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Turbulent temperature and velocity fluctuations in air were

measured over an open ield during the summer at a height of 2

meters. Emphasis was placed on precisely determining the high

frequency region of the spectra of these fluctuations, including the

dissipation range. The velocity fluctuations were measured with a

commercially available hot-wire anemometer, with a wire diameter of

3. 7 and length approximately 1 mm. The temperature fluctuation

measurements were made with a platinum resistance thermometer

which consisted of a platinum wire of 0. 5 i diameter and about 1 mm

in length. The temperature measuring system was developed as part

of the research.

The velocity spectra results agree well with previous results of

Pond, et al. (1963), Nasmyth (1970) and Boston (1970). The estimated

value of the one-dimensional Kolmogorov constant, a, was 0. 50 in
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agreement with Boston but 10% lower than the value of Nasmyth.

The results of the temperature spectra show clearly the shape

of the one-dimensional temperature well beyond the -5/3 region. The

temperature spectrum has its maximum dissipation at higher fre-

quency than does the velocity spectrum. An unexpected result is an

increase in slope of the temperature spectrum (greater than -5/3)

at frequencies just below the frequency of maximum dissipation.

Calculation was made of the one-dimensional Kolmogorov constant for

temperature, , by directly measuring all parameters required.

The estimated value is 1, 02, which may be compared to 1. 6 and 2. 3

reported by Boston (1970) and Gibson, et al. (1970) respectively.

Fluxes of momentum and sensible heat were computed for 13

runs under both stable and unstable conditions. Two techniques used

for these flux determinations were the direct or eddy correlation

method and the dissipation method. Stress estimated by the dissipa-

tion method exceeded estimation by the direct method by about 10%.

In general excellent agreement was found in the sensible heat flux

estimates.
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HIGH FREQUENCY TEMPERATURE AND VELOCITY
FLUCTUATIONS IN THE ATMOSPHERIC

BOUNDARY LAYER

I. INTRODUCTION

Over the past several years various attempts have been made to

measure small scale temperature fluctuations in the atmospheric

boundary layer. These data were then used to determine the

"universal' constant, , appearing in the expression for the -5/3

form of the temperature spectrum. 1
is called the Kolmogorov

scalar constant after A. N. Kolmogorov (1941), who postulated a

similar constant for velocity spectra. In order to directly measure

the scalar constant, a direct measure of the dissipation of tempera-

ture and velocity variance is required. To achieve this goal the

sensors must have sufficiently high frequency response and small

spatial resolution to measure the small scale fluctuations associated

with the dissipation of temperature and velocity fluctuations. In addi-

tion to sensor requirements, the associated electronics must be of

very low noise design while maintaining adequate frequency response.

The object of the first stage of research was to develop the

required sensor and sensor electronics. Subsequent to this stage a

field experiment was conducted in which the small scale fluctuations

of temperature and velocity were measured over homogeneous terrain.

Data analysis yielded the shape of the temperature spectrum and an



evaluation of the constant, I.

Knowledge of the value of the Kolmogorov constantsfor velocity

and temperature are required for use of the dissipation method in

determining the fluxes of momentum and sensible heat. Direct

measurement of these fluxes is given by the covariances of the hori.

zontal and vertical velocity fluctuations and of the vertical velocity

and temperature fluctuations. However, this method requires rather

sophisticated instrumentation for measuring the components of the

velocity. Such instrumentation would be nearly useless for shipboard

measurements whei,-e ship motion would contaminate the dat3. A much

simpler procedure would involve measurement of the spectra of the

horizontal velocity component and temperature in the -5/3 range.

From these spectral estimates the rates of dissipation of kinetic

energy and temperature variance could be determined, provided the

values of the Kolmogorov constants are known. The rates of dissipa-

tion then determine the fluxes in the dissipation method. One of the

research objectives was to compare these fluxes determined by both

techniques.



II. THEORETICAL CONSIDERATIONS

A. General Considerations

Turbulent flow may be described as random motions of a fluid

which cannot be uniquely determined by the macroscopic parameters

of the flow (Batchelor, 1953). Due to this randomness a statistical

description is used. Basic to any statistical description is the aver-

age. In principle an average over an infinite collection of identical

conditions is desired. Such an average is referred to as an ensemble

average. However, in practice a space or time average is obtained.

Under the condition that the turbulence is stationary a space or time

average is equivalent to an ensemble average. This equivalence is

referred to as the ergodic hypothesis (Tennekes and Lumley, 1972).

All flow variables are assumed to be composed of mean and

fluctuating parts. The notation used in this thesis will be that mean

quantities will have an overbar and fluctuating quantities will be lower

case. For motions near a horizontal boundary the mean velocity in

the vertical direction will be assumed to be zero. Thus the velocity

and temperature are represented by:

UU+u
WW+ww (1-1)

T =T+O
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where:

U is the downstream velocity

W is the vertical velocity

T is the temperature

Extensive use is made of spectral analysis in this research.

The spectrum of a variable, x, is the distribution of the variance

of x as a function of the scale size or frequency of the fluctuatioxis

of x. This is formalized in the following definition.

2,.oc.
x ( -IWTS () = e p (T)dT (1-2)

X iT ) x
-o,

where:

S(w) = spectral density of x

= radian frequency

p(-r) = autocorrelation function of x

T time lag

Since S(u) represents the frequency distribution of the variance of

x, integration over all frequencies will yield the total variance of x.

Ss
()d (1-3)ox

One of the properties of turbulent flow is that mechanical energy

is transferred to internal energy. This is referred to as dissipation.
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In addition, the turbulent fluctuation of temperature is dissipated

through the action of thermal diffusion. The primary objective of this

research is to directly measure the rateof dissipation for both

turbulent tempe rature and velocity fluctuations.

All experimental measurements were made as a time series at

a fixed location in the flow field. Subsequent spectral calculations

were made in terms of frequency. Time and space scales were then

related by Taylor's "Frozen Turbulence" hypothesis (Taylor, 1938),

x = (1-4)

where U is the mean wind speed. This relation implies that the

turbulence is unchanged during the time required for it to pass the

sensors. Equivalently the radian wavenumber, k, circular fre-

quency, f, and radian frequency, , are related by:

k Zirf/U = 0ru (1-5)

For shear flow this relation cannot be rigorously justified (Lurnley,

1965) but it may still be valid for low turbulence intensity

and for wavenumbers which satisfy

kz >> 1 (1-6)

where z is the distance from the boundary. This condition is

satisfied for those wavenumbers contributing to the dissipation.



Another transformation important to this thesis is the spectral

transformation between a variable and its time derivative. The cor-

relation function, p(i-) and the spectral density, S(), are related

by:

and

where:

and

Co
( iWT

e S ()dw (1-7)
x

x

=
i(i)T

p 1(T) e S 1(w)d (1-8)
x x

x

x

The correlation function is defined by;

p(T) = x(t)x(t+T)/x2 (1-9)

= xt(t)x(t+T)/x7Z (1-10)

letting t + i- = t' and differentiating Eqn (1-9) with respect to t

and t' gives:

or

aZp(T)
x'(t)x'(t') (1-11)

atat' :-x

aZp
(T)x x'(t)x'(t+i) (1- 1Z)

2
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Substituting Eqn. (1-12) into Eqn. (1-10) gives:

2 a2p (T)x x
P(T) (1-13)

2

82p(T)
An expression for can be obtained by twice differentiating

8r 2

Eqn. (1-7).

82p (T) -- e
x 1 LO.)T 2 ()dw (1-14)
2 x

aT OO

x

Now using Eqns. (1-8) and (1-13) gives:

S ) () (1-15).
x x

Alternate expressions are of course available as functions of circular

frequency, f, and radian wavenumber, k.

and

S,(k) = (U)2k2S(k) (1-16)

S,(f) (Zir)2f2S(f) (1-17)



B Universal Spectral Forms

1. Kolmogorov Hypotheses

Development of modern turbulence theories began in 1935 with

the concept of a continuous cascade of kinetic energy from large scale

anisotropic velocity fluctuations to smaller, and increasingly iso-

tropic, scales at which the energy is dissipated as heat (Taylor, 1935).

As the scales separate, the fine structure of the velocity field is

hypothesized to become increasingly independent of the directional

details of the large scale features. This idea was first mathematically

formulated by Kolmogorov (1941). Application of the Kolmogorov

hypotheses is warranted provided only that the Reynolds number, Re,

is sufficiently large to guarantee a large scale size separation

between the energy containing turbulent motions and the viscous

dissipative motions.

The Kolmogorov theory proposes that at some point in the small

scale region of the energy cascade the turbulent motion becomes

isotropic. This is referred to as local isotropy since the large scale

motions may not be isotropic. The Kolmogorov ideas are contained

in two universal similarity hypotheses:

1) At sufficiently high Re there exists a range of small scales

such that the turbulence is statistically in equilibrium and

uniquely determined by the mean rate of kinetic energy



dissipation, E, and the kinematic viscosity V , (i. e.

S(k) = F(E,v,k), Hinze (1959). Dimensional arguments lead

to the following universal spectral form:

1/4 5/4 (k/k ) (1-18)S (k)= v F
U 5

where: k = Kolrnogorov wavenumber

3 1/4(/v

F(k/k) = universal spectral function for velocity.

2) At very large Re the spectrum is independent of v and

depends solely on e in the region of scale sizes far above

the region of maximum dissipation but still within the locally

isotropic range. Here dissipation will be small compared to

energy transfer by inertial effects. This range is thus

named the inertial subrange. Dimensional arguments result

in the following spectral form.

2/3 -5/3S (k) = a k (1-19)
U

where: a = Kolmogorov universal constant.

Using similar arguments Obukhov (1949) and Corrsin (1951)

independently arrived at spectral forms for turbulent scalar fluctua-

tions. For scalars an additional parameter is required in the

parameter ization. This is the mean rate of dissipation of scalar
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fluctuations, ET (using temperature as the scalar). The universal

spectral form for temperature is:

where:

-3/4 5/4
ST(k) = ETE v H(cr,k/k ) (1-20)

5

= Prandtl number

H(o, k/k) Universal spectral function for temperature

In the inertial subrange this form becomes:

-1/3 -5/3
ST(k) = E ETk (1-21)

An additional constraint on the application of similarity

hypotheses to scalar fields is that they are assumed to be dynamically

passive. A passive scalar is one that can be transported in a fluid

but which does not introduce buoyance effects. The scalar fluctuations

of temperature are active at large scales but not at the small scales

important to the results of this thesis.

2. Observations

Numerous results concerning the Kolmogorov hypotheses are

available. The results of Grant, et al. (196Z) from velocity meas-

urements in a tidal channel and of Pond, et al. (1963) working in the

atmosphere bear out the validity of a universal spectral form.
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Additionally the -5 /3 power dependence of the wavenumber is

verified. Further support is obtained from verification of the

expected ratio of the spectra of the lateral and vertical velocity corn-

ponents to the spectra of downstream components under locally

isotropic conditions. Kaimal, et al. (1972) found the expected 4/3

ratio at wavelengths of the order of the measurement height, z.

Accordingly, the Kolmogorov constant a of Eqn. (1-19) should be

absolute, independent of the fluid or of the nature of the mean flow.

Pond, et al. (1966) summarized the measured values of a from

various different flow fields. The mean value of a was 0. 48. More

recent investigations by Shieh, et al. (1971), Gibson, et al. (1970),

and Nasmyth (1970) have yielded larger values. A reasonable average

now appears to be, a = 0.55.

Results for scalar variables are less numerous but enough exist

to verify the validity of the scalar Kolmogorov forms. Grant, et al.

(1968) obtained temperature fluctuations in the ocean and show a well

defined -5/3 region. Gibson, et a].. (1970) and Boston (1970) have

measured temperature fluctuations in the atmosphere to very high

wavenumbers.

The constant 3 of Eqn. (1-1) is predicted to be an absolute

one. Most previous measurements of 3 have depended on measured

scalar spectra which have been poorly defined at high wavenumbers.

Indirect measurements of f3 generally result in estimates between
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0.6 and 0. 9. Gibson and Schwarz (1963) estimated a value of 0.7 for

scalar fluctuations of salinity in a laboratory water tunnel. Grant,

et al. (1968) indirectly estimated I to be 0.62 for temperature

fluctuation in a tidal channel. Using structure functions, Paquin and

Pond (1971) estimated values of 0.83 and 0.80 for temperature and

humidity fluctuations. Based on the 1968 AFCRL experiment in

Kansas, Kaimal, et al. (1972) estimated I
to be 0.83 using an

indirect me.sure of E,1,. However, recent determinations by Boston

(1970) and Gibson, et al. (1970), using very small sensors to measure

directly the dissipation of temperature variance, have yielded values

of 1.6 and 2.3 respectively.

Clearly, the constant is not well known. In fact some doubts

have arisen as to whether it is a constant at all. Suggestions have

been made that both constants a and 13 may be functions of stabil-

ity (Boston, 1970). The temperature measurements reported in this

thesis were an attempt to resolve some of this uncertainty.

C. Dissipation and Evaluation of Universal Constants

1. Spectral Transformations

Kolmogorov's spectral relations are generally written in terms

of radian wavenumber while measurements are generally taken with

respect to time with subsequent spectral estimates in terms of
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frequency. Using the definitions relating radian and circular

frequency and Taylor's hypothesis to relate wavenumber and fre-

quency the relations between the spectral functions are give by:

S (k) = (--)S (f) =US (ca) (1-22)
x 2W X X

These relations are also true for any derivative of x. Additionally

we have the relations between the spectra of a variable and its deriva-

tive, Eqns. (1-15) to (1-17).

2. Evaluation of Dissipation

a Velocity. The equation of motion for turbulent flow can be

used to generate an energy conservation equation for mechanical

energy. There is one term in this expression which represents a sink

for mechanical energy by transforming mechanical energy into heat

through the action of viscosity. This is called the dissipation term

and is given by:

au. au.

E = (_..! _._1)2 (1-23)
2 ax. ax.

3

where: v = kinematic viscosity (cm2 /sec).

The subscript indices represent the three coordinates and indicates

use of the Einstein tensor notation where summation is assumed over
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repeated indices. Thus, Eqn. (1-23) consists of 18 separate terms.

Fortunately, under conditions of isotropy the terms are all inter-

related. These relations are given in Goldstein (1938). The

simplified expression for e is:

8u 2
E = 15v() (1-24)

ax

Using Taylors hypothesis the space derivative can be transformed to

a time derivative.

E
= 15v(_)()2 (1-25)

U

Now E can be expressed as a function of the spectrum of

using the spectral definition given in Eqn. (1-3).

E = 15v()S T(k)dk (1-26)
o

u

Using Eqn. (1-16) the more familiar expression for dissipation is

obtained.

E = l5vS k2S (k)dk (1-Z7)
0

The expressions S1(k) and k2S(k) are commonly called the

dissipation spectra. A better signal-to-noise ratio is obtained by
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recording the time derivative signal and thus Eqn. (1-26) should yield

a better estimate of the dissipation.

b. Temperature. An equation analogous to the mechanical

energy conservation equation can be written for the temperature

variance. This expression also has a term which represents a loss

of temperature variance and is given by:

E D
(_)2 (1-28)

T Tax.
I

2where: DT = thermal thffusivity (cm /sec).

Isotropy is again assumed to allow simplification of Eqn. (1-28) to:

E = 3D (0)2 (1-29)
T Tax

Taylor7s hypothesis may be used to convert this to a time derivative.

ao 2
ET = (13O)

Using the spectral definition this becomes,

= 3DT()SSTI(k)dk (1-31)

This can also be converted to the more familiar form:



ET = 3DTSk2ST(k)dk (1-32)

The principal problem with measuring the thermal dissipation

by this method in the past was due to poor signal-to-noise characteris-

tics of the sensor electronics. One of the primary results shown in

this thesis is the development of temperature sensor electronics

permitting the entire dissipation spectrum to be measured with

negligible noise effects.

3. Evaluation of Kolmogorov Universal Constants

Once the spectrum and dissipation are measured it is a simple

matter to calculate the Kolmogorov constants using Eqns. (1-19) and

(1-21). Thus,

a S (k)E2/3k5/3 (1-33)
U

or using the velocity derivative signal

a = S ,(k)() -2/3 -1/3
E k (1-34)

u

The constant for temperature is given by

1/3 -1 5/3 (1-35)sT(k)E E k
T
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or using the temperature derivative signal,

= S7(k)( 1/k /3 (1-36)

Thus the procedure for evaluation of the universal constants is

to directly measure the mean rate of dissipation by integrating the

spectrum over all wavenumbers and then to use spectral estimates

within the intertial subrange to compute the constants.

D. Flux Determination

In addition to the primary research objectives the fluxes of

momentum and sensible heat were measured by two methods. These

methods are the eddy-correlation and dissipation techniques.

1. Eddy-Correlation Method

This technique is a direct measure of the fluxes. However,

fairly sophisticated instrumentation is required to measure the hori-

zontal and vertical velocity components of the flow. By definition and

momentum flux (stress) and sensible heat flux are given by:

and

T = -fDUW (1-37)

H = -pc we (1-38)
$ p



where:

p air density (gm/cm3)

c = specific heat at constant pressure (cal/gm-°C)

uw = covariance between u and w

wO = covariance between w and 0

The covariances required can be determined by integrating the

cospectra of u-w and w-0.

,00
= Co (k)dk (1-39)

uw

00

= c Co (k)dk (1-40)
J0 wO

2. Dissipation Method

The basis of the dissipation method of flux evaluation is to use

the simplified conservation equation for mechanical energy and

thermal variance. The equations are simplified by assuming that the

transfer terms are negligible. McBean, et al,. (1971), have examined

the turbulent energy budget and found this assumption to be valid for

slightly unstable conditions. For stable or neutral conditions the

turbulence showed considerable anisotropy so that the dissipation

could not be determined. For more unstable conditions the dissipa-

tion exceeded production.



Based on the AFCRL experiment in Kansas, Wyngaard and

Cot (1971) examined the budgets of both turbulent kinetic energy and

temperature variance. Under stable conditions the assumption that

production equals dissipation is verified. Uiider unstable conditions

the buoyant production must be included and divergence of vertical

transport becomes more important for increasing instability. The

temperature variance budget is well approximated by a balance

between production and dissipation with only about 10% contribution

from divergence of vertical turbulent transport.

The simplified equations are given by:

- = - E (1-41)

-E (1-42)
T

Using Monin-Oboukhov similarity theory (1954) the budget

equation can be used to obtain estimates of stress and heat flux.

First the following scaling parameters are defined.

"friction velocity" (1-43)

=

= temperature scale

= -H /Kpc u
5 p



where: K VonKarmanTs constant = 0.4.

Use of dimensional analysis predicts the form of the mean velocity

and temperature gradients.

20

U

(z/L) (1-44)
8z KZ

-0
-=----F (z/L) (1-45)
az z 2

Where F(z IL) is a nondimensional gradient which is a function only

of the non-dimensional stability parameter zIL. The length scale

L is called the Monin-Oboukhov length and is defined by:

upcT u*T
(1-46)L =

KgH

Combining the similarity relation with the budget equations

results in the following modified budget equations.

3 gKu,0
-F (zIL) + = -E (1-47)

KZ 1

2u 0
F (z/L = -E (1-48)

z 2 T

The forms of the non-dimensional gradients have been

determined experimentally by numerous investigators. The following
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expressions are generally accepted (Lumley and Panofsky, 1964).

for z/L < 0.0 (unstable)

F1 = (1-16 z/L)h/4 (1-49)

F2 (1-16 z/L)h/2 (1-50)

for z/L > 0.0 (stable

F1 = F2 = (1+7 z/L) (1-51)

The solution of Eqns. (1-47) and (1-48) are:

[(()Ku0.+ EKZ)/F1] (1-52)

0 = T*Fz)h/Z (1-53)

An iterative technique is used to solve for u, 0 and z/L,

with subsequent transformation to obtain the momentum and sensible

heat fluxes. Note that the only parameters required are the mean

rates of dissipation for velocity and temperature fluctuations, the

measurement height and the mean temperature.
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III. EXPERIMENTAL APPROACH

There were two primary developmental efforts required to

fulfill the research goals. The most important of these was the

development of a temperature measuring system to meet the demand-

ing requirements of a direct measure of the dissipation of tempera-

ture fluctuations. These requirements included high frequency

response, small sensor size, low velocity sensitivity and very low

noise. The other electronic development was of a low noise differ-

entiator for the temperature and velocity signals. The motivation for

differentiating these signals was to achieve a higher signal to noise

ratio for recording the high frequency fluctuations of interest.

Another way of viewing differentiation is that it acts to prewhiten the

spectra of these signals.

Of equal importance to suitable temperature measurement is the

velocity measurement since the mechanical dissipation, as well as

the thermal dissipation, is required for calculation of the Kolmogorov

constant for temperature. Fortunately excellent commercial systems

are available in the form of hot-wire anemometers.

The following sections will discuss the specific sensor require-

merits, the electronics development, secondary instrumentation used,

and data acquisition system.



A. Sensor Requirements and Selection

1. Temperature

23

The severe requirements limited the available techniques to just

one, resistance thermometry. This technique uses a small wire, with

a high temperature coefficient of resistance, as a sensor. Changes in

resistance (i.e. temperature) are detected as changes in voltage drop

across the wire when a low constant current is passed through the

wire. In principle this is quite simple. However, to meet the

research objective, care had to be taken in the design of such a sys-

tem.

The ollowing were considered to be the requirements of the

temperature measurement system:

1. Very small spatial resolution, on the order of the

Kolrnogorov microscale for temperature, < 1 mm

2. Very high frequency response, DC to 2 khz

3. Very low velocity sensitivity, < .0001 0C/(cm/sec)

4. Very low noise, equivalent temperature noise

< . 005 °C rms

5. High temperature sensitivity, 1 volt/°C.

Unfortunately several of these requirements impose conflicting

constraints on the physical characteristics of the sensor and its

associated electronics. The spatial resolution determines the



maximum sensor length while the required frequency response sets

the maximum sensor diameter. Conflicts arise when trying to

optimize the other requirements.

The sensor's maximum dimension will be its length, thus its

length must be at least as small as the turbulent scale sizes at which

thermal dissipation occurs. The temperature microscale is given by:

= (D/E)4 (3-1)

Using typical values for DT and E we obtain,

lmm

Using empirical relations the sensor frequency response can be

obtained as a function of sensor diameter. The following relation

(from Flow Corporation Publication No. 25) is used for a small

cylindrical wire.

f(-3db) (0.52+0. 025pUD) x lO (32)
Zipc D

p

Taylor 's hypothesis can be employed to determine the required

frequency response based on the microscale. For typical velocities

the value is about 1 khz. This corresponds to a maximum sensor

diameter of about 1.5 p.. This diameter requirement dictates the use
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of platinum as the wire material since it has a very high temperatiire

coefficient of resistance and is available in these sizes. Only nickel

has a higher temperature coefficient. However, it is not available in

these small diameters.

Final selection of the sensor length and diameter and the cur-

rent through the sensor was based on considerations of the noise

level, velocity sensitivity and temperature sensitivity. The minimum

noise level can be approximated by that induced by thermal effects.

This relation is given by:

T
/kTF (3-3)

N Ict".J R IL

The bridge configuration determines the temperature sensitivity and

is given by:

s=j. - (3-4)

The velocity sensitivity has been derived by Wyngaard (1971)

and is given by:

2 .45 2I R 0.25 Re !__ (3 -5)- ,452 2
iikLU(.24+.56Re ) D

These relations result in a minimum value for L of . 2 mm

for the maximum allowable velocity sensitivity and noise level. In
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addition it is found that the constraints are satisfied over a range of

values of lID and that the diameter should be as small as possible.

Although Boston (1970) has reported use of sensors as small as

0. 25 ii. diameter it was felt that 0. p. diameter wire represented a

reasonable compromise. For the 0.5 p. sensor, the length is 1 mm

and the current level is 100 p.a. These parameters resulted in a

velocity sensitivity of 0.00006 °C/(cm/sec) and a noise level of

0. 004°C rms.

The sensor construction was from Wollaston wire, which con-

sists of a platinum wire of the desired diameter with a silver jacket,

A short section of this wire was prestressed into a V-shape and

soldered onto the sensor supports. The silver jacket was then

electrochemically removed by placing the tip of the wire in a drop of

dilute nitric acid at about 1.5 V DC potential. The silver jacket

flakes off exposing the platinum case. Etching was continued until the

desired sensor resistance was obtained. Figure 3-1 shows the

details of this construction.

2. Velocity

Similar requirements are imposed on the velocity sensor

system. These are all met with a commercially available constant

temperature hot -wire anemometer (Thermo -Systems 1 054A). With

the hot-wire system the sensor diameter need not be as small as for
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Figure 3-1. Construction Details of Platinum Resistance
Thermometer.



temperature since the frequency response is not limited by the thermal

inertia of the wire but is electronically limited. The system chosen

had a sensor diameter of 1.37 p. and a length of .4mm.

B. Temperature Sensor Electronics

The electronics package associated with the temperature

sensor was developed over a period of two years to meet the require-

ments previously outlined. The requirement which resulted in the

most difficulty was the noise level. Great care had to be taken in the

design of the primary amplification stages to minimize the electroni-

cally induced noise levels.

1. Circuit Description

The platinum resistance thermometer (PRT) consi.ss of three

main sections; 1) the bridge and bridge voltage reference source,

2) the bridge amplifier, and 3) the detector, filter and output buffer

stages. Figure 3-2 shows the simplified circuit schematic.

The bridge consists o four legs of approximately equal

resistance, two reference resistors, the temperature probe and a

balancing resistor. A capacitor in parallel with the balancing

resistor allows the probe cable capacitance to be milled. Relay

circuitry (not shown) provides a means of switching calibration

resistors in place of the probe and balancing legs of the bridge. This
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provides a check on the gain stability of the electronics.

The bridge is driven by a 100 khz sinusoidal signal. This

signal is generated as a square wave with a pair of inverters through

a regulated current source, which acts to regulate the amplitude

stability. Frequency stability is provided by crystal control. The

square wave is then fed through a 100 khz low pass filter where sec-

ond and higher harmonics are attenuated. A low impedance driver

then sends the signal to the bridge.

Any impedance imbalance in the bridge appears as an AC

potential across the bridge. It is this potential which must be ampli-

Lied and then rectified to produce a DC output proportional to the

sensor temperature. The bridge signal is amplified by a low noise

differential amplifier which consists of two stages, a discrete differ-

ential preamplifier followed by an integrated instrumentation

amplifier. The superior low noise performance is determined by the

first stage and great care was taken in the design of this stage. This

pre -amplifier stage contains two principal features:

1. Optimum noise performance for a large range of source

(sensor) resistance with a single resistor adjustment.

2. Unique temperature compensation to provide gain stability.

The pre-amplifieris a discrete differential amplifierusing a

low noise dual transistor driven by a constant current source. Noise

performance of the transistor pair for a given source resistance is
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dependent upon an optimum emitter current. The emitter current

source design allows the current to increase proportionally with tern-

perature. This is required to compensate the differential amplifier

whose AC gain is inversely proportional to temperature. The com-

pensated gain changes only 0. 2% over a 0-70°C temperature range.

Additional gain is provided by an integrated instrumentation

amplifier. This stage provides gain adjustment to obtain the desired

output sensitivity.

The output of the instrumentation amplifier is a large amp1itude

100 khz sine wave. The amplitude of this signal is detected by the

next stage which is a linear precision rectifier. The rectified output

is then filtered with a 10 khz, two-po1e low pass filter to remove the

100 khz component. The filter output is buffered by a non-inverting

output operational amplifier. Normal output is 0 to 10 volts DC.

Noise checks were made by using a temperature insensitive

resistor in place of the sensor. The dummy probes temperature was

changed between room temperature (297° K) and that of liquid nitrogen

(77° K). Measurements of the output noise at these temperatures then

provided a measure of the noise figure of the PRT electronics. The

noise figure is a figure of merit for noise performance of electronics.

The maximum noise figure is 0 db while the best available amplifiers

have optimum noise figures of about 1 db. The temperature tests

resulted in a noise figure of 3.7 db. Total noise output of the PRT
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electronics was 0. 005 volts rms. This represents about

0.005°C rms.

2. Calibration

Calibration of the sensors and PRT electronics were performed

by immersing the sensor in a temperature regulated bath of Freon-13

This procedure resulted in a calibration factor of 1.23 °C/volt with

linearity to about 99% over a 12°C temperature range.

C. Differentiator Electronics

As previously noted the differentiator was employed to enhance

the signal levels at the higher frequencies of interest. The primary

consideration in this design was to minimize the noise level since

any electronically generated noise in the bandpass of the filter would

be amplified. Figure 3-3 shows a circuit schematic of the differ-

entiator design. This consists of a unity gain input buffer. The next

stage is a combined differentiator/integrator which produces a

+20 db/decade transfer function (differentiation) forfrequencies up to

the "cutoff frequency. Above these frequencies there is a

-20 db/decade frequency response (integration). The next stage is a

three-pole, noninverting, low pass filter used to produce a sharper

cutoff at frequencies above those of interest. The component values

of the two filter stages were tailored to produce a linear transfer
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function with a slope of +20 db/decade up to the "cutoff" frequency,

followed by a sharp cutoff. It was found that placement of the differ -

entiating stage before the filter stage was critical for the achievement

of the lowest noise design. Figure 3-4 shows the ideal and measured

transfer functions for f = 2000 hz,
c

The hardware constructed allowed selection of one of six

"cutoff" frequencies (100, 200, 400, 1000, 2000, or 4000 hz), The

"cutoff" frequency used in the field experiment was 2000 hz.

D. Other Instrumentation

1. X-Wires

In addition to the single hot-wire a pair of crossed hot-film

anemometers were used to determine the horizontal and vertical corn-

ponents of the wind velocity. These signals were used to directly

measure the flux of momentum and with the temperature signal to

determine the sensible heat flux. These sensors and associated

electronics were also commercially available (Thermo-Systems Inc.).

2. Cup Anemometer

As an in situ calibration of the hot-wire anemometer a cup

anemometer signal was simultaneously recorded. The system used

was a low inertia Thornthwaite design. This had frequency response

of about 1 hz.
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3. Wind Vane

A fast response Thornthwaite wind vane was used to determine

the wind direction so that the instrumentation could always be

oriented into the direction of the mean wind.

F. Data Acquisition

1. Location

36

The site selected was over a very flat field of recently cut grass

near Corvallis, Oregon. For the observed wind directions the fetch

exceeded 1 mile. The primary reason for the selection of the site was

the expectation of high sensible heat fluxes and hence of large tern-

perature fluctuations. Measurements over the ocean present more

stringent sensor requirements due to the much lower signal levels.

2. Mast Arrangement

All instruments were supported on a portable mast at a height of

2 meters. The mast could be rotated to maintain the sensor orienta-

tion into the mean wind. Figure 3-5 shows a picture of the mast

arrangement. The signals from each sensor were carried by cable to

an instrument hut approximately 100 feet downwind where they were

conditioned and recorded.



Figure 3-5. Instrument Mast.



3. Signal Conditioning and RecordinR

Prior to recording the signals in analog form on magnetic tape

each was preconditioned to obtain the maximum dynamic range.

Preconditioning essentially consisted of offsetting the mean voltage

level and then amplifying or attenuating the fluctuating signals' levels

to make them compatible with the tape recorder. The system is out-

lined in Figure 3-6.

The signals from the temperature sensor and hot-wire were

recorded in two different ways. One tape recorder channel contained

the undifferentiated signal output of the GAIN/OFFSET device. The

other was differentiated prior to recording.

These signals together with the x-wire anemometer were

recorded on separate FM (frequency modulated) channels of a mag-

netic tape recorder (Hewlett-Packard Model 3955). The cup

anemometer and wind direction signals were passed through VCO's

(voltage controlled oscillator), mixed and then recorded on a direct

record channel, The recordings were made at 15 inches per second.

At this speed the frequency response was flat to 5 khz and allowed a

continuous 48 minute record to be made.
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IV. DATA ANALYSIS PROCEDURE

The data analysis consisted of three principal procedures. The

first of these was to select sections of the recorded data which would

be best for analysis. Next, these sections of analog information had

to be converted into digital form. Finally the digital data had to be

processed through various computer programs to obtain the desired

results.

A. Data Selection

During the field experiment over 10 hours of data were

recorded over a two day period. The data were recorded in sequence

such that both stable and unstable conditions could be analyzed. To

cover all of these stability conditions, sections of each tape were to be

analyzed. Due to the intermittent nature of the temperature and

velocity signals a time series of at least one minute is required to

obtain a reasonable mean ratio of dissipation. Figure 4-1 shows the

running-average rate of dissipation for averaging times up to 4 mm-

utes. Strip chart recordings of the recorded signals were examined

to find sections suitable for analysis. A typical strip chart recording

is shown in Figure 4-2. Several criteria were used in the selection of

these sections. Most important of these was that the signals of

primary interest, the temperature and velocity derivatives, were
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without spurious spikes or other ambiguities. Selected sections also

had to have nearly constant wind direction and wind velocity. A fiscal

constraint limited the total time that could be analyzed to about 30

minutes; this represents about 30 million data words after digitizing.

Prior to final selection of sections for analysis all of the data

was spectrally analyzed with an analog spectral analyzer (SAICOR-

52B). This allowed much longer time series to be examined and gave

preliminary spectral estimates for sections that were to be digitally

analyzed.

The final data selection consisted of at least two one minute

sections in each of the 14 data tapes. In addition to these, one 4 mm-

ute section was selected in each of six tapes.

Additional sections of longer length were selected from each

tape for digitizing at lower frequencies. These signals were for the

direct flux determination.

B. Analog-to-Digital Conversion

The selected analog data sections were converted to digital form

using an EAI-640/680 hybrid computer. This machine had a dynamic

range of ±10 v with digitized words of 12 bits including sign. To

utilize this dynamic range the analog signals from the tape recorder

were amplified before digitizing. Care was taken that this amplifica-

tion would not produce any signals of greater than ±10 v. In addition



to amplifying, the signals were low pass filtered at one-half of the

sampling frequency to prevent any aliasing.

For the high frequency data the signals were sampled at 4000 hz,

which would allow spectral calculations to 2000 hz. The signals

digitized at this frequency were the temperature velocity, and their

derivatives. The low frequency signals were digitized at 20 hz.

These signals were the wind direction, cup anemometer velocity,

hot-wire velocity, x-wire velocities, and PRT temperature

C. Digital Analysis Programs

The entire high frequency analysis procedure is seen in Figure

4-3, showing the entire progression from raw analog data to final

spectra and Kolmogorov constants. The analysis features for the low

frequency data are similar and will not be discussed.

The first step in the analysis was to take the original analog-to-

digital tapes and reformat them creating a new digital tape having data

records of a length convenient for analysis. This length was chosen

as 8192 words for the high frequency data. The Fast Fourier Trans-

form (FFT) computer routine required the record size to be a power

of 2 and 8191 is the largest such size which could be used on the

available computer (CDC 3300). Since cross-spectra were to be com-

puted on the low frequency data a record length of 4096 was chosen

for that data.
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The resulting reforrnated digital data tape generally consisted

of about 115 files each having 4 records, one for each data channel, of

8192 integer words.

The next process was to use program SPECEST to calibrate the

data, compute the Fourier coefficients for each record, and then

compute the raw spectral estimates for each record. The basis of

this program is the FFT routine to compute the Fourier coefficients.

This is a library program which computes the Fourier coefficients

using the Cooley-Tukey time decimation algorithm. This procedure

requires significantly less time than a standard Fourier transform

procedure.

Following calculation of the raw spectral estimates by SPECEST

the data are ready for smoothing bythe program BANDAVG. Due to

the characteristic intermittency of the temperature and velocity

fluctuations the raw spectral estimates of these signals are widely

scattered. To improve the confidence in the spectral estimates, two

techniques of smoothing are used. These are termed block and band

averaging. The raw spectral estimates are first averaged over the

total number of records making up a run. Further smoothing is

accomplished by dividing the frequency range into equally spaced

logarithmic frequency bands and averaging over all spectral estimates

in each band. The band averaging scheme chosen consisted of 24 fre-

quency bands with approximately 7 bands per decade of frequency.
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Part of the program BANDAVG is used to determine the

standard deviation and equivalent degrees of freedom for each spectral

estimate. These can then be used to determine confidence limits on

the spectral estimate. It can be seen (Jenkins and Watts, 1968) that

vS(f) /F(f) is a chi-square random variable with v degrees of

freedom.

Where:

S(f) = averaged spectral estimate (4-1)

F(f) true spectral estimate

v = equivalent degrees of freedom

= 2(S(f))2/Var(S(f))

Thus a (1-u) 100% confidence interval is given by:

vS(fJ vS(f)<F(f) < -i------ (4-2)
xu(v) XL(

2 2where: XL are the upper and lower a/2 points of the chi-

square distribution.

Note that this interval is dependent on the value of the spectral esti-

mates however if we look at the confidence interval for the

logarithm of the spectral estimate, we obtain a confidence interval

length independent of the spectral estimate. This length of the confi-

dence interval for log spectra is given by:



CI log10 (x(v)/x(v)) (4-3)

Figures 4-4 through 4-7 show typical spectra for the variable
aT .u, -, T and with 95% confidence intervals Thesespectra

differ from those presented in Chapter V in that they are not

normalized. The low frequency spectral difference between the

velocity and temperature spectra and their derivative spectra is

attributed to low frequency noise generated in the differentiators,

which is inversely proportional to the frequency.

The program BANDAVG also calculates raw estimates of the

Kolmogorov constants and then band averages these estimates. This

procedure is used to take advantage of the expected prewhitened con-

dition of the Kolmogorov constants in the freqiency range of interest.

Following BANDAVG spectral corrections are made for the

noise contribution to the spectrum by program NOISE.

Noise corrections are accomplished by taking advantage of the

intermittency characteristic. The spectra of records taken during

quiet periods should be representative of the noise spectra level.

This level is then subtracted from the measured spectra to obtain a

true spectrum.

Several intermittent sections from each tape were analyzed to

determine the noise levels. It was found that in general this correc-

tion was very small (< 1%) only in the temperature measurements
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under nearly neutral conditions did the noise level represent an

appreciable contribution to the measured spectrum. Figure 4-8 shows

a measured spectrum and the corrected spectrum for the temperature

derivative signal. The rather prominent noise peak at about 6 hz

was found on all runs but as can be seen it is of the proper magnitude

to correct the measured spectrum. An explanation of noise energy at

this frequency has not been found but it must be associated with the

differentiator electronics since only the derivative signals have this

noise peak.
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V. RESULTS

Data sections were analyzed from nine different runs. Table

5-1 summarizes these runs and the conditions present for each, As

can be seen the Reynoldst number is typically about .5 X io6 and the

stability parameter, z/L, varies from -, 1 to +. 035. The record

length was taken as about 4 minutes for about one-half of the runs.

These runs were those with the best signal to noise ratios. Other

runs were analyzed with about 1. 5 minute record lengths.

Table 5-1. Summary of run conditions (July, 1973;
z = ZOO cm).

Record
Run U

-6
Length

No. (cm/sec) Re x 10 z/L (sec)

RYZ1C 329 .406 +.035 237.6

RY2ZA 452 .558 -.100 233.5

RY23B 490 .605 -.078 237.6

RYZ4B 537 .663 -.059 235.5

RY25C 590 .728 -.044 237.6

RYZ6B 602 .743 -. 037 237. 6

RYZ7A 592 . 731 -. 027 75. 8
B 575 .710 -.025 77.8

RY28A 391 .483 -.045 77.8
B 345 .426 -.018 77.8

RYZ9A 344 .425 -.006 77.8
B 324 .400 -.006 77.8
C 297 .367 +.023 77.8
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Subsequent sections will discuss the velocity spectra the

temperature spectra and the flux comparison.

A.The Velocity pectrurn

The velocity and velocity derivative spectra were used to

determine the mean rate of dissipation of turbulent kinetic energy

E, and the Kolmogorov constant for velocity, a. Integration of the

velocity derivative spectrum yields the dissipation, Eqn- (1-26).

The constant, a, was then calculated using Eqn. (1-34). Table 5-2

summarizes the results for each run. Based on 13 estimates a value

of 0.504, with a standard error of the mean equal 0.007, was obtained.

This value agrees well with most of the previous estimates. Figure

5-1 shows the average of a over all runs as a function of frequency

with 95% confidence intervals. The band-averaged value of a in

Table 5-2 was obtained by averaging all estimates between about 1hz

and 28 hz.

Velocity spectra were normalized according to Eqn. (1-18).

This permits comparison of the spectra from all runs Existence of a

universal spectral function would result in a single curve for all data

points. Figure 5-2 is a composite normalized plot of all data. As

can be seen a universal function does appear to exist, but this has

been verified before, so what is indicated is that the data were

recorded and analyzed properly.
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Table 5-2. The one-dimensional Kolmogorov constant for
velo city.

Run E a a
No. zIL (cm2 /sec3) (10 hz) (1-28 hz)

RY21C +.035 392 .514 .525

RY22A -.100 609 .496 .500

RYZ3B -.078 994 .512 .516

RY24B -.059 1379 .516 .505

RY25C -.044 1535 .520 .511

RYZ6B -.037 1628 .518 .518

RY27A -.027 1656 .497 .486
B -.025 1419 .520 .543

RY28A -.045 471 .489 .522
B -.018 544 .518 .529

RY29A -.006 396 .450 .493
B -.006 324 .488 .454
C 4-.023 157 .516 .532

Average .504 .510
Standard deviation .026 .063

Standard error of mean . 007 . 005

The velocity derivative spectra were normalized according to

Eqns. (1-16) and (1-18). As was previously noted the spectra of the

velocity derivative is directly related to k2 times the spectra of

the velocity (i.e. to the velocity dissipation spectra). Figure 5-3 is

a plot of the normalized velocity dissipation spectra. Again the

existence of a universal function is verified.



F-0ow
LiJ-

za
LU
2o

CD

0>

0
0
-J
LU
>

[II

-2

-3

ri

I I I I

x

x x +

+ +X4-

+
x++x +

x ++
xxx

+

+

*
x

+

+
+

I I I I I

-6 -5 -4 -3 -2 -I 0

LOG10
Figure 5-3. Composite Normalized Velocity Derivative Spectra

(Energy Dissipation Spectra).



61

B. The Temperature Spectrum

The temperature spectrum results were used to determine the

mean rate of dissipation of temperature variance. This was used with

the previously calculated kinetic energy dissipation to calculate the

Kolmogorov constant for temperature, 3. Integration of the tern-

perature derivative signal was used to determine the dissipation,

Eqn.(1-31). The constant, , was then calculated using Eqn.

(1-36). Table 5-3 summarizes the results for each run. No values

were estimated for RUNS RYZ9A & B due to the very low signal

levels during these runs. Based on 11 estimates a value of 1.02 was

obtained, with a standard error of the mean equal .03. This value is

nearer to the value 0. 8 reported by several researchers than the recent

values of Boston (1970) and Gibson, etal.(1970) which were 1.6 and

2.3 respectively.. Both Boston and Gibson, etal. used the direct approach

used here. Figure 5-4 shows the average of 3 over all runs with

95% confidence intervals. The band averaged value of 13 in Table

5-2 was obtained by averaging all estimates between about 5 hz and

28 hz.

Temperature spectra were normalized according to Eqn. (1-20).

Since only one fluid was used no normalization with respect to the

Prandtl number is required. FigureS-S is a composite normalized

plot of the spectra. The existence of a universal function for
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temperature appears well verified. One discrepancy is the slight

slope change at the end of the -5/3 region. This effect is also seen

in the temperature derivative spectra and will be further discussed

there.

Table 5-3. The one-dimensional Kolmogorov constant for
temperature.

Run p 13

No. z/L (°C2/sec) (10hz) (5-28hz)

RYZ1C +. 035 . 00634 .870 . 850

RYZ2A -.100 .0920 .954 .970

RYZ3B -.078 .137 1.077 1.071

RY24B -.059 . 144 1. 130 1.093

RY25C -. 044 .0994 1. 183 1. 136

RYZ6B -.037 .0782 1. 152 1. 156

RY27A -. 027 .0436 1.061 1.093
B -.025 .0298 1.059 1.064

RY28A -.045 .0144 .926 .924
B -.018 .0031 .988 .974

RY29A -.006 2.3 x 1O4 --- - --
B -.006 l.5x105
C +. 023 6.9 , io- .879 ,914

Average 1.025 1.022
Standard deviation . 104 . 103

Standard error of mean .031 .013

The temperature derivative spectra were normalized according

to Eqns. (1-16) and (1-20). As with the velocity derivative spectra

the temperature derivative spectra may also be referred to as the
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temperature dissipation spectra. Figure 5-6 is a plot of the

normalized temperature dissipation spectra. There is slightly more

variation than in the previous normalized plots however, at high

frequencies the variation is very slight. The unexpected shape as

seen in the temperature spectra also appears here as a peaking just

before the region of maximum dissipation. This can also be more

clearly seen in the spectra of Figure 4-7.

Several possible explanations for this peaking behavior have

been examined. These tnclude

1. local input of thermal variance due to viscous heating

2. electronic resonance

3. velocity sensitivity of the temperature sensor

4. local anisotropy

5. dissimilar dissipation of temperature and velocity

fluctuations

The first effect is suggested by Friehe (1973) as a possibly

significant source term in the temperature variance budget. The

term representing the viscous heating input takes the form of a third--
. 8u2order statistic, e e since E (-) . To evaluate the magnitude

v

of this term, an estimate was made for B The temperaturev

fluctuation due to viscous heating can be approximated by conversion

of the rate of dissipation, e, into heat as follows
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dO E

dt C
p

(5-1)

An appropriate time scale is associated with the Kolmogorov micro-

scale and is given by:

T = = !
(V/E)" (5Z)

Combining Eqns. (5-1) and (5-Z) gives

O ET/c
V p

2w 3/4 3/4V E
Uc

p

(5-3)

Thus the production term due to viscous heating is approximated by:

Z'ir 3/4 7/4
E (5-4)

v
Uc

p

An appropriate value for E would not be the mean value but a

much larger value associated with the large excursion of the instan-

taneous E from the mean value. Using the probability distribution

of Gibson, et al. (1970) the appropriate value of E is estimated as

about 150 . Substitution of the values for each run then gives anav

estimate of the magnitude of the term. For all runs the viscous

heating term is more than 5 orders of magnitude smaller than the



thermal dissipation term.

In addition, if this term is significant it should give a greater

effect under neutral conditions where the production due to the covari-

ance of wO is small; however this was not observed. Thus it does

not appear that viscous heating is responsible for the observed

anomaly in the temperature spectral shape. It would, however, be

advisable to measure 0. This would require a velocity and tern-

perature sensor to be placed within a microscale length of each other

(- 1 mm).

As another possible source of the anomaly, the PRT electronics

frequency response was rechecked in the frequencies between 10 hz

and 1000 hz to determine the presence of any peaking due to some

resonance. The frequency response was found to be flat within less

than 1% over this frequency range, thus eliminating this as a pos-

sibility.

Wyngaard (1971) discusses the effect of velocity sensitivity of

the temperature sensor on temperature spectral measurements.

However, for the conditions present for this experiment the spectral

effect of velocity sensitivity is on the order of 0. 1% and should not be

particularly frequency dependent.

Another effect examined was that of local anisotropy in the flow.

Examination of the uw cospectra showed that the covariance is

negligible after 10 hz. However, the ratio of the vertical velocity



spectrum to that of the horizontal velocity was never near the 4/3

value required for local isotropy. Up to 10 hz the ratio increased but

never exceeded 1. It is reasonable to expect that on the very small

scales associated with dissipation, conditions would be isotropic.

Gibson, et al. (1970) pointed out the possible effects of anisotropy

when they demonstrated a nonzero skewness for the temperature

derivative. In isotropic flow the derivative skewness is required to

be zero. Gibson, et al. postulates that the effect of anisotropy would

be to decrease the horizontal temperature gradients while increasing

the vertical gradients through the shearing action of the velocity flow

by stretching eddies in the horizontal. If this were the case the

measured value of would be less than under isotropic conditions,

and thus the measured spectral estimates would be lower than

expected for frequencies less than the value where local conditions

became isotropic. Gibson, et al. used this argument to explain their

large values of 3 since the measured temperature dissipation

would be lower under anisotropic conditions (but assuming isotropy)

than under isotropic conditions. The possible explanation for the

peaking then is that the spectral values near the peak and beyond are

closer to the true values than the spectral values at lower frequencies

where the effects of anisotropy occur. If this explanation is valid then

the measured value of 3 would be too low by about 20 to 30%. The

lower value of P results primarily from the anisotropic effect on the
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spectrum and only slightly on the anisotropic effect on the dissipation

since this effect occurs at frequencies below the maximum dissipation.

Examination of the velocity spectra shows little evidence of a similar

effect, however, the peaking is clearly seen in the plot of the

Kolmogorov constant for velocity, a (Figure 5-1). Data taken at

higher levels such as that of Boston (1970) would presumably have

less anisotropy effect, which might explai,n the lack of peaking in the

Boston data.

The final effect examined was that due to dissimilarity between

the dissipation of temperature and velocity fluctuations (Schmitz,

1968). Schmitz suggested, in an oral presentation (never published),

that the dissipation dissimilarity would result in a slope increase in

temperature spectra. It is rather obvious from the strip chart

recording (Figure 4-2) that the temperature fluctuations are more

intermittent and have different characteristics than the velocity

fluctuations. Thus the dissipation of temperature variance is occur-

ring more intermittently and perhaps at different locations in the flow

field than the dissipation of turbulent kinetic energy. This dissimi-

larity could be due to dissimilar production (i.e. dissimilar cospectra,

uw and we, and mean vertical gradients). If some of the tern-

perature fluctuations are being dissipated in different spots than the

velocity fluctuations they must rely solely on thermal diffusion for

dissipation. This would be similar to the situation suggested by
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Batchelor (1959) for temperature fluctuations in fluids with large

Prandtl numbers where the temperature fluctuations extend to scale

sizes much smaller than the velocity fluctuations. Batchelor showed

that for scales smaller than the velocity micro scale the slope of the

temperature spectrum increased to -1 before finally rapidly falling

off.

Additional support for this possibility is found when the

normalized velocity and temperature dissipation spectra are super-

imposed. This reveals that the peak of the temperature dissipation is

at a higher frequency than the velocity dissipation peak. For fluids

with Prandtl number less than 1 (air, Pr = 0. 7) the temperature

dissipation peak should occur at lower frequencies than the velocity

dissipation peak.

C. Flux Comparison

In addition to the high frequency temperature and velocity data

simultaneous lower frequency data were obtained and analyzed to

obtain direct measures of the momentum and sensible heat fluxes, as

outlined in Chapter II. These fluxes were obtained for comparison

with the fluxes calculated using the dissipation method also outlined

in Chapter II. Table 5-4 gives a summary of the results for all runs.

A clearer comparison is seen in Figures 5-7 and 5-8 where the

direct results are plotted against the dissipation results. Perfect
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Table 5-4. Comparison of fluxes computed by dissipation
and direct methods.

Run T H5
No. z/L (dynes/cm2) (mw/cm2)

RY21C .032 1.28 -5. 15
(+.035)* (1.02) (4.O6)

RYZZA -. 277 1.04 25.7
(-. 100) (1.68) (24.8)

RY23B -.096 2.46 42.5
(-. 078) (2.31) (31.7)

RY24B -.067 2.64 33.6
(-.059) (2.85) (33.0)

RY25C -.062 2.51 28.9
(-.044) (3.03) (27.0)

RY26B -.040 2.99 23.7
(-.037) (3.13) (23.7)

RY27A -.032 1.93 9.98
(-.027) (3.14) (17.4)

RY27B -. 025 2.67 12. 5
(-.025) (2.82) (14.0)

RYZ8A -.077 0.93 7.97
(-. 045) (1.38) ( 8.47)

RY28B -.019 0.88 1.77
(-. 018) (1.48) ( 3.72)

RY29A -. 006 0. 93 0.60
(-.006) (1.18) (

0.91)

RYZ9B -. 006 0.94 0.60
(-.002) (1.02) ( 0.22)

RYZ9C +.039 0.42 -1.21
(+.023) (0.58) (-1.18)

*Dis s ipation values with parenthesis.
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agreement would, of course, be a line with slope equal 1. These

figures contain the data points, the slope equal 1 line and the linear

least-square curve fit to the data. The dissipation method appears to

over-estimate the stress by a fixed amount (or the direct method

underestimates). Excellent agreement is seen in the sensible heat

flux estimates. It might be noted that although the agreement is

fairly good the direct method used relatively short records lengths

which may not give reliable results since cospectra have low fre-

quency variations. This may in fact explain some of the scatter.
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VI. SUMMARY

A. Kolmogorov Universal Constants

The initial primary research objective was to directly

determine the one-dimensional Kolmogorov constant for temperature

and to remove some of the uncertainty associated with its value. As

we have seen, this investigator found the value of the constant to be

1.02 in disagreement with both the indirectly measured values and the

recent directly measured values of Boston (1970) and Gibson, et al.

(1970). In addition the unexpected anomally in the temperature

spectral shape raises additional questions, a common outcome of

much research.

The value of the temperature constant is known with perhaps

more certainty than before. However, the anomalous behavior of the

temperature spectra raises questions about the universality of the

constant and its interpretation. Although Boston (1970) suggested a

possible stability influence on the constant, for the stability range of

this investigation no statistically significant variation was found.

However, the questions concerning the effects of anisotropy and dis-

similar dissipation have yet to be fully examined.

The value of the one-dimensional Kolmogorov constant for

velocity was estimated at 0. 50 in good agreement with most other

values.



B. Spectral Forms

1. Velocity

77

The velocity and velocity derivative spectra results agree well

with most other results, while extending the spectral measurements

to slightly higher frequencies. Normalization of spectra from both

stable and unstable conditions results in a simple universal curve

which closely agrees with the results of Nasymth (1970).

2. Temperature

Probably the most important contribution of this research is

discovery of the anomalous spectral shape for the temperature fluctua-

tions, although conclusive explanations for the anomally was not

possible. Most of the possibilities examined can be rejected, while

the effects of anisotropy and/or dissimilar dissipation of temperature

and velocity fluctuation appear to be the most reasonable possibilities.

The result of the peak of the temperature dissipation occurring at a

higher frequency than the peak of the velocity dissipation lends further

support for the latter hypothesis. It is, therefore, suggested that

further investigations involving high frequency temperature fluctua-

tions be made to examine these possibilities and their consequences

on the spectral shape and on direct evaluation of the constant, 3.



C. Flux Comparison

Based on the comparison of fluxes computed by direct and

dissipation methods it is concluded that both techniques are compar-

able. However, use of the dissipation method requires knowledge of

the constant, , in the inertial subrange spectral form for tern-

perature. As we have seen, the value of the constant is still uncer-

tam.
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