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This thesis investigates a simple dynamic model of the hind leg

of a beetle during initiation of a step. The primary assumption was

that the full load of the body was carried on the hind leg during

this time. That is, the only forces on the body were that of the

hind leg and gravity and their resultant produced forward

acceleration.

Only two dimensional models were used in this study. This was

justified since the beetle is bilaterally symmetrical. However, it

required the assumption that hind legs were positioned symmetrically

and it limited the investigation to forward acceleration in a

straight line.

Models with two and three links were tested. The two link



model assumed the body has no motion relative to the upper legs; that

is the muscles were strong enough to prevent movement at the joint

between body and leg. The three link model assumed only friction

prevented movement at the joint between body and leg.

Dynamic equations were developed using Lagrangian mechanics.

These equations were integrated using the 4th order Runge-Kutta

algorithm. Both models were driven by applying a constant torque at

the joint between upper and lower segments. Driving torque was

adjusted to minimize verical movement of body center of mass.

Initial position of body center of mass relative to foot was

varied to examine it's influence on both horizontal travel of body,

center of mass and driving torque required for this travel.

For both models horizontal travel was less dependent on initial

height of body center-of-mass than on initial horizontal position.

For both models required driving torque increased with decrease in

initial height of body center-of-mass and with increase of initial

horizontal distance from foot to body center-of-mass. For both

models maximum horizontal travel was attained with minimum initial

height of body center-of-mass and minimum initial horizontal distance

between foot and body center-of-mass. For the two link model,

maximum horizontal travel was approximately half of the total leg

length while for the three link model the equivalent number was

approximately one quarter, of total leg length.
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A SIMPLIFIED DYNAMIC MODEL OF THE HIND LEG OF A BEETLE

DURING STEP INITIATION

1. INTRODUCTION

1.1 Why walking machines?

The main purpose of walking machines is travel on uneven

surfaces. If the surface were to be even, robots with wheels could

work faster and more efficiently. Walking machines, or legged

vehicles, have many advantages over wheeled machines. Walking

machines are capable of travelling in difficult terrains, climbing

steep inclines, traversing narrow beams and maneuvering around

obstacles. These advantages make them useful in hazardous

environments. Some of the many uses are in the maintenance of space

stations and underwater structures.

In addition, they also have the advantages of having better

fuel efficiency in rough terrain and, in comparison to wheeled or

tracked vehicles, they cause less ground damage (Song & Waldron,

1989). Legs of walking machines may also be used as secondary arms

for gripping or digging, or as counter weights to restore an

overturned body to its feet (Todd, 1985).

The need for walking machines does not rule out the importance

and advantages of wheeled robots. Each has advantages in different

applications.
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1.2 Why darkling beetle was chosen as a model?

Observing how easily, arthropods and vertebrates can walk on

uneven surfaces, one realizes that they are excellent models for

legged locomotion (Pedley, 1977; Gewecke & Wendler, 1985). The

ability of these animals to avoid obstacles and adapt to a wide

variety of surfaces has been a source of inspiration for walking

machine research.

Vertebrates and arthropods have multi-segmented, articulated

legs. Vertebrates have internal skeletons and sophisticated nervous

system. Arthropods, including insects, spiders, crabs and lobsters,

however, have external skeletons and simple nervous systems. Over

the past 600 million years arthropods have evolved the ability to

deal with a wide variety of terrains (Fichter et al., 1987).

For selecting an animal as a model for walking machine research

one has to consider many aspects. For instance, the ease of

analyzing the walking system of the model and type of task required.

An animal with locomotion confined to walking or running would be an

advantage.

It is desirable for a walking machine to possess good balance

when at rest and when walking. Four legged and six legged machines

can stand in one position and have good balance. However, six legs

provide easier balance when walking. Alternating tripod gait, in

which three legs are on the ground and the other three legs move

forward, gives easier and better balance for walking.
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The darkling beetle, Eleodes obscura sulcipennis, has been

selected as a model for this research in walking machines because of

its relatively simple leg mechanism and inability to fly or jump.

These beetles are durable and easy to handle with body length about

30mm. Darkling beetles are commonly found in arid regions of the

western USA.

1.3 Organization of the study

This report is divided into six parts. The first part,

presented in Chapter 2, discusses the model development. The reason

for considering the models and how the values of the model parameters

are found are briefly described in this chapter. The selection of

the various initial foot positions for the hind leg are also

discussed along with a brief description of the characteristics

analyzed.

Chapter 3, discusses approach used to develop and solve the

equations of motion. The Lagrangian mechanics approach is used to

obtain the equations of motion. Runge-Kutta fourth-order algorithm

for numerical integration is used to integrate the equations of

motion. Both the Lagrangian mechanics approach and the numerical

integration method are briefly explained in this chapter.

The two link model of the hind leg is described in Chapter 4.

The equations of motion are derived using the Lagrangian approach.

The equations then, are converted to a convenient form for numerical
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integration.

The three link model is described in Chapter 5. Equations of

motion for this model are derived. A brief description of the static

and dynamic friction torque, considered at joint 3 for this analysis,

is given in this chapter. However, for ease of reading, the

mathematical representation of the incorporation of the friction

torque into the numerical integration procedure, is given in appendix

A.4.

The discussion of the results for the two link model is

presented in Chapter 6. The relationship between the initial foot

position and the parameters is discussed in detail for this model.

The discussion of the results for the three link model is

presented in Chapter 7. Foot positions other than the ones described

in chapter 2, were considered in this chapter. The need for

considering additional foot positions was explained. The

relationships between initial position and the parameters are

discussed in detail for this model.

Finally, in Chapter 8, the conclusions from the study are

presented. The initial positions of the hind leg of the beetle,

which results in better push off for initiating walking are

discussed. Suggestions for future study are also presented in this

chapter.

Derivations for determination of initial position for both two

and three link models, rearranging the dynamic equations for three

link model for numerical integration, incorporation of friction

torque, are provided in appendix A. Flow charts for major modules of
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the code are presented in appendix B. Except the graphics part, all

the software is portable to any machine and any 'C' compiler, such as

UNIX, TurboC.
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2. BACKGROUND FOR THE DEVELOPMENT OF MODELS

2.1 Developing the model

Since this thesis only considers walking in a

straight line and since the hind leg is nearly parallel to

the body center line, only two dimensional models of the

hind leg are considered for this thesis. Two dimensional

models are simpler and thus, easier to evaluate than the

three dimensional models and with the above

simplifications they represent motion of the beetle quite

well.

Two models, a two-link and a three-link model, are

considered. These models are explained in more detail in

chapters 4.1 and 5.1. Figure 2.1 gives the bottom view of

the beetle, indicating the various joints of the hind leg.

The model parameters, that is, data for the lengths

of the links, position of the center of mass and the

masses of each of the links etc., were taken from

Baek(1990) and from Fichter(unpublished). The lengths of

the tibia and femur are 10.4mm and 11.9mm respectively.

The total mass of the beetle is 1.1gm and the hind leg has

a mass of 0.02gm. Thus, the tibia and femur have masses

of 0.01gm each. The center of mass of the beetle is 2.2mm

from the coxa-trochanter joint (Fichter, unpublished).
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C COXA

TRO : TROCHANTER

Fig 2.1 Beetle's bottom view

2.2 Initial positions

The normal resting height of the darkling beetle,

determined from observation (Baek 1990), is with center of

mass (cm) approximately 10mm above the ground ( Ycm =
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10mm). To get a better understanding of the effect of

changes in body height upon the dynamic behavior, body

heights 2mm above and below the normal resting height,

that is, Ycm at 12mm and 8mm are also considered for

analysis.

Selecting foot points at the middle of the maximum

leg stroke provides the most freedom of body movement. At

body height of 10mm, Baek(1990) found that the center of

mass is 10mm in front of the hind foot when foot is at

middle of maximum leg stroke. To evaluate change in

horizontal distance between foot and CM two other

positions of the foot were used; one 1/4 of maximum leg

stroke in front and one 1/4 of maximum leg stroke behind

the middle position. Thus, there are three possible x

coordinates and three possible y coordinates of center of

mass. From these, 9 initial positions are possible. All

these coordinates are with respect to the foot. These

initial positions of center of mass are indicated in

Figure 2.2.
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Fig 2.2 Initial positions of center of mass of the beetle

2.3 Characteristics to be studied

Several characteristics of the motion of the center

of mass are to be determined, i) Trajectory ii) Time of

travel iii) Travel in the X - direction ( xtravel ) and

iv) Travel in the Y - direction ( ytravel ) of center of

mass. Figure 2.3 illustrates the definitions for xtravel

and ytravel for a two-link model.

Trajectory : Trajectory refers to the time history of

position, velocity or acceleration of a particular point
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of interest. In our case, we are interested in the

trajectory of position of center of mass of the walking

machine.

The trajectory of center of mass is an important

factor in the study of dynamics of the walking machine. A

smooth and flat trajectory uses less energy than other

trajectories to do the same work. Only the push-off phase

of walking is considered for analysis. That is, motion of

hind leg of beetle from stationary position until there is

a need to lift hind leg off the ground.

Y 1 Initial Position
!

!

--------41 Xtravel i*--------
i

1

X

Ytra vel--

Fig 2.3 Definitions for xtravel and ytravel
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Knowledge of dynamic behavior of walking machine for

different foot positions can be used in maximizing forward

travel, time of travel and linear velocity of center of

mass of the walking machine.

Time of travel : It is the time taken for hind leg to

reach the final position from the initial position.

xtravel : It is the amount of distance travelled in the

x-direction before the limits on the leg are reached.

This is shown in Figure 2.3.

ytravel : It is the amount of distance travelled in the

y-direction before the limits on the leg are reached.

This is the difference between value of the y-coordinate

of the center of mass at the end of the run, from the

initial value. This is shown in Figure 2.3.
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3. APPROACH FOR DEVELOPING AND SOLVING DYNAMIC EQUATIONS

3.1 Lagrangian mechanics

Dynamic equations relate forces and torques to

positions, velocities and accelerations. They are solved

in order to obtain the equations of motion, that is, given

forces and torques as input, these equations specify

resulting motion of the system. A manipulator having Inl

degrees of freedom results in `nl coupled, non-linear

differential equations. By using dynamic simulation we

will be able to predict the behavior of center of mass of

the walking machine for any given initial position, and

any given forces and torques. Lagrangian mechanics was

used for this study.

The Lagrangian L is the difference between the

kinetic energy K and the potential energy P of the system,

L = K - P (3.1)

The kinetic and potential energy can be expressed in any

convenient coordinate system that will simplify the

problem. The dynamic equations, in terms of the

coordinates used to express the kinetic and potential

energy, are obtained as



d aL

13

(3.2)

Where qi are the generalized coordinates in which the

kinetic and potential energy are expressed, q, is the

generalized velocity, and Fi the force.

3.2 Runge-Kutta algorithm for numerical integration

As Equation 3.2 shows, dynamic equations involve

differentials of the generalized co-ordinates. To obtain

values of generalized coordinates, these dynamic equations

were integrated using the fourth-order Runge-Kutta. At

each step this method calculates the next step using the

following equations

k1 =hf'(x,y,)

k2=hf'(x+1/2h,y,+1/2k1)

k3 = hfs (x+1/2h,y,+1/2k2)

k4 = hf'(xn+h,yn+k3)

yn+1 = yn+_.
6

1
(k1+2k2+2k3+k4) +0 (h5)

where,

(3.3)

h is the step size, 0(h5) represents terms of order 5

or greater, which are neglected,

f(x,y,,) is a first-order differential equation and

f'(,17,) is the derivative with respect to time.
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For every iteration, kl, k2, k3 and k4 are evaluated

and then the value of the function at the next step is

obtained from Equation 3.3. The Runge-Kutta method treats

every step in a sequence of steps identically. Prior

behavior of a solution is not used in its propagation.

This is mathematically proper, since any point along the

trajectory of an ordinary differential equation can serve

as an initial point. Further details are out of the scope

of this thesis and interested reader can refer to Press

etal (1988).

The fourth-order Runge-Kutta method requires four

evaluations of the differential equations per step and is

effective even with large step size for many problems. As

this method is very stable and simple to use, this method

was chosen for the numerical integration procedure for

this thesis.

The formulas given are for integrating first order

differential equations. However, the same formula can be

used to solve second-order differential equations by

converting the second order differential equations to

first-order differential equations by defining new

variables. Using this method, for every second-order

differential equation, there are two first-order

differential equations. These two first-order

differential equations, then, can be solved using the

method mentioned above.



4. TWO LINK MODEL

4.1 Two link model representation

The first model for the hind leg consists of two links. The

first link is attached to ground at the foot and the second link

connects first link to the body of the beetle. Both joints are

revolute joints. The mass of the first link, 0.01gm, is considered

to be a point mass at the end of the link. The mass of the beetle,

1.1gm, is concentrated at the end of the second link as shown in

Figure 4.1.

m1

Fig 4.1 Two link model representation

-1=0

X

15
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There are no forces on the system except gravity. Since,

beetle does not have muscles big enough to exert any torque at the

foot the only driving torque is applied at joint 2.

Figure 4.2, illustrates the co-ordinate system and the

generalized co-ordinates for the model. x,, and yc are co-ordinates of

the center of mass. The values of 01 and 02 can be obtained for

given x and y co-ordinates of the initial position of center of mass.

The derivation is given in appendix A.1.

Y t
Mi

map

X

Fig 4.2 Representation of generalized co-ordinates

for the two link model
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Co-ordinates of joint 2 are (x1, y1) and co-ordinates of center of

mass are (xca.), also represented by (x2, y2).

4.2 Developing equations of motion for the 2-link model

Link 1 : Kinetic energy and potential energy of the first link are

given by,

K, = Y2 m11 12612 (4.1)

P1 = myglisinO, (4.2)

Link 2 :

x2 = 11cos01 12cos(91+02)

Y2 = lisinO, 12sin(01 +92)

).(2 = 1 As i nO, + 12(6142) sin (91 A)

Y2 = lielcosO, 12(6142)cos(01+192)

2
V2 = *22 + 922

v22 = 1 12612 + 122 (62+62 ) 2 2111261 (el+ .92) cos02

Thus, kinetic and potential energy of the second link are given by,

K2 = Y2 M2 V22

K2 = 1/2 M2 1 12612+ 1/2 M2 1 22 (61+62 ) 2-M2 1 1 261 (e1+62) C°S192

P2 = M2992

P2 = m2g(11sin91- 12sin(91 +92))

and the Lagrangian is given by, according to Equation 3.1

L = K P = (K1 +1(2) (P1 +P2)

L = Y2 (ml+m2)112612+1/2m2122(6142)2-m2111261(60-62)cose2

( 1114-m2) 91 isi nel+m2g12s n (01+00 )

(4.3)

(4.4)

(4.5)



Torque at joint 1:

8L

ail

= (m1 +m2)1 120 l+m21 22 (0 1+0 2) -m21 11 20 1(201+0 2) use2

d aL

dt Ou
A ( (mi+m2)1 12+m21 22 -2m21 11 2cos02) 1+ (m21 22
i

8L

2m21112cos02).62+2m211120102si n02+m21112022si n02

301
-(mi+m2)glicos0,+m2g12cos(01+82)

Combining Equations 4.6, 4.7 and 4.8 according to 3.2 gives

T1 = D11e1 + D1262 + D122e22 D1126162 + D,

where,

D11 = (111-11112) 1 12+11121 22'21121 2COSO2

D12 = 11121 22-M21 11 2COSO2

D122 = M21 11 2Si ne2

D112 = 211121 11 2Sin02

Di = (m1 +m2)gl1cose1 m2g12cos(01+02)

Torque at joint 2:

OL
= m21 0-m22621 2262-m21 11 2eicose2

ao2

d aL

dt ao2
(M21 22-M21 11 2COS02)61+M21 2262411121 11 26162Si ne2

al_

= In2111261(61+62)sin02+m2g12cos 01+192)
302

Thus, combining equations 4.10, 4.11 and 4.12 according to 3.2, 12 is

given by,

18

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

12 = 01261 + D2262 + 0231612 + D2

where,

D22 = M21:

D211 = M21 11 2S i ne2

(4.13)
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D2 = - m2g12cos(81+92))

Expressions for T, and T2 are the dynamic equations to be used

for simulation. Therefore, these are solved for 6, and 62.

Information about the generalized co-ordinates and speeds can be

obtained by integrating the expressions for 01 and 02. Equations 4.9

and 4.13 can be rearranged with only the accelerations on the left

hand side as,

D1161 + D32.62 = T1 0122622 01126162 DI

DA + D2262 = T2 D211612 D2

Solving the above simultaneous equations for 6, and 62,

61 = C1+C2612+C.3622+C46162+C5

62 = E1+E26124-E3622+E46162415

where,

C = 1)11022-D122

Cl = ( TID22-T2Di2 ) /C

C2 = D12D211/C

C3 = D22D122/C

C4 = D22D212/C

C5 = (D2D12-D1D22) /C

and,

E = 01:-012022

E, = (T1012-T2D11)/E

E2 = D11D211)/E

E3 = Di2D122/ E

E4 = Di2D112/ E

E5 = (02D31-D1012) /E
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5. THREE LINK MODEL

5.1 Model representation

This model for the hind leg is similar to the model

described in chapter 4, except that center of mass is not

at the end of the second link. The third link represents

the beetle body with concentrated mass. Also, masses of

the first and second links are concentrated at the center

Fig 5.1 Three link model representation
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of the respective links. No torque is applied at joint 3.

However, static and dynamic friction effects are

considered at this joint. The model is shown in Figure

5.1.

Friction torque and it's effects

From the initial runs with no torque at joint 3, I

found that there is no stable position for the system, and

the system collapses very fast. This led me to believe

that there must be some kind of system of muscles acting

at this joint. We have no information about this at this

time. Thus, friction torque at joint 3 is an effort to

model these unknown forces and torques. An exact number

for this friction torque is very difficult to determine

and not available at this time. From my initial runs, at

least a value of 10 gm-cm2/sec2 for friction torque

resulted in good xtravel and time of travel. Thus, this

value is used for our analysis.

As long as the torque on joint 3 is less than the

friction torque, there is no movement at the third joint.

Thus, the velocity and acceleration of angle 03 is zero.

However, once this static friction is overcome, the

dynamic friction is valid and this friction torque acts in

a direction opposing the motion of the third link. This

can be mathematical represented as



if itd

else

tf 6=o

t3
T3 = ( I t3 I tf )

22

Here, t3 is the torque required at joint 3 for zero 03

acceleration, tf is the friction torque at joint 3, and T3

is the torque causing acceleration at joint 3. The

incorporation of the friction torque into the software is

explained in Appendix A.4.

Fig 5.2 Representation of generalized co-ordinates

for the three link model
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Figure 5.2, illustrates the co-ordinate system, and

generalized co-ordinates for the model. x, and y, are co-

ordinates of the center of mass. The values of 01 , 02,

and 03 can be obtained for given x and y co-ordinates of

the initial position of the center of mass. The

derivation is given in appendix A.2.

5.2 Equations of motion for the 3-link model

The position of the center of mass can be described by

x, = licos01 - 12cos(01+02) - 13cos(01+02+03)

y, = llsinei - 12sin(00-02) - 13sin(00-02+03)

Differentiating equations 5.1 and 5.2 results in

}Co

Src

- Ili/Isla, + 12( 61+62) sin ( 01+02) +

13( 61+62+63) sin ( 01+02+03)

= 1161cos01 - 12(61+62)cos(01+02) +

13 ( 61+62+63) cos ( 01+02+03)

(5.1)

(5.2)

Kinetic and Potential energy :-

Link 1

The kinetic and potential energies of first link are given

by,

K1 = 1/2 m1112612 (5.3)

P1 = miglisinOi (5.4)

Link 2 :



As the mass is concentrated at the center of the link,
X2 = 11cos01 1/412COS 01+02)

y2 = 11sin01 - 1/212sin(01+02)

differentiating once results in,
sc2 = - 1191sin01 + 1/212(61+62)sin(01+02)

X2 = 1181cos01 - 1/212(i)142)cos(01+02)

v22 22 iC22 22

= 11412 + 1/4122 (81-42) 2 - 1112e1 6142) COS02

Thus, kinetic and potential energies are given by,
K2 =

P2 =

Link 3
,72 ice2 v
.3

24

2m2112b12+1/8m2122 ( b142)2-1/2m21112b, ( bi+b2) cos02 (5.5)

m2g(lIsin01-1/212sin(01+02)) (5.6)

substituting the expressions for velocities of x, and y,
and simplifying the terms, results in
v32 012+122 ( 6142)2+132 014243. 2_2 111201 (81 +82) COS 02

+ 2 1213 ( 01+02) (01 +02 +03) COS 03-2 111301(01+0243) COS ( 02+03)

the kinetic and potential energy are given by,

K3 = 1/2M3112612+1/2M3122( 6142)2+1/2%132 ( I/14243)2- M31112141

(0142) COS 02+1%1213 ( 01+02) ( 01+02+03) COS 03

- m3111301 ( 01+02+03) cos ( 02+03)

P3 = m3g (lisin01-12sin ( 01+02) -13sin ( 01+02+03) )

According to Equation 3.1, the Lagrangian would be

L = K P = (K1+K2+K3) (P1+P2+P3)

(5.7)

(5.8)

Combining Equations 5.3 through 5.8 and simplifying would

result in



L = 1/2 (1111+1n2+1n3) 112612+1/2 (1/4m2+m3) 12
2 (01 +02))2+½m12

(61+62+63)2-(1/2m2+m3) 111201 (01 +02) cose2+m31213 (01 +02)

( 0142+03) COS 03"..n13111301 (01 +02 +03) COS ( 02+03)

- (1/2m1+m2+m3) glIsin01+ (m2+m3) gl2sin ( 01+02) +

m3g13sin ( 01+02+03)

The general expression for torque is given by,
d

Ti = -dt ao; ao,

Torque at joint 1 :

aL

abl
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(5.9)

for i = 1, 2, 3 (5.10)

= (m1 +in2+in3)11261+(1/4m2+m3) 122 (0142) +m3132( 61+6243)

d aL

dt a1

aL

ae,

(1/2m2+m3) 1112( 2 61+62) cos 02+131213 ( 2 61+2 62+63) cos 03

-m31113( 2 61+62+63) cos ( 02+03)

= (m1 +m2+m3) 112.61+ (1/4m2+m3) 122( 61+62) +m3132( 61+62+63)

(1/2m2+m3) 1112( 61+62) cos 02+ (1/2m2+m3) 111262( 2 61+62) sin02

+m31213 ( 2 61+2 .6243) cos 03-m3121363 ( 2 61+2 02 +03) sin03

-m31113( 2 61+62+63) cos ( 02+03) +m31113 (02 +03)

(2 01+02+03) sin ( 02+03)

= - (1/2m1+m2+m3) glicos 01+ (1/2m2+m3) gl2cos ( 01+02)

+ m3g13cos ( 01+02+03)

Adding the terms according to Equation 3 . 2 ,

T1 = a6,+a2.62+a363+a4612+a,022+a61932+a7i9,02+a86203+a911301+a,0

where,

a1 = (mo-m2+m3) 1,2+ (1/4m2+1n3) 122+1%132-2 (1/2m2+m3) 1112cos 02

+2M31213COS03-21n31113COS ( 02+03)

(5.11)
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a2 = (1/4m2+m3) 122+m3132- (1/2m2+m3) 12cos 02+2m31213cos 03

-m31113cos ( 02+03)

a3 = m3132+m31213cos03-m31113cos ( 02+03)

a4 = 0

a5 = (1/2m2+m3) 1112sin02+m31113sin ( 02+03)

a6 = m31113sin ( 02+03) -m31213sin03

= 2 (1/2m2+m3) 1112sin02+2m31,13sin ( 02+03)

a8 = 2M31113Sin (02+03) -2m31213sin03

a9 = 2m31113sin ( 02+03) -2m31213sin03

al() = (1/2m1 +m2+m3) glicos 01- (1/2m2+m3) gl2cos ( 01+02)

-m3g13cos ( 01+02+03)

Torque at joint 2 :

aL
=

8 02
(1/4m2+m3) 122( 0142) +m3132(01+02+03) - (1/2m2+m3) 111201cos 02

+m31213( 2 01+2 02+03) cos 03-m31,1301cos ( 02+03)

d
= kro2+m3) 122 (61+62) +m3132 ( 61+62+63) (1/2m2+m3) 11126dt a 02 1cos 02

+ (1/21n2+1113) lt126102sin02+m31213( 2 .61+2 62+63) -m3121303( 2 01+2 0243) sin03

-m3111361cos ( 02+03) +m3111301(02+03)

aL

a 02
= (1/2m2+m3) 111201( 61+02) sin02+m3111301 ( 01+02+03) sin ( 02+03)

+ (1/2m2+m3) gl2cos ( 01+02) +m3g13cos ( 01+02+03)

Combining the above three equations according to Equation

3 . 2 and simplifying would result in an expression for T2

as
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T2 = 61+b262+b363+b4612+b5b22+b6b3243.,_A; h 14 ;3 f= in%
'"-'7v 1 v 2 ' "8.'2%13 +-09v3v .

where,

b1 = (1/4Tu2 fm3) 1224-m3132- (1/2m2+m3) 1112cos 02

+2M31213COS 03-M31113COS (e2 +03)

b2 = ( 1/41112+1% ) 122+M3132+211131213COS 03

b3 = M3132+M31213COS 03

b4 = ( 1/21112+1113) 1112sin02-m31113sin ( 02+03)

b5 =

b6 = -m31213sin03

137 = 0

b8 = -2m31213sin03

b9 = -2m31213sin03

b10 = - (1/2m2+m3) gl2cos ( 01+02) -m3g13cos ( 01+02+03)

For Torque at joint 3 :

a L
m3132( 01+0243) +m31213( 01+02) cos 03-m3111301cos ( 02+03)

ao3

d aL
_ 1 (3_32 61+6m 2+63) -11131213 (81 +62) COS 03-11131213O3 ( b1+1)2) sin03=

dt a 03

aL

803

-m31113.01cos ( 02+03) +m3111301( 02+03) sin (e2 +03)

-m31213(81+02) ( 0142+03) sin03+m3111301( 0142+03) sin ( 02+03)

+m3g13cos ( 01+02+03)

Combining the above three equations according to Equation

3 . 2 and simplifying the terms results in an expression for
T3 as



T3 = Ca 61+C262+C36 3+C40 12+C6022+C60 32+C7 0 2+C8,020 3+C96 3 to i+cio

where,

C1 = M- 3132+M31213COS 03M31113COS ( 02+03)

C2 = 11R3132+21131213COS 03

C3 = M- 3132

C4 = -- m31113sin (02+03) +m31213sin03

C5 = m31213sin03

C6 = 0

C2 = 2m31213sin03

Cg = C9 = 0

c10 = -m3g13cos (01+02+03)

(5.13)
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The dynamic equations are the expressions for torques

at joints 1, 2 and 3, given by Equations 5.11, 5.12, and

5.13, to be used for simulation. These are solved for

62 and 63 to arrange in convenient form for numerical

integration. This derivation and the incorporation of

friction torque into the integration procedure are given

in Appendix A.3 and A.4 respectively.
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6. ANALYSIS FOR THE TWO LINK MODEL

This chapter discusses the results for the two link

model. As mentioned in chapter 2.3 the parameters

analyzed are i) Trajectory ii) Time of travel iii)

Travel in the x - direction of center of mass (xtravel)

and iv) Travel in the y - direction of center of mass

(ytravel). Though the program calculates the linear

velocity of the center of mass, it was not considered in

the present analysis. However, at a later stage, it would

be an important factor to be considered, and thus, it is

provided in the software.

Constraints

Not all the information we get from integrating the

equations of motion is useful. Thus, some constraints are

imposed to cut down the unnecessary data. These

constraints are

1. 01 : 0° <= 01 >= 180°

2. 02 : 40° <= 02 >= 140°

3. Height of center of mass: The height of center of

mass must always be greater than zero, that is, above

ground level.

From Figure 4.2, we can see that, if 01 is less than

or equal to 0°, the first link is on the ground. This is
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same for 01 of 180° or more. This is not desirable and

thus, constraint 1 is imposed. The same constraint can be

imposed on 02 for similar reasons. But, values of 02 very

close to 0° or 180° are not very useful for our analysis.

Because, this would mean that links one and two are either

doubled up or in the same line. Thus, constraint 2 is

imposed. The limits of 40° and 140° on 02 are chosen

arbitrarily.

In the program, as soon as any of the above

constraints are violated, the numerical integration is

stopped and the data is stored in output files.

Results of the output runs:

For each initial position, the value of T2 is varied

until the required trajectory is obtained, i.e., flat

trajectory with ytravel of 0 ± 0.2mm. For each initial

position, T2, time of travel, xtravel, and ytravel are

tabulated.

Table 6.1 gives the results of all the runs for this

model. From this data, plots can be made between various

parameters. This will help understand the effect of one

parameter over other parameters. T2, the input variable,

is the parameter being controlled. Thus, it will be

useful to understand the effect of T2 over other

parameters, i.e., time of travel, xtravel and ytravel.
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This gives us an understanding of the dynamic behavior of

the leg.

Initial

Pos.

set no.

Im
(mm)

N.
(mm)

Irz

(gm -cm'/

see)

Time of

travel

(mSec)

xtravel

(mm)

ytravel

(mm)

1 6 8 1300 56.7 13.1 -1.5

1400 53.9 12.4 -0.2

1450 52.6 12.3 0.2

1500 51.3 12.2 0.7

2 6 10 1200 58.9 11.8 -0.4

1225 57.9 11.5 -0.06

1250 56.9 11.3 0.2

3 6 12 1050 62.4 11.1 -0.6

1075 60.9 10.5 -0.1

1100 59.4 10.3 0.3

1200 54.1 9.4 1.6

4 10 8 1400 40.2 9.4 -1.3

1500 38.4 9.0 -0.7

1650 36.1 8.9 -0.1

1700 35.4 8.6 0.04

5 10 10 1300 39.5 8.0 -0.3

1350 38.4 7.8 -0.06

1400 37.4 7.7 0.19

6 10 12 1100 40.0 7.0 -0.2

1150 38.5 6.6 0.1

1200 37.1 6.5 0.4

7 14 8 1400 26.9 5.0 -0.7

1500 25.8 4.9 -0.55

1600 24.8 4.86 -0.37

1700 23.9 4.7 -0.21

1800 23.1 5.0 -0.1

1900 22.3 4.8 0.02

8 14 10 1200 26.0 4.4 -0.46

1300 24.6 4.1 -0.2

1400 23.4 4.0 -0.02

1450 22.9 3.8 0.06

9 14 12 1000 23.5 3.0 -0.19

1100 21.8 2.8 0.02

1200 20.5 2.73 0.17

Table 6.1 Results for all the initial positions
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Figures 6.1 and 6.2 show the time of travel vs torque

curves for initial position (6,8) and (10,8) of center of

mass respectively. The behavior for the rest of the

initial positions is similar to these. Time of travel for

all initial positions decreases with increase in the

torque at joint 2. In Figure 6.1, the time of travel

seems to level at higher torque, indicating that time of

travel might be a constant with increase in T2 beyond 1500

gm -cm /sect. However, this is not true. Increasing T2

1200 1300 1400 1450 1500

T2(gm-cm/sec2)

Fig 6.1 Time of travel vs T2 for initial position (6,8)
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beyond 1500gm-cm/sec2 decreases time of travel very much,

and thus, higher values of T2 are not shown in the figure.

e

P
0.02

0.05

0.01
1200 1300 1400 1500

T2(gm-cm/sec2)

1650 1700

Fig 6.2 Time of travel vs T2 for initial position (10,8)

Figures 6.3 and 6.4 show the xtravel vs torque curves

for initial positions (6,8) and (10.8) of center of mass

respectively. The behavior is similar for other initial

positions. Similar to the time of travel, xtravel

decreases with increase in the torque at joint 2. Thus,
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higher torque need not necessarily improve the performance

of the system. In Figure 6.3, the xtravel appears to

level at higher torque. But, similar to the time of

travel, the xtravel decreases drastically, at higher T2.

Thus, higher values of T2 were neglected and not shown in

the figure.

1200 1300 1400 1450

T2(gm-cm/sec2)

1500

Fig 6.3 Xtravel vs T2 for initial position (6,8)
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1200 1300 1400 1500

T2(gm-cmisec2)

1650 1700

Fig 6.4 Xtravel vs T2 for initial position (10,8)

Figures 6.5 and 6.6 show the ytravel vs torque

curves for initial positions (6,8) and (10,8) of center of

mass respectively. The behavior for the rest of the

initial positions is similar. The ytravel, unlike time of

travel and xtravel, increases with increase in the torque

at joint 2. However, the ytravel crosses zero for a

certain torque, the threshold value. For torques below

and above this threshold value, ytravel is of considerable

magnitude. However, close to that threshold value of

torque, ytravel is either zero or close to zero.
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5.0

3.0,

T.)

ce

b -1.0"
-,

-3.0-

-5.0
1200 1300 1400 1450 1500

T2(gm-cm/see)

Fig 6.5 Ytravel vs T2 for initial position (6,8)

The criterion for deciding a good value of torque for

a given initial position is based on ytravel. As

mentioned before, a ytravel of close to zero is desirable.

Thus, the values of the torque at joint 2 resulting in

ytravel of zero or close to zero are used to construct

tables of initial position versus xtravel to evaluate the

behavior of the system.

A very good way of understanding the relationship

between the various parameters for the model is by making

tables similar to Table 6.2. The values at the bottom
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5.0

3.0

-3.0

-5.0
1200 1300 1400 1500

T2(gm-cm/sec2)

1650 1700

Fig 6.6 Ytravel vs T2 for initial position (10,8)

indicate the x-coordinate of center of mass, and values on

y-axis indicate the y-coordinate of center of mass. The

values in the table are for the particular parameter of

interest for that initial position. Thus, one can observe

the behavior of the system with increase or decrease in

the x-coordinate, or the y-coordinate, or both.

The major factors in deciding whether an initial

position is good or not are the torque needed at joint 2

and the xtravel. The results for a ytravel of

approximately zero, i.e., a ytravel of 0 ± 0.2mm, are
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summarized in Tables 6.2, 6.3 and 6.4. The torque needed

per unit xtravel gives us an estimate of the efficiency of

the system for the given initial position.

12

ycm(m" 10

8

10.4 6.6 2.8

11.3 7.7 3.8

12.7 8.6 4.9

6 10

xern(mm)

14

Table 6.2 xtravel for zero ytravel
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12

Y,,,, (mm)

10

8

12

Yc, (mm)
10

8

1100 1150 1100

1250 1400 1450

1425 1700 1900

6 10

Y6n(nni)

14

Table 6.3 T2 for zero ytravel

106 174 398

111 182 382

112 198 388

6 10

;(mm)

14

Table 6.4 T2/mm ( unit-T2 ) for the two link model
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xtravel

As seen from Table 6.2, xtravel decreases with

increase in both x and y co-ordinates of the center of

mass. Increase in x, reduces xtravel faster than

increase in yam,. For every 4mm increase in xcm, the

reduction in xtravel is almost twice as much as for the

same increase in yen,.

T2

As seen from Table 6.3 , The torque needed at joint 2

for a flat trajectory, i.e., with a small ytravel

increases with increase in xem and decreases with an

increase in the body height ( yen, ). The reduction in T2

with increasing xc,, decreases as the body height

increases. At a body height of 12mm, T2 is almost the

same regardless of the value of x,. At greater body

heights, x, does not influence the torque needed at joint

2 as much as at lower body heights.

T2 / xtravel ( unit-T2 )

The amount of torque needed at joint 2 per unit

xtravel gives us an indication of the efficiency of the

leg for that initial position. Table 6.4 shows the torque

needed per unit xtravel for each of the initial positions.

Unit-T2 increases with increase in ;no However, for each

of the xcm, the unit-T2 value is almost the same for all
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heights. The difference is so small that they can be

considered equal. Thus, it is more efficient at lower xmi

and body height does not affect the efficiency.

This model does not represent the beetle very well

since, in reality the body center-of-mass is not at the

place where the hind leg is connected to the body. It is

2.2mm from this joint. However, considerable xtravel and

time of travel were observed for this model.
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7. ANALYSIS FOR THE THREE LINK MODEL

This chpater discusses the results for the three link

model. As mentioned in chapter 2, the paramters analysed

are i) Trajectory ii) Time of travel iii) Travel in the

x - direction of center of mass (xtravel) and iv) Travel

in the y - direction of center of mass (ytravel). Though

the program calculates linear velocity of center of mass,

it was not considered in the present analysis for same

reasons as in chapter 6.

Constraints

As discussed in the two link model analysis, not all

the information we get from integrating the equations of

motion is useful. Thus, some constraints are put to cut

down the unnecessary data. The constraints on the three

link model are

1. 01 : 0° <= 0, <= 180° deg.

2. 02 : 0° <= 02 <= 180° deg.

3. Height of center of mass: The height of center of

mass must always be greater than zero, i.e., above

ground level.

4. 03 : constant. The value of 03 must be a constant,
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i.e., the third link must not have any movement with

respect to the second link.

As long as the torque needed to support joint 3 is

smaller than the friction torque, third link will not move

with respect to the second link, i.e., the velocity and

acceleration of 03 are zero. But, once the torque needed

to support joint 3 exceeds the friction torque at that

joint, the third link will start moving with respect to

the second link.

In the program, as soon as any of the above

constraints are violated, the numerical integration is

stopped and the data is stored in output files.

Additional foot positions

Foot positions in addition to the ones considered in

the two-link model are considered for this model. After

looking at the results for the previous foot positions, I

wanted to look at some of the intermediate positions for a

better understanding of the behaviour of the model. These

positions are given in Figure 7.1.
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y

t
12

10

(mm)

8

6

4 6 8 10 12 14

(mm)

Fig 7.1 Additional positions of center of mass of

beetle shown as large dots

Results of the output runs:

For each of the initial positions, the value of T2 is

varied until the required trajectory, i.e., flat

trajectory with ytravel of near zero, i.e., ytravel of 0 ±

0.2mm, is obtained. Tables 7.1 and 7.2 give the results

of all the runs for this model. The time of travel,
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xtravel and ytravel, when plotted against T2 give us an

understanding of the dynamic behavior of the leg.

Set no. xcm

(mm)

ycm

(mm)

T2

(gm-cm/

see)

time of

travel

(ee)

xtravel

(mm)

ytravel

(mm)

1 6 8 1200 35.6 4.0 -1.07

1300 31.9 3.36 -0.47

1400 28.8 2.92 -0.09

1500 26.3 2.68 0.17

2 6 10 1100 39.8 4.09 -1.21

1200 34.0 3.33 -0.43

1300 29.5 2.58 0.03

3 6 12 1100 37.2 3.31 -0.49

1150 33.6 2.72 -0.14

1200 30.6 2.32 0.08

4 10 8 1500 17.7 1.56 -0.17

1600 16.5 1.47 -0.08

1700 15.4 1.37 -0.001

1800 14.5 1.26 0.05

5 10 10 1200 22.2 1.98 -0.42

1300 19.9 1.59 -0.18

1400 18.0 1.54 -0.05

1500 16.5 1.30 0.04

6 10 12 1100 23.2 1.91 -0.34

1200 203 1.57 -0.10
1300 18 1.37 0.05

7 14 8 1600 11.6 0s7 -0.10

1700 10.9 0.76 -0.05

1800 103 0.80 -0.02

8 14 10 1300 13.5 0.98 -0.12

1400 12.4 0.89 406
1500 113 0.80 -0.01

9 14 12 1100 14.7 0.97 -0.13

1200 13.2 0.90 -0.04

1300 12.1 0.84 0.015

Table 7.1 Results for the runs for original 9 initial
positions
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set no x.,
4100

Y..
(mm)

T2

(gm-cm/

=2)

Time of

travel

(mSec)

xtravel

(mm)

ytravel

(nun)

10 4 6 1200 47.3 6.9 -2.2

1300 44.0 6.5 -1.2

1400 41.0 5.7 -0.3

11 4 8 1100 52.0 6.6 -2.5

1200 46.2 5.4 -1.0

1300 40.9 4.3 -0.06

1350 38.6 4.0 0.24

12 4 10 1200 43.6 3.9 -0.15

1225 41.6 3.6 0.05

1250 39.8 3.3 0.22

1300 36.6 2.9 0.47

13 6 6 1300 33.3 4.4 -1.28

1500 28.8 3.6 -0.39

1600 27.0 3.5 -0.14

1700 25.3 3.2 0.09

14 8 6 1600 21.2 2.4 -0.35

1700 19.9 2.1 -0.18

1800 18.8 2.0 -0.07

1900 17.8 1.9 0.01

15 8 8 1400 23.3 2.3 -0.29

1500 21.4 2.1 -0.10

1600 19.8 1.8 0.04

16 8 10 1200 27.2 2.6 -0.47

1300 24.1 2.2 -0.15

1400 21.6 1.8 0.05

17 8 12 1200 24.8 1.9 -0.06

1250 23.2 1.8 0.06

1300 21.7 1.5 0.14

Table 7.2 Results for additional foot positions for three
link model

Increasing friction torque

Increasing the friction torque at joint 3, increases

the stiffness of this joint. As friction torque, tf,
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approaches inifinity, the three link model should behave

as the two link model. Thus, few runs were made for

initial position (6,8) to check this. The results are

shown in Table 7.3.

x..

(mm)

Y..

(mm)

time of

travel

(mSec)

xtravel

(mm)

ytravel

(mm)

6 8 1400 10 28.8 2.92 -0.09

6 8 1400 20 34.1 4.41 -0.19

6 8 1400 40 40.6 6027 -0.36

6 8 1400 60 44.7 7.74 -0.52

6 8 1400 80 47.6 8.97 -0.67

6 8 1400 100 49.8 9.86 -0.78

Table 7.3 Results for different friction torque values

for initial position (6,8)

Time of travel and xtravel increase with increase in

friction torque at joint 3. For friction torque of 100gm-

cm/sec2, xtravel is close to 10mm. This is close to the

value 12.4mm of xtravel, from Table 6.1, obtained for the

two link model for this initial position.
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Plots

Figures 7.2 & 7.3 show the Time of travel vs torque

curves for initial position (6,8) and (10,8). The

behaviour for the rest of the initial positions is similar

to these. The time of travel for all the initial

positions decreases with increase in torque at joint 2.

0.050

1000 1100 1200 1300 1400

T2(gm-cm/sec2)

1500

Fig 7.2 Time of travel vs T2 for initial position (6,8)



1300 1400 1500 1600 1700

T2(gm-cm/sec2)

1800
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Fig 7.3 Time of travel vs T2 for initial position (10,8)

The time of travel seems to level at higher T2, in

Figure 7.2. But, further increase in torque decreased the

time of travel very much. and thus, higher values of T2

were not shown in the figure.

Figures 7.4 and 7.5 show the xtravel vs torque curves

for initial positions (6,8) and (10,8) respectively.

Similar behavior is observed for other initial positions.

Similar to the time of travel, xtravel decreases with

increase in the torque at joint 2. Thus, higher torque

need not necessarily improve the performance of the
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6.0

5.0

E 4.0-
E

Ti
,P, ,

3.0-
X

2.0-

1.0
1000 1100 1200 1300

T2(gm-cm/see)

1400

Fig 7.4 Xtravel vs T2 for initial position (6,8)

system. The xtravel decreased drasticslly at higher T2.

Thus, higher values of T2 were not shown in the figure.
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T2(gm-cm/sec2)

Fig 7.5 Xtravel vs T2 for initial position (10,8)

Figures 7.6 and 7.7 show the ytravel vs torque curves

for initial positions (6,8) and (10,8) respectively.

Behavior for the rest of the initial positions is similar.

The ytravel, unlike time of travel and xtravel, increases

with increase in torque at joint 2. However, the ytravel

crosses zero for a certain torque, the threshold value.

For torques below and above this threshold value, the

travel is going to be of considerable magnitude. However,

close to that threshold value of torque, the ytravel is

either zero or close to zero.
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Fig 7.6 Ytravel vs T2 for initial position (6,8)
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Fig 7.7 Ytravel vs T2 for initial position (10,8)

As explained in chapter 6, the criterion for deciding

a good value of torque for a given initial position is

based on ytravel. As mentioned before, a ytravel of close

to zero, i.e., ytravel of 0 ± 0.2mm, is desirable. Thus,

values of torque at joint 2 and xtravel, resulting in a

ytravel of close to zero are used to construct tables of

initial positions versus xtravel to evaluate the behavior

of the system.

The values at the bottom of Table 7.4 are the initial
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x-coordinates of center of mass and values on y-axis are

the initial y-coordinate of center of mass. The values in

the table are for the particular parameter of interest for

that initial possition. Thus, one can observe the

behavior of the system with increase or decrease in the x-

coordinate, or the y-coordinate, or both.

The major factors in deciding whether an initial

position is good or not are the torque needed at joint 2

and the xtravel. The results for a ytravel of

approximately zero are summarized in tables 7.4, 7.5, and

7.6. The torque needed per unit xtravel gives us an

estimate of the efficiency of the system for the given

initial position.

12

6

2.3 1.8 1.4 0.85

3.6 2.6 1.8 1.3 0.8

4.0 2.8 1.8 1.3 0.7

3.2 1.9 ....

4 6 8

xa(m)

Table 7.4 xtravel for zero ytravel for three link

model

10 14
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6

1200 1250 1300 1300

1225 1300 1400 1500 1550

1350 1450 1600 1800 1900

1700 1900

4 6 8

xcin(mni)

10 14

Table 7.5 T2 for zero ytravel for three link model

12

6

522 698 950 1545

340 500 782 1154 1867

3.40 518 884 1430 2715

531 1000 _. .

4 6 8

xcm(mm)

10 14

Table 7.6 unitT2 for three link model
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xtravel

As seen from Table 7.4, xtravel decreases with

increase in the x-coordinate of center of mass ( xm ).

The xtravel also decreases with increase in y-coordinate

of center of mass ( ym ) for xm of 4mm, 6mm and 8mm.

However, for xm of 10mm and 14mm, xtravel increases with

increase in ym. A reasonably flat trajectory could not

be found for initial position (4,6), i.e., magnitude of

ytravel was more than 0.2mm. The model collapses for T2

values of more than 1400. Thus, I concluded that this

position is not stable. I included this in the table to

indicate that there is a high xtravel for this position

and yet is not a suitable position.

The difference in xtravel with increase in ym, for

each of the xm, is small. This gives an indication that

body height does not influence the xtravel very much.

However, xm influences the xtravel considerably. Lower

the value of xm, the better is the value of xtravel.

However, at xa of 4mm is not a suitable position at lower

body heights such as 6mm or lower, indicating that

decreasing the xm does not help after a certain value,

4mm in this case.

T2

As seen from Table 7.5, the torque needed at joint 2

for a flat trajectory, i.e., with a ytravel of near zero,
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increases with increase in x,,, for all the body heights,

i.e., ym of 6, 8, 10, and 12 mm. However, the magnitude

of increase, decreases with increase in the ym. The

difference in T2 with increasing xm, decreases as the body

height increases. At a body height of 12mm, T2 is almost

the same regardless of the value of xm. For a given

value of xm, the value of T2 decreases with an increase in

the body height.

This gives an indication that it requires less torque

at higher body heights and lower xm.

T2 / xtravel ( unit-T2 )

The amount of torque needed at joint 2 per unit

xtravel gives us an indication of the efficiency of the

leg for that initial position. Table 7.6 shows the torque

needed per unit xtravel for each of the initial positions.

As seen from Table 7.6, unit-T2 increases with

increase in xm. However, it decreases with increase in

body height for xm of 6, 8, 10, and 14mm. For xm, of 4mm,

however, it increases. Though, the value of unit-T2 is

very low for initial position of (4,6), it is not very

useful because this did not result in a flat trajectory.

The unit-T2 is less at higher body heights for each of the

xm discussed.

Thus it gives an indication that it is more efficient
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at higher body heights with minimum for initial position

(6,10), i.e., xcm of 6mm and a body height of 10mm.

Looking at the xtravel for two link and three link

models, we notice that xtravel for the three link model

is very short compared to the two link model. Maximum

xtravel obtained for a flat trajectory for the three link

model is 4.0mm, for initial position (4,8). The maximum

xtravel for the two link model is 12.7. Baek(1990) found

that the stride length of the beetle is about 12mm. This

indicates that the present three link model does not

represent the beetle very well.



59

8. CONCLUSIONS AND SUGGESTIONS FOR FUTURE STUDY

The main objective of this thesis was to find some general

patterns in the behavior of motion of the beetle with respect to

initial position of the hind leg. Conclusions from this study are as

follows.

1. Body height does not affect the motion of the model very much.

2. The xcn, plays a significant role. Lower the )(cm, the better are

xtravel and torque per unit xtravel.

3. Xcm of lower than 6mm is unstable at lower body heights.

The study of dynamics of walking of a beetle is still under

development, and a number of aspects in this area require further

attention. This chapter includes recommendations for future study of

selected areas related to the subject of this thesis.

Only two dimensional models are studied for this thesis. A

three dimensional model represents the beetle much better and this

would also help in building an actual robot based on this model.

Studying the three dimensional model would give us a better

understanding of the walking mechanism of a beetle. Since animal is

symmetrical, this might not be true for a straight line push off in

the forward direction. But, for other directions, study of three

dimensional model is would be more useful.

Only nine initial positions were studied for the two-link model
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and only seventeen initial positions were studied for the three-link

model. Additional foot positions should be subjected to further

study.

For the three-link model, constant friction torque was

considered at joint 3. At present we have no information about the

torque at this joint. Instead of friction torque, a torque based on

the muscle characteristics would be more appropriate. Further study

in this area would help in controlling the trajectory of the center

of mass of beetle.

For both two-link and three-link models, constant torque was

considered at joint 2. However, a variable torque based on muscle

characteristics would enable us to control the trajectory. This

would also improve xtravel and time of travel.

A model based on the combined hind and middle legs can be

developed. The body connecting these two legs could be considered a

rigid link. Unlike the models considered in this thesis, this would

form a closed loop mechanism. So far lifting a foot off the ground

has not been considered. With the proposed model even this could be

studied.

Finally, the Runge-Kutta numerical integration algorithm used

for this thesis uses a constant time step. Using a variable time

step would reduce the processing time without sacrificing the

accuracy. The current function performing the numerical integration,

could be replaced by a variable step size numerical integration

procedure.
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APPENDIX A

DERIVATIONS FOR INCORPORATING FRICTION TORQUE AND FOR

LINEAR VELOCITY OF CENTER OF MASS

A.1 Initial position for 2 link model

Given the x and y coordinates of the center of mass

with respect to the foot, there is a need to calculate the

initial orientation of the two links. Figure A.1.1 shows

the initial orientation of the two-link model.

xo )

X

Fig A.1.1 Initial position for two link model
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The initial position x y, and the lengths 11 and 12 are

known.

d2 = x,2+y,,2 = 112+122-2 1112cos02

:. e2 = cos-1 11 4-1-d2)
21112

(14-d11d 2-11
a = cos-1

2
and p = tan-1(

X0
)

= a+P = cos-1 11-11
01 + tan-11 L)

211d Xo

Thus, the initial values for the generalized co-

ordinates 01 and 02 are described.

A.2 Initial position for 3 link model

For our analysis, it is assumed that the x, and y

the coordinates of the center of mass, and the orientation

of the third link are known. From these values it is

necessary to find the three generalized coordinates 01, 02

and 03, shown in Figure A.2.1. For this analysis, the

orientation of the third link is assumed to be the line

joining the foot and the center of mass. Figure A.2.1

describes the system.

7 = 01+02+03-1T
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as a, x y 11, 12 and 13 are known,

x, = x,-13cos-y and y, = y,-13sin7

7 = taril(Ydxc)

V I

Fig A.2.1 Initial position for three link model

Now that we have calculated x, and y the rest of the

calculations are similar to the two-link problem given in

appendix A.1. Thus,

d2 = x,2 4-y2
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(12+d2-1f)
01 = cos-1 1211d + tan-i--eY )

x0

02 = cos 22
( 1?+11-d2

21 1

03 = 71-V ( 01+ 02)

Thus, the initial values for the generalized co-

ordinates 01, 02 and 03 are described.

A.3 Rearranging equations for three-link model

The expressions for T1, T2 and T3 can be rewritten as,

a160-a262+a363 = T1-a4e12-a,b22-a,b32-a7b-o--. kh Abh A1 2 ...2w2v3....21,3u1M...10

b1O1 +b2.624-b363 = T21134612- b5ti22- b6032- b70102- 1380 263.'b903101-b10

cA+c262+c363 = T3-c4012-c5022-c66 2 ,i) o... h ,kk ,
3 '''''7 1 2 C8021..3'''....sv3w110

They can also be written as,

a1 a2 a3 el
b1 b2 b3 02

C1 C2 C3 83

=

T1 -a10

T2 -b10
T3 -C10

-
a4

b4

C4

as a6
bs b6
Cs C6

622 -

02
3

a,
b7

C7

a8

b8

C8

a9

b9

C9

0162

0203

0301

(A. 3 . 1)

Let A be a matrix given by,



al a2 a3
A = bi b2 b3

C1 C2 C3

and let the inverse of this matrix be represented by

A11 Al2 A13

A1 = B11 B12 B13

C11 C12 C13

where,

det = al (b2c3-b3c2) -b1 (a2c3-a3c2) +ci (a2b3-a3b2)

A11= (b2c3-b3c2)/det

A13= ( a2b3-a3b2)/det

A22= (a1c3-a3c1) /det

A31= (b1c2-b2c1) /det

A33= ( aib2-a2bi ) /det

premultiplying both sides of Equation A.3.1 with matrix A-1

would give

Au=-(a2c3-a3c2)/det

A21=- (b1c3-b3c1) /det

A23=-(a1b3-a3b1)/det

A32=- ( aic2-a2ci )/det
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01

62

03

01

02

03

= A-1

= G2

G3

T1-a10

T2 -b10

T3 -C10

A-1

A4 A5 A6

B4 B5 B6

C4 C5 C6

A2
2"
2
3_

a4 a5 a6
b4 b5 b6 022

C4 C5 C6 03

ALI3

B7 B8 B9

C7 C8 C9

A-1

0102

0203

03°1

a, a8 a9
b, b8 b9
C7 C8 C9

Where, A's, B's, C's and G's are given by,

Al = A11ai+Al2 bi+A13ci for i = 4 to 9

01°2

02°3

0301_

(A.3.2)
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Bi = A21ai-FA22bi+Anci for i = 4 to 9

Ci = A31ai+A32bi+A33c; for i = 4 to 9

Gi = Ail ( Tra10) +1N2 (T2 -b10) +Ai3 (T3-c10) for i = 1 to 3

and the angular accelerations of the joints are given by,

61 = GI-A4612-A5622-A6632--A0192-A892#3-A919301 (A.3.3)

62 = G2-B4612-135022-B6632-B76162-B80293-B91/361 (A.3.4)

63 = G3-C4912-0022-06632-076162-C80)2#3-C91/301 (A.3.5)

Integrating Equations A.3.3, A.3.4 & A.3.5 would give the

values of three generalized coordinates and their

velocities.

A.4 Incorporating friction torque into the software

Incorporating the friction torque into the software

is explained in this section. As explained in chapter 5,

friction torque is assumed to be acting at the third

joint. The third link will not move until the torque on

the third joint exceeds the friction torque.

From chapter 5, Equations 5.11 and 5.12 can be

rewritten as,

if A then,
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1
= aib2

-b, a, A21 A22

and premultiplying both sides with A4 gives

{A011 [( Tca10) -al {1 I {a4 a5 as 1 al
-A-1 b61 02 {b.7

b8 b9 020
( T2 -b10 -b3

132

0301

the above equation when simplified, can be represented as

61 = G1-A363-A4e12-A51.122-A6032-A71/102-A80203-A0301

62 = G1-B363-B4612-B5022-B6632-B76162-B86263-B90361

where,

= Allai+Anbi for i = 3 to 9

Bi = aii-A22bi for i = 3 to 9

Gi = (TI-a10) +Ai2 (T2-b10) for i = 1 to 2

then, the torque needed at joint 3 to keep this in

constant orientation would be given by,

T3 = CI 6 i+C262+C363+C4 Oi2+C5022+C6032+C7 1 02+C8 21/3+C9i)31)1+C10

Once this torque exceeds the friction torque, these

equations will no longer be valid. Equations A.3.3,

A.3.4, and A.3.5, then, decsribe the acceleration of the

three generalized co-ordinates. However, once the torque

on joint 3 exceeds the friction torque at joint 3, the

program is stopped according to constraint 4 explained in

chapter 5.1.
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A.5 Linear velocity of center of mass

The linear velocity of center mass is a very

important factor in analysing our model. The approach

used to find the linear velocity of the three link model

is presented in the following section. The approach for

the two link model is similar and thus, not explained.

Some of the notation used in this analysis is described

below.

NwA = Angular velocity of frame A in frame B

NVP = Velocity of any point P in reference frame N

n1, n2, n3 are three mutually perpendicular vectors in a

reference frame N

Si and C. represent sing; and cosh; respectively

Kane's (1987) approach is used for developing

expression for the linear velocity of center of mass.

Each link in the model is considered to be a different

frame, for ease of analysis. Frames A, B and C represent

links 1, 2 and 3 respectively. N is the Newtonian

reference frame. The three generalized coordinates are

0" 02 and 0" The three generalized speeds u1, u2 and u3

represent 01,02 and 03 respectively. Figure A.5.1

describes various reference frames. The bold letters a's

represent mutually perpendicular unit vectors in reference

frame A. Similarly b's and c's represent mutually



perpendicular unit vectors in reference frames B and C

respectively.

The angular velocities of the different frames and

velocities of different points are given by,

NWA
= 01i3 = 1.114'3

Nos 82b3 u2b3

NcoC b3c3 =
113C3

Nc013 Neat + AWB =

NWC NcoA + Ace +

NVPI = u111a2

ula3+u2b3

BCC =CO U1a3+u2b3+u3c3

NVM NvM NWB X 12b1 = u111a2+12 (u1 +u2) b2
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(A.5.1)

(A.5.2)

Fig A.5.1 Orientation of different frames



NVP3 = NVP2+NCs3C X 13C1 = III 11a2+12 (u1 +u2) b2+13 ( Url-U2+113) C2

71

(A.5.3)

The relationship between different vectors in different

reference frames can be represented as shown below.

al = Coll + S1n2

a2 = - Sini + CI%

bi = (s1s2-c1c2)n1 - (SIC2+CIS2)n2

b2 = (SIC2-S2C1)a1 + (SIS2-C1C2)n2

a1 = (C3 (SIS2-C1C2) +S3 ( S1C2+CiS2) ) ni - (C3 ( SiC2+CiS2)

S3 ( SiS2CIC2) ) n2

02 = (-S3 (SIS2-C1C2) +C3 ( SiC2+CIS2) ) n1 (S3 ( SIC2+CiS2)

C3 ( SiS2CIC2) ) n2

Velocity of point P3 in N can be written in terms of

vectors nl and n2 using equations A.5.1, A.5.2 and A.5.3.

Simplifying the terms would result in an expression

NVP3 =

where,

v1 =

112 =

'''11111 S1 + 12 ( U.1 +U.2 ) ( S 1 C2+Ci S2 ) +13 (111+112+13.3) (C1C2S3

S1S2S3+SIC2C3+CIS2C3)

'11111C1+ 12 ( Ul+U2 ) ( S1 Sr. CI C2 ) +13 (111+112+113) ( S1C2S3+

C1S2S3 +S1S2C3-C1C2C3)

The magnitude and the direction w.r.t. ground of the

linear velocity of center of mass is given by

. 1/2Vrote = (VI2+V22
)

vdiection = tan-1 ( v2/ vi)
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APPENDIX B

FLOW CHARTS FOR SOFTWARE

The software consists of three main modules. The

first module is the driver routine which calls the

appropriate functions, i.e., for two-link or three-link

model, and at the end of the program it calls the graphic

routine for presentation on the screen. The second module

is the differential equations module. This consists of

two functions, one for each of the two models. The third

module is the Runge-Kutta numerical integration routine.

The driver routine calls this function to integrate the

appropriate differential equations.

This appendix consists of the flow charts for the

driver routine and the Runge-Kutta numerical integration

routine. The other module, i.e., the differential

equations module, is clearly explained in chapters 4 and

5. Figure B.1 illustrates the driver routine. Figure B.2

gives the flow chart for Runge-Kutta numerical

integrations procedure.
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( Start )

I

ITalc. Input data I

I

IOpen flies Ice output I

I
ICall functicri b calculate I

1 Mal values ci Generalzad I
co-cadlnates

Cal RungaKutta

I

IPrint data b aulput Mai I

I

ITM 411rne + Urns step I

I

Cal be display
graAlcs roulne

I eskuhate Wave'. yinnal I

and limo al travel

1

c otkiut
1

End )

Fig B.1 Flow chart for driver routine for the software
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I

Time - 0

1

difeqn(time, n, y, F)

Function dlIeqn0 returns the
Valued Jiff. eqns. thro' array ii I

1

FM ] - h 91
yy[ I - yr I + 0.5 Flu

I

I col difeqn(time+0.611. n. yy. F)
i

F211-hFI)
WI 1 1- Yll ''' 05 F2I I

Cal dlteqn(timer0Oh, n, yy. F)
i

F311'''n Fl 1

Ml-Yil+PaIl

Cal difeqn(tIme+h n, yy. F)
1

I F11111 FII
T

Calculating values d array yn for
this iteration

1

YU Y11+(Fli)+2*F2i14-29F3i1 FINS

Cep)

h - Time step

9 ] .- Array of values of first order

differential eqns. evaluated

at that particular time

y[ ] - Integrated values of the dill.
eqns. after the previous

Iteration

n - any size ( no. of cliff. eqns. )

Fig B.2 Flow chart for Runge-Kutta numerical

integration procedure


