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ABSTRACT 

Pfender, W. F., Coop, L. B., Seguin, S. G., Mellbye, M. E., Gingrich, G. 
A., and Silberstein, T. B. 2015. Evaluation of the ryegrass stem rust 
model STEMRUST_G and its implementation as a decision aid. 
Phytopathology 105:35-44. 

STEMRUST_G, a simulation model for epidemics of stem rust in 
perennial ryegrass grown to maturity as a seed crop, was validated for use 
as a heuristic tool and as a decision aid for disease management with 
fungicides. Multistage validation had been used in model creation by 
incorporating previously validated submodels for infection, latent period 
duration, sporulation, fungicide effects, and plant growth. Validation of 
the complete model was by comparison of model output with observed 
disease severities in 35 epidemics at nine location-years in the Pacific 
Northwest of the United States. We judge the model acceptable for its 
purposes, based on several tests. Graphs of modeled disease progress 
were generally congruent with plotted disease severity observations. 
There was negligible average bias in the 570 modeled-versus-observed 
comparisons across all data, although there was large variance in size of 
the deviances. Modeled severities were accurate in >80% of the compari-

sons, where accuracy is defined as the modeled value being within twice 
the 95% confidence interval of the observed value, within ± 1 day of the 
observation date. An interactive website was created to produce disease 
estimates by running STEMRUST_G with user-supplied disease scouting 
information and automated daily weather data inputs from field sites. The 
model and decision aid supplement disease managers’ information by 
estimating the level of latent (invisible) and expressed disease since the 
last scouting observation, given season-long weather conditions up to the 
present, and it estimates effects of fungicides on epidemic development. 
In additional large-plot experiments conducted in grower fields, the de-
cision aid produced disease management outcomes (management cost 
and seed yield) as good as or better than the growers’ standard practice. In 
future, STEMRUST_G could be modified to create similar models and 
decision aids for stem rust of wheat and barley, after additional experi-
ments to determine appropriate parameters for the disease in these small-
grain hosts. 

Additional keywords: Lolium perenne, model validation, Puccinia graminis 
subsp. graminicola. 

 
The simulation model for stem rust epidemics in perennial 

ryegrass, described in the accompanying article (25), was 
constructed with the goal of improving disease management 
through education and decision support. Fungicides to control 
stem rust caused by Puccinia graminis subsp. graminicola 
represent the largest expenses for disease control in seed crops of 
perennial ryegrass (Lolium perenne) in some of the world’s major 
seed production regions, such as the Pacific Northwest of the 
United States (37). Stem rust epidemic severity and, thus, the 
need for fungicides can differ dramatically from year to year and 
from field to field within a year. Because of this unpredictability 
of stem rust epidemic severity, and because the disease is capable 
of causing severe yield loss in the perennial ryegrass seed crop 
(21), a management decision aid for fungicide application would 
be useful. 

The intended uses of the epidemic model STEMRUST_G (25) 
are heuristic as well as pragmatic. When implemented in a form 
that allows users to visualize the effects of various inputs 
(weather conditions, fungicide applications, and initial disease 
levels) on epidemic development, the model can serve as a tool to 
learn about the biology and behavior of stem rust epidemics. In 
practical use, the model can be combined with information about 

the damage threshold (21) and implemented as a decision aid for 
fungicide application. The model’s value for either use depends 
on how well its output corresponds with actual dynamics of the 
epidemic and, therefore, it is necessary to evaluate the per-
formance of the model. 

Model evaluation is a multifaceted concept. Rykiel (28) 
presents a thorough treatment of the subject, including historical 
development of approaches and philosophy. He notes that a model 
can be evaluated for its intrinsic logic (“verification”), agreement 
between modeled biological parameters and observed phenomena 
(“calibration”), sufficiently accurate behavior of the model 
(“validation”), confidence in its application to real situations 
(“credibility”), and applicability over geographical or other 
domains (“qualification”) (28). A key point regarding validation is 
that there is no objective standard for the criterion of the model 
being “sufficiently accurate for its purposes”. The standard must 
depend on the intended use of the model as well as on the sta-
tistical behavior of the real system being modeled. It is noted that 
data are not necessarily an infallible standard for judging model 
performance, because the obtainable data may be wanting in 
accuracy or precision (28). Various procedures have been pro-
posed for the validation process (29). These include “subjective” 
evaluation by visual assessment of graphed results, “event 
validity” for modeled versus observed outcomes with respect to 
timing and magnitude, “multistage validation” in which sub-
processes of the overall model are individually validated, and 
“statistical validation” to compare statistical properties of the 
model output and the real system. Most researchers agree that the 
model should be validated against data that were not used in 
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model calibration (11). Rykiel (28) notes that a model is an 
analogy, not a complete representation, and that metrics of its 
validity should depend on the purpose of the model, criteria for 
acceptability, and context for its use rather than on its ability to 
quantify in detail all aspects of the biological process. 

In most published validations of simulation models for plant 
disease epidemics (1,4,7,26,30,31,34), a combination of subjec-
tive (graphical representation) and statistical methods was used. 
The statistical methods comparing modeled and observed out-
comes included analysis of epidemic rate (1), area under the 
disease progress curve (AUDPC) (4), timing of benchmark 
disease severities (31), and direct comparison of observed versus 
modeled values (7,26,34). The statistical assessment typically was 
based on a predefined but nonstandard level of acceptable 
deviation deemed appropriate to the intended use of the model 
(4). For a late blight model that was reparameterized for use in a 
geographical area different from its original range (3), a specific 
study was done to qualify for model for use in the new area (2). 
The usual combination of subjective and statistical validation has 
been applied to the few simulation models previously published 
for rust diseases of graminaceous plants (26,34). 

One important application for plant disease epidemic models is 
in decision aids for disease management (9,14,15). Historical 
progress in decision aid implementation has been driven, in large 
part, by technology for collecting data and disseminating informa-
tion. The earliest plant disease decision aid implementations, such 
as the first potato late blight decision aids (13), made use of 
manually read data loggers for data collection and the telephone 
for notification. An era of on-farm weather stations, bio-accumu-
lators, and coupled models on personal computers began in the 
1980s and continues today (10,33). Another approach is the use of 
a network of sentinel sites in crop fields from which weather and 
disease data are disseminated by publicly led sources (8,16,32) or 
private companies (27,35). Since the Internet era began in the 
1990s, the standard has been Internet-accessible interactive web-
sites, where incoming weather data drives models that are 
initialized by users’ selected inputs (5,12,38). 

The objectives of the work described in this article were to (i) 
validate the STEMRUST_G model (25) for its use in representing 
the behavior of stem rust epidemics in perennial ryegrass seed 
crops and as a decision aid effective for managing the disease and 
(ii) produce an interactive website to deliver decision aid informa-
tion to disease managers. 

MATERIALS AND METHODS 

Field observations of stem rust epidemics. The stem rust 
severity data to be used in validating the epidemic model were 
collected from 35 epidemics observed in replicated field plots of 
perennial ryegrass in experiments conducted from 1999 to 2004 
and 2006 to 2007. In 1999 to 2004, the observations were made in 
experiments conducted at the Hyslop experiment farm near 
Corvallis, OR. The data of 1999 to 2004 were from 26 observed 
epidemics that were not used in model development (25). The 
plots were planted in autumn with seed of perennial ryegrass 
(‘Morningstar’, moderately susceptible) in rows 30 cm apart. 
Experiments were conducted the following summer (first-year 
plantings) or in the second summer (second-year plantings). The 
seed crop reaches maturity and is harvested in early to mid-July. 
Individual plots were mostly 4.2 by 7.5 or 16 m in size, and there 
were three to five replicate plots per treatment, arranged in a 
balanced randomized complete block design and separated from 
one another by at least 6 m. Treatments were defined by fungicide 
application (fungicide type and timing, including nontreated) and 
stand age. For purposes of validation, the season-long disease 
development in each replicated treatment was considered an 
epidemic. Fungicides were applied with mechanized equipment at 
labeled rates: propiconazole at 184 g active ingredient (a.i.)/acre 

as Tilt, azoxystrobin at 150 g a.i./acre as Quadris, or a mixture of 
propiconazole and azoxystrobin at 185 and 111 g a.i./acre, re-
spectively, as Quilt (all fungicides manufactured by Syngenta 
Inc., Basel, Switzerland). In 2006 and 2007, data were obtained 
from replicated-plot experiments in grower fields. In these 
experiments (nine epidemics) there were three replicate plots  
(8 by 80 or 135 m) per treatment, and the perennial ryegrass culti-
vars were ‘OS’ in 2006 and ‘VNS’ in 2007. Fungicide application 
was as described. Stem rust epidemics developed from natural 
inoculum in all experiments (1999 to 2007); therefore, there was 
considerable variation in epidemic severity among years. 

Disease severity assessment was at 1- to 3-week intervals, as 
described previously (21,25). Early-season assessments were 
made by counting pustules in randomly selected 15-cm lengths of 
row, 5 to 10 samples per plot. Starting in late April, when the 
canopy closed, disease severity was sampled by counting pustules 
in 5 to 10 randomly placed quadrats (15 by 15 cm) per plot. As 
previously noted (25), there is a logistical constraint on counting 
all pustules through the full canopy depth when significant growth 
has occurred; therefore, a conversion algorithm (25) was em-
ployed to estimate total disease from disease observed in the 
quadrat. The observations of the 5 to 10 samples per plot were 
averaged to produce the replicate-plot value for the sampling date. 
No attempt was made to account for spatial distribution of the 
disease within a plot. In the experiment-farm plots (1999 to 2004), 
access to the plots was by a movable platform suspended above 
plants, thus minimizing disturbance of epidemic progress that 
would result from an observer entering the plots. In the grower-
field experiments (2006 and 2007), the plots, which were much 
larger, had to be entered by the observer. In all years, for each 
sampling date and each treatment, the three to five replicate-plot 
observations were used to calculate the average severity and the 
95% confidence interval (CI) of that value. A disease progress 
curve was constructed for each treatment (average severity versus 
time). The AUDPC was expressed as percentage of the healthy 
crop area duration (36) for the 3-week critical period midway 
between anthesis and seed maturity (21). 

Weather data. Each year at the field sites, weather data (air 
temperature and leaf wetness at canopy height, rainfall, and 
relative humidity at 1.5 m above the ground) were measured at 
15-min intervals by means an automated weather station (Camp-
bell Scientific Inc., Logan, UT). Technical details of the sensors, 
their placement, and the recording equipment are provided in a 
subsequent paragraph. Each weather station was equipped also 
with communications gear automated for daily transmission of 
the collected data to a base station computer for convenient access 
and further processing. The weather data were used to calculate a 
daily value for infection favorability of the weather (18) as well as 
daily accumulation of heat units for calculating predicted 
development of plant and pathogen (17,25). 

Model runs. This article describes validation experiments for 
STEMRUST_G, the simulation model for perennial ryegrass stem 
rust (25). The perl code for STEMRUST_G, as well as accom-
panying files of documentation and example datasets, are 
available for download from the grass stem rust estimator website 
(http://pnwpest.org/cgi-bin/stemrust1.pl). 

Output of STEMRUST_G was produced for each epidemic to 
compare with the actual disease severity observed at various times 
during the season. Each model run used the weather input (.ril 
file) (25) created from data obtained at the site and year of the 
epidemic; the plant phenology biofix input (date of flag sheath 
appearance) (25) was observed directly. Observational sampling 
error at very low disease levels rendered such observations 
unreliable; therefore, model runs were conducted only for initial 
values > 1 pustule (average) per 900-cm2 quadrat. Several model 
runs were conducted for each epidemic, one run starting for each 
observation date at its observed disease level (25). In this way, the 
output for each of the runs included daily disease severity values 
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for all observation dates subsequent to the run initialization date. 
For example, an epidemic with six observation dates would have 
five model runs: the run initialized on observation date 1 would 
produce output to include disease severities for dates 2 through 6, 
the run initialized on date 2 would produce output for dates 3 
through 6, and so on. Under the definitions and operation of the 
model, “observed” disease represents active (living) pustules. The 
fungicides kill a proportion of existing pustules (20,22) but their 
appearance remains similar to that of living pustules for several 
days, during which time the two classes are nearly indistinguish-
able. Therefore, we applied a rule to add modeled fungicide-killed 
pustules to the modeled living pustules for dates ≤5 days after a 
fungicide application. AUDPC for the yield-critical 3-week time 
window, centered between anthesis and harvest (21), was calcu-
lated for each run. Modeled disease area as a proportion of 
modeled plant area was integrated across this time window to 
produce AUDPC expressed as percentage of healthy area duration 
(36). 

Analysis for model validation. Because a stem rust epidemic 
may encompass observed disease severities ranging over four to 
six orders of magnitude, all data were converted to log10 values 
before graphing (Fig. 1) and analysis. Several procedures were 
used to compare observed disease severity with modeled severity 
for each observation date. A subjective (29) evaluation for the 
congruence of model output with observed values was conducted 
by visual examination of graphs. Epidemics were selected for 
graphing based on results of quantitative tests for accuracy 
described later in this section. For each of the nine location-years, 
the three epidemics for which the model gave the most accurate, 
the least accurate, and intermediately accurate representation, 
respectively, were evaluated. 

Overall bias of the model in representing observed data was 
evaluated as the deviation in disease severity (modeled minus 
observed) averaged across all data points We also plotted each 
deviation against the time interval between the model run 
initiation date and the comparison date. To score accuracy of the 
model, we assessed whether or not the modeled value for disease 
severity on a given day was within a predefined tolerance of the 
observed severity. We took the 95% CI of each observation to 
represent the range of its true value, then chose a twofold differ-
ence as an acceptable tolerance, further allowing the modeled 
value to fall within this envelope (2× the 95% CI) within ±1 day 
of the observation-value date. Because all data analysis was 
conducted on log10 values, doubling the 95% CI was done by 
adding 0.3 to its computed value. A binary assessment (accurate 
or not by the tolerance criterion) was assigned to the modeled-
versus-observed comparison for each data point. Each comparison 
was also classified according to the time interval between model 
initialization day and target comparison day. Our criterion for 
validation of the model with respect to accuracy of predicted 
severity was that ≥75% of modeled severity points should be 
accurate for model runs initiated up to 2 weeks prior to the target 
date, a reasonable amount of time for crop advisors to take a 
management decision. In addition to bias and accuracy assess-
ment, we compared modeled versus observed critical-period 
AUDPC for model runs initiated at the beginning of the criti- 
cal period as well as at 1 and 2 weeks prior to the critical period. 
The AUDPC were plotted (modeled versus observed), and  
also classified in a two-by-two contingency table of less than  
or greater than the damage threshold (2% reduction in healthy 
area over the critical period) (21) for modeled and observed. As  
a point of qualification, we compared the deviation (modeled 
minus observed) in the training data set with that in the validation 
data set, which included a larger range of years and some addi-
tional locations and cultivars. We also compared the modeled-
minus-observed deviation in the epidemics monitored at the 
experiment farm (1999 to 2004) with those in grower fields (2006 
and 2007). 

Fig. 1. Modeled (solid line) and observed (squares) disease severity for 
selected epidemics of perennial ryegrass stem rust in nine location-years. Each 
disease progress curve was produced by the simulation model STEMRUST_G
initialized with the season’s first observed value >1 pustule per 900 cm2, and 
run with inputs of the site’s season-long weather data and fungicide 
applications (if any). For each location-year (row), three epidemics were 
selected to display that location-year’s most accurately modeled epidemic (left 
column), least accurately modeled epidemic (center column), and an epidemic 
with intermediate model accuracy (right column). Epidemic location-years are 
Hyslop experiment farm in A to C, 1999; D to F, 2000; G to I, 2001; J to L, 
2002; M to O, 2003; and P to R, 2004 and grower fields in S to U, 2006 
(GF_Sp06); V to X, 2007 (GF_Sh07); and Y to Z, 2007 (GF_Jc07). Accuracy 
classes are based on proportion of modeled values that fell within twice the
95% confidence interval of observed values: most accurate (A, D, G, J, M, P, 
S, V, and Y), least accurate (B, E, H, K, N, Q, T, W, and Z), and intermediate 
accuracy (C, F, I, L, O, R, U, and X). 
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Interactive website decision aid. A decision aid for fungicide 
application to manage perennial ryegrass stem rust was con-
structed as an Internet website. Requirements for the website 
were (i) collection and transmission of weather data from field 
locations to a server, where it can be used as input to drive 
STEMRUST_G, and (ii) creation of an interactive webpage, 
where users can supply required information about their crop and 
visualize the resultant output of the model displayed in a context 
of useful information. 

Weather data were collected by automated weather stations 
located in grass seed fields of western Oregon’s Willamette 
Valley, where almost all the region’s grass seed production is 
centered. Equipment manufactured by Campbell Scientific Inc. 
was used in all years and, in some years, there were also fields 
monitored with equipment produced by Adcon USA (Davis, CA). 
Data, collected at 15- or 30-min intervals, included air tem-
perature and leaf wetness at canopy height, as well as rainfall, air 
temperature, and relative humidity at 1.5 m above the ground. Air 
temperature was measured with a thermistor probe mounted in a 
vaned shield. Leaf wetness was measured with a painted, flat-
plate resistance grid mounted at a 45° angle facing west (18). In 
most installations, there were two air temperature probes (for 
redundancy and quality control assessment) and two leaf wetness 
sensors. If data from both leaf wetness sensors looked plausible 
(characteristic diurnal variation), a sampling interval was classed 
as wet if either of the sensors indicated wetness. Each morning, 
the datalogger program calculated the overnight infection-favor-
ability value (a temperature and leaf-wetness algorithm) (18). 
Data from each field location were transmitted daily at 10 a.m. by 
cell phone (for Campbell Scientific weather stations) or radio (for 
Adcon stations). The information was routed to the base-station 
server where the code for STEMRUST_G and the website 
interface resided. On the server was a script to read the field data 
file and transform it into the weather input file needed to run 
STEMRUST_G. This input file (.ril file) (25) has one line of data 
for each day, with columns (daily entries) for rainfall, cumulative 
heat units (17), and favorability of weather for infection (18) 
calculated from the field weather data. There were at least 3 and 
as many as 12 weather stations in operation in different years. In 
every year, there was a station at the Hyslop experiment farm near 
Corvallis, as well as a station in the north part of the Willamette 
Valley and another in the higher-elevation region in the foothills 
of the Cascade Mountains. In most years, there was a station near 
the south end of the valley. When funds were available for addi-
tional stations, they were placed to balance extent and intensity of 
geographic coverage for the grass seed production area. 

The website interface was written in HTML and Javascript (on 
the client side), and Perl (on the server side). The interface was 
written to display model inputs and results on the same page, to 
simplify presentation and to encourage “gaming” or changing 
inputs to discover effects on the outputs. It has a drop-down menu 
to select the geographic source (weather station location) of the 
weather data to be used in running STEMRUST_G. The user 
enters the observed disease severity obtained by scouting the 
field. Disease severity, with observation date, can be entered as 
number of pustules per unit length of row or number of pustules 
per 10 grass tillers. There is information in a text box, as well as a 
link to photographs, to guide collection of the disease severity 
information. The user also enters a plant phenology date (or lets 
the program provide a default value). For fungicide applications 
that have taken place, the user can enter the fungicide type 
(triazole, strobilurin, or the mixture of these two) and date for up 
to five applications. The model assumes that these applications 
are at full labeled rate. A box in the center of the page is 
populated with text providing help information when the cursor is 
positioned at a corresponding part of the webpage. After the user 
clicks the “compute” button, a graph is populated with output 
from STEMRUST_G run with the inputs (weather data, scouting 

observations, and fungicide history) that the user has selected and 
provided. The graph plots rust population (log10 [pustules per  
30 cm of row]) versus date, with separate lines for visible disease 
and for total infections (visible pustules plus latent infections). 
The graph has an empirically estimated action threshold line that 
can be compared with the line representing total infections to 
indicate the need for fungicide application (25). The same figure 
also displays each day’s “infection value”, the conduciveness of 
the weather to infection. The design and operation of the webpage 
allows the user to see the results of STEMRUST_G run for any 
current or past-year (archived) weather dataset, with any chosen 
disease severity input and fungicide history. Interpretation of 
graphed results is left to the user’s discretion. As explained in one 
of the website help messages, if the total active infections line 
crosses above the action threshold line, then the need for 
additional fungicide treatment is implied but not stated explicitly. 
No forecasted weather data, either as a real-time forecast or as 
historical normal data, are provided in the current version to allow 
predicting future stem rust activity. 

Field performance of decision aid. A pragmatic test of the 
STEMRUST_G-based decision aid was conducted as large-plot 
tests in grower fields over the course of 5 years (2004 to 2008) at 
two locations in western Oregon each year (3 of the 10 location-
years were also included in the model validation procedures 
described in previous paragraphs). The fields were perennial 
ryegrass grown for seed under standard production practices. 
There were eight different cultivars represented among the 10 
fields, and 9 of them were in their first year of production. 
Experiments were arranged in randomized complete block design, 
with three replicate plots per treatment; individual plot size was 8 
by 80 to 125 m. A weather station was installed at each site, with 
communications gear to provide daily data transmission. 
STEMRUST_G was run with the weather data, plant phenology 
biofix, and disease scouting data from each site. One treatment at 
each site received fungicide applications as indicated by the 
STEMRUST_G decision aid; that is, whenever the model output 
for total disease (latent plus erumpent) reached the action 
threshold for the fungicide to be used. Fungicide choice was 
based principally on plant phenology: a strobilurin-containing 
material was used if an application was made during active tiller 
elongation (due to its superior activity against sheath-to-culm 
disease transmission) (19,20), whereas propiconazole alone 
typically was used for applications before or after this develop-
mental stage. In accordance with the fungicide label, the stro-
bilurin-containing material was not used more than twice during 
the season on a given field. Another treatment at each site 
received fungicide applications according to “standard practices” 
(i.e., whenever the grower made fungicide application to the 
remainder of the field in which the plots were located). The 
fungicides and their application methods were as described in a 
preceding paragraph. There was one, nonreplicated plot at each 
location in which no fungicides were applied. This nontreated 
check was not used in analysis of variance or mean separation 
calculations but served as an indicator of ambient epidemic 
severity for each location-year. Plots were harvested at maturity 
with commercial equipment. For each plot, total harvested seed 
weight was determined and a subsample was analyzed for percent 
cleanout (percentage of the harvested weight remaining as market-
able seed after standard cleaning procedures). The calculated 
clean-seed weight per plot was used as the value for statistical 
analysis. For experiments with a statistically significant difference 
in seed yield between the standard and decision-aid treatments, 
the difference was multiplied by the farm-gate price per kilogram 
of seed to calculate treatment effect on value of the harvested 
seed. Economic benefit of the decision aid was evaluated as 
difference in economic return between the standard-practice and 
decision-aid managed treatments. Return was calculated as value 
of harvested seed minus cost of fungicide treatments. 
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RESULTS 

In most of the 35 data sets for epidemics of stem rust of peren-
nial ryegrass, STEMRUST_G performed well as judged by con-
formance of the model estimates to the general shape and position 
of the observed-data epidemic curves (“subjective validation”) 
(29). Modeled and observed disease values for epidemics in nine 
location-years are displayed in Figure 1, including many in which 
fungicides were applied as well as some that were nontreated. The 
individual epidemics illustrated in this figure were selected for 
display based on deviation of modeled versus observed values. 
For each location-year, the data set with the greatest overall 
model accuracy (observed versus modeled) is shown in the left 
column, the data set with the poorest model accuracy is in the 
middle column, and a data set with an intermediate accuracy is in 
the right column. Accuracy level had been determined as in 
Figure 2B. Among the 26 graphs of Figure 1, the disease progress 
curve produced by the model is, by visual assessment, generally 
near the observed data points in 20 graphs, whereas the similarity 
between modeled and observed is poor in 4 (Fig. 1E, K, N, and 
Q) and marginally acceptable in 2 (Fig. 1T and U). It should be 
noted that the shape of each curve is determined by the full-
season weather data and the fungicide applications. Therefore, the 
model output curves of various initiation dates within one 
location-year would be parallel but pass through the observed-
data point for which the run is initiated (25) (see Fig. 3B in 
literature citation 25). 

The bias in the model can be evaluated by calculating the 
deviance between modeled and observed values for time points 
subsequent to model initiation. Averaged across all comparisons 
(all data points in all epidemics, n = 570), the mean of the error 
was 0.07 log units (i.e., a multiplicative factor of 1.15). We also 
plotted average bias as a function of the time between model 
initialization date (run initialized with disease severity observed 
on that day) and date for which the model output is compared 
with the observed value. This time interval we designate the 
“initialization-to-comparison” time interval. Deviations are 
plotted against initialization-to-comparison time interval for the 
26 epidemics at the experiment farm (Fig. 3A), the 9 epidemics in 
grower fields (Fig. 3B), or all epidemics combined (Fig. 3C). 
Linear regression lines show the relationship between bias and 
number of days elapsed from model initiation date to comparison 
date. In all epidemics, the bias approaches zero as the time 
interval decreases to the shortest time interval assessed (5 days) 
and, even at an initialization-to-comparison of 50 days, the mean 
bias over all data sets is quite low (<0.2 log10 units) (Fig. 3C). 
Bias in modeled epidemics for the grower fields (Fig. 3B) was no 
greater than that for the epidemics monitored at the experiment 
farm (Fig. 3A). Despite the good performance of the model 
indicated by its negligible bias, there was substantial variance in 
the deviance between modeled and observed values. In all, ≈10% 
of the 570 individual comparisons had deviances >1.0 (log units), 
and 2% were >1.5 (Fig. 3C). However, 73% of the deviances (one 
standard deviation) were <0.6 (log units, equal to a fourfold 
difference), and 42% were <0.3 (twofold difference). 

Each comparison of modeled and observed disease values also 
was classified as “accurate” or “inaccurate”, according to whether 
or not the modeled value was within our predetermined accep-
tance envelope. This envelope is the range of values twice the 
95% CI of the particular observed value, within ± 1 day of the 
comparison date. Of the 570 modeled versus observed compari-
sons in all epidemics, 81% were within the acceptable accuracy 
range. For comparisons in which the initialization-to-comparison 
interval was ≤14 days, 85% were in the acceptable range. Accu-
racy scores also were tallied within location-years (Fig. 2A) and 
within individual epidemics (Fig. 2B). In eight of the nine 
location-years, the model output met or exceeded the criterion of 
75% accuracy for points with initialization-to-comparison inter-

vals ≤14 days (Fig. 2A). Accuracy of the model when assessed by 
individual experiment (Fig. 2B) ranged from 33 to 100% and was 
at or above 75% for 25 of the 35 experiments. These by-experi-
ment accuracy rates were the criteria used to select the poorest-, 
highest-, and intermediate-accuracy individual epidemics in each 
location-year for display in Figure 1. 

We also compared the observed and modeled AUDPCs of each 
epidemic. Disease severity was calculated as percentage of the 
possible healthy area duration (HAD) (36) during the 3-week time 
interval centered between anthesis and harvest. We previously 
determined this interval to be the critical time window for 
predicting rust-related reduction in seed yield (21). The modeled 
values used in this comparison were obtained for model runs 
initiated at the beginning of the critical window, and also for runs 
initiated 1 and 2 weeks prior to that date; some epidemics did not 
have observed disease early enough in the season to initiate the 
model at 2 or 1 weeks prior to the critical window. Observed 
AUDPC were categorized as damaging (AUDPC ≥ 2% HAD) or 
nondamaging (AUDPC < 2% HAD), in reference to the damage 
threshold determined previously (21). In all, there were 86 com-
parisons and the model was correct in 80 (69 correctly modeled to 

Fig. 2. Accuracy of stem rust model output, calculated as proportion of com-
parisons (modeled versus observed) in which the modeled severity fell within
twice the 95% confidence interval of the observed severity within ±1 day of 
the observation date. Dashed line is 75% accuracy level. A, Accuracy results 
grouped by location-year (H99, H00, and so on) and time interval (days) 
between initialization date of the model run and date of the observation for
which accuracy is determined. B, Overall accuracy results for each epidemic 
(individual bars) in each location-year (H99, H00, and so on). For each 
location-year, the epidemics with the highest, lowest, and an intermediate 
level of accuracy were selected for display in Figure 1. 
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be nondamaging and 11 correctly model to be damaging) (Fig. 4; 
Table 1). All six incorrect outcomes were false positives (ob-
served nondamaging epidemic that was declared by the model to 
be damaging). 

The decision aid website was functional every growing season 
starting in 2006 (and, as a demonstration using only the 
experiment station site, from 2000 to 2005). Website operation 
was generally uninterrupted but there were occasional outages of 
individual weather stations. Most of the outages were due to 
failure of communications equipment and, when the data stream 
was reestablished, the compromised weather data file was re-
paired with measurements from the affected site. In rare in-
stances, the outages were due to malfunction of sensors attached 
to the weather station, and the weather data set had to be repaired 
with measurements taken at the nearest site having complete data. 

Use of the online stem rust decision-aid totaled 12,688 model 
runs during the years 2005 to 2013. Number of runs for these 
years was 2,200, 1,850, 950, 1,400, 1,500, 600, 1,100, 700, and 
2,400, respectively, thus averaging 1,400 runs per year. 

The large-plot trials of the decision aid conducted in grower 
fields compared results of applying fungicides according to the 
decision aid (“model-informed”) versus according to standard 
practice. Various levels of epidemic severity occurred among the 

Fig. 3. Deviances of modeled disease severities from observed disease severi-
ties (log10modeled minus log10observed) for epidemics of perennial ryegrass
stem rust modeled with STEMRUST_G. For each location-year, each devi-
ance is plotted against the interval in days between initialization date for the
model run and date of the observation for which the deviance is computed.
Solid lines show linear regression of deviance versus time interval for each
location-year. Dot-dash line is reference for zero deviation. A, Deviances for 
epidemics observed in plots at experiment farm in 1999 through 2004. B,
Deviances for epidemics observed in large-scale demonstration plots in
grower fields in 2006 and 2007. C, Deviances for all epidemics. 

Fig. 4. Comparison of modeled and observed area under the disease progress 
curve (AUDPC) computed for the yield-critical time window midway between 
anthesis and harvest (21). AUDPC is expressed as percentage of healthy area
duration, plotted as log10 values. For each epidemic, modeled AUDPCs were 
determined in runs initialized at the beginning of the yield-critical time 
window and at 1 and 2 weeks prior to that date if observed disease was present
then. Dashed lines partition the graph area into zones less than or greater than
the threshold for AUDPC (2%) that causes yield loss (21). The solid line is the 
linear regression of modeled versus observed and the dot-dash line is 
reference for equality. 

TABLE 1. Contingency table for the number of perennial ryegrass stem rust 
epidemics above or below the damage threshold, according to modeled or
observed area under the disease progress curve (AUDPC)a 

  Observed AUDPC 

Initializationb Modeled AUDPC ≤2% >2% 

2 weeks    
 ≤2% 17 0 
 >2% 3 3 
1 week    
 ≤2% 24 0 
 >2% 1 4 
0 week    
 ≤2% 28 0 
 >2% 2 4 
Combined    
 ≤2% 69 0 
 >2% 6 11 

a Thirty-four epidemics across nine location-years in Pacific Northwest of the 
United States. Not all epidemics had observed disease present at 2- and 
1-week initiation dates. The threshold for yield loss to the seed crop was 
previously determined (21) to be AUDPC = 2% of healthy area duration for 
the 20-day period midway between anthesis and swathing of the crop. 
Modeled AUPDC was calculated from output of STEMRUST_G run with
inputs of on-site weather data and fungicide application and initialized with 
the observed disease severity value at the indicated time. 

b Model initialization date (weeks before start of critical period). Combined = 
all model runs. 
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10 location-years (Table 2). Across these varying conditions, there 
were two location-years showing a statistically significant in-
crease in seed yield for the model-informed treatment over the 
standard treatment. In the other eight location years, there was no 
significant yield difference between the standard and the model-
informed treatments. For six location-years, fewer fungicide 
applications were made in the model-informed treatment than in 
the standard treatment, resulting in lower production costs. There 
were no cases with more fungicide applications in the model-
informed treatment than in the standard treatment, and there were 
no cases in which there was significantly less yield in the model-
informed treatment. The average economic advantage for model-
informed management across the 10 location years (reduced 
fungicide cost or improved yield) was estimated at $18 per ha. 

DISCUSSION 

STEMRUST_G was created for two types of use: (i) as a 
heuristic tool to illustrate the development of ryegrass stem rust 
epidemics under various conditions of weather and fungicide 
input and (ii) as a decision aid for fungicide application to 
manage stem rust in ryegrass seed crops in the Pacific Northwest 
of the United States. The model was validated for these purposes 
by comparing observed disease severities during epidemics with 
the corresponding severity estimates produced by the model when 
run with an observed initial severity value, weather data from the 
site, and fungicide application inputs. The criteria for accept-
ability were (i) graphs of modeled disease progress curve are 

generally congruent with plotted disease severity observations; 
(ii) negligible overall bias (average deviation between modeled 
and observed severities ≈ 0); (iii) modeled severity is accurate in 
at least 75% of the comparisons, where accuracy is defined as the 
modeled value being within twice the 95% CI of the observed 
value within ± 1 day; and (iv) use of the model as a decision aid 
for fungicide application is beneficial in disease management. In 
addition to the validation testing described in this article, 
STEMRUST_G had been subjected to “multistage validation” 
(28,29) during its development: several of the individual 
submodels, including infection probability, latent period duration, 
plant growth dynamics, and fungicide effects on infection and 
sporulation, had previously been developed and independently 
validated (17–22). 

We conclude that STEMRUST_G meets the criterion for 
subjective validation (29) based on graphical results. It produces 
disease progress curves that generally conform to the observed 
development of stem rust severity in ryegrass seed crops, as illu-
strated in most of the epidemics shown in Figure 1. The epi-
demics for which the model was least accurate (Fig. 1, center 
column of graphs) included some examples (Fig. 1E and Q) in 
which the modeled disease progress curve was parallel to the 
observed severities but over- or underestimated them. This pattern 
could be produced by deficiencies in the model or by inaccuracy 
of the observed disease severity value used to initialize the model 
run. Thus, the poor fit seen in Figure 1Q (model run initiated with 
the observed value from day 140) would be judged a good 
representation when the model is initiated with the value observed 

TABLE 2. Economic differences between standard and decision aid-informed management of stem rust in perennial ryegrass seed cropsa 

     Seed yield Fungicide sprays  

Year Variety Field Severity (%)b Treatment kg/hac Value ($)d Number $/hae Advantage ($)f 

2004 Extreme BV_04 60 Standard 1,995 … 3 38 … 
 … … … Decision aid 2,188 … 2 25 … 
 … … … Difference 193 57 –1 –13 70 
 Paragon PT_04 85 Standard 1,787 … 3 38 … 
 … … … Decision aid 1,740 … 3 38 … 
 … … … Difference ns 0 0 0 0 
2005 Paragon TG_05 58 Standard 1,360 … 2 25 … 
 … … … Decision aid 1,482 … 1 13 … 
 … … … Difference ns 0 –1 –13 13 
 Stellar WB_05 73 Standard 2,155 … 3 38 … 
 … … … Decision aid 2,090 … 3 38 … 
 … … … Difference ns 0 0 0 0 
2006 OS SP_06 44 Standard 2,867 … 2 25 … 
 … … … Decision aid 2,894 … 2 25 … 
 … … … Difference ns 0 0 0 0 
 Margarita MC_06 Trace Standard 1,505 … 2 25 … 
 … … … Decision aid 1,332 … 1 13 … 
 … … … Difference ns 0 –1 –13 13 
2007 VNS S1_07 72 Standard 2,250 … 2 25 … 
 … … … Decision aid 2,404 … 2 25 … 
 … … … Difference ns 46 0 0 46 
 VNS SL_07 <1 Standard 1,533 … 1 13 … 
 … … … Decision aid 1,450 … 0 0 … 
 … … … Difference ns 9 –1 –13 13 
2008 LS 3000 S2_08 2 Standard 2,063 … 1 13 … 
 … … … Decision aid 2,115 … 0 0 … 
 … … … Difference ns 0 –1 –13 13 
 Silver Dollar ST_08 0 Standard 2,304 … 1 13 … 
 … … … Decision aid 2,285 … 0 0 … 
 … … … Difference ns 0 –1 –13 13 
Average … … … Standard 1,982 … 2.0 … … 
 … … … Decision aid 1,998 … 1.4 … … 
 … … … Difference 16 … –0.6 … 18 

a Fungicide applied as decided by grower (standard) or as determined by decision aid. 
b Ambient stem rust severity measured on 1 July in a nonsprayed plot at the location. 
c Differences shown if statistically significant as determined by linear contrast, P = 0.05; ns = not significant. 
d Perennial ryegrass seed at $0.30/kg. 
e One fungicide application = $12.75/ha, including application cost. 
f Economic advantage due to decision aid = (income benefit of significant yield increase) + (reduction in cost of fungicide). 
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on day 148 or any subsequent day. A similar comment applies to 
the epidemic shown in Figure 1E. We note also some cases of 
poor representation by the model at high disease severities (Fig. 
1L and U), as has been reported to sometimes occur in other plant 
disease models (4,6,30). The practical impact of errors at very 
high disease severity would be minimal for the decision-aid, 
because it is unlikely that any management input would be able to 
save a crop if the rust epidemic were permitted to become so 
severe. 

By statistical measures also, the model appears to be suitable 
for the intended uses. The overall bias of modeled disease 
estimates is negligible, at 0.07 log10 units (equivalent to a 1.15-
fold difference). The bias is slightly larger when the initialization-
to-comparison time interval is long, and bias approaches 0 when 
that time interval is ≈5 days (Fig. 3C). There is, however, a large 
variance in the size of the errors. Therefore, the accuracy of the 
estimates within epidemics and location-years is of interest. Our 
rationale in defining an acceptable range of accuracy (twice the 
95% CI of the observed value) was that we could not expect the 
model to be any more accurate than the observations used in the 
validation (i.e., the 95% CI), and that an additional twofold range 
for error and a time window of ±1 day would not be so great as to 
render the model unsuitable for its uses. We found that 81% of 
comparisons across all epidemics and 85% of those with initiali-
zation-to-comparison times ≤14 days were accurate. This out-
come meets our stated goal of 75% accuracy. Although the model 
was not uniformly accurate for all experiments, we conclude that 
it is likely to produce a useful estimate of disease severity at a 
given time during an epidemic. We saw also that, in 85% of cases, 
the model initiated up to 2 weeks before the beginning of the 
damage critical period produced an accurate categorization of 
critical-period AUDPC as damaging or nondamaging (Fig. 4; 
Table 1). This means that the model should be useful in making 
management decisions as a crop approaches its yield-critical 
stage. All AUDPC modeling errors we observed were false posi-
tives. This error pattern would sometimes lead to fungicide appli-
cation when it is not needed but would be unlikely to risk disease 
damage due to an incorrect “don’t spray” decision. That is, the 
model is slightly conservative with respect to risk of disease 
control failure. 

Some steps were taken toward model qualification (28) (i.e., 
validation for conditions beyond those used in its development). 
Compared with the datasets used to create and train the model 
(25), the validation datasets (used in this article) represented a 
larger number of individual years and, thus a larger range of 
weather patterns. The overall bias (0.07) of this more compre-
hensive database was similar to that of the training data set (0.04). 
Further, inclusion of three off-site location-year data sets (grower 
fields GF06A and so on) in the validation testing extended the 
validation domain to other locations within the region and to a 
small number of additional cultivars beyond ‘Morningstar’, the 
one used in model development (compare Fig. 3A and B). Among 
cultivars currently grown in the region, none is resistant to stem 
rust, and ‘Morningstar’ is in the middle of the somewhat narrow 
overall range of susceptibilities. The additional experiments con-
ducted in grower fields for the purpose of assessing the decision 
aid (Table 2) added eight additional cultivars to the validation 
domain. 

One important complicating aspect of assessing model per-
formance is the difficulty in obtaining true values of actual 
(“observed”) stem rust severity when sampling a crop. This 
difficulty derives from several factors. Stem rust epidemics are 
typically focal in their development, particularly when they origi-
nate in small, scattered groups of pustules of the overwintering 
pathogen, as they do in perennial ryegrass stands in the Pacific 
Northwest of the United States. The spatial distribution of the 
disease remains aggregated to a considerable degree, at least until 
late in the epidemic, so that the true disease severity may be 

misrepresented in the samples taken, particularly at low disease 
incidence. Another complicating factor is the very dense canopy 
of a fully developed crop, which makes it impractical to inspect 
all plant tissue within a sampling quadrat. Therefore, the full-
canopy rust population in a quadrat has to be estimated from what 
is observed in the visible layer of the canopy sample (25). This 
estimation unavoidably introduces more error. In addition, when 
stem rust severity is great, the host leaves senesce or die pre-
maturely and it is difficult to distinguish living from dead 
pustules. For all of these reasons, the 95% CI of the observations 
is fairly large, and any one value of disease severity (though 
averaged across 5 to 10 quadrats) may be somewhat distant from 
the true mean disease severity on that date. In testing the model, 
we conducted multiple model runs with each epidemic dataset, 
each run starting on one of the observation dates. We compared 
all subsequent observations in that dataset with the modeled 
values from the run initiated on that date (see Figure 4B in 
literature citation 25). If the initial observed value for any run is 
erroneous (e.g., due to sampling error), the modeled disease 
progress curve will poorly estimate the subsequent observed data 
points in that run if they are true values and the model is an 
accurate representation of disease increase. By conducting model 
runs initiated on each observation date for each epidemic, we 
intended to average out the effects of such possible observation 
error on model evaluation. In their validation of a wheat rust 
model, Rossi et al. (26) noted that there is a likelihood of error 
due to sampling aggregated disease at low severities. Rykiel (28) 
pointed out that observed data are not an infallible standard 
against which to compare model performance, and this considera-
tion is likely applicable to the STEMRUST_G validation effort. 

These difficulties of disease assessment can affect the use of 
the model as a decision aid. With respect to spatial aggregation of 
disease, the disease model was built, calibrated, and tested with 
data obtained by averaging samples taken without regard to dis-
ease aggregation. A disease manager using the decision aid may 
base fungicide application decisions on average disease severity 
in the field (in whatever way that is assessed). Alternatively the 
manager could run the model twice, first with the initializing 
“observed severity” measured within a disease focus, then with 
the observation taken outside the focus, and make a decision 
about fungicide application based on the prevalence and size of 
foci. Another difficulty, that of distinguishing living from recently 
killed pustules, can be an important problem in observations made 
within a few days after fungicide application. STEMRUST_G 
models the population of living pustules, and a scouting value that 
mistakenly includes recently killed pustules together with living 
pustules thus overestimates the disease severity. When the inflated 
value is used to initialize a model run, it will cause the model to 
overestimate subsequent disease. Conversely, if the inflated value 
is used as an observation in evaluating a model run initialized on 
an earlier date, the model output will appear to underestimate this 
severity value. We addressed this problem by including the 
modeled fungicide-killed pustules as part of the total disease in 
the STEMRUST_G output for the first 5 days after a fungicide 
application. 

A decision aid can be useful if it provides information that is 
not otherwise readily accessible to the decision maker (9). The 
stem rust decision aid creates an estimate of the number of latent 
infections (which are invisible during most of latent period), and 
uses the estimate in deciding whether the size of the rust popu-
lation warrants fungicide application to avoid crop damage. The 
complex effects of fungicides on infection, pustule development, 
and viable spore production are estimated. The model calculates 
current disease level based on the last available scouting data and 
the intervening weather conditions, permitting the disease man-
ager to scout at less frequent time intervals. The practical value of 
this model-derived information depends both on how accurate it is 
and on what degree of accuracy is needed to achieve an improve-
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ment in disease management compared with standard practices. 
We attempted to obtain a pragmatic assessment of the decision 
aid’s value by conducting large-plot trials in grower fields. Re-
sults from these experiments indicate that the decision aid is 
useful for disease management. There were instances of reduced 
pesticide use and some instances of increased seed yield through 
the use of the decision aid. The decision aid was most useful in 
years of low to moderate disease severity (Table 2), when it 
permitted the disease manager to delay or forgo fungicide appli-
cation. In years of severe epidemic development, the number of 
fungicide applications suggested by the decision aid will probably 
be the same as that of standard practice, although the timing of 
fungicide application may be somewhat better optimized with use 
of the decision aid. This improved timing is suggested by in-
stances where the decision aid gave improved yield with the same 
number of fungicide applications as the standard practice (Table 
2). Pragmatic performance of the decision aid is favored by the 
fact that there are multiple time points when the fungicide appli-
cation decision can be made, allowing the disease manager to 
repeatedly run the model with new information and review the 
decision (9,24). Thus, the model need only be acceptably accurate 
over the time interval between field scoutings. Conversely, if the 
user has confidence in the model, the decision aid can be used to 
adjust the frequency of scouting according to whether or not the 
current disease level modeled from the previous observation is 
near the action threshold. 

As a tool for illustrating stem rust epidemic dynamics, 
STEMRUST_G implemented on the described website can be 
used to explore the expected course of stem rust epidemics under 
various scenarios of weather conditions and fungicide application 
programs. Archived weather data can be used for visualizing 
epidemic development during years known by the user to have 
been particularly favorable or unfavorable for epidemics. We did 
not assess directly the type of use, heuristic or pragmatic, to 
which the decision aid website was put. Anecdotal information 
(unpublished observations) suggests that most of the use is by 
extension service and private-sector crop advisors rather than by 
individual growers. Such pass-along value has probably increased 
over time, as trained decision aid users operate the model at 
appropriate times and disseminate results via other means of 
communication (9). There was no clear trend in usage (number of 
model runs per year) over the 9 years we logged traffic on the 
website. This large year-to-year variation in decision-aid use 
could be attributed to several possible causes. Not all runs for 
research and development use were correctly identified and 
removed for most of this period. Over time, the number of 
weather stations operating decreased from 12 stations in earlier 
years to only 3, which could affect the number of users who 
would have a weather station located near their geographic area of 
interest. Also, a large year-to-year variation in the prevalence and 
severity of stem rust in the region could affect interest, although it 
is not clear whether interest would be greater in a severe epidemic 
year (when there is a substantial risk of loss but a degree of 
certainty about the need for fungicides) or in a mild epidemic 
year, in which uncertainty might prompt more uses. 

The utility of the decision aid could be improved by several 
modifications. In its current form, the decision aid is not a disease 
forecaster; it simulates disease (visible and latent) from a given 
initial severity up to the most recent date for which weather data 
is available. It would not be difficult to implement a disease 
forecast by STEMRUST_G based on a weather forecast, and this 
modification in the decision aid website is planned. Another 
development which would improve the applicability of the 
decision aid is the planned implementation of an estimator for 
weather conditions (temperature, rainfall, and leaf wetness) for 
geographical locations not served by a physical weather station. 
The website at which STEMRUST_G is deployed (uspest.org/wea), 
has a utility to create “virtual weather stations” (VWS). The 

online user can click in a map to place this VWS; then, the system 
creates estimated hourly weather data for running numerous plant 
disease models that are part of the overall system. These esti-
mated weather data files are created with information from nearby 
observing weather stations. Estimation is done with distance 
weighting, in an elevation-weather parameter regression approach. 
This method often performs well for temperature and dewpoint 
but less well for relative humidity, rainfall, and leaf wetness 
(unpublished). Implementing the VWS with STEMRUST_G will 
require conversion of standard-observation weather data (as used 
by uspest.org) into an estimate of the canopy-level data used by 
STEMRUST_G. Previous work identified some approaches to 
this conversion that appear to be adequate (23). The qualified 
domain of STEMRUST_G and the associated decision aid could 
be improved by testing on a larger diversity of cultivars, as well as 
with more fungicides and doses. The model currently is parame-
terized only for full labeled doses of the two major fungicide 
classes (triazoles and strobilurins) for stem rust in grasses. 
Experiments similar to those done in the development of this 
model (25) but with lower doses or other fungicides would allow 
the model to be reparameterized as needed. Expansion of the 
geographical domain also would require additional validation. 
Finally, STEMRUST_G might serve as the basis of an epidemic 
model for stem rust in wheat or barley, after obtaining necessary 
parameterizing data from experiments quantifying such processes 
as infection efficiency, latent period, pustule dynamics, and 
fungicide effects on the rust population in those hosts. 

ACKNOWLEDGMENTS 

The use of trade, firm, or corporation names in this publication is for 
the information and convenience of the reader. Such use does not con-
stitute an official endorsement or approval by the United States Depart-
ment of Agriculture or the Agricultural Research Service of any product 
or service to the exclusion of others that may be suitable. 

LITERATURE CITED 

1. Amorim, L., Berger, R. D., Bergamin Filho, A., Hau, B., Weber, G. E., 
Bacchi, L. M. A., Vale, F. X. R., and Silva, M. B. 1995. A simulation 
model to describe epidemics of rust of Phaseolus beans. II. Validation. 
Phytopathology 85:722-727. 

2. Andrade-Piedra, J. L., Forbes, G. A., Shtienberg, D, Grunwald, N. J., 
Chacon, M. G., Taipe, M. V., . Hijmans, R. J., and Fry, W. E. 2005. 
Qualification of a plant disease simulation model: Performance of the 
LATEBLIGHT model across a broad range of environments. 
Phytopathology 95:1412-1422. 

3. Andrade-Piedra, J. L., Hijmans, R. J., Forbes, G. A., Fry, W. E., and 
Nelson, R. J. 2005. Simulation of potato late blight in the Andes. I: 
Modification and parameterization of the LATEBLIGHT model. 
Phytopathology 95:1191-1199. 

4. Andrade-Piedra, J. L., Hijmans, R. J., Juarez, H. S., Forbes, G. A., 
Shtienberg, D., and Fry, W. E. 2005. Simulation of potato late blight in the 
Andes. II: Validation of the LATEBLIGHT model. Phytopathology 
95:1200-1208. 

5. Bajwa, W. I., Coop, L., and Kogan, M. 2003. Integrated pest management 
(IPM) and internet-based information delivery systems. Neotrop. 
Entomol. 32:373-383. 

6. Berger, R. D., Hau, B., Weber, G. E., Bacchi, L. M. A., Bergamin Filho, 
A., and Amorim, L. 1995. A simulation model to describe epidemics of 
rust of Phaseolus beans I. Development of the model and sensitivity 
analysis. Phytopathology 85:715-721. 

7. Calonec, A., Cartolaro, P., Naulin, J. M., Bailey, D., and Langlais, M. 
2008. A host-pathogen simulation model: Powdery mildew of grapevine. 
Plant Pathol. 57:493-508. 

8. Flack, J. A., Zielke, P. A., Pavkov, A., and Kovel-Jarboe, P. 1988. 
Integrating technologies in extension programs. Pages 481-486 in: Proc. 
2nd Int. Conf. Comput. Agric. Ext. Programs, Vol. II. F. S. Zazueta and A. 
B. Bottcher, eds. University of Florida, Lake Buenavista. 

9. Gent, D. H., Mahaffee, W. F., McRoberts, N., and Pfender, W. F. 2013. 
The use and role of predictive systems in disease management. Annu. 
Rev. Phytopathol. 51:267-289. 

10. Gleason, M. L., Duttweiler, K. B., Batzer, J. C., Taylor, S. E., Sentelhas, 
P. C., Boffino Almeida Monteiro, J. E., and Gillespie, T. J. 2008. 

http://apsjournals.apsnet.org/action/showLinks?crossref=10.1094%2FPhyto-85-722&isi=A1995RG60600015
http://apsjournals.apsnet.org/action/showLinks?crossref=10.1590%2FS1519-566X2003000300001&csa=issn%3D1519-566X%26vol%3D32%26firstpage%3D373
http://apsjournals.apsnet.org/action/showLinks?crossref=10.1146%2Fannurev-phyto-082712-102356&isi=000323889000013
http://apsjournals.apsnet.org/action/showLinks?system=10.1094%2FPHYTO-95-1412&isi=000233532900007
http://apsjournals.apsnet.org/action/showLinks?crossref=10.1094%2FPhyto-85-715&isi=A1995RG60600014
http://apsjournals.apsnet.org/action/showLinks?system=10.1094%2FPHYTO-95-1191&isi=000232245400011
http://apsjournals.apsnet.org/action/showLinks?crossref=10.1590%2FS0103-90162008000700013
http://apsjournals.apsnet.org/action/showLinks?crossref=10.1111%2Fj.1365-3059.2007.01783.x&isi=000255909300012
http://apsjournals.apsnet.org/action/showLinks?system=10.1094%2FPHYTO-95-1200&isi=000232245400012


44 PHYTOPATHOLOGY 

Obtaining weather data for input to crop disease-warning systems: Leaf 
wetness duration as a case study. Sci. Agric. 65:76-87. 

11. Goodall, D. W. 1972. Building and testing ecosystem models. Pages 173-
194 in: Mathematical Models in Ecology. J. N. Jeffers, ed. Blackwell, 
Oxford.  

12. Jones, V. P., Brunner, J. F., Grove, G. G., Petit, B., Tangren, G. V., and 
Jones, W. E. 2010. A web-based decision support system to enhance IPM 
programs in Washington tree fruit. Pest Management Sci. 66:587-595.  

13. Krause, R. A., Massie, L. B., and Hyre, R. A. 1975. Blitecast, a computer-
ized forecast of late blight of potato. Plant Dis. Rep. 59:95-98. 

14. Kropff, M., Teng, P., and Rabbinge, R. 1995. The challenge of linking 
pest and crop models. Agric. Syst. 49:413-434. 

15. Paveley, N. D. 1997. Determinants of fungicide spray decisions for wheat. 
Pestic. Sci. 49:379-388. 

16. Pitblado, R.E. 1988. Development of a weather-timed fungicide program 
for field tomatoes. Can. J. Plant Pathol. 10:371. 

17. Pfender, W. F. 2001. A temperature-based model for latent period duration 
in stem rust of perennial ryegrass and tall fescue. Phytopathology 91:111-
116. 

18. Pfender, W. F. 2003. Prediction of stem rust infection favorability, by 
means of degree-hour wetness duration, for perennial ryegrass seed crops. 
Phytopathology 93:467-477. 

19. Pfender, W. 2004. Role of phenology in host susceptibility and within-
plant spread of stem rust during reproductive development of perennial 
ryegrass. Phytopathology 94:308-316. 

20. Pfender, W. F. 2006. Interaction of fungicide physical modes of action and 
plant phenology in control of stem rust of perennial ryegrass grown for 
seed. Plant Dis. 90:1225-1232. 

21. Pfender, W. 2009. A damage function for stem rust of perennial ryegrass 
seed crops. Phytopathology 99:498-505. 

22. Pfender, W. F., and Eynard, J. 2009. Field assessment of a model for 
fungicide effects on intraplant spread of stem rust in perennial ryegrass 
seed crops. Phytopathology 99:696-703. 

23. Pfender, W. F., Gent, D. H., and Mahaffee, W. F. 2011. Sensitivity of 
disease management decision aids to temperature input errors associated 
with sampling interval and out-of-canopy sensor placement. Plant Dis. 
96:726-736. 

24. Pfender, W. F., Gent, D. H., Mahaffee, W. F., Coop, L. B., and Fox, A. D. 
2011. Decision aids for multiple-decision disease management as affected 
by weather input errors. Phytopathology 101:644-653. 

25. Pfender, W. F., and Upper, D. 2015. A simulation model for epidemics of 
stem rust in ryegrass seed crops. Phytopathology 105:45-56.  

26. Rossi, V., Racca, P., Giosue, S., Pancaldi, D., and Alberti, I. 1997. A 
simulation model for the development of brown rust epidemics in winter 
wheat. Eur. J. Plant Pathol. 103:453-465. 

27. Russo, J. M. 1999. Weather forecasting for IPM. Pages 453-479 in: 
Emerging Technologies for Integrated Pest Management: Concepts, 
Research, and Implementation. G. G. Kennedy and T. B. Sutton, eds.  
American Phytopathological Society Press, St. Paul, MN. 

28. Rykiel, E. J. 1996. Testing ecological models: The meaning of validation. 
Ecol. Model. 90:229-244. 

29. Sargent, R. G. 1984. A tutorial on verification and validation of simula-
tion models. Pages 114-121 in: Proc. 1984 Winter Simulation Conf. S. 
Sheppard, U. Pooch, and C. Pedgen, eds. IEEE Press, Piscataway, NJ. 

30. Savary, S., Willoquet, L., and Teng, P. S. 1997. Modelling sheath blight 
epidemics on rice tillers. Agric. Syst. 55:359-384. 

31. Skelsey, P., Kessel, G. J. T., Rossing, W. A. H., and van der Werf, W. 
2009. Parameterization and evaluation of a spatiotemporal model of the 
potato late blight pathosystem. Phytopathology 99:290-300. 

32. Spoden, G. J., and Seely, M. W. 1986. Using automated weather stations 
in sugarbeet management. ASA-CSSA-SSSA Abstr. Presented Pap. 78th 
Annu. Meet. New Orleans, LA. 

33. Stone, N. D., Coulson, R. N., Frisbie, R. E., and Loh, D. K. 1986. Expert 
systems in entomology: Three approaches to decision making. Bull. 
Entomol. Soc. Am. 32:161-166. 

34. Teng, P. S., Blackie, M. J., and Close, R. C. 1980. Simulation of the 
barley leaf rust epidemic: Structure and validation of BARSIM-I. Agric. 
Syst. 5:85-103. 

35. Thomas, C. S., Skinner, P. W., Fox, A. D., Greer, C. A., and Gubler, W. D. 
2002. Utilization of GIS/GPS-based information technology in commer-
cial crop decision making in California, Washington, Oregon, Idaho, and 
Arizona. J. Nematol. 34:200-206. 

36. Waggoner, P. E., and Berger, R. D. 1987. Defoliation, disease, and 
growth. Phytopathology 77:393-398. 

37. Welty, R. E., and Azevedo, M. D. 1994. Application of propiconazole in 
management of stem rust in perennial ryegrass grown for seed. Plant Dis. 
78:236-240 

38. Wharton, P. S., Kirk, W. W., Baker, K. M., and Duynslager, L. 2008. A 
Web-based interactive system for risk management of potato late blight in 
Michigan. Comput. Electron. Agric. 61:136-148. 

 
 
 

http://apsjournals.apsnet.org/action/showLinks?crossref=10.1016%2FS0308-521X%2897%2900014-0&isi=A1997XM78900002
http://apsjournals.apsnet.org/action/showLinks?crossref=10.1002%2F%28SICI%291096-9063%28199704%2949%3A4%3C379%3A%3AAID-PS513%3E3.0.CO%3B2-G&csa=issn%3D0031-613X%26vol%3D49%26firstpage%3D379
http://apsjournals.apsnet.org/action/showLinks?crossref=10.1016%2F0308-521X%2880%2990001-3&isi=A1980JK95700001
http://apsjournals.apsnet.org/action/showLinks?system=10.1094%2FPHYTO.2004.94.3.308&isi=000220532500013
http://apsjournals.apsnet.org/action/showLinks?system=10.1094%2FPDIS-03-11-0262&isi=000303085800017
http://apsjournals.apsnet.org/action/showLinks?crossref=10.1002%2Fps.1986&isi=000279995000003
http://apsjournals.apsnet.org/action/showLinks?crossref=10.1016%2Fj.compag.2007.10.002&isi=000254733400007
http://apsjournals.apsnet.org/action/showLinks?system=10.1094%2FPHYTO-99-3-0290&isi=000263204700010
http://apsjournals.apsnet.org/action/showLinks?system=10.1094%2FPD-90-1225&isi=000240039700017
http://apsjournals.apsnet.org/action/showLinks?isi=000180648400004
http://apsjournals.apsnet.org/action/showLinks?system=10.1094%2FPHYTO-05-10-0131&isi=000290824400002
http://apsjournals.apsnet.org/action/showLinks?isi=A1975V761100001
http://apsjournals.apsnet.org/action/showLinks?crossref=10.1016%2F0304-3800%2895%2900152-2&isi=A1996VG27200002&csa=issn%3D0304-3800%26vol%3D90%26firstpage%3D229
http://apsjournals.apsnet.org/action/showLinks?system=10.1094%2FPHYTO.2001.91.1.111&isi=000166027300012
http://apsjournals.apsnet.org/action/showLinks?system=10.1094%2FPHYTO-99-5-0498&isi=000264979600004
http://apsjournals.apsnet.org/action/showLinks?isi=A1987G791700001
http://apsjournals.apsnet.org/action/showLinks?system-d=10.1094%2FPHYTO-03-14-0068-R
http://apsjournals.apsnet.org/action/showLinks?crossref=10.1016%2F0308-521X%2895%2900034-3&isi=A1995TL52400008
http://apsjournals.apsnet.org/action/showLinks?system=10.1094%2FPHYTO.2003.93.4.467&isi=000181759400014&csa=issn%3D0031-949X%26vol%3D93%26firstpage%3D467
http://apsjournals.apsnet.org/action/showLinks?system=10.1094%2FPHYTO-99-6-0696&isi=000266213100008
http://apsjournals.apsnet.org/action/showLinks?crossref=10.1094%2FPD-78-0236&isi=A1994MZ39700004
http://apsjournals.apsnet.org/action/showLinks?crossref=10.1023%2FA%3A1008677407661&isi=A1997XQ43300007&csa=issn%3D0929-1873%26vol%3D103%26firstpage%3D453



