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NOMENCLATURE

a catenary size parameter; S
0

/pg

a
k

coefficients for series expansions for the in-plane
tangential displacement where I I < 1

A. integration constants for in-plane series expansions
for U(X)

b horizontal distance between cable support points

bk coefficients for series expansions for the in-plane
tangential displacement for independent variables
X and

B. integration constants for in-plane series expansions
for U(1J)

C. integration constants for in-plane series expansions
for U()

D(ca) boundary value determinant

D. integration constants for in-plane series expansions
for U() where -1 < < 0

e. coefficients for series expansions for the out-of-
plane displacement where I I < 2

E. integration constants for out-of-plane series expan-
J sions for P() where -2 < < 2

fl' f2 linear drag coefficients for fluid moving tangent and
normal to the cable

coefficients for series expansions for out-of-plane
displacements for independent variable X

F. integration constants for out-of-plane series
expansions for P(x )

g gravitational acceleration



h vertical distance between cable support points

H. integration constants for out-of-plane series
expansions for P(4))

i imaginary unit; 47-7

k elastic proportionality constant for the cable

KE kinetic energy of the cable

length of the cable

L the Lagrangian; KE V
g

M. integration constants for out-of-plane series
expansions for P() where -2 < < 0

nondimensional out-of-plane displacement series
expansions where I <

p() nondimensional out-of-plane displacement expansion
where -2 < < 2

P nondimensional out-of-plane displacement

[PL(LM)] notation for matching matrix for P() where < 0

[PR(Rm)] notation for matching matrix for P() where > 0

q(x), (4(0 nondimensional out-of-plane displacement expansions
for W

[QL(-Lm-2)] notation for matching matrix for P(i)

[QR(Rm-2)] notation for matching matrix for P(x)

Q , Q , Q force per unit length of the cable due to fluid dragu v w in the u, v, and w directions

r indicial roots

LR( boundary value matrix for the out-of-plane
displacement



R ,R ,R
u v w

force per unit length of the cable due to straining of
the cable in the u, v, and w directions

s position of a point on the cable

s0 arc length from the origin to the apex of the cable
when hanging in its equilibrium configuration

tension of the cable in its equilibrium configuration

0
tension of the cable at its apex when hanging in its
equilibrium configuration

t time

T nondimensional, position dependent tension

u in-plane displacement of a point on the cable in a
direction tangent to the equilibrium cable configura-
tion

U nondimensional, position dependent in-plane
tangential displacement

forced frequency boundary value matrix

forced frequency displacement matrix

[u( (-of)]

{u(2)}

in-plane displacement of a point on the cable in a
direction normal to the equilibrium cable configura-
tion

V nondimensional, position dependent in-plane normal
displacement

V
g

VOg

w

potential energy of the cable in its displaced
configuration

potential energy of the cable in its equilibrium
configuration

out-of plane displacement of a point on the cable
normal to the plane of the equilibrium cable
configuration



f

x, y, z

Y.

[YL(LM)]

[ YR(Rm-2)]

z(x), z(li)

[ZL(-Lm-2)]

[ZR(Rivi-2)]

Greek

5

nondimensional, position dependent out-of-plane
displacement

virtual work performed on the cable from a
surrounding viscous medium

virtual work performed on the cable due to the
straining of the cable

Cartesian coordinates of a point on the equilibrium
cable configuration

constants of integration

nondimensional, in-plane tangential displacement
where 0< <1

nondimensional, in-plane series expansions for the
tangential displacement where 10 < 1

notation for matching matrix for U() where

notation for matching matrix for U() where

< 0

> 0

nondimensional, in-plane tangential displacement
where II > 0

notation for matching matrix for U(4J)

notation for matching matrix for U(X)

angle which the equilibrium cable makes with the
horizontal plane at a point

a

angle between the vertical plane of the equilibrium
cable configuration and the vertical plane of the
displaced cable configuration at a point

nondimensional, real part of X

Dirac Delta Function



strain of the cable in its displaced configuration

11,12 nondimensional drag coefficients; f
1
/P(Nra-55,

f
2

/ p (Nra7g1)

0 nondimensional time; Nrg-/-7-t

K nondimensional flexibility coefficient; S0 /k

X nondimensional, complex natural frequency of
oscillation; S + iw

LM

6RM

g2

p

0

X

nondimensional position of a point along the cable;
a/I al(sec a-1)

negative matching point for series solutions

positive matching point for series solutions

an arbitrary point along the cagle

end points of the cable

mass per unit length of the cable

nondimensional arc length; S-S
0
/a

nondimensional tension; kE /SO

independent variable change for 6 > 0; g 2

independent variable change for 6 < 0; -6 - 2

nondimensional, imaginary part of X

nondimensional forcing frequency

Additional Symbology

prefix :5 6(variable); denotes a virtual variation

overline : (variable); denotes cable is in a displaced
configuration

subscript t: (variable) t; denotes a time derivative



subscript s:

slash I:

dot :

(variable) ; denotes a partial derivative with respect
s to arc length

(variable)'; denotes a partial derivative with respect
to nondimensional arc length o

(variable); denotes a derivative with respect to
nondimensional time 0



VIBRATIONS OF SUSPENDED CABLES

I. INTRODUCTION

I. 1. Background

In the late 1600's, James Bernoulli proposed the problem of

determining the shape of a heavy chain suspended from two fixed

points. James and John Bernoulli, Leibnitz, and Huyghens solved the

problem and published their results in 1691. Not satisfied with having

solved the most simple case, Bernoulli studied and solved the sus-

pended chain problem for nonhomogeneous chains and extensible

chains. In 1746, D'Alembert derived and gave a general solution form

for the equation of motion of a taut, elastic string. This was the one

dimensional wave equation.

In 1851, Rohrs [1] investigated the problem of determining the

motion of a suspended chain that is nearly horizontal. Routh [2]

derived the equations of motion of an inextensible string under the

action of any impressed forces. Routh derived two forms of the

equations of motion. One of these forms consisted of a set of four,

first order, coupled differential equations in the dependent variables

u, v, 4, and T and independent variables t and s. Variables

u and v are normal and tangential velocities, 41) is the angle

which the cable makes with the horizontal, T is the cable tension,
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t is time, and s is position along the cable. The other form, which

he called the "intrinsic form of the motion equation," consisted of a

single, second order differential equation of dependent variable 4)

and independent variables t and a in which a is the equilibrium

angle of the cable with the horizontal and Oa, t) is the increase in

this angle. Routh proceeded to solve his intrinsic equation of motion

for the case of a nonhomogeneous cable which hangs in the shape of a

cycloid. However, he was unable to obtain the solution for the case of

the homogeneous cable, which hangs in the form of a common

catenary.

Interest in suspension bridges and the collapse of the Tacoma

Narrows Suspension Bridge prompted Pugs ley [3] to study the

dynamics of suspension bridges and hence to the fundamental study of

the natural frequencies of a single, homogeneous, suspended chain.

By considering that the oscillations in the chain arose from the

propagation of transverse waves along its length, Pugs ley derived a

semi-empirical equation which provided fairly good correlation with

some experimental work he did in predicting the natural frequencies of

the suspended chain. Pugs ley did not attempt to solve either of

Routh's equations of motion for a suspended chain.

Using Routh's four, first order equations, Saxon and Cahn [4]

made a small amplitude approximation and then expressed Routh's

four equations in the form of a single, fourth order equation. Saxon
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and Cahn constructed an asymptotic solution for their fourth order

equation and evaluated the first five natural frequencies for a number

of different cable geometries.

Using Routh's intrinsic equation, Goodey [5] made another

approximate solution for determining the frequency of the first two

natural modes of motion of the cable for various cable geometries.

It is of interest to note that all the work done by Routh, Pugs ley,

Saxon and Cahn, and Goodey was only usable for symmetric cables;

in other words the end points of the cables had to be at the same

level. No one had managed to obtain a closed form for the solution

of Routh's equations for the catenary.

In the late 1960's interest was generated in the study of cable

dynamics in conjunction with the mooring of large ocean research

buoys at Oregon State University. Several research buoys had broken

loose from their mooring lines and had been damaged or lost. It was

believed that possibly the buoys had been oscillating near the resonant

frequencies of the mooring lines and hence the lines were broken due

to large induced tensions. A survey of the literature showed that there

were no explicit solutions for determining the natural frequencies of a

cable and further that there had been no work done with unsymmetric

cables.

A serious impediment to analyses of motions about catenary

equilibrium configurations has been that the coefficients in the
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differential equations are irrational functions of the space variable

s or a. Smith and Thompson [6, 7] found that by writing the differ-

ential equation for tangential displacement in terms of the space
avariable = -Tr (sec a-1), the coefficients become polynomials.al

This then permits construction of solutions by the method of

Frobenius. However, because the resulting series converges only

for al < Tr/3, their results are limited to relatively shallow

catenaries.

Lamotte [8] solved Smith and Thompson's equations for the case

where the cable was subject to linear damping. Again the solution was

restricted to "shallow" catenaries. All work done up to this time was

restricted to two-dimensional or in-plane motion of the cable. Rathje

[9] derived the undamped three-dimensional equations of motion for

the cable. He showed that the out-of-plane motion equation was

independent of the in-plane motion equation in their linearized forms.

I. 2. Present Investigation

In this paper, the works of Smith, Thompson, Lamotte, and

Rathje are tied together and results generated for a wider range of

equilibrium configurations. The equations of motion are derived in a

very general form. Linear damping of the cable from the surrounding

medium along with a consideration of the elastic properties of the

cable is taken into account when the three-dimensional equations of



5

motion are derived. Using two power series expansions, the in-plane

normal mode motion of the cable is described for a greater range of

cable geometries than was first achieved by Thompson. The out-of-

plane equation is solved for the first time for the normal mode motion

and the natural frequency ratios of oscillation are predicted. Using

the theory developed for the normal mode motion, a method is

developed for determining the displacements and tensions throughout

a cable when one end is subjected to a prescribed tangential displace-

ment of known frequency. Maximum cable tensions are presented as

a function of the forcing frequency for a variety of different cable

geometries.
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II. THE EQUATIONS OF MOTION AND THE SOLUTION METHOD
(Ref?r t D)

II. 1. Derivation of the Equations of Motion

The derivation of the equations of motion of a suspended cable

have been presented by Routh [2], Rohrs [1], and Thompson [6] by

direct application of Newton's second law of motion; and by Smith and

Thompson [7] through the use of Hamilton's principle for two -

dimensional cable systems. The derivation of the equations of motion

presented here will be based on application of Hamilton's principle

and the use of the Euler-Lagrange equations. This approach leads to

the desired equations of motion somewhat more directly than does

direct application of Newton's second law of motion.

Consider a perfectly flexible, elastic cable suspended in a

viscous medium from two end points. In order to completely describe

the general configuration of the cable, it is necessary to define three

noncoplanar components of displacement. Let the apex of the cable in

its equilibrium configuration be the origin of the coordinate system.

The distance s along the cable defines an arbitrary point on the

cable, and the angle between a horizontal plane and the tangent line to

the cable at any point s, will be denoted as a.

When the cable is displaced from its equilibrium configuration,

any point s on the cable may be displaced to a new position. In

general, this new position will have components both in the plane and
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out of the plane of the equilibrium configuration of the cable. The

displacement in the plane of the cable will be defined by a component

u in the direction tangent to the equilibrium curve and by a corn-

ponent v which is normal to u. The component u is positive in

the direction of increasing s and the component v is positive

when directed toward the local center of curvature of the equilibrium

configuration of the cable. The angle a will represent the angle

between the tangent to the cable in the displaced configuration and the

horizontal plane. The component of displacement perpendicular to the

plane of the equilibrium curve will be denoted as w. Positive w

will be defined such that displacements U., v, and w would consti-

tute a right handed system. y is the angle between the plane of the

equilibrium curve and the tangent line of the displaced cable as shown

in Figure 2.1.

Reference to Figure 2.1 shows that the rectangular Cartesian

coordinates (x, y, z) of a displaced point which has coordinates

(x,y,z) in the undisturbed configuration are given by:

x(s,t) = x+ u cos a v sin a

y(s, t) = y+ u sin a+ v cos a

z(s, t) = z w

Differentiation of the above equations with respect to

yields:
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h

Equilibrium
configuration

b

Displaced

configuration

I

A x total length of cable

Figure Z. 1. Displaced configuration of hanging cable show-
ing displacement vectors and angles.



dx
ds = (l+us-vas)cos a - (vs+ua )sin a

ds = (l+us-vas)sin a + (vs+uas)cos a

dz
ds ws

where the subscript indicates differentiation with respect to arc

length s.

Consideration of the geometry of a typical displaced cable

element, shown in Figure 2.2, yields:

dx ds dx ds
=ds ds ds_ ds= cos a cos y

_
ds cl./

=
ds

ds ds ds ds sin a

dz
=

ds dz--= = ds cos a sin ydx ds ds ds

Equating expressions 2.1 and 2.2 yields:

ds cos a cos y = (i+u -va )cos a - (vs+ua )sin a

ds
ds sin a = (l+us-vas)sin a + (vs+uas)cos a

ds cos a sin y = wds s

(2. 2a)

(2. 2b)

(2. 2c)

(2. 3a)

(2. 3b)

(2. 3c)
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Figure 2.2. Geometry of an element of the displaced cable.

10
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Elimination of a and y from the above set of equations

ds 2 1

=

yields:

w+ (l+u -vas)2+(v +ua )2

ds s

The longitudinal strain in a typical element of the cable is

defined by:

ds -dsE -
ds

(2.4)

Use of Equation 2.4 in this definition gives the strain-displacement

relationship:

, ,
E WLH-U-VaV +Ua ) 1 (2.5)

s
2

-I-

s s)
2

-F(
s s

The potential energy density associated with the gravitational

field is related to the displacement components by:

av av_Og
as as + pg(u sin a + v cos a) (2. 6)

The term av
Og

/as represents the potential energy per unit length

of the equilibrium cable relative to some arbitrary, fixed reference

system. The term pg(u sin a + u cos a) is the contribution to the

potential energy per unit length of the cable as it moves to a disturbed

configuration in the gravitational field.



The kinetic energy per unit length of the cable is given by:

8KE (u2A-v22)as 2tt +wt (2. 7)

12

where the subscript indicates differentiation with respect to time t.

For a body moving at low speed through a viscous medium, the

drag force on the body may be considered to be proportional to the

speed and acts in a direction to oppose the motion of the body. Ref-

erence to Figure 2.3 shows that the components of the velocity paral-

lel and perpendicular to the element in the disturbed configuration are

<related to the components parallel and pt- Pndicular to the element in

equilibrium c?r.figu:-,:lti r by:

Displaced configuration

Undisplaced
configuration

Figure 2.3. Displaced configuration of hanging cable
showing velocity vectors.



ut = [utcos p + vt sin (][cos y + (1-cos y)sin2
a]

+ [ -uts in 3 + vt cos p][1 -cos y]s in a cos a + wts in y cos a

13

(2.8a)

vt = [utcos p + vtsin p][]. -cos y- ]sin a cos a
(2. 8b)

+ [-u
t
sin p + vtcos P][cos y + (1-cos y)cos 2a] wt sin y sin a

w = --[u cos p + vt sin P][sin y cos a]

+ [-ut sin p + vt cos P][sin y sin a] + wt cos Y

The increment of virtual work performed on the cable due to the

(2.8c)

viscous drag force as the cable is displaced a small amount 5u, 5v,

and 5w is given by:

s2

5W f = (f
1
ut 5u+f

2
vt 5v+f

2
wt5w)ds

s
1

(2. 9a)

where f
1

and f
2

are the linear drag coefficients relating the

force on the cable to the velocity of the cable in the tangential and

normal directions respectively. The virtual displacements 5u, 5v,

and 5w are given in terms of the equilibrium virtual displacements

5u, 5v, and 5w by the use of Equations 2.8, where the velocity

terms ut , vt , andut , vt , and wt are replaced by the virtual dis-

placements 5u, 6v, Ow, 5u, 5v, and Ow. Equation 2. 9a may be

reduced to the form:
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owf (QuOu+Qvbv+Qw6w)ds

1

14

(2. 9b)

When the cable is in a displaced configuration, the tension at

any position is denoted by S. The increment of work of the internal

forces on the cable as it is strained between two states is given by:

s2

SOEdS

sl
(2. 10)

where OE is an incremental change in the strain which, by use of

Equation 2.5 may be expressed as:

6E

(1+u -a v)(6u -a 6v) + (v +a u)(6v +a 6u)+w 6w
s s s s s s s

2w +(l+u -va )2 +(v +ua )
s s s s

2'

Substitution of Equation 2.11 into Equation 2.10 yields:

ps2 -Sa(v+au) 1+u -a v
6W

s + [S( s s )18) 6u
s

1
E +1 E +1

[ --a--- (l+u
s

-a
s
v)6u + (v

s
+a

s
u)(5v + w

s
8w

E+1

+ra(l+u v) v +a u
s s s + [s( s s

E +1 E +1

Sw
S

E+1
ds

(2. 11)

(2.12)



or

[R Ou+R bv+R bw]ds + boundary termsu v w
1
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(2. 13)

In terms of previously defined quantities, the Lagrangian for a

cable fixed at end points s
1

and s
2

is given by:

L = L(t,s,u,v,w,u , v , w , u , v ,w ) = - Vss stt t
sz

2. 2 2 2
avOg

12 (u +v +w ) - - pg(u sin a + v cos adds (2. 14)t t 8s

Hamilton's principle states that for arbitrary variations of the path

between two instants t1 and t2, then:

t
2

[61.,+6W
f+OW s]dt = 0

tl

The first variation of the integral, 61.4t,
ti

is defined as

t
2 t.aL a aL

bLdt = Ss 2
au

s
Su av

s
aw

s
aus tt

1
t

1
sl t

(2. 15)

aL DL aL aL
+

s by + s Sw + bu + byavt t awt t Du s Dv s

aL
+ bw dsdtaws s



After integration by parts, the above equation may be written as:

t2

SLdt =

s2

- 8 ( ) - ( ) Suau at au as au
aLs

a
aLs

1
t

1
s1 t s

ax, aLs aL

av at (avt ) as (23v ) 6v

a
at

81'ss)- 8 81's
) Sw dsdt(awt (aw

s

u

aL aL t,
+

82 aL aL

uv
bu + by + Sw dsawt tSi t t

t2 8L aL aL

au av aw

s7
Su + Sv + Sw dt

t1 s s s s1

16

(2. 16)

Substitution of Equations 2. 9b, 2. 13, and 2. 16 into Equation 2. 15

yields:

t
1

s
1

aL, aL aL,
s _ Q + R

au at aut as aus
u u

Su

+[aLs
a (aLs

av at avt

+
[8. L s a

aLs

aw at awt

a
as

a
as

aL
(aAr ) + Qv + R Sv

s

aL
( ) + Qw + Rw Owl dsdt

S

+ boundary terms = 0 (2. 17)



17

The above integral must be valid for arbitrary values of Su, 6v, and

ow; hence a necessary condition that the integral always equal zero

is that:

aLs

au

8L
s

aLs
a

aL
a
87 (8u t) ) °

aL aL
s a

av at avt as ( ay
s

Rv

aLs aL

aw Tt t ) 8s (aws ) Qw
0

(2. 18a)

(2. 18b)

(2. 18c)

Equations 2.18 are the Euler-Lagrange equations which are

associated with Hamilton's principle and represent the three inde-

pendent equations of motion of the suspended cable system.

Substitution of Ls into Equations 2. 18 yields:

Sa (v +a u)
s s sputt + pg sin a +
E +1

pvtt + pg cos

1+u -a v
[S( )] + Q = 0 (2. 19a)

s u

a +
Sas(l+u

s
-a

s
v) v +a u

)]
S

{-S( ).1 + Q = o
E +l

Sw

Pw + Q = ott E n. s w

The above are the general

subject to motion in three

equations of motion for a suspended cable

dimensions. A constituitive equation for the
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cable giving the tension as a function of the strain E and the strain

rate E

t

S = g(E, Et) (2. 20)

will complete the set of equations that model the cable. The five

equations, 2.5, 2. 19, and 2.20 will govern the variables u, v,

g, and E.

II. 2. The Equilibrium Configuration of the Cable

When the cable assumes its equilibrium configuration, then

-f2 and Equations 2.19 reduce to:

pg sin a - Ss =0 (2. 21a)

pg cos a - Sas =0 (2. 21b)

Integration of the above equations yields:

S sin a = pg(s -so) (2. 22a)

S = S
0

sec a (2. 22b)

where s and S0
0

are constants of integration representing,

respectively, the arc length and tension at the apex of the cable. The

above two equations may be rearranged in the more useful form,

giving the catenary shape and tension ratio as:



where:

19

s-s
0tan a = (2.23)

a

S - S

= sec a= J 1 +tan2a = 1+( a
0

)2
0

So
a =

Pg

(2. 24)

Since the apex of the cable was designated as the origin of the

coordinate system, then the constant s
0

is zero. Substitution of the

constant a into Equation 2.23 for s-s
0

will yield:

tan a= 1

This shows that the tension ratio a is also equal to the arc length

from the apex of the curve up to the point where a = ir/4.

The curve defined by Equations 2.23 and 2.24 is often expressed

in retangular Cartesian coordinates. This form may be obtained by

substituting the relationship:

dx = cos ads

and Equation 2.23 into the identity,

1cos a =
2l +tan a



and integrating. The result is

S-s x-
0 x0

a = s inh( a '

Similarly, combination of

sly -_ sin ads

and Equations 2.22 leads to

s-sY.-Y0 / 1 +( 0)2
a a

20

(2. 25a)

(2. 25b)

Combination of Equations 2. 25a and 2. 25b along with the identity

yields:

cosh2z - s inh 2z
= 1

Y"-y0

a

x-x
0

co sh( )a

The above represents the equation of the common catenary of

parameter a in Cartesian coordinates.

(2.26)
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II. 3. Linearization and Nondimensionalization of the
Equations of Motion

From an engineering and scientific standpoint, nondimensionali-

zation of the equations of motion will generalize the equations for use

with all possible cable parameters. Linearization of the equations of

motion will provide sufficient accuracy in describing the motion of the

cable provided that the oscillations of the cable about the equilibrium

position are small. Linearization simplifies the equations of motion

to an extent that they may be solved using standard techniques for the

solution of differential equations. The equations of motion, 2. 19, will

first be nondimensionalized; then these nondimensionalized equations

will be linearized.

The remainder of the analysis will be for a linearly elastic

cable, and the special case of this in which the cable is inextensible.

For this case, the form of the tension-strain equation, 2.20, is:

S(s,t) = S(s) + kE(s,t) (2.27)

where S(s) is the equilibrium tension and k is the linear propor-

tionality constant relating the tension difference S S to the

strain E.

The dimensionless variables necessary to describe the

equations of motion are:



kE
T = ,

0

SO
K =

k
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(2. 28a)

(2. 28b)

(2. 28c)

S S

(2.28d)
a

fl
TI1

=
p

=
2

2

P

p
g

l.

(2. 28e)

(2. 28f)

T is a nondimensional tension difference, K is a nondimensional

elastic flexibility coefficient, 0 is a nondimensional time, cr is a

nondimensional arc length, and T1
1

and r12 are nondimensional

linear drag coefficients. Substitution of the equilibrium equations,

2.21a and 2.21b, the tension-strain equation, 2.27; and the dimension-

less variables given above, into the equations of motion, 2. 19; will

yield the nondimensional equations of motion.

Linearization of the nondimensional equations of motion is

accomplished by noting that T « 1, << 1, << 1, and 7 « 1

and then neglecting products of any of the above terms. Linearization

of the nondimensional equations of motion yields:



U 1 vs
+ [ ] - T I ri = 0

a a 1 a
(1+o-2)1

/2 (1+o-2)3/2

- (l+o-2)1/2 v' u T

a
1+o-2

a a
(1 +62)1 /2 a +62)3 /2

u' 1
+ -Y- = 0

a
(1+o-2)1/2

2 a

w" 2 1/2 w' a

a (1 +6 ) a 2 1/2 +
a

T12 a = 0
(1+o- )
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(2. 29a)

(2. 29b)

(2. 29c)

The slash, ( )', represents differentiation with respect to cr; and

-
the dot, ( ), represents differentiation with respect to 0. The above

three equations contain four unknowns; u, v, w, and T. Equation

2.27 is the necessary fourth independent equation which, along with

Equations 2. 29 will govern the motion of the perfectly flexible,

linearly elastic cable suspended in a viscous medium in a gravitational

field. Nondimensionalization and linearization of Equation 2.27 yields:

1 / V
KT = a (2.30)

Solution of Equations 2.29 and 2.30 will yield the displacements

and tension as a function of position along the cable and time. It is of

interest to note that the linearized equation governing the out-of-plane

motion of the cable, Equation 2.29c, is independent of Equations

2. 29a and 2. 29b governing the in-plane motion of the cable. This is
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not the case for the nonlinear equations of motion. Examination of the

nonlinear equations of motion, Equations 2.19, shows that the equa-

tions are coupled through the strain E and the damping forces Qu

Q , and Qw-

II. 4. Solution of the Equations of Motion

II. 4.1. Normal Mode Motion and the Variable Change

The linearized equations describing the motion of the cable may

be expected to yield solutions representing normal mode motion. A

solution of the form:

(2.31)

will satisfy Equations 2. 29a, 2. 29b, and 2.30; whereas a solution of

the form:

w(o-, 0) = W(o-) exp(X0) (2.32)

will serve to satisfy Equation 2.29c. The characteristic root

= 54 iw contains the oscillation frequency ratio w as its imaginary part.

Substitution of Equation 2.31 into Equations 2. 29a, 2. 29b, and

2.30 leads to:
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2 V'
U +

(1 +62 ) )
3/21/2 + T' +

1
U = 0 (2.33a)2

X
2V V'V'6 Uo- 2 1/2

1+0_2 (1 +62)1 /2
(1+0-2)3/2 11.11(14-cr

KT U' V
2

1+o-

U'
+ V = 0

2
(1-fcr )

21/2 (2. 33b)

(2.34)

II. 4. 1.a. Undamped Motion of an Inextensible Cable. It would

be of interest to initially study the motion of an undamped, inextensible

cable; for this purpose the linear damping coefficients and rig,

and the linear flexibility coefficient K, will be set equal to zero.

Also, since undamped oscillations are expected, let X = iw. For the

undamped, inextensible cable, T and V may be eliminated from

the above set of equations to yield a single fourth order equation

governing the tangential displacement of the cable Ul

(1 +62 )
5/2U"" + 106(1 +62)3/2U"

+ [3(3 +862)(1 +62)1 /2+w2(1 +62)2]13''

+ 46(1 +62 )
1/2

(3+u)
2(1+o-2)1/2)U'

+ (..)2U = 0 (2.35)

The normal component of displacement V, and the dynamic

contribution to the cable tension T may be expressed in terms of



the tangential displacement U, as follows:

V = (l+o-2)U'

T = o-(1+6) -1/2U [(3+462)(1+o- )
1/2

-ft,) (l+o- ) 2]Ui

- [(1+0-2)5
/2 U"] `
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(2. 36)

(2.37)

Substitution of Equation 2.32 into Equation 2. 29c will yield a single

independent equation governing the out-of-plane displacement of the

cable as follows:

(l+62)1/2W" + cr(l+cc2)
-11

ZW' +u.)
2W

= 0 (2.38)

A well known method for the solution of linear differential

equations having polynomial coefficients is to develop a power series

representation for the dependent variable by substituting the series

into the given equation. The coefficients in the series may then be

evaluated by matching the coefficients of like powers of the inde-

pendent variable. However, due to the irrational nature of the coef-

ficients in Equations 2.35 and 2.38, it is necessary to transform the

two equations into a form in which the coefficients are expressible as

integer powers of the independent variable. A change of independent

variable which reduces Equations 2.35 and 2.38 to ones with

polynomial coefficients is



CT \F---21 a
= 10_1 ( l+o- -1) (sec a 1)

It is necessary to include the factor

27

(2.39)

Cr

IT1
in the above equation to

assure that there is a one-to-one correspondence between and o-

in the region where o- is negative. The inverse transformation is

6 = 0(1 +41)2 -1 (2.40)

Transformation of Equations 2.35 and 2.38 may be accomplished with

the aid of the chain rule along with the following four derivatives:

do-
10-1

NI 1+0-21

Cr

I6 1(14-cr2)3/2

d3 31TI + 26(c)
d6 (1 +6(1+T2)5/2

d
4 31TI(1-462) d8(6)

,

cr
2 7 /2 dd6

do-4 crlI (l+ )

where 5(6) is the Dirac delta function.

Substitution of the change of variable and the necessary

derivatives of the variable change into Equation 2.35 yields the dif-

ferential equation with polynomial coefficients governing the tangential

displacement of the cable:



X2(1 +1 (2+10) 2 d4U + 21fl(2+1W(3+101Wq2 d
3U

34
I I

d10

1

L3(I+10)(1+1610+8e)+2 10(1+I )2(2+10)

(1+W )4 \1210
2

U
I d2

+[01+410+2e)+w2(1+10 )(l+810+4e)

-9 (HO )3 4210 --q2

+ (Ho s'(41 II
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2
(.0 U = 0 (2.41)

For positive values of then the above equation reduces to:

d y3

(1+)(2-P) 2 d4y + 4(2-q)(3+1(n-Fq2
)

d y2

+[3(1+0(1+160-n 2
)+w

2 W+)2
(2+).1

d

=+ [6(1+4+42 )+(.,.)
2(1+)(1+g 2

+4 )1(1 - (A)
2y 0

(2.42)

Substitution of the change of variable along with the necessary

derivatives into Equation 2.38 yields the following equation with

polynomial coefficients governing the out-of-plane motion of the cable:

2

(21 1-Fe) cill-V2
+-1-10 (1+

dW10)dio + (1+10co2W
= 0

For positive values of , Equation 2.43 reduces to:

(2.43)



2
(112

+ + (1+)co2p
= 0(n-q ) t (1

c=1

II. 4.2. In-Plane Normal Mode Motions
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(2.44)

Instead of pursuing a parallel development for the solution of

the in-plane and out-of-plane motion equations simultaneously, each

case will be analyzed separately. Equation 2.42 describing the in-

plane motion of the cable is an ordinary, linear, fourth order differ-

ential equation with polynomial coefficients and hence lends itself to

a power series solution of the form developed by Frobenius. The

singular points of Equation 2.42 are given by the roots of the coeffi-

cient of d
4

}r/cl
4. Examination of Equation 2.42 will reveal that the

singular points occur at = -2, -1, and 0. A series solution

expansion about any of the singular points will yield at least one solu-

tion which will have a radius of convergence equal to the distance to

the next nearest singular point. Regardless of the singular point about

which the series solution is written, the radius of convergence will

always equal 1.

A power series expansion about the singular point = 0 will

have the form:

CC

y() = aked-r

k=0

(a
0

0) (2.45a)



The first four derivatives of y() are given by:

00

-1

k=0

00
2

d
2

(k+r)(k+r-l)akk+y r-2
d k=0

3d y (k +r)(k +r- 1)(k +r -2)ak
k+r-3

3

00

d k=0

00
4d y

4
(k +r)(k +r- 1)(k +r- 2)(k +r -3)ak

k-1-r-4

d
k:=0
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(2. 45b)

(2. 45c)

(2. 45d)

(2. 45e)

Substitution of Equations 2.45 into Equation 2.42 and equating the

coefficient of the lowest power of to zero yields the following

indicial equation:

r(r-1)(2r-1)(2r-3)a0 = 0 (2.46)

Solution of the above equation yields the four characteristic exponents

r = 0, 1/2, 1, 3/2. In general, if any pair of the characteristic

exponents differ by an integer, then the solutions obtained may not be

linearly independent. However analysis as outlined in Section 16.3 of

Ince [10] indicates that the four series solutions obtained using the

above characteristic exponents will yield independent solutions to
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Equation 2.42. This will be verified shortly when the actual solutions

are determined.

The complete solution to Equation 2.42 may be expressed as a

linear combination of the four series solutions, each corresponding to

one of the four roots obtained above:

where

U() =

3

j=0

co

y.
k+r

Y2r ak(r)

k--=0

(2.47)

(2.48)

The four arbitrary constants a
0
(r) will be assigned values of:

a
0
(r) = 1, (r = 0,1/2,1,3 /2) (2.49)

The remaining coefficients, a
k

(k = 1 00), may be evaluated

using the following recursion relationship which arises when Equations

2.45 are substituted into Equation 2.42:

2(k+r-2)(k+r-3)(4k+4r+7)-1-(51+2w
2

)(k+r)-3(32-1-w
2)

a
k

ak-1(k+r)[4(k+r)(k+r-2)+3]

(k-Fr -2)1-5(k+r -3) (k+r -4)(k+r+3)+(72+5co
2

)(k+r)-6(32+(.4
2

) j-co
2

(k+r)(k+r -1)[4(k+r)(k+r -2)+3]

(k+r-3)[(k+r-4)(k+r-5)(k+r+4)+4(6+2)(k+r)-4(21+2)]
(k+r)(k+r-1)[4(k+r)(k+r-2)+3]

ak-3

ak-2



w
2
(k+r -4)

(kfT)[4(k+r)(k f-r -2)+3] a
k -4
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(2.50)

All coefficients in the above equation with negative subscripts are

zero. Substitution of Equations 2.49 and 2.50 into Equation 2.48 and

finally substitution of Equation 2.48 into 2.47 will yield the solution

for the tangential displacement of the cable for positive values of

Substitution of

2 2 4
cr 0'

4
0"

8
=N1+62 - 1 =? (1- + - .

2

into the series given by Equations 2.48, 2.49, and 2. 50 yields the

following lead terms in the four . series:
3r.)

l2 2
y
0 2

= 1
+w

T + . . .

1 5 +2w2 3y1 = 1242 +

2
6+w

2
4 +'2 2 24

0r
3

23+2(42 5
+cr . . .Y3 24.21 404 2

Equation 2.47 is a solution to Equation 2.41 for positive

(2. 51a)

(2. 51b)

(2. 51c)

(2. 51d)

For negative values of 6, then a general solution to Equation 2.41

would be of the form:



D.J y.J (-t)

j=0
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(2.52)

At the origin, there must be continuity of the tangential and normal

displacements and of the tension; from these conditions it is possible

to determine the constants D. in terms of the constants C.. A

glance at Equations 2.36 and 2.37 will reveal that the normal displace-

ment along with the tension are proportional to the zeroth through the

third derivatives of the tangential displacement. Hence it would be

expected that if the zeroth through the third derivatives are continu-

ous at the origin, then the displacements and tension will also be con-

tinuous at the origin; this requirement may be expressed as follows:

U(a-) = U(-0-) = 0) (2. 53a)

U'(cr) = (o- = 0) (2. 53b)

U"(0-) = UN-cr) (a- = 0) (2. 53c)

Um(o-) = U"'(-o-) = 0) (2. 53d)

Substitution of Equations 2.47 and 2.52 (written in terms of the

variable a- instead of into Equations 2.53 yields:



y0(°-)

y'o(T)

,ruto-\

Yo

y' pal

y (T)

y'()

T Yruito-,

y'"(T)

y2(T)

y(T)

y2(r)

y3(T)

y(T)

(T)
'

yo(-) y1( -T) y2(-0-) y3(-0-)

-y10(-0-) -y(-T)

y0( -T) y;:(-T) yp-T) )T-T)

_111/_-0 " Y1 2 "
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(2.54)

Differentiation and substitution of Equations 2.51 into the above set of

equations and subsequent evaluation at the origin (o- = 0) yields the

following relations between the constants C. and D. :
J 3

D
0

= CO, D1 = -C1, D2 = C2, D3 = -C3

Now the solution for the tangential displacement, valid for both

positive and negative

where

may be expressed as:

U() =

3

C.u.()
J J

j=0

uj() = ( ) j io)

(2.55)

(2.56)
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Equation 2.56 is valid for values of in the range,

-1 < < 1. However as approaches ±1 then it is necessary to

increase the number of terms in the series expansion to assure that

convergence of the series is attained. Hence it is impractical to

assume that Equation 2.56 is applicable for close to ±1. A

glance at Equation 2.39 will reveal that for = ±1 then the angle a

will have a value of Tr/3. For many applications, it may be desirable

to be able to describe the cable displacements and tensions for values

of a greater than Tr/3. Hence it will be necessary to write another

series solution to Equation 2.41 which will converge for values of

11 > 1.

In order to extend the range for which the u, may be

practically calculated, it will be desirable to make the following

change of variable: x = 2. Substitution of this change of variable

into Equation 2.42 yields:

2 d
4

4z d
3z

(X+2) (X+3)(X+4) + 2(X+2)(X+4)[23+10x+5(X +4X+4)] 3
dx dx

2 d
3

2z
+ [3(X+3){33+16x+8(X

2
+4X+4)} +w (X+2)(X+3) (X+4)1

dx

dz
+ [6{9 +4x+2(X

2+4X+4)}
+0J

2
(X+3){17+8x+4(X

2 +4X+4)}.1
dX

- w2z = 0

(2. 57)

Equation 2.57 is a linear, fourth order differential equation with

polynomial coefficients and as such lends itself to tho use of a power



series type solution. A power series expansion about the ordinary

point x = 0 (E = 2) will be of the form'

z(x) =

cc

k=0

k+r
X
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(2. 58)

The first four derivatives of z(x) will have the same form as do

Equations 2.45. Substitution of Equation 2.58 and its first four

derivatives into Equation 2.57 and then equating the coefficient of the

lowest power of x to zero yields the following indicial equation:

192(r-3)(r-2)(r-1)(r)b0 = 0 (2.59)

Solution of the above equation yields the four characteristic exponents;

r = 0,1,2,3. Since the power series expansion is about an ordinary

point rather than a singular point, then the solutions obtained will be

linearly independent even though the characteristic exponents differ

by integer values.

The complete solution to Equation 2.57 will be expressed as a

linear combination of the four series solutions, each corresponding to

one of the four independent indicial roots:

U(X) =

where,

3

j=0

A.z.(X)
J J

(2.60)



CC

z. = z = bk(r)xk+r
j r

k=0
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(2.61)

The four arbitrary constants b0(r) will be assigned values of:

b0(r) = 1, (r = 0,1,2,3) (2.62)

The remaining coefficients, bk (k = 1 co), may be evaluated

using the following recursion relationship which arises when Equation

2.58 is substituted into Equation 2.57:

_[352(k+r-4)+688]
bk 192(k+r) k-1

r252(k+r-5)(k+r-4)+996(k+r-4)+585+72w2]
192(k+r-1)(k+r) bk-2

[88(k+r -6)(k+r -5)(k+r -4)+526(k+r-5)(k+r -4)

+ (627+102w2)(k+r-4)+102+99co 2]

192(k+r-2)(k+r-1)(k+r) bk-3

[15(k+r -7)(k+r -6)(k-f-r -5)(k+r -4)+120(k+r -6)(k+r-5)(k+r -4)

+ (216+53w )(k+r-5)(k+r-4)+(72+105w2)(k+r-4)-co2]

192 (k+r -3 )(k+r -2)(k+r -1)(k+r) bk-4

[(k+r -8)(k+r -7)(k+r -6)(k+r-5)+10(k+r -7)(k+r -6)(k+r -5)

+ (24+12w 2
)(k+r-6)(k+r-5)+(12+360.)2 )(k+r-5)]
192(k+r-3)(k+r-2)(k+r-1)(k+r) bk-5

rw
2

(k+r-7)(k+r-6)+4w
2 (k+r-6)]

192(k+r-3)(k+r-2)(k+r-1)(k+r) bk-6 (2.63)
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All coefficients in the above equation with negative subscripts are

zero. Substitution of Equations 2.62 and 2.63 into Equation 2.61,

then subsequent substitution of Equation 2.61 into Equation 2.60 will

yield the solution which describes the tangential displacement of the

cable for positive x .

The series expansion 2.61 for U(X) will have a radius of

convergence from the ordinary point x = 0 to the next nearest

singular point, i.e., x = -2. In terms of the variable Equation

2.61 will have a region of convergence of 0 < < 4. The value of

a which may be attained for = 4 will be 78°.

It will be desirable to express the constants A. (from

Equation 2.60) in terms of the constants C. (from Equation 2.47).

This may be accomplished by matching the series solutions for U(t)

and U(X) at some common point where both solutions converge. As

was previously done with the series matching at the origin, matching

of the zeroth through the third derivatives of u(e) and U(X) at

some mutual point would assure that both displacements and tension

are continuous at the matching point. Let the point at which the two

series are to be matched be denoted as then it follows that:



y )0 (ARM

y
(

)0 RM

y( )0 RM
y'( )

0 RM

z0(R1\4-2)

ziO(RM-2)

z0(RM-2)

zidr(RM-2)

y3 (ARM)

Y3 (RI\A)

y3 (ARM)

I( ) ATI( )

72 RM 73 RM

z1(R1\4-2)

zil( R1\4-2)

z Ilt( RM -2)

z '1"(RM -2)

or in shorter notation:

z 2 RM -2) z3(RM-2)
-2) z3 i -2)2 RM RM

z'2(RM-2) z3(5RM-2)

z11(RM-2) z3%M-2)

[YR(RM)] {C} = [ZR(RM-2)]{A}

Solution of the above matrix equation for {A} yields:

{A} = [zR(Rm-2)]-1[YR%md{c}
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(2.64)

0

1

2

3

(2.65)

(2.66)

Substitution of {A}, Equation 2.66, into Equation 2.60 will yield an

equation describing the tangential displacement of the cable for values

of in the range 0 < < 4

the {C}.

Through use of Equations

where the {A} is given in terms of

2.55 and 2. 6 0 , the tangential

displacement can be determined for all values of in the range of

-1 < < 4. Now it would be desirable to further extend the range of



for which the tangential displacement may be determined,

especially for < -1. Due to the inherent symmetry of the cable,

40

replacement of with in the defining equation for x, i. e. ,

X = 2, would provide a variable change that should extend the

solution range for the tangential displacement of the cable. Hence we

let:

or

= 2 (for < 0)

4)= 2.

Substitution of the above change of variable into Equation 2.42 yields

an equation identical to Equation 2.57 except that the independent

variable is i instead of X . Solution of the equation for U(ili) is

identical to solution of Equation 2.57 except that the independent vari-

able is hence

where,

3

U(Lp) = B.z.(LIJ)
3 J

j=0

co

z. = zr = bk (r 41( +r

k=0

The constants, b., are given by Equations 2.62 and 2.63.

As was done with positive

match the solutions for negative

and

and

X,

(2.67)

(2.68)

it will be desirable to

at some mutual point
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and hence determine the B. in terms of the C. Let the point at

which the series solutions for U(-t) and U(4J) are to be matched

be denoted as

derivatives at
tLM

tLM

will be continuous at

Again, matching of the zeroth through the third

would assure that displacements and tension

ELM
and hence it will be possible to solve for

the B. in terms of the C.. It follows that:
3

YO(tLM) Y1(tLM) Y2(LM) Y3(tLM)

YO(tLM) Yl(tLM) -.5r2(tLM) Y3(tLM)

YO(tLM) -yl(ULM) Y2(tLM) Y3(ULM)

-yrOULM) YNLM) -3r2ULM) yPtLM)
(2 69)

z0(-tLM-2) z1(-tLM -2)

-zio(-tLm-2) -z11(-tm\A-2)

Z0(-LM-2) z1"(-9LM-2)

z2(-tLM-2) z
3
(-tLM -2)

-z12 (-'LM
3

-2) - z3 (- 'LM -2)-2)

z121(-tLM-2) z"3 (- LM
-2)

-z"1(- t-2) -zI/I(..p -2)
-z 111(-P -2) -2)

1 LM 2 'LM 3 'LM

or in shorter notation:

[YL(tLm)] {C} = [ZL(-tLi\A-2)] {B} (2.70)

Solution of the above matrix equation for {B} yields:

{B} = [ZL(-t
LM

-2)]-1[YL(t
LM

)] {C} (2.71)



Substitution of {B} into Equation 2. 67 will yield the equation

describing the tangential displacement of the cable for values of

in the range -4 < < 0, where the {B} is given in terms of the

{C}. Through the use of Equations 2.55, 2.60, and 2. 67, the

tangential displacement of the cable may now be determined for any

value of in the range -4 < < 4.

Consider the cable to be fixed at two points and 2 At
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these two points of fixity, the tangential and normal displacements of

the cable will be zero. The tangential displacement will be given by

either Equation 2.55, 2. 60, or 2.67 and the normal displacement will

be given by Equation 2.36 or written in terms of the derivative of U

with respect to by:

V = 10-1

Hence the boundary conditions are:

1+0-21 dU

dU
U(U(l)

dU
= U(2) lt 0

1 2

(2.72)

(2.73)

Written in matrix notation, Equation 2. 73 will have the general form:

ul(l) u2(1) u
3 1

)

111(1) (1.121

1
) 1-13(1)

u1(2) u2 2 ) 1.13(2)

tii(y tizt ( 2) u;(2)_.

(2. 74)



where the prime ( )' denotes differentiation with respect to

and

121()-1 lir(1°)-1(-1-10 (LM < < ARM)

Lu()1 = Lz(-2)_1[ZR(RM-2)]-1[YR(RM)], (ARM < < 4)

Lu(Q.1 = LM -2)] 1[YI(LM )], (-4 < < LM)
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A necessary and sufficient condition for the existence of a non-trivial

{C} satisfying 2.74 is that the determinant D of the square matrix

in 2.74 vanish. Remembering that the u()1 s are functions of the

nondimensional frequency ratios w1s; then the values of w which

render zero values for the determinant D(w) are the ratios of the

natural frequencies of in-plane oscillation of the cable to the param-

eter NI g/a :

Natural frequency ratio = 4 g /a w (2.75)

A trial-and-error solution for the roots of D(w) will yield the

desired natural frequency ratios.

11.4.3. In-Plane Forced Motion of the Cable

The necessary theory to describe the normal mode motion of

the suspended cable has been derived in the previous two sections.

Now it would be of interest to develop a means of determining the
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displacements and tensions for any point along a cable when one end is

held fixed and the other end is subjected to a prescribed tangential

displacement at a specified frequency.

Any periodic function may be expressed as the superposition of

a series of sine and cosine terms through the use of a Fourier series.

Thus if the displacements and tensions in a cable can be determined

for a single, sinusoidally varying input displacement of frequency

ratio wf' then through use of a Fourier series it will be possible to

determine the tensions and displacements for any arbitrary periodic

input. Consider the cable to be fixed at point
1

and that at position

the cable is subjected to a tangential displacement of U(2)

oscillating sinusoidally at a frequency ratio wf. For this analysis,

the normal displacement at -D2 will be restrained to zero displace-

ment. If one point on the cable is subjected to a forced oscillation of

frequency ratio wf, then a steady state solution in which all points

along the cable oscillate at this frequency exists. Now matrix Equa-

tion 2. 74 may be written as:

wf) ui(1,wf.) u2(1,wf) u3(1,wf)

wf) uA,u)f) u2(1,wf) uA,wf)

u0(2,wf) ui(2,wf) u2(2,wf) u3(2,wf)

ub(2,o)f) ull(2,wf) u2( u3( 2,wf)



or in shorter notation:

[u(1, f)] {C} = {U(2)}
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(2. 77)

A glance at matrix Equation 2.76 will reveal that it contains four

equations in four unknowns, the constants C.. Solution of 2.77 for

the unknown constants C. yields:

{C} = [u(
1, 2,u) f )]-1{U(

2 )} (2. 78)

The above equation will yield the C. constants providing the forcing

frequency is not equal to one of the natural frequencies of the cable.

Now that the constants C. have been determined, it will be a

simple matter to determine the tangential displacement at any point

along the cable gyp, from the relationship:

U(p) =
0
(p) ul (p) u 2

(p) u3( p)1 (2. 79)

where the
J P

) have been previously defined in Equation 2.74 and

the constants C. by Equation 2.78. The normal displacement V

and tension T in the cable are given in terms of o by Equations

2.36 and 2.37; or written in terms of by:



V(p) 1fcc_ilij

Itp1 t

2 + 1
P 412,1

T( P)
13( p)1+1

_

5+4' ( + k2

P

2 1
+ 1

+ wf 1 I I t I

P
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(2. 80)

1)3
P

1

(1+1
2

1

i 1 51 dUI+2,5( 1 1

P 1 t 1

P
+1)(1+It 1) cq 1P t

P

23 +1)3/2 (1+It I)+3t ,F-7 +1 (1+1t 1)1 d
2

U1

P" (77 P P 1 1
2 t

13/ 3/2 3

I pl 1+1) (1+1p1) d 3

11.4.4. Out-of-Plane Normal Mode Motions

(2. 81)

The technique for the solution of out-of-plane normal mode

motion is identical to the technique in Section 11.4.2 for in-plane

normal mode motion. Hence the analysis in this section will not con-

tain as much detail as was given in Section II. 4. 2. Equation 2.44,

describing the out-of-plane motion of the cable, is an ordinary,

linear, second order differential equation with polynomial coefficients.

Thus Equation 2.44 lends itself to a power series solution of the form

developed by Frobenius. The singular points of Equation 2.44 are
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2 2given by the roots of the coefficient of d p/d. and occur at = 0

and -2.

A power series expansion about the singular point = 0 will

have the form:

co

p() = eke +r , e
0 0

(2. 82)

k=0

Substitution of Equation 2.82 into Equation 2.44 will yield the following

indicial equation:

(2r 2 -r)e
0

= 0 (2. 83)

Solution of the above equation yields the two characteristic exponents

r = 0, 1/2. Since these exponents do not differ by an integer, the

solutions obtained will be linearly independent. The complete solution

to Equation 2.44 will have the form:

where

P() =
1

E.pA)
J J

j=0

co

pi () = p2r () = L ek(r) k+r
,

k=0

(2. 84)

(r =0,1/2) (2.85)

The two arbitrary constants e
0

(r) will be assigned values of:
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e0(r) = 1, (r = 0, 1/2) (2. 86)

The remainin,- coefficients, ek (k = 1 -"'" co), are given by the fol-

lowing recursion relationship:

(k+r -1)2+w2ek = - e k-1 - e k 22(k+r) 2-(k+r) 2(k+r) 2 -(k+r)

2

(2. 87)

All coefficients in the above equation with negative subscripts are

zero.

Substitution of

2 2 4
cr T T

1 =T(1-7 +7- )

into the series defined by Equations 2. 85, 2.86 and 2. 87 yields the

following lead terms in the two series:
133

2
p 0= 1 +...

o 1+4w
2

3
p1= NIT 12 cr +

Equation 2.84 is a solution to Equation 2.44 for positive

(2. 88a)

(2. 88b)

For negative values of then a general solution to Equation 2.44

would be of the form:



P( -) =
1

j=0

M.p.(-)
.3 3
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(2. 89)

Continuity of the zeroth and first derivatives at the origin will insure

that the displacement and slope at the origin are continuous; this

requirement may be expressed as

P( -) = P(-o-) (o- = 0) (2.90a)

P'(cr) = P'(-cr) (cr = 0) (2.90b)

Substitution of Equations 2. 84 and 2.89 (written in terms of the

variable 0-) into Equations 2.90 yields:

[

PO() P1(r) 0 130(-) 131(-0') MO

pi (a-) pi (0") E pi (-(r) pi (-0") M0 1 1 0 1 1

Differentiation and substitution of Equations 2.88 into the above

matrix equation and subsequent evaluation at the origin (cr = 0)

(2.91)

yields the following relations between the constants E. and M.:
J J

M
0

= E0, M1 = -El

Now the solution for the out-of-plane displacement, valid for both

positive and negative , may be expressed as..



where

P(0 =
j=0

E.N.()
.1 3

NA) = (th)iPi(41)
J
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(2.92)

(2.93)

Equation 2.93 is valid for values of in the range,

-2 < < 2. The maximum angle a for which the above equation is

valid is a = 70.5°. For many applications, it may be desirable to

determine the out-of-plane displacements for values of a greater

than 70.5°. Hence it will be necessary to write another series solu-

tion to Equation 2.43 which will converge for values of
I

I > 2.

Substitution of the variable change

X = 2

into Equation 2.44 yields:

2d q
2

cla
(X+2)(X+4) + (X+3) + (x+3)o.)

2 q = 0
dX

dX
(2. 94)

A power series expansion about the ordinary point x = 0 = 2) will

be of the form:

00

c1(X) = fkXk+r

k=0

(2.95)



Substitution of this power series into Equation 2.94 will yield the

following indicial equation,

8r(r-l)f0 = 0

which yields characteristic exponents r = 0,1.

where

51

(2.96)

The complete solution to Equation 2.94 will have the form:

P(X) = F.q.(X)
J J

cf.) x.( = qr(x) =

j=0

00

(r)xk+r, (r = 0,1)
k=0

The two arbitrary constants f0(r) will be assigned values of:

f0(r) = 1, (r = 0, 1)

(2.97)

(2.98)

(2.99)

The remaining coefficients, fk (k = 0 --' 00), are given by the follow-

ing recursion relationship:

3(2k+2r -3)
fk 8(k+r) fk-1

(k+r -2)(k+r -3)+(k+r -2)+3w2
8(k+r)(k+r-1) fk-2

2

8(k+r)(k+r -1) fk-3 (2. 100)
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All coefficients in the above equation with negative subscripts are

zero. In terms of the variable g, Equation 2.98 will have a region

of convergence of 0 < g < 4. The value of a which may be

attained for g = 4 is 78°.

As was done for the in-plane motion case, it will be desirable

to express the constants F. in terms of the constants E.. This
3

may be accomplished by matching the zeroth and first derivatives at

some mutual point where both series expansions converge. If both

series expansions converge at a point gRm, then:

PO(tRM) Pl(gRM) EO c10(gRM-2) cll(gRM 2) FO

RM130 (t ) 131( RM) El q' (g -2) q' (g -2) F0 RM 1 RM 1

or in shorter notation:
(2. 101)

[PR(RM)] {E} = [QR(RM-2)]{F} (2. 102)

Solution of the above matrix equation for {F} yields:

{F} = [QR(Rm-2)]-1[PR(Rm)] {E} (2. 103)

Equations 2.92 and 2.97 will yield solutions for the out-of-plane

displacement of a cable in the range -2 < g < 4. The solution range

can be further extended by replacement of g with -g in the

defining equation for x, i.e. , X = 2. This variable change



would allow solutions to be determined for the range -4 < < 0.

Substitution of the variable change:

or

= 2 (for < 0)

LP= 11 -2

53 53

into Equation 2.44 yields an equation identical to Equation 2.94 except

that the independent variable is qi instead of x . Solution of this

equation yields:

where,

1

P(4i) = H.q3 .(4J)

j=0

00

qi(LP) qr(o for4"r
k=0

(2. 104)

(2. 105)

By matching Equations 2.92 and 2.104 at a point where both

equations are valid, it will be possible to determine the constants H.
J

in terms of the constants

equations are valid, then:

E.. Let
3

Po(Lm) -Pl(Lm) rol
p0 ( LM ) pi(LM) Ei

or in shorter notation:

LM be a point at which both

q0 (- LM -2) ql(-LM-2] [H01
-q0( (-

LM
-2) -ci

1
(-

LM
-2)

H1

(2. 106)



[PL(LM)] {E} = [QL(-LM-2)]{H}

Solution of the above matrix equation for {H} yields;
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(2. 107)

{H} [QL(-Lm-2)]-1[PL(Lm)]{E} (2.108)

Through the use of Equations 2.92, 2.97, and 2.104, the out-of-plane

displacement of the cable may be determined for any value of in

the range -4 < < 4.

Consider the cable to be fixed at two points
1

and At

these two points of fixity, the out-of-plane displacement will be zero.

Hence the boundary conditions are:

Written in matrix

13(1)

notation, Equation

[Ro(y
R

0
( 2) R

1 2)

= P(2) = 0

2.109 will have the form:

E
1

0

(2.

(2.

109)

110)

where

= 1.10(I )_1(--LO (ELM
< < c1M)

1:c1(-2)1[QR(R1\4-2)] 1[PR;md, (ARM < 4)

LR(Q.1 = Lq(--2)J [QL(-LA4-2)]-1[PL(Lm)], (-4 < 1.4/\4)
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A necessary and sufficient condition for the existence of a

non-trivial {E} satisfying Equation 2.110 is that the determinant

of the square matrix in 2.110 vanish. Remembering that the R(t)' s

are functions of the nondimensional frequency ratios s; then the

values of (.4) which render zero values for the determinant D(w)

are the ratios of the natural frequencies of out-of-plane oscillation of

the cable to the parameter :

Natural frequency ratio = Nrf

A trial-and-error solution for the roots of D(w) will yield the

desired natural frequency ratios.
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III. RESULTS

The theory, equations, and solutions necessary to describe the

general catenary geometry, the in-plane and out-of-plane normal

mode motion, and in-plane forced motion have been developed in

Section II of this paper. This section will cover each of the

categories listed above by giving numerical results based on the pre-

viously derived theory and solutions. For the general catenary

geometry, relationships between the dimensionless variables

and and dimensionless ratios involving the horizontal and

vertical distance between supports and the cable length will be pre-

sented. A method of relating the catenary size parameter a to the

other cable parameters will be presented. The convergence region

of the solutions for in-plane and out-of-plane normal mode motion

will also be investigated. For the in-plane and out-of-plane normal

mode motion, curves of the natural frequency ratios as a function of

specific cable geometries are given. The entity of interest for the

case of forced motion of the cable is the maximum tension in the

cable. Hence curves of the maximum tension in the cable as functions

of the forcing frequency and cable geometry are presented.

The solutions which describe the cable geometry and motions

contain many series expansions and trial and error procedures, hence

it is imperative that the computer be used to obtain the necessary
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results. Presentation of the results will include a very brief

description of any computer programs used to obtain the particular

results along with a listing of the program and calculated numerical

data. Details pertaining to the computer programs may be obtained

by study of the program listings.

111.1. Cable Geometry and Solution Convergence Region

The equations and solutions for the cable motion are written in

terms of the nondimensional variables and
2.

For conveni-

ence in using the results obtained, it is desirable to express the

variables
1

and in terms of the horizontal and vertical

distances between the support points and the cable length. Let I be

the total length of the cable, b be the horizontal distance between the

support points, and h be the vertical height difference between the

support points, as shown in Figure 2.1. The nondimensional cable

length from the apex of the cable to a position is given by Equation

2. 40. The total length of the line will be given by:

= s
2

- s
1

= a(o-
2

-cr
1

) (3. 1)

Substitution of Equation 2. 25a into the above equation yields the follow-

ing expression for the line length I:



x2 xl= s
2

- s
1

= a[sinh(a ) s inh( a)i (3. 2)
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The height difference h may be determined using Equation 2.26 as

follows:

xlh = y2 y
1

= a[cosh(
a) - cosh(a ) ] (3. 3)

The horizontal difference b is given by the following:

b = x2 -x1 (3.4)

Elimination of s, y, and x from Equations 3. 2, 3.3, and 3. 4

yields a transcendental equation which defines the ratio of a/b for

each value of the parameter b/N
2-h 2 (Routh [2]).

b
2a b

b / 2 2'sinh -h2a

(3. 5)

Data Table A-1 and the corresponding Figure A-2 in Appendix A give

values of bdi 2 -h2 and a/b satisfying Equation (3.5).

Using the parameters bits/ /2-h2 and h/b as inputs, then

unique values of tl and t
2

may be determined with the aid of

Equation 3.5 along with the other geometric relationships developed

for the cable. Transformation of the cable parameters .1, b, and h

to the boundary is is necessary as the equations describing the
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motion of the cable are written in terms of .

Using
2

and h/b as inputs, then it is also possible to

determine and b4.1 2-h2 with the aid of the catenary equa-

tions. This will be useful in determining the values of h/b and

Will 2 -h2' for which the series expansions are valid. The series

solutions for both the in-plane and out-of-plane motion of the cable,

as developed in Section II of this paper, have a convergence region of

-4 < < 4. If is assigned a value of 4 and h is given,

2'then determination of b/wj 2 -h will provide the minimum value of

b /N/ f 2 -h2 for which the solutions are valid .

Appendix A-3 is a listing of the program which calculates

and the minimum value of b 2 -h21 for which the motion equations

are theoretically valid given and h/b as inputs. Data Table

A-4 gives the values of h/b and computer generated values of
2 21

-h for which the solutions are valid. This relationship is

also presented in Figure 3.1.

111.2. Natural Frequency Ratios for Normal Mode Motion

Calculation of the natural frequency ratios for the cable is the

first and most difficult step in the sequence of determining the normal

mode motion of the cable. The next step after calculation of the

natural frequency ratios, would be to determine the eigen-vectors

associated with each natural frequency ratio. Determination of the
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b

Figure 3.1. Normal mode motion solution convergence region
versus sag and support parameters.
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natural frequency ratios and their corresponding eigen-vectors are

the necessary entities to completely describe the dynamic motion of

the free vibrations in the cable.

The natural frequency ratios for the in-plane and out

normal mode motion may be determined by using Equations 2. 74 and

2.110 respectively. The natural frequency ratios are the roots which

yield zero values for the determinants in Equations 2. 74 and 2.110

subject to given boundary values and t2. Due to the nature of

the determinants in Equations 2. 74 and 2.110, the computer was used

in determining the natural frequency ratios. The computer program

consists of three sections. The first part determines the boundary

Vs given the cable length f and support positions b and h.

The second part evaluates the determinants given by Equation 2.74 or

2.110 for any arbitrary value of the natural frequency ratio co. This

part of the program includes the construction of all necessary series

and matching considerations necessary to define each term in the

determinants. The last part of the program uses a Newton-Raphson

root finding procedure with a numerical approximation for the deriva-

tive to determine the values of w which yield zero values for the

determinants defined by Equations 2.74 or 2. 110.

Appendices B-1 and B-2 are listings of the computer programs

used to evaluate the natural frequency ratios for the in-plane and out-

of-plane motion of the cable. Data tables B-3 through B-4 give
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natural frequency ratios for various combinations of h/b and

bid 2 -h 2) for both the in-plane and out-of-plane motion of the

cable. These results are depicted graphically in Figures 3.2 to 3.11.

Figure 3. 12 is identical to Figure 3.2 however natural

frequencies from the works of Pugs ley [3], Saxon and Cahn [4],

and Goodey [5] for the in-plane motion are shown. The lowest or

fundamental mode of vibration of the cable in the transverse direction

may be approximated with the aid of Rayleigh's Principle. Rayleigh's

Principle states that in the fundamental mode of vibration of an

elastic system, the distribution of kinetic and potential energies is

such as to make the frequency a minimum. The derivation of the

fundamental natural frequency of a cable in transverse vibration using

Rayleigh's Principle is given in Appendix B-5. Calculated values of

these fundamental frequencies are shown on Figure 3. 13.

111.3. Tensions and Displacements for In-Plane Forced Motion

In order to determine the tension in a cable when one end of the

cable is subjected to any arbitrary periodic motion, then a Fourier

series expansion may be utilized. Through Fourier series analysis,

then any arbitrary periodic input motion may be approximated by the

superposition of a series of sinusoidally varying input motions made

up of different frequencies. Thus it is necessary to first express the

tension in the cable when one end is subjected to an arbitrary
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sinusoidally varying input displacement of frequency wf.

The displacements and tensions at any position along the cable

for a prescribed input motion of frequency wf at one end of the

cable are given by Equations 2.79, 2.80, and 2.81. Using the theory

given in Section 11.4.3 of this paper, a computer program was written

which evaluated the tangential and normal displacements and tension in

a cable at various points along the cable. Appendix C-1 is a listing

of this program. Data Tables C-2 through C-3 give the cable dis-

placements and tensions for various combinations of h /b, b/ .Q

2d ,

and wf. Figures 3.14 and 3.15 graphically show the relation between

the maximum dynamic tension in the cable and the forcing frequency
2 21for various combinations of 103 and 13/41 -h . A glance at these

figures shows that for forcing frequencies near the natural frequencies

of the cable, then the maximum tension becomes large. For a forcing

frequency equal to a natural frequency of the cable, then the maximum

tension will be infinite. Figure 3.16 shows how the displacements and

tensions vary along a cable for a typical cable geometry and forcing

frequency. Figure 3.17 depicts the shape of a cable when it is oscil-

lating near its lowest natural frequency. Figure 3. 17(a) shows the

maximum cable displacement when it is oscillating at slightly less

than its lowest natural frequency and Figure 3. 17(b) shows the maxi-

mum cable displacement when it is oscillating slightly higher than its

lowest natural frequency. Since the cable is oscillating very near its
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lowest natural frequency in both of the above cases, then Figures

3. l7(a) and (b) will very closely approximate the first mode shape

of the in-plane oscillations of the cable.



I I
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Figure 3. 14. Maximum dynamic tension versus forcing frequency
for various values of the sag parameter and hilo = 0.0.
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Figure 3. 15. Maximum dynamic tension versus forcing frequency
for various values of the sag parameter and h/b = 0.5.
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Position along cable )

Figure 3.16. Normal and tangential displacements and
dynamic tension versus position for
h/b = 0.0, b 2 -h21= .9, and CJ = 2.0.
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Figure 3.17. Cable displacement forced harmonically near its
lowest natural frequency.
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IV. CONCLUSIONS AND RECOMMENDATIONS

Prior to Smith and Thompson's analysis, all cable dynamics

solutions had been approximations. The variable change which Smith

and Thompson found was the breakthrough which allowed a closed

form solution to the equations of motion of the catenary. This paper

is an extension of the basic groundwork laid out by Smith and

Thompson. The following list gives a brief description of the

significant findings of this paper.

1. Whereas all previous work in cable dynamics had been

concerned with the two dimensional, in-plane motion of the

cable, this paper covered the three dimensional motion of

the cable. Considered in the derivation of the equations of

motion was the inclusion of a linear drag term which acted

on the cable from the surrounding medium and the inclusion

of elasticity (extensibility) of the cable.

2. Smith and Thompson's cable solution was limited to a range

for the depth-to-span ratio of no greater than 0. 76. Using

Smith and Thompson's power series solution along with a

second power series solution about a different point, it was

possible to further extend the solution range for the motion

equations. The solution range has been extended for depth-

to span ratios of up to 1.09.
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3. It was found that the equation governing the out-of-plane

motion was independent of the equations governing the in-

plane-motion of the cable in the linearized case. The same

variable change which was used on the in-plane equation of

motion to convert it to a form which contained polynomial

coefficients was also successful for the out-of-plane motion

equation in yielding an equation with polynomial coefficients.

4. The same solution procedure as was used for the in-plane

motion was applicable for the out motion. Series

solutions were developed using the Frobenius method.

Through the use of two separate expansions along with the

appropriate series matching conditions, then the out-of-plane

motion equation was solved for cables with a depth-to-span

ratio of up to 1.09.

5. Based on the theory and equations developed for the

normal-mode motion of the cable, then the overall motion of

the cable was determined when subjected to an arbitrary

oscillatory forcing function. A method and program were

developed to evaluate the maximum displacements and

tension at any point along a cable when one end of the cable

was subjected to a prescribed sinusoidally varying tangential

displacement of given frequency and magnitude. Resonance

diagrams and corresponding displacement and tension
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distributions were constructed using the data obtained from

the analysis of forced motion of the cable.

The study and analysis of cable dynamics is a very broad topic

and has applications in many different fields. Due to the scope of the

subject, several areas in the analysis of cable dynamics were

neglected and would lend themselves to further investigation. Areas

in which further investigation and analysis would be warranted are as

follows:

1. The solutions obtained for both the in-plane and out-of-plane

equations of motion theoretically converge for depth-to-span

ratios of up to 1.09. It may be desirable to analyze cable

systems with depth-to-span ratios of greater than 1.09.

There are two possible methods of increasing the solution

range to handle depth-to-span ratios of greater than 1.09.

First; a third series solution could be written about some

point, say = 4, and this solution could be matched to the

second series solution which was written about the point

= 2. This technique would involve manipulation of three

power series solutions. A second technique would be to write

a power series solution about some point, say = 4, and

match this solution directly to the first series solution written

about the point = 0. This method would involve operations

with only two power series solutions. The drawback of this
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second method is that an excessive number of terms in the

power series may be necessary to achieve the desired accu-

racy at the matching point with the first series.

2. The natural frequency ratios were calculated using 80 terms

in each of the necessary series expansions. Through a

series of trial runs, it was found that there was no signifi-

cant difference between expansions constructed with 80 terms

and 100 terms. These trial runs were for the first four

derivatives of the expression for the tangential displacement

of the cable at a frequency ratio of 25 and a cable angle of

77°. For frequency ratios of less than 25 or for cable angles,

less than 77°, then it would be expected that fewer than 80

terms would be required to provide sufficient accuracy for

computations of the natural frequency ratios. Hence it may

be desirable to optimize the computer programs so that they

could generate data with the necessary accuracy using the

fewest number of terms in the series expansions. It would

be possible to reduce computational costs in this way.

3. The general equations of motion were derived and included

linear damping of the cable from its surrounding medium.

The cable solutions given herein neglected the damping of the

cable. For mooring lines, it would be expected that viscous

damping of the cable would significantly affect the response
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of the cable. Hence it would be desirable to include the

effects of damping in the cable dynamics solutions. Lamotte

[8] did some preliminary work in determining the natural

frequency ratios for linearly damped cables with depth-to-

span ratios of less than .76. The next logical step would be

to extend Lamotte Is work to cables with depth-to-span ratios

of greater than .76. This could be accomplished by writing

another series solution about an appropriate point and then

matching the new series solution with the series solution

developed by Lamotte. The technique would be similar to the

one used in this paper for matching solutions for the

undamped cable.

4. Besides linear damping, the derived equations of motion

included a term for the extensibility of the cable. However

in solving the equations of motion, it was assumed that the

cable was inextensible. Equations 2.33 and 2.34 represent

three equations in three unknowns U, V, and T. Some

preliminary work was done with the three equations to reduce

them to a single equation in one unknown U. In its most

general form, the single differential equation which was

derived from the three given equations was intractable. Only

in the case when the cable was assumed to be inextensible

does the single differential equation governing the tangential
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displacement reduce to something which is manageable.

Hence some analysis could be done to include the effects of

extensible cables on the normal mode motions. It does not

appear to be feasible to approach this problem by trying to

solve Equations 2.33 and 2.34 in their most general forms.

5. The cable displacements and tensions were determined for

the case where one end was forced to oscillate sinusoidally

in the tangential direction at a frequency of wf. In order to

be able to simulate an arbitrary displacement at one end of

the cable, then the cable must also be able to oscillate in the

normal directions. Hence it may be desirable to modify

Equation 2.76 to include a sinusoidally oscillating normal

displacement at position 2.

6. Since the tension in the cable was not affected by the

transverse motion of the cable, then the most interesting

quantity that could be gleaned from the study of forced

motion of the cable in the out-of-plane direction would be the

displacement. It may be of interest to determine the dis

placements in the cable when one end is subjected to a

sinusoidally oscillating transverse displacement at frequency

o.)f. Analysis similar to that used in Section 11.4.3 for the

in-plane forced motion of the cable could be used for the out-

of -plane motion of the cable.
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7. Another area of work that could be expanded upon would be

to use superposition techniques to determine the response of

the cable to an arbitrary periodic input displacement at one

end of the cable.

Recommendations 5 through 7 concern forced motion of the

undamped, inextensible cable. Hence work could also be carried out

on these three items when the cable is damped and extensible.
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Data Table A -1. Cable parameter as a function of the sag
parameter .

a/b
t

13P1/ 2 -h2

0.00 0.00000
0.01 0.06864
0.02 0.07725
0.03 0.08348
0.04 0.08862
0.05 0.09312
0.10 0.11111
0.15 0.12597
0.20 0.13973
0.25 0.15320
0.30 0.16681
0.35 0.18093
0.40 0.19587
0.45 0.21197
0.50 0.22964
0.55 0.24939
0.60 0.27195
0.65 0.29834
0.70 0.33015
0.75 0.37003
0.80 0.42275
0.85 0.49828
0.90 0.62233
0.95 0.89670
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Appendix A-3. Convergence region program

PROGRAM REGION IINPUT,OUTPUT,TAPE60=INPUT,TAPE61=OUTPUT)
READ (60,61 NOB,X2
IF (EOF(60)) 5,2

2 S2 = X2'SCIRTt2e/X24.1.)
S2A = SQRT(1.+S2*S2)
Si = 1.0

3 SIA = SQRT(1.+S1liSi)
WRITE (61,8) SigSIA
SiN = S1-..(S1AHO8*ALOG(SiA+Si)S2A+NO9*ALOG(S2A,-S2)) /(Si/S1AHO9/

S(S1A+Si)*(Si/SiA+1.))
IF (ABS(lSiNSIA/SiN)4E..000i/ GO TO 4

Si = SIN
GO TO 3

4 Xi = SiN/ASS(SiN1*(SCIRT(1.+SiN*SiN)1.)
RLOA = S2 S1N
BOA = ALOG(IS2A+S2)/(SORT(1.+SiN*S1N)+S1N))
BOSR = is/SQRMRLOA/8OA$"211093NOBi
WRITE (61,7) X2010108,80A,BOSR
GO TO i

5 STOP

6 FORMAT (2F5.2)
7 FORMAT (//1Xg4MX2 =,F6,3,5X,4111Xi =,F6.3,5X,10NH OVER B = ,F5.2,5X,

tiON8 OVER A =1F6.315X//g1X,26N8 OVER SJRT(L,SQ0.-HISQ0) = ,F6.3)

8 FORMAT (iX,2(5X,F8,4))
ENO
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Data Table A-4. Cable equation convergence region data.

Support
Parameter

103

Right
Boundary

Minimum
Left

Boundary

1

Cable
Parameter

ailp

Minimum.
Sag

Parameter
b /JP 2 -h 2 /

O. 00 4. 0 -4. 000 O. 218 0.468

O. 25 4. 0 -2.916 0.231 O. 503

0.50 4. 0 -1. 977 O. 247 O. 545

0.75 4. 0 -1. 208 0. 269 O. 593

1.00 4. 0 -0. 634 O. 297 0. 648

1. 50 4. 0 -0. 057 0.380 0. 761

2.00 4. 0 0.051 O. 506 O. 854

2.50 4. 0 0.377 O. 690 O. 918

3.00 4. 0 O. 907 O. 970 O. 957

3.50 4. 0 1. 580 1. 445 O. 980

4. 00 4. 0 2.364 2.445 0. 993



PROGRAM CABLE (INPUT.CUTRUT.TAPE60=INPUT.TAPE61=OLTPUT)
OIMENSION R1(41. R2(4). 11(200.4). 8(200.41. 0(4.41. 0(494)9 UR(4.4
1)9 VR(4.81. ALPHA(4.4)9 UL(494)9 BETA(4.4). 0E2(21
COMMON 14.1(2)

1 READ (60.341 HODOOSR04.109XR
IF (E0F(601) 3112

2 WRITE (61035) N.10.08
BOA .2 1.0

3 EX . EXP(80111
EXI = I./EX
SIH = (EX-EXI12.5
COH = (EX+EXT)*.5
80AN = BOA-(80A/SIH..90SR)/((1./SIH).(1.90A.COH/SIH))
IF (A8S((800.804M1,80AN)-..001) 515.4

4 80A = BUN
GO TO 3

5 AOBN 1. /ROAN
AOLH = A08)1.11081480SR280SR
HLOA = 80AN*IHOEISEIRT(80S(7.80SR.HOBKHC841.)/BOSR)
Al (SORT(1.+AOLM) 1.)
A2 = A14.2.
St . .5.(A1.HLOA...1./1)112HLOA1)
S2 . .5.(A2.HL04..1./(A2HLOA1)
Y1 . SI/A8S(S/)(SORT(1.4.S12S1)..i.)

13 CALL ACOEF (1.41
CALL OCOEE ILO)
M = 1
CALL *MAT (Xt9119R104.UR,
089 =
M = 2
CALL AMAT (XRNO,R20.1(1)
DO 15 2=194

DO 15 J=5.5
IF (I+4.00.3) GO TO 14
VR(19J1 . 0.0
GO TO 15

14 18(19J) = 1.0
15 CONTINUE

CALL TOWERS (VR)
DO 16 I.114

00 16 J.1.4
DO 16 821.4

IF (1.00.1) ALPHAII,J) = 0.0
16 ALPHA(I.J) = VRII.1(1.URIK,J14ALPHA(1.3)

X2E1 2 122.8
II . 3
M . 2
CALL WHAT III.X28.1.10012.1)

6
7

12 = SORT41.+52*521..1.
WRITE 161136) H01980SR.008N.119X2
TA = 10
00 6 121,4

82(I)
81(11 = 82(I)'.5
DEL = .80052118SIYA)
1f11 = 10..0E1/2. C

17

11

00 17 123.4
00 17 J.194

00 17 82194
IF IK.E0.1) 011,21 . 1.8

041.31 = VIIIKEPALPMA(K.J)001IJ1
IF IX/.1.E.,.7) 60 TO 21
IF IX1.1.2.8.81 GO TO 19
IS BETWEEN 8.8 ANO .7

2(2) = T(1).0EL II 2 1
00 29 L-=1.2 I

IF (X2.GE..7.AND.X1.120.2) GO TO 13 GALL BOAT (II.11014.8.119111

IF 1X2eGE..T.AND.XleGE..7) GO TO 11 DO 18 I.1.2
IF 11(1.1-2.8.8) GO TO 9 00 10 J2194

C X2 LESS THAN .7 ANO X1 GREATER THAN O. 18 DII.J1 z VII,J)
CALL ACOEF (LIM GO TO 27
IT . 1 C 11 IS BETWEEN AND 0.0
M = 1 19 X1A s A8S(11)

CALL VMAT (III1X1.4.11,011.V) II . 1

II = 3 M s 1
CALL VMAT (II.X2001.41911 CALL VMAT (II.X1A.N.A.81.1)
DO 8 121.4 DO 211 121,2

DO 0 j.194 00 20 J.194
8 0(1.J) = V(I.J) VII,J1 s (1)P.II,J121(I.J1

GO TO 27 20 DII.J1 = VII1J)
C X2 LESS THAN .7 AND XI BETWEEN ANO O. GO TO 27

9 CALL ACOEF (1.11) X/ LESS THAN OR EQUAL TO
II = 3 21 XIB = - X1 -2.9
M = 1 DO 23 1=194
CALL (NAT (II.X209A.RI.V) 00 23 J21.4
00 10 I=3.4 IF (J.E0.2.0R.J.E0.4) GO TO 22

00 10 J=1,4 UL111.11 = UR(I.J1
In D(I.J) V(I.J1 GO TO 23

GO TO 19 22 UL(I.J1 l.1R1I.J1
C X2 AND X1 80TH :BEATER THAN .7. 23 CONTINUE

11 X1R = 00 24 1.114
025 . 02-2.0 DO 24 J=194
CALL BCOEF (1.0) 00 24 K.194
II = 1 IF (8.10.11 9ETA(I.J)
M = 2 24 BETA(19J1 = VR(I.KML(K.J)+BETA(19J)
CALL WHAT (ITO1R91(03012.1) II = 1
II = 3 M = 2
CALL (MAT (II.X2R.M.B.R2.1) CALL VMAT III.X150.802.11
00 12 1=1.4 DO 25 J.1.4

00 12 J=1.4 25 0(29.11 = -1(20J)
12 DII.J1 = V(19J) 00 26 1=192

GO TO 27 00 26 J.1.4
C X? GREATER THAN .79 TPRFE POSSIBILITIES EXIST FOR X1. 00 26 K=1.4

IF IK.E0.11 0(19J) = 0.0



26
27
28

01I.J1 = VII.K)BETA(K.J)F0(I.J)
DO 28 1=1.4
WRITE 161.321 10(I,JI.J=1,41
0E1'10 = 011.111012,21013.31.0(4,41.013.21014.31f012,411.014.
21.0(3.41012.31-012.41013.31014.21-013.41.014,31.0(2,21-014,
41.013.21.01.7.311-011,21*(012,11'313.31014.414043.11.0(4,3)0
120.1+014.11.013.41012.11-014,11.013,11.012.41-014.31.013,41.0
(2.11-0(4,41.0(2.3/fD13.111.011,310(0(2,1)F0(3.21f0(4.41.013.11
014.21.0(2.41014.11.013.411(2.21-014,11.0(3,21.0(2,41-D14.21

2 CONTINUE
RETURN
ENO

SUBROUTINE BCOEF 11,9)
DIMENSION 8(200.4)
COMMON M,Y12)
ZL = 11111111
NUM = N66

.013.41'0(2.11 -014,4/.012.21.013.111 00 2 1R=1,4

0E1(L) = DET(L)-011.41'10(2,11.013.21.014.31,013,1/.014.21f0(E. RR = IR

31014.11.013.31.012,21-014.11011.21012,31 -014.2(.013.31'012. R = RN-1.

11-014.31.0(2,2/013.111 6(1,111) = 0.0

WRITE 161031 1,0ET(1) 6(2,19) = 0.1

29 CONTINUE 013,1111 = 0.0

IF IDET(11OET171.LT.0.01 GO TO 10 614,111 = 1.8

OER = 10E1121-0ET111I/DEL StS,IRI = 0.0

YA = Y(2)-0ET121/0ER 0(6.1R) = 1.0

WRITE 161.371 YA 917,191 = -016,111161606.6352..1R-3.11/1192..(R.1.11

GO TO 7 616,1R) = -617,1R1.1666.6352..1R-2.11/1192..M.201-0(6,IR).
30 WRITE 161,381 VO.DEL,YA 3 (565.6.72.21.6996.1R-2.1.252.*(R-20.1R-3.)1/1192.6(R62.161R.1.

GO TO 1 ))

31 STOP 019,1R1 = -816,1RIF(666.6.352.61R-1.11/1192..1R.3.11-6(7,IR).
1505.6.72.21.1.996.*IR-1.1.252..1R-1.1.(R-2.11/1192.*(R63.1.1R.2.

32 FORMAT 11X.41E14.7.5211
33 FORMAT (11.400E11,11.2111.,2X.E14.71

11-616,IR11112.699.621.1627.6.102.6211.1R-1.16526.61R-1.1.1R-2.
16.611..111-1.161R-2.11R-3.11/1192.1R63.161R.2.161R61.11

34 FORMAT 12F8.3.13.F8.6.F8.2) 00 1 J.10,NUN
35 FORMAT 11/150 NO. OF TERMS =.I3,5X,25HINITIAL FRECUENCY GUESS =.F6 G-..1

f.2,5X.16HNATCHING POINT =.66.2) K1 J-1

36 FORMAT (IX,I0MH OVER B ..F8.3.5X.31M9 OVER SORT. OF L.SQRD-H,SORD K2 = J-2
1..F8.3.5X11H2A OVER 13 =.F8.3/1X,1SHLEFT BOUNDARY X1 ..F8.3.5X. K3 = J-3

119NRIGHT BOUNDARY X2 ...F8.3) K4 = J-4
37 FORMAT 11X.38HINTERMECIATE FREQUENCY VALUE =.F8.41 K5 = J-5
38 FORMAT 11X.25HINITIAL FREQUENCY GUESS ..F6.2.0X.700ELTA ..F8.5,5X. 116 = J-6

12311FINAL FREQUENCY VALUE =.F8.41 F1 =
END FL

F3 = 6061-6.
SUBROUTINE ACOEF (L.A1 F4 = G.R*9.
DIMENSION A1200.41 FR = GAR-10.
COMMON N.1121 F6 = G)5 -It.
ZL = Y(L)+VIll FT = GoR-12.
NUM = 4+6 FS = 64R-13.
00 2 IR=1,4 F9 = GAR-I4.

RR = IR 81.1,19) = -8(61.1$1).4668..352..F51/(192..F11-81K2.1R1.(565..
R = IRR-1.0112. 72.nl.996.'F5+252..F5.F6),(192..F1*F2)-911(3,1R1(1020.99.
A(1.IR1 = 0.0 71*(627.t1.02.2L).FS.526..F5.F6.66..FS.F6.F711/1192..Fl.F2.F3
Al2.IR) = 0.0 1-41(1(44IRI(-1L.172.+105. ZF5.(21E.,63.*2L).FS.F6.120..F5
A(3.IR) = 0.0 .F6.F7,19.F5.F6mF7.F0)/(192.F1.F2.F3.F41-6(10,1111.((12.036
A14.IR1 = 1.0 .IL)F6.124.4.12..ZLI.F6F7.10.F6F7.F8.F6.FT.FS.F91/1192.
A(5.IRI = -A(4,/0)*(4..MfRM41.FZL)/1(R.1.)12.fR*1.11 1 Fl*F2 F3fF41-01K6.IR/ 14.*ZOT711LfF7fF81/11920M1fF2FPM41
00 1 J=6.NUM 1 CONTINUE

G = J 00 2 J=6,NUM
K1 = J-1 B(J-5,IRI = B(J.IR1
K2 = J-2 2 CONTINUE
K3 J-3 RETURN
K4 = J-4 END
Ft = G+R-5.
F? = SUBROUTINE AMAT (X.A,R.M.U1
F3 = G1M-7. DIMENSION A1200,41. 4141, U14,41
F4 = G*R -9. COMMON N,Y(2)
FS = G*R-1. 00 7 J=1.4
F6 = G'R -4. IF IN.E0.11 GO TO I
F7 = G'4-1. NA = R(J)
FT = G.M 8 = XNA
0(J.IR) = -A(KI,IP)*(20T20F3.140,F6+7.)+(51..2..21).F6-3.. 0 = 9/0
(32.+211.))/(F6*(...F6,F2+3.1)-A(K2,IRI.IF2*(5.*F3.F4..F7+(72.+ E = 0/X
5..ZLI'F6-6..(32.+21.11-2L)/(F6*F1(4.g6F2+I.11-A(K3,IRIF3 F = EfX

O +(F4*F5.F8+4..(6.+ZL)+6-40,121.+21.»/(F6,F1.(4.*F6+F2+3.1)- GO TO 2
t A(x4,IR).2L.,F4f(F6+(4..E6F2+3.10 B = X ''R(J)

CONTINUE 0 = 9fX
00 2 J=4.Num E = 1/1

AIJ-T.IR) = A(J,IR) F = E/X



2 U(1,J) = A(144.1,J)
00 3 IA=1,N

I = N-IA
3 U(1, J1 = U(1,J14)(4.A(I.41,J1

AUX1 = U(I.J1
U(1,J1 = AUX111
U(2,11 = A(444.1,11N
DO 4 IA=204

I = N.2 -IA
4 U(2,J1 = U)2,J104.(I-11A1I,J1

AUX2 = U(2,J)
U12.J1 = AUX2P4R(J1AUX19
U(3,J1 = A(444.1,11N4IN-11
DO 5 IA=3,N

I = )44.3-IA
5 U(3,J) = U(3.J1X4.(I-21(I-11A(I,J1

AUX3 = U(3,11
U(3,J) = AUX384.13(J14(R(J1-1.1 E*AUX14.2.4R(J)4C4AUX2
U(4,J1 = A(4441,J).N(N-11(4-21
00 6 IA=4,N

I = 414.4-IA
6 U(4,J) = U(4,J),X4.(I-11(I-21(1-31A(I,J1

U14,J1 = U(4..11.84.R(J1.1R(J1-1.1*(R(J1-2.1.4.FAUX14.3.4.R(J) (R(J1
1 -1.14E4AUX2f3.4R(J140AUX3

7 CONTINUE
RETURN
END

SUBROUTINE VMAT (II.X.M.A.R.V1
DIMENSION ft(200.41, R(4), 2(4,41
COMMON N,Y(21
II = II+1
DO 5 J=1,4

IF (M.E(1.11 GO TO 1
NA = RfJ1
C = XNA
D
GO TO 2
C = XR(J1

CfX
2 V(II,J) = A1,01,J)

no 3 IA=104
I = N -IA

V(II,J) = V(II,J1XfA(I4.1,-11
AUX1 = V(II.J1
V(II,J) = AUX1C
V(I1,J1 = AIN4.1.J10
DO 4 IA=2,N

I = N.2 -IA
4 V(I1.3) = V(II,J1)4(/-11A1I.J1

V(I1,J1 = V(II,J1C+AUX1 =(J140
5 CONTINUE

RETURN
END

SUBROUTINE INSETS (C)
OIMENSION O(4,81, x(41
COMMON 447(21
CO 3 I=1.4

0 = 0.0
00 2 3=1,4

IF (A3S(C(1,111-ABS(011 2.2.1
D = C(I,J1

2 CONTINUE
DO 3 J=1.3

3 C(I,J1 = C(I,J1/0
on 12 .=to.

KK = 24444-4
K = 4.2-M

= 0.0
L = 1

on 5 I=2,1(
IF (A35(c(I-1.111-J) 5,5,4

4 L = I-1
D = ABS(C(L.111

CONTINUE
IF (1-11 6,8,6

6 00 7 J=1,KK
= C(L,J)

CIL,J1 = CII,J1
C(101 =

7 CONTINUE
0 CONTINUE

DO 9 1=1.4
9 xl Il = C(I.11

DO 11 J=2,KK
D = C11,J)/X(11
DO 10 1=2.4

10 C11-1.3-11 = CII.JI-X(I)0
11 C14.1-1) =
12 CONTINUE

RETURN
END



PROGRAM TRANS
DIMENSION R(21. 54(2) C1200.21. V(2.2), D(2.2). 5(200021. FR(2.21
0, GR(2,2), 600(2,2), ALPHA(2,2), F1(2,2), BETA(2,2). DET(2)
COMMON 4.1(2)

1 READ (60,24) HOS.BOSR04,110,XR
IF (E0F160)) 23.2

2 WRITE 161.251 N.0004
BOA = 1.0

3 EX = EXP(804)
EXI = 1./EX
SIH = (EXEXI)..5
COH = (EXNEX11.5
BONN = 006 ...(BOA/SIHBOSR)/((1./SIH).(1.-BOACOH/SIH))
IF (ABS(IBOA90114)/BOAN)....001) 5,5,4

4 006 = ROAN
GO TO 3

5 AWN = 1./90AN
AOLH = 40EINA0BN*505490SR
HLOA = 90A11 11103 SORT(90SR90SR.H03HOd41.)/90SR)
Al = 1SORT(1.4AOLH)1.)
A2 = 11(.2.
Si = .5.(11*HLOA-.1./101HLOA))
52 = .51112HLOA-.1./(12HLOA))
Xi = 5I/ABS(S1).(SORT11.,SI.S1)..1.)
X2 = SORT(1.4S2*S2)-1.

12 CALL CCOEF (L.R.C1
CALL SCOEF (L.SRS)
M =
CALL UMAT (XR,C01,M,F1)
XRM = )02..2.0
M . 2

CALL UMAT (XR15.51.M.GRI
CALL INNERS IGRIGRI)
00 13 1=1.2

00 13 J=1,2
DO 13 K=1,2

IF (K.E0.11 ALPHA(I.J) = 0.0
13 ALPHA(I.J1 = GRIII,K)FR(0(./)FALPHA(I.J)

021 =
/I = 2
M = 2
CALL BOUMAT 11I.X2R.M.S.SR1)
DO 14 J=1.2

00 14 K=1,2
IF (K.EQ.11 0(2,J) = 0.0

14 D(2.J1 = 112.0(1ALPHA(K.1).(112.1)
IF (X1.LE...1.5) GO TO 17
IF (XI.LT.1.0) GO TO 16

C XI IS BETWEEN 0.0 AND 1.5.
II = I
= 1

CALL BOUMAT (II.A1.N.C.R.V)
DO 15 J=1.2
0(1,11 = W(1,J)
GO TO 20

XI IS BETWEEN -1.5 AND 0.
11A = A1SIX1)
II = 1
N = 1
CALL BOUNAT (//.X1A.N.C,R.V)
041,11 = VII.11
0(1,2) = -V(1.2)
GO TO 20

61 IS LESS THAN OR EQUAL TO -1.5.
1(16 = -01-2.0
FL(I.1) = FR(1.1)
FL(1,2) = -F1(1.2)
FL(2.1) = FR(2.1)
FL(2.2) = -FR(2.2)
DO 16 I=1.2

00 10 J=1.2
DO 16 0=1.2

IF (K.E0.1) SETA(I.J) = 0.0
BETAII.J) = GRI(I.K).FLIK.A.BETA(/.J)
II = 1

M = 2
CALL BOUMAT (11,X18104.S.SRV)
00 19 J=1,2

DO 19 K=1,2
IF (K.E0.1/ 011,J) = 0.0

011,1) = V(1410BETAIK,..1140(1,J1
DET(L) = 0(1.1)D12.21-9(2,1)0(1,2)

CONTINUE
IF IDET11)*DET(2).LE.0.01 GO TO 22
DER = 10E1(21...DET(i))/DEL
WA = W(?).DET(2)/DER
WRITE (61,27) WA
GO TO 6
WRITE (61,25) WOOEL,WA
GO TO I
STOP

6

C

7

C

5

9

C
10

11

WRITE (61,26) H03.905R.1109140(1,X2
WA = WI
0)1) = 0.0
0(2) = 0.5
51(11 = 0.0
5012) = 1.0
DEL = .0005ABS114)
W(1) = WA- DEL /2.0
112) = W(1)NOEL
00 21 L=1,2

IF (X2.GE.1.5.4ND.X1eLT.1.5) 40 TO 12
IF (X2.GE.1.5.4ND.X1.GE.1.5) SO TO 10
IF (X1.1.1.0.01 GO TO 5

02 LESS THAN 1.5 AND Xi GREATER THAN O.
CALL CCOEF (L,R,C)
II = 1
M = 1
CALL BOUMAT (IIX1.4.CR1)
II = 2
CALL BOUMAT
00 7 1=1.2

DO 7 J.1,2
align =
GO TO 20

X2 LESS THAN 1.5 AND XI BETWEEN AND
CALL CCOEF (L.R.C)
II = 2

M = 1
CALL BOUMAT (II,X2.4.C.RV1
00 9 J=112
012,J) = V(B.J)
GO TO 19

X2 AND X1 BOTH GREATER THAN 1.5.
SIR = X1-2.0
X2R = 02-2.0
CALL SCOEF (L,SR,S)
II =

= 2
CALL BOUMAT
II = 2

CALL BOUMAT (II,X2R.M.SSR,V)
00 11 1=1,2

91 11 J=1,2
0(1...1) = 111.J1
GO TO 21

X2 GREATER THAN 1.5, THFEE POSSIXILITIES

O.

EXIST FOR X1

C

C

C

15

16

17

15

19
20
21

22

23

24
25

26

FORMAT (2F8.3I3,2F6.2)
FORMAT (//15H NO. OF TERMS =,13.5X.25HINITIAL FREQUENCY GUESS ..F6

1.2.5X16HMATCHING PO/NT =,F6.2)
FORMAT (1X10HH OVER H ..F8.3,51(.31H1 OVER SORT. CF L.SQRO-H,SORO
8=.F8.3,5X,11H2A OVER 8 =,F8.3/1X,13HLEFT 30U4OARY X1 =,F8.3.5X.



11911RIGHT BOUNDARY K2 ..F3.31
27 FORMAT (1X,30HINTERMEDIATE FREQUENCY VALUE =.F8.41
2f FORMAT (1X,25HIN/TIAL FREQUENCY GUESS ="F6.2,5X0HOELTA =,F0.5.5X.
B23HFINAL FREQUENCY VALUE .0E1.4)
END

SUBROUTINE CCOEF IL.R.C1
DIMENSION C(200,21, R(2)
COMMON 14,1412)
MS = WIL1.44(1)
NUM = N.3
00 1 IR=1,2

CII,IRI = 1.0
C12.IR1 = C(10IR)*( R( IR)..24.NS)/(2..(1.+R(1411*.2(1..RIIR)))
DO 1 J=3.NUM

G = J

it =
J2 =
F1 = G1.1)(IR)1.
F2 = G44)11.212.
F3 = G.RIIRI3.
OEN = 2.F1YE2.F1

1 C(J'IRO = C(.11,IRIY1F2*F3,F2+MSI/DENC(J2gIRIYI.NS1/0EN
RETURN
ENO

SUBROUTINE SCOEF (1...SR'S)
OIMENSION SA200,21, SR(2)
COMMON N,11(21
MS = M(L)M(L)
NUM = N4.5
DO 1 IR=1.2

S(1.18) = 1.0
S(2,IR) = S(IgIR1.16.°11SR(IR)10+3.1/(0.*(1..SR(IR)))
S(301R) = ...S(2,1R1( 3.(1.+SRIIR)))/(5.12..SR(IR))*11.+SRIIR))

$ 1S(1,1R).3..MS/13..(2.*SR(IR)).(1.+SRIIR111
00 1 J=4NU4

G = J
it =
J2 =
J3 =
F1 = G.SRIIR11.
F2 = G. SRII41 -2.
F3
F4 =
OEN = 8.FIF2

1 S(J,IR) .SIJI.,IRI*16..F2.F3+3..F2)/CIENS(J2gIR)*(F3YE4fF34.3..1(S)
1/DENSIJ3eIRIYWS/DEN
RETURN
END

SUBROUTINE UMAT IX.C,R.M,F1
DIMENSION 1(700,2), 8(2), F(2,21
COMMON N,1412)
00 5 I4 =1.7

IF (M.EQ.11 GO TO 1
NA = RIIR)
9 =
0 = X YINA11
GO TO 2
= XRIIP)

D =
2 F(1,IR) = C(N4.1,IR)

DO 3 J=10
JA =

3 FIT'IRI = F(I.IR)*X.CIJA41./R1
FAUX = F(I,IR)
F(lIR) = F11,IRIY0
F(2.IR1 = CIN1.1,1,1 YN
00 4 J=2.14

JA =
4 F(2.Ik) = F(2,IR).X.(J/,11C(JA,IR)

F(2.IP) = F12.1R1YE.R(/R)F4UX*0

5 CONTINUE
RETURN
ENO

SUBROUTINE INVERS (AgO)
DIMENSION A(2,21. 3(2.2)
COMMON N,N(2)
OEN . A(/,1111(2.21..A(2,1111(1,2)
8(1.1) = A(2.2)flEN
13(1,2) = ...A(1.21/DEN
8(2.1) = ...A(2.11/0EN
8(2,2) = A11.1)/DEN
RETURN
ENO

SUBROUTINE BOUNCE (II,x,m,c,Rv)
OIMENSION 11200,2), 8(2). V12.21
COMMON N,M(2)
00 4 J=1,2

IF IN.EQ.11 GO IC 1
NA = R(J)
0 = XYNIA
GO TO 2
0 = XYR(J)

2 VIII,J) = CIN4.1,J)
00 3 IA=1.N

I = N1IA
3 V(II,J) = VIII.J)X+C(I+1,J1

VIII.J1 = VIII.J)0
4 CONTINUE

RETURN
ENO



Date Table B -3. In-plane natural frequency ratios.

Support
Par ameter

hib

Sag
Parameter Boundary s In-Plane Natural Frequency Ratios
134/ 2-h2 W2

w3
w4

w
5 w6

0.00 0.9679 -0.100 0.100 6.67 9.91 13.80 17.11 20.81 24.17
0.00 0.9382 -0.200 0.200 4.52 6.92 9.61 11.99 14.56 16.95
0.00 0.9106 -0.300 0.300 3.55 5.58 7.75 9.70 11.78 13.73
0.00 0.8849 -0.400 0.400 2.98 4.78 6.63 8.33 10.11 11.81
0.00 0.8608 -0.500 0.500 2.59 4.23 5.87 7.40 8.97 10.49
0.00 0.8500 -0.547 0.547 2.44 4.02 5.59 7.05 8.54 9.99
0.00 0.8382 -0.600 0.600 2.30 3.82 5.31 6.70 8.13 9.15
0.00 0.8170 -0.700 0.700 2.09 3.50 4.87 6.17 7.48 8.74
0.00 0.800 -0.785 0.785 1.94 3.28 4.57 5.79 7.02 8.23
0.00 0.700 -1.383 1.383 1.34 2.35 3.30 4.21 5.12 6.02
0.00 0.600 -2.223 2.223 0.98 1.76 2.50 3.21 3.91 4.60
0.00 0.500 -3.468 3.468 0.74 1.33 1.92 2.47 3.02 3.56

0.25 0.98 -0.006 0.180 8.50 12.47 17.38 21.49 26.17 30.35
0.25 0.96 -0.034 0.282 5.78 8.67 12.06 14.99 18.23 21.18
0.25 0.94 -0.073 0.380 4.53 6.94 9.64 12.02 14.61 17.00
0.25 0.92 -0.120 0.477 3.77 5.88 8.17 10.22 12.41 14.46
0.25 0.90 -0.173 0.575 3.25 5.15 7.15 8.97 10.89 12.70
0.25 0.88 -0.232 0.676 2.85 4.60 6.39 8.03 9.75 11.41
0.25 0.86 -0.297 0.779 2.54 4.17 5.80 7.09 8.57 10.34
0.25 0.85 -0.331 0.833 2.41 3.98 5.53 6.98 8.46 9.90
0.25 0.80 -0.525 1.116 1.92 3.25 4.53 5.74 6.96 8.15
0.25 0.70 -1.041 1.798 1.32 2.34 3.28 4.19 5.09 5.98
0.25
0.25

0.60
0.55

-1.800
-2.314

2.719
3.317

0.97
0.85

1.75
1.52

2.49
2.18

3.19
2.80

3.89
3.42

4.58
4.03 ..c>

co



Data Table B-3. Continued.

Support
Parameter

h/b

Sag
Parameter

b/J/2-h21

Boundary 's In -Plane Natural Frequency Ratios

1
2

W11
w3

w4
w5

w6

0.50 0 97 .001 .430 6.56 9.74 13.57 16.82 20.47 26.84

0.50 0 95 -0.005 .562 4.88 7.40 10.30 12.82 15.59 18.13

0.50 0 90 -0.068 .872 3.13 4.98 6.92 8.68 10.55 12.31

0.50 0 85 -0.179 1.183 2.34 3.86 5.37 6.78 8.23 9.63

0.50 0 80 -0.331 1.514 1.86 3.16 4.42 5.60 6.80 7.96

0.50 0 75 -0.525 1.876 1.53 2.67 3.74 4.76 5.78 6.78

0.50 0 70 -0.768 2.282 1.29 2.30 3.22 4.12 5.00 5.88

0.50 0 65 -1.070 2.746 1.11 1.98 2.80 3.59 4.37 5.14

0.50 0 60 -1.446 3.285 0.96 1.73 2.46 3.16 3.84 4.52

1.00 0 98 0.137 0.835 7.31 10.73 14.99 18.53 22.57 28.80

1.00 0 95 0.042 1.157 4.36 6.62 9.24 11.51 14.00 16.10

1.00 0 90 0.000 1.607 2.82 4.49 6.27 7.87 9.57 11.17

1.00 0 85 -0.027 2.034 2.12 3.50 4.91 6.21 7.54 8.83

1.00 0 80 -0.103 2.468 1.70 2.90 4.07 5.17 6.29 7.37

1.00 0 75 -0.224 2.927 1.41 2.47 3.48 4.44 5.40 6.33

1.00 0 70 -0.395 3.424 1.20 2.14 3.02 3.87 4.71 5.54

2.00 0.98 0.638 2.033 5.83 8.55 11.96 14.97 18.08 20.98

2.00 0.95 0.374 2.605 3.49 5.30 7.42 9.24 11.25 13.08

2.00 0.93 0.266 2.925 2.85 4.42 6.19 7.74 9.43 10.98

2.00 0.90 0.153 3.367 2.27 3.62 5.08 6.39 7.78 9.08



Data Table B -3. Continued.

Support
Parameter

h/b

Sag
Parameter Boundary Lowest In-Plane Natural Frequency Ratio

Q2 -h2f12h 2 / wl wz o.)z
(j4

w5

2.50 0.98 0.937 2.681 5.31
2.50 0.96 0.685 3.170 3.62
2.50 0.94 0.516 3.582 2.85

3.00 0.98 1.250 3.343 4.90
3.00 0.96 0.942 3.924 3.34

3.50 0.99 1.856 3.576 6.59



Data Table B -4. Out-of -plane natural frequency ratios.

Support
Parameter

h/b

Sag
Parameter Boundary V s Out-of-Plane Natural Frequency Ratios

13/v i
2 -h 21 o..)1 (,)2 (43

(")4
co5

0.00 0.97 -0.093 0.093 3.64 7.23 10.84 14.44 18.04 21.65
0.00 0.95 -0.160 0.160 2.79 5.51 8.25 10.99 13.73 16.48
0.00 0.90 -0.340 0.340 1.91 3.74 5.59 7.44 9.29 11.15
0.00 0.85 -0.547 0.547 1.51 2.92 4.36 5.80 7.24 8.69
0.00 0.80 -0.785 0.785 1.27 2.41 3.60 4.78 5.98 7.16
0.00 0.75 -1.061 1.061 1.09 2.05 3.06 4.07 5.08 6.09
0.00 0.70 -1.383 1.383 0.96 1.78 2.65 3.52 4.40 5.26
0.00 0.60 -2.223 2.223 0.76 1.36 2.03 2.70 3.37 4.04
0.00 0.50 -3.468 3.468 0.62 1.06 1.60 2.11 2.63 3.14

0.25 0.97 -0.018 0.232 3.59 7.13 10.68 14.24 17.80 21.36
0.25 0.95 -0.052 0.331 2.74 5.44 8.14 10.85 13.56 16.27
0.25 0.90 -0.173 0.575 1.89 3.69 5.52 7.35 9.19 11.02
0.25 0.85 -0.331 0.833 1.50 2.89 4_ 32 5.74 7.17 8.60
0.25 0.80 -0.525 1.116 1.25 2.39 3.57 4.74 5.93 7.11
0.25 0.75 -0.759 1.434 1.08 2.04 3.04 4.04 5.04 6.05
0.25 0.70 -1.041 1.798 0.95 1.77 2.63 3.50 4.36 5.23
0.25 0.65 -1.383 2.221 0.85 1.54 2.30 3.06 3.82 4.57
0.25 0.60 -1.800 2.719 0.76 1.36 2.03 2.69 3.36 4.03
0.25 0.55 -2.314 3.317 0.68 1.20 1.80 2.38 2.96 3.55

0.50 0.97 0.001 0.430 3.45 6.87 10.29 13.71 17.14 20.57
0.50 0.95 -0.005 0.562 2.64 5.24 7.85 10.47 13.08 15.70
0.50 0.90 -0.068 0.872 1.82 3.58 5.35 7.13 8.91 10.69
0.50 0.85 -0.179 1.183 1.45 2.81 4.20 5.59 6.98 8.38



Data Table B -4 . Continued.

Support
Parameter

h/b

Sag
Parameter Boundary s Out-of-Plane Natural Frequence Ratios

bkii 2 -h2112 w1 4.)2 co3
w4

(...)5
c°6

0.50 0.80 -0.331 1.514 1.22 2.34 3.48 4.64 5.79 6.94
0.50 0.75 -0.525 1.876 1.05 2.00 2.97 3.95 4.94 5.92
0.50 0.70 -0.768 2.282 0.93 1.74 2.58 3.43 4.29 5.14
0.50 0.65 -1.070 2.746 0.83 1.53 2.27 3.02 3.77 4.51
0.50 0.60 -1.446 3.285 0.74 1.35 2.01 2.66 3.32 3.97

1.00 0.97 0.094 0.952 3.08 6. 14 9.21 12.27 15.34 18.41
1.00 0.95 0.042 1.157 2.37 4.71 7.06 9.41 11.76 14.11
1.00 0.90 0.000 1.607 1.64 3.25 4.86 6.48 8.10 9.71
1.00 0.85 -0.027 2.034 1.31 2.57 3.84 5.12 6.40 7.68
1.00 0.80 -0.103 2.468 1.10 2.16 3.23 4.30 5.37 6.44
1.00 0.75 -0.224 2.927 0.96 1.87 2.79 3.70 4.62 5.53
1.00 0.70 -0.395 3.424 0.86 1.65 2.44 3.23 4.02 4.84

2.00 0.97 0.529 2.244 2.44 4.90 7.37 9.83 12.28 14.74
2.00 0.95 0.374 2.605 1.88 3.78 5.68 7.55 9.45 11.35
2.00 0.93 0.266 2.925 1.59 3.18 4.76 6.33 7.94 9.54
2.00 0.90 0.153 3.367 1.33 2.64 3.92 5.25 6.59 7.93
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Appendix B-5. Rayleigh's Method for Estimation of the First
Out-of-Plane Natural Frequency

Rayleigh's method uses an energy relationship to estimate the

lowest natural frequency of vibration of both lumped-parameter and

distributed parameter systems. The crux of the method is to

assume an approximate mode shape for the vibration of the system.

Using this mode shape, the maximum potential and kinetic energies

of the system may then be calculated. The frequency of vibration of

the system will appear in the expression for the kinetic energy. When

the maximum kinetic energy is equated to the maximum potential

energy, then the resulting equation will yield the unknown natural

frequency of vibration of the system.

Consider a cable to be suspended between two end points sl

and s2. Let the cable be modeled as a rigid wire. As an assumed

lowest mode shape, let the rigid wire oscillate sinusoidally through an

angle 4 as measured from the equilibrium position of the cable. The

rotation axis is the line connecting the end points s and s2. Let the

distance from the axis of rotation of the cable to any point on the cable

be denoted as z, as indicated in the figure below.

equilibrium
configuration

//displaced
configuration
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The kinetic energy of an element of the cable is given by:

1 2d(KE) = d(-
2

mw )

where w is the speed of the cable element and may be expressed

as:

The total kinetic energy of the cable is thus given by:

s
2

1 . 2 1 .2 2
d(-2 mw ) 2." 2 z ds

sl

The potential energy of an element of the cable is given by:

d(PE) = d(mgd)

where d is the vertical distance between a point on the cable in its

equilibrium configuration and the same point when the cable is

rotated through an angle (1), and may be expressed as:

d = z(1-cos (1))

The total potential energy of the cable is thus given by:

s
2

PE =Sd(mgd) = pgS z(1-cos 4))ds
sl



105

For small angles, the potential energy may be approximated as:

2
s

2

PE Pg4) zds
2

s1

If it is assumed that the cable oscillates sinusoidally, then (I)

may be assumed to have a solution of the form:

(1) = (1)0 sin pt

Using the assumed solution for 4:1, the kinetic and potential

energies of the cable are given as:

and

s2
1

ICE 2 pp
2

cOo
2 cost z

2
ds

s1

s2

PE -7- f pg13.0
2 sin

213t zds
s

1

The maximum kinetic and potential energies are:

and

s2
1 2 2 P

z
2

dKEmax s2 P 13 4'0
s1

1 pg4) SsaPEmax
2 0

zds
s1



Equating the maximum kinetic and potential energies yields:

or solving for 132:

52 s
2

1 2
(i)o
2 y 12 cl)

0

2
p p z2ds = pg zds

s1 s1

s2

2
s

1

R g

zds

s2

z2ds
s1

The frequency 13(0 may be expressed in nondimensional terms

through use of:

R(t) = (0(0)4 7
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where a is the catenary parameter. Hence the lowest nondimen-

sional natural frequency for out-of-plane motion of the cable is given

by:

s
2

zds
s

o.)
2(0)

a
1

s
2

z2ds
s1



Using the cable support parameters b and h, the cable

length ,Q,
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and the catenary geometry equations presented in Section

111.1 of this paper, the integrals in the above equation may be evalu-

ated. With these integrals, then the lowest nondimensional natural

frequency for out-of-plane motion may be calculated for any cable

geometry.

The following table gives the natural frequencies for various

cable geometries.

Support
Parameter

h/13

Sag
Parameter
b/4/2-h21

Out-of-Plane
Natural Frequency

w; by Rayleigh

Out-of-Plane
Natural Frequency

w; Exact

0
0
0

0

0

0

0.95 2.80 2.79
0.90 1.93 1.91
0.80 1.28 1.27
0.70 0.97 0.96
0.60 0.77 0.76
0.50 0.62 0.62



(I'4PUT,CuluT,T,5:1=1,40T,Tar,n1=OtT.Ut)
JI, 'ENCIn`l 311.1. .2 / ( 2 61.-.), 4.41.

T). 6L,A:(4,.), jLI.,.), 1711(.,41, )2(4,1, c1(4),
"UP ( 4. ) 11(4) 'F( '.I

COMMON N.0(2)
REA0 IF 9, 511 N)1,10S?0.Y(1).A,,
IF (=CFI -n)) u7,?

2 .3)(11,])(2),,J(11,11(4)
T4AX = 1.6
EI^A = 1.1

3 EX = EX0(1,11)
III = 1./FX
SIN = (EX-EX1)..5
CON . (=01F0T)..5
00AN = 900-1800/3IH-3CSP)/((1./SIH1(1.-9007COr/S1H1)
IF (A9SUR00-9044)/00AN)-.0011 5,5,4

4 000 = 91AN
GO TO 3

5 009N = 1./90AN
AOLH = 4O840013490SR.EICS.
HLOA = 90014*(H09+SORT(805R790SR7HODH03+1.) /9057)
Al = (SORT(1..0011-11-1.)
A2 = 3162.
S1 = .5(01H104-1./(01HLOA))
S2 = .5(021(104-1./102111041)
X1 = S1/09SIS117(S)RT(1.+SI'S1)-1.1
X2 = S021(10.5252)-1.
IF (X2-X1.LT.5.) GO TO F
NP = 29
GO TO 9

6 IF (X2-X1.LT.4.1 GO TC 7
NP = 19
GO TO 9

7 IF (X2-XI.L1.3.1 GO TO P
NP = 15
GO TO 9

8 NP = 11
9 CONTINUE

ANP = NP
AP = NP+1
WRITE (61.451 N.Y11).XR.NP
WRITE (61,491 H03,905R.019N,X1,X2
no 10 I=1.4

R2(I) = I-1.
10 R1(I) = 12(I)'.5

= 1
IF (02.66..7) G1 T1 14
IF (X1.L1.0.0) 6) TO 12

C X2 LESS THAN .7 ANO XI GREATER 090) 9.
CALL ACOFF (1.01
IT = 1

= I

C4,1 ViAT
IT = 3

[ILL V,11
11 1 =1,-
n^ 11 J=1.

II C(T,J1 = NIT, /1
G. T1 SI
12 L_SS '1-140 1'40 XI 27767,7) -.7 A4C 0.

12 CALL AC1FF (L,A)
II = 3

m =
CALL VMAT (11007,m,A,R1,V)
50 13 1=3,4

01 13 J=1,4
13 0(I,J) = VII,))

GO TO 71
X2 GREATER THAN .7, FOUR POSSI1ILITI-IS EXIST FOR X1.

14 CALL ACOEF (L,A)
CALL 8717F (1,11

= I

CALL AMAT (xP.A,Ri,r,uR)
699 = 1-2.0

2

CALL AIAT (XRM,I,R2,4,VF)
CO 16 1=1,4

D0 15 J=5,1
IF (I64.20.3) GC T1 15
VR(I,J1 = 0.0
GO TO 16

15 V0)I,J) = 1.0
16 CONTINUE

CALL INNERS (VR1
00 17 1=1,4

DO 17 J=1.4
00 17 K=1,4

IF (K.E1.1) ALPHA(I,J) = 0.1
17 ALPHA(I,J) = VR(1,K)711R(K,J).ALPHA(I,J)

X29 = 02-2.0
II = 3
r = 2
CALL VMAT (ii.x29.mo.R2,v)
00 18 1=3,4

DO 16 J=1.4
10 18 K=1.4

IF (0(.10.11 D(I,J) = 0.0
15 0(I,J) = V(I,1001Pr4(K,J)(.0(/,J)

IF (X1.GE..7) GO TO 08
IF (X1.LE.-.7) GO TO 22
IF (01.11.0.01 GO TO 20

C X1 IS lETWEEN 0.0 AN) .7
II = 1
r =
CALL VMAT (II.X1,m,A.r1,V)
00 19 I=1,2

00 19 j=1,4
10 01I,J1 = V(/,J1

GO TO 30
C X1 IS 9ET WEEN -.7 AN) 0.0

20 01A = 091(01)
II =

=

CALL VMAT (II,X1A,M,A,RI,V1
CO 21 1=1,2

DO 21 J=1,4
V(1,J1 = 1-1)7(IJ).V(I,J)

21 OIT.J1 = V(I,J)
GO TO 39

C XI LESS THAN OR uAL TO -.7
22 X16 = -XI-2.0

CO 24 0=1,4
00 24 J=1,4

IF (3.E0.2.09.J.F0.41 GO TO 23
UL(I,J) = URII,J)
GO TO 24

23 UL(I,J1 = -UR(I,J)
24 CONTINUE

01 25 1=1,4
no 25 J.1,6

CO 25 K=1.4
IF (K.61.11 EIETAII,J) = 0.0

25 9ETA(I,J) = VR(1,K1UL(K,J),RETA(I,J)
II = 1

= ?

CALL VMAT
01 26 J=1,4

26 6(2.3) = -6(2,J)
CO 27 1=1,7

01 77 J=1,4
nl 27 K=1,4

IF (K.L-1.1) C(I.J) = 1.1
27 7(I.J) = VII.K)77.70(K,J1(0lI,J)

71
0

co

0
r-t-
0

0I.



GO TO 3n XA = 485(08)
C X1 IS GREATER THAN .7. XA1 = 2./04+1.9

28 X14 = X1-2.0 SXA = 50RT(001)
II = 1 OISTAN = U(1)
M = 2 DISNO' = (xATXPXF1TSXATU(21
CALL VMAT (II,X13.4.9,R2,V1 SLOPE = U(11/(1. XA14.2*XP/KA(14..XAT2.XPMP1/(1.1.XA)YU(21+
CO 29 1=1.2 T XPTXPYSXA*U(11

00 79 J=1,4
TLNSA = XPYSXA/11.+XA1TU(1)-1(3.1.4.TXPTXPX(1118XASXA.4(1)'0(1)

01 29 K=1,4
8 XASXA(1.4XA)31.2..XA SXAI U(2/-(5.XP43.SMAYXA1(1.+XA/T3.

IF (K.E9.11 C(I,J) = 0.3
1 XP SX11.(1.+XA111,U(31-(XA43SXAYX111.(1.*XA,*(1.4XA110(41

29 0(I,J) = VII,K1YALPHAIK,J11.0(I,J)
WRITE (61,521 OP

30 CONTINUE
WRITE (61,531 OISTAN,DISNOR,SLOPE.TENSN

00 31 1=1,4
IF (A3SITMAX).GT.ABS(TENS1411 GO TO 45
T4AX = TENSN

00 31 J=1.4 45 CONTINUE
31 00(I.J/ = 0(101

CO 33 1=1.4
46 CONTINUE

00 33 J=5,9
WRITE (61,541 TAAX
GO TO 1

IF II+4.E1.J1 GO TO 32
9A(I.J1 = 0.0

47 STOP

GO TO 33
32 00(1,J1 = 1.0

45 FORMAT (//158 NO. OF TERMS =.13.50,254FORCING FREQUENCY VALUE r.,F6

33 CONTINUE
1.2,5X115HMATCHING PCINT =,F6.2.5X.27HN0. OF POINTS ALCNG CABLE =,

CALL INVERS 1001
00 34 1=1.4

49 FORMAT (lx,innH OVER B =,F8.3,5X.3149 OVER SCRT. CF L.SQRD- H,SQRO

DO 34 K=1,4
5=,F5.3,5X,11H2A OVER 0 --,,F5.3/1X115HLEFT BOUNDARY X1 =.F5.3.5X,

IF (6.10.1) CID . 0.0
519HRIGHT BOUNDARY X2 ..F9.3)

34 CID = 3A(IllOYBDIKi.C1I) 50 FORMAT (4F6.2)

00 46 IP=1.NP
51 FORMAT 12E8.3.13,2E7.31

OP = X1*(X2-X11/ANFY(I0 -1.0)
52 FORMAT ( /1X.4HX. =,F7.3)

IF (ABS(XP).GE..71 GO TO 35 53 FORMAT (1X.25HTANGENTIAL DISPLACEMENT =,F8.4,5X.21MNORMAL DISPLACE

C OP LIES BETWEEN -.7 ANO .7.
SPENT ..F8.4/1X.16HSLOPE OF CABLE .,F5.3,5XtIANTE4SION IN CABLE =0

ORA = ABS(OP) TF5.4)

N = 1
54 FORMAT I/IX,34HMAXIMUM DYNAMIC TENSION IN CABLE = ,F0.4)

CALL AMAT (OnA,A.R1vN,UP) END

IF (08.1T.0.0) GO TO 36 SUBROUTINE ACOEF (LgAl

DO 35 1=1,4 DIMENSION 0(200.4)

00 35 3=1.4 COMMON N.Y(2)

35 UP(I.3) = UP(1,3)7(11.7(I.J) 2L = 0(0.1(L)

36 CONTINUE
00 37 1=1,4

040M =21Z:t.4
DO 37 K=1.4 RR = IR

IF (K.E0.1) U(I) = 0.0 R = (RP-1.0)12.

3? U(I) = UP(I,K/TC(K11.1J(I1 1111,IR) = 0.0

GO TO 44 A)2IIR1 = 0.0

35 IF (ABS(XP).NE.OPI GO TO 41 A(3gIR) = 0.1

C UP IS GREATER THAN 00 EQUAL TO .7. 0(4,15) = 1.0

00 10 1=1,4
0I5.IR1 = -A(4,/R1.14.YRYRFRY1.+ZL/MR+1.1.(2.*R+1.1)

03 39 K=1.4 00 1 J =6.NUM

IF (K.E1.1) AP(I) = 0.0 G = J

39 AP(I1 = 4LRHA(I.K).C(K)0AP111 0(1 = 1-1

= ? K2 = J-2

XPA = XP-2.0 K3 = J-3

CALL AmAT (X.A.90 K4 = J-4
2.4.URI F1 = 14.4-5.

00 40 T =1,4
II 40 K=1,4 F? = GTR-6.

IF (6.01.1) WI/ . 0.3
F3 = GYR-7.

40 U(I) = UPII.K14APIK1TUID F4 = 640 -5.

GO TO 44 F5 = G.-R-1.

C X. IS LESS THAN 9R EOLAL TO -.Y. F6 = G+R-4.

41 CONTINUE F7 = G+R-1.

00 47 1=1,4 Fi = GYR
01 42 1=1,4 A(J,IR/ = -4(KI.IR1T(2.4F2YF3 Y(4.*F6+701.(51.+2..21).F6-3.4

IF (X.E9.1) 38(I) = 0.0 1 (32.TZL))/(=6*(4.F6 F2.5.11-4(K2,IR)IF2*(5.F3F4F?(72.
'42 90(1) = 9FT4(I.KIC(K19P(1) T E. 211 =6-6.(12.+ZL11-211/(F6'FIY(4.FFEY.2.3.1,-A(K3,1F/F3

M = ? t Y(F4.F5TF,Y4.1.16..71).F6-4..(21.+EL1)/(F6TF1*(4.TF64F21.3.11-
APR = -0P-2.0 AIK4,IRIYZLYF4/(F6.(4..F6TE21.1.11
CALL AMAT I003.1,R2,M,UP1 1 CONTINUA
00 43 1=1,4 00 2 J=4004

91 43 K=1.: A(J-3.IR) = A(1.I0)
1--.

IF (K.01.1) CID = 3.1
7 piCETITUIRI(Ir43 U(I) = UP(I,KIYIPIK1+U(11

(Z)

44 CONTINUF FN1 ....0



SUBROUTINE SCOEF 11,91
DIMENSION 11200,41
COMMON 4,1(21
21 = Y1L1*Y(L1
NUM = N+8
00 2 IP=1,4

RR = IR
R = RR-1.
8(1,IR1 = 0.0
912,IR1 = 0.0
913,101 = 0.0
914,1R1 = 0.9
015,101 = 0.0
0(6,141 = 1.0
917,101 = -916.1R1*(695.+352.*(R-3.1)/1192.*(R+1.11
8(8,151 = - 817.IR1'1 698.. 352. 'lR - 2.11/1192.'14.2.11- 8(6,IR1'

$ (585.7?..2L996.*(R-2.1.252..1R-2.1*(R-3.)1/1192.*(R+2.1*IR+1.
$ )1

019.101 = -919,181.1688.+152..01-1.11/1192.*(R*3.1/-8)7,181*
$ 1585.+72..2L+396..14-1.1+252.*(R-1.1*(R-2.)1/1192.*(R+3.1*(R+2.
$ 11-(316.101.1102. 99.*21+1627.+102.*ZLI*1R-1.1+526.*(R-1.1*(0-2.

1+88.*(0-1.1*(0-2.)01R-3.11/1192.*(R3.1*(R.2.1*(R+1.11
00 1 J=10,NU4

G = J
KI = 1-1
K2 = J-2
03 = J-3
K4 = J-4
K5 = J-5
K6 = J-6
Fl = GR-6.
F2 = GR-7.
F3 = G+R-8.
F4 . GR-9.
F5 = O+R-10.
F6 = G+11-11.
F7 = G02-12.
FS = G+R-13.
F9 = GR-14.
B(J.141 = -0(61.10)*(688.+352.*F5)/(192.*F11-3(K2.IR1*(585.
77.*ZI+996.*F5+252.*F5*F61/1192.*F1*F21-91K3,1R1*(102.99.*
2L1627.102.*Z11*F5+526.*F5*F6+98.*F5*F6*F71/1192.*Fl*F2*F3
1-91K4,1R1.1-7L172. 105.*ZI1*E51216.53.*IL1*F5*F6+120.*F5
*F6*F7+15.*E5*F6*F7.F51/1192.*F1*F2*F3*F41-91K5,IR1*(112.036
..211*F6+124.(.12..211*F6*F7+10.*F6*F7*F8+F6*F7*FS*F91/1192.*
EI*F?*F3*F41-9(K6,IR1*(4.*ZI*F7+2L*F7*F81/1192.*F1*F2*F3*F41

1 CONTINUE
00 ? J=6.NUm

9(J-5,IR1 = 9(J,IP1
2 CONTINUE

RETURN
ENO

SUBROUTINE AMAT 1X,A,P,M,U)
DIMENSION 01700.41, 8141, U(4.41
COMMON 8,0121
CO 7 J=1.4

IF I4.E0.11 GO TO 1
NA = .(J)
= X**NA
= 9/X

E = I/O
F = E/X
GO 13 2

1 9 = X**4(J1
3/X

F = 0/0
F = E/X
U(1,J1 = A1141.J)
00 3 IA=1.5

I = 4 -IA

3 U(1,11 = U(1,J1*x+A(I+1.J)
0051 = U11,J1
U(1,J1 = AUX1+9
U(2.J1 = AIN+1,1).N
DO 4 TA=2,N

I = N2-IA
4 U12,J) = 11(2,31.x+1I-11*AII,J1

AUX2 = U(2,J1
11(2.J1 = AUX2.3R(J1*AUX1*D
U(3.J1 = A(N+i,j)..K.(4_1)
DO 5 IA=3,14

I = N3-I4
5 U(3, J1 = U(3.J1.x.11-21.1I-11*A(I,J1

AUX3 = U(3,J)
U)3, J1 = AuX3*(1 111,11*(R(J)-1.)*E*AUX1+2.*R1J1*C*AUX2
U(4.J1 = A1N+1.J)*N*IN-11.14-21
00 6 IA=4.N

I = N4-14
6 U14,J1 = (114,J1*X+1I-11*1I-21*(I-31*A(1,J1

U14,J1 = 11(4,11.9+R1J1*(RIJ1-1.1*(R(J1-2.1F*AUX1+3.*R1J1*(41J1
-1.1*E*AUX2+3.*R(J1*D*AUx3

7 CONTINUE
RETURN
ENO

SUBROUTINE VNAT 111,X.M,A,R,V1
DIMENSION 81200.41, 8141, 814,41
COMMON N,Y(2)
II = II+1
DO 5 J=I,4

IF 111.60.11 GO TO 1
NA = R(J)
C = X**NA
0 = C/X
GO TO 2
C = X**R4J1
D = C/X
811I.J1 = 1114+1,J1
00 3 IA=1,8

I = 14-IA
VlII.J1 = VIII.J1*X+A(1+1.J1
AUDI. = V111,11
V1II,J1 = AUX1*C
V1II,J1 = A14+1,J1*N
00 4 IA=204

I = N.2 -IA
4 V1I1,J1 = V(II.J1*xII-I1*4(I.J1

V111,J1 = V1/1,J1*CAUXI*R1J1.0
5 CONTINUE

RETURN
END

SUBROUTINE INNERS (CI
DIMENSION C14.81. 0141
COMMON 8.5121
00 3 1=1,4

0 = 0.0
DO 2 J=1,4

IF (A9S(C1I,J)1-88S13)1 7.2.1
0 = C(I.J1

? CONTINUE
DO 3 J=10

3 C)I,J1 = C(I,11/1
DC 12 8.1,4

KK = 2.4+1-m
K = 4+2-m
0 = 3.0
L = 1

00 5 I=?,K
IF (43SIC(I-1.1)1-1) 5,514

4 L = I-I CD
3 = 105(CIL,11)



5 COST RIDE
IF IL-1) 6,8.6
00 7 J=1 .KK

= C .J1
C = C(1,J1
C (1.1) =

COST IN OF
COST INUE
00 9 1=1.4

= CII.11
00 11 J=2,KK

= C11 .J)/X(11
DO 10 I=2,4

10 C ,J-11 = C J) -X III 0
It C(4.1-11 =
12 CONTINUE

RETURN
END
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Data Table C-2. In-plane forced motion results.

Forcing Frequency; Absolute Value of Maximum
caf Dynamic Tension; I Tmaxl

h/b = 0:00; b/ f2 -h2 = 0.90;

U(g1) = V(g1) = V(g2) = 0.0;

Natural frequency ratios: c.,)

g
1

= -0.340; g2 = 0.340;

U(g2) = 0.01;

3.29; co2 = 5.22
1

0. 00 O. 028
0. 50 O. 025
1.00 O. 018
1. 50 O. 012
2. 00 O. 041
2. 50 O. 080
3.00 O. 138
3. 27 0.554
3.31 0.457
3. 50 O. 139
4. 00 O. 228
4. 50 0.322
5. 00 0.543
5. 19 2. 098
5. 23 3.874
5.50 0. 248
6. 00 O. 443

rh/b O. 0; b/Je 2 -h 2= 0. 70; gi = -1.383; g2= 1.383;
u(g1) = v(g1) = v(g2) = o. o; u(g2) = 0.01;

Natural frequency ratios: col = 1.34; co2 = 2.35

O. 00 O. 169
0.50 O. 187
1.00 0.312
1.32 5. 218
1.36 3. 422
1. 50 0.505
1. 75 O. 263
2.00 0.330
2.25 1. 124
2.33 5. 164
2.37 7.533
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Data Table C -2. Continued.

Forcing Frequency; Absolute Value of Maximum
cof Dynamic Tension; I Tmaxj

2.50
2.75
3.00

0.968
0.498
0.519

h/b = 0.50; 13/1/12 -h 2 = 0.90;
1

= -0.068;
2

= 0.872;

U(y = V(1) = V( 2) = 0.0; U(2)
Natural frequence ratios: cal = 3.

= 0.01;

13; w2 = 4.98

0.00 0.034
0.50 0.032
1.00 0.024
1.50 0.016
2.00 0.053
2.50 0.101
3.00 0.160
3.13 0.178
3.132 0.181
3.133 7.440
3.14 0.178
3.50 0.233
4.00 0.324
4.50 0.460
4.96 3.054
5.00 2.311
5.50 0.473
6.00 0.635

h/b = 0.50; b/ f2 -h2 0.70; 2.282;
1 2

;

U(1) = V(1) = V(2) = 0.0; U(2) = 0.01;
Natural frequency ratios: col = 1.29; (4.)2 = 2.30

0.00 0.122
0.50 0.128
1.00 0.185
1.27 1.516
1.31 1.884
1.50 0.120
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Data Table C-2. Continued.

Forcing Frequency;
cof

Absolute Value of Maximum
Dynamic Tension; 1Tmaxl

1.75 0.089
2.00 0.144
2.28 6.869
2.32 2.144
2.50 0.406
2.75 0.269
3.00 0.317
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Data Table C -3. In-plane forced motion results.

Position on Tangential Normal Dynamic
Cable Displacement Displacement Tension

U( ) V ( ) T( )
P P P P

h/b = 0.0;

U(1) = V(1)
Natural frequency

bd/ 2 -h2i= 0.90;

= V(2) = 0.0;
ratios: wl

1== -0.340; = 0.340;

U(2) = 0.01; wf = 2.0;

= 3.29; w2 = 5.22

-0.340 0.000 0.000 -0.010
-0.279 0.000 0.002 -0.009
-0.217 0.000 0.004 -0.008
-0.155 0.001 0.006 -0.006
-0.093 0.001 0.008 -0.004
-0.031 0.003 0.010 -0.003
0.031 0.008 0.009 -0.013
0.093 0.009 0.006 -0.021
0.155 0.010 0.004 -0.027
0.217 0.010 0.002 -0.032
0.279 0.010 0.001 -0.037
0.340 0.010 0.000 -0.041

11/1) = 0.00;

U(i. = V(1)
Natural frequence

b/Ji 2 -h 21= 0.70;

= V(2) = 0.0;
ratios:

1
= -1.383;

My = 0.01; cof

wl = 1.34; u.)2 =

z
= 1.383;

= 1.32;

2.35

-1.383 0.000 0.000 4.867
-1.132 0.001 -0.025 5.218
-0.880 0.004 -0.051 5.132
-0.629 0.010 0.075 0.117
-0.377 0.023 0.092 0.121
-0.126 0.048 0.082 0.095
0.126 0.055 -0.071 -0.110
0.377 0.032 -0.086 -0.145
0.629 0.020 -0.071 -0.147
0.880 0.013 -0.049 -0.142
1.132 0.011 -0.024 -0.135
1.383 0.010 0.000 -0.129
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Data Table C -3. Continued.

Position on Tangential Normal Dynamic
Cable Displacement Displacement Tension

U( ) V ( ) T( )

P P P P

h/b = 0.00;
U( l) = V(1)
Natural frequency

b/Nh 2 -h = O. 70;

= V( 2) = 0.0;

rations:

1
= -1. 383;

U(2) = 0.01;
col = 1.34; co2 =

2
= 1.383;

cof = 1 36;

2.35

-1.383 -0. 000 O. 000 -3. 223
-1. 132 -0. 001 O. 016 -3. 422
-0. 880 -0. 002 O. 033 -3.313
-0. 629 -0. 006 -0. 049 -0.098
-0.377 -0. 015 -0. 058 -0. 099
-0. 126 -0. 030 -0. 048 -0. 078

O. 126 -0. 024 O. 059 O. 061
0.377 -0. 006 O. 065 O. 074
O. 629 O. 003 O. 052 O. 066
O. 880 O. 008 0.035 O. 054
1. 132 O. 009 O. 017 0. 040
1.383 O. 010 O. 000 O. 028
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Appendix D. Outline of the Derivation and Solution of the
Equations of Normal Mode Motion of a
Suspended Cable

A synopsis of the derivation and solution for the normal mode

motion of the cable is provided to assist the reader in following the

steps carried out in this paper.

The cable is considered to be a perfectly flexible, elastic cable

suspended in a viscous medium. Hamilton's principle along with the

associated Euler-Lagrange equations are used to derive the equations

of motion. Hamilton's equation is stated as:

t2

[ 8 L + 8 Wf + 6 Ws] dt = 0
tl

where L is the Lagrangian (total kinetic energy minus the total

potential energy) for the system, 8 Wf is the increment of virtual work

performed on the cable due to linear drag forces from the surrounding

medium, and 8 Ws is the increment of virtual work performed by

internal forces on the cable as it is strained between two states.

Equations 2.19 and 2.20 are the resulting equations governing the

motion and tension in the cable. The equilibrium configuration of the

cable is then derived from the general equations of motion of the cable.

For the undamped, inextensible case, the equations of motion

are then nondimensionalized and linearized for small variations about

the equilibrium state. The result is given by Equations 2.29 and 2.30.
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Normal mode solutions are assumed for these equations, leading to

Equations 2.35 and 2. 38, which govern the tangential and out-of-plane

displacements. These equations contain the natural frequency ratios

w and nondimensional position along the cable G. The coefficients

of the derivatives of the displacement terms are irrational; hence

these equations are not solvable by power series solutions.

The change of independent variable

Iti v (1 kl)2_

transforms equations 2. 35 and 2.38 to equations with polynomial co-

efficients. For positive values of , equations 2. 42 and 2. 44 govern

the tangential and out-of-plane displacements.

A power series solution, written about the singular point = 0,

of the form

k+r
)r(0 = E a I,

will satisfy Equation 2. 42 for the tangential displacement and converge

for 0 < < 1. Since Equation 2. 42 is a fourth order equation, there

will be four independent power series and four integration constants

which make up the entire solution for the tangential displacement.

A second power series solution, written about the ordinary point =2,

of the form



co
k +rz(-2) = bk (

k=0
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will also satisfy Equation 2.42 and converge for 0 c < 4. Again

there will be four integration constants associated with the complete

solution for the tangential displacement. By matching the first four

derivatives of the tangential displacement at some point where both

series solutions converge, it is possible to express the integration

constants for the second power series solution in terms of the inte-

gration constants for the first power series solution. Considerations

of cable symmetry and matching at the origin will yield series solu-

tions for the tangential displacement of the cable which are valid for

the region -4 < < 4 which contain just four constants of integration.

At the attachment points of the cable and the tangential

and normal components of the displacement are zero. Since the

normal displacement is related to the first derivative of the tangential

displacement, the boundary conditions may be expressed as

U( y = -d =
d

=0

Equation 2.74 is the matrix equation representation of the boundary

conditions. The values of co which render zero values for the deter-

minant of the square matrix in Equation 2.74 are the nondimensional

natural frequency ratios for in-plane oscillation.
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The solution of Equation 2.44 for the out-of-plane natural fre-

quency ratios is carried out analgously to the method presented for

solution of the in-plane natural frequency ratios.


