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Abstract

This paper addresses control surface segmentation in Micro Aerial Vehicles (MAVs)
by leveraging neuro-evolutionary techniques that allow the control of a higher number of
control surfaces. Applying classical control methods to MAVs is a difficult process due to
the complexity of the control laws with fast and highly non-linear dynamics. These meth-
ods are mostly based on models that are difficult to obtain for dynamic and stochastic
environments. Moreover, these problems are exacerbated when both the number of con-
trol surfaces increases and the model’s accuracy in determining the impact of each control
surface decreases. Instead, we focus on neuro-evolutionary techniques that have been suc-
cessfully applied in many domains with limited models and highly non-linear dynamics.
Wind tunnel simulations with AVL show that MAV performances are improved both in
terms of reduced deflection angles and reduced drag (up to 5%) over a simplified model
in two sets of experiments with different objective functions. We also show robustness to
actuator failure with desired roll moment values still attained with failed actuators in the
system through the neuro-controller.
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1 Introduction

Micro Aerial Vehicles (MAVs) provide an appealing solution to many tasks such as monitoring
[19, 18], reconnaissance, sensing [12], search and rescue, and enemy targeting [24] that may
not be accomplished by larger Unmanned Aerial Vehicles (UAVs). MAVs can accomplish such
demanding missions without posing a large threat in case of malfunction, since they are by
definition small and light. However, MAVs are notoriously difficult to control, and recent work
is focusing on developing stable flight characteristics [13, 32, 33, 15, 22, 10].

In general, MAVs have limited power, limited computational power and limited control
surfaces and actuators, which makes their control and navigation a considerable technical
challenge. In addition, because of their size and weight, they operate in regimes that are
highly non-stationary and have highly non-linear dynamics, making their control even more
difficult. MAVs range in size from 6 to 24 inches (15 to 60 cm), and fly at speeds of 10 to 50
mph (5 to 20 m/s) [1, 14]. In addition, MAVs must be able to operate around buildings and
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obstacles both in and outside of cities. As such, they need to be highly maneuverable and have
some robustness to changing environmental conditions (e.g., wind gusts) [5, 26].

Recent work has also focused on flexible-wing MAV designs to improve both the stability
of the vehicle and its robustness to wind gusts. These performance gains are the result of the
wing deforming continuously and absorbing the energy created by the instabilities of the air
flow rather than transmitting all that force to the motion of the MAV [1]. Indeed, flexible wings
can lead to a higher airspeed, higher climb rate, improved maneuverability, and a higher lift to
drag ratio which is particularly important for MAVs as it improves their gliding capabilities.

They key performance improvements for flexible-wing MAVs stem from the gains in energy
absorption characteristics of the deformable wings. In addition to this passive control benefits,
one can use an actuator to change the shape of the wing during flight where roll control of
an MAV was achieved by actively morphing the wing [10]. A first step towards an actively
deformable wing is one with segmented control surfaces which is a more practical solution both
in terms of simulation and fabrication. This approach was implemented on a remote controlled
5.5ft wingspan UAV [2]. The wing ailerons were divided into 16 independent control surfaces
that each had their own actuator. A reconfigurable controller was developed to actuate all 16
servos depending on the configuration. Flight tests showed promising results and improved
performance over the unmodified aircraft. Those tests demonstrated the concept of segmented
control surfaces and provided good preliminary results but provided no method for finding an
optimal actuation mode for the system.

A multiagent controller for segmented control surfaces was also proposed [6, 7] which aimed
to determine the impact of each control surface on the UAV performance using an objective
decomposition approach [30, 34]. The resulting system used the concept dubbed “MiTE” which
stands for Miniature Trailing Edge Effector, which are devices actuated with a deflection angle
of up to 90 degrees and are 1-5% of the chord in height. The UAV used for the experiment
was a flying wing with 6ft wingspan and 30 degrees of leading edge sweep. The results showed
the promise of using multiagent control for UAVs [6, 7].

Evolutionary computation techniques have been used successfully to solve benchmark con-
trol problems including the inverted pendulum [21] and the ball and beam [16] problems. In
addition, they have been used in real world applications such assearching through a space of
plans generated from a planning algorithm to yield good control policies in a planetary rover
control problem [9] and using “sub-populations” to control rockets [11] .

Furthermore, evolutionary algorithms have also been extended to complex control problems
such as multi-rover control problems [3, 31] where a large number of agents have to maximize
the overall system objective as well as their own objective [20, 27, 23]. This technique is
therefore well suited for controlling an MAV with segmented control surfaces. For example,
having agents try to maximize a global evaluation function through a process of finding good
collaborators that avoid suboptimal equilibria [20] or scaling evaluation functions to ensure
that the agents do not work at cross-purposes have been explored [25].

Contribution of this Work

In this paper, we show that (i) neuro-evolutionary techniques can be used to control multiple
surfaces to improve the flight characteristics of an MAV by designing appropriate objective
functions (e.g. roll moment value); and (ii) the neuro-controller is robust and can achieve the
desired roll moments even in the presence of failures. Section 2 describes the platform and
experimental setup, Section 3 shows the experimental results where drag on the MAV was
reduced by up to 5%, Section 3.4 shows the results with failures present in the system, and



Section 4 discusses the relevance of the results and highlights directions for future work.

2 Segmented Surface Control for MAVs

The key in determining how to control the segmented surfaces of an MAV is in both modeling
the vehicle well and establishing the correct objective functions. In this section, we first present
the specific MAV configuration, then provide three different objective functions for assessing
performance, and finally discuss the approaches to optimizing those functions.

2.1 Micro Aerial Vehicle Characteristics

In this work, we use a modified GENMAYV [26], an MAV developed by the Air Force Research
Laboratory Munition Directorate (AFRL/RW). This MAV include a 24 inch wingspan with a
5 inch chord, circular fuselage 17 inches long, and a dihedral angle of 7 degrees. This MAV
was designed for a flight speed of between 10 and 50 mph with an average flight speed around
30mph. We use the vortex-lattice method aeroprediction code AVL (Athena Vortex Lattice)
to compute the aerodynamic characteristics of this MAV [26].

In these experiments, we used a modified GENMAYV with a different wing for improved low
speed performance as well as a conventional tail (as opposed to the V-tail) to include a greater
number of control surfaces. In addition, we further modified GENMAYV to include a greater
number of control surfaces. As a first step, only the tail sec As a first step, only the tail section
was modified with the elevons broken down into multiple control sections. Test configurations
include 4 elevons on each side of the tail, for a total of 8 elevons. A configuration with 12
elevons was also tested (6 elevons on each side of the tail).

2.2 System Objective Functions

The selection of objective functions play a key part in determining the success of any con-
trol algorithm. The key in for the MAV task is to both meet the target value of the desired
forces/moments and minimize the actuator angles of the different control surfaces of the ele-
vator (8 and 12 controls surfaces total).

2.2.1 Minimizing the Drag

The first objective function G, (See Results in Section 3.1) is calculated using the drag and
roll moment desired value.
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Where C', (1, and Cs are normalization constants with values of 9, 200, and 484000 respec-
tively, Fy; is the force of drag, Fy,, is constant and equal to 0.142, Ly and L, are the desired
and actual roll moment values. In this case, a good value for « is 0.998. The drag calculation
is done internally in AVL.

2.2.2 Minimizing Elevon Angles

The second objective function Gy, (See results in Section 3.2) used is calculated using the
actuator angles and roll moment target value.



N
+ (1= a)Ca ) lon— | wi []” (2)

=1

La - Ld>2

Gu, = aCj lc - ( i

Where L; and L, are the desired and actual roll moment values, w; is the deflection of the
control surface (with a maximum deflection of wy; = 4 30 degrees for each actuator), and C,
C3 and Cy are normalization constants with values of 9, 200, and 2/N respectively, and N is
the number of control surfaces. For these experiments, a needs to be 0.998 or above, otherwise
the roll moment target value cannot be reached.

2.2.3 Minimizing Relative Angle Between Elevons

Another similar objective function G, that was used was designed to minimize the actuator
deflection angles relative to each other.
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Where C, C5, and Cg are normalization constants with values of 9, 200, and 2/N respec-
tively, Ly and L, are the desired and actual roll moment values, w; is the deflection of the
control surface (with a maximum deflection of wy; = 4+ 30 degrees for each actuator), and N
is the number of control surfaces.

2.3 Optimizing M AV Objectives

In this work, we use a feed-forward neural network trained using a neuro-evolutionary algorithm
([3, 11, 17, 28]) to optimize the MAV objective functions discussed above. The neural network
learns the configuration of the control surfaces through the system objective function that
is designed to achieve the targeted forces and moments and at the same time minimize the
control surfaces’ deflections or drag.

This algorithms employs an evolutionary process that starts with a set of randomly initial-
ized neural networks. New neural networks are generated by modifying (mutating) parameters
using values sampled from a Cauchy distribution. In subsequent time steps (generations) the
algorithm selects a candidate controllers from the pool using e-greedy selection. The new
network is stored in the pool only after an agent has used it and sampled their resulting per-
formance, with the poorest performing network begin discarded. The population size was set
at ten networks.

The structure of the neural networks consisted of a feed forward neural network with one
hidden layer [8]. This network has six inputs (corresponding to the total forces and moments
applied to GENMAV), and eight or twelve outputs (corresponding to the angles of the elevator
control surfaces for). In these experiments with eight and twelve control surfaces, each control
surface could move independently between -30 and +30 degrees. The results reported below
are based on neural networks of twelve hidden units (the results are fairly insensitive to this
parameter), an epsilon-greedy selection probability of € = 0.05, a level of initial weights of
v = 0.1, a level of mutations of mutate v = 0.05, and a probability that a weight will be
mutated of 0.02. These parameters were then kept constant for the experiments described in
section 4. All results are based on N=12 runs and for a standard deviation of o, we show the

differences in the mean (ﬁ) when appropriate.



Finally, we coupled the neural networks to the Athena Vortex Lattice (AVL) software
package which is an aerodynamic prediction code based on a vortex-lattice method. AVL was
used to estimate the aerodynamic characteristics of GENMAYV under different conditions and
configurations. The output of AVL includes the forces and moments for the entire configuration
as well as the lift and drag coefficients.

The simulation runs consist of providing forces and moments as inputs to the neural net-
work, obtaining elevon angles from its outputs, running AVL to provide the resulting aero-
dynamic parameter values, computing the objective function, and having the neural network
learn from the objective function.

Azim = -45°
Elev - 20°

AvL 3.26 GenMAV_Airveh

Figure 1: GENMAYV in AVL

3 Experimental Results
In order to evaluate the impact of using multiple control surfaces and training a neuro-controller
to optimize the control surface angles, we performed the following experiments:

e The basic configuration consisted of a GENMAYV with 2 elevons. This was used to obtain
the aerodynamic parameter values that are used as a reference.

e A neuro-controller was used to control segmented control surfaces to explicitly minimize
the:
— drag (Section 3.1)
— actuator angles (Section 3.2)
— relative actuator angles (Section 3.3)

e Finally, a neuro-controller was used to control the system if the event of an actuator
failure.



3.1 Neuro-Controller Evolved to Explicitly Minimize Drag: Gprac

We explored the potential to explicitly reduce drag by incorporating a drag term in the objec-
tive function that the neuro-controllers aims to optimize. This objective function (described
in Equation 1) directly accounts for drag and roll moment target values but does not include
the actuator angles.

Figures 2 and 3 presents the results for the drag data with Gprag. Figure 2 shows an
example of the elevon positions for the configuration with 2 and 8 elevons. While these solutions
are similar to the ones found with Gpgr and Gpgpe, the solution provided by G prag shows
more symmetry in the elevon configuration.

Figure 3(b) shows the results for the drag with the 3 different objective functions Gprag,
Gper, and Gpgrs. Gpgere produces results that are similar to Gprag, which indicates that
minimizing the relative angles in between elevons can be used to indirectly minimize the drag.
This is a particularly important result since the drag was available through the use of AVL,
the aero-prediction code each time the elevon configuration is modified. The drag calculation
for those configurations takes a significant amount of time and is usually not available directly
when using flight simulators, and would not be possible for real flights of an MAV platform.
Minimizing the relative deflections of the elevons can therefore provide a very good alternative
to using the drag directly in the objective function calculations.
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Figure 2: Elevon Angles with 2 and 8 control surfaces (Min Drag, Roll Moment = 0.028)

This solution is the intuitive solution that we would expect when trying to induce roll on
the MAV while trying to minimize drag.

3.2 Neuro-Controller Evolved to Minimize Actuator Angles: Gpgr

Minimizing the elevons angles provides improved MAV flight characteristics such as smoother
flight maneuvers which is an important benefit for MAVs. This section shows the results of
experiments where several roll moment target values are achieved while at the same time the
actuator angles are minimized.

Figure 4 shows an example of the elevon angle values for a target roll moment value of
0.030. The elevon angles are progressively minimized as the neural network learns the optimal
solution for the desired roll moment. To achieve a desired roll moment value of 0.030 with the
standard configuration (2 elevons) requires the right and left elevons to move to 15 and -30
degrees respectively as shown in Figure 4(a). Figure 4(b) shows the elevon angles with the 8
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control surfaces MAV configuration. This configuration reduces the elevon angles which allows
for smoother maneuvers and does not require as much effort from the actuators.
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Figure 4: Elevon Angles with 2 and 8 control surfaces (Roll Moment = 0.030)

A second and arguably more important benefit of segmented control surfaces is the po-
tential for drag reduction. Figure 5(a) shows the drag results for the MAV with 8 elevons
versus the MAV with its original configuration (right and left elevons). This particular MAV
configuration coupled with the first objective function Gpgr (Section 2.2.2) does not exhibit
any significant drag reduction suggesting that another objective function might provide better
results. Another intuitive solution would be to minimize the relative angle between an elevon
and its two direct neighbors. This solution is presented in Section 3.3.

3.3 Neuro-Controller Evolved to Minimize Relative Actuator Angles:Gpgp

Figure 6 show similar results as Section 3.2 with the second objective function G pgrs presented
in Section 2.2.3. The elevon angles are minized for smoother flight maneuvers. As with the
first objective function Gpgr, no significant drag reduction can be observed between the
configuration with 2 and 8 elevons (Figure 7(a)). However, Gppro induces significantly less
drag than Gpgp for some of the lower values of the roll moment as can be seen in Figure
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7(b). Gprre would therefore be a better objective function than Gpgr because it effectively
minimizes the elevon angles while at the same time inducing less drag.
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Figure 6: Elevon Angles with 2 and 8 control surfaces (Roll Moment = 0.028)

The results presented in this paper are promising and show the potential for improving
MAV flight characteristics and increasing MAV robustness by using a larger number of control
surfaces. The control of such a modified MAV is possible with the use of a neural network that
if properly tuned and trained can provide optimal solutions to the MAV control problem.

3.4 Neuro-controller for Actuator Failure

The graphs in Section 3.4 shows that it is possible for a Neural Network to learn and adapt
to changes in the environment, in this case failure of an actuator which changes the system’s
dynamics in order to regain control of the MAV. First Figure 8 shows that the desired roll
moment can still be achieved when an actuator fails by finding a new solution that compensates
for that failure. This is the case for both objective functions, minimize the elevon angles and
minimize the relative deflections between elevons.

Figure 9 shows the drag results when comparing the system with and without failures.
Results show that the drag is not negatively impacted when a failure occurs in the system.
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Drag is even slightly better when a failed actuator in some cases depending on how and where
the failure occurs. This is primarily due to the objective function that in these cases minimize
the actuator angles or relative angles between actuator which indirectly reduces the drag but
does not necessarily always find the optimal solution for minimizing the drag.

These results demonstrate that control surfaces segmentation can be controlled by a neuron-
evolutionary based controller in the event of an actuator failure therefore increasing the robust-
ness of the platform. These results are important and show that a neuro-controller trained to
the specifics of an MAV in simulated flight combined with control surface segmentation could
be used for critical missions where actuator failures could be managed so that the mission
can still be completed. To be applicable on an actual platform, it is important to note that
actuator failures need to be detectable by the system through some type of sensing mechanism.
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4 Discussion and Future Work

MAVs provide both the promise of new data gathering tools and the challenge of a difficult to
control systems. To date, their applicability to the domains in which they are the most needed
(e.g., dangerous search and rescue or reconnaissance) has been limited by the difficulties in
obtaining good control algorithms. This paper presents control surface segmentation as a
novel approach to the MAV control problem. In addition, it provides improvement of the
flight characteristics by introducing a larger number of control surfaces on the elevon control
sections.

Sections 3.2,3.3 and 3.1 showed the effectiveness of using neuro-evolutionary controller
for segmented control surfaces. Using segmented control surfaces allows for smoother flight
characteristics and flight maneuvers through minimization of actuator angles. Additionally,
drag reduction of up to 5% can be seen for the larger values of the roll moment. If drag
reduction is the objective, and if the drag is directly available, direct use of the drag in the
objective function calculations provides the best results. However, if the drag is not available,
minimizing the deflection between elevons still provides similar results and could be used
instead.

Results showed a drag improvement of up to 5% which was obtained by a gradual deflection
of each actuator which lead to a smoother control effort. Also, simulations conducted with 8
and 12 elevons showed no significant differences between the 2 configurations which indicates
that for this particular problem and configuration, 8 elevons are sufficient and increasing the
number of elevon segments will not improve the drag or efficiency of the MAV. The solutions
provided by the neural network matches the intuition that a gradual actuator deflection would
provide close to optimal solutions. Results presented in this paper show the potential of
such configurations to improve flight characteristics of MAVs that are inherently difficult to
control. Neural networks can effectively learn from the system and provide an optimal system’s
configuration therefore allowing such modifications on an MAV platform. Furthermore, such a
configuration would provide a higher level of robustness to the system that could recover and
adapt from potential failures of some elements in the system which is critical for completing
the assigned missions as seen in section 3.4. The Neural Network was able to learn and adapt
to the new MAV configuration that included a failed actuator and was able to provide a new
solution for the control strategy in order to stay in control of the vehicle.

The results presented in this paper are a first step that shows the potential of leveraging
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learning methods to accommodate a larger number of control surfaces on an MAV. Using these
methods allows improvements in the flight characteristics of MAVs as well as provide more
robust control strategies where recovering from potential failures is critical. More experiments
will be conducted using a similar configuration to improve upon the results shown in this
paper. Such experiments could include fine tuning the system objective function to improve
the drag reduction in different situations and for different desired values of some parameters.
Another valuable experiment would be to repeat similar experiments with two or more different
algorithms such as Q-Learning to see if one would perform better than the other for different
configurations. A significant improvement is expected with the use of multiagent techniques
applied to the MAV control problem [3, 29, 30]. The system would then consist of independent
agents (control surface actuators) that would learn to maximize a reward that would be specific
to each agent but that would benefit the overall system.

Another important goal is to provide a flight controller that increases the robustness of the
MAV to wind gust and various perturbations in simulated and real flight conditions. This is
achieved with a flight dynamic simulator (JSBSim) that provides changes in the environment
so that different control strategies can be established to maintain control of the vehicle in
situations where PID based controllers do not perform well due to the high instabilities. The
control loop consists of the flight simulator advancing the state of the system to the next time
step using the neuro-controller’s outputs (elevon position, motor speed), the neuro-controllers
then uses the new states information as inputs in order to provide the next control inputs
to the flight simulator. Robustness to wind gusts and perturbations as well as robustness to
actuator failure will provide important improvements to the MAV control problem.
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