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In cross-cultural studies, respondents from specific cultures may have 

different product preferences and scale usage. Combining data from different 

cultures will result in departures from the basic assumptions of analysis of variance 

(ANOVA) and loss of power in testing capability of finding product and culture 

differences. However, the result of violations on power of ANOVA is unknown by 

sensory researchers. The objectives of this research were by simulating consumer 

product evaluation data, to evaluate the robustness and testing power of ANOVA 

under different cross-cultural situations. 

The study was conducted in two parts. First, an Empirical Logit simulation 

model was employed for generating sensory data. This model included respondent, 

product, consumer segment and product by segment interaction effects. Four 

underlying distributions: Binomial, Beta-Binomial, Hypergeometric, and Beta- 



Hypergeometric were used to increase or decrease the dispersion of the responses. 

Alternatively, instead of using these four distributions, the same applications were 

achieved by a binning step. The entire simulation procedure including the 

Empirical Logit model and the binning step was called Discrete Empirical Logit 

model. In the second part of the study, the Discrete Empirical Logit model was 

chosen to generate specified data sets under six different cross-cultural cases. After 

analyzing these data sets by ANOVA reduced and full models, the empirical power 

of ANOVA under different cases was calculated and compared. 

The results showed that both Beta-Hypergeometric and Discrete Empirical 

Logit were flexible on simulating sensory responses, but the Discrete Empirical 

Logit was relatively simple to use. Comparing with the ANOVA reduced model, 

the full model gave better information on evaluating the case that segments differ in 

product preferences. This suggested segmentation was very important in cross- 

cultural data analysis. Under the situations that sample sizes were equal and 

respondents performed consistently within segment (MSE ~ 1), ANOVA was very 

robust to different scale usage, losing at worst 18% in power. 

From the scope of this study, we recommend using the ANOVA full model 

in the cross-cultural research. Results from different cultures could be combined 

when consistency within segments was high. 
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A SIMULATION TOOL FOR EVALUATING SENSORY DATA ANALYSIS 
METHODS 

CHAPTER 1 

THESIS INTRODUCTION 

As a well-known traditional statistical method, analysis of variance or 

ANOVA has been broadly applied in the sensory field, generally to study the 

differences between products (Gacula, 1993). It has come to be associated with 

research designs, mathematical models, and analytical tools (Edwards, 1993). The 

validity of estimates and tests of hypotheses for analyses derived from the linear 

model rests on the merits of several key assumptions. The random experimental 

errors are assumed to be independent, normally distributed with a mean of zero, 

and have a common variance for all treatment groups (Kuehl, 2000). Applied to 

sensory analyses on scaled data, the assumptions are implicit that the scores are 

independent, have equal random variance, are normally distributed, and on the 

same scale of measurement (Gay and Mead, 1992). Any disagreement between the 

data and one or more of these assumptions affects the estimates of the treatment 

means and tests of significance from the analysis of variance. 

It should be stressed that in cross-cultural studies, ideal conditions are 

seldom realized. Respondents from specific cultures may have different product 

preference and scale usage (Bertino and Chan, 1986; Prescott et al., 1992, 1997, 

1998; Wilkinson and Yuksel, 1997; Ayabe-Kanamura et al., 1998; Yeh and 
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Lundahl, 1999; Cox et al., 2001). For example, one or more consumer segments (or 

groups represent different cultures), while sharing a common perception of the 

differences between products, consistently use some portion of the scale instead of 

the whole. This can cause the distribution of the data to be centered ("central 

tendency") (Amerine et al., 1965) or skewed ("dislike avoidance"). On the other 

hand, segments may share the same scale but disagree in the product preference 

("crossover effect"). Furthermore, the disagreement among segments results in 

heterogeneous segment location variation; within a segment, the acceptance rating 

differences among respondents causes heterogeneous acceptance variation. All 

these cross-cultural cases may lead to non-normal distributed consumer responses 

with unequal variances and therefore violate ANOVA assumptions. 

In cross-cultural research, there may be a need to combine data from the 

respective different responding cultures. But if above cases exist, the power of 

ANOVA to detect product differences may be decreased. As far as we know, 

Monte Carlo studies (statistical simulation studies that utilizes sequences of random 

numbers to perform the simulation to show how p-values for a statistical test or 

estimation method functions) suggest the ANOVA F tests are relatively robust as 

far as breaking these assumptions is concerned. However, the degree of robustness 

is unclear in sensory research (O'Mahony, 1986), especially when combining data 

from different cultures. 

Due to the importance of ANOVA in analyzing cross-cultural data, a 

research project was initiated to evaluate the robustness of this analysis and testing 
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power to various extraneous sources of cross-cultural related errors in 

measurement. The study was conducted in two parts. The first part involved the 

development of a generalized simulation tool for categorical sensory response. The 

second part applied this simulation tool to generate many data sets such that 

empirical power calculations could be conducted under various cases where cross- 

cultural differences exist. 

The generalized simulation tool is based upon Thurstonian principles of 

psychophysics developed by Leon Louis Thurstone. As Moskowitz mentioned 

(1983): "Thurstonian methods utilize these principles and represent a psychological 

approach to sensory analysis and hedonics. They joint together psychological 

measurement principles with real-world stimuli." Thurstone hypothesized that 

when people evaluate the acceptability of stimuli, they do so based upon an 

underlying or internal psychological scale of hedonics or liking. For example, 

direct preferences by paired comparison test where the individual chooses one 

stimulus over another, represents the outcome of the use of this underlying 

psychological scale. The closer the preference rating lies to 50/50 (no preference) 

the more likely that the stimuli lie near each other on the underlying psychological 

scale of liking (Moskowitz, 1983). 

Let's imagine a panelist tasting a product, by Thurstonian principles this 

panelist's internal response is based on a psychological scale that is evoked by 

sensory stimuli. This internal scale is translated to an external response on a 

categorical scale. In this study, in order to model this process, a random parameter, 
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p, which locates on a psychological standardized scale from 0 to 1, was generated 

using an empirical logit simulator. This random variate was then transformed to 

discrete random data on a sensory 9-point hedonic scale. Four underlying statistical 

distributions - binomial, beta-binomial, hypergeometric, beta-hypergeometric were 

applied to increase or decrease the dispersion of category interval responses by 

controlling the input parameters (p, number of scale categories and truncation 

parameters). Alternatively, data were also simulated using the Discrete Empirical 

Logit model, simply a transformation of the parameter/?. Comparing with the other 

four models, our study indicated that the Discrete Empirical Logit model was the 

most flexible, easily capable of producing the designed cases for the next step of 

the research. 

In the second part of the study, the Discrete Empirical Logit model was 

chosen to generate the product evaluation data under a simplified situation - 2 

segments with 100 respondents in each, evaluating 2 products. Six common cases 

for cross-cultural differences were studied, such as on scale usage ("central 

tendency" and "dislike avoidance" cases), on product preference ("crossover" and 

"segment effect"), heterogeneity within and among segments. A truncation 

procedure was employed to mimic central tendency and dislike avoidance cases by 

modifying the range of the scale being used. In each case, 10000 data sets 

combining the responses from the two segments were analyzed by ANOVA using a 

reduced and full model. The empirical power of ANOVA under 10000 simulations 
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was calculated as the percentage of times when significant product differences were 

detected. 

This study applied a brand new way to address difficult issues in sensory 

data analysis. A generalized simulation tool was proposed and then applied to a 

critical problem in the field of sensory evaluation that could not be solved in any 

other way. As a result, this study demonstrated the power of simulation which can 

be applied to a wide range of sensory evaluation problems where there are 

questions as to what is the most appropriate analysis. 



CHAPTER 2 

LITERATURE REVIEW 

Cross-Cultural Sensory Studies 

Cross-cultural product development is becoming increasingly important as 

companies strive to compete in an international marketplace. The importance of 

cultural patterns in determining food preferences and tastes must be stressed 

(Amerine et al., 1965). Cultural influence may play a substantial role on consumer 

decision-making. In recent years, more and more attention has been given to cross- 

cultural studies on consumer scale usage. Some psychologists suggested that 

culture rules reasoning styles. For instance, East Asians take a "holistic" approach 

to reasoning tasks. They make little use of categories and formal logic, and instead 

focus on relations among objects and the context in which they interact. They direct 

their attention into a complex, conflict-strewn environment. While people in the 

United States adopt an "analytic" perspective. They look for the traits of objects 

while largely ignoring their context, categorize items by applying formal logic and 

explicit rules, and try to resolve any contradictions that turn up (Bower, 1999). 

For both strategic and applied research, knowledge of scale use and scale 

differences would be extremely valuable in understanding cross-cultural 

consumers' response behavior. In the study of Wilkinson and Yuksel (1997), they 

introduced that respondents may differ in their use of the measurement scale, both 

in location (where on the scale the scores tend to be located) and in dispersion (the 
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range of the scale used). Thus, some respondents will use the whole available range 

for scoring while others will concentrate on one part of the scale (differences in 

dispersion). Moreover, some respondents may primarily score in the lower part of 

the scale while others may score largely in the middle or upper region (differences 

in location) (Nass, 1990). 

Bertino and Chan (1986) investigated relationships between taste perception 

and diet in individuals with Chinese and European ethnic backgrounds. The 

Chinese subjects assigned higher pleasantness ratings to higher concentrations of 

sucrose in water and showed a tendency to rate sucrose in cookies as tasting more 

pleasant. They also assigned higher pleasantness ratings to and preferred higher 

concentrations of salt in crackers. However, they suggested that, it was possible 

that the Chinese, in an attempt to be polite, assigned higher pleasantness ratings to 

all taste stimuli. 

Prescott et al. conducted a series of studies between Japanese and 

Australians, e.g. comparing the hedonic responses to taste solutions (1992), and the 

responses to manipulations of sweetness in foods (1997). In 1992, they found that 

one or both groups were not using the scale end points. In a lately study, Prescott 

(1998) found there was little evidence for cross-cultural influences on respondents' 

assessment behavior, such as scale usage. 

In the study of odor perception between Japanese and German subjects by 

Ayabe-Kanamura et air (1998), differences in pleasantness ratings between the two 



populations were explained partly due to differences in the use of the rating scale, 

with the Germans tending to give more extreme ratings. 

The psychological error of "central tendency" (Amerine et al, 1965) is 

frequently observed in scoring when the extreme values of a scoring scale are 

seldom used. Yeh and Lundahl (1999) compared 9-point hedonic scale usage 

between consumers from the US and Pacific Rim cultures (Chinese, Koreans, and 

Thais). The 9-point hedonic scale was translated directly from English to their 

respective languages. The results indicated that Pacific Rim respondents used the 9- 

point hedonic scale differently from American respondents; they tend to agree with 

each other ("central tendency") and do not use extremely low scores ("dislike 

avoidance") such as Thais. The study posed that different scale usage may result in 

less statistical power to detect differences among products. They also found 

convincing evidence of adaptive behavior among the Pacific Rim respondents to 

respond more like Americans with longer time in residence in the US. 

In 2001, Cox, Clark and Mialon conducted a study to test whether there 

were cultural, scale and gender interactions between European-origin Australian (« 

= 61) and Malaysian (n = 54) consumers' hedonic responses to food and drink 

stimuli. One group was using a labeled 9-point hedonic category scale and the other 

used an unstructured-anchored line scale, both using computerized responses. The 

result found no systematic cultural bias except the gender bias. They concluded that 

the result was consistent with the concerns expressed by Yeh and Lundahl (1999) 
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over Asian avoidance of category scale extremes, therefore a preference for line 

scales was cautiously suggested. 

Power of Analysis of Variance (ANOVA) 

Analysis of Variance (ANOVA) is a common data analysis method used in 

sensory studies. Power is the probability of rejecting the null hypothesis when it is 

false. It gives a method of discriminating between competing tests of the same 

hypothesis, the test with the higher power being preferred (Everitt, 1998). 

Therefore, the power of ANOVA represents the chance of rejecting a null 

hypothesis when a difference in the population actually exists. Empirically, the 

power of ANOVA can be estimated as the proportion of times when a significant 

product difference is detected. 

Sources of Variation of ANOVA and Experimental Design 

ANOVA has been the statistical tool most often employed to separate the 

total variation of sensory data into sources that affect sensory responses. These 

sources of variation usually include among respondent, among treatment and 

respondent by treatment interaction effects. More complicated experimental 

designs may include other effects or factorial treatment sets as possible sources of 

variation (Lundahl and McDaniel, 1988). 



10 

The major sources of variation in sensory data are often due to the 

respondents and treatments. The respondent source of variation is from 

respondents' use of different parts of the rating scale. Differences among 

respondents in response patterns to treatments contribute to the respondent by 

treatment interaction source of variation. Experimental designs including this 

source of variation test the inconsistency of the panel in evaluating samples 

(Lundahl and McDaniel, 1988). 

In the experimental design, the question of whether we should treat the 

respondent effect as random or fixed has received some attention in sensory science 

literature (O'Mahony 1986; Lundahl and McDaniel 1988; Lawless 1997; Naes and 

Langsrud 1998). Naive (inexperienced) consumer respondents, for example, are 

always random because they must, by definition, relate to the population of 

consumers (Lundahl and McDaniel, 1988). In our study, the respondent effect was 

treated as random since the consumer respondents were simulated to represent 

randomly selected individuals from different cultures. 

ANOVA Assumptions 

It is worth considering how the violation of ANOVA assumptions will 

affect its power. O'Mahony (1986) summarized the four fundamental assumptions 

that relate to the two-way ANOVA design, specifically in sensory scaling data 

analysis. They are: 
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1. Samples must be randomly picked from their respective populations. 

2. The scores within a treatment must be independent. 

3. Samples of scores under each treatment must come from normally 

distributed populations of scores and this implies that data must be on an 

interval or ratio scale. 

4. Samples of scores under each treatment must come from populations with 

the same variance (homoscedasticity). 

Wilcox (1993) has emphasized that violating the usual equal variance 

assumption as well as the usual assumption of normality can have serious 

consequences in terms of both Type I errors and power. On the other hand, based 

on the practical Central Limit Theorem, ANOVA is robust against small departures 

from a particular assumption. Therefore, inferences are valid even when some 

assumptions are not met. Meanwhile, Monte Carlo simulation study suggests that 

ANOVA is generally robust to moderate violations of the assumption of normality, 

particularly when sample sizes are equal (Glass, Peckham and Sanders, 1972). 

O'Mahony (1986) discussed that using unequal-interval scales results in the 

categorical scaled data breaking the assumption of normality. Homoscedasticity can 

also be a problem. For example, the spread or variance of the sample will not be as 

great at the end of the scale as in the center. Thus, to compare the mean values from 

the center and from the end of the scale will be to compare means of samples drawn 

from populations with different variances. Furthermore, the skewing of the 

distribution for a mean at the end of the scale means that it is no longer normal. 
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In cross-cultural studies, if we want to combine data from different 

responding cultures, it is not known how much power of ANOVA to detect product 

differences will be eliminated. Further, we currently do not know the degree of 

violation of these ANOVA assumptions that can be tolerated. Those are the 

questions we wish to answer by this study. 

Simulation Studies 

To evaluate the robustness and power of ANOVA under different situations, 

different data sets need to be collected as inputs. The problem arises when there is 

just little or no data available - the real consumer data required may not exist, or it 

may be difficult or costly to obtain from different cultures within a limited time 

period. If we could effectively employ an input data processor to simulate data as 

from real-world cases, the effect of changing certain input parameters and 

extraneous errors in measurement on the power of ANOVA will be easily 

observed. 

Simulation studies are frequently used when investigating expected 

measurement outcomes and examining expected statistical outcomes (Bang et al., 

1998). Simulation makes relative ease with which samples can often be generated 

from a probability distribution, even when the density function cannot be explicitly 

integrated. In performing simulations, it is helpful to consider the duality between a 

probability density function and a histogram of a set of random draws from the 
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distribution. Given a large enough sample, a histogram can provide practically 

complete information about the density and in particular, various sample moments, 

percentiles, and other summary statistics provide estimates of any aspect of the 

distribution, to a level of precision that can be estimated (Gelman et al, 1997). 

Usually Monte Carlo simulation is an approach to examine expected statistical 

outcomes by using random-number generators. For example, one can use Monte 

Carlo to show how p-values vary for a statistical test or estimation method 

function. It can also be applied to make inferences about the population from which 

a sample has been drawn when no convenient real data exist (Kelly, 1999). 

However, only a few simulation studies have been applied in the sensory field. 

Lundahl (1992) used a simulation strategy to determine the influence of 

special consumer groups as a small subset (10 to 30%) of respondents on the 

outcomes of consumer acceptance tests. He concluded that a segment by treatment 

interaction with crossover patterns or minority acceptance can contribute to errors 

of type II or I, and large crossovers from 10% special consumers or small 

crossovers from 20 to 30% differently responding ("special") consumers can 

significantly increase type II error. 

Nass and Langsrud (1998) advocated the use of the mixed ANOVA models 

to reduce the interaction effect by removing the scaling effect mathematically. They 

applied Monte Carlo simulation and power function to compute Type I errors and 

power of the F-tests for a number of cases with different use of the scale. Their 

conclusion is that with moderate differences among the assessors and with a 
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realistic size of sensory panel (>10) the mixed model F-test for products can be 

used as usual without losing much information. 

In the study of using a beta-binomial model to assess the results of 

difference testing methods, Ennis and Bi (1998) conducted Monte Carlo 

experiments to investigate the behavior of difference or preference tests with over- 

dispersed binomial data based on the binomial model and the beta-binomial (BB) 

model. They found when inter-trial variation exists due to the noise among 

judgments or/and samples, a compound distribution of the beta and binomial 

distributions will be a better fit for the over-dispersed binomial data. 

Thurstonian Method 

The generalized simulation tool developed in this thesis is based upon 

Thurstonian principles of psychophysics. Thurstonian methods, developed by Leon 

Louis Thurstone, represent a psychological approach to sensory analysis and 

hedonics. They joint together psychological measurement principles with real- 

world stimuli. Thurstone hypothesized that when people evaluate the acceptability 

of stimuli, they do so based upon an underlying or internal psychological scale of 

hedonics or liking (Moskowitz, 1983). As Thurstone explained (1927): 

"Suppose we are confronted with a series of stimuli or specimens such as a 
series of gray values, cylindrical weighs, handwriting specimens, or any 
other series of stimuli that are subject to comparison. The first requirement 
is a specification as to what it is that we are to judge or compare. It may be 
gray values, or weights, or excellence, or any other quantitative or 
qualitative attribute about which we can think "more" or "less" for each 
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specimen. This attribute which may be assigned, as it were, in differing 
amounts to each specimen defines what we shall call the psychological 
continuum or scale for that particular project in measurement." 

He defined or constructed, the psychological scale is the frequencies of the 

respective discriminal processes for any given stimulus form a normal distribution 

on the psychological scale (Thurstone, 1927). However, this involves no 

assumption of a normal distribution or of anything else. The psychological scale is 

at best an artificial construct. It is so spaced off that the frequencies of the 

discriminal processes for any given stimulus form a normal distribution on the 

scale (Thurstone). He also defined the separation on the scale between the 

discriminal process for a given stimulus on any particular occasion and the modal 

discriminal process for that stimulus is called the discriminal deviation on that 

occasion (Thurstone). 

Observable behavior, such as direct preferences by paired comparison 

(where the individual chooses one stimulus over another), represents the outcome 

of the use of this underlying psychological scale. The closer the preference rating 

lies to 50/50 (no preference) the more likely that the stimuli lie near each other on 

the underlying psychological scale of liking (Moskowitz, 1983). In the sensory 

evaluation field, Thurstonian models assume the underlying responses to each 

sensory stimuli are each normally distributed, independent and with constant 

variance. Also, they assume that panelists use specific rules to come up with a 

response to the sensory difference test (Lundahl, 1997). 
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Empirical Logit Model 

General Theoretical Background - Johnson System 

To generate sensory consumer data with certain distributions, a guessing 

model is needed. Traditionally, the normal distribution had played a dominant role 

in both theoretical and applied statistics. However, it is apparent that the normal 

curve cannot provide an adequate representation of many of the distributions 

encountered in statistical practice. The constructed systems of frequency curves 

should be capable of representing a wider variety of distributions than those for 

which a normal curve would suffice (Johnson, 1949). 

When faced with problem of summarizing many data sets by means of a 

mathematical function, a common practice is to use a flexible family of 

distributions, so called empirical distributions (Slifker and Shapiro, 1980). To 

accomplish this, often a family of distribution proposed by Johnson (1949), the so- 

called Johnson System, can be created. 

The system contains three families of distributions, denoted the Su, SB, and 

SL (log-normal) distribution respectively, which are generated by transformations of 

the form 

z = yJtr}ki(x;X,£) (2.1) 

where / = 1, 2, 3 for Su, SB, and SL respectively; z is a standard normal variable and 

ki(x; A, s) is chosen to cover a wide range of possible shapes. For SB distribution, 
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x — s 
ki(x;X,£) = ln{ ) (2.2) 

X + e-x 

The SB distribution by nature bounded on {s, e + A), appears to be suited to 

represent certain classes of variables which have physical or natural constraints on 

their range (Mage, 1980). The Empirical Logit model introduced in this study is 

similar to the 5B. 

Logit Transformation 

The term logit or logistic is named for transformations (Christensen, 1990). 

With a two-category response variable, we will examine models for log(pi/p2), 

where/?/ is the chance for one outcome and/?2 = 1 -pi for another. When these 

models are ANOVA-type models, they are often referred to as logit models. When 

these models are regression-type models, they are called logistic regression models 

(Christensen, 1990). 

A logistic regression model describes how a binary (0 or 1) response 

variable is associated with a set of explanatory variables. It is advocated when the 

dependent variable is expressed as a proportion (p). So the logistic regression 

model specifies that a probability is related to a regression-like function of 

explanatory variables (Ramsey and Schafer, 1997). This model is used when 

relationships between the non-response factors (explanatory variables) are not of 

interest. It is implicit in the definition of a logit model that no structure between the 

explanatory variables is taken into account (Christensen, 1990). 
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If p is used for the population mean of binary response (0 or 1), the 

probabilities for the responses are modeled as a regression-like function of 

explanatory variables: 

logit(p) ={3o + Mi + - + frXp (2-3) 

and Xi, '", Xp are the explanatory variables. The inverse of the logit function is 

called the logistic function. If logit(p) = rj, then 

p=jxm_ (24) 
\ + exp{ri) 

The logit transformation replaces the value/? of the dependent variable by their 

transformed value log(odds) or log(—^—). This has the effect of allowing the 
\-p 

dependent variable to take any value in the range (-oo, oo) rather than be constrained 

to the range (0, 1). Thus the regression model may be better justified with a 

normally distributed random component (Cooper and Weekes, 1983). 

Adding Dispersion to the Empirical Logit Model 

The sensory literature discusses dispersion in terms of adding variation to a 

response with a binomial distribution. Below is a review of the literature as may 

apply to the problem of adding dispersion to a response based upon the Empirical 

Logit model. 
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Binomial Distribution 

A binomial experiment has two parameters, n and p where a response Y 

consists of n identical, independent trials, and each trial results in one of two 

outcomes. The probability of success on a single trial is equal top and remains the 

same from trial to trial (so, the probability of a failure is equal to q = (1 -p). A 

random variable Y is said to have a binomial distribution based on n trials with 

success probability^ if and only if 

P(Y=y) 
rn\ 

\yj 
pyq"-y,y = 0,\,2,...,n    0<p<l (2.5) 

(Wackerly et al, 1996). 

The mean and variance associated with a binomial random variable are 

E(Y) = np, V(Y) = npq (2.6) 

Beta Distribution 

A random variable Y is said to have a beta probability distribution with 

parameters a and (3 if and only if the density function of Fis 

f(y) = y   (X~^    ,   a,j3>0;0<y<l 
B(a,l3) 

0, elsewhere (2.7) 

where 
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B(a,l3)=  f/-'(!-;/>= i(Q01W (2.8) 

(Wackerly et al., 1996). 

The mean and variance of Y from this Beta distribution are 

E(Y) = -2-   j/fy; = ^  (2.9) 
a+/3 ra+jS/ra+lS + U 

As the parameters a and (3 vary, the beta distribution takes on many shapes. 

The probability density function ipdj) can be strictly increasing (a > 1, /?= 1), 

strictly decreasing (a= 1, /?>1), U-shaped (a< 1, /?< 1) or unimodel («> 1, /?> 

1). The case a = /?yields a/?<#"symmetric about —with mean —(necessarily) and 

variance . The pdf becomes more concentrated as a increases, but stays 
4(20;+ 1) 

symmetric (Figure 2.1). Finally, if a = /?= 1, the beta distribution reduces to the 

uniform (0, 1) (Casella and Berger, 1990). 

a B 
Reparameterizing by letting p = ,q= \-p= -J-—, and y= 

u+P oc+j3 

1       , then the mean and variance are 
a+/3 + l 

E(Y)=p, V(Y)=pqy (2.10) 



Figure 2.1 Symmetric beta densities. 
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Note: The case a = /? yields apc/fsymmetric about - with mean - (necessarily) and 

variance The p<i/~becomes more concentrated as a increases, but stays symmetric. 
4(2a+l) 

If a = /?= 1, the beta distribution reduces to the uniform (0, 1). 
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Beta-Binomial Distribution (Binomial-Beta Distribution) 

The study of the beta-binomial (BB) distribution has received much 

attention in the past decade. It was first used by in the study of chromosomes 

(Skellam, 1948) and has been widely applied to behavior science, e.g. TV show 

loyalty (Sabavala and Morrison, 1977), TV schedules (Rust and Klompmaker, 

1981), and marketing (Chatfield and Goodhardt, 1970, Morrison, 1979). In 

addition, the BB distribution has been used in disease incidence (Griffiths, 1973, 

Madden and Hughes, 1994), teratology (Williams, 1975, Yamamoto and 

Yanagimoto, 1994), and mutagenesis (Otake and Prentice, 1984) and has been 

studied by many biostatisticians. 

Ennis and Bi (1998) applied the BB distribution to sensory data in 

replicated difference and preference tests. Commonly, sensory difference and 

preference tests are analyzed by the binomial test under the assumptions that 

choices made by the respondents are independent and choice probabilities do not 

vary from trial to trial. However, when inter-trial variation (variations due to 

judgments and samples) exists, the assumption of a binomial model is violated. An 

alternative is to model the variation in inter-trial choice probabilities with a beta 

distribution to fit the over-dispersed binomial data. 

The BB distribution is a compound distribution of the beta and the binomial 

distributions. It is a natural extension of the binomial model. Recall that if a 

random variable Y follows the binomial distribution with probability p, then 
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P(Y = y) = 
'^ 

py{\-py->\y = 0,\,.~,n (2.11) 

In order to make the resulting distribution tractable and flexible, assume p is 

not a constant but a random variable which follows the beta distribution with 

parameters a and /?. The beta distribution exhibits a fairly wide variety of shapes on 

the unit interval and may prove useful for describing the true variation in/?'s. 

The probability function of the BB distribution is: 

P(Y = y) 
y) r(a+t3 + n)r(a)r((3) 

wherey = 0, 1,2, ...,«, a, /?> 0 (Kleinman, 1973). The quantity r(n) is known as 

the gamma function and Ffn) = («-!)!, provided that n is an integer, y is the number 

of choices of a particular type out of n. 

The mean and variance of the BB distribution can be obtained as: 

EM = JTZ (2-13) 

(u+Pffl + a+p) 

It is convenient and more meaningful to reparameterize as 

E(Y)=np (2.15) 

V(Y) = np{\-p)[\+{n-\)y\ (2.16) 

where 

"  ;,r= ^TT      (P>0)r>0) (2.17) 
a+|3        Q!+/3+l 
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The scale parameter y, which varies between 0 and 1, measures the variation of the 

random parameter p. The inflation factor [1 + (n - \)y] is always greater than or 

equal to 1, and models the over-dispersion due to the variation of p. Therefore the 

variance of Y for the same p is always larger under the BB distribution than 

binomial. 

Note that 0 < y< 1. As y—> 0, V(Y) ->■ np(\ -p) which is equal to the 

variance of binomial. As y-t 1, V(Y) —> n2p{\ -p), this is the maximum variance 

of the BB distribution. 

Hypergeometric Distribution 

Unlike the binomial distribution where the trials are independent and 

sampling is with replacement, in the hypergeometric distribution (HG), trials are 

not independent and sampling is without replacement. 

Suppose there are total M populations, K males and (M- K) females. Let us 

perform n trials of an experiment in which a person is chosen at random, its gender 

is observed, and then the person is not replaced after being chosen. In such a case, 

if Y is the random variable for the number of males chosen (successes) in n trials 

(M > n), then the random variable Y is said to have a HG probability distribution. 

The probability of a success can be modeled as 
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(K^ rM-K\ 

P{Y = y) _ \y) \n-y J 

Kn j 

(2.18) 

where y is an integer 0, 1,2, ..., n, subject to the restriction y < K and n-y <M - K 

(Spiegel, 1975). 

The mean and variance of Y are 

E(Y) = ^ , V(Y) = n 
M 

(M-K 

v   M   j 

'' M-n^ 

VM-Iy 
(2.19) 

Since we have M total number of blue and red marbles, the proportions of 

IS \* _   IS 

blue and red marbles are/) = — and q — \-p= , respectively. We can also 
M M 

re-express the Equation 2.18 and 2.19 as 

n-y 
P(Y = y) = 

pM 

\y  J 

(M^ 

\n J 

(2.20) 

E(Y)=np,V(Y)=npq 
rM-n^ 

VM-Iy 
(2.21) 

Therefore we can view the term 

M -n 

M-l 
6(0, 1) as a variance reduction factor in V(Y). 

Note for fixed n, as M —> co (or M is large compared with n), 

M -n 

M-l 
-> 1 and /J. = E(Y) -> np, V(Y) —> npq (2.22) 

and the variance of HG reduces to the variance of binomial. 
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To our knowledge, the HG distribution has not been reported to be applied 

to sensory data in the literature. In terms of sensory responses on a hedonic scale, n 

is associated with the number of scale categories, and;? represents an internal 

response on a psychological standard scale ranging from 0 to 1. HG model 

translates this internal response/? to external response Y. The parameter Mcan be 

varied to reduce the variance of Yfrom a maximum oinpq when Mis very large, to 

a small quantity when M is approximately equal to n (M -* n). Therefore, this 

model should be able to describe categorical data where the underlying variance is 

less than that of the binomial distribution. 
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Abstract 

Five different generalized simulation approaches were applied to generate 

consumer product evaluation data (9-point hedonic data). These methods utilized a 

scale location parameter (p), which represents a respondent's scale location 

preference on a psychological standard scale (from 0 to 1). The value ofp was 

randomly generated using an Empirical Logit model. This model included 

respondent (random), product, consumer segment, product by segment interaction 

effects and a random error effect. These five methods differed in how the scale 

location parameter was applied to generate discrete random responses on a 9-point 

hedonic scale. The parameter/? was applied to one of the four underlying statistical 

distributions (binomial, beta-binomial, hypergeometric and beta-hypergeometric), 

or alternatively simply transformed directly to a scaled response by a binning step. 

Briefly, these five models were named as Logit Binomial (LB), Logit Beta- 

Binomial (LBB), Logit Hypergeometric (LHG), Logit Beta-Hypergeometric 

(LBHG) and Discrete Empirical Logit (DL) model respectively. These five 

simulation models were evaluated for their ability to generate simulated data with 

distributions characteristic of expected real situations. 

Results showed that in the situation when the mean of segment responses 

located near the center of the scale, the LB and LBB model were not flexible 

enough to simulate affected sensory data with small variation within segment. The 

LHG model was not flexible for data with large variance. The LBHG model was 
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flexible to simulate data with small or large variances. Compared with the other 

four models, the DL model was relative simple and capable of simulating a wide 

range of consumer data analysis situations. 

Introduction 

In order to evaluate the robustness of ANOVA and calculate its empirical 

power under different situations, different data sets need to be collected as inputs. 

The problem arises when there is little or no data available - the real consumer data 

required may not exist, or it may be difficult or costly to obtain from different 

cultures in a limited time period. Simulation studies have been frequently used in 

this kind of situation to investigate expected measurement outcomes and to 

examine expected statistical outcomes (Bang et al., 1998). Therefore, the objective 

of this study is to employ a generalized simulation tool for generating sensory data 

such that a broad range of sensory situations can be included and used to test new 

data analysis technology. 

Characters of Hedonic Data and Cross-cultural Consumer Data 

Both in the past and currently, the use of the labeled categorical scale has 

been popular (Lawless & Heymann, 1998). The labeled-category-scale is 

considered advantageous in pairing the (semantic) label with a number allowing for 
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ease of use by (untrained) consumers (Lawless and Malone, 1986), ease of 

interpretation and, furthermore greater and relatively simple analysis (data can be 

treated as both continuous and categorical data) (Cox et al., 2001). However, the 

labeled categorical scale has its disadvantages. It is well documented by Cardello 

(1996) that there are problems inherent in category scales, particularly with regard 

to the fact that the categorical labels do not constitute equal intervals; the neutral 

category reduces its efficiency and the avoidance of end-categories. 

Consider the case where the mean of a normal distribution is located in the 

center of the scale. As the location moves toward the end of the scale, there is not 

enough room for the entire normal distribution to fit. The spread of the distribution 

will not be so great when the mean is at an end of the scale. Therefore, when 

comparing the mean values of responses generated from distributions at the center 

and the ends of the scale, the respective means will have different variance. In 

addition, the skewness of the distribution for a mean at the end of the scale means 

the distribution may no longer be normal. Furthermore, because of different scale 

usage, the intervals (the category sizes) in the category scale may not be equal 

(O'Mahony, 1982). 

Many studies have suggested that consumers from different cultures may 

have different scale usage as well as different taste preferences (Bertino and Chan, 

1986; Prescott et al., 1992; Ayabe-Kanamura et al., 1998; Yeh and Lundahl, 1999). 

As an example, in a study comparing 9-point hedonic scale usage between 

consumers from the US and Chinese, Korean and Thai Consumers, Pacific Rim 
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respondents tend to agree with each other and are reluctant to use the ends of the 

scale (central tendency). They usually give positive responses and avoid using the 

lower part of the scale (dislike avoidance) (Yeh and Lundahl, 1999). 

Cross-cultural data include information on flavor preference and cultural 

combinations. Thus, in order to be successful in studying the effects of cross- 

cultural scaling, a new simulation model must be generated which is not subject to 

the problems of end of scale distribution compression. It should be able to provide 

the control necessary to address cross-cultural issues in central tendency and dislike 

avoidance. In addition, it should have a psychophysical basis. 

Thurstonian Psychophysical Basis 

In this study, a simulation tool was established on Thurstonian principles of 

psychophysics. Thurstonian methods represent a psychological approach to sensory 

analysis and hedonics. They join together psychological measurement principles 

with real-world stimuli. The hypothesis is that when people rate stimuli, they do so 

based upon an underlying or internal unbounded psychological scale of hedonics 

(-00,00) or liking (Moskowitz, 1983). Therefore, we assume that when a panelist 

evaluates a product, his or her internal response is based on a psychological scale 

that is evoked by sensory stimuli. When a subject/observer answers the 

questionnaire, this internal response is translated automatically to an external 

response on a categorical scale, such as 9-point hedonic scale. In translating the 
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internal to an external response, these can be a source of error, e.g., from 

replication to replication of the same stimuli, then a different external response is 

given. 

General Theoretical Background of the Simulation Model 

Simulation forms a central part in statistics because of the relative ease with 

which samples can often be generated from a probability distribution or a certain 

model. In performing simulations, it is helpful to consider the duality between a 

probability density function and a histogram of a set of random draws from the 

distribution. Given a large enough sample, the histogram can provide practically 

complete information about the distribution, to a level of precision that can be 

estimated (Gelman et al., 1997). 

Simulation is nothing new to sensory modeling. Lundahl (1992), Naes and 

Langsrud (1998) used the normal distribution to simulate sensory data. However, it 

is apparent that the normal curve does not provide an adequate simulation basis for 

all types of sensory category scale data. A broader system of frequency curves is 

needed to represent a wider variety of situations. 

In order to generate sensory consumer hedonic data under a broader range 

of situations, a flexible distribution family is needed. This study introduced a very 

flexible family of distributions formed using the Empirical Logit model in a fashion 
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similar to the Johnson System (Jonson, 1949). Such a family offers the added 

benefit that it can be applied to simulated data from a Thurstonian perspective. 

The Johnson System contains three alternative families of distributions, 

denoted Su, SB, and SL respectively. These involve transformations of the form 

z = y + T]ki{x;X,e), (3.1) 

i = 1, 2, 3 for Su, SB, and SL respectively 

where z is a standard normal variable and the k,(x; A, s) are chosen to cover a wide 

range of possible distribution shapes. The SB distribution applies to certain classes 

of variables which have physical or natural constraints on their range (Mage, 1980). 

X — £ 
It takes on the form ki(x; X, e) = ln{ ) with bounds e and s + X . The 

A + E-X 

Empirical Logit model is similar to the SB distribution. 

Logit transformation is one of the Johnson transformations. Let 

y = -g(j3),ri = \,£ = 0, A = 1, Equation 3.1 becomes 

X — £ 
z = y + r]K2(x;A,£)= y + r}\n(- —) 

(3.2) 
= -g(/?) + ln(-^-) 

l-x 

A logistic regression model describes how a binary (0 or 1) response variable is 

associated with a set of explanatory variables. It is advocated when the dependent 

variable is expressed as a proportion (p). So the logistic regression model specifies 

that a probability is related to a regression-like function of explanatory variables 

(Ramsey and Schafer, 1997): 

logit (p) = Po + PiX, + • • ^-PpXp (3.3) 
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and Xi,'", Xp are the explanatory variables. The inverse of the logit function is 

called the logistic function. If logit (p) = TJ, then 

p = -^nL 0.4) 
1 + exp(r}) 

The logit transformation replaces the value p of the dependent variable by their 

transformed value log (odds) or log(—^—). This has the effect of allowing the 
\-p 

dependent variable to take any value in the range (-oo, oo) rather than be constrained 

to the range (0, 1). Thus the regression model, with a normally distributed random 

component, may be better justified (Cooper and Weekes, 1983). This model is for 

use when relationships between the non-response factors (explanatory variables) 

are not of interest. It is implicit in the definition of a logit model that no structure 

between the explanatory variables is taken into account (Christensen, 1990). 

Simulation Models 

In this study, a simulation was performed in two steps. First, a scale 

location preference parameter (on a psychological standard scale from 0 to 1) was 

generated using the Empirical Logit model with three main effects - respondent, 

product, consumer segment and a product by segment interaction effect. 

In the second stage, the scale location parameter (p) was applied to one of 

the four underlying statistical distributions: binomial, beta-binomial, 

hypergeometric, and beta-hypergeometric respectively. These distributions were 
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used to add variation to the internal response due to translation to an external 

response, and to generate the category scale response (equal intervals). The beta- 

binomial is a compound distribution of beta and binomial. The beta-hypergeometric 

is a compound distribution of beta and hypergeometric distribution. The increasing 

or decreasing of the distribution of category interval responses was controlled by 

the input parameters - scale location preference parameter (p), number of scale 

categories (n) and truncation parameters. The four simulation models were named 

as Logit Binomial (LB), Logit Beta-Binomial (LBB), Logit Hypergeometric 

(LHG), and Logit Beta-Hypergeometric (LBHG) respectively. On the other hand, 

data can also be simulated simply by a binning step or a transformation of the 

parameter p - multiple by n and rounded to integers between 1 and 9. This model 

was named as Discrete Empirical Logit (DL) model. 

The random discrete data sets (10000), which represent the sensory 

responses on a 9-point hedonic scale, were generated for each simulation model 

with added random noise. Also, a unique truncation method was introduced to 

mimic two common scale usage cases in cross-cultural research - central tendency 

and dislike avoidance. 

The simulation algorithm was written in MATLAB™ language (Version 

5.0). MATLAB™ is a high-level programming language that has a built in random 

(more precisely, pseudorandom) number generator - multiplicative linear 

congruential random-number generators (LCG's). 
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Methods 

Simulation of an Internal Response 

A simulation model was created to mimic the following situation: 

• j'h segment 

• i'h respondent within/'' segment 

• i'h respondent measures kth product 

• /"' response for i'h respondent on tih product. 

In the present study, the situation was simplified as: 

• 2 segments, soy = 1,2 

• 100 respondents in each segment, so / = 1, ..., 100 

• each respondent measures 2 products - A and B, so k = 1, 2 

• no replications, so / = 1. 

A logit "response", which can take on any score between negative and 

positive infinity, represents the /"' underlying internal response (/) by a randomly 

selected subject, responding to a stimulus on a given replication (Figure 3.1). 

The logit internal response, p, was simulated by the Empirical Logit model: 

/ = logitfpiajki) = logfp if/jki / (I -Piojki)] 

= Ri(/j + g(Xj, Xk | Po, Pi, (32, I33) + (Ei(j)kl) (3.5) 

and g(Xj, Xk | po, P,, p2, pi) =po + ptfj + #** + psXjX, 

i= 1,2, ...,r j = 1,2, ...,a   k=\,2, ...,b (r = 100, a = b = 2) 
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where po is the grand mean, fr is the fixed effect for factor segment, /?? is the fixed 

effect for factor product, and therefore /?? is the fixed effect for segment by product 

interaction. g(Xj, Xk \ fio, Pi, fc, Pi) or g is a function of fi's. Xj and Xk are both 

indicator variables, with Xj taking on a value of 0 if the respondent is from the first 

segment, and 1 if from the second segment; Xk takes on a value 0 if the respondent 

evaluates product A, and 1 if evaluates product B. Both R^ and Ei^ki are 

independent, normally distributed random noise; R^j ~ N(0, GR) and E^M ~ A^ (0, 

Of"'). RiQ) represents a random location effect for the i'h respondent within the/7' 

segment, that is, the variance associated with the mean scores location on the scale. 

EiQw denotes within segment inconsistency. It reflects the within segment 

heterogeneity in acceptance variation. In this study, <JR and ot are independent of 

product and segment. 

From this internal response measure, the next step in the development of a 

simulator is to translate the internal response into an external response (Figure 3.2). 

To do so, five different models were generated, each adding a range of noise 

associated with a subject's translation of his/her respective internal response into an 

external response (Figure 3.3). 

Simulation of an External Response 

By controlling the input parameters, g, CTR and afe, the logit form of 

parameter p^ki was randomly generated by the Empirical Logit model for the /"' 
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Figure 3.1 An internal i'h response takes on any value between negative infinity and 
positive infinity. 
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Figure 3.2 Translating an internal response into an external response Y. 
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Figure 3.3 Flowchart of the simulation program. 
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respondent within the/'' segment, k!h product (stimulus), l'h replication with 

equation 

_    expOogitfawki) 
Pwu-TZ 7r~~7r \ (3-6) 

1 + expilogitipwi) 

PiWki stands for the standardized score of liking on a 0 to 1 scale, where 0 represents 

dislike extremely, 0.5 represents neither like nor dislike and 1 represents like 

extremely (Figure 3.2). This standardized response also represents a case where 

there is no added variation in translating an internal into an external response. 

For the LB, LBB, LHG, LBHG model, four underlying distributions - 

binomial, beta-binomial, hypergeometric and beta-hypergeometric were applied 

respectively to simulate a random response based upon the random value ofp^jki 

(Figure 3.3). They added an additional flexibility into the response. 

In the case of Discrete Empirical Logit model (DL), the resulting random 

variate p,^*/ was directly transformed into a scaled response which broke up the (0, 

1) scale into nine equal categories with no added variation. 

Summary of the Five Models 

Model 1 - Logit Binomial Model (LB) 

The basic Logit Binomial model (LB) follows a combined distribution of 

the Empirical Logit and binomial. At the first step, the scale location preference 
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parameter/?,^*/ was generated from the Empirical Logit model without the extra 

random error (E',^*/) 

logit(piO)kd =Po + RiQ) + PiXj + M* + PjXjXk (3.7) 

This variation can be considered as simulating a "baseline" randomness to within 

subject response error (variation the most at/? = 0.5) as an alternative to using E^u 

in the Empirical Logit model. At the second step, this model assumes that the 

individual responses YiQu for the ith respondent within/* segment, tfh product and 

I  replication follows a binomial distribution with the probability mass function 

ipmf) 

(n\ 
P(Ym=yi(i)ki) =      iPmra -/W"" (3-8) 

\.y) 

where y^ki = 0, 1, 2,..., n and n = 8 (number of scale categories minus one), 0 < 

Pi(i)ki ^ 1. Thus, the random responses Yiyki e [1,9] were generated by the binomial 

distribution 

YiG)u ~ binomial(«, pi0)U) + 1 (3.9) 

with two sources of variation, one from i?,^ and one from the binomial 

distribution. The binomial variation 

V(YiO)ki) = nipwu) (1 - np^ki) (3.10) 

The truncation and double-truncation methods were used for the scaling 

effects of central tendency and dislike avoidance. Two truncation parameters ki and 

k2 were added to the basic model and the truncation model becomes: 

YiQ)u ~ binomialfn - k,, pi(j)ki) + fo + 1 (3.11) 
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wherepiQjki was generated from the Equation 3.7. 

■ In the central tendency case, the 9-point hedonic scale was double truncated by 

ki and &2 where k/ is an even integer and 

k2 = k,/2 (3.12) 

That is, if ki is chosen as 2, 4, 6, then fo is equal to 1,2, 3, and the scores of 

response Y^u will vary from 2 to 8, 3 to 7, 4 to 6 respectively (Table 3.1). 

■ In the Dislike Avoidance Case, the scale was truncated on one side where ki is 

an integer and 

k2 = k, (3.13) 

If ki is chosen as 1,2, 4, then fo is equal to 1,2, 4, and the scores will be 

allowed to range from 2 to 9, 3 to 9, 5 to 9 respectively (Table 3.1). 

Model 2 - Logit Hypergeometric Model (LHG) 

Similarly as the LB model, the basic Logit Hypergeometric model (LHG) 

follows a compound distribution of the Empirical Logit and hypergeometric. The 

parameter p,-^/ was generated from the Empirical Logit model without the extra 

random error (EjQjici) (Equation 3.7). The model assumes that the individual 

responses Y^j/c/ e [1,9] follows the hypergeometric distribution with thepmfas in 

equation 2.18 
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Table 3.1 Simulated random responses by the LB truncation model for central 
tendency and dislike avoidance. 

Central Tendency Dislike Avoidance 

k, 2            4            6 1            2           4 

k2 1            2           3 1            2           4 

Ymi ~ binomial (n - k,, piWki) + k, + 1 2-8     3-7     4-6 2-9     3-9     5-9 

Note: ki k?- truncation parameters, K,-^/- respondent, /?,ww - standardized liking score on a 0 to 1 
scale, n is the number of categories which n = 8 and other parameters are as previously defined. For 
example, when k/ = 2, fa = 1, the score range simulated by the LB truncation model for central 
tendency case is from 2 (when pi0)ki = 0) to 8 (when />,ww = 1). 
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P(Yi(j)ki - yiWki) 

M-K^ 

^M^ 

Kn j 

(3.14) 

where^o^/is an integer 0, 1,2, ..., n subject to the restriction^ <Kand n -y<M 

- K. M, Kjojki and n are input parameters where K^ki - Round(M xpiow), n - 

number of scale categories minus one = 8. The random response Y^ki was 

generated by 

Yi(j)kl ~ Round [HG(M, pi(i)kh n)} + 1 (3.15) 

There are two sources of variation involved, one from J?,^ and one from rounding 

and the hypergeometric distribution as in equation 2.21 

r M-n^ 
V(Yi(j)ki)= npIU)kl{\-pl{J)U) 

M-l 
(3.16) 

Here, Mean be considered as a variance reduction factor. As Mgets very large, the 

hypergeometric variation goes to maximum npJU)kl{\-piU)kl), allowing for 

simulations where there is inconsistent translation from internal to external 

responses. As Mis approximately equal to n, the variance reduced to a small 

quantity to simulate a consistent translation from internal to external responses. 

This model was used to generate categorical data where the underlying variance is 

less than that of the binomial model. 

The truncated hypergeometric model is 

YiQw ~ Round [HG(M, p,^*/, (n - kf)] + fo +1 (3.17) 
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wherepi(j)ki was generated from the Equation 3.7 and other parameters are as 

previously defined (Table 3.2). 

Model 3 - Logit Beta-Binomial Model (LBB) 

Unlike the binomial distribution, the beta-binomial distribution has an 

additional source of variation fromp^ki, which is assumed to be a random variable 

for each respondent following the beta distribution with parameters ctyy*/ and y^ki. 

In Logit Beta-Binomial model, we assume the responses 

Y^u ~ LBB (n, pi0)kl, yi(i)ki) +1 (3.18) 

where n = number of scale categories minus one = 8, y^jki is the variance inflation 

factor for individuals, p^ki is as previously defined. If y^jki = 0, then every 

respondent varies replication responses same as the binomial. Since the scale 

parameter y^jki varies between 0 and 1, the inflation factor [1 + (n - l)?^*/] is 

always greater than or equal to 1. Apparently, the beta-binomial distribution has a 

larger variance than the binomial distribution and is a better fit for over-dispersed 

data. 

The procedure including the Empirical Logit model and the beta-binomial 

model is called the Logit Beta-Binomial model (LBB). The theoretical mean and 

variance of LBB are listed in the Results. 

In the truncated LBB model, there are two additional truncation parameters 

involved (Table 3.3), 
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Table 3.2 Simulated random responses by the LHG truncation model for central 
tendency and dislike avoidance. 

Note: ki &2- truncation parameters, Y^ki- respondent, /?/(yW - standardized liking score on a 0 to 1 
scale, n is the number of categories which n = 8 and other parameters are as previously defined. For 
example, when ki = 2, ki = 1, the score range simulated by the LHG truncation model for central 
tendency case is from 2 to 8. 

Table 3.3 Simulated random responses by the LBB truncation model for central 
tendency and dislike avoidance. 

Central Tendency Dislike Avoidance 

k, 2           4           6 1            2           4 

ky 1            2           3 1            2           4 

Yimi ~ LBB(« - k,, pmi, yiWki) + k, + 1 2-8     3-7     4-6 2-9     3-9     5-9 

Note: kj, £7- truncation parameters, l^w- respondent, /J,^/ - standardized liking score on a 0 to 1 
scale, n is the number of categories which n = 8 and other parameters are as previously defined. For 
example, when ki = 2, &p = 1, the score range simulated by the LBB truncation model for central 
tendency case is from 2 to 8. 
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Yi(j)ki ~ LBB {n - k,, pi0)ki, ^0)ki) + ki + 1 (3.19) 

Model 4 - Logit Beta-Hypergeometric Model (LBHG) 

The algorithm is similar to the one in the beta-binomial model. We assume 

PiOjici is not constant for each respondent but a random variable follows the beta 

distribution with parameter o,-^/ and y^jki, the individual responses YjQjki has a 

hypergeometric distribution with parameters M, p^ki and n, 

Yi0)ki ~ Round [BUG (M,pimi, y^ki, n)} + 1 (3.20) 

where M, Pigjki, and n are previously defined in Model 2 - LHG. 

In this model, Mis the variance reduction factor, and ^-f/M/ is the variance 

inflation factor for individuals. These two parameters allow the beta- 

hypergeometric model generate data with small and large variances. As M 

decreases approximately to n, the variance of beta-hypergeometric reduced to 

simulate a consistent translation from internal to external responses. As y^-jki 

increases, the variance increases to simulate an inconsistent translation from 

internal to external responses. For example, when M -> oo, and y= 1, the variance 

gets its maximum; when M -» oo, and y= 0, the variance is close to the variance of 

the LHG model; as M -> n, and y= 0, the variance gets its minimum (close to 

zero). Therefore, the beta-hypergeometric model becomes a generalized model for 

simulating the variation of replicated sensory response from zero variance to large 

variance. 
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The procedure including the Empirical Logit model and the beta- 

hypergeometric model is called Logit Beta-Hypergeometric model (LBHG). The 

theoretical mean and variance of LBHG are listed in the Results. The truncated 

LBHG model is (Table 3.4) 

Yjflki ~ Round [BHG (M, piG)U, yi0)ki, (n - k,))] + k2 +1 (3.21) 

Model 5 - Discrete Empirical Logit (DL) 

Conceptually, the algorithm used to construct the response data is as 

follows (Figure 3.4). First, the scale location preference parameter/?,WyW was 

randomly generated for each segment by the Empirical Logit model (Equation 3.5) 

logit(pm,) = fy + RiQ) + p,Xj + Ptfk + psXjXk + EiG)u (3.22) 

This model includes two sources of variation, from the variance ofRiQ) ~ N(0, <JR
2
) 

and EJQM ~ N(0, oi). Let 

V = R + E and var = GR  + ai (3.23) 

In the second step, the responses YIQW were calculated from a binning step 

Yi(j)k\ = Floor (n x pi0)kl) + 1 (3.24) 

where n = 9 (number of response scale categories). Command "floor" means round 

the elements to the nearest integers towards minus infinity. This step represented 

the situation where the translation of an internal to an external response is 

deterministic (i.e., not adding variation). The procedure including the Empirical 
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Table 3.4 Simulated random responses by the LBHG truncation model for central 
tendency and dislike avoidance. 

Central Tendency Dislike Avoidance 

k, 2           4           6 1            2           4 

h 1            2           3 1            2           4 

Yi(j)k, ~ Round [BHG (M, pimi, yiWki, (n - 2-8     3-7     4- 6 2-9     3-9     5-9 

k,))} +k2+\ 

Note: kik2- truncation parameters, J^w- respondent,/?,ww - standardized liking score on a 0 to 1 
scale, « is the number of categories which n = 8 and other parameters are as previously defined. For 
example, when ki = 2, kj = 1, the score range simulated by the LBHG truncation model for central 
tendency case is from 2 to 8. 
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Figure 3.4 Binning step of the DL model. 
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Logit model and the binning step was named as Discrete Empirical Logit model 

(DL). 

If we simply use 

YjQjki = DL (piajki, and other parameters) + 1 (3.25) 

to represent the DL basic model with dispersion parameters (pi(j)ki, and other 

parameters distinct to each model), then the truncation DL model can be written as 

Yi(j)ki - DL (piQjki, ki, and other parameters) + k? + 1 (3.26) 

with additional truncation parameter ki and &2 (Table 3.5). 

Results and Discussion 

Theoretical Results 

LB, LHG, LBB, and LBHG Model 

Let /ul' be the first moment of parameter pi(j)ki (as previously defined), and 

^2' be the second moment of />,■$*/, 

M^j^lT-ize-*"** 

-(lnTii-g)2/2(as
2
+^) (3-27) 

1 'r   e    '-" 
\p dp 

1 ^ ^+-' 

-^— f(— ^^'j^zi^^'^ (3-28) 
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Table 3.5 Simulated random responses by the DL truncation model for central 
tendency and dislike avoidance. 

Central Tendency Dislike Avoidance 

~k, 2 4 6 I 2 4 

k?. 12 3 12 4 

7,^./=Floor((«-A:/)A^/)+fe+l    2-8     3-7    4-6 2-9    3-9    5-9 

Note: ki ki - truncation parameters, ^w- respondent, /?,ww - standardized liking score on a 0 to 1 
scale, « is the number of categories which n = 9 and other parameters are as previously defined. For 
example, when ki = 2, ^ = 1, the score range simulated by the DL truncation model for central 
tendency case is from 2 to 8. 
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then the theoretical results of the four models except the DL model are as follows: 

LB:      E(Y)=n[jL']+l;  V(Y)=nii\+n(n-l)ii'2-n2ix\2 (3.29) 

LHG:   E(Y)= n/xj+l; 

lQ(M-10n)n/x;+10nM(10n-l)^2       ,.2 

lOO(M-l) 

LBB:    E(Y)=nn\+UV(Y)= n(n~1)(^1+/X2)+ nM;-nV,' (3.31) 
1 + ^ 

LBUG:E(Y)= n(i\+\; 

lOW n2ii\+mn'ix2 + 2fi.  , l0n(M-l0n)(n\-n'2) 

V(Y) = Mni ny
2        (3.32) 

100(9 +1) 

where parameters fl g(7?i, o)?, ae, p, n, M, are all previously defined. 

DL Model 

From the Empirical Logit model (3.5) 

log(  p,{')U  ) = g + /?lW + ^.^ 
1 — pi{j)U 

where both /?,^ and EiQ)ki are independent, normally distributed, /?,w ~ A^(0, cr/?2) and 

^/WW ~ MO; O"/)- Therefore /?,w + £,-(yw ~ 7^(0, var) where var = <TR
2
 + cr/ and the 

variation from the model V = R + E (Equation 3.24). After the transformation, the 

pdfofpioki was calculated as: 
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, -[log-^-g]2 

/■       = [  . =exp( -T-
2

—?—)]( ) (3-33) 
"•{"u       jlniaS+ac1) 2(C7S

2+^2)       p{\-p) 

The distribution ofp^ki is very flexible and can take on various shapes. 

If g = 0, there are no segment, product or segment by product interaction 

effects. In this case, the/^stays symmetric about 0.5 and varies from Bell-shape 

(e.g., var = 0.3 or 1.2) to U-shape (e.g., var = 5.2) as variance (CTR
2
 + ofe2) increases 

(Figure 3.5). If var = 2.2, the pdf roughly looks like a uniform. 

If g < 0 or g > 0 (i.e. segment, product and/or segment by product effects 

are greater than zero), the p^f shifts to the left or right respectively and no longer 

stays symmetric (Figure 3.6 with var = 0.3, Figure 3.7 with var - 2.2, and Figure 

3.8 with var = 5.2). 

Figure 3.9 visualized the 3-D/^distribution as variance increased at g = 0. 

Figure 3.10 and 3.11 displayed the 3-D/^distributions with g = -1.0 and-2.0 

respectively as variance increased. Figure 3.12, 3.13, 3.14 showed thepdfs with var 

= 9.0, 4.0, 0.25 respectively as g varied between -5.0 and 5.0 interval. 

Figure 3.15 showed the theoretical results of the DL model on the 9-point 

hedonic scale with the inputs: <T/J = 0.4, <JE = 0.35, or var = 0.75, and g = 0.00. 

Therefore, by varying the inputs in the simulation study, the DL model could 

possibly mimic difference cases of sensory cross-cultural consumer responses. 
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Figure 3.5 Illustration of symmetric probability density function (pdj) ofp,^/ for 
the DL model as variance {var = <TR

2
 + cr/) varies, g = 0.0. 
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Figure 3.6 Illustration of probability density function (pdf) of p^ki for the DL 
model as g varies, var= GR + CTE = 0.3. 
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Figure 3.7 Illustration of probability density function {pdf) of piyju for the DL 
model as g varies, var = GR  + oi - 2.2. 
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Figure 3.8 Illustration of probability density function (pdf) of p^ki for the DL 
model as g varies, var= <JR

2
 + cr/ = 5.2. 
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Figure 3.9 3-D graphic display of probability density function {pdf) ofpi(j)u for the 
DL model as variance (or standard deviation = sqrt(var) or sjvar ) varies, g = 0.0. 
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Figure 3.10 3-D graphic display of probability density function {pdf) ofpi^u for the 
DL model as variance (or standard deviation = sqrt(var) or -Jvar ) varies, g = -1.0. 
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Figure 3.11 3-D graphic display of probability density function ipdf) ofp^ki for the 
DL model as variance (or standard deviation = sqrt(var) or \]var )) varies, g = -2.0. 
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Figure 3.12(a) 3-D graphic display of probability density function {pdf) ofpigju for 
the DL model as the location of g varies, var = 9.0. 
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Figure 3.12(b) A close look at the 3-D graphic display of probability density 
function ipdf) ofpi^ki for the DL model as the location of g varies, var = 9.0. 
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Figure 3.13(a) 3-D graphic display of probability density function ipdf) ofpigju for 
the DL model as the location of g varies, var = 4.0. 
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Figure 3.13(b) A close look at the 3-D graphic display of probability density 
function ipdf) ofp^u for the DL model as the location of g varies, var = 4.0. 
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Figure 3.14 3-D graphic display of probability density function {pdf) ofp^u for the 
DL model as the location of g varies, var = 0.25. 
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Figure 3.15 Theoretical results for the DL model, OR = 0.4, a/f' = 0.35, g = 0.00. 
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Empirical Results 

The empirical results showed that the DL model was sufficient to simulate 

sensory data. It could generate data with various types of distributions, e.g., bi- 

modal (Figure 3.16 and 3.17), roughly uniform (Figure 3.18 and 3.19), and 

unimodel distribution (Figure 3.20). 

As the values of the Empirical Logit model inputs (oy? and <JE) decreased, 

the DL model could have the minimum dispersion under the condition g = 0.00 

(mean of distribution is located in the center of a psychological scale ranging from 

0 to 1). For example, Figure 3.21 showed that atg= 0.00, cr/? = 0.10, <7E = 0.10, or 

var - 0.02, the variation of the distribution was around 0.12 on a 9-point hedonic 

scale. 

Unfortunately, the LB and LBB models were not very flexible to generate 

affected sensory data when respondents were all internally consistent in response 

patterns. They were better used to simulate responses over-dispersed instead of 

less-dispersed. 10000 data were generated separately by the LB and LBB model 

with the inputs: cr«= 0.0001 (low variation of the random respondent effect), g = 

0.00 (Figure 3.22) and y= 0.00001 (dispersion coefficient, which means each 

respondents repeat themselves consistently at each time) (Figure 3.23). The 

observed variances were 1.98 and 2.03 respectively, which means no matter how 

consistent the responses were given by individuals, the minimum variance of the 
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Figure 3.16 The distribution of 10000 simulated sensory consumer responses by the 
DL model (0*= 10.00, cr£= 10.00, g = 0.00, n = 9). The observed mean = 4.99, 
variance = 14.68. 
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Figure 3.17 The distribution of 10000 simulated sensory consumer responses by the 
DL model (aR= 0.50, cr£ = 1.66, g = 0.00, n = 9). The observed mean = 4.98, 
variance = 6.86. 
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Figure 3.18 The distribution of 10000 simulated sensory consumer responses by the 
DL model (oj? = 0.50, OE = 1.60, g = 0.00, n = 9). The observed mean = 5.00, 
variance = 6.63. 
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Figure 3.19 The distribution of 10000 simulated sensory consumer responses by the 
DL model (cr« = 0.65, at = 1.40, g = 0.00, n = 9). The observed mean = 5.02, 
variance = 6.18. 
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Figure 3.20 The distribution of 10000 simulated sensory consumer responses by the 
DL model (o* = 0.30, OE = 0.40, g = 0.00, n = 9). The observed mean = 4.98, 
variance = 1.21. 
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Figure 3.21 The distribution of 10000 simulated sensory consumer responses by the 
DL model (o* = 0.10, cr£ = 0.10, g = 0.00, n = 9). The observed mean = 5.00, 
variance = 0.12. 
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Figure 3.22 The distribution of 10000 simulated sensory consumer responses by the 
LB model (oft = 0.0001, g = 0.00, n = 8). The observed mean = 5.02, variance = 
1.98. 
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Figure 3.23 The distribution of 10000 simulated sensory consumer responses by the 
LBB model (<TR = 0.0001, g = 0.00, y= 0.00001, n = 8). The observed mean = 4.98, 
variance = 2.03. 

3000 

2500 

1500 

1000 

500 

1 2 3 4 5 6 7 
9-point Hedonic Scale 



73 

LB or LBB model was roughly about 2.00. This is because the variance of the BB 

distribution: 

V(Y) = np{\-p)[\+{n-\)r} 

and the inflation factor [l+(/t-l)^] is always greater than or equal to 1. Therefore, 

the LBB model always has an equal or even larger variance than the LB model. 

Comparing with LB and LBB models, the LHG and LBHG models were 

relatively flexible and could be used to simulate data sets with lower variances. The 

observed variance of 10000 simulated responses by the LHG model was 0.23 with 

<JR= 0.0001, g = 0.00, and M= 500 (Figure 3.24). Similarly, the observed variance 

of 10000 simulated responses by the LBHG model was 0.24 with an additional 

input: y= 0.00001 (Figure 3.25). However, these models - LB, LBB, LHG and 

LBHG required more complex simulation algorithms and therefore longer run 

times on MATLAB™ used in this study. 

Finally, the DL model was chosen as the simulation model to mimic 

sensory cross-cultural consumer responses for the next step. Figure 3.26 illustrated 

the distributions of 10000 simulated data in the central tendency case with observed 

means equaled to 5.0 (<7R
2
= 0.40, GE

2
= 0.35, g = 0.00). Case A represented a 

situation where responses were using the whole scale (ki = &? = 0) (inputs of the 

truncation parameter: ki = k2 = 0), while case B, C and D used a smaller range of 

the scale (2-8,3-7 and 4-6 respectively). Case D simulated an extreme case 

that responses were highly centered. 
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Figure 3.24 The distribution of 10000 simulated sensory consumer responses by the 
LHG model (o* = 0.0001, g = 0.00, Af = 500, n = 8). The observed mean = 5.00, 
variance = 0.23. 
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Figure 3.25 The distribution of 10000 simulated sensory consumer responses by the 
LBHG model (o* = 0.0001, g = 0.00, y= 0.00001, M= 500, n = 8). The observed 
mean = 5.05, variance = 0.24. 
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Figure 3.26 Central Tendency Case: the distribution of 10000 simulated sensory 
responses by DL model (<TR = 0.35, ex/ = 0.40, g = 0.00, n = 9). 

Case A: k| = 0, k2 = 0, observed mean = 5.0, variance = 2.9 
B: ki = 2, kj = 1, observed mean - 5.0, variance = 1.8 
C: ki = 4, ka = 2, observed mean = 5.0, variance = 1.0 
D: ki = 6, k2 = 3, observed mean = 5.0, variance = 0.4 

.innn 
B 

2500 

2000 

1500 

1000 

500 

,  I 
1 2 3 4 5 6 7 

9-point Hedonic Scale 
2 3 4 5 6 

9-point Hedonic Scale 

D 

5000 

4000 

3000 

1000 

3 4 5 
9-point Hedonic Scale 

12 3 4 5 6 7 
O-point Hedonic Scale 



76 

Figure 3.27 demonstrated the dislike avoidance case. Case A still 

represented a situation where responses were using the whole scale {ki = fo = 0). 

From case B to D, by increasing the input values of the truncation parameter ki and 

k2, the distribution of simulated data shifted toward the right end of the scale to 

mimic more extreme responses. 
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Figure 3.27 Dislike Avoidance Case: the distribution of 10000 simulated sensory 
responses by DL model (CTR

2
 = 0.35, CT/ = 0.40, g = 0.00, n = 9). 

Case A: ki = k2 = 0, observed mean = 5.0, variance = 2.9 
B: ki = k2 = 1, observed mean = 5.5, variance = 2.3 
C: k| = k2 = 2, observed mean = 6.0, variance = 1.8 
D: k| = k2 = 4, observed mean = 7.0, variance = 1.0 
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Abstract 

The objective of this study is based upon the generalized simulation tool - 

Discrete Empirical Logit model previously developed in Chapter 3, to evaluate the 

robustness of ANOVA and its empirical power on detecting product difference 

under different cross-cultural cases. 

The study simulated a simplified situation - two segments (100 respondents 

within each segment) and two testing products. First, for each case, 10000 data sets 

which represent cross-cultural responses were randomly generated by the Discrete 

Empirical Logit (DL) model. The simulation study was focused on six cross- 

cultural cases - differences in scale usage (central tendency and dislike avoidance), 

product preference (crossover), location variation, acceptance variation and 

segment effect. Second, the data sets were analyzed using both ANOVA reduced 

and full model, and their empirical powers were compared. 

Results revealed that when respondents perform consistently normal {MSE 

« 1), ANOVA was very robust in the central tendency and dislike avoidance case; 

at worst it lost less than 15% in power of detecting product differences. On the 

other hand, highly inconsistent performance of respondents could result in 

significant loss in ANOVA power. No significant difference in power was detected 

between the reduced and full model except in the crossover case. The full model 

implied a significant effect of segment by product interaction where segments 

differed in product preferences. 
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Introduction 

In cross-cultural sensory studies, respondents from different countries or 

cultures are procedurally asked to rate the overall liking, flavor liking, texture 

liking for certain products. Judges are generally considered random rather than 

fixed effect in cross-cultural studies (Lundahl and McDaniel, 1988). Usually these 

respondents are untrained consumers and their responses are collected as ratings on 

a numerical scale, such as the balanced nine-point category scale (hedonic scale) 

introduced by the food research section of the U.S. Army Quartermaster Corps in 

the 1950s (Jones, Peryam and Thurstone, 1955). For example, the word categories 

of product liking or disliking used for the 9-point hedonic scale are from "dislike 

extremely" (score 1) to "like extremely" (score 9) with a neutral category "neither 

like nor dislike" (score 5) at the center of the scale (Table 4.1). Data are analyzed 

by statistic methods, usually analysis of variance (ANOVA). For the descriptive or 

affective panels, scaled responses were analyzed to evaluate sensitivity, scale 

location, agreement, reproductively and acceptability of panelists. 

There are some complex issues that arise in the field of cross-cultural 

sensory evaluation. Responses from different cultures may combine with culture 

habits, social, historical, economic, and religious reasons. Cross-cultural 

differences in the use of a measurement scale may exist both in location (where on 

the scale the scores tend to be located) and in dispersion (the range of the scale 

used) (Wilkinson and Yuksel, 1996). 
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Table 4.1 Example of juice product questionnaires. 

Panelist number: Country: Sample: 

After taste the sample, please answer (check X) the following questions: 

1. How do you like this product overall? 

Dislike       Dislike        Dislike        Dislike        Neither Like Like Like Like 
Like 

Extremely Very Much Moderately    Slightly    Nor Dislike    Slightly    Moderately      Very      Extremely 
Much 

□ aananaao 
(1) (2) (3) (4) (5) (6) (7) (8) (9) 

2. How do you like the sweetness of this product? 

Dislike       Dislike        Dislike        Dislike        Neither Like Like Like Like 
Like 

Extremely Very Much Moderately    Slightly    Nor Dislike    Slightly    Moderately      Very      Extremely 
Much 

DDDDDDGan 
(1) (2) (3) (4) (5) (6) (7) (8) (9) 

3. What is the sweetness intensity of this product? 

Not Sweet   None To      Slightly     Slightly to  Moderately Moderately Very Much Very Mucl Extremely 
At All       Slightly        Sweet      Moderately      Sweet        To Very        Sweet To Sweet 

Much Extremely 

(8) (9) 
D D G □ n D 3 

(1) (2) (3) (4) (5) (6) (7) 

4.    How did this product meet your expectations in overall liking? 

Extremely Much Moderately Slightly The Slightly Moderately Much Extremely 
Worse Worse Worse Worse Same Better Better Better Better 

D D □ D D D n D D 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 
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Previous studies have shown that cultures may influence measurement scale 

usage, For example, Bertino and Chan (1986) investigated relationships between 

taste perception and diet in individuals with Chinese and European ethnic 

backgrounds. Besides the taste difference between the two cultures, the study 

suggested that it was possible that the Chinese, in an attempt to be polite, assigned 

higher pleasantness ratings to all taste stimuli. Yeh and Lundahl (1999) compared 

9-point hedonic scale usage between consumers from the US and Pacific Rim 

cultures. The hedonic scale was translated directly from English to their respective 

languages. Evidence showed that consumers from the Pacific Rim culture used the 

9-point hedonic scale differently from American respondents. They tend to agree 

with each other and not score extremely low or high. For instance, Thais hide their 

dislike feelings by not using the lower part of the scale. 

Central tendency and dislike avoidance are two common cases that 

respondents from different cultures, while sharing a common perception of the 

differences among products, use a consistently smaller portion of the scale range, 

scoring more or less. Central tendency is observed in scoring when respondents 

tend to agree with each other and seldom use the extreme values of a scale. While 

in the dislike avoidance case, respondents have more positive attitudes toward 

products and avoid using the lower part of the scale (e.g., scores below 5 on a 9- 

point hedonic scale). Both cases result in skewed data distributions with less 

variance. This different scale usage case is illustrated in Figure 4.1 and 4.2. In this 

example, 70 Indonesians and 51 Chinese responded in a sports drink study (Chung, 



Figure 4.1 The distribution of 70 Indonesian overall liking scores on sweetness 
of one sports drink product. 
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Figure 4.2  The distribution of 51  Chinese overall  liking scores  on 
sweetness of one sports drink product. 
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1999). Apparently the 70 Indonesians were using the whole range of the 9-point 

hedonic scale while the 51 Chinese were using a small portion of the scale, from 4 

to 8. 

In addition to the central tendency and dislike avoidance case, location 

variation within segment case reflects the within cultural heterogeneity in scaling 

location. Also, since an individual's taste may vary from day to day. Acceptance 

variation within segment reflects the within cultural heterogeneity in product 

preference. It is the variation in preferences based upon individual replication level 

and is associated with the mean square error (MSB) from the ANOVA model. 

Further more, Bertino and Chan, 1986; Prescott et al, 1992, 1997 and 1998; 

Ayabe-Kanamura et al, 1998; Yeh and Lundahl, 1999 have showed cross-cultural 

difference may exist in taste preferences. When cultures differ, the patterns in 

responses can lead to a crossover case. For example, two segments hold opposite 

taste preference over products. Without segmenting, differences among products 

might be diminished and results in a Type II error (not detecting a real product 

difference). 

Most descriptive experiments produce data matrices appropriate for 

ANOVA. Products, judges, and replications are the usual factors, with additional 

factors depending upon the variables manipulated among products, such as 

ingredient levels or processing treatments (Lawless, 1996). The crossover effect or 

the interaction between product and the segment can be partitioned to examine the 

product effect. 
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In sensory studies, one of the applications of using ANOVA method is to 

detect product differences. Usually analysts advocate segmenting cross-cultural 

consumer populations in a conservative way because combining data from different 

cultures may create the problem of violating the ANOVA underlying assumptions 

and risk in losing its testing power. However, ANOVA is regarded as being robust 

to certain departures from the assumptions. This is a critical problem in the field of 

sensory evaluation that cannot be solved easily by any other demonstrated way 

except by simulations. 

Simulation studies are frequently used when investigating expected 

measurement outcomes and examining expected statistical outcomes (Bang et al., 

1998). Simulation has a merit that samples can often be generated from a 

probability distribution, even when the density function cannot be explicitly 

integrated. Monte Carlo simulation is a common approach to examine expected 

statistical outcomes by using random-number generators. 

A few simulation studies have been applied in the sensory field. For 

example, Nass and Langsrud (1998) advocated the use of the mixed ANOVA 

models to reduce the interaction effect by removing the scaling effect 

mathematically. They applied Monte Carlo simulation and power function to 

compute Type I errors and power of the F-tests for a number of cases with different 

use of the scale. Ennis and Bi (1998) conducted Monte Carlo experiments to 

investigate the behavior of difference or preference tests with over-dispersed 

binomial data based on the binomial model and the beta-binomial model. 
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Lundahl (1992) used simulation strategy to determine the influence of 

special consumer groups as a small subset (10 to 30%) of respondents on the 

outcomes of consumer acceptance tests. He concluded that a segment by treatment 

interaction with crossover patterns or minority acceptance can contribute to errors 

of type II or I, and large crossovers from 10% special consumers or small 

crossovers from 20% to 30% differently responding ("special") consumers can 

significantly increase type II error. 

In this study, we aimed to use simulation to evaluate the robustness and 

testing power of the reduced and full ANOVA models under different cross- 

cultural situations. To accomplish this, the Discrete Empirical Logit (DL) model 

which was designed in the previous chapter was applied to simulate random cross- 

cultural responses. 

Methods 

Data Structure 

Data sets were created to simulate the following simplified situation: 

• 2 segments - reference segment and comparison segment 

• 100 respondents in each segment 

• Each respondent measures 2 products - A and B without replication 

• 3 levels of product difference - none, moderate and large. 

The simulation algorithm is as follows: 
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1. Generate 10000 data sets for each case; 

2. Run ANOVA models on each data set; 

3. Calculate the empirical power of ANOVA - percentage of times 

when a significant product difference was detected. 

Simulation Model - PL Model 

The Discrete Empirical Logit (DL) model was chosen as a simulator from 

the previously five developed models to generate sensory consumer 9-point 

hedonic data. It was preceded in two stages. First, input parameters {po, Pu Pi, Pi) 

and noise {Rj, E^k) to the Empirical Logit model: 

logit(pim,) =Po + R,o) + PiXj + Ptfk + ptfjXk + Emu (4.1) 

where 

logit(pmi) = log-^^- (4.2) 
1   ~ Pi(j)U 

Let 

g(Xj, Xk | Po, pi, Pi, pi) =Po + PiXj + pjCk + Ptffa (4.3) 

then the Equation 4.1 can be written as 

logit(pmi) = Rio) + g(Xj, Xk | Po, Pi, Pi, Pi) + Em, (4.4) 

/ = 1, 2, ... , 100 (respondent), j =1,2 (segment), ^=1,2 (product) 

where Po is the grand mean, /?/, /?? and /?? are the parameters of three fixed effects: 

segment, product, segment by product interaction, respectively. A}, X^ are the 
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explanatory variables that represent factor segment, product respectively, and XjXk 

represents the interaction between Xj and A*. A/, Xk both have two levels. For 

example 

f Xj■■ = 0 for segment 1 f X/t = 0 for product A 

^Xj=\ for segment 2 I Xk = 1 for product B 

Rid) represents a random location effect for the /"' respondent within/'' segment, 

which reflects the variation of mean score location of respondents on a scale. Eigjki 

represents within segment consistency, which related to the acceptance variation 

within segment based upon the individual preference. In this simulation study, both 

Rift and E^ki are normally distributed, Rjk ~ N(0, <JR
2
) and E^u ~ N (0, cr/). In 

addition, OR and ot are independent of product and segment. Next step is to 

transform logitfpjQjki) to p-value by the equation 

=    exp[logit(pi(j)k,)] 
Pm    \ + exp[logit(pi0)kl)] 

On the second stage, input the p-value to the binning model: 

Ytflu = Floorffn - k/jpiojkj + h + 1 (4.6) 

and calculate the random discrete categorical responses, where n is the number of 

response scale categories. In this study, n = 9 (number of scale categories), 

MATLAB™ command "floor" means round the elements to the nearest integers 

towards minus infinity, ki and &? are truncation parameters: 

■    In the central tendency case, the 9-point hedonic scale was double truncated by 

k/ and fo where ki is an even integer and 
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k2 = ki/2 (4.7) 

That is, if k/ is chosen as 2, 4, 6, then fo is equal to 1,2, 3, and the scores of 

response Y^ki will vary from 2 to 8, 3 to 7, 4 to 6 respectively. 

■    In the dislike avoidance case, the scale was one side truncated where ki is an 

integer and 

k2 = k, (4.8) 

Ifk/ is chosen as 1, 2, 4, then &? is equal to 1,2, 4, and the scores will be 

allowed to range from 2 to 9, 3 to 9, 5 to 9 respectively. 

Reference Segment 

For the reference segment, expected powers of detecting none, moderate 

(0.2 for mean scores on a 9-point hedonic scale) and large product differences (0.4 

for mean scores) are 5.0% (Type I error rate), 50.0% and 90.0%) (Table 4.2) 

respectively. (Note: the three product difference levels were defined by the 

associated expected powers - no product difference was associated with 5.0%) Type 

I error rate, moderate difference was associated with 50.0%) ANOVA power, large 

difference was associated with 90.0% ANOVA power). The input parameters were 

specified as cr# = 0.4, CJE = 0.35, ki = fo ~ 0. As a result, the mean square of 

respondent (MSrespondem) was 4 and the resulting mean square error (MSE) was 1. 
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Table 4.2 The expected ANOVA results for the reference segment at 3 product 
difference levels - n* 
= 0.35, ki=k2 = 0). 
difference levels - none, moderate and large (significant level = 0.05, crR2= 0.4, cr/ 

Product Difference ■ Expected Mean Scores __Expected Power Md respondent MSE 
Level Product A Product B of ANOVA 

None' 5.0 5.0 5.0% 4 1 

Moderate2 5.0 5.2 50.0% 4 1 

Large3 5.0 5.4 90.0% 4 1 

Note:      ' po = 0, /?, = 0, # = 0,03 = 0; 
2A»=0,^ = 0,/3!? = 0.12,/5!, = 0; 
iJ3o = 0,p,=Oj2 = 0.2,/33 = Q. 
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Comparison Segment 

The comparison segment was modified in six cases: 

Case 1 - Segments (reference segment and comparison segment) both agree in 

product preference and scale usage; 

Case 2 - Segments agree in product preference, but disagree in scale usage, e.g. 

central tendency and dislike avoidance situation (varying the value of 

truncation parameters ki and k? in Equation 4.7 and 4.8); 

Case 3 - Segments agree in scale usage, but disagree in product preference, e.g. 

crossover case (varying the value of /?? parameter in Equation 4.3); 

Case 4 - Variation in scaling usage within the comparison segment (adding noise 

by increasing the value ofRjk); 

Case 5 - Variation in acceptance (among respondents) within the comparison 

segment (varying the value of £/^); 

Case 6 - The segment location effect (segments differ in scale location usage, 

varying the value of /?/ parameter). 

ANOVA Models 

Analysis of variance was performed to examine the segment, product and 

the consistency of responses within each segment. The ANOVA table accounting 

for this consumer segmentation was presented in Table 4.3. This expanded 
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ANOVA was named as the "full model". It included six sources of variation: 

segment, respondent within segment, product, segment by product interaction, and 

error; while the two-way ANOVA - "reduced model" (Table 4.4) only included 

product, respondent and error. Segment and product were considered as fixed 

factors, so was the segment by product interaction. Respondent within segment was 

considered as a random effect. The empirical power of ANOVA was calculated for 

both the full and reduced models. 

Results and Discussion 

Case 1 - Agreement in Scale Usage and Preference 

Case 1 simulated a situation where no difference between the two groups. 

That is, both segments used the whole scale (1-9) with the same product preference 

(Table 4.5). By keeping the other variables as constants (cr/= 0.4, ai = 0.35, ki = 

k2 = 0), the ANOVA powers were 5.3%, 50.1% and 90.3% respectively (a-level = 

0.05) at three product difference levels - none (/?? = 0), moderate (fa = 0.12) and 

large (/?? = 0.2). The results were very close to the theoretical expected value 

(5.0%, 50.0% and 90% for the three product difference levels) and were further 

used as the baseline situation when comparing with the other cases. In this case, the 

MSrespondent was 4.4 and MSE was 1.4. Therefore, results were as expected 

suggesting Case 1 was a good reference case. 



Table 4.3 ANOVA full model. 
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Source of Variation       DF       SS MS F- Value 
Segment 

Respondent 
(segment) 

Product 

1 SS, segment 

198      SSn •.spondeiU(segiuent) 

MSsl 

MOrespondeth 'espondent (segment) 

SS, product MS, 'product 

Error 198      SSE MSE 

MS. segment 

MS respondent(segment) 

MSproduct 

MSE 

Segment by Product       1 SSsegmmlxpmtiucl MSsegme„lxpr0!lua MS, 
segment * product 

MSE 

Table 4.4 ANOVA reduced model. 

Source of 
Variation 

DF        SS MS F- Value 

Product Sonn 'product 

Respondent 199        SSre! \spondeiit 

Error 199        SSE 

Mb product 

Mb respondent 

MSE 

MS product 

MSE 
MS, respondent 

MSE 
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Table 4.5 Case 1 - Agreement in scale usage and product preference: results of 
ANOVA at 3 product difference levels - none, moderate and large, based on 10000 
simulations ((JR

2
= 0.4, CJE

2
 = 0.35, k/ = fo = 0). 

Product Actual Type / Error Rate Segment by MS MSE MS 

Significant Difference Reduced Full Product of of 
Level Level Model Model (Full Model) respondent Segment 

0.05 None1 5.3% 5.3% 5.3% 4.4 1.4 4.4 

Moderate2 50.0% 50.1% 5.1% 4.4 1.4 4.4 
Large3 90.3% 90.3% 4.9% 4.4 1.4 4.4 

0.1 None 10.1% 10.1% 10.2% 4.4 1.4 4.4 

Moderate 62.4% 62.4% 10.1% 4.4 1.4 4.4 
Large 94.6% 94.6% 10.0% 4.4 1.4 4.4 

Note:      l/% = O,/?/ = O,& = O,0, = O; 
2/?0 = 0>A = 0,y32 = 0.12,A = 0; 
3 po = 0,fii = 0, £, = 0.2, # = 0. 
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Case 2 - Agreement in Preference and Disagreement in Scale Usage 

In Case 2, the two segments shared the same product preference but the 

comparison segment performed central tendency or dislike avoidance on the use of 

scale. In this situation, other parameters were kept as constants, while the input 

values of the truncation parameters ki and k2 varied. 

In the central tendency case at a-level 0.05, combining the responses from 

the two segments, the ANOVA power dropped roughly less than 10% at the 

moderate or large product difference levels. For example, for the large product 

difference, using scale range 2-8, 3-7 and 4-6, the power of the reduced model 

dropped about 0.1%, 1% and 8% respectively (Table 4.6 and Figure 4.3). 

In the dislike avoidance case at a-level 0.05, without segmentation of the 

responses leads to less than 3% drop in power. For example, for the large product 

difference, using scale range 2-9, 3-9 and 5-9, the power of the reduced model 

dropped 0%, 0.1%) and less then 3% respectively (Table 4. 6 and Figure 4.4). 

In both situations, 50% of total respondents that from the comparison 

segment used a portion of the scale instead of the whole. This seems like "a scale 

compressed from one side or both sides". Imagine two roughly normal distributions 

of product A and B in the center of the scale with certain location difference. The 

scores are scattered around the mean value with a given variance. While the end of 

the scale moves towards the two distributions, both data on the left or right side of 

the scale will get less and less room to spread. This scale compression forces 
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Table 4.6 Case 2 (to be continued) - Agreement in product preference, but 
disagreement in scale usage: power of ANOVA at 3 product difference levels - 
none, moderate and large, based on 10000 simulations (CTR = 0.4, cr/ = 0.35). 

Product Difference Level Scale IVIO respondent iVlo respondent(seginent) MSE IVILJ segmeiK 

& Simulation Cases Usage 

None'           Central Tendency 2-8 2.1 2.7 0.9 2.6 
3-7 1.4 1.4 0.5 1.4 
4-6 0.6 0.6 0.2 0.6 

Dislike Avoidence 2-9 3.8 3.5 1.0 53.7 
3-9 3.6 2.7 0.8 202.1 
5-9 5.4 1.4 0.4 800.7 

Moderate2     Central Tendency 2-8 2.7 2.7 0.9 2.8 
3-7 1.4 1.4 0.5 1.9 
4-6 0.6 0.6 0.2 1.7 

Dislike Avoidence 2-9 3.8 3.5 1.0 50.8 
3-9 3.6 2.7 0.8 192.0 
5-9 5.2 1.4 0.4 760.2 

Large           Central Tendency 2-8 2.7 2.7 0.8 3.3 
3-7 1.4 1.4 0.5 2.8 
4-6 0.6 0.6 0.2 3.8 

Dislike Avoidence 2-9 3.6 3.4 1.0 49.8 
3-9 3.6 2.7 0.8 186.3 
5-9 4.7 1.4 0.4 735.3 

Note:      ' No product difference: /^ = 0, /?/ = 0, fc = 0, /?, = 0; 
2 Moderate product difference: j3o = 0,0, = 0, /?> = 0.12, ft = 0; 
3 Large product difference: 0o = 0, /?/ = 0, fy = 0.2, /?, = 0. 



Table 4.6 Case 2 (continued) 
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Significant      Product Difference Level       Scale 
Level & Simulation Cases Usage 

Empirical Power of ANOVA 
Reduced Model Full Model 

Segment* Product 
(in Full Model) 

0.05       None Central Tendency 2-8 
3-7 
4-6 

5.0% 
5.0% 
4.9% 

Dislike Avoidence 2-9 
3-9 
5-9 

4.8% 
5.0% 
5.0% 

5.0% 
5.1% 
5.0% 
4.8% 
5.0% 
5.0% 

5.0% 
5.0% 
5.0% 
5.1% 
5.0% 
5.1% 

0.05       Moderate     Central Tendency 2-8 
3-7 
4-6 

49.0% 
46.4% 
40.7% 

Dislike Avoidence 2-9 
3-9 
5-9 

49.5% 
49.0% 
46.3% 

49.0% 
46.5% 
40.9% 
49.6% 
49.0% 
46.3% 

5.5% 
7.8% 
13.4% 
5.0% 
5.5% 
7.9% 

0.05      Large Central Tendency 2-8 
3-7 
4-6 

90.2% 
87.2% 
81.9% 

Dislike Avoidence 2-9 
3-9 
5-9 

90.3% 
90.2% 
87.8% 

90.2% 
87.2% 
81.9% 
90.3% 
90.2% 
87.8% 

6.8% 
14.3% 
29.4% 
5.8% 
6.8% 
13.8% 

0.1        None Central Tendency 2-8 
3-7 
4-6 

9.9% 
10.0% 
9.5% 

Dislike Avoidence 2-9 
3-9 
5-9 

9.8% 
9.9% 
10.1% 

9.8% 
10.1% 
9.7% 
9.8% 
9.8% 
10.1% 

10.0% 
10.2% 
9.9% 
9.9% 
10.0% 
10.1% 

0.1        Moderate     Central Tendency 2-8 
3-7 
4-6 

61.8% 
59.5% 
53.5% 

Dislike Avoidence 2-9 
3-9 
5-9 

62.2% 
61.8% 
58.5% 

61.7% 
59.5% 
53.5% 
62.2% 
61.7% 
58.5% 

10.8% 
14.4% 
21.9% 
10.1% 
10.8% 
14.7% 

0.1        Large Central Tendency 2-8 
3-7 
4-6 

94.4% 
92.5% 
89.3% 

Dislike Avoidence 2-9 
3-9 
5-9 

94.7% 
94.4% 
93.1% 

94.4% 
92.5% 
89.3% 
94.7% 
94.4% 
93.1% 

12.4% 
22.8% 
41.3% 
10.9% 
12.4% 
22.5% 

Note:      ' No product difference: po = 0, 0, = 0, # = 0, A = 0; 
2 Moderate product difference: /?0 = 0, /?, = 0, /?? = 0.12, /% = 0; 
3 Large product difference: /?„ = 0,0, = 0, /?? = 0.2, fr = 0. 
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Figure 4.3 Case 2.1 - Central tendency within the comparison segment: power of 
ANOVA at three product difference levels - none, moderate & large, based on 
10000 simulation runs (significant level = 0.05) 

100.0% 

£ 80.0% 
o 
f 60.0% 

2 40.0% 

£ 20.0% 

0.0% 
5 6 

- No R-oduct Difference —o— Moderate Product Difference ■ Large Product Difference 

Note:      kj = 0: which the scale usage is from 1 to 9 (whole 9-point hedonic scale); 
ki = 2: which the scale usage is from 2 to 8; 
ki = 4: which the scale usage is from 3 to 7; 
ki = 6: which the scale usage is from 4 to 6. 
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Figure 4.4 Case 2.2 - Dislike avoidance within the comparison segment: power of 
ANOVA at three product difference levels - none, moderate & large, based on 
10000 simulation runs (significant level = 0.05) 

< > o 
z 
< 
o 

o 
Q. 

100.0%   r- 

80.0% 

60.0% 

40.0% 

20.0% 

0.0% 
0 

JL 

^  -— Q_-   o-     — 

 A 

- -a 

-♦— No Product Difference   -o— Moderate Product Difference —A— Large Product Difference 

Note:      k/ = 0: which the scale usage is from I to 9 (whole 9-point hedonic scale); 
kj = I: which the scale usage is from 2 to 9; 
ki = 2: which the scale usage is from 3 to 9; 
ki = 4: which the scale usage is from 5 to 9. 
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reduction of the dispersion of the distribution, and results in less location 

differences between the two products. Apparently, this will decrease the power of 

ANOVA in detecting the product differences. 

Meanwhile, the mean square errors (MSE) and the variation of the 

respondents (MSrespo„denl in the ANOVA reduced model) within segment decreased 

in both cases as the scale truncation got more serious. Unlike in the central 

tendency case, a largely increased segment effect was revealed in the dislike 

avoidance case. 

At a-level = 0.10, ANOVA had a higher detecting power than a-level = 

0.05 (Table 4.6). Results also showed that no significant difference of ANOVA 

powers was detected between the reduced and full model. This is because when the 

product by segment interaction effect is small, 

SSprodua (Ful1 mode!) = SSpi.odllcl (Reduced model) (4.9) 

and both have the same degree of freedom, thus 

MSproducl (Full model)=MSpwdllcl (Reduced model) (4.10) 

Since SSE(Reduced model) = SSE + SSsegmemxpi.oducl (Full model) (4.11) 

dfssE = l" (Educed model) « dfSSE = 198 (Full model) (4.12) 

If SSsegamlxpn)ducl is small, then 

SSE (Reduced model) a SSE (Full model) (4.13) 

MSE (Reduced model)» MSE (Full model) (4.14) 
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 pr"'"c' {Reduced model)« '"od"c' {Full model) (4.15) 
MSE MSE 

Therefore, under the simulation conditions tested in this study, both models gave 

the similar results of F-value andp-value for the product effect. 

As a conclusion, the central tendency and dislike avoidance cases are not 

the driving factors for significant ANOVA power loss. Therefore, as long as 

segments are in agreement with taste preferences, results from different segments 

can be combined. 

Case 3 - Disagreement in Preference and Agreement in Scale Usage 

For simplicity, three situations were used to illustrate the case where the 

two segments agreed in the scale usage but disagreed in the product preferences 

(Figure 4.5). The reference segment detected a product difference and scored B 

over A. On the other hand, the comparison segment scored the product A over B 

(Situation 1 and 2) or showed no preference (Situation 3). The reduced model 

failed to detect any product difference. However, the full model revealed a high 

chance of detecting a significant segment by product interaction effect in all three 

situations (Table 4.7). 

Correspondingly, in Lundahl's paper (1992) of determining the influence of 

special consumer groups as a small subset of respondents, he concluded that large 



107 

Figure 4.5 Case 3 - Agreement in scale usage, but disagreement in product 
preference: an illustration of three situations where the segment 1 always scores 
product B (mean 5.4) over A (mean 5.0) and 
1. Segment 2(a): segment 2 scores product A (mean 5.4) over B (mean 5.0) 
2. Segment 2(b): segment 2 scores product A (mean 5.4) over B (mean 5.2) 
3. Segment 2(c): segment 2 has no preference on the two products (both means 

5.4) 

0.25 -. 

0.2 - 

3   0.15 H 
(A 

g*    0.1 

0.05 H 

0 

Segment_2(c)_ 

.   Segment 2(b) 

SegmentlX 

X Segment 2(a) 
—*v 

r5.5 

5.4   I 
o 

h 5.3 S 
o 
ct> 

I- 5.2 -$ 
o 
3 

5.1 r 
o 
to 

Product A Product B 

Note of the three situations: 
Situation 1 
Situation 2 
Situation 3 

A = 0, A = 0.2, # = 0.2, & = -0.4 

/3o = 0,0, = 0.2, # = 0.2, # = -0.3 
# = 0, A = 0.2, # = 0.2, # = -0.2 
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Table 4.7 Case 3 - Agreement in scale usage, but disagreement in product 
preference: power of ANOVA at three situations, based on 10000 simulations (<JR 

= 0.4, (JE = 0.35, k, = k2 = 0). 

Situ- 
ation 

Empirical Power of ANOVA 
Reduced             Full 

Model             Model 

Segment by 
Product 

(Full Model) 
MS of 

respondent 

MSE 
Significant 

Level 
Reduced 
Model 

Full 
Model 

MS of 
Segment 

0.05 1 
2 
3 

4.6%               9.4% 
11.9%             20.0% 
37.3%             49.5% 

90.4% 
67.5% 
36.7% 

4.4 
4.4 
4.4 

1.5 
1.5 
1.4 

1.4 
1.4 
1.4 

4.4 
5.3 
8.2 

0.1 1 
2 
3 

5.2%              10.1% 
12.4%             20.6% 
37.7%             49.9% 

94.6% 
78.2% 
48.6% 

4.4 
4.4 
4.4 

1.5 
1.5 
1.4 

1.4 
1.4 
1.4 

4.4 
5.3 
8.2 

Note of the three situations: 
Situation 1 
Situation 2 
Situation 3 

A = 0, /?, = 0.2, A = 0.2, ft = -0.4 
fio = 0, /?, = 0.2, 0, = 0.2, 03 = -0.3 
0O = 0,0, =0.2, 02 = 0.2, 03 = -0.2 
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crossovers from 10% special consumers or small crossovers from 20 to 30% 

special consumers could significantly increase the Type II error. 

In our situation, since the two segments had equal sample sizes, we can 

think that the comparison segment as special consumers group represents 50% of 

the total respondents. Therefore, crossover response from one of the consumer 

segments can highly reduce the power of ANOVA in detecting product differences. 

A significant segment by product interaction effect from the full model implies a 

great product preference disagreement among the cultural segments. Under this 

situation, segmentation by different cultures is a necessary step in cross-cultural 

consumer data analysis. The need for segmentation in the analysis also depends on 

the type of different consumer response, number of respondents, and degree of 

disparity between the segments. Failure to design consumer tests to be able to 

segment in the analysis can result in errors of Type I or II (Lundahl, 1992). 

Based on the results from Case 3, we conclude that for cross-cultural 

sensory consumer data analysis it is important to always evaluate for segment 

differences and use the ANOVA full model for detecting product differences. 

Case 4 - Location Variation within SeRment 

Emboldened by our experience, in the cross-cultural consumer research the 

mean square of respondents {MSreSp0ndent) in the ANOVA reduced or full model 

usually varies in value from 3 to 10 (on a 9-point hedonic scale). Thus, the 



simulated MS respondent was 7.6, 11.2 and 15.4 corresponding to the scaling location 

variation {<JR) within the comparison segment varied in 1, 2 and 4 (Figure 4.6 and 

Table 4.8). As location variation parameter <JR increased, there was less 

homogeneity in scaling location within the comparison segment, and thus less 

power to distinguish the two products and more disagreement between the 

segments. 

Again, there was no significant difference between the results of the two 

models (ANOVA frill vs. reduced model). At ctr-level = 0.05, the power of ANOVA 

dropped 6% at worst for the moderate product difference, and 5% at worst for the 

large product difference (Figure 4.6 and Table 4.8). At a-level = 0.10, the 

performance of ANOVA was slightly better than at a-level = 0.05. Therefore, we 

conclude that the location variation within a segment has little effect on the power 

to detect product differences. 

Case 5 - Acceptance Variation within Segment 

Based upon our experiences on consumer studies, the acceptance variation 

within a segment, which reflects the respondents' heterogeneity in product 

preference, usually varies from value ± 2 on a 9-point hedonic scale. By increasing 

the respondents' personal random noise on acceptance within the comparison 

segment (cr/), the MSB in the ANOVA results increased from 1.6, 2.0 to 2.6 

(Figure 4.7 and Table 4.9). There was no difference between the results of reduced 
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Figure 4.6 Case 4 - Increasing location variation within the comparison segment: 
power of ANOVA at moderate and large product difference levels, based on 10000 
simulations (oi = 0.35, significant level = 0.05), V_R represents GR . 

100.00% 

<    80.00% 
O 
Z     60.00% 

_    40.00% <u 
5 
P    20.00% 

0.00% 

-♦— No Product Difference Moderate Product Difference • Large Product Dfference 

Note:     CT/f = 1 for small location variation; 
cr/= 2 for moderate location variation; 
ofc" = 4 for large location variation; 
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Table 4.8 Case 4 - Increasing location variation within the comparison segment: 
results of ANOVA at moderate and large product difference levels, based on 10000 
simulations (of- = 0.35). 

Product Empirical Power Segment by MS MS 
Sig. Difference Location of ANOVA Product of of 

Level Level Variation Reduced Full Model (Full Model) respondent MSB Segment 

0.05 Moderate4 Small1 48.6% 48.7% 5.0% 7.6 1.2 7.6 
Moderate2 46.3% 46.3% 5.3% 11.2 1.0 11.2 

Large3 44.1% 43.9% 6.8% 15.4 0.8 16 
0.05 Large5 Small 88.8% 88.8% 5.6% 7.6 1.2 7.8 

Moderate 87.2% 87.2% 6.4% 11.2 1.0 11.6 
Large 85.4% 85.4% 9.0% 15.4 0.8 16.4 

0.1 Moderate Small 61.3% 61.3% 9.7% 7.6 1.2 7.6 
Moderate 59.0% 59.0% 10.6% 11.2 1.0 11.2 

Large 56.6% 56.6% 12.6% 15.4 0.8 16 
0.1 Large Small 94.1% 94.1% 11.0% 7.6 1.2 7.8 

Moderate 92.8% 92.8% 12.0% 11.2 1.0 11.6 
Large 91.6% 91.6% 15.8% 15.4 0.8 16.4 

Note:      ' (Ji{2= 1 for small location variation; 
2 aR

2=2 for moderate location variation; 
3 o>" = 4 for large location variation; 
4A = 0,/?/ = 0)/?, = 0.12,/?J = 0; 
iPo = 0,pl = 0, p2 = 0.2, A = 0. 
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Figure 4.7 Case 5 - Increasing acceptance variation within the comparison 
segment: power of ANOVA at moderate and large product difference levels, based 
on 10000 simulations (<r«2 = 0.4, significant level = 0.05), V_E represents Og2. 

< > 
o z 
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a> 
3 
o 
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• No Product Difference • Moderate Product Difference ■Large Roduct Difference 

Note:     Of2 = 0.4 for small acceptance variation; 
(TE

2 = 0.5 for moderate acceptance variation; 
aE

2 = 0.7 for large acceptance variation; 
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Table 4.9 Case 5 - Increasing acceptance variation within the comparison segment: 
results of ANOVA at moderate and large product difference levels, based on 10000 
simulations {GR = 0.4). 

Product Empirical Power Segment by MS MS 

Sig. Difference Acceptance of ANOVA Product of of 
Level Level Variation Reduced Full Model (Full Model) MSE Respondent Segment 

0.05 Moderate Small1 47.5% 47.5% 5.0% 1.6 4.6 4.5 
Moderate2 41.9% 41.9% 5.0% 2 4.8 4.8 

Large3 36.7% 36.8% 5.3% 2.6 5.2 5.4 
0.05 Large5 Small 87.7% 87.7% 5.4% 1.6 4.6 4.6 

Moderate 83.2% 83.1% 5.4% 2 4.8 4.8 
Large 76.4% 76.4% 5.1% 2.6 5.2 5.2 

0.1 Moderate Small 60.0% 60.0% 9.8% 1.6 4.6 4.5 
Moderate 54.6% 54.6% 9.9% 2 4.8 4.8 

Large 48.7% 48.7% 10.3% 2.6 5.2 5.4 
0.1 Large Small 93.2% 93.2% 10.6% 1.6 4.6 4.6 

Moderate 90.1% 90.2% 10.1% 2 4.8 4.8 
Large 84.8% 84.8% 10.1% 2.6 5.2 5.2 

Note:        (TE = 0.4 for small acceptance variation; 
2 c%2 = 0.5 for moderate acceptance variation; 
3 OE = 0.7 for large acceptance variation; 4/?o = 0,A = 0,£, = 0.12,A = 0; 
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model and full model. At large oi = 0.7 and moderate product difference, power 

dropped 13%; and for the large product difference, power dropped 14% (cc-level = 

0.05) (Figure 4.7 and Table 4.9). 

As a conclusion, heterogeneity in product acceptance within a segment 

(MSE = 2.5 ~ 3) can have a moderate effect (14% decline) on the ANOVA power 

to detect product differences. 

Case 6 - Segment Location Effect 

In Equation 4.3, parameter fij represents a fixed segment location effect, or 

the difference on the scaling location between the two segments (e.g. two different 

cultures) as showed in Figure 4.8. Based on the Thurstonian hypothesis, the 

responses to sensory stimuli are normally distributed on an internal psychological 

scale of liking or the logit scale with range (- <», oo). However, when the responses 

are transformed to a 9-point hedonic scale, which has a limited range from 1 to 9, 

the "end of scale compression" will most likely change the shape of the normal 

distributions as the differences of location between segment increase (Figure 4.9). 

The equal amount of product difference shrinks towards the ends of the scale and 

therefore the power of ANOVA decreases. 

As the value of parameter fij increased from 1 to 3, for the moderate 

product difference level, the reduced or full model lost 3%, 8%, and 17% for the 

small, moderate and large segment location effect, respectively; for the large 
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Figure 4.8 Case 6 - Segment location effect: an illustration of g(Xj, Xk I Po, Pi, Pi, 
Pi) for two products A, B and two segments 1, 2. 

giXj = 0, Xk = 0 I po, Pi, Pi, Ps) = Po (product A and segment 1) 
g(Xj = 0, Xk = 1 I po, pi, Pi, Ps) = Po + Pi (product B and segment 1) 
giXj =l,Xk = Q)\Po, Pi, Pi, P3) = Po + PJ (product A and segment 2) 
g(Xj =l,Xk=l\Po, Pi, Pi, P3) = Po + Pi + Pi (product B and segment 2) 
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Figure 4.9 Responses are normally distributed on a logit scale (-00,00). However, 
when they are transformed to a 9-point hedonic scale, "end of scale compression" 
changes the shape of the distributions. 

Segment 1 Segmbnt 2 

logit scale 

hedonic response scale 

Segment 1 Segment 2 
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product difference level, the ANOVA model lost 2%, 7%, 18% for three segment 

location effects, respectively (o-level = 0.05) (Figure 4.10 and Table 4.10). 

As a conclusion, when use a hedonic scale or any scale with a limited range, 

a large segment location effect may result in a situation which the distribution of 

the responses is heavily compressed towards the ends of the scale, and thus 

ANOVA has less power in detecting the product differences. 

Conclusions 

The analysis of variance table summarizes our knowledge about variability 

in the respondents from the study. Proper interpretation of the analysis will help to 

understand the statistical simulation model. Five variance components were 

estimated by the ANOVA full model such as segments, respondents within 

segment, products, segment by product interaction and random error. The variance 

component of segments indicates the location for segment differences. The 

variance component of respondents within segment shows the consistency in 

location within segments, and it increases as the variance of input parameter R^) 

increases. The variance from the products indicates the product differences. The 

segment by product interaction reflects the segment differences in product liking. 

The variance of random error is an estimate of the consistency among individuals 

within segments for product liking. Also, the variation of individuals from 

replication to replication to score products is confounded within the random error. 
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Figure 4.10 Case 6 - Segment location effect: power of ANOVA at moderate and 
large product difference levels, based on 10000 simulations {GR = 0.4, Ofe2 = 0.35, 
significant level = 0.05), betal represents fij. 

■ No Product Difference ■ Moderate Product Difference • Large Roduct Difference 

Note: betal (/?,) = 1 for small segment location effect; 
betal = 2 for moderate segment location effect; 
betal = 3 for large segment location effect; 
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Table 4.10 Case 6 - Segment location effect: results of ANOVA at moderate and 
large product difference levels, based on 10000 simulations (OR = 0.4, OE

2
 = 0.35). 

Product Segment Empirical Power MS MS ofResp- MS 

Sift. Difference 
Level 

Location 
Effect 

of ANOVA 
Respondent 

dent within 
Segment MSE 

of 
Level Reduced Full Model Segment 

0.05 Moderate4 Small1 47.2% 47.2% 6.6 3.2 1.0 662.4 
Moderate2 42.5% 42.5% 11.0 1.4 0.6 1945.2 

Large3 33.2% 33.5% 14.2 0.2 0.2 2786.2 
0.05 Large5 Small 89.2% 89.2% 6.4 3 1.0 652.8 

Moderate 83.4% 83.4% 10.8 1.2 0.4 1901.8 
Large 72.0% 72.1% 13.8 0.2 0.2 2693.4 

0.1 Moderate Small 60.1% 60.1% 6.6 3.2 1.0 662.4 
Moderate 54.9% 54.9% 11.0 1.4 0.6 1945.2 

Large 45.9% 46.1% 14.2 0.2 0.2 2786.2 
0.1 Large SmaU 94.1% 94.1% 6.4 3 1.0 652.8 

Moderate 90.2% 90.1% 10.8 1.2 0.4 1901.8 
Large 81.7% 81.8% 13.8 0.2 0.2 2693.4 

1 fli = 1 for small segment location effect; 
2 /?/= 2 for moderate segment location effect; 
3 /?/= 3 for large segment location effect; 
4^ = 0)^ = 0.12,A = 0; 
5 ft,, = 0,02 = 0.2, fi3 = 0. 
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By varying the input value of parameter E^ki, we increase/decrease the variation of 

random error. 

This study investigated the robustness of ANOVA to the scale usage 

differences, which generally lose at worst about 10% in power. In addition, a high 

MSE (around 3) from the ANOVA result indicated a moderate power loss (power 

drop approximately 14%). On the other hand, disagreement in product preference 

among segments could also highly affect the ANOVA power and therefore the 

segmentation of cross-cultural responses is highly recommended. 

When a small crossover effect exists, the reduced and full models give 

similar results in terms of power. However, the full model is preferred in evaluating 

the cases where segments differ in product preferences. 

As a conclusion, when conducting cultural studies, we recommend using 

the full ANOVA model to detect the interaction between the segment and product 

effect. From the scope of this study, if segments agree on product differences, the 

results of different segments can be combined for ANOVA. 

In practice, this study demonstrated the value of simulation in sensory 

research to address difficult issues in sensory data analysis. It provided valuable 

information on the approximate power of ANOVA techniques. By simulating 

different cross-cultural situations and specifying input parameters, we can 

approximate the power of ANOVA. For further research, we can also vary the 

values of the sample size, location parameter, variances, and number of testing- 
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samples and segments in order to simulate more applicable sensory consumer data 

and test the empirical power of ANOVA under those situations. 
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CHAPTER 5 

THESIS SUMMARY 

In cross-cultural studies, respondents from specific cultures may have 

different product preferences and scale usage, therefore combining data from 

different cultures may result in departure from the basic assumptions of analysis of 

variance (ANOVA) and fail to detect product and culture differences. The result of 

violations on power of ANOVA is unknown for the food researchers, but is of 

increasing concern with greater globalization of food markets and opportunities for 

exporting to different cultures. Therefore, the objectives of this research are by 

simulating consumer product evaluation data, to evaluate the robustness and testing 

power of ANOVA under different cross-cultural situations. 

This study was conducted in two parts: (1) development of a simulation tool 

for generating sensory data and (2) applying the simulation tool to evaluate the 

effects of cross-cultural differences in scale usage and preference on the underlying 

assumptions of ANOVA. 

In the first part, an empirical logit simulation model was selected as best for 

generating sensory data. This model can include effects such as respondent, 

product, consumer segment and product by segment interactions. Four underlying 

distributions (binomial, beta-binomial, hypergeometric, and beta-hypergeometric), 

and a binning model were applied independently to increase or decrease the 

dispersion of simulated responses. In addition, a wide range of scale and scale 
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usage effects can be included through the use of scale location and truncation input 

parameters. 

The results showed that the Discrete Empirical Logit was simple, relatively 

flexible, and capable of producing the designed cases for this simulation study. 

In the second part, the Discrete Empirical Logit simulation model was 

chosen to simulate specified data sets under six different cross-cultural cases - 

central tendency, dislike avoidance, crossover, location variation, acceptance 

variation and segment effect. The study simulated a simplified situation with two 

products, three levels of product differences and two consumer segments - a 

reference segment and a comparison segment. For each case, 10000 data sets were 

randomly generated and analyzed by ANOVA using both a reduced model and a 

full model (including segment and segment by product interaction effects). The 

empirical power of ANOVA under various situations was calculated as the 

percentage of times of detecting a significant product difference over the 10000 

data sets. 

Results recommended using the ANOVA full model whenever cross- 

cultural data is analyzed for product preferences. The reduced model without 

segment and segment by product interaction effects can loss significant power to 

detect product differences when these differences are present. Therefore, these 

segment effects need to be always included and tested. 

Most surprising was the demonstration that ANOVA was concluded to be 

very robust to cross-cultural differences in scale usage. At worst, only about 18% in 
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power is lost under the most extreme cases evaluated in this simulation study. 

However, a large noise in preference within a culture can result in a significant loss 

in power. 

As a conclusion, the study recommended using the ANOVA full model for 

all cross-cultural research. From the scope of this study, results from different 

cultures can be combined with scale usage effects assumed to have minimal impact 

on the power to detect differences. Further, this study demonstrated the value of 

simulation in sensory research to address difficult issues in data analysis. 
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