	17		476		514		56		367	4	193
5	1	108		75		859		14		565		603		67		469	5	596
6		120		88		987		10		643		700		85		573	e	584
7	· 1	143		102		1185		19		915	+	684	+	236	+	885	8	316
0						229	-	17	-	330							1	.62
3												342		73		240		
6		131		96		1062		31		837		668		84		447	7	747
7		155		114		1210		31		951		776		100		551	8	353
8		181		133		1504		134		1399				250		921	9	959
0						414	-	151	-	725							1	91
3											+	426	+	70	+	304		
2		41		35		700		159		899		282		64		208	:	394
4		82		69		978		164		1061		549		85		396	ł	583
6		125		98		1262		159		1240		828		111		600		774
7	:	146		112		1411		158		1340		980		124		717	8	861
8		162		121		1567		169		1484		1140		156		876	9	963
9		183		156		2341		285		2373		1538		335		1421	10	094
10		200		180		3575		518		3714		640		539		1482	1:	236
11		205		212		5358		914		5611		403		756		1089	1	318
12		226		231		7032		1232		7946		366		774		541	10	521
13	+	239	+	252	~	6733	-	1249	-	8151	+	259	+	712	+	328	- 23	108

BEAM "F" STRAINS

.

Load	3						Gage	S.		are en e	
P	R	-3- V	R-3-315	R-4- H	R	-4- V	0 R-4-45	R-5- H	R-5- V	R-5-450	R-6- H
1	-	14	- 57	+ 91	+	10	+ 44	- 3	- 15	- 10	+ 8
2		31	111	173	+	13	84	10	28	18	12
3		48	169	252	+	12	120	13	44	26	12
4		59	227	332	-	31	92	18	59	34	22
5		64	297	421	+	13	208	23	74	45	27
6	-	69	371	525	+	71	342	36	77	54	31
0	+	15	43								
3											
3											
3											
4	-	69	298	329	-	15	124	14	73	50	14
5		83	356	423	-	13	165	31	83	58	21
6		89	407	499	-	9	211	37	88	65	25
7		92	490	604	.+	57	348	48	99	77	21
0		7	102								
3											
6		94	449	531	+	41	278	22	76	57	27
7		95	510	628		44	354	26	82	63	34
8		101	601	754		129	518	35	85	68	37
.0		6	148			88	102				
3											
2		46	281	140		100	207	14	41	37	8
4		70	392	274		106	295	25	70	59	24
6		80	496	410		121	382	36	82	70	33
7		93	550	469		122	430	41	89	75	32
8		101	617	515		129	483	46	100	82	33
9		114	736	570		205	633	64	105	96	45
10		131	883	638		299	811	76	105	104	51
11		194	1125	713		390	1032	99	104	113	59
12		263	1471	802		481	995	101	82	99	61
13	-	317	- 1937	+ 432	+	551	+ 730	- 122	- 9	- 51	+ 70

BEAM "F" STRAINS

BEAM "F" STRAINS

Load	Gag	ges				
P	R-6- V	R-6-45	Δ_{A}	Δ _B		
1	+ 9	+ 6	. 03	. 06		
2	12	6	. 06	.12		
3	12	5	. 09	.17		
4	11	5	.11	. 23		
5	18	7	.16	. 33		
6	22	8	. 23	.44		
0			.06	. 09		
3			. 15	.27		
3			. 15	. 27		
3			.14	. 27		
4	9	6	. 17	. 33		
5	10	7	. 21	. 40		
6	10	7	. 23	. 45		
7	10	3	. 31	. 57		
0		U U	. 10	.16		
3			.19	. 35		
6	16	13	. 28	. 51		
7	23	14	. 33	.56		
8	33	19	. 42	. 73		
0			.17	. 24		
3						
2	9	2	. 23	. 36		
4	8	7	. 29	. 48		
6	15	16	. 36	. 60		
7	23	14	. 38	. 66		
8	15	8	. 42	. 73		
9	10	10	. 54	. 91		
10	15	10	. 76	1.20		
11	+ 10	+ 12	1.12	1.65		
12	- 4	- 5	1.59	2.18		
12			1.70	2.33		
13	- 45	- 39	2.43	3.21		
14			3.20	4.18		
14.5			3.68	4. 71		
15			4.14			
15.5			4.56			
17.3				8.5		
0			5	7.9		