

AN ABSTRACT OF THE THESIS OF

Ehsan Nasroullahi for the degree of Master of Science in Mechanical Engineering

presented on March 9, 2012.

Title:

Combining Coordination Mechanisms to Improve Performance in Multi-robot Teams

Abstract approved:

Kagan Tumer

Coordination is essential to achieving good performance in cooperative multiagent

systems. To date, most work has focused on either implicit or explicit coordination

mechanisms, while relatively little work has focused on the benefits of combining

these two approaches. In this work we demonstrate that combining explicit and im-

plicit mechanisms can significantly improve coordination and system performance

over either approach individually. First, we use difference evaluations (which aim

to compute an agent’s contribution to the team) and stigmergy to promote implicit

coordination. Second, we introduce an explicit coordination mechanism dubbed

Intended Destination Enhanced Artificial State (IDEAS), where an agent incor-

porates other agents’ intended destinations directly into its state. The IDEAS

approach does not require any formal negotiation between agents, and is based on

passive information sharing. Finally, we combine these two approaches on a vari-

ant of a team-based multi-robot exploration domain, and show that agents using

a both explicit and implicit coordination outperform other learning agents up to

25%.

c©Copyright by Ehsan Nasroullahi
March 9, 2012

All Rights Reserved

Combining Coordination Mechanisms to Improve Performance in
Multi-robot Teams

by

Ehsan Nasroullahi

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented March 9, 2012
Commencement June 2012

Master of Science thesis of Ehsan Nasroullahi presented on March 9, 2012.

APPROVED:

Major Professor, representing Mechanical Engineering

Head of the School of Mechanical, Industrial, and Manufacturing Engineering

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my
thesis to any reader upon request.

Ehsan Nasroullahi, Author

ACKNOWLEDGEMENTS

I would like to acknowledge and thank my adviser, Professor Kagan Tumer, for

supporting my research, providing guidance and advising me to the completion of

this work. I thank my other committee members for their time and support, and

the AADI laboratory for providing me with insight, support, and feedback

throughout this process.

TABLE OF CONTENTS

Page

1 Introduction 1

2 Background 6

2.1 Multiagent Systems . 6

2.2 Multiagent Coordination . 8
2.2.1 Explicit Coordination . 8
2.2.2 Implicit Coordination . 9
2.2.3 Analysis of Coordination Approaches 10
2.2.4 Stigmergy . 11

2.3 Agent Learning . 11
2.3.1 Reinforcement Learning . 12
2.3.2 Neural Networks . 15
2.3.3 Evolutionary Algorithms . 16
2.3.4 Neuroevolutionary Algorithms 19

2.4 Evaluation Functions for Policy Selection 19
2.4.1 Factoredness and Learnability 20
2.4.2 Difference Evaluations . 22

3 The Cooperatively Coupled Rover Domain 23

3.1 Agent State Representation . 24

3.2 Agent Action Representation . 26

3.3 System Objective for the Cooperatively Coupled Rover Domain . . 27

4 Agents and Coordination 29

4.1 Rover Policies . 29

4.2 IDEAS for Explicit Coordination 30

4.3 IDEAS: Modified State . 33

4.4 Policy Evaluation Functions . 35
4.4.1 Global Policy Evaluation Functions 35
4.4.2 Difference Policy Evaluation Functions 36

4.5 Stigmergy . 38

TABLE OF CONTENTS (Continued)

Page

5 Experiments and Results 40

5.1 Evaluation Functions for Static Domain 41

5.2 Combining Evaluation Functions and Stigmergy for Static Domain . 44

5.3 Combining Evaluation Functions and IDEAS for Static Domain . . 46

5.4 Combining Evaluation Functions, Stigmergy, and IDEAS for Static
Domain . 48

5.5 Scalability of Evaluation Functions, Stigmergy, and IDEAS in The
Static Domain . 50

5.6 Extension to Dynamic Domain . 52

5.7 Analysis of Results . 54

6 Conclusion 57

Bibliography 60

LIST OF FIGURES

Figure Page

2.1 Network diagram for a two layer feed forward Neural Network (NN).
The input, hidden and output variables are represented by nodes,
and the weight parameters are represented by links between the
nodes. In feed forward NN the information flow through the network
from input to hidden and then to output layer. 17

3.1 The figure shows how rovers observe their environment. Each rover
has a set of 8 sensors (4 POI sensors and 4 rover sensors). The
sensors provide coverage over 4 quadrants, where each quadrant
contains one POI sensor and one rover sensor (Chapter 3). 25

3.2 This figure represents the rover heading. At each time step the
rover has two continuous output (dy, dx) giving the magnitude of
the motion in two-dimensional plane relative to the rove’s orientation. 27

5.1 Cooperatively coupled rover domain with 40 rovers in a static envi-
ronment, where teams of 3 agents are required to observe each POI.
Agents using D outperform all other methods once the observation
distance is above 50 units. 42

5.2 Cooperatively coupled rover domain with 40 rovers in a static envi-
ronment, where teams of 3 agents are required to observe each POI.
Agents using D outperform all other methods once the observation
distance is above 60 units. 45

5.3 Cooperatively coupled rover domain with 40 rovers in a static envi-
ronment, where teams of 3 agents are required to observe each POI.
Agents using D outperform all other methods once the observation
distance is above 50 units. 47

5.4 Cooperatively coupled rover domain with 40 rovers in a static envi-
ronment, where teams of 3 agents are required to observe each POI.
Agents using D � S � IDEAS outperform all other methods once
the observation distance is above 55 units. 49

LIST OF FIGURES (Continued)

Figure Page

5.5 Investigating the scalability of evaluation functions (G and D), com-
bination of evaluation function, Stigmergy and IDEAS (D � S �
IDEAS and G�S�IDEAS) in cooperatively coupled rover domain
and static environment. Agents using D� S � IDEAS outperform
all other methods almost every where. 51

5.6 Cooperatively coupled rover domain with 40 rovers in a dynamic
environment, where teams of 3 agents are needed to observe each
POI. As seen, agents using D � S � IDEAS outperform all other
methods once the observation distance is above 60 units. 53

Chapter 1 – Introduction

In recent years, there has been a growing interest in autonomous systems including

autonomous robots, UAVs, and sensor networks [1, 2, 20, 30]. Traditionally, much

of the emphasis has been placed on single-device autonomy, where a single device

(e.g rover, satellite, Unmanned Aerial Vehicles (UAV)) is operated via autonomous

control methods in order to achieve some goal or complete some task. Although this

is an important control problem, the capabilities of a single device are inherently

limited. In order to address the limitations of single devices, researchers have begun

looking into controlling sets of these devices such that they collectively achieve a

common goal that none of the individuals could accomplish independently. In such

systems, a new type of control problem arises: How to best coordinate the actions

of a set of autonomous devices such that they cooperatively work together in order

to achieve a common goal. This problem is very complex, as in many cases the

dynamics of the system model are unknown, individual devices may be unreliable,

and different devices may have conflicting goals. The field of multiagent systems

was developed to address the control issues present in these systems.

Coordinating a team of agents such that they collectively achieve a common

goal is a complex problem within the field of multiagent systems [31]. Improving

coordination in multiagent systems will benefit many application domain including

Unmanned Aerial Vehicles (UAV) swarms, search and rescue missions, exploration,

2

and sensor networks [1,2,17]. In general, coordination mechanisms can be broken

down into two main categories: implicit and explicit coordination mechanisms.

Implicit coordination relies solely upon an agent’s observation of the environ-

ment, other agents, and the surrounding system to make decisions. One way is

stigmergy, which is a way agents coordinate by communicating with each other

within the environment [16]. The other way is coupling the actions of a set of

agents who are not permitted to explicitly communicate is through the coupling of

their policy evaluation functions. Here, agents share a policy evaluation function

that is somehow reflective of how the agents collectively performed at achieving

a particular objective. These evaluations are selected in such a way that if every

agent aims to optimize its own fitness, it is simultaneously learning to optimize

the system objective. In this work, we use two policy evaluation functions that

have been shown to be successful in a number of domains (global and difference

evaluation functions). Although policy evaluation functions alone have been shown

to improve performance, convergence time, coordination, and scalability in multi-

agent systems, they have been unable to fully address the coordination issues in

large multiagent systems. We address this shortcoming by adding our own explicit

coordination mechanism to improve performance.

Explicit coordination involves direct interaction and exchange of information

between two or more agents. Examples of explicit coordination are negotiations

and auctions. However, these methods are frequently complex and require a back-

and-forth dialogue between agents before reaching agreement and taking any ac-

tion, thus slow system response time [11]. Also, in many real world problems

3

communication is limited in bandwidth and availability. In this work, we propose

to utilize a novel explicit coordination mechanism called Intended Destination En-

hanced Artificial State (IDEAS) which only requires passive information sharing

between agents. In particular, agents passively communicate the action that they

currently intend to take based upon their perceived system state. This information

provides agents with an effective “look ahead” at what other agents intend to do

during the next time step, allowing them to adjust their actions to compensate

accordingly.

While explicit coordination involves direct interaction and exchange of infor-

mation between two or more agents, implicit coordination relies solely upon an

agent’s observation of its environment to coordinate and make decisions. Im-

plicit coordination mechanisms tend to be limited by observation restrictions and

explicit methods are typically limited by communication restrictions. In many

real-world domains agents have access to limited amounts of both observation and

communication. In such cases, maximizing the benefit of both types of informa-

tion by concurrently using implicit and explicit mechanisms is likely to be ad-

vantageous. Although both implicit and explicit coordination methods have been

shown to work well individually, it is likely that both approaches offer complimen-

tary benefits in multiagent systems. We propose using a combination of explicit

and implicit coordination mechanisms to improve coordination and performance

over either method individually. We rely on policy evaluations and stigmergy to

improve implicit agent-to-agent coordination. While we use communicating infor-

mation about each agents’ IDEAS to improve explicit agent-to-agent coordination

4

(coordinating IDEAS information allows agents to adjust their actions based upon

the intended actions of others) in Cooperatively Coupled Rover Domain.

The CCRD is an extension of the Continuous Rover Domain developed by [1],

in which a set of rovers must coordinate their actions to collectively optimize cov-

erage over a set of environmental points of interest (POIs) and individual rovers

can observe any given POI. The CCRD increases the coordination complexity by

requiring teams of agents to observe each POI. Here, agents must not only optimize

coverage as a collective, but they must form teams and the teams must coordinate

within themselves to optimize coverage of their POI as well. This is difficult be-

cause there are two different coordination problems going on concurrently. First,

at a high level all agents within the system must coordinate to provide optimal

coverage of POIs. Second, agents must coordinate amongst themselves to form

teams, and the agents comprising the teams must coordinate their actions to op-

timally select and cover a given POI (teams either observe a POI together or not

at all). This tight coupling between agents both at a system level and at a team

level present a complex coordination problem. The key contributions of this thesis

are as follows:

1. Introduce a novel explicit coordination mechanism (IDEAS) and demon-

strate its usefulness by applying it to the CCRD.

2. Combine implicit (policy evaluation and stigmergy) and explicit (IDEAS)

coordination mechanisms to improve performance of multi-rover teams in

the CCRD with a static environment.

3. Extend implicit (policy evaluation and stigmergy) and explicit (IDEAS) co-

5

ordination mechanisms into dynamic environment where the POIs’ value and

location change at the beginning of every episode.

4. Demonstrate the scalability of the approach in the CCRD that contain max-

imum of 50 rovers.

The remainder of this thesis is structured as follows. Section 2 provides back-

ground information on the Continuous Rover Domain, multiagent systems, multi-

agent coordination, and multiagent learning. Section 3 provides an introduction

to the CCRD used in this work. Section 4 provides an overview of the algorithms,

evaluation functions, and methods used in this work. Section 5 contains the ex-

perimental results. Finally, Section 6 contains the discussion and conclusions of

this work.

6

Chapter 2 – Background

2.1 Multiagent Systems

The field of multiagent systems contains elements from two primary fields of re-

search, distributed problem solving and artificial intelligence. Distributed problem

solving is the process of decomposing a problem into modular tasks, and allocating

those tasks among several individual nodes in order to collectively construct a so-

lution to the problem [31]. We refer the interested reader to [12] for more detailed

information on distributed problem solving. Artificial intelligence attempts to not

just understand, but to build intelligent entities that perceive their environment

and take actions to maximize their chances of success [33]. Multiagent techniques

have been shown to be successful in a number of domains due to their inherently

distributed approach, robustness to component failures and environmental uncer-

tainty, reconfigurability, and adaptability to changing system requirements [31,34].

In this thesis, we are primarily interested in multiagent learning techniques.

Machine learning is a subfield of artificial intelligence that has been shown to work

well in a number of data processing, pattern recognition, and single-agent domains

[3]. Extending machine learning methods to multiagent domains is difficult because

of the increased complexities that arise from agent-to-agent interactions, so called

emergent behavior.

7

The use of multiagent techniques in complex distributed systems has many

benefits over traditional non-agent-based solutions including increased scalability,

robustness to component failure and system noise, and adaptability to sudden un-

planned changes in highly dynamic environments [41]. Coordination between coop-

erative teams of agents can improve the performance of individual agents within the

system, as well as the system as a whole [23]. Networks of collaborative agents have

performed well in a number of problem domains including robot soccer [34], traffic

congestion [39], collaborative exploration [37], coordinating multiple rovers [38],

routing data over a network [39], predator-prey, and search and rescue [31]. More

recently, there has been increased interest in resource sharing within constellations

of autonomous heterogeneous satellites. To date, agent-based satellite coordina-

tion research has included: resource allocation between on-board peripherals of

individual satellites (processor and power allocation), autonomous coalition for-

mation based upon negotiation mechanisms, and satellite-to-satellite coordination

and resource sharing mechanisms to complete complex missions [4–6,10,29]. In dy-

namic and noisy environments, unanticipated events can easily cause a breakdown

in preplanned, hand-coded coordination mechanisms. Applicable solutions must

be able to adapt to rapid changes within the system due to noise and component

failure without the loss of system functionality [36].

8

2.2 Multiagent Coordination

Coordination is a critical element in multiagent systems. Coordination can be

done either explicitly or implicitly. Explicit methods involve direct agent-to-agent

communication, negotiation, or information exchanging. Implicit coordination on

the other hand is indirect and typically occurs through environmental interactions.

A couple examples of implicit communication include coupling agent reward func-

tions [2] or leaving pheromones or trails that other agents in the environment can

detect and follow [28]. In many cases, multiagent systems rely heavily upon agent-

to-agent negotiation in order to coordinate resource allocation, task management,

or to achieve objectives [11]. Agents can interact and negotiate with both learning

and non-learning agents present within the environment in order to achieve their

goals.

2.2.1 Explicit Coordination

Explicit coordination involves direct interaction and exchange of information be-

tween two or more agents. Examples of explicit coordination are negotiations and

auctions. However, these methods are frequently complex and require a back-and-

forth dialogue between agents before reaching agreement and taking any action,

thus slow system response time [11]. Also, in many real world problems, com-

munication is limited in bandwidth and availability. In this work, we propose to

utilize a novel explicit coordination mechanism called Intended Destination En-

hanced Artificial State (IDEAS) which only requires passive information sharing

9

between agents. In particular, agents passively communicate the action that they

currently intend to take based upon their perceived system state. This information

provides agents with an effective “look ahead” at what other agents intend to do

during the next time step, allowing them to adjust their actions to compensate

accordingly.

2.2.2 Implicit Coordination

Implicit coordination relies solely upon an agent’s observation of the environment,

other agents, and the surrounding system to make decisions. One way of implicit

coordination is stigmergy, which is a way agents coordinate by communicating with

each other within the environment [16]. The other way is coupling the actions of

a set of agents who are not permitted to explicitly communicate is through the

coupling of their policy evaluation functions. Here, agents share a policy evaluation

function that is somehow reflective of how the agents collectively performed at

achieving a particular objective. These evaluations are selected in such a way so

that if every agent aims to optimize its own fitness, it is simultaneously learning

to optimize the system objective.

In this work, we use two policy evaluation functions that have been shown to be

successful in a number of domains (global and difference evaluation functions). Al-

though policy evaluation functions alone have been shown to improve performance,

convergence time, coordination, and scalability in multiagent systems, they have

been unable to fully address the coordination issues in large multiagent systems.

10

We address this shortcoming by adding our own explicit coordination mechanism

to improve performance.

2.2.3 Analysis of Coordination Approaches

Implicit coordination relies solely upon an agent’s observation of its environment to

make decisions, while explicit coordination involves direct interaction and exchange

of information between two or more agents. Implicit coordination mechanisms tend

to be limited by observation restrictions and explicit methods are typically limited

by communication restrictions. In many real-world domains, agents have access

to limited amounts of both observation and communication. In such cases, maxi-

mizing the benefit of both types of information by concurrently using implicit and

explicit mechanisms is likely to be advantageous. We propose using a combina-

tion of explicit and implicit coordination mechanisms to improve coordination and

performance over either method individually.

In this work, we use a passive form of explicit communication to promote coor-

dination between learning-based agents (passive information sharing). For alloca-

tion of resources, tasks and coordination, successful solutions have been provided

through auctions, bidding, and other forms of negotiations [24, 29, 32, 36]. The

explicit coordination mechanism that we are using is similar to the reactivity co-

ordination mechanism in [19], which can be described as agents coordinating with

each other via reacting with their local environment and also adapting their action

based on other agents’ actions. In our explicit coordination approach we are ob-

11

serving the agents’ local environment as is done with reactive coordination, where

agents leave traces within the environment for other agents (similar to pheromone

trails in swarm optimization).

2.2.4 Stigmergy

Stigmergy is another coordination method that is similar to our approach, which

is inspired from animal to animal interactions. This coordination method is based

on the indirect communication between agents, where the communication shared

between agents is based upon information and signs left behind in the environment

by the agents (implicit coordination) [16]. For instance the environment of ants

changes as they clean their nest (nest gets cleaner), thus less participants will help

to clean until no ants remain cleaning the nest and the nest is clean. The main

difference between our approach and stigmergy is that agents explicitly communi-

cate the signal for coordination where as in stigmergy it is implicit communication

(leaving signs behind in environment as result of action).

2.3 Agent Learning

Learning is often an important component of multiagent systems. Learning meth-

ods can generally be grouped into one of three main categories: supervised, unsu-

pervised, and reward-based learning. Supervised learning is learning in the pres-

ence of a “teacher”, which tells an agent whether the action it took was right

12

or wrong. Supervised learning works well for classification problems in which a

set of training examples are available. However, in many complex real world do-

mains, dynamic interactions between agents and stochasticity in the environment

make it impossible to know what the correct actions are. Unsupervised learning

occurs when an agent is simply put in an environment and learns patterns from

its inputs and observations without receiving any explicit feedback. A common

example of unsupervised learning is clustering: detecting potentially useful or re-

lated clusters from a set of input examples [33]. Reward based learning is often

called “semi-supervised” learning: there is no explicit target function, but there

are rewards which provide feedback for actions taken. In this work we will focus

on reward-based learning methods, namely reinforcement learning and evolution-

ary algorithms. In particular, we focus on utilizing these semi-supervised learning

methods within a multiagent system setting. A comprehensive list of single and

multiagent reinforcement learning algorithms can be found in [7, 35,42].

2.3.1 Reinforcement Learning

Within the field of machine learning, reinforcement learning can be considered a

computational approach to understanding and automating goal-directed learning

and decision making [35]. Reinforcement learners observe the state of the environ-

ment and attempt to take actions that maximize their expected future reward. In

this work, an agent’s environment consists of the world and all other agents and

the problem is represented as a four-tuple MDP . A reinforcement learning prob-

13

lem consists of at least one agent and an environment. A reinforcement learning

agent has four key elements including a policy, reward function, value function,

and optionally an environmental model [35].

An agent’s policy defines the way the agent behaves at any given time [35],

it can be thought of as the agent’s controller. This controller maps the agent’s

perceived environmental state to the action it takes in that state. These policies

are initialized in an arbitrary manner, and adjusted over time as the agent learns.

Each agent’s policies are updated via the agent’s reward and value function.

An agent’s reward function reflects the agent’s goal in a reinforcement learning

problem [35]. The reward function provides an agent with a learning signal for

actions taken. In general, the learning signal is positive if the agent’s actions were

beneficial to its goal, and negative if the actions were detrimental to the agent’s

goal. The rewards an agent receives are frequently coupled with a value function

in order to update the agent’s policy (controller).

A reinforcement learning agent uses some form of a value function in order

to update its policy based upon the reward it receives. There are many forms of

value updates in reinforcement learning, depending upon the domain. Here, we will

introduce one of the most common forms of value functions known as a Q-function.

At every episode an agent takes an action and then receives a reward evaluating

that action. Agents select the actions corresponding to the highest Q-value with

probability 1 � ε, and chooses a random action with probability ε. The constant

ε is an exploration rate. After taking action a and receiving reward R an agent

updates its Q table (which contains its estimate of the value for taking action a in

14

Algorithm 1: This is an algorithm for Q-learning reinforcement algorithm.
Here, agents observe their environmental state s and select an action a based
upon their current policy. They then receive a reward R, which is used to
update the policy.

- Agent has A actions
- Agent has a Q-table with Qps, aq for all possible state-action pairs (s,a)
for Run Runmax do

for Episode Episodemax do
for t tmax do

- Agent makes an ε-greedy action selection
- Agent receives reward Rpsq and updates Q-table

Qps, aq Ð Qps, aq � α pRpsq �Qps, aq � γmaxQps1, a1qq
- Agent observes new environmental state s1

end
end

end

state s [35]) via the Q-update function as follows (Algorithm 1):

Q1ps, aq � Qps, aq � α pRpsq �Qps, aq � γmaxQps1, a1qq (2.1)

where,

• Q1ps, aq is the updated Q-value for taking action a in state s at time t

• Qps, aq is the current Q-value for taking action a in state s at time t

• maxa1Qps1, a1q is the maximum possible Q-value associated with taking action

a1 in state s1 at time t� 1

• Rpsq is the reward received for the agent being in state s at time t

• α ε t0, 1u is the learning rate

15

• γ ε t0, 1u is the discount factor

Each of the Qps, aq values provides an agent with a measure of the amount of

reward it can expect to achieve over time for taking action a in state s. The learning

rate α controls how quickly an agent learns. If α is set low, new rewards will not

impact the agents’ Qps, aq values as quickly, resulting in slower learning and slower

changes in behavior. This is useful in domains where the environment changes

slowly over time. When the α parameter is set high, learning occurs rapidly,

pushing the Qps, aq values to change quickly with respect to rewards received.

This is very useful in domains where the environment is changing rapidly, and

the agents policy needs to change accordingly. The discount factor “γ” on the

other hand impacts how far ahead an agent looks when considering its actions. A

discount factor of γ � 0 will consider only the immediate reward obtainable from

taking an action a in the current state s. A higher discount factor causes an agent

to consider the down-stream effects of its actions, how the action it takes in the

current state s will impact the cumulative reward it receives in the future.

2.3.2 Neural Networks

Neural networks (NN) have been used in many applications including: control

problems, classification, function approximation, and nonlinear signal-processing [8,

15, 18, 25, 27]. They are useful tools for representing functions and can represent

both discontinuous and continuous functions to arbitrary accuracy [1, 8, 9, 15].

Neural networks are biologically inspired mathematical tools modeled after the

16

function of the brain. Each neural network maps a set of inputs to a set of out-

puts. A neural network consists of a set of input nodes, output nodes, and hidden

layer nodes which are connected with weights assigned to each connection (Fig-

ure 2.1). The weighted sum of the connections mapped from the inputs through

the nodes of the neural network generate a set of outputs (where each node it-

self has an activation function, which is typically nonlinear) [13]. There are many

ways of training a neural network including supervised, unsupervised, and reward

based methods. A neural network controller utilizing supervised learning has a

“teacher” that knows the correct mapping from inputs to outputs, and provides

the neural network with constructive feedback on actions taken, improving the

neural networks performance over time. Using unsupervised learning with a neu-

ral network attempts to use the neural network to cluster a set of unlabeled data

using its similarities. Reward based learning with neural networks on the other

hand utilize reward feedback based upon actions taken in order to update the

neural networks [1, 9, 15, 25, 27]. In this work, each rover uses 1-hidden layer feed

forward neural network as their control policies.

2.3.3 Evolutionary Algorithms

Evolutionary algorithms are biologically-inspired algorithms based upon “the sur-

vival of the fittest”. These algorithms have been successfully applied to a wide

range of problems including optimizing component design, optimizing functions in

large search spaces, and developing control policies for individual agents in multi-

17

Input Layer

Hiden Layer

Output Layer

Figure 2.1: Network diagram for a two layer feed forward Neural Network (NN).
The input, hidden and output variables are represented by nodes, and the weight
parameters are represented by links between the nodes. In feed forward NN the
information flow through the network from input to hidden and then to output
layer.

agent systems [1, 14,26].

These algorithms evolve a set of policies called a population. Over time they are

evolved in a way that they optimize a given evaluation function. The population is

evolved over time via mutation and/or crossover, then the best policies are selected

by how well they perform (evaluation). At each time step, these algorithms select

the best policy of their population 100� ε percent of the time and select a random

member ε percent of the time (ε - greedy selection) and alter it via mutation

and/or crossover. Then, they compare the quality of all of their policies, including

the newly created policy and remove the worst policy with some probability [33].

18

Over time, this evolutionary process yields to policies that aim to maximize the

agent’s evaluation function.

Algorithm 2: General Evolutionary algorithm, where this algorithm starts
with a populations of policies and mutate them over time in an attempt to
optimize a evaluation function.

for Run Runmax do
- Initialize policies (P)
for Episode Episodemax do

- Select a policy (Pi) using ε�greedy selection
- Randomly modify policy parameters (Pi

1

)
for t tmax do

Use policy Pi
1

end

- Evaluate performance of policy Pi
1

- Re-insert Pi
1

into the pool
- Remove the worst policy from pool

end

end

In this work, each policy (Pi) is controlled by the agent, which maps the agent’s

state (S) to it actions (a). Also every agent has a pool of policies (neural network),

where each one has a rank associated with it. The rank of every policy is its

evaluation of that policy toward maximizing its evaluation function. In our work,

the agent selects a policy using ε - greedy selection algorithm (base on policy’s

rank) and duplicates it. Where ε-greedy selection is when we select the best policy

90% of the time and select random policy 10% of the time. Then, the selected

policy is mutated, and used for a certain number of time steps (tmax). Finally

the selected policy is evaluated based by evaluation function and compared with

the members in the pool of policies, where the worst one is removed form the

19

pool. This algorithm moves the agents toward selecting policies that maximize

their evaluation, thus agents learn which policies are beneficial to increase their

evaluation function.

2.3.4 Neuroevolutionary Algorithms

Neuroevolutionary algorithms are a subset of evolutionary algorithms that evolve

sets of neural network policies. These algorithms evolve a set of policies where a

pool of neural network policies are randomly created. Next a policy is selected

based on an ε- greedy selection mechanism, then the selected neural network is

mutated by adding a random number from cauchy distribution to its’ weights, and

then the quality of it is compared to the rest of the policies and the worst one

is remove from the pool [13, 31]. Neuroevolutionary methods have been shown

to work well in many multiagent domains involving continuous state spaces and

complex agent interactions such as micro aerial vehicle control and the continuous

rover domain used in this work [1, 21, 22].

2.4 Evaluation Functions for Policy Selection

One of the most important decisions that has to be made in neuroevolution and

reinforcement learning is what evaluation function each agent will use to evolve

its set of policies. The first and most direct policy evaluation function is to let

each agent use the global system objective as the agent policy evaluation function.

20

However, in many domains, especially domains involving large numbers of agents,

such a fitness evaluation often leads to slow evolution. This is because each agent

has relatively little impact on its own evaluation. For instance if there were 100

agents and an agent takes an action that improves the system evaluation, it is

likely that some of the 99 other agents will take poor actions at the same time,

and the agent that took a good action will not be able to observe the benefit of its

action.

Next we introduce factoredness and learnability which are two important prop-

erties to consider when selecting policy evaluations.

2.4.1 Factoredness and Learnability

Prior to discussing the agent policy evaluation functions used in this work, we

introduce two separate metrics for determining the quality of a policy evaluation

function. Ideally, a policy evaluation function should provide an agent with two key

pieces of information: 1) How its action impacted the overall system performance,

and 2) How its action impacted the evaluation it received. Feedback on how they

impacted the system performance allows agents to make decisions that are in-line

with the system objective. Providing agents with feedback on how their individual

action impacted the evaluation they received allows agents to change their own

actions in order to benefit both themselves and the system. We formalize the

first property for an agent i, by defining the degree of factoredness (also presented

in [2,39]) between the agent policy evaluation function gi and system objective G

21

at state z, as:

Fgi �

°
z

°
z1 urpgipzq � gipz

1qqpGpzq �Gpz1qqs°
z

°
z1 1

(2.2)

where the states z and z1 only differ in the state of agent i, and urxs is the unit step

function, equal to 1 if x ¡ 0. The numerator keeps track of the number of state

pairs pz, z1q for which the agent policy evaluation function gipzq�gipz
1q and system

objective Gpzq�Gpz1q are aligned (same sign). A high degree of factoredness means

that agents improving their own local policy evaluation function are concurrently

improving the system performance (with respect to the system objective), while

agents harming their local policy evaluation function are also harming system

performance. Next, we define the second property as learnability, which is the

degree to which an agents policy evaluation function gi was impacted by its own

actions as opposed to the actions of other agents. The learnability of a policy

evaluation function gi for agent i, evaluated at z can be quantified as follows:

Lgi �
||gipzq � gipz � zi � z1iq||

||gipzq � gipz1 � z1i � ziq||
(2.3)

where, in the numerator z1 differs from z only in the state of agent i, and in the

denominator the state of all other agents is changed from z to z1. Intuitively,

the learnability provides a ratio between the portion of the agents evaluation that

depended upon its own actions (signal), and portion of its evaluation signal that

depended upon all other agents (noise).

22

2.4.2 Difference Evaluations

One of the policy evaluations that consider as highly factored and highly learnable

is Difference policy evaluation. Consider difference evaluations of the form [39,40]:

Dηpzq � Gpzq �Gpz � zηq (2.4)

where zη is the action of agent η. All the components of z that are affected by

agent η are removed from the system. Intuitively this causes the second term of

the difference evaluation to evaluate the performance of the system without η and

therefore D evaluates the agent’s contribution to the system performance. There

are two advantages to using D: First, because the second term removes a significant

portion of the impact of other agents in the system, it provides an agent with a

“cleaner” signal than G. This benefit has been dubbed “learnability” (agents have

an easier time learning) in previous work [2,39]. Second, because the second term

does not depend on the actions of agent η, any action by agent η that improves

D, also improves G. This term which measures the amount of alignment between

two evaluations has been dubbed “factoredness” in previous work [2, 39].

23

Chapter 3 – The Cooperatively Coupled Rover Domain

Team work is highly necessary in many real world domains including UAV swarms,

search and rescue missions, and exploration [1, 2, 17]. In such domains, teamwork

is necessary to decrease the amount of time it takes to complete tasks and to

improve overall performance. The Continuous Rover Domain is a prime example

of a system where multiple autonomous devices need to coordinate their actions

in order to collectively optimize the system performance. Here a team of rescuers

(rovers) are looking for individuals (Points Of Interest (POIs)) to rescue. Every

POI in this domain has a value associated with it, and an observation radius which

is the maximum distance from which a rover can observe the POI. The goal of these

rovers is to collectively observe as many environmental POIs as possible. In such

domains, it is impractical for an individual rover to single-handedly search the

entire domain. Instead, the rovers must coordinate in order to divide up coverage

areas (different rovers search different portions of the domain) in order to maximize

the number of POIs found and to minimize the amount of time it takes to find

the POIs. This thesis investigates the interactions and coordination between the

rovers, specifically when multiple rovers are require to observe each POI. This

requirement that multiple rovers are required to observe each POI leads to the

Cooperatively Coupled Rover Domain used in this work, which is an extension of

the Continuous Rover Domain used in [1].

24

In this section we discuss the Cooperatively Coupled Rover Domain that has

been adapted and modified from the original Continuous Rover Domain [1]. This

domain contains a set of rovers (agents) that are able to move around in a two

dimensional plane to observe Points of Interest (POIs). Each of these POIs has

a value (Vi) assigned to them. The goal of the agents is to form teams and for

the teams to optimize their coverage of environmental POIs. In the cooperatively

coupled rover domain, each agent has two types of sensors (POIs, Rover) and

a total of 8 sensors (four of each type) similar to the original continuous rover

domain. These sensors represents the density of either POIs or other rovers in this

domain. In the cooperatively coupled rover domain, to earn credit for observing a

given POI, a team of M rovers must observe it together (if fewer than M rovers

observe the POI or the M rovers are not in the observation distance no credit is

given). The teams are implicitly formed and are defined as being the closest M

rovers to a given POI. The goal of agents in this domain is for rovers to collectively

position themselves such that teams of M rovers are optimally observing each POI.

3.1 Agent State Representation

In the cooperatively coupled rover domain, each agent has two types of sensors

(POIs, Rover) and a total of 8 sensors (four of each type). Each rovers’ point of

view is divided into four quadrants so that each quadrant contains both a POI

and a rover sensor. The orientation of these quadrants are based upon the rovers

heading. The quadrant axes are oriented according to the rover’s current heading.

25

Figure 3.1: The figure shows how rovers observe their environment. Each rover
has a set of 8 sensors (4 POI sensors and 4 rover sensors). The sensors provide
coverage over 4 quadrants, where each quadrant contains one POI sensor and one
rover sensor (Chapter 3).

At every given time t, each of the sensors return a density of POIs or rovers

(respectively) in their quadrant. The value of this density is the sum of the values

of each of the POIs or rovers divided by their Euclidean distance from the sensor.

This yields the POI and rover density values for each quadrant (Equations 3.1 and

3.2, respectively):

s1,q,η,t �
¸

iPPOI

Vi
δpLi, Lη,tq

(3.1)

26

s2,q,η,t �
¸

ηPRover

1

δpLη1 , Lη,tq
(3.2)

where s1,q,η,t and s2,q,η,t are the POI and rover sensor readings respectively for

quadrant q at time step t for agent η, δpx, yq is a Euclidean norm function, Li is

the location of POI i, and Lη,t is the location of rover η at time t. The variables

s1,q,η,t and s2,q,η,t represent the system state in this domain.

3.2 Agent Action Representation

Every rover (agent) in this domain moves around in a continuous two-dimensional

domain based upon its calculated actions. The actions are chosen by the agent’s

current policy, generated using the neuroevolutionary algorithm described in Sec-

tion 4.1. The movement of each rover is governed by the neuroevolutionary algo-

rithm as follows:

dx � dpO1 � 0.5q (3.3)

dy � dpO2 � 0.5q (3.4)

where d{2 is the maximum distance a rover can move in a given direction during

a single time step (10 units), O1 and O2 are the x and y outputs from the agents

current neural network policy, and dx and dy are the action selections of the agent.

27

Figure 3.2: This figure represents the rover heading. At each time step the rover
has two continuous output (dy, dx) giving the magnitude of the motion in two-
dimensional plane relative to the rove’s orientation.

3.3 System Objective for the Cooperatively Coupled Rover Domain

In cooperatively coupled rover domain, the system objective is to maximize the

POI coverage where a team of rovers are required to observe a POI. In this work,

although we have three different policy evaluation such as Global, Difference, and

Random. We used system objective (Global) to grade agents’ policy. The system

objective of the rovers in the standard cooperatively coupled rover domain is to

optimize the coverage of the POIs according to the following:

Gpzq �
¸
t

¸
iPPOI

M̧

m�1

Vi
δmi,t

(3.5)

where G is the system objective when M number of rovers are required to observe

ith POI, Vi is the value of the POI, δmi,t is the distance between the ith POI and the

28

mth closest rover to it at time step t. Intuitively, the system objective is maximized

when the rovers collectively observe all of the POIs in an optimal manner (rovers

observe each POI as closely as possible).

29

Chapter 4 – Agents and Coordination

This section describes our algorithms, policy evaluation functions, and how we

implement those in the cooperatively coupled rover domain. In this work, each

agent has a neuroevolutionary as a learner that evolved a pool of neural network

policies, where the policies are evaluated via agent policy evaluation functions. We

used two different policy evaluation functions to rank the policies, each of which

is described in section 4.4.

4.1 Rover Policies

In domains with continuous action and state spaces like the cooperatively coupled

rover domain, neuroevolutionary algorithms have been shown to be effective [1].

In this work, agents’ policy is set by a neuroevolutionary learner. Here, each agent

evolves its policy using a pool of 10 neural network policies. Each of these neural

networks had 10 hidden units, 8 inputs, 2 outputs (input and output are bounded

[0,1]), and utilized sigmoid activation functions. Algorithm 3 shows the process

that we used to select, mutate, evaluate, and rank our policies. The algorithm is a

population based search with the IDEAS explicit coordination mechanism added

into it (Algorithm 3). In our algorithm we initialize rank of all of the policies to

zero, used ε-greedy to select the next policy, 5000 episode (Tmax), 15 time step

30

(tmax), 0.3 as mutation constant (ζ), 0.1 as learning rate (α).

Each agent initially began with a random policy selected from its pool of net-

works (N), and set to our current network (Ni), then we mutated Ni with probabil-

ity of (1 - ζ) or kept it the same with probability of ζ. Mutating on every iteration

results in shifting the population too dramatically to effectively search the policy

space, and the neural network weights are updated using a Cauchy distribution

centered at 0.3. Then we control our rover base on their Ni for 15 time steps, and

at the end we equate the rank of the current network to sum of the previous steps

rank, multiply by the (1 - learning rate), and the reward that rover receives base

on the objective function multiply by learning rate. At the end of last step we rank

the Ni and replace it with the worst one in population if it ranked lower. Then

we select the next policy base on ε-greedy, and we repeat Mutation, Control, and

Ranking process.

4.2 IDEAS for Explicit Coordination

We now introduce an agent’s IDEAS. In this domain, an agent’s IDEAS includes

the value of the POI that the agent is currently headed toward along with its

Euclidian distance to that POI. This information is explicitly broadcast between

agents within the system, allowing the agents to effectively “know” what other

agents plan to do in the following time step so they can coordinate and react

accordingly. When agents share information about what they intend to do, prior

to actually taking any actions it can lead to better coordination and improved

31

Algorithm 3: This algorithm presents the process of evolving policies. In
this algorithm ε is exploration rate, ζ is mutation rate, α is learning rate and
R is the reward that each agent gets from its evaluation function.

Initialize N networks at T � 0
for T Tmax do

1. Select a policy Ni from population

With probability ε: Ni Ð Nrandom

With probability 1 � ε: Ni Ð Nbest

2. Mutate the selected policy Ni:

with probability ζ: Mutate Ni

with probability 1 � ζ: Do Not Mutate Ni

3. Control robot with Ni for next episode

for t tmax do
if IDEAS then

Add IDEAS (Algorithm 2)
end
else

Update State
end
Simulate
Take an Action
Rank Ð p1� αq �Rank � α �R

end

4. Ranking the Ni base on performance

Ni Rank Ð Rank

5. Replace Nworst with Ni

end

32

performance. This is because agents are able to actively account for each others’

actions, without losing any time (agents are able to gain the insight from a future

time step, without losing the time associated with taking that step). In order

to determine an agents’ IDEAS, the agent observes its environment and based

upon what it observes it selects its current intended action (the agent observes the

environmental state S and feeds it into its current policy to get out its intended

action (~a � dx, dy ¡). The agent then uses that “intended” action to predict it

next move. In particular, the agent predicts the POI it will be closest to next time

step and calculates its predicted distance to that POI. Each agent calculates this

piece of information and all agents passively share this piece of information with

each other. This piece of information is denoted as sη,c:

sη,c �
VCPOI

δpLCPOI
, Lηq

(4.1)

where sη,c is the portion of agent η’s state vector that contains its predicted distance

from VCPOI
, which is the value of the closest POI to agent η, δpLCPOI

, Lηq is the

Euclidean norm function, LCPOI
is the location of the closest POI to rover η, and

Lη is the predicted location of agent η at time t�1 based upon its current state and

predicted action. This information represents the value of the POI that is predicted

to be closest to agent η at time step t�1, divided by the predicted distance between

the POI and agent η at time step t � 1. This piece of information is what each

agent explicitly shares via passive broadcast within each other in system. Each

agent receives the set of all sη,c values tsu. The next section discusses how this

33

particular set of information is utilized by other agents.

4.3 IDEAS: Modified State

Each agent receives the set of tsu values (described in previous section) and uses

them as a scaling factor Ii for their state information (given as).

Ii �

$''&
''%

1 Rover is the closest to the POI

sη,c Rover is not the closest to the POI

(4.2)

We scale them such that if an agent is the closest to a POI, its value of that

POI remains high (scaled by 1.0) and if there are many other rovers closer to the

POI the POIs value is scaled by a number less than 1.0 represented by sη,c. Here,

an agent would interpolate each of the received set of tsu values according to the

equation 4.2. where the values Ii are scaling values between 0 and 1.0 that will be

used to modify the agents current perceived state.

Each agent uses the information of Ii values to modify its perceived environ-

mental state during time step t. Here, the state information would change as

follows:

s1,q,η,t �
¸

iPPOI

IiVi
δpLi, Lη,tq

(4.3)

where s1,q,η,t is a modified version of agent η’s system state information that incor-

porates the IDEAS from other agents (Equation 4.2), q is the quadrant, t is the

time step, and i indexes the POI. Here, the state information is modified such that

34

it reduces the observed value of POIs that are predicted to be heavily observed by

agents and maintains high values for POIs that are not predicted to be observed

heavily. The algorithm used to calculate each agents’ current IDEAS, communi-

cate them to other agents, convert them into scalar values for scaling the state,

and adjust the perceived system state can be found in Algorithm 4.

Algorithm 4: This algorithm represents how IDEAS has been implemented.

Update the states pSq for all agents
for t tmax do

1. Simulate using N 1

2. Observe Next State pS 1q

3. Extract IDEAS from S 1

4. S Ð Update S (Equation 4.3)

end

Now that we introduced agents’ IDEAS and explain how they modify their

state, we explain how we actually implement this in our simulation. In every

simulation, all agents receive state information from their sensors. Then they

run their selected network (Ni) with their perceived states as inputs, to generate

intended actions. Then, based on the intended actions agents update their state

(S 1) to include the IDEAS which were explained in Section 4.2. Then their updated

states are used to generate the action to take.

35

4.4 Policy Evaluation Functions

One of the most important decisions that has to be made in neuroevolution is what

policy evaluation each agent will use to evolve its set of policies. The first and most

direct policy evaluation is to let each agent use the global system objective as the

agent policy evaluation. However, in many domains, especially domains involving

large numbers of agents, such a policy evaluation often leads to slow evolution.

This is because each agent has relatively little impact on its own evaluation. For

instance if there were 100 agents and an agent takes an action that improves the

system evaluation, it is likely that some of the 99 other agents will take poor actions

at the same time, and the agent that took a good action will not be able to observe

the benefit of its action. In this work, agents receiving the system performance G

as its policy evaluation received values according to Equation 3.5.

4.4.1 Global Policy Evaluation Functions

In this thesis we use Global policy evaluations to evaluate the performance of

rovers’ (agents’) policy in cooperatively coupled rover domain. The system objec-

tive of the rovers in the standard cooperatively coupled rover domain is to optimize

the coverage of the POIs according to the following:

Gpzq �
¸
t

¸
iPPOI

M̧

m�1

Vi
δmi,t

where G is the system performance when M number of rovers are required to

36

observe each POI, Vi is the value of each POI, δmi,t is the distance between the ith

POI and the mth closest rover to it at time step t. The value δmi,t can be explain as

follows:

∆i,t � tδpLi, Lη1,tq, δpLi, Lη2,tq . . . δpLi, LηN ,tqu (4.4)

where ∆i,t contains the set of Euclidean norm distances between the ith POI and

the ηth rover at time step t.

δ1i,t � minp∆i,tq (4.5)

δ2i,t � minp∆i,t � tδ1i,tuq (4.6)

δ3i,t � minp∆i,t � tδ1i,tu � tδ2i,tuq (4.7)

where δ1i,t, δ
2
i,t, and δ3i,t are the distance between the ith POI and the closest, second

closest, and third closest rovers respectively to the POI at time step t

4.4.2 Difference Policy Evaluation Functions

In this work, we also utilize difference policy evaluations of the form [1,39]:

Dηpzq � Gpzq �Gpz � zηq (4.8)

37

where zη is the action of agent η. All the components of z that are affected by

agent η are removed from the system. Intuitively this causes the second term of

the difference evaluation to evaluate the performance of the system without η and

therefore D evaluates the agent’s contribution to the system performance. There

are two advantages to using D: First, because the second term removes a significant

portion of the impact of other agents in the system, it provides an agent with a

“cleaner” signal than G. This benefit has been dubbed “learnability” (agents have

an easier time learning) in previous work [2,39]. Second, because the second term

does not depend on the actions of agent η, any action by agent η that improves

D, also improves G. This term which measures the amount of alignment between

two evaluations has been dubbed “factoredness” in previous work [2, 39]. Here,

we derive D for the Cooperatively Coupled Rover Domain where the number of

rovers required to form a team to observe a POI is M � 3. In this case, combining

Equations 3.5 and 4.8 yields the equation for the difference policy evaluations used

in this work:

Dηpzq �
¸
t

¸
iPPOI

M̧

m�1

Vi
δmi,t

�
¸
t

¸
iPPOI

M̧

m�1

Vi

δm�ηi,t

Dηpzq �
¸
t

¸
iPPOI

M̧

m�1

#
Vi
δmi,t

�
Vi

δm�ηi,t

+
(4.9)

where D is the difference evaluation for agent η, M is the number of agents require

to observe the ith POI with the value of Vi, δ
m
i,t is the Euclidean distance from the

mth closest agent to the ith POI, and δm�ηi,t is the Euclidean distance from the nth

38

closest agent to the ith POI where agent m is not η. In this case D is non-zero

in three key situations: 1) when the rover is the closest rover to the ith POI, 2)

when the rover is the second closet rover to the POI, and 3) when the rover is the

third closest rover to POI. In order to compute Dη we need to remove the impact

of agent η from the system and calculate G without it, by replacing agent η in

the calculation with the fourth closest rover to the POI. Had agent η not been

present, the fourth closest agent would have been part of the 3 agent team instead.

Comparing the performance with and without the agent provides solid feedback

in the agents contributions to the system.

4.5 Stigmergy

Stigmergy is another implicit coordination mechanism that is based on indirect

communication between agents within an environment (section 2.2.4). In the coop-

eratively coupled rover domain, stigmergy introduces a change in the environment,

which reduced a POI’s value by 3% each time it was observed by a team of rovers.

Vinew � Violdp1 � ξq (4.10)

where Vinew represents the value of the ith POI after the observation, Viold represents

the value of the POI before change and ξ is the amount that a POI will reduced

by after each observation which is 3%. For instance, in this domain, when a team

of rovers observe a POI, the value of that specific POI changes then all the other

rovers sense that POI with new reduced value after it is observed. The value

39

of each POI will be reinitialized to its starting value at the beginning of each

statistical run. The following algorithm represents how we implement stigmergy

in our approach:

Algorithm 5: This algorithm represents how stigmergy is implemented in
the cooperatively coupled rover domain.

for T Tmax do
Initialize the POIs
for t tmax do

if POIi has been observed then
Vi � Vip1 � ξq

else
Vi

end

end

end

where we initialize a set of POIs at the begining of every episode (T), then if the

ith POI is observed at any given time step t, the value of that POI is reduced by

ξ, which is 3%.

40

Chapter 5 – Experiments and Results

We now apply our approach in both static and dynamic environments (Section 5.1

and 5.6), under various observation distances. These experiments require teams

of 3 rovers to observe a given POI. Requiring teams of 3 rovers to observe each

individual POI adds significant coordination complexity because each rover must

rely upon other rovers’ actions in order to observe a POI. Additionally, by adding

a minimum observation radius for POIs, the complexity of the problem is in-

creased because the rovers must coordinate their actions in order to explore the

environment and find the POIs before they can observe them as a team. These

coordination complexities are why the cooperatively coupled rover domain was se-

lected to test our approach of combining learning based agents with various policy

evaluations, stigmergy, and IDEAS.

In this work, we conducted six separate experiments:

1. Implementing of policy evaluation functions (globalG and differenceD policy

evaluations) for various POI observation distances in the static Domain.

2. Combining of policy evaluation functions and stigmery (implicit coordination

through environmental cues) with various POI observation distances in the

static domain.

3. Implementing of policy evaluation functions and communicating agents’ IDEAS

with various POI observation distances in the static Domain.

41

4. Combining of policy evaluations, stigmergy, and communicating agents’ IDEAS

with various POIs’ observation distances in the static domain.

5. Scaling the domain while rovers are learning with a combination of policy

evaluations, stigmergy, and communicating agents’ IDEAS in the static do-

main. To scale the domain we increased the number of rovers, POIs, and the

over all dimensions of the domain.

6. Extend our approach (policy evaluations, stigmergy and IDEAS) to dynamic

domain.

All the experiments (except the scaling experiments) were run for 20 statistical

runs and 5000 episodes (40 time steps per episode in case of 40 rovers) in the world

that contains 40 rovers and 66 POIs.

5.1 Evaluation Functions for Static Domain

The first set of experiments were conducted in the cooperatively coupled rover

domain with static environmental conditions. This ensured that nothing in the en-

vironment changed except for changes that caused by the actions of agents within

the system. In this case the domain contain 40 rovers and 66 POIs. The location

of POIs were fixed at all times. Rovers are placed in between a high value POI

(value of 10) and 15 low value POIs (value of 3) at the center of the world. We

plot the results on a two-dimensional graph that has system performance (Gpzq)

on vertical axis, and POI observation distance on the horizontal axis. Separate

experiments were conducted for different POI observation radii (the furthest away

42

a rover can be from a POI and still receive credit for observing it, named POI’s ob-

servation radius). These experiments were conducted for various POI observation

radii between 10 and 100 units.

 0

 500

 1000

 1500

 2000

 2500

 3000

 10 20 30 40 50 60 70 80 90 100

Pe
rfo

rm
an

ce
 (G

(z
))

POI Observation Distance

Team Formation in Static Domain

D
G
R

Figure 5.1: Cooperatively coupled rover domain with 40 rovers in a static environ-
ment, where teams of 3 agents are required to observe each POI. Agents using D
outperform all other methods once the observation distance is above 50 units.

In the first experiment we are investigating the ability of agents using policy

evaluation functions to coordinate their actions when team formation is required in

static environment. Here, we require that teams of M � 3 agents must collectively

observe each POI in order for it to count towards the system objective. Hence,

43

agents must learn to coordinate their actions such that the set of agents collectively

optimize the system performance. Agents use evaluation functions including a

global evaluations function (G) and difference evaluations (D). We also evaluate

the performance of agents using random policies to serve as a reference point to

compare the performance of our algorithms. In many real world domains complete

communication is unavailable, so we observed the performance of agents using

evaluation functions under varying communication restrictions (Figure 5.1).

Intuitively, as the observation radius of POIs increases, the overall system per-

formance should increase. As seen in Figure 5.1, the performance of agents using

both G and D improve as the communication radius increases. This is because

more and more information about the system is available to the agents and agents

are able to communicate with additional agents as this radius increases. As the

communication radius approaches 50 units, agents using difference evaluations out-

perform all other approaches. As the observation distance is further increased,

difference evaluations outperform other methods by over 100%. This is because

agents receive a clean learning signal that allows them to coordinate to optimize

both their individual evaluation and the system objective simultaneously. Agents

using global evaluations struggle and even when the communication radius is 100

units, their performance struggles. This is because these agents are still unable to

communicate with all other agents in the system, meaning that they are frequently

coordinating their actions in a suboptimal manner. If the observation distance was

increased to include the entire world, global would outperform agents using random

policies. It is interesting to note that even though the agent-to-agent coordination

44

complexity increases as the observation distance increases, performance is still im-

proved. This is because although the coordination complexity is increased, agents

are able to better align their actions with the system objective instead of a “local”

objective.

5.2 Combining Evaluation Functions and Stigmergy for Static Do-

main

In the next experiment, we examine the behavior of agents using both policy

evaluation functions and stigmergy (both are implicit coordination mechanisms).

Where stigmergy introduces a detectable change in the environment (the value of

POIs decrease by 3% each time they are observed by a team of rovers). Stigmergy

is a method that has been used to improve coordination in many domains including

robot coordination (section 2.2). So we introduce stigmergy to investigate the effect

of stigmergy on the cooperatively coupled rover domain. Here the performance

of agents using a combination of either a Global policy evaluation function and

stigmergy (G+S), Difference policy evaluation function and stigmergy (D+S), or

Random (R) policy evaluation function are compared with the performance of

agents using only policy evaluation functions alone (Global (G) and Difference (D)

policy evaluation presented in figure 5.2).

Here, agents using policy evaluation functions (global, difference) still outper-

form agents using random policy evaluation functions. This is because agents

using a random policy evaluation function are receiving a completely random

45

 0

 500

 1000

 1500

 2000

 2500

 3000

 10 20 30 40 50 60 70 80 90 100

Pe
rfo

rm
an

ce
 (G

(z
))

POI Observation Distance

Team Formation in Static Domain

D
D+S

G
G+S

R

Figure 5.2: Cooperatively coupled rover domain with 40 rovers in a static environ-
ment, where teams of 3 agents are required to observe each POI. Agents using D
outperform all other methods once the observation distance is above 60 units.

learning signal. In these experiments, stigmergy benefited the performance of

agents using global policy evaluation functions for mid range POI observation

radii (r � r40, 90s) because the environmental triggers were able to cue agents

to move towards POIs that had been observed less (essentially encouraging the

rovers to explore the environment more instead of concentrating on a few local

POIs). When the POI observation radius was smaller than 40 or larger than 90,

the agents encountered two specific problems. If the radii were too small (less

46

than 40), agents had a difficult time stumbling across the POIs in general, so the

benefits of stigmergy went unrealized (if rover does not observe POIs, there is no

stigmergetic drop in their value). On the other hand, when the POI radius was

above 90 even with stigmergy, agents using global policy evaluations received too

much noise from other agents on their learning signal and were unable to coordi-

nate their actions in order to improve performance. Agents using difference policy

evaluations performed approximately the same with stigmergy as they did with-

out, in fact, in this case, stigmergy may have harmed performance slightly. This

is because agents were simultaneously using two implicit coordination mechanisms

without any other form of feedback. Here, they may have received a good signal

from one mechanism and a bad signal from the other mechanism. In this case, a

third coordination mechanism would be valuable to serve as the tie breaker. In

another experiment, we add a third coordination mechanism (IDEAS) and indeed

the performance is increased.

5.3 Combining Evaluation Functions and IDEAS for Static Domain

The following experiment was conducted to investigate the effect of combining

policy evaluation functions with explicit coordination (IDEAS) (section 4.2), on

the performance of rovers in the cooperatively coupled rover domain. As shown

in Figure 5.3 communicating IDEAS affect the agents’ that used either global or

difference evaluation (a small amount) and that is because of how the IDEAS

are modifying the agents’ states. By including agents’ IDEAS we are reducing

47

the effect of the POIs that are not in the agent’s effective areas and focusing

on the ones that are in close proximity. In this experiment we see almost the

same behavior as we saw in previous experiment (Evaluation Functions), agents

that used difference evaluation are outperforming the ones that used either global

evaluation or random policy when the observation radius is higher than 50. This

is because difference evaluations allow agents to receive evaluations that increase

both the system evaluation as well as their individual evaluation simultaneously.

 0

 500

 1000

 1500

 2000

 2500

 3000

 10 20 30 40 50 60 70 80 90 100

Pe
rfo

rm
an

ce
 (G

(z
))

POI Observation Distance

Team Formation in Static Domain

D
D+IDEAS

G
G+IDEAS

R

Figure 5.3: Cooperatively coupled rover domain with 40 rovers in a static environ-
ment, where teams of 3 agents are required to observe each POI. Agents using D
outperform all other methods once the observation distance is above 50 units.

48

In this experiment, agents using random policy evaluations continue performing

poorly. Agents using both global policy evaluations and difference policy evalua-

tions continue to perform approximately the same with IDEAS as they did without

IDEAS. This is because although the IDEAS alter individual agent states, empha-

sizing POIs that are in close proximity to the rovers, it does little to encourage

overall exploration of the domain. Instead, agents using IDEAS are encouraged

to head towards the POI that is closest to them. In order to address this issue,

another coordination mechanism is needed and in fact stigmergy (which promotes

broader exploration) is used in conjunction with ideas and policy evaluations in

other experiments and results in improved performance over any method individ-

ually.

5.4 Combining Evaluation Functions, Stigmergy, and IDEAS for

Static Domain

Although agents using implicit coordination via policy evaluations were able to

achieve good performance, we also tested the performance of agents using a com-

bination of coordination mechanisms in the static cooperatively coupled rover do-

main (Figure 5.4). Here, agents used policy evaluations (G and D, respectively),

stigmergy, and the IDEAS coordination mechanism. In this case stigmergy intro-

duces a change in the environment, the values of POIs decrease by 3% each time

they are observed by a team of rovers. Experiments were also conducted to test

the performance of policy evaluations with stigmergy as well as policy evaluations

49

with IDEAS (Figures 5.2 and 5.3).

 0

 500

 1000

 1500

 2000

 2500

 3000

 10 20 30 40 50 60 70 80 90 100

Pe
rfo

rm
an

ce
 (G

(z
))

POI Observation Distance

Team Formation in Static Domain

D
D+S+IDEAS

G
G+S+IDEAS

R

Figure 5.4: Cooperatively coupled rover domain with 40 rovers in a static envi-
ronment, where teams of 3 agents are required to observe each POI. Agents using
D � S � IDEAS outperform all other methods once the observation distance is
above 55 units.

The results in Figure 5.4 show that combining implicit (difference policy eval-

uations (D) and stigmergy) and explicit (IDEAS) coordination mechanisms in the

CCRD outperform other methods by as much as 25%. The reason that this com-

bination works is because 1) agents using difference policy evaluations receive a

quality learning signal that promotes system-centric coordination, 2) stigmergy

provides an environmental cue to agents that emphasizes under observed POIs,

50

and 3) IDEAS provide rovers with an effective “look ahead” of other rovers ac-

tions allowing them to act accordingly (agents may decide to pursue areas that are

less heavily trafficked, or to attempt to form a team with another agents).

5.5 Scalability of Evaluation Functions, Stigmergy, and IDEAS in

The Static Domain

In this experiment we investigated the scalability of our approach in which rovers

are using a combination of policy evaluations, stigmergy, and Intended Destination

Enhanced Artificial State (IDEAS). Here, we scale up the cooperatively coupled

rover domain (50 rovers and 80 POIs). The number of rovers (x-axis), number of

POIs, and domain dimensions were all scaled up proportionally. Teams of M � 3

are still required to observe each POI as was the case in all previous experiments.

Intuitively, as the number of rovers increases in this domain, the rover-to-rover co-

ordination complexity increases exponentially. This increased coordination com-

plexity makes this experiment necessary to demonstrate the effectiveness of our

approach (combining both implicit and explicit coordination) at improving coor-

dination in multiagent systems.

In these experiments, the performance of agents using random policy evalu-

ation functions increases slightly as the system size increases. This is because

more agents flood the system and when they all behave randomly, they end up

stumbling across more POIs. Similarly, agents using global and difference policy

evaluations both have improving performance as the number of rovers within the

51

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 10 15 20 25 30 35 40 45 50

Pe
rfo

rm
an

ce
 (G

(z
))

Number of Agents

Team Formation in Static Domain

D
D+S+IDEAS

G
G+S+IDEAS

R

Figure 5.5: Investigating the scalability of evaluation functions (G and D), com-
bination of evaluation function, Stigmergy and IDEAS (D � S � IDEAS and
G� S � IDEAS) in cooperatively coupled rover domain and static environment.
Agents using D � S � IDEAS outperform all other methods almost every where.

system increases. This improvement is less dramatic for agents using Global pol-

icy evaluation (G) than for agents using Difference evaluation (D) (agents using

D have a sharper increase in learning compared to other methods with increas-

ing scale). This is because the improvement with agents using G is primarily an

artifact of the scaling (similar to random agents), more agents exploring stumble

across more POIs. Agents using G do better than random agents because they

are intentional in their wandering, but they still perform much worse than agents

52

using D. This is because they still have a lot of noise on their learning signal which

causes them to struggle with coordination (coordination gets more and more dif-

ficult for agents using G as scaling increases). Agents using D outperform most

other methods with scaling, and agents using our approach (D � S � IDEAS)

perform even better. This is because our approach couples the benefits of three

different coordination mechanisms, each of which was designed to improve coordi-

nation in multiagent systems. Additionally, the benefits of these three coordination

mechanisms are mutually beneficial. Agent-specific policy evaluation functions (D)

encourage agents to collaborate to improve the system objective, stigmergy encour-

ages exploration by reducing the value of areas that have been heavily explored,

and IDEAS encourages agents to focus on particular environmental POIs.

5.6 Extension to Dynamic Domain

Now that we have demonstrated the benefits of combining implicit and explicit co-

ordination mechanisms, we want to extend this one step further by demonstrating

the robustness of such an approach. In these experiments, agents in the cooper-

atively coupled rover domain (with 3 rover teams) have a dynamic environment,

where the location and values of POIs change every episode. Dynamically chang-

ing the environment each learning episode increases learning difficulty and makes

it harder for rovers to coordinate their policies.

As seen in Figure 5.6, agents using global policy evaluations (both with and

without additional coordination mechanisms such as stigmergy and IDEAS) per-

53

 0

 500

 1000

 1500

 2000

 2500

 3000

 10 20 30 40 50 60 70 80 90 100

Pe
rfo

rm
an

ce
 (G

(z
))

POI Observation Distance

Team Formation in Dynamic Domain

D
D+S+IDEAS

G
G+S+IDEAS

R

Figure 5.6: Cooperatively coupled rover domain with 40 rovers in a dynamic envi-
ronment, where teams of 3 agents are needed to observe each POI. As seen, agents
using D�S�IDEAS outperform all other methods once the observation distance
is above 60 units.

form approximately 50% better than they did in the static cooperatively coupled

rover domain. This is because the agents are effectively learning policies that

randomly wander and when the POIs are randomly placed throughout the envi-

ronment every episode, so over a number of episodes, they end up running across

more POIs on average. However, they still perform poorly compared to agents us-

ing difference policy evaluations. This is because difference policy evaluations are

able to account for the “randomness” of the environment and design agent policies

54

that compensate for dynamic environmental factors. Agents using difference pol-

icy evaluations coupled with stigmergy and IDEAS outperform agents using only

difference policy evaluations by approximately 25% under different observation

restrictions, and they outperform all other methods by as much as 60%.

5.7 Analysis of Results

In these experiments, we empirically tested the performance of a set of learning

agents using different implicit and explicit coordination mechanisms in both static

and dynamic environmental settings. In particular, we tested the impact of three

individual coordination methods on the overall system performance, as well as

an amalgamation of all three. As seen from the results, combining different im-

plicit and explicit coordination mechanisms can be either beneficial or harmful to

system performance. The key is to select a set of coordination mechanisms that

are mutually beneficial to the overall system performance. In these experiments,

we used stigmergy, policy evaluation functions, and our own explicit coordination

mechanism Intended Destination Enhanced Artificial State (IDEAS). In all exper-

iments, learning agents utilized policy evaluation functions as a base coordination

mechanism which, this was required for learning, and was then tested with and

without additional coordination mechanisms.

As seen in Figure 5.1 it is clear to see that the selection of policy evaluation

function can dramatically impact the performance. Although coupling the policy

evaluations implicitly encourages coordination, it does not guarantee perfect coor-

55

dination. As seen by the rovers using global policy evaluations G receive feedback

that is coupled to all other agents, unfortunately it is very noisy with respect to

the actions of other agents. This makes it very difficult for agents to learn because

they cannot necessarily distinguish their own impact on the system performance

(good or bad) from the movement of all other agents. In this case, G ends up

being a fairly noisy coordination mechanism. An alternative to this is to use dif-

ference policy evaluation functions D, where these policy evaluations address the

noise issues associated with G. Here, the agents receive a signal that is representa-

tive of their individual contribution on the system performance. This removes the

noise on the agents learning signal and results in better coordination than using

G alone. Although the performance of agents using policy evaluations was good

by itself, we wanted to see how additional coordination mechanisms would impact

this performance. In particular, we wanted to determine whether or not it would

be possible to incorporate additional coordination mechanisms in conjunction with

policy evaluations in such a way that they improve system performance. In order

to test this, we tested various combinations of adding stigmergy and IDEAS to

agents using policy evaluation functions.

It would seem that if one coordination mechanism is “good”, then two coordi-

nation mechanisms would be better. However, our next two sets of results (Figures

5.2 and 5.3) suggest otherwise. They suggest that combining different coordina-

tion mechanisms can result in worse coordination than either method individually.

This occurs because when two coordination mechanisms have conflicting views

about what actions the agent should take, the agent ends up attempting to strike

56

a balance between the recommended actions of each mechanism and can end up

taking actions that impede performance. These results clearly show that simply

combining multiple coordination mechanisms together will not necessarily result in

improved performance. Instead, coordination mechanisms should be intelligently

selected based upon their compatibilities.

In these experiments, combining stigmergy with policy evaluations led to de-

creased performance under highly moderate amounts of observability because it

encouraged agents to scout out the rest of the environment (which coincided with

what the global policy evaluations were encouraging them to do). On the other

hand, with large observation radii the there was simply too much noise on the

global agents learning signal which caused the action recommendations from both

coordination mechanisms to conflict, resulting in worse performance. A similar re-

sult occurred when agents were using policy evaluations and IDEAS. Over different

ranges of observability, the two coordination methods frequently had conflicting

action recommendations, resulting in worse performance than either method com-

bined. In order to address this, we combined policy evaluation functions with

stigmergy and IDEAS concurrently in order to improve coordination. This combi-

nation was particularly effective because when any two coordination mechanisms

disagreed on their action recommendation, the third coordination mechanism was

able to serve as a “tie breaker”. When the majority of the coordination functions

agreed upon an action, it turned out to be more likely to be beneficial to the system

performance.

57

Chapter 6 – Conclusion

Coordinating the actions of disparate agents such that they collectively complete a

complex task is a key problem that must be addressed in order to advance the field

of multiagent systems. Although many implicit and explicit mechanisms for solv-

ing such coordination problems exist, they are frequently unable to fully address

the coordination issues involved due to limited observation and communication

restrictions. In order to improve performance of these methods, we selected im-

plicit and explicit coordination mechanisms whose benefits were complementary

under limited observation and communication restrictions. In particular, we uti-

lized a combination of two implicit coordination mechanisms policy evaluations and

stigmergy and one novel explicit coordination mechanism, IDEAS, in the Coop-

eratively Coupled Rover Domain under limited observability. Overall, combining

evaluation functions, stigmergy, and IDEAS coordination mechanisms resulted in

up to 25% improved performance over other approaches.

Combining the benefits of these coordination mechanisms enabled improved

performance under varying observation restrictions because the mechanisms were

complementary. Coupling policy evaluations enables agents to attempt to work

together as a collective unit, what is good for an individual is good for the team.

However, under limited observability, agents receive limited information and their

policy evaluations become less reflective of the overall team performance and in-

58

stead emphasize the performance in their local region. This is addressed by allow-

ing agents to passively communicate their IDEAS (explicit coordination), which

allows agents in different areas to implicitly “skip” information across the system

to each other, improving their ability to globally coordinate their actions (agents

may effectively coordinate through interacting with other agents, though they may

never interact directly). Finally, stigmergy provides an environmental que that im-

pacts agents locally in a way that has global repercussions. As POIs were observed,

their values decreased. This means that if a POI has been heavily observed in the

past, although there are currently no rovers near it, as a new rover comes across

it they will know to look elsewhere for a higher value POI, effectively encouraging

the rovers to disperse and search other areas of the domain.

Although we used specific coordination mechanisms, there are undoubtably

more combinations of implicit and explicit coordination mechanisms that will im-

prove performance in many multiagent system domains. In general, implicit coor-

dination mechanisms rely heavily upon agents’ observation of the environment and

tend to be limited by observation restrictions, while explicit coordination mecha-

nisms rely heavily upon direct agent-to-agent information sharing and negotiation

and are typically limited by communication restrictions. In most real-world multi-

agent system domains both observation and communication restrictions exist and

when they do, a combination of implicit and explicit coordination mechanisms will

likely be advantageous over either method individually.

This work showed that combining explicit and implicit coordination mecha-

nisms has the potential to be beneficial or harmful to the overall system perfor-

59

mance. In order to improve system performance through combining such coordi-

nation mechanisms, the mechanisms used must be carefully selected such that they

are compatible. This work laid initial groundwork on the feasibility and benefit

of combining implicit and explicit mechanisms. Future work will need to define

ways of classifying coordination mechanisms in order to determine their compati-

bility. Such work needs to address the following problem: Given the complete set

of coordination mechanisms that exists throughout the literature, how to select

compatible subsets of these mechanisms that can work well together and improve

performance. Ideally, this work would define metrics for classifying coordination

mechanisms as well as specific means for using these metrics to: 1) select useful

combinations of existing coordination mechanisms, or 2) design novel coordina-

tion mechanisms that optimize performance with respect to these criteria. These

extensions would help advancements in coordination techniques within the multi

agent community at large.

60

Bibliography

[1] Adrian Agogino and K. Tumer. Efficient evaluation functions for evolving
coordination. Evolutionary Computation, 16(2):257–288, 2008.

[2] Adrian Agogino and Kagan Tumer. Multi agent reward analysis for learning
in noisy domains. In Proceedings of the Fourth International Joint Confer-
ence on Autonomous Agents and Multi-Agent Systems, pages 81–88, Utrecht,
Netherlands, July 2005.

[3] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer,
2007.

[4] Gregory Bonnet and Catherine Tessier. Collaboration among a satellite
swarm. Proceedings of the 6th international joint conference on autonomous
agents and multiagent systems, page 1585, 2007.

[5] Gregory Bonnet and Catherine Tessier. Coordination despite constrained com-
munications: a satellite constellation case. 3rd National Conference on Control
Architectures of Robots, pages 89–100, 2008.

[6] Sylvain Bouvert, Michel Lemaitre, Helene Fargier, and Jermoe Lang. Allo-
cation of indivisible goods: A general model and some complexity results.
Proceedings of the 4th International Conference on Autonomous Agents and
Multiagent Systems, 2005.

[7] Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive
survey of multi-agent reinforcement learning. IEEE Transactions on Systems,
Man, and Cybernetics, Part C - Applications and Reviews, (156-172), 2008.

[8] Tianping Chen and Robert Chen. Universal approximation to nonlinear opera-
tors by neural networks with arbitrary activation functions and its application
to dynamical systems, 1995.

[9] Mitch Colby, Ehsan Nasroullahi, and Kagan Tumer. Optimizing ballast design
of wave energy converters using evolutionary algorithms. In GECCO’11, pages
1739–1746, July 2011.

61

[10] Sylvain Damiani, Gerard Verfaillie, and Marie Charmeau. An earth watch-
ing satellite constellation: How to manage a team of watching agents with
limited communications. Proceedings of the 4th International Conference on
Autonomous Agents and Multiagent Systems, pages 455–462, 2005.

[11] Paul E. Dunne, Michael Wooldridge, and Michael Laurence. The complexity
of contract negotiation. Artificial Intelligence, pages 23–46, 2005.

[12] Edmund H. Durfee. Distributed Problem Solving and Planning. Springer-
Verlag New York, Inc, 2001.

[13] Dario Floreano, Peter Dürr, and Claudio Mattiussi. Neuroevolution: from
architectures to learning. Evolutionary Intelligence, 1(1):47–62, 2008.

[14] Al Globus, Greg Hornby, Derek Linden, and Jason Lohn. Automated antenna
design with evolutionary algorithms. AAIA Space 2006 Conference, 2006.

[15] Uli Grasemann, Daniel Stronger, and Peter Stone. A neural network-based
approach to robot motion control. In Ubbo Visser, Fernando Ribeiro, Takeshi
Ohashi, and Frank Dellaert, editors, RoboCup-2007: Robot Soccer World Cup
XI, volume 5001 of Lecture Notes in Artificial Intelligence, pages 480–87.
Springer Verlag, Berlin, 2008.

[16] Karuna Hadeli, Paul Valckenaers, Constantin B. Zamfirescu, Hendrik Van
Brussel, Bart Saint Germain, Tom Holvoet, and Elke Steegmans. Self-
organising in multi-agent coordination and control using stigmergy. In Engi-
neering Self-Organising Systems, pages 105–123, 2003.

[17] Bryan Horling and Victor Lesser. A survey of multi-agent organizational
paradigms. In The Knowledge Engineering Review, pages 281–316. Cambridge
University Press, 2005.

[18] J.L. Hudson, M. Kube, R.A. Adomaitis, George I. Kevrekidis, Alan Lapedes,
and Robert Farbar. Nonlinear signal processing using neural networks: Pre-
diction and system modeling. In Los Alamos National Laboratory Theoretical
Division, pages 2075–2081, July 1987.

[19] Li Jiang and Da you Liu. A survey of multi-agent coordination. In IC-AI,
pages 65–71, 2006.

62

[20] Chris Jones and Maja J. Mataric. Adaptive division of labor in large-scale
multi-robot systems. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS-03), pages 1969–1974, Las Vegas, NV, July 2003.

[21] Matt Knudson and Kagan Tumer. Coevolution of heterogeneous multi-robot
teams. In Proceedings of the Genetic and Evolutionary Computation Confer-
ence, pages 27–134, Portland, OR, July 2010.

[22] Matt Knudson and Kagan Tumer. Adaptive navigation for autonomous
robots. Robotics and Autonomous Systems, pages 410–420, June 2011.

[23] Sarit Kraus. Negotiation and cooperation in multi-agent environments. Arti-
ficial Intelligence, 1997.

[24] Piotr Krysta, Tomasz Michalak, Tuomas Sandholm, and Michael Wooldridge.
Combinatorial auctions with externalities. 9th International Conference on
Autonomous Agents and Multiagent Systems, pages 1471–1472, May 2010.

[25] Narendra KS and Parthasarathy K. Identification and control of dynamical
systems using neural networks. IEEE Transactions on Neural Networks, pages
4–27, March 1990.

[26] Rainer Leupers and Fabian David. A uniform optimization technique for offset
assignment problems. In 11th Int. symp. on system synthesis (ISSS), pages
3–8, 1998.

[27] Peter X. Liu, Ming J. Zuo, and Max Q.-H. Meng. Using neural network
function approximation for optimal design of continuous-state parallel-series
systems. Computers & Operations research, 30:339–352, July 2001.

[28] Ndedi Monekosso, Paolo Remagnino, and Adam Szarowicz. An improved q-
learning algorithm using synthetic pheromones. Lecture Notes in Computer
Science, 2296, 2001.

[29] Ranjit Nair, Milind Tambe, and Stacy Marsella. Role allocation and reallo-
cation in multiagent teams: Towards a practical analysis. Proceedings of the
2nd International Conference on Autonomous Agents and Multiagent Systems,
pages 552–559, 2003.

[30] Allison M. Okamura, Maja J. Mataric, and Henrik I. Christensen. Medical and
health-care robotics. Robotics and Automation Magazine, IEEE, 17(3):26–37,
2010.

63

[31] Liviu Panait and Sean Luke. Cooperative multi-agent learning: The state of
the art. Autonomous Agents and Multi-Agent Systems, 11:387–434, 2005.

[32] Valentin Robu, Ioannis Vetsikas, Enrico Gerding, and Nicholas Jennings.
Flexibly priced options: A new mechanism for sequential auction markets
with complementary goods (extended abstract). Proceedings of the 9th Inter-
national Conference on Autonomous Agents and Multiagent Systems, pages
1485–1486, May 2010.

[33] Stuart Russell and Peter Norvig. Artificial Intelligence A Modern Approach
(Third Edition). Prentice Hall, Pearson Publication Inc, 2010.

[34] Peter Stone and Manuela Veloso. Multiagent systems: A survey from a ma-
chine learning perspective. Autonomous Robotics, 8(3):345–383, July 2000.

[35] R.S. Sutton and A.G. Barto. Reinforcement learning: An Introduction. MIT
Press, Cambridge, MA, 1998.

[36] Milind Tambe. Implementing agent teams in dynamic multi-agent environ-
ments. Applied Artificial Intelligence, pages 85–101, 1997.

[37] Kagan Tumer and Aadrian Agogino. Coordinating multi-rover systems: Eval-
uation functions for dynamic and noisy environments. In n Proceedings of
the 2005 Genetic and Evolutionary Computation Conference, pages 591–598,
Washington, DC, June 2005. ACM Press.

[38] Kagan Tumer and Adrian Agogino. Distributed agent-based air traffic flow
management. In Proceedings of the Sixth International Joint Conference on
Autonomous Agents and Multiagent Systems, pages 330–337, Honolulu, HI,
May 2007.

[39] Kagan Tumer and David Wolpert, editors. Collectives and the Design of
Complex Systems. Springer, New York, 2004.

[40] David H. Wolpert and Kagan Tumer. Optimal payoff functions for members
of collectives. Advances in Complex Systems, 4(2):265–279, 2001.

[41] M. Wooldridge. An Introduction to MultiAgent Systems. John Wiley and Sons
Ltd, 2002.

[42] Erfu Yang and Dongbing Gu. A survey on multiagent reinforcement learning
towards multi-robot systems. Proceedings of IEEE Symposium on Computa-
tional Intelligence and Games, pages 4–6, April 2005.

