
AN ABSTRACT OF THE THESIS OF

Allen Harold Brady for the Ph. D. in Mathematics
(Name) (Degree) (Major)

Date thesis is presented December 10, 1964

Title SOLUTIONS OF RESTRICTED CASES OF THE HALTING

PROBLEM APPLIED TO THE DETERMINATION OF PARTIC-
ULAR VALUES OF A NON-COMPUTABLE FUNCTION

Abstract approved
(MajoOprofessor)

Some simple theorems and procedures are derived for use

in establishing that certain Turing machines will never halt because of

conditions arising in their history of operation or because of the pecul-

iar construction of the machines. The special case of the halting

problem of two-symbol, k-state Turing machines with blank input

tapes arises in the determination of particular solutions to a recur-

sively unsolvable logical game, the so-called Busy Beaver game.

Associated with this game are two well-defined integer functions of

k, the "Busy Beaver number" BB(k), and the "shift number",

SN(k). Both functions are known to be non-computable. To determine

particular values of these functions, a heuristic program was written

for a digital computer to "solve" the blank input tape halting problem

and determine the values of these functions for k = 2, 3, and 4. In

the program an efficient method for the generation of all non-redundant

two-symbol, k-state machines is coupled with a heuristic method

Redacted for privacy

for solving the halting problem. It was determined that SN(Z) = 6

and that BB(2) = 4, BB(3) = 6, and SN(3) = 21. The latter three

values corroborate known results, and it was further determined

that the same values hold when the center move is allowed in the

machines. It has been shown that SN(4) > 8 4 and that BB(4) > 11

(or > 12 using a different stopping convention), and the halting prob-

lem of two-symbol, four-state Turing machines with blank input

tapes has been reduced to deciding the individual cases of a set of

machines containing more than 10, 817 but fewer than 18, 061 distinct

members. The mechanization of certain procedures in addition to

those used is suggested to reduce the number of cases which remain

for k = 4. It is also suggested that suitable heuristics are needed

for the application of mathematical induction to this problem, and

that the problem should be studied for the values k = 5 and k = 6.

SOLUTIONS OF RESTRICTED CASES OF THE HALTING PROBLEM
APPLIED TO THE DETERMINATION OF PARTICULAR

VALUES OF A NON-COMPUTABLE FUNCTION

by

ALLEN HAROLD BRADY

A THESIS

submitted to

OREGON STATE UNIVERSITY

in partial fulfillment of
the requirements for the

degree of

DOCTOR OF PHILOSOPHY

June 1965

APPROVED:

A

Professor Mathematics

In Charge of Major

LIC man of Department of Mathematics

Typed by Carol Baker

Dean of Graduate School

Date thesis is presented December 10, 1964

Redacted for privacy

Redacted for privacy

Redacted for privacy

ACKNOWLEDGEMENT

The author wishes to thank Professor H. E. Goheen for

suggesting this problem and for his most helpful advice and ecourage-

ment. The author also extends thanks to Professor W. R. Stahl for

his interest and helpful discussion; to Dr. L. B. Lusted, Chairman,

Department of Biomathematics and Automatic Data Processing of the

Oregon Regional Primate Center at Beaverton, for making available

the computer facilities; and to Mr. Robert W. Coffin, Chief Program-

mer at the Primate Center, for his invaluable assistance and advice

in the use of the SDS 920 computer. This research was sponsored by

the Graduate Research Council of Oregon State University, and sup-

port was also received from the National Institute of Health under

Grant GM 11178.

TABLE OF CONTENTS

Chapter Page

I INTRODUCTION 1

II TURING MACHINES AND SOME SIMPLE HALTING
THEOREMS 6

Basic Definitions 6
Halting 10

III THE RECURSIVELY UNSOLVABLE BUSY BEAVER
PROBLEM OF T. RADO 31

The Busy Beaver Problem 31
Radots Proof of the Non-computability of BB(k) 34
A Discussion of the Growth of the Function BB(k) 37

IV THE SOLUTION OF RADOIS PROBLEM FOR k = 2
AND 3 AND LOWER BOUNDS OF THE SOLUTION
FOR k = 4 43

Preliminary Remarks on the Problems of
Small Order 43

Reduction of Cases: Center Move and Symmetric
Redundancies 45

A Heuristic Computer Program to Solve the
Busy Beaver Problem for k < 4 52

Remarks on the Efficiency of the Program 63

V CONCLUSION 65

BIBLIOGRAPHY 70

APPENDICES 73

A A TURING MACHINE SIMULATOR FOR
THE IBM 1620 COMPUTER 73

Background 73
Using the Simulator 76
Internal Organization of the
Simulator 79

TABLE OF CONTENTS (CONT.)

APPENDICES Page

B A 24 STATE MACHINE TO COMPUTE x! 83

C A HEURISTIC COMPUTER PROGRAM
FOR THE DETERMINATION OF BB(k)
AND SN(k) FOR k = 2, 3, 4 86

D THE 27 THREE-STATE MACHINES ON
WHICH THE COMPUTER PROGRAM
FAILED TO MAKE A DECISION 100

LIST OF FIGURES

Figure Page

1 MACHINE EXHIBITING A SIMPLE SWEEPING
PAT TERN 18

2 THE HIGH SCORING TWO-STATE MACHINES 58

3 THE HIGH SCORING THREE-STATE MACHINES 60

4 THE HIGHEST SCORING FOUR-STATE MACHINES
FOUND AMONG THE MACHINES KNOWN TO STOP 61

5 INPUT DECK FOR SIMULATOR AND MONITOR
OUTPUT 80

6 THE 27 THREE-STATE FAILURES 101

7 BEHAVIOR OF FAILURE NUMBER SIX 102

8 BEHAVIOR OF FAILURE NUMBER TWO 104

SOLUTIONS OF RESTRICTED CASES OF THE HALTING PROBLEM
APPLIED TO THE DETERMINATION OF PARTICULAR

VALUES OF A NON-COMPUTABLE FUNCTION

I. INTRODUCTION

In 1936 A. M. Turing [20] devised an idealized scheme for

computation whereby a person (or machine) can carry out the rules

of any algorithm that is expressed as a finite set of atomic acts

which refer to the marking upon or shifting along a tape of po-

tentially infinite length and to the choosing of a subsequent atomic

act. He was able to show that his simple scheme with a strong intuitive

basis was logically equivalent to other attempts to define precisely

the concept of an algorithm such as the k-definability of Church [21 I.

Any theoretical mechanization of a "computer" in this sense of

Turing is classically referred to as a Turing machine.

A particular contribution of Turing's development of the

notion of computability was his demonstration of the existence of a

universal machine which can carry out the computation of an arbitrary

Turing machine whose description and input tape comprise the input

tape of the universal machine. The influence of this discovery upon

the development of the electronic computers which were to follow in

a decade cannot be overlooked [24, p. 37]. We shall first review

Turing's concept and discuss some of the notation used.

Turing considered an "infinite" tape (or strip of paper)

measured off in squares which could be blank or could contain some

symbol from a finite alphabet. A machine or person is able to scan

a square and determine which symbol is marked upon it or that it is

blank. This is done while the machine is in a particular configuration

or the person in a particular state of mind such that the finite se-

quence of acts to follow are determined uniquely according to this

state and the particular marking of the square. The sequence of ac-

tions to which the machine is directed is made up of one or more of

the following acts:

printing a new symbol on the square;

erasing the square;

moving to the left one square;

moving to the right one square;

staying in place (doing nothing).

Each sequence is then terminated with the act of changing to a speci-

fied new machine configuration (state). The act of erasing can be

eliminated by considering it to be equivalent to the printing of a

blank (Post [4]),and 'staying in place" or "doing nothing" can be

thought of as the act of printing the same symbol that was scanned.

This would reduce the possible acts to three plus a change of state.

Turing used two conventions to restrict the formation of the

aforementioned sequences. The first convention [20, p. 239] i8

2

3

basic to the development given by Kleene [8] while the second conven-

tion [20, p. 251] is basic to that used by Post [15] and Davis[5]. A
formal proof of the logical equivalence of the two conventions in the

context of the notion of a computational scheme is given by Anderson
[1]. Where Turing considered a tape which was infinite in one direc-

tion only, Kleene [8] and Davis [5] follow Post [15] in using a tape
that is infinite (or infinitely extensible) in two directions, but this

presents no logical difficulty. In this thesis we shall follow the de-

velopment by Kleene [8] in restricting all sequences to a triple:

print a symbol(to include printing either a
blank or the same symbol);

move left, stay in place (center move) or
move right;

change to a specific state (to include remain-
ing in the same state).

The moves will be designated by "L", "P", or "R" respectively. 1

A formal definition of a Turing machine will be given in Chapter III

following essentially that definition given by Anderson[]. I.
To carry out a computation or the steps in an algorithm, the

corresponding Turing machine is started in a particular state on an
"input" tape which is all blank except for at most some finite number
of squares. The computation is finished when the machine stops, i.e.,
1

Kleene uses "C" for "center" in place of the "P" we use here.Turing used "P" to stand for "print. "

when it reaches an explicit command to halt (e. g. the triple q P s

with the machine in state q scanning symbol s) or a state-symbol

configuration for which no commands are defined.

Associated with the collection of all Turing machines are

some undecidable problems among which is the well-known halting

problem: there does not exist an algorithm (or equivalently a Turing

machine) which can act upon an arbitrary Turing machine and its in-

put tape to determine whether or not the Turing machine will eventu-

ally halt its operation on the tape. This is true in particular for the

universal Turing machine. 1

A particular "well-defined" integer function has been given

by Rado [161 which is defined in terms of the class of two-symbol

(binary) Turing machines. This function of the positive integer k is

defined as the maximum number of (non-blank) marks which can ap-

pear on the output tape of an arbitrary two-symbol, k-state machine

which eventually stops after being started on an all blank tape. The

determination of the value of this function depends upon the solution

of the halting problem for blank tapes which is unsolvable (see

Chapter III). It is not clear what is to prevent us from determining

in general the values of this and other associated functions. The

value of this function for k = 2 is known[16], but after considerable

lA simple proof of this fact developed in terms of the self-
applicability of a Turing machine is given by Trakhtenbrot[22].

4

effort had been expended utilizing digital computers, the value for

k = 3 was not known at the time of publication of Radols original

paper [16] on the subject. 1 Neither were any values known for

k> 3. Accordingly, research was undertaken to devise a means to

effectively compute the value of this function for the particular argu-

ment k = 3 and perhaps shed some light upon the difficulties involved

in "calculating" the value of the function for even greater values of k.

1 Prior to the completion of the research reported in this thesis it
was learned that the problem for k = 3 had been solved [11] by Dr.
Shen Lin, a former student of Rado's[17]. The solution of the
problem to be presented here was determined independently of
the efforts of Dr. Lin and gratifyingly agreed completely with his
particular result. I am indebted to Dr. Lin for his later communi-
cation of a copy of his paper pertaining to this result which is
to be published in collaboration with Prof. Tibor Rado.

II. TURING MACHINES AND SOME SIMPLE HALTING THEOREMS

2. 1 Basic Definitions

Given two sets A and B, a function, written f: A--13, is a

subset of { Ax B} such that if (a, b)E f and (a, b') c f, then b = b'

f will be called finite if it contains a finite number of elements.

Let Q be an enumerable set, M be the set { -1, 0, +1},

and S be any pre-defined set. The elements of Q will be called

states, the elements of M moves, and the elements of S symbols.

A Turing machine is a function Z: {QxS} { Qx Mx S}, finite in

the sense described above. 1The finite set A of elements s E S

determined by the existence of a quintuple element

z = (q1, s', q2, m, s) or an element z = (q1, s,
q2,

m s') in Z is

called the alphabet of Z. The finite set of elements q Q similarly de-

termined will be referred to as the states of Z.

A tape t is a function mapping the integers I (negative and

non-negative) into the alphabet A. An element of A which is the

image of an infinite set of integers will be called a "blank". Only

tapes which define one blank element shall be admissible.

A triple (z, t, i) where z is a quintuple in some Turing

6

1 The definitions of Turing machine, tape, etc. given here follow
essentially that of Anderson [7] but we do not include the tape
with the Turing machine in the definition.

0 (q ,q , m, s, t1, n) = (qk) t2(n+m), q',j k s t2, n+m)

7

machine Z, t is an admissible tape, and i E I, is called a complete

configuration [5] . Let T be the collection of admissible tapes.

We define a function on the set of complete configurations (denoted by

the product set { ZxTx I}) into itself which we shall call the Turing

operating function:

and qi qk

where q', 1, and s are determined uniquely by the Z corre-

spondence (qk) t2(n+m)) m', and t is determined by

t2(n) = s; t2(r) =
t1

(r), r# n.

If Z(qk, t2(n+m)) is not defined then 0 is not defined.

We can now prove the following

LEMMA 2. 1. If 0(z, t, h) = (z, t, h), then z = (q, s, q, 0, s) for some

state q of Z and some s EA.

PROOF. Suppose 0(z, t, n) = (z, t, n). Then taking z = (qi, si,qk

we have from the definition of 0:

n= n +m m=O.

Thence

s. = t(n +0) = t(n) = s,

Therefore, z = (q., s,,q.,0, s.) .

Using the preceding lemma we prove the following

THEOREM Z. Z. 011(z, t, = (z, t, i) for all n >1 if and only if

z = (q, s, q, 0, s) for some q of Z and s LA.

PROOF. Proof that the condition is necessary follows from the

lemma above. Suppose z = (z, s, z, 0 , s) and let (z', t', i',) =0(z, t, i)

Then

0 (q, s, q, 0, s, t, i - (q, i-1-0),q1, mt, s',t', i+0),

but tt(i+0) = tl(i) = s, and therefore, z' = (z, s, q', tn.% s = z by the

definition of Z. Thus the condition is sufficient for n = 1 and by

induction holds for all n > 1.

A quintuple of the form zs (q, s, q,0, s) is called a stop,

and a complete configuration of the form (zs, t, i) where t(i) = s is

called a stop configuration.

The sequence of complete configurations defined by succes-

sive applications of the Turing operating function 0 to an initial

complete configuration
(z0 ,t0,iiwillbe called the history of operation

u

of the Turing machine Z upon the tape to. When speaking of com-

plete configurations we will admit a configuration (z, t, i) as proper

if t(i) = s, where z = (q, s, q', m, s'). It is obvious that only proper

8

complete configurations will appear in the history of operation if the

initial configuration is proper. In the halting theorems to follow later

we will be interested in establishing conditions of "not-stopping" or

equivalently that there does not exist an n > 0 such that

n+10 (z, t, = 0n(z, t, i). If for some configuration C, 0(C) is not

defined, then the history of operation terminates; if a stop configu-

ration occurs, then the history of operation will also be considered

to terminate. Thus a defined stop will be considered equivalent to

a terminal situation.

It will be convenient in some situations to restrict our atten-

tion to only certain portions of a tape. The restricted range will be

written in brackets following the symbol for the tape function. Thus

t[a,p] tn{ {iia<i53}xs};

tn{ {if I 5- a } xS}

t[a., co] E tn{ {ii i> coxs} .

Composite tapes will be defined by the union of tapes with

restricted ranges:

ti[-co, a] tj[a, tk[i3,00] F- ti[-co, a] U ti[a, c2.]U t

The next theorem follows from the definition of 0.

and if a i < , = 0, 1, 2,3 . , n, then

tn[, f3] (j) = tnl[a+k, 3+k] (j +k) where tn and t are the tapes in the

configurations determined by 0n(z, t
o)

and 0n(z,t
0
+k) respec-

tively.

PROOF. The proof depends upon the preceding theorem and the

definition of 0.

2. 2 Halting

In this section we shall examine some theorems which are of

use in recognizing when an operating Turing machine is in a "cycle"

or "loop" and will not stop. It should be pointed out that in his origi-

nal paper Turing [20] was concerned with computable "infinite"

sequences which can be constructed digit by digit by a machine which

10

THEOREM 2. 3 If a <i <3 and 0(z, t, i) = (z', t', i'), then

o(z, tm[-oo, a] t[a, p] t , 00J , i) z,, t [-co, a] t' [a, P itn[p, 00] , it)

for any tapes tm and t .

A linear shift of the characters on the input tape to is of

no consequence if we correspondingly shift the starting location io.

The next theorem states that the computations are "relatively" equal

if the initial tapes are likewise.

THEOREM 2. 4. If to[a, e3] (j) = t[a+k, p+k] +k) for some fixed k,

will keep moving down the tape without ever coming to a "stopTM.

Machines which behave in this fashion were termed "circle-free"

and machines which print only a finite number of non-blank symbols

or else halt in the sense defined in §2. 1 were termed " circular."

He showed that there does not exist a (Turing) machine which can

distinguish between the two types. This is equivalent in our case to

saying that there does not exist an algorithm (Turing machine) to

determine whether or not an arbitrary Turing machine will ever stop

once it has been started on an arbitrary tape. It is pointed out in

Chapter III that "an arbitrary tape" may be replaced by "a blank tape"

and the preceding statement still holds.

In this section we shall be primarily interested in theorems

which can be mechanically implemented. While in some pure sense

it may seem no more difficult to "remember" all the terms in a se-

quence of tape configurations (especially storing them in a Turing

machine with its "infinite" memory) than to keep track of the se-

quences of locations and of state-symbol coordinate pairs, this will

not be the case on an actual digital computer. The non-mathematical

factor of realizable time must also be considered.

The simplest type of non-stopping degeneracy is the "fixed

loop. " We have the first

THEOREM 2. 5. If there exist n and m with n > m such that

On(C0) -=Orn(C0) where Co is the initial configuration, then the se-

quence of operations will not terminate.

PROOF. 0-n+k(n-rn)(C0) Om(C) for k = 1, 2,
O

A not very practical test for the preceding condition would

be the exhaustion test. If the locations of operation of a Turing

machine on a particular tape appear to be bounded, then we need

only to allow the machine to run through a number of operations

which exceeds the number of possible configurations realizable within

this bounded region of the tape. Suppose the alphabet of our Turing

machine consists of n symbols and the machine has r states. Let

its operation be restricted to a segment of the tape consisting of 1

squares. Then there are n symbols for each of 1 squares, 1 posi-

tions to be scanned, and r states for each position for a maximum

total of rin1 configurations. For a three-state, two-symbol ma-

chine confined to a four-square segment of tape this exhaustion test

would require 193 moves while the cycle might repeat itself in, say,

six moves. We desire a more "practical" procedure.

Before we proceed we should note that the complete configu-

rations in a history of operation are not necessary to reconstruct the

steps in a computation. We have the

THEOREM 2.6. Let { ci, c2, be the sequence of coordinate

12

pairs in the history of On (Z0, to, id =zn, tn, in and let it serve like-

wise in the history of On(zol, t('), ir) = (z 1, t °, i 1). Ifo n n n
(z 1, t I, i 1) = (zn, tn, in) then (zol, ts::), i.(;) = (zo, to, i) .n n n

PROOF. For n = 1 this follows from the definition of O. For n > 1

the proof is by induction.

We see then that the entire history of operation can be recon-

structed given the final complete configuration and the sequence of

coordinate pairs. But without actually "reconstructing" we can draw

some conclusions from a limited amount of information:

THEOREM 2. 7. Let { c c cn} be identical with

{c f , c } and let in = i2n2n
in the location history of

02n(z0, t0, i0. Then On(zo, to, io) = (z0, to, io) and we have a loop.

The proof of this theorem depends upon the

LEMMA 2.8. Let {c ,c = C cn
1}.01 n 1

in the

histories of On(C) and 0n(a) respectively. Let

a= min{i 1k = 1, 2, ... n} and= max {L } in the location

history of On(C); a', p. the corresponding extremes in the history

of On(CI). If C (zo, to, io) and C' = (z(l), t('), i(;), then

= a' +io, = +i0, and to(a+k) = t(a' +k),

for all k such that lk <3-a.

13

By definition an input tape (or a tape at some point in the

operation history) must be all blank except at a finite number of

squares. The exhaustion test tells us that the region of tape being

scanned must eventually grow if a machine not in a fixed loop does

not stop. The simplest (in an intuitive sense) form of this type of

degeneracy is described by the term traveling loop and is defined by

the behavior described in the

THEOREM 2.9. Let 0 (z t i) = (z , t , i), k = in -0 > 0, and
0' 0 n n n

let i equal the minimum location in the sequence {io, iv i}.min

If tom = tn(i+k) for all i > i . , then the operation sequence will

14

PROOF. The proof is by induction from the definition of 0.

PROOF of Theorem 2.7. Let a and p be the minimum and maximum loca-

tion extremes in the history of On(Co), where Co = (zo, to, 0), and

let a' and 3' be the corresponding extremes in the history of

0n(0n(C0)). Since the coordinate pair histories satisfy the conditions

of the preceding lemma, and since the final locations are equal,

in = i2n' we have

= and = ,

and since the tape region outside [a, 31 is unchanged,

t = t. QED
0 n

not terminate.

PROOF. The proof is by induction using theorem 2. 4.

We may refer to the behavior described in this theorem

specifically as a "right-traveling" loop and note that a corresponding

theorem holds for a "left-traveling" loop. The determination that

t0(1)= t (i+k) for all does not present a problem if we

know the maximum location, imax, in the history of On(zo, to, i0),

for tn(i) will be blank for all i > imax in, for instance, the case of

an initially all blank tape. At at least one point in the operation se-

quence the maximum excursion will obviously have to change, and the

traveling loop conditions will repeat themselves at another change in

the location maximum occurring n operations later. In a "practical!'

Turing machine (by "practical" is meant a deliberately contrived

Turing program for some purpose of calculation) one may by conven-

tion establish end-blocking symbols equivalent to blanks except that

they are never "over-printed" unless they are "moved" up or down

the tape to expand the "useable" region. If a move of such an end-

blocking symbol indicates an expansion, then it makes detection of

changes in the maximum or minimum excursion simpler.

Theorem 2.9 requires knowledge of tape configurations at sep-

arate points in the history of operation as didTheorem 2. 5 for

15

detecting a fixed loop. We saw that this was not necessary in the

case of a fixed loop (Theorem 2. 7), and the next theorem shows that

it is not necessary in the case of a traveling loop.

THEOREM 2.10. Let t (i) be blank for i > i. If
0 n

{ cO' cr .. , c } = { cn cn+1 ' . '.n c2n} and in = max{io,ii, ...,
2nand i = max{

'n' '2nn n+1' i2n1 in history of 0 (z0, t0, i0), then

we have a right-traveling loop if i2n > in .

PROOF. Define k = i2n - in and then by lemma 2. 8 and the fact

that tn(i) and t2n(i+k) are blank for all i > in we see that the con-

ditions for theorem 2. 9 are satisfied.

Another kind of degenerate (non-stopping) behavior is ob-

served in three- and four-state, two-symbol Turing machines which

have started on blank tapes and involves a "growing string" of char-

acters in which a particular symbol configuration is repeated along

the string as in the case of the "traveling-loop" behavior. In the

traveling-loop the pattern segments are "added on" so-to-speak,

while in this new situation the Turing machine sweeps back and forth

from one end of the string to the other, causing the string to grow

systematically at one or both ends. In some cases (in the three- and

four-state, two-symbol machines) the segment pattern is converted

back and forth between two different patterns depending upon the

16

17

direction of sweep. After observing many such machines one might

be led to the following conjecture in order to avoid the separate in-

ductive proof each case seems to require (cf. Fig. 1 for an example

of the sort which inspired it):

Conjecture. Let Z be a Turing machine with the two-symbol

alphabet S (blank) and gmark). Let to(i) =I for 0 < i < k and to(i)= S

otherwise. Let { c0' c , c} be the coordinate pair sequence in

the history of Om(C0) = C. Let Co = (zo, to, 0) and Cm = (z0 ,t ,0)m

whereito(i)t () for i k +1 and t(k+1) = I. Let On(Cm) = Cn

where C = (zo, tn, 0) and t(i) = t(i) for i *k+ 2andtn(k+2) = I.

If the coordinate pair sequence in the history of On(C)C) is one of the
m.

form

c1, l' c2,S2,
, cn, Sn

where S. is an empty sequence, or else a sequence of the form

C. , , C. C.
1-1" 1-1' 1

such that each Si is empty for i-r j <i, then the conditions will be

repeated in OP(z0, tn, 0) for some p > n.

This conjecture is based upon the assumption that only a

repetition of the "local" configuration encountered in sweeping across

the growing string of marks will satisfy the conditions. The fallacy

SSSSSSSSSSSSSSS
0 - 1*

5555$ 153535:5553
1 2*

58535I5SSS5SSSS
2 3*

SSSSSISSSSSSSSS
3 1*

SSSSSIISSS5SS5S
4 2*

5'555511 5555555$
5 2*

$SSSStISSSSSSSS
6 3*

55355II35535S5S
7 1*

555'551,1 555.55555
8 1*

S55S5IIISS85555
9 2*

$SSSSIIISSSSSSS
10 2*

SSSSSIIISSSSSSS
/1 2*

55858111555555S
12 3*

5553SIII5335555
13 1*

58588IIISS55555
14 1*

85555III5555555
15 1*

553.55111 155355$
16 2*

5SS5SIIII5SSSS5
17 2*

SSSSSIIIISSSSSS
18 2*

55555IIII555555
19 2*

5 I

1 21,1 1RI
2 3RS 2LI
3 1RI

sasssiiiIssuss
20 3*

8'535.5111 1353555
21 1*

SSSSSI/IISSSSSS
22 1*

SSSSSIIIISSSSSS
23 1*

55555 1111555585
24 1*

$55551111155555
25 2*

55555 Ii.
26 2*

55555IIIII5555S
27 2*

555S5IIIII8555:5
28 2*

$SSSSIIIIISSSSS
29 2*

$5555 1111155555
30 3*

$SSSS/IIIISSSSS
31 . 1*

555551IIII55S5S
32 1*

ssisssIIIIIsssss
33 1*

$s&ssIIIIIsssss
34 1*

558551111 15555$
35 1*

SSSSSIIIIIISSSS
36 2*

85555II1IIISSS5
37 2*

$855511111.1 5855
38 2*

SSSSSI1IIIISSSS
39 2*

8555I IIIISSSS
40 2*

58555111III5535
41 2*

$SSSSIIIItISSSS
42 3*

855551111115558
43 1*

$SSSSIIIIIISSSS
44 1*

SSSSIIIIIISSSS
45 1*

ssssIIIIIIssss
46 1*

SSSSSIIIIIISSSS
47 1*

$SSSSIIIIIISSSS
48 1*

58585.1.11.1111555
49 2*

SSSSSIIII4IISSS
50 2*

5SSSSIIIIIIISSS
51 2*

S55551111111555
52 2*

SSSSSIIIIIIISSS
53 2*

SSSSSIIIIIIISSS
54 2*

$SSSSIIIIIIISSS
55 2*

SSSSSIIIIIIISSS
56 3*

$SSSSIIIIIIISSS
57 1*

55555111[11155S
55 I*

SSSSSIIIIIIISSS
59 1*

FIGURE 1. MACHINE EXHIBITING A SIMPLE SWEEPING PATTERN.

18

lies in the fact that other constructions might take place away from

the string of marks which are afterwards erased and do not appear on

t t or t. Such a counterexample can be constructed: a ma-m n

chine which copies the string to the left each time and then erases it.

When the copy grows into the original the conditions are not repeated.

Imposing a maximum and a minimum on the machine locations is still

no restriction, for a counterexample can be constructed in which the

"digression" takes place within the string:

IIIIIIIIS
IIIIIIIII
II SSSSSSI

II SS IISS I

Start at left end.

Move right and add I to string.

Move left erasing six spaces
leaving end mark.

Copy left portion two spaces to
right and

II SSIISSI Return to string.

I I SSSSSSI Go right erasing copy and con-
tinue right to I on end.

IIIIIIIII Fill in and return to beginning of
string.

Repeat.

As,can be seen, the above procedure will be repeated the

second time, and the machine, when coded in a straightforward

manner, will satisfy all the conditions in the conjecture, but on the

third repetition the copy will merge with the right most mark arid the

19

bbB

20

conditions change.

A generalization of the behavior of the machine in Figure I

may be made as follows: The machine Z starts in state cio on the

left end of a repeating string of symbols (not necessarily distinct),

the entire tape on either side of the string being blank (b) .

. . bba a 2. akai a 2. . . ak.

go

The machine moves generally from the left end to the right end of the

string. It may move left but never left into the preceding segment

after going from a (former) position of ak to a position of al. After

IIMII moves we have

. ak 1 2

It is obvious that eventually we will have

...bbBB .BBBla 2' 2. .pkbb...

go

Suppose that now the machine converts the right most k blanks to

a segment pl2 pk ending up in state q the right most

Pk:

bbP 13 2. 2. 1301P 2. Pkbb

21

The machine now converts the 11 -segments" into "a-segments" in a

manner analogous to that before, while moving generally right to left

bbp p . p p o . pk. p ...p 0. 0. ... a b
1 k 2. 1 2 k 1 2 k

Eventually the machine will be at the left end facing a blank in state

. bbo. a . a a . a .
1 2' k 1 2'

. . a 1a
2.

a
ka 1a 2' kb

go

Continuing with the analogy let the left most k blanks be converted

to an a-string ending up in the configuration:

...bbala2...akala2... akala2.. ak... ...a a ...aka1a2...a b

It is clear that this operation will never stop as long as the

conversion of tape segments is independent of the remainder of the

tape, for all the necessary information has been given for an induction

proof of this fact. Formally it may be stated in a somewhat cumber-

some theorem which we shall call

PROCEDURE 2.11. Given a Turing machine Z, let tako, i0+k-1]

be defined by

ta(i +k-1)

tl(i0 +1)a

where

= a

= az,

= a
k'

and let it be determined that for some m

0111(q0, al, qa,tla, a, ta, io) = (q0, ta(io+k), la, a', ta',,

where tal(i) = ta(i) for all i < io and all i > i +k, and

tal(i0) =

= pz

Qiek-1) = Pk

Let it also be determined that, for some and any t, such that

tel[i io+k-1] = i0+k-1] -;

, q, 1J3,p, io+k-1) = (q, ti3(i0-1), i0-1)

ti[io,o+k-1] = t[i , +k-1].
p

22

Further, let it be determined that (1) if t is any tape such that

t[a,00] (i) = b (blank) for some value of a, then there is an integer

r such that

Or(qo, t(a), q1 , ay t, a) = (q f3 , q6,
Y Y Y 0 k p

t', a+k-1)

where tI(a+i-1) = pi, i= 1, 2, ...,k, tI(i) = t(i) otherwise, and

q0
and q are the states mentioned previously; and (2) if t is0

any tape such that tr - 00, a'] (i) = b for some integer a', then there

is an integer I such that

q6,p. 6, P6, t, a') = (q0, al, qa, [la, a, t', a' -k+1)

where tt(a' 4+ 1) = i = 1, 2, , k, tI(i) = t(i) otherwise,

and
q0

and q are the states mentioned previously. Now, if for
0

some
n0 and some d,

t(kj+d)

t(kj+ 1 +d)

and t(kj+k-l+d) ak

for all j such that 0 < j <no; and t(i) is blank otherwise, then

0n(z t, d) will not terminate, where
z0 is defined by c0 = (01-,0-1)-u

Twenty- five of the 27 examples in Appendix D are more-

or-less covered by the above procedure. However, to cover all

23

= a1

= a
2

2 R I

3 L I

1 L I

4R I
1 L I
2 R I

1

2

3

4

24

those cases it should be generalized further to allow the possibilities:

growth at only one end of the string;

the addition of non-blank end segments not a part of the
pattern s;

growth after each sweep by more than one repeating
segment.

A fourth contingency which might be useful for application to the

higher order cases of the Busy Beaver problem of the next chapter

is the "traveling, growing string":

addition on one end of i segments and the removal on
the other end of j segments, j <i.

The machine given in the table below will demonstrate this last be-

havior when started on all blank (S) tape.

The general stopping problem of some seemingly complicated

machines can be solved by working the machines "backwards" and

making an individual demonstration that no possible terminal configu-

ration can be reached. One might refer to the application of this

process as a heuristic, it actually being the method of reductio ad

absurdum. Two particular proofs will be shown, but no generaliza-

tion of the process will be made, although certain simple situations

can arise where it is apparent that the process (of going backwards)

can never terminate in an impossible configuration.

THEOREM 2. 12. The Turing machine defined by the table

where S is the blank symbol can never reach a terminal configura-

tion when started on a blank (S) in state 1.

PROOF The only possible terminal situation is in state 1 scanning

a mark:

State 1 can be reached only from the state 4 in two situations:

(b) ... I . .

4

25

1 2R I
2 3 L I 2 R S

3 3 L S 4 L S

4 1 R I 1 R I

26

Both of these situations are compatible with the situation from which

they were derived, where the strike above a symbol corresponds to

the location of the assumed terminal situation. The situation (a)

cannot be reached from the partial configuration

...
3

which is the only possible situation which can precede it. Similarly

the situation (b) cannot be derived from the partial configuration

Hence the assumption of stopping leads to contradicting circumstan-

ce s.

The behavior of the machine of the last theorem can be seen

(perhaps not easily) by starting the machine in state 1 on a blank

tape. The machine in the next theorem requires several levels of

"reverse operation?' to demonstrate that it never stops.

THEOREM 2.13. The Turing machine defined by the table

2 R I

1 L I

2R S

3 L I

1 R S

1

2

3

27

can never reach a terminal situation when started on an all blank (S)

tape.

PROOF. If the machine is to stop it must be in state 3 scanning

the mark I:

To reach the above partial configuration it must have been in state 1

scanning a mark on the square to the immediate right:

. . . T I . . .

1

This configuration could have been preceded by

(a) ... T s
2

but not by the other possible configuration

and not the partial configuration

Similarly, the configuration (a) could only be preceded by

28

The only possible configurations that could precede (b) are

...Tss...
2

and ..Tss...

which lead to contradictions under the operation of the given Turing

machine. Therefore the theorem must hold.

The complete stopping problem for each of the machines in

the above theorems has actually been solved since the only possible

conditions leading to a stop are enumerated in the proofs. It should

be added that proofs of the form given in these theorems certainly

lend themselves more readily to mechanization than the Procedure

1.11.

As was stated earlier we know that there exist particular

Turing machines for which the halting problem has no solution,

namely any universal Turing machine. It has been stated that there

does not exist a two-symbol, two-state universal Turing machine

[13]. This was shown by reducing the problem to a small number

(<100) of cases and investigating each one separately (D. Bobrow

and M. Minsky, private cornmuncations, 1964). It is reasonable

to assume that the investigators solved the individual halting

problems to arrive at their conclusion.

29

An example of the "solution" of the stopping problem for a par-

ticular two-symbol, two-state machine is shown here. We assume

that the machine starts in state one on (1) a blank S and (2) a

mark I and likewise for state two. Then we work each case for-

ward to the point of a new binary choice which must eventually be

the case if a loop does not occur, the latter being a decideable issue

as we have shown earlier. For the machine

2R I
1 L I

2 L I1

2

one can easily verify that the following chains from the choice tree

yield the only tape constructions on which the given machine will

continue operation (the other choices yield a stop):

... I S S I... . I I ...
2 2 1

S I I I S I... S I I ...
2 1 2

IIII... SIII...
1 2 1

The chains yield eventually the same construction. Thus we see

that the machine will start and continue (moving to the left) only

30

with

... SI. . SISISSS
1

or ... SI... SISI
1

or IS... ISIS
2

Since eventually the tape must be all blanks, the machine must

eventually stop on all possible input tapes.

This constructive approach is awkward to say the least,

and one can envision its getting rapidly out-of-hand for cases with

several states. Of course, if while applying this technique one

(unknowingly) encounters a universal Turing machine, then he cannot

possibly succeed in solving the halting problem.

1

III. THE RECURSIVELY UNSOLVABLE BUSY BEAVER
PROBLEM OF T. RADO

3.1. The Busy Beaver Problem

Consider the class of all k-state Turing machines with an

alphabet consisting of two symbols: a blank (0) and a mark (I).

This is a finite class having

Nk = (6k)2k

member s. 1When a Turing machine of this class is started (con-

ventionally in state one; cf. § 4. 2) on an all blank tape it will either

eventually stop or not stop. Neither subclass is empty, for consider

the k-state machines of the forms given by the partial tables

1

0
1 R 0

and

Of the subclass whose members stop there are machines which will

This is allowing the center move and defining a "stop" as a quin-
tuple of the form (q, s, q, P, s) (cf. Chapter II). Rado [16] con-
siders a class with

(4(k+1))2k

members where a "stop" is defined as a branch to an additional
state called the "stop state." He does not allow the center move.
This will be discussed in Chapter IV.

31

32

leave a number of marks on their tapes. The number of such marks

left by a given machine which stops will be called its score, and the

least upper bound of this finite set of scores will be called the

Busy Beaver number of k (Rado, [16]), and we shall write it BB(k).

As Rado [163 points out this is, by present standards, an

"exceptionally well-defined" function. One is tempted to think that

the determination of BB(k) for a particular value of k would be a

trivial problem for a digital computer given sufficient time to gener-

ate the
Nk members for a given value of k and to determine the

score for each. The deception lies in the fact that the halting prob-

lem for blank input tapes is equivalent to the general halting prob-

lem: it is undecideable. That is,

THEOREM 3.1. There does not exist an algorithm (Turing machine)

which will decide whether or not an arbitrarily given Turing machine

will eventually stop after being started on an all blank tape.

PROOF. Given any Turing machine and its input tape, it is clear

that there is another Turing machine which will construct, starting

on a blank tape, the code for the given Turing machine along with its

input tape. This machine will require / states, / being the total

number of symbols to be found in the largest contiguous region of the

output tape bounded by non-blank .symbols. One can also construct a

universal Turing machine in, say, m states. The combined

33

machine of n = m + states which first constructs the code and

input of some Turing machine on a blank tape and then presents

this as an input to a universal Turing machine is a member of the

class of Turing machines with blank input tapes. The stopping

problem cannot be solved for all such machines for arbitrary n else

the halting problem for the universal Turing machine could be solved.

The statement of the theorem is not restricted to binary

(two-symbol)Turing machines. It has been shown by Shannon [18]

that every Turing machine with m symbols and n states can be

converted (by a Turing machine!) to a binary Turing machine of not

more than

6mn + n(2 -7)

states where I is the smallest integer such that m < 2.e. Thus

there exists a two-symbol universal Turing machine. For the

logical purposes here, then, we may restrict our discussion to

binary machines and Theorem 3.1 still holds.

It is not of course completely clear that solution of the halting

problem is necessary for the determination of BB(k) for arbitrary

k. That it is necessary follows from the proof that BB(k) is not

computable, a proof which rests upon the demonstration of the re-

markable rate of growth of this function of the integer k.

3. 2 Rado's Proof of the Non-computability of BB(k)

Let f and g be functions in { Ix I} where I is the set of

positive integers. If there exists some x0 EI such that f(x) > g(x)

for all x > x0' we shall say that f(x) is eventually greater than

g(x) written

f(x) >ev g(x)

The elementary properties of
>ev such as transitivity are clear.

THEOREM 3. 2 (Rado[16]). If f is any computable function (of the

integer s)

BB(n)
>ev f(n).

PROOF. Given any f define

F(x) = (f(i)+i2).
i=0

Then, if f(i) is computable, so is F(x), and F has the properties:

(1) F(x) > f(x)

2

34

(3) F(x+1)> F(x), i.e. F is strictly monotone.

Since F(x) is computable there exists a (binary) Turing machine ZF

with a fixed number of states C which, when given an input

Now

Z:

0

ql q2
R I

q3 R I

2

x>evx + 2C

and we have F(x) > xz by (2) so that

F(x)>evx + 2C .

35

consisting of x I's, will compute an output of F(x) I'

Now for any x we can make the following machine with x

states which prints x consecutive marks on a blank tape and stops

at the right end of this string:

We next construct the composite Turing machine
Zc consisting of

ZF operating in turn on the result of ZF operating on the result of

Zx, so that we calculate F(F(x)) from a blank tape by means of a

Turing machine of 2C + x states. F(F(x)) is therefore a score

the class which determines BB(x+ 2C), i.e.

(4) BB(x+2C) > F(F(x)) .

But by (3) F(x) is strictly monotone increasing so that

qx qx P I qx P I

and substitution of this into (4) yields

BB(x+2C) > F(x+2C) .ev

By the construction of F

F(x+2C) > f(x+2C),

and since x is arbitrary we take n = x+2C and obtain

BB(n)
>ev

f(n)

for any computable f.

Since it cannot be that f(x)
>ev

f(x) for any function f, it

follows from Theorem 3. 2 that BB(n) is not computable. R.ado

[16] points out that there are other related non-computable

functions:

the "shift-number", SN(k) , i. e. the maximum
number of moves which a k-state machine can
make after starting on a blank tape and
eventually stopping;

Ne(k), the number of k-state machines which
stop after being started on a blank tape.

These functions have the interesting properties:

(1) SN(k) > BB(k);

36

F(F() >. F(x+2C),ev

(2) N (k)< N .
e k

Since
Nk is computable we see that

Ne
is a non-computable

function which does not possess the rate-of-growth properties of

SN and BB.

Another function which is also not computable is X(k), the

maximum tape excursion of all k-state machines which stop. If we

restrict ourselves to machines whose first lateral move is, say, to

the right, then we can define RX(k) and LX(k) as the corre-

sponding maximum right excursion and maximum left excursion

respectively. These functions are of interest in Chapter N.

THEOREM 3. 3. At least one1 of the functions RX(x) and LX(x)

is not computable.

PROOF. If it were otherwise the value of BB(k) would be deter-

mined employing the exhaustion test (Chapter II).

3. 3 A Discussion of the Growth of the Function BB(k)

The function BB(k) is obviously monotone2, and considering

the possible cases in adding one or two states to a k-state machine

1
Because a one-way infinite tape is sufficient (Turing[20]) we
actually can say both are not computable.

2
Using Rados convention of allowing a change of symbol in the act
of stopping would make BB(k) strictly monotonic increasing.

37

one can see that

BB(k+2) > BB(k)

for any k. It is also of interest to note that

BB(k) > 2k-1 for all k,
and

BB(k) > 2k for all k > 2 .

The last two inequalities can be seen from the trivial fact that

BB(1) = 1, the fact that BB(2) = 4, and the constructions which

follow:

2k-1 I's:
(construction for

k > 2)

0
q1

L I

q2 q3 R I
q2 L I

qk-1

1

0
L I R I

qkL I

qkP I (STOP)

38

2
q2
q RI

1 q L I
2k I's: 3

2
R I q3 P I (STOP)

(construction for
> 3)

qk-1RI qk-1LI

qk qk-1R I L I

39

While the "scores" for machines with only several states are

not spectacular in an astronomical sense, extremely large lower

bounds for BB(k) can be demonstrated for values of k = 100.

Rado originally contributed

BB(' oo) (((71)

from the knowledge that a machine for computing x: can be con-

structed with no more than 26 states and combining several such

machine s. He also stated [17] that C. Y. Lee has shown that

BB(1 00) a expi 0(exp1 0(exp1 0(50, 000))) .

It is an understatement to say that this latter value is too conserva-

tive. In fact for k = 1 00 it could very well get to be a difficult task

just to compare variously contributed lower bounds. Perhaps this

difficulty may occur well below the value of k = 1 00. We shall see

in the discussion which follows what can be obtained for as few as

1 4 states and then consider multiple recursion using a "factorial"

machine of 24 states.

Consider the following Turing machine where 0 is the blank

space:

It is easily verified that starting on an input tape with an n-mark

string in state

1 on the string yields 2n+2 marks;

in state J2 at the space to the left of the string: 2n marks;

and in state 3 at the left most mark of the string: 2n-1 marks.

By adding only four states one can obtain a machine which

computes 2n+2 recursively1for a second argument (string of marks)

two spaces to the left of the original string:

q5L 0

q8R 0

q1
R 0

q5 L I

q7L 0

q8R I

q1
R I

0

0

End of recursion

Go to left string Go left over right
string

Go to left string Delete right most
mark

Halt if right string Otherwise continue
erased

Go to right string Repeat computation
1 By using (q4, 0, q5, L, I) instead of (q4, 0, q5, L, 0) one can com-

pute 2n+3 recursively instead of 2n+2.

40

q1 q2L I
q1

R I Add I at right Move to -right end

q3R I
q2L I

q4R I

Fill space Move left to space

(not used) Skip a mark

STOP
q1R 0 Stop if space Erase mark

c15

q6

q7

q8

q6L 0

q6L 0

STOP

The following six-state machine (Lee[9]) will mark 31

contiguous Its on a blank (0) tape after 297 moves starting in

state one:

R I

R 0
3

R I
4

'L 0
5

L 0

STOP

R I
3

I

R I

R I

L I
5

R I
4

ql

q

3

q4

0

By replacing (q, 0, "STOP") by (q, 0, q3, R, 0), inserting

0, q4, R, I) in the previous machine, and also replacing

0, q5, L, I) by (q4, 0, q5, L, 0) in the previous machine 1one

obtains a 14-state machine whose operation on a blank tape gives

the inequality

BB(1 4) > 5. 230 = 5, 368, 709, 120 .

In Appendix B is a machine using two symbols and 24 states

to compute x!, x > 1 . One can cause a k-fold recursion of the

computation by the addition of k+1 marks two spaces to the left

1 See the note at bottom of page 39.

41

42

of the input string of x marks. Thus with this machine it becomes

an interesting contest for a lower bound of, say, BB(35) to obtain

the most in the way of an input string and number of recursions.

Also, of course, there is no proof that the factorial machine of 24

states is minimal. With probably no more than 45 states, we could

use the BB(14) entry above to construct a recursion argument to the

right of whichwe could construct three marks, and then compute

factorial of 3 recursively so that

BB(45) > 31.1! I I I

230-1 times.

Compared with Lee's example this may be thought of as going from

the sublimely incomprehensible to the ridiculously incomprehensible.

IV. THE SOLUTION OF RADO'S PROBLEM FOR k = Z AND 3
AND LOWER BOUNDS OF THE SOLUTION FOR k = 4

4.1. Preliminary Remarks on the Problems of Small Order

In a 1963 paper [7] House and Rado wrote:

Many computer programs were written to
[solve the halting problem of three-state,
binary Turing machines on a blank tape] ;
these programs grew larger and larger as
more and more [stopping criteria] were
covered. These programs were the results
of cooperative efforts of experienced math-
ematicians and skilled programmers, and
were run on some of the finest existing
computers. Yet this extremely primitive-
looking problem is still unsolved, and
probably most of the participants in these
studies feel that perhaps it will never be
solved.1

It is not clear just exactly what constitutes the limitation on

our ability to "compute" the values of BB(k) and SN(k) for a given

value of k . Is it merely the supra-astronomical number of cases

to be considered? We have seen in ChapterIII that given unlimited

time and memory (neither of these being logical restrictions for a

Turing machine) there is no method (i. e. algorithm) which will

guarantee the solution for arbitrary k. What then is the physical

or real limitation as opposed to the logical limitation on our ability

1 See the footnote on page 5 of Chapter I.

43

44

to solve this problem for reasonably small values of k? As has been

noted earlier the number of k-state binary Turing machines is given

by the expression

(6k)2k

which for several values of k yields:

k = 2: 1 24 = 20, 736;

k = 3: 186 = 34, 012, 224;

To consider (or say just to generate) all the possibilities for k = 2

or k = 3 by manual means would appear to be unfeasible. To do the

same for k = 4 or k = 5 using a present day "high speed" digital

computer would be even more so. If such a computer required 1 0

microseconds to execute a single instruction, then just the execution

of exactly 248 instructions would require more than ten days of

continuous operation. If we multiply this by the necessary number of

instructions to be executed in the generation program, we will un-

doubtedly get an impractical computer time requirement. By the

same argument consideration of a value of five for k would appear

to be hopeless even allowing a thousand fold increase in computer

capabilities in the near future.

It happens, however, that manual solution of the problem for

k = 4:

k = 5:

248

1
30

=

0
= 594,

109,

090,

812,

000,

874,

000,

176;

000.

45

k = 2 is entirely feasible, and using the procedure to be presented

in this chapter it turns out to be trivial. Needless-to-say, the long

evening spent originally in solving the two-state problem by hand led

to the developments of this chapter.

4. 2 Reduction of Cases: Center Move and Symmetric: Redundancies

What is of interest normally in a computation of a Turing ma-

chine and particularly in the case of the Busy Beaver Problem is

the output or terminal tape. Consider for a moment the "P" or

"in place" move. A P-move entry has at most two "dynamic"

capabilities: (1) a change of symbol and (2) a change of state.

(As was mentioned in Chapter II, a P-move entry which has neither

capability is taken to be a stop command.) It is apparent from the

definition that a P-entry determines uniquely the subsequent entry

in the history of operation of a Turing machine on any input tape.

Thus, it is the subsequent entry which is of consequence, and the

P-entry can effectively be replaced by it. Formally this can be

stated in

THEOREM 4.1. Given a Turing machine Z and an input tape to,

let 0n(zo, to, io) = (zn, tn, in) where (q, s, qr, 0, s.) and is

distinct from all zk')k<n. Let m, s.' be the entry deter-
.)

mined by the pair (q, s.) and define Z' as the Turing machiner 3

obtained from Z by the replacement of (q, s, qr, 0, sq.) by

(q, s, q m, s). Then if
tn+2 is the tape determined byr

n+20 (zo, to, i0), then t = t where t' is determined byn+2 n+1 n+1

0n+1 (z', to, id, and where z e Z and z' e Z' correspond to identical

initial states.

The implication of the above theorem should be clear: by

iterating the process of replacement of P-entries by their uniquely

determined subsequent entries we can, without the addition of any

state, eliminate all P-moves in a Turing machine Z except those

which comprise a stop or immediately precede a stop. If the state

in which we stop is of no consequence (it may be of consequence in

certain HpracticalH situations) then the P-moves which immediately

precede a stop can be replaced by 11 stop" if they do not change the

symbol being scanned. If we define a unique "stop" entry (such as

no entry) then all P-moves can be replaced by the addition of one

more state in which all entries are :"stop. 1

We may apply this then to the Busy Beaver problem for

k states: the only effective P-move that can possibly occur in a

k-state machine which writes BB(k) marks on a blank tape and

then stops will be in an entry which places a mark on a blank space

just before branching to a stop. This possibility can easily be

1 Perhaps this could be taken as an argument in favor of Rado's
stopping convention [16] . Cf. § 4. 3.

,46

47

considered separately for every k-state machine which we generate

without P-moves. This yields a considerable immediate reduction

in the number of cases involved for a particular value of k. Taking

account of the necessary fact that at least one stop entry must ap-

pear in a k-state machine which we would consider for a potential

BB(k)-machine, we can say that the number of machines will not

exceed the number of such combinations given by

2k-1

(4k)i(4k+1)2k-i = (4k+1)2k-(4k)2k

i=1

()(4102k

We now consider another factor: symmetry. Every machine

without P-moves possesses a mirror image obtained by the exchange

of the right move "R" and the left move "L" (except of course the

trivial case in which all entries are stops). This neatly divides the

non-trivial cases by two! We have so far reduced the number of

For k = 3 the number is not unreasonably large but for k = 4 and

machines for k = 2, 3, 4, and 5 to:

k = 2:

k = 3:

k = 4:

k = 5: 3, 21

1,

9,

340,

940,

1,232;

920, 412;

395, 072;

489, 1 00 .

k = 5 it appears still to be unmanageable.

We have yet to take into account the evident fact that there is

nothing of importance in the naming or numbering of the k states.

First it is clear that we need restrict ourselves to starting each of

the above machines in one state, say state one, for starting in state

n is equivalent to starting in state one of the (not necessarily

distinct) machine obtained by permuting state one and state n

throughout the quintuples comprising the machine. So immediately

we can discard all machines of the form

furthermore, it is obvious that we can discard any machine Zk

containing a quintuple of the form (1, S, 1, m, a) where m = ±1(L or R)

and a = S or I. Therefore, the first active quintuple must be of the

form (1, S, q, m, a) with q > 1. We can also require that m = +1

(move right) which takes care of the R-L symmetry already noted.

If a = S (space) then the net effect of the first move is to shift right

and into a new state on what is still an all blank tape! This contrib-

utes nothing to the solution of the halting problem for we eventually

must reach an entry which marks I or reach a stop, or else the

48

stop

2

with previously mentioned restrictions still in effect. At this point

we see that the (2, S) entry must be considered next. It should be

apparent by now that we can consider similar arguments to diminish

the number of cases even further:

If (2, S) contains a "stop" then we need not con-
sider other machines with identical entries in
(1,5) and (2, S).

With either of the entries Z R S or 2 RI the
machine will not stop independent of all other
(undetermined) entries.

If we consider an entry which branches to a new
state q >2, then we may take q= 3 by the same
argument as before.

49

machine will never stop. It is clear that this can be determined in

k or fewer steps where k is the total number of states. Hence, for

our problem we may require that a = I.

If 1 q 4 q' 1, the class of machines containing the

quintuple (1, S. q, R, I) will obviously be in one-to-one correspondence

with the class of machines containing the quintuple (1, S, q', R, I) by

permuting q and q' . Therefore, if we are going to choose a state

q distinct from 1, then we just as well choose q = 2. This re-

duces our problem to considering only those machines of the form

1 2 R I

50

The steps above suggest a simple algorithm for successive

generation of distinct machines. The only drawback is in the fact

that the determination of all entries which lead to situations which

will never stop as in (2) above requires another algorithm to make

this decision. Such an algorithm does not in general exist according

to Theorem 3.1, but the procedure does allow us to make better

estimates of the number of cases we must ultimately consider, the

approximation being improved by the addition of each new solution

of the stopping problem for particular cases.

We can incorporate the reductions thus far mentioned with

the suggested method of generation to obtain an upper bound on the

number of three-state machines to be considered. It is based on the

assumption that all combinations of entries will stop. Consider in

order the entries in

(1,S) (1,0 (2, S) (2,1) (3,S) (3,1)

Beneath each of the above pairs we shall consider various possibili-

ties followed by a subtotal of the potential combinations. In (1, S)

will always appear 2 R I. Suppose first that we have a stop in

I). Then 1 L S or 1 L I in (2, S) lead immediately to the stop,

so these we will not consider. Suppose we have 2 L S or 2 L I in

S). Then state three must be reached in (2, I), and thence fol-

low 13 possible entries in each of (3, S) and (3, I):

51

2 R I STOP 2 L S 3 L S [13] [13] 1,352
R I (stops possible)

If state three is reached from (2, S) then we can consider all 1 3

possible entries in (2, I):

2 R I STOP 3 L S [1 3] [1 3] [1 3] 8, 788
RI

We continue with a STOP in (2, I) but not in (1, I), noting all potential

combinations: first with state three not mentioned in (2, S) and then

with only state three mentioned in (2, Sy

2 R I 3 L S 1 LS STOP [13] [13] 2,704
RI 2 I

2 R I [12] 3 L S STOP [13] [13] 8, 11 2
(no stop) R I

Finally we consider stops in (3, 5) and (3,1) but not before, taking

into account the appropriate mentioning of the various states:

2R I 3 L S 1 L S 12 STOP 1 3 2, 496
RI 2 I (no stop)

(not state 3)

2 R I 1 L S 1 L S 3 L S STOP 13 1,664
2 R I 2 I RI

(not state 3)

2 R I 1 2 3 L 5 1 2
(no stop) R I (no stop)

STOP 1 3 7, 424

With the STOP in (3, I), the combinations in (1, S) through (2, I) will

repeat those of the previous three situations, considering only in

(3, S) and (3, I) the respective possibilities:

12 STOP 2, 304

Same as preceding three cases 12 STOP 1, 536

12 STOP 6, 91 2

This gives a final total of 43, 292 combinations as an upper bound to

the number of three-state machines. A similar estimate can be made

for k = 4 to obtain an upper bound of approximately 1 5, 000, 000

which is certainly not an unreasonable number. As it has finally

turned out, these estimates are too large by factors of about 12 and

30 respectively!

4. 3 A Heuristic Computer Program to Solve the Busy Beaver Prob-
lem for k < 4 .

On the assumption that the methods and theorems of Chapter II

are of sufficient power to solve the stopping problem on blank tapes

for binary Turing machines of small order, a computer program was

written for an electronic digital computer based on the generation

procedure suggested in the last section. 1In an intuitive sense per-

haps it could be called an algorithm, but as we have seen this is not

1 While only a general description of the program will be given here,
its logical details are given in Appendix C.

52

53

entirely accurate. A more fitting term would be a heuristic proce-

dure (cf. Polya [14]) or a heuristic program (cf.Minsky[12]) to

describe its incorporation of mathematical "experience" in dealing

with similar problems. A degree of "artificial intelligence" could

possibly be attributed to the program since it was guided to some

extent in its choice of potentially applicable theorems by the gross

pattern of the operational behavior of each Turing machine. However,

the program did not benefit from its own experience with previously

encountered cases, although it became apparent that such ability

incorporated into the program might well have improved its efficiency

for the number of states k = 4. It would now seem reasonable that a

degree of such ability might be necessary before there is any hope of

solving the problem for k = 5.

The main input data for the program consists of the follow-

ing:

k, the number of states;

a proper k-state Turing machine;

the "order-of-entry" of the input machine;

relevant parameters from the solution of the
problem for k-1 states.

A proper input Turing machine,
Zk, is one which might have been

generated by the program starting with the machine consisting of the

sole quintuplet (1, S, 2,R, I). It depends upon the meaning of

54

order-of-entry: the sequence of the 2k-1 or fewer coordinate pairs

ordered in their appearance in the history of the machine Zk on a

blank tape, starting with (1, S) and such that (q, a) can appear if

and only if a pair of the form (q-1, a') has appeared earlier. A

proper machine then is one in which the most recent entry is of the

form q m a, where m and a are the move and symbol respec-

tively, and q is the state determined by the fact thata< -max+1'
where q is the largest state appearing in the order-of-entrymax

sequence.

The generation "algorithm" works from a proper Turing

machine and uses the information that either a new entry is required

or else that the most recent entry yields a machine which will not

stop. If a new entry is required the algorithm inserts 1 L S, and

otherwise increases the most recent entry to the next triple in the

sequence ordered as follows:

1LS<1LI<1RS<1RI<2LS<... <kRI

If the branch state in the new entry exceeds
-max+1' then

the most recent entry is cleared (Left undefined) and a retrace is made

to the previous entry in the order-of-entry, where the procedure is

repeated. If the first entry, (1, S, 2, R, I), is reached in the process

of retracing, the program stops. If the branch state does not exceed

qmax+1, the generation algorithm goes into a procedure which checks

55

for the existence of obvious or intrinsic loops, i. e., a situationwhere

the most recent entry is part of a closed system of entries in which

there is no stop possible (all entries are defined) and out of which

there is no branch possible. If an intrinsic loop is present, the

algorithm is repeated starting at the point where the most recent

entry is increased. If no such loop is present, then the algorithm

relinquishes control to the heuristic section of the program which

(hopefully) solves the blank input tape stopping problem for the

generated machine.

If the heuristic program fails to solve the stopping prob-

lem, the machine is treated as one which does not stop, and the

"failure" is retained for later consideration. Note that the genera-

tion process does not suffer if it subsequently turns out that a failure

actually stops, for the generation can later be started from the

erroneous "failure" and then terminated when the generation algo-

rithm retraces back to this starting point. As it has turned out, all

of the failures for the three-state problem contained five entries,

and thus they could not produce additional machines if they did stop.

For the four-state case only 452 failures contained exactly six

entries, and there were none containing fewer entries. If any one of

the six entry failures turns out eventually to stop, then it can gener-

ate only 16 additional machines for consideration.

To solve the stopping problem for k states the heuristic

program requires the values of SN(k-1), RX(k-1) and LX(k-1)1

which allow a rapid decision on the stopping problem for machines

in which the maximum state used is less than k. If a machine turns

out to stop (reach an undefined entry) a reckoning procedure notes the

values of those parameters pertaining to SN(k), RX(k), LX(k), and

BB(k) and prints out any tying or superior values along with the

description of the associated machine. It also determines whether

or not a P-move entry is possible which changes a symbol prior to

a stop, and if so, whether or not a new or tying value for BB(k) is

obtained.

All machines in which the kth state is mentioned are run

for a fixed number of moves on a Turing machine simulator which

saves the sequences of tape locations, maximum and minimum ex-

cursions, and entry coordinates (state-symbol pairs). This informa-

tion is then used to determine whether or not a loop is present by

means of a mechanization of Theorems 2. 7 and 2. 9. If no loop is

detected, the given machine is run in reverse in the manner of

56

Theorems 2. 12 and 2.13 until a contradiction is obtained or until

either the allocated storage or the computer word size is exceeded.

Additional moves on the simulator are made if all attempts above

fail to solve the problems, and again an attempt is made to detect

1 These are the shift number, maximum right excursion and maxi-
mum left excursion respectively. Cf. Chapter III.

looping conditions. As already mentioned, machines for which the

stopping problem is not solved are retained for later consideration.

The program was run for the number of states k = 2, 3, and

4, and the results obtained follow.

No. of states k = 2:

No. of machines generated for consideration: 33

No. of above machines which stopped: 15

Function: BB(k) SN(k) LX(k) RX(k)

Value: 4 6 1

No. distinct
machines 1 5 (not determined)

No. of machines on which program failed: none

No. of successful applications of
r ever se procedure: none

Thus as it turns out the problem for k = 2 is trivial. The high

scoring machines are given in Figure 2.

No. of states k = 3:

No. of machines generated for consideration: 3, 361

No. of above machines which stopped: 1, 379

No. of machines on which program failed:

No. of successful applications of
"reverse" procedure:

57

Function: BB(k) Sn(k) LX(k) RX(k)

Value: 6 21 4 3

No. of distinct
machines: 5 1 (not determined)

27

14

SCORE = 4 = BB(2)
SHIFT NO, = 6

I 2RI 2LI
2 ILI 2PI

THE MACHINES BELOW HAVE A SHIFT NUMBER = 6
(COUNTING THE ACT OF STOPPING)

0 1 0

I 2R0 1PI 1 2RI 2L0
2 ILI 2RI 2 'LI 2PI

I 2RI IPI I 2RI IPI
2 210 ILI 2 2LI ILI

THE HIGH SCORING TWO-STATE MACHINES.

FIGURE 2.

58

The 27 failures were examined individually, and it was

determined that none of these will stop when started on a blank tape.

This is discussed in Appendix D. The "high scorers" are given in

Figure 3.

No. of states k = 4:

No. of machines generated for consideration: 526, 517

No. of above machines which stopped: 183, 979

Function: BB(k) SN(k) LX(k) RX(k)

Value: >11 >84 >1 0 > 1 0

No. distinct
machines: 7 1 (not determined)

No. of machines on which program failed: 1 0, 818

No. of successful applications of
"reverse" procedure: 1 0, 306

The high scoring machines are given in Figure 4.

The failures for k = 4 were stored on a magnetic tape, and

if all of the 452 failures involving only six entries stop eventually

(which does not seem likely), then 16x 452 = 7, 242 machines remain

to be considered in addition to the 10, 366 failures with seven entries.

The four-state problem was thus reduced to fewer than 18, 060 ma-

chines.

The experience with the three-state case showed that some

loops were not detected on the first run of the simulator when the

59

LARGEST SHIFT NUMBER SCORE a 6* 58(3)
SN(3) a 21 SHIFT NO. a 13

FIGURE 3.

THE HIGH SCORING THREESTATE MACHINES.

60

SCORE a 6
SHIFT NO. a 13

SCORE = 6
SHIFT NO. a 12

0 I

1 2RI 3RI 1 2RI 'RI
2 3LI 2PI 2 3LI 2PI
3 1RI 2L0 3 1RI 2LI

SCORE 6 SCORE a 6
SHIFT NO. = 14 SHIFT NO. a 11

0 1

1 2R I 1PI 1 2RI 3LI
2 3R0 2R1 2 3RI 2PI
3 3LI ILI 3 1LI 2L0

1 2RI 1PI 1 2RI 3LI
2 2LI 3R0 2 ILI 2RI
3 3LI 1LI 3 2LI 3PI

FIGURE 44

SCORE = 11 SCORE = 11
SHIFT NO. m 59 SHIFT NO. = 43

THE HIGHEST SCORING FOUR STATE MACHINES FOUND
AMONG THE MACHINES KNOWN TO STOP.

61

SCORE m 1/
SHIFT NO. m 40

SCORE m 11
SHIFT NO. m 63

0 1 0 1

1 2RI 3L0 1 2RI 1L0
2 ILI 4RI 2 3R1 2LI
3 2L0 2RI 3 2LI 4RI
4 1RI 4PI 4 4P0 1R0

SCORE m 11
SHIFT NO. 53

SCORE a 11
SHIFT NO. m 46

1 2RI 4R0 1 2R1 3R0
2 3LI ILO 2 3LI 2PI
3 1RI 2LI 3 1R1 4LI
4 41)0 3R0 4 IRI 2LI

LARGEST SHIFT NUMBER SCORE m 11
(INCL. STOP) = 84 SHIFT NO. 53

0

I 2RI 4LI 1 2RI 2LI
2 3L0 3R0 2 3LI 4RI
3 3LI ILI 3 1RI ILI
4 4P0 1L0 4 4P0 3R0

1 2RI 4LI 1 2R1 1L0
2 3RI 2PI 2 3R1 2PI
3 ILI 1R0 3 4LI 1R0
4 3RI 4L0 4 2LI 4LI

62

number of moves allowed was 20 which is close to the value of

SN(3). The figures shown for k = 4 involved a run of the program in

which the maximum number of moves permitted was 90, and the

maximum left and right excursions permitted were 12 and 11

spaces respectively. The fact that the best values for SN(4), LX(4)

and RX(4) obtained were 84, 1 0, and 1 0 respectively immediately

leads one to suspect that not only might better values exist for ma-

chines included in the collection of failures but that some of the

failures could still be handled by the original heuristic program if

the above restrictions were relaxed.

It was noted in § 4. 2 that a k-state machine containing the

quintuple (1, S, 2, R, S) is equivalent to some k-state machine con-

taining the quintuple (1, S, 2, R, I) as far as the blank tape stopping

problem and BB(k) are concerned. However, such a machine could

conceivably yield a larger value for the "shift number" SN(k), but

since it obviously cannot exceed by more than k-1 the value of

SN(k) obtained by the generation procedure discussed, it was a

simple matter to check for such a possibility among the machines

which stopped. None was discovered for k = 3 or 4, but one case

exists for k = 2 (Fig. 2).

Another point should be mentioned in line with Rado's

"rules" for the BB(k) "contest" [16] . He evidently permits a change

of symbol in the act of stopping since he branches to an added stop

6 3

state. When this possibility is allowed, no such machines are to be

found among the tying entries for BB(3), nor were there any such

machines arising from the 44 distinct three-state machines which had

scores of exactly five marks. For k = 4 it is seen in Figure 4 that

two of the machines stop on a space and therefore with Rado's

stopping convention add one to their scores making BB(4) >1 2 for

the purposes of the ''contest.

4. 4 Remarks on the Efficiency of the Program

As it turned out the efficiency of the described generation

procedure coupled with the heuristic solution of the stopping problem

far exceeded the most optimistic hopes. While intuitively the method

of generation appears to be the most efficient possible, it should be

noted that incorporation of the intrinsic loop checking increased the

efficiency further, and there are obviously checks for other redun-

dancies which might have been incorporated. It seems likely that

a most efficient method would depend upon the ability to recognize

equivalent algorithms which in turn involves the halting problem.

It might be wondered now whether or not an attack upon the

five-state problem is feasible. Solution of the three-state problem

required about one minute except for the machines which failed.

Time required for the four-state problem was 3 hours 45 minutes

giving a ratio of 225:1 in time versus a ratio of 156:1 in the number

64

of machines generated. One would guess that a much larger ratio

holds for the five-state case against the four-state case, and there-

fore that the time required would be prohibitive at least with present

day digital computers.

V. CONCLUSION

In a later paper in which he discusses the non-computability

of BB(n) and SN(n), R.ado [163 asks whether or not there might

exist a particular positive integer no for which BB(no) or SN(no)

are not effectively computable. While this might be objected to upon

some sort of conceptual ground, it would not appear to be logically

disputable without contradicting the established non-computability

of these functions for all n. Not being satisfied with what he terms

"the mere existence of a Turing machine" to compute BB(n0) and

SN(no), Rado (and also Lin [10]) suggests that there may

possibly exist here some basis for redefining our concept of com-

putability, at least in so far as the computability of a particular value

of a "well-defined" integer is concerned. We have seen that there

does exist an effective method for the determination of SN(3) and

BB(3), and with the reduction thus far obtained it may be possible to

effectivelydetermine the values of SN(4) and BB(4). Of course this

is not yet done, but in attacking the latter problem we found that while

it appeared to be a very large jump in terms of magnitude, fewer

than two percent of the cases could not be handled by the heuristics

used in solving the three-state case.

Magnitude considered alone is not an obstacle in the formu-

lation of the concept of computability of an integer function. -We can

65

66

easily devise an algorithm (Turing machine) to effectively calculate

any value of Ackermann's function [8, p. 272] which is given by the

diagonal values of the function defined recursively by

(0, b, a) = a + b,

(n+1, 0, a) = a(n, a),

(n+1, b+1, a) = (n, (n+1, b, a), a),

where a is defined by

0 if n = 0,
a(n, a) = 1 if n = 1,

a otherwise.

Yet, for even relatively small values of the arguments it is not

physically possible to carry out the computation of the value of this

function nor even to comprehend the magnitude of the number involved.

It might seem that complexity becomes the real issue,

although there is no precise logical definition of the meaning of the

term. Among the 27 three-state machines on which the computer

program failed to make a decision were two whose behavior was

camouflaged to the extent that an inductive proof of the fact that they

will never stop on a blank tape was achieved before the utter simplic-

ity of their behavior became evident. But at that, the sequence of

tapes in the operation history demonstrated a humanly recognizable

pattern.

67

Consider what becomes involved when one is confronted

with a Turing machine which writes, unknown to the observer, a

never-ending computable sequence (in Turing's sense [20]) for some

irrational or transcendental number. A proper illustration of this

point may not even exist among the machines of small order, but we

can describe a simple Turing machine of not very large order which

serves to illustrate the matter in another way. The well-known

"last theorem'? of Fermat that the equation

xn +yn =zn

does not possess integer solutions for n > 2 can be made equivalent

to the stopping problem on a blank tape for a Turing machine. We

need only to establish a suitable enumeration of all integer quadruples

(x, y, z, n), n > 2, and construct the Turing machine to evaluate the

given formula for each quadruple, stopping only if identity is ever

achieved. Such a machine might be fairly elaborate, but it would not

be difficult to construct and certainly could not be considered to be

sophisticated. 1While Fermat is said to have claimed knowledge of

a simple proof of this theorem it has defied the attempts of math-

ematicians over the last several centuries to find a proof [2, p. 237].

Would we not be wise in assuming that the solution to the blank tape

1 The reader is asked not to infer that a simplification of the
theorem has been suggested!

1 This was prior to the solution of the problem by Lin. See the
footnote on page 5.

68

stopping problem for the Turing machine described above would be

similarly elusive?

House and Rado [15] have suggested the optimization of

small (several state) Turing machines as a problem study source for

the field of "artificial intelligence. " They also mention attempts to

solve the BB(3) problem in this light. 1While it now appears that

there are no particular three-state machines whose stopping prob-

lems on a blank input tape present any great difficulties for a suitably

experienced human, the construction of a computer program to do

this was, to say the least, not as trivial as some of the individual

problems. While the absolute determination of BB(4) and SN(4)

has not been made, it is expected from sample studies that a great

reduction in the cases remaining might be achieved through mechani-

zation of Procedure 2.11 and the modifications suggested for it in

Chapter II. But it would not be a surprise to encounter other ma-

chines whose non-stopping behavior is camouflaged in some subtle

way as opposed to possessing a pattern of uncomprehensibly large

dimensions.

An attack on the problem of the determination of BB(5)

and even BB(6) should be recommended as a source for study in the

artificial intelligence field (or the field of adaptive programming if

69

another term is desired) whether there exists any hope of obtaining

the solution or not. Efforts at "mechanical proofs'? of mathematical

theorems starting from systems of axioms have had some success

(cf. for instance Wang[23] or Gerlernter [6]). But what may be

particularly needed for the continuation of this study is a collection

of appropriate heuristics for the application of mathematical induc-

tion. The induction that was used here is implicit in the theorems

that were applied and it was likewise implicit in the procedures

recommended for future mechanization. Efforts in attempting to

solve this "well-definedn problem for special cases may also serve

to aid us in the determination of the limits of "intelligent automata?'

even if it be in only some statistical sense.

BIBLIOGRAPHY

1. Anderson, Sandra E. Some computational schemes equivalent to
Turing machines. Master's thesis. Corvallis, Oregon
State University, 1964. 31 numb. leaves.

Bell, Eric Temple. Mathematics, queen and servant of science.
New York, McGraw-Hill, 1951. 4137 p.

Brady, A. H., W. R. Stahl and H. E. Goheen. The calculation of a
recursive function on a simulated Turing automaton. Paper
submitted for presentation at the Congress of the Interna-
tional Federation for Information Processing, New York,
1965. (Summary, 4p.)

Coffin, R. W., H. E. Goheen and W. R. Stahl.. Simulation of a
Turing machine on a digital computer. In: Proceedings of
the Fall Joint Computer Conference, Las Vegas, 1963.
Baltimore, Spartan Press, 1963. p. 35-43.

Davis, Martin. Computability and unsolvability. New York,
McGraw-Hill, 1958. 210 p.

Gerlertner, H. Realization of a geometry-theorem proving ma-
chines. In: Proceedings of the International Conference
on Information Processing, Paris, UNESCO, 1959, p. 273-
282.

House, R. W. and T. Rado. An approach to artificial intelligence.
In: Artificial Intelligence. New York, Institute of Electrical
and Electronics Engineers, January 1963. p. 6-15.
(IEEE Special Publication S-142)

Kleene, S. C. Introduction to nletarnathematics. Princeton,
Van Nostrand, 1952. 550 p.

Lee, C. Y. Lecture notes. In: University of Michigan Engineering
Summer Conference on Automata Theory, 1963. Ann Arbor,,
1963.. 368 p. (Paper bound,eollection)

Leeson, Daniel N. and Donald L. Dimitry. Basic programming
concepts and the IBM 1620 computer. New York, Holt,
Rinehart and Winston, 1962. 368 p.

70

71

Lin, Shen. Computer studies of Turing machine problems.
Ph. D. thesis. Columbus, The Ohio State University, 1963.
35 numb. leaves.

Minsky, M. L. Some methods of artificial intelligence and heu-
ristic programming. In: Proceedings of the Symposium
on Mechanisation of Thought Processes, National Physics
Laboratory, Teddington, England, 1958. Vol. I. London,
H. M. Stationery Office, 1959. p. 5-27.

Minsky, M. L. Size and structure of universal Turing machine
using tag systems. In: Proceedings of Symposia in Pure
Mathematics. Vol. V. Recursive Function Theory.
Providence, R. I., American Mathematical Society, 1962.
p. 229-238.

Polya, G. Mathematics and plausible reasoning. Princeton,
Princeton University Press, 1954. 2 vols.

Post, Emil L. Recursive unsolvability of a problem of Thue.
The Journal of Symbolic Logic 12(1):1-11. 1947.

Rado, T. On non-computable functions. The Bell System
Technical Journal, May 1962, p. 877-884.

Rado, T. On a simple source for non-computable functions. In:
Proceedings of the Symposium on Mathematical Theory of
Automata, New York, 1962. Ed. by Jerome Fox.
Brooklyn, Polytechnic Press, 1963. p. 75-82. (Micro-
wave Research Institute Symposia Series, Vol XII)

Shannon, Claude E. A universal Turing machine with two inter-.
nal states. In: Automata Studies. Ed. by C. E. Shannon
and J. McCarthy. Princeton, Princeton University Press,
1956. pp. 157-165.

Stahl, Walter R., Robert W. Coffin and Harry E. Goheen. Simu-
lation of biological cells by systems composed of string-
processing finite automata. In: Proceedings of the Spring
Joint Computer Conference, Washington, D. C. , 1964.
Baltimore, Spartan Press, 1964. p. 89-102.

Turing, A. M. On computable numbers, with an application to
the Entscheidungsproblem. Proceedings of the London
Mathematical Society, ser. 242:230-265. 1936. (43:544-
546. 1937)

72

Turing, A. M. Computability and X -definability. The Journal of
Symbolic Logic, 2(4):153-163. 1937.

Trakhtenbrot, Boris A. Algorithms and automatic computing
machines. Boston, D. C. Heath, 1963. 112 p.

Wang, Hao. Toward mechanical mathematics. IBM Journal of
Research and Development. 4:2-22. 1960.

Von Neumann, John. Collected works. Vol. V. Ed. by A. H.
Taub. New York, Macmillan, 1963. 784 p.

APPENDICES

73

APPENDIX A

A TURING MACHINE SIMULATOR FOR THE IBM 1620 COMPUTER

Background

In order to carry out research on the programming and be-

ha.vior of Turing machines it is useful and possibly necessary to have

a reliable means of simulating the Turing machines one wishes to de-

scribe. The human simulator is prone to error after not very many

moves in a Turing computation. For this reason a program to simu-

late the Turing machine was written for the IBM 1620 computer. This

computer was chosen primarily for its availability and secondly be-

cause it is a machine with a character-organized or variable word

length memory (cf. Leeson and Dimitry[10]). This particular com-

puter and others similar to it1 that are presently in use come the

closest to being a mechanization of Turing 's hypothetical universal

machine, where the instructions and "data" appear as a string of

characters in the memory ("tape").

The first description of a general Turing machine simula-

tion for a digital computer was published in 1963 by Coffin, Goheen,

1 Such as the International Business Machine model 1401.

and Stahl [4] . This was done on a computer' with the more con-

ventional word organized memory with the primary purpose of

the simulation of algorithmic models of biological cells [19] although

other uses have become evident [19]. Its "power" as a symbol ma*

nipulation device has also been discussed [3] .

There are two essential differences between the earlier

simulation technique [22] and that described here, in that the former

stores the Turing program as an unordered list of quintuples and

permits the calling of particular Turing algorithms to be applied

to the tape.

The simulator for the 1620 computer stores the Turing pro-

gram as an ordered table of triples, and the Turing instructions are

"looked up" directly using their computed position in the table. This

organization suffers from two disadvantages not possessed by the

earlier published simulator. First, the instructions cannot be ran-

domly ordered, a feature unique to the earlier simulator [4], and

apparently not to be found in other types of programming languages.

Second, the table type of organization wastes all of the space occupied

by undefined entries, and in large Turing algorithms of a practical

nature, experience will verify that the amount of such waste space

1 The Scientific Data Systems model 920, which is also the com-
puter used for the heuristic porgram described in Appendix C.

74

75

can be considerable.

However, the disadvantage may not be so real when one

considers that the earlier simulation used a word computer with the

most compact storage consisting of one quintuple per word, while in

the 1620 simulator each quintuple would require 11 digits of memory

versus 6 digits of memory for the triple, and the additional space

requirements of the quintuples must be considered in contrast to the

space "wasted" by the table of triples. It is also much less efficient

to use the character-organized computer in a search of a list of

quintuples than is the case for the word-organized computer. In the

word-organized computer one examines a single word using a

Hcompare on mask and skip if equal" type of instruction (Robert W.

Coffin, private communication, 1964) while in the character

organized computer one must compare several characters and then

branch on a separate "test" instruction, the entire operation being

much slower.

The second difference between the two simulators is due

primarily to their original purpose: a specialized application

intended for the earlier simulation and the purpose of studying par-

ticular Turing algorithms and Turing machine behavior intended for

the latter.

Using the Simulator

The normal sequence of operation of the simulation pro-

gram is the execution of the following routines in the order shown.

Load a new Turing machine.

Load table entries.

Load an "input tape.

Start the Turing machine on the tape.

Halt. Read data to determine the new point
of entry into this operation sequence.

Dump out the tape configuration.

Halt. Same as before.

The general function of each step is as follows:

1. The entire area of computer storage not allocated to

the simulator program is cleared and set to alphanumeric

blanks. A data record is read to obtain the number of

characters in the alphabet followed by the actual charac-

ters of the alphabet given in the exact order to be used in

the Turing table. The alphabet must be a subset of the

48 alphanumeric character set of the 1 620 computer

(cf. Leeson and Dimitry [10]).

76

77

Data records containing the table entries are read. If

no triple is defined in the data, the triple already appearing

in the table is left undisturbed (assuming the table has not

been cleared by step 1 above). A "halt" is a triple of the

form q P s appearing in the (q, s) position of the table.

If an undefined triple is encountered during 'operation" of

a Turing machine, this is considered to be an error, and

a message is so printed. A special record is used to indi-

cate that all of the table entries have been loaded.

A record is read to indicate where the input tape se-

quence is to be loaded relative to that portion of computer

storage which has been allocated as tape for the Turing

machine. A continuous string of symbols is then read

into the computer until a special character called a

Hrecord mark" is encountered. This defines the end of the

tape. Note that in practice a tape has a beginning and an

end which requires the Turing programmer to know some-

thing in advance of the amount of "tape" required for his

computation.

The Turing machine must be started in a particular

state and on a particular tape location. A data record con-

taining this information must be supplied. The machine

commences operation.

5. The machine continues operation until a "halt" command

is encountered or until an error occurs (undefined symbol

on tape, undefined table entry, tape limits exceeded). The

program then must obtain a data record to direct its entry

back into some point of this operation sequence.

6. Output consists of the following information:

The number of "moves executed by the
Turing machine since starting.

The state the machine was last in.

The tape location being scanned.

The complete sequence of symbols on
the tape between the defined limits of
the tape.

7. As before, a record must be read to direct the entry of

the program back into a particular point of its operating

sequence.

Certain program options can be obtained through settings

of the four console switches on the computer as follows:

Sw. 1 ON "Debugging" monitor in effect (permits
intermittent output of tape configurations
starting and ending at a specified number
of moves and at a specified interval of
move s).

78

OFF ''Debugging monitor not in effect.

Sw. 2 ON Input records taken from console
typewriter.

OFF Input records taken from punched cards.

Sw. 3 ON Output to console typewriter.

OFF Output to cards.

Sw. 4 ON An output occurs after each move of the
Turing machine during operation.

OFF No output during Turing machine operation.

Intermittent use of switch 4 is permitted even while the "debugging"

monitor (switch 1) is effective.

The sequence of tape configurations shown in the various

figures in this thesis were obtained using this simulator program.

In Figure 5 is shown a sample input deck for the operation of the

BB(2) machine on a blank input tape (where the "blank" in this case

is the character "S" and not the alphanumeric blank character). In

the lower portion of the figure are the tape configurations as they

appear during the operation of the machine.

Internal Organization of the Simulator

79

The simulation program including input (compiling) rou-

tines, output routines, and the addition and multiplication tables used

INPUT

02 SYMBOLS SI TWO*STATE BUSY BEAVER MACHINE
STATE 001 CARD NO 1 2RI 2LI
STATE 002 CARD NO 1 ILI 2P1
STATE 003 CARD NO 1 Z
LOAD TAPE AT 0.001
SSSZ
START STATE 001 TAPE 0030
5 DUMP

OUTPUT

FROM 00001 TO 00060 SSSZ
000000 001*

FROM 00001 TO 00060 SSSSSSSSSSSSSSSSSSSSSSSSZSSSSISSSSSSSSSSSSSSSSSSSSSSSSSSSSSZ
000001 002*

FROM 00001 TO 00.060 sssssssssssssssssssssssssssssrisssssssssssssssssassssssssssz
000002 001*

FROM 00001 TO 00060 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSIISSSSSSSSSSSSSSSSSSSSSSSSSSSSZ
000003 002*

FROM 00001 TO 00060 SSSSSSSSSSSSSSSSSSSSSSSSSSSSIIISSSSSSSSSSSSSSSSSSSSSSSSSSSSZ
000004 001*

FROM 00001 TO 00060 SSSSSSSSSSSSSSSSSSSSSSSSSSSIII/SSSSSSSSSSSSSSSSSSSSSSSSSSSSZ
000005 002*

FROM 00001 TO 00060 SSSSSSSSSSSSSSSSSSSSSSSSSSSIIIISSSSSSSSSSSSSSSSSSSSSSSSSSSSZ
000006 002*

MOVE 000006 SYMBOL (I) STATE 002 TAPE 0029
SSSSSSSSSSSSSSSSSSSSSSSSSSSIIIISSSSSSSSSSSSSSSSSSSSSSSSSSSSZ

FIGURE 5. INPUT DECK FOR SIMULATOR AND MONITOR OUTPUT.

81

by the computer occupy approximately 5000 digits of storage. The

simulator itself, i. e. that portion active during an unmonitored

Turing machine operation, requires only 24 instructions and thus

uses only about 300 digits of storage, a trivial amount compared to

the remainder of the program.

During compilation the program, in addition to checking

for the occurrence of an improper "move" (not L, P, or R), has to

rearrange each triple slightly and load it into the proper table loca-

tion. Each triple occupies 6 digits of storage:

XXX 5 5 TY1

The leading digit is flagged to define the start of the "word" contain-

ing the "triple", and the first three digits comprise the "branch state."

The fourth and fifth digits comprise the alphanumeric code of the re-

placement character, and the sixth digit denotes the move: "2" for

"0" for "P"; "-2" ("2" with a flag) for "L". The numeric value

of the move is added to a number corresponding to the storage loca-

tion of the tape "square" being scanned.

When the alphabet is originally defined, each symbol is

assigned a number corresponding to its order of appearance in the

declared alphabet. The assignment number times two is stored in a

special table (the symbol table) according to the alphanumeric code

of the symbol [10] . The assignment number is then used along with

82

the branch state and the number of symbols to compute the location of

the next triple in the Turing table.

No further burden was put on the compiler even though it is

evident that greater operation speed can be obtained by not using the

standard alphanumeric codes internally. (The simulator processes

approximately 100 entries per second during Turing machine opera-

tion.) However, this simulator was intended to be used normally in

situations requiring considerable output and its efficiency in that

respect would be very much reduced and furthermore the program

would occupy even more storage to the detriment of the amount of

space available for the Turing table and input tape.

APPENDIX B

A 24 STATE MACHINE TO COMPUTE x!

A binary Turing machine of 24 states was constructed to

compute factorial of x employing the following strategy (shown for

the specific value x = 4):

... 00001111 0...
1

Starting at the second mark from the right in a contiguous string of

x marks the machine "opens up" the string inserting spaces between

the marks:

OI OI OI OI O...
18

The string is then closed as the x-1 spaces are tallied to construct

the multiplier x-1 on the left:

...III00IIII0...
22

The string of x marks is then copied on the right a total of x-2

times, or until the multiplier x-1 has been totally deleted, losing

one mark before each copy is made:

83

0 0 0 OM' 0 O...
16

The x-2 spaces enclosed by the copies of x are then tallied while

the string is closed, constructing the multiplier x-2 on the left of

the string of x(x-1) marks:

...Oil 0 0 O...

The process continues recursively until a left hand multiplier con-

sisting of one mark is constructed.

The table for the machine follows:

Go right to
multiplicand.

Comments:
0

String open, Open string with a
condense. space.

84

Start construction Continue right over
of another copy. right most copy.

1 18 R 0 2 L 0

2 3 R I 2 L I

3 4 L 0 3 R I

4 22 L 0 ILI
5 5 R 0 6 R I

7 R 0 6 R I

7 8 L 0 6 R I

8 8 L 0 9 R 0

9 10 R 0 9 R I

85

1011 L I 1OR I

11 12 L 0 11 L I

12 13 L I 12 L I

13 14 L 0 9R0 End of copy. Continue while
copying.

1415L0 14L I Go left over copies.

15 16 L 0 14 14 I

16 16 L 0 17 L 0 Go left to the Delete mark from
multiplier. multiplier.

17 18 R 0 5 R I End of multi- Make another copy.
plication.

18 18 R 0 19 R 0 Close string.

19 20 R I 19 R I

20 23 L 0 21 L I

21 22 L 0 21 L I

22 18 R I 24 L 0 Add mark to the Delete right most
multiplier mark of multiplier.

23 4 L 0 23 L I

24 24P 0 5 R I Stop if multiplier Make copies if
is one mark. multiplier > 1.

APPENDIX C

A HEURISTIC COMPUTER PROGRAM FOR THE DETERMINATION
OF BB(k) AND S(k) FOR k = 2, 3, 4

We shall present here the logical details of the heuristic

program which was written for the solution of the Busy Beaver prob-

lem for up to four states. This program was coded for the Scientific

Data Systems model 920 digital computer, but it will be presented

here in an algorithmic form that is essentially computer independent.

The generation "algorithm" was discussed in § 4. 3, but

the routine to solve the stopping problem was referred to only as a

mechanization" of appropriate theorems and procedures of Chapter

II. This mechanization will be covered in detail along with the simple

heuristics used in directing the application of particular theorems.

The various parts of the program will be numbered decimally as the

need arises. It will be assumed that we are using a computer with

a storage composed of binary "words", but it will be noted that this

is not essential to the program.

The Program

Input.

Read into storage the following data:

The number of states k.

86

87

A "properly generated' Turing machine of not more
than k states (a table of 2k-1 or fewer entries).

The sequence (array) of state-symbol coordinates of
the above Turing machine given in the order of entry
determined by operating it on a blank tape. This will
be referred to as the "order-of-entry array. "

The "best values" known for BB(k), SN(k), LX(k)
and RX(k).

The total number of machines generated thus far for
the k-state problem and the number that stopped
(these for tallying purposes only).

The known values of BB(k-1), SN(k-1), LX(k-1)
and RX(k-1).

Setup.

"Tag" the position LX(k-1) +1 places to the left of the

starting point of the storage array designated as the "tape"

for a Turing machine simulator. Also "tag" the position

RX(k-1) +1 places to the right of the starting point.

Determine the number of entries in the input machine.

(Comment. The most recent entry as determined by the

order-of-entry array will be referred to as the pivotal

entry.)

(1) Determine the maximum branch state mentioned among the

non-pivotal entries.

88

Define the maximum pivotal state to be equal to the maxi-

mum state mentioned plus one.

Return to (3) if (1) was reached from "Retrace" or

"Advance". Otherwise continue with the

Intrinsic loop check.

Here check to see that the pivotal entry does not complete

a closed set of entries which does not contain a "stop" or

undefined entry. If such a closed set does not exist then

go the the stopping heuristics (5). Otherwise we must

Increase the pivotal entry.

(Comment. An entry was actually encoded as a binary

number as follows:

0space -- 0. 2
0mark --1.2

left -- 0- 21

right -- 1.21

state -- state 22

Thus by adding one to an entry we increase it according

to the ordering scheme of § 4. 3.)

Increase the pivotal entry triple to the next triple in

succession. (Comment. See § 4. 3.)

Does the branch state of the new triple exceed the

89

maximum pivotal state? If not, then go to (2). If yes, then

Retrace to previous entry.

Clear the pivotal entry (render undefined). Subtract one

from the entry count to define the previous entry in the

order-of-entry as the pivotal entry.

If the pivotal entry is the first entry then the program is

through. Go to (14). Otherwise go to (1).

Heuristics for stopping.

If neither the maximum state mentioned nor the branch

state of the pivotal entry equal the value of k then the

current machine must stop within the limits of SN(k-1),

LX(k-1) and RX(k-1), or else it does not stop at all.

(Comment. We here use the Turing machine simulator

previously set up for this purpose.) If the machine does

not stop within the prescribed limits for k-1 states then

go to (3). Otherwise, we have encountered an undefined

entry so we must

Advance.

Add one to the entry count. If the count exceeds 2k-1

then no more entries are possible, so go to (4). Other-

wise, the newly reached undefined entry is the pivotal

entry so set it equal to the triple 0 R I and go to (1).

90

If either the maximum state mentioned or the pivotal

branch state equals k, then run the machine for not

more than 45 moves. Save in appropriate arrays the

history of state-symbol pairs, maximum right and left

excursions, and (redundantly) the tape configurations.

(6.1) If the machine stops (reaches an undefined entry) be-

fore 45 moves have occurred then

Reckon score for BB(k), SN(k), LX(k), RX(k).

If the "shift number'? exceeds the "best" current value

then revise the "best" value and print out the machine.

Also print out any machine whose "shift number" is

within k-1 of the "best " value.

Revise the "best" value for LX(k) or RX(k) if either

is exceeded and print out the machine.

Count the number of marks on the tape. If the count

exceeds the best value of BB(k), revise the best value

and print out the machine. Also print out the machine

if the tally ties the best value.

If the tally exceeds the best value of BB(k) less two,

then determine whether or not the "stop" occurred on

a IIspace!' If so, determine whether or not there

exists an undefined entry under the mark position of

91

the table, and if there is, then a tie or greater value

for BB(k) can be attained using a P-move with a

change of symbol before a "halt" (see § 4. 2). Print

out such a machine.

Go to (6) (Advance).

If the machine does not stop before 45 moves or before

exceeding the confines of a 24 square tape, then we go

to the

Choice of theorem heuristics.

(7) If the machine position exceeded the right hand limit

of the tape before exceeding the limit on the number

of moves, go to (9). If similarly the machine ex-

ceeded the left limit of the tape, go to (9). Compare

the most recent right maximum location with that of

1 0 moves earlier. If it has changed, then a right

traveling loop is possible; so go to (10). Otherwise,

compare the most recent left maximum location with

that of 1 0 moves earlier. If it has changed, then a

left traveling loop is likely so go to (11). Otherwise,

no change on either end for 10 or more moves suggests

we make a

Fixed loop conditions check.

Search back through the location history not already

considered, but not prior to half the number of

moves that have occurred, until a scan location is

found which equals the most recent location. If no

such equality occurs go to (12). Otherwise, compare

the sequences of state-symbol pairs starting back

from the most recent configuration to that which

starts back with the pair corresponding to the equal

location just found. If at some point prior to reaching

the second overlapping pair, the two sequences differ,

then go to (8). Otherwise, it has been determined that

a fixed loop exists; the machine will not stop, so go

to (3) to increase the pivotal entry.

Right or left traveling loop possibility check.

Compare the most recent right maximum location

with that of 10 moves earlier. If they are equal go to

(11) to check for a left traveling loop. Otherwise

compare the most recent left maximum location with

that of 10 moves earlier. If they are not equal the

string is growing on both sides so go to the "Reverse"

procedure (12). Otherwise make a

92

93

Right traveling loop check.

(10) Search back through the sequence of right maximum

locations until the most recent change in maximum

occur s.

(10.1) Search back through the sequence of right maximum

locations from the earliest change in maximum thus

far discovered until the next (earlier) change in maxi-

mum occurs but not prior to half the number of

moves that have occurred. If no such change is dis-

covered, then go to the 'Reverse" procedure (12).

Otherwise, compare the sequence of state symbol

pairs ending at the most recent change in maximum

and beginning at that pair corresponding to the

earliest change in maximum thus far discovered with

the sequence of the same length which ends at the

point where the former begins. If the sequences

compare we have a right-traveling loop so go to (3).

Otherwise, continue with this procedure at (10.1).

Left traveling loop check.

(Comment. This procedure is the mirror image of

the right traveling loop check procedure.) If a left

traveling loop occurs go to (3). Otherwise this test

fails so go to (12), the

94

Reverse running procedure.

(1 2) Has this procedure been applied to this machine

already? If yes, then all tests have failed, so print

out this fact along with the machine in question,

assume the machine will not stop and go to (3). If

not, subtract the entry count from 2k to determine

the number of undefined entries in the table of this

machine.

(12. 1) Search for the first missing (undefined) entry not pre-

viously found. If there are no more missing entries

then the test has succeeded so go to (3). Otherwise,

set the maximum level of the tree equal to 11 (de-

termined by the word size of the computer) and the

maximum number of derived nodes equal to 23 (de-

termined by the amount of storage allocated.) Store

the state-symbol pair of the missing entry in the

first word of the first node. Set the scan bit in the

center of the second word of the first node. Set the

center bit of the third word(which is the tape seg-

ment) equal to 0 or 1 accordingly as the symbol

of the pair is a blank or a mark. Set the center bit of

the fourth word (the defined tape region mask) equal

to 1 with all other bits equal to 0. (Comment. The

first node is comprised of four words which now ap-

pear as follows:

s-s pair: 00000000 00000000 0000sssx

scan location: 00000000 00001 000 00000000

tape segment: 00000000 0000x000 00000000

defined region: 00000000 00001 000 00000000

The 24 nodes allowed comprise an array totaling 96

words.) Designate the first node as the originating

node. Point to the second node designating it as the

new node. Set the count of originating nodes equal to

one. Set the count of new nodes and the count of all

nodes equal to zero.

(12. 2) Search the table for a triple with a branch to the state

of the originating node. If none is found that has not

already been considered, then point to the next origi-

nating node and go to (1 2.2). If the originating nodes

are exhausted go to (1 2. 3). If a branch is found, then

place the corresponding state-symbol pair in the first

word of the new node. Next form the scan location of

the new node from that of the originating node by

shifting left if the move of the triple is right and

shifting right if the move is left. Form the tape

95

segment of the new node from that of the originating

node by inserting the symbol from the state-symbol

pair into the position corresponding to the new scan

location. Form the new defined area mask by

(logically) merging the mask from the originating

node with the new scan location.

With the machine in the configuration of the new node,

execute one move (forward) and compare the resulting

tape segment with the tape segment of the originating

node over the defined region (mask) of the originating

node. If the tape segments so compare, then the con-

figuration of the originating node could have been de-

rived from that of the new node, so add one to the

count of the new nodes and designate the next node

following the present new node as the new node. If

the total count of nodes exceeds 23, then terminate

this test and go to (13). If the segments do not com-

pare, then the derivation is not possible, so leave the

new node as designated and go to (12. 2).

(12. 3) If the count of new nodes is zero, then further ex-

pansion of the tree from the present undefined entry

is not possible, so go to (12.1). If the count is not

zero then set the count of originating nodes equal to

96

97

the count 6f new nodes and designate the next node

(in the array) following the originating node as the

originating node. Set the count of new nodes to zero.

Increase the count of tree levels. If the level is less

than 11 then go to (12. 2). Otherwise

Terminate the test.

(Comment. All tests thus far tried have failed.)

Proceed to run the machine for not more than 45

additional moves repeating the heuristic procedure

starting at (6.1).

Output.

The following data is given as output when the pro-

gram ends:

The best values of BB(k), SN(k), RX(k), and
LX(k).

The total number of machines generated.

The number of the above machines known to
stop.

The number of machines for which the pro-
gram failed to make a decision on the blank
input tape halting problem.

(Comment. Other items of transient interest were

also determined but these will not be discussed.

Also, the facility to terminate the program at any

98

point between generated machines was incorporated.

Thus, the program is able to resume with the last

properly" generated machine as input.)

The program as written for the SDS 920 computer encompasses

nearly 2, 000 instructions, and in addition, a "trace" routine and an

"octal storage correcting" routine were written to use in the debug-

ging of the program. Since the main effort was involved in the

writing and debugging of the program (execution time for the k = 3

case was slightly in excess of one minute:) a trace option was in-

cluded within the program to be actuated by an appropriate setting

of the "break point" switches.

It is interesting to note that the computer time involved in

debugging the program exceeded even the running time of 3 hours

45 minutes for the four-state case. There did not appear to have

been any compromises in the program which might have traded a

significant amount of programming or debugging effort for the

expense of additional running time during final execution. While

use of one of the present day scientific programming languages

might have been possible and would have saved the effort required

to learn the "machine language", it would not have simplified the

logic of the program in any material way and would almost certainly

have decreased the efficiency of execution to such a degree that the

99

program could not have been run economically for the four-state case.

There in fact do not seem to be any programming languages in use

today which might have aided significantly in the writing of this pro-

gram. It is not a constructive thing to say but it is true, never-the-

less, that in the application of digital computer s we are a long way

from the possession of a mechanical means of translation of an

algorithm or program from a form similar to that presented here

into an operational computer program.

APPENDIX D

THE 27 THREE-STATE MACHINES ON WHICH THE COMPUTER
PROGRAM FAILED TO MAKE A DECISION

Of the 3, 361 machines generated for consideration for the

case of three states, on only 27 did the heuristic computer program

fail to make a decision on the blank input tape halting problem. These

failures are shown in Figure 6. Each of the 27 machines was run on

the Turing machine simulator discussed in Appendix A to obtain the

details of their behavior for the first 60 moves. Of the 27 machines

all but two demonstrated the simple "sweep-across" pattern covered

by the variations on Procedure 2.11 discussed in Chapter II. (This

procedure had not, of course, been mechanized.) An example of this

behavior is shown in Figure 7 for the machine which is failure num-

ber 6 of the group which is shown in Figure 6.

The remaining two machines (numbers 2 and 21 of Figure

6) demonstrated a completely different type of behavior which re-

sulted in a much slower rate of growth. The first 60 moves of the

machine (failure number 2 of Figure 6)

100

1 2 R I 3 L I

2 1 L 0 2 R 0

3 1 L I

FIGURE 6. THE 27 THREE-STATE FAILURES.

01 02 03 04 05 06
0 I 0 I 0 I 0 I 0 I 0 I

1 2R1 3L0 I 2RI 3LI 1 2RI ILI 1 2RI 2L0 1 2RI 3L0 1 2RI 3L0
2 1L0 1R0 2 1L0 2R0 2 ILI 8RI 2 ILI 3R0 2 ILI 1R0 2 2LI 1RI
3 ILI === 3 ILI === 3 === 2RI 3 2RI === 3 ILI === 3 === 1LI

07 08 09 10 11 12
0 I 0 I 0 I 0 I 0 I 0 I

1 2RI 3L0 I 2RI === 1 2RI === 1 2RI === I 2RI === 1 2RI 1RI
2 3L0 1RI 2 3L0 2R0 2 3L0 1R0 2 3L0 1R0 2 3L0 2RI 2 3L0=
3 === ILI 3 3LI ILI 3 1LI 2LI 3 1R0 2LI 3 'LI 3LI 3 1R0 3LI

13 14 15 16 17 18
0 I 0 I 0 I 0 I 0 I 0 I

I 2RI 1RI 1 2RI === I 2RI === I 2R1 2L0 I 2RI 3LI I 2RI 3RI
2 3L0 === 2 3LI 2R0 2 3LI 2R0 2 81,1 2RI 2 3LI 2RI 2 3LI ===
3 IRI 3LI 3 2LI ILI 3 3LI ILI 3 === ILI 3 === ILI 3 1R0 2L0

19 20 21 22 23 24
0 I 0 I 0 I 0 I 0 I 0 I

1 2RI === 1 2RI === I 2RI === I 2RI === 1 2RI 'RI 1 2RI IRI
2 3LI IRO 2 3LI 1R0 2 3LI 1RI 2 3LI 2RI 2 3LI === 2 3LI ===
3 2R0 2L0 3 2RI 2L0 3 1R0 3L0 3 1LI 3LI 3 1R0 3LI 3 IRI 3LI

25 26 27
0 I 0 I 0 I

I 2RI === I 2RI 'LI 1 2RI ILI
2 3R0 2R0 2 3RI 2RI 2 3RI 2RI
3 3LI iLl 3 1L0 === 3 ILI ===

102

0
000000000000000

1*
0000000 I 0000000

00000 111111 0000
20 2*

00000 I I I 1110000'

000011 I I 101 0000
40 1*

0000III 0I0I0000
1 2* 21 1* 41 3*

0000000 I I 000000 00000 I I I II00000 000011101010000
2 2* 22 3* 42 1*

00000001 1000000 00000 11.111 00000 000010 I 0I0I0000
3 1* 23 1* 43 3*

0000000 I 0000000 00000 I 1101 00000 000010101010000
4 3* 24 3* 44 1*

000000010000000 00000 I 110 I 00000 000'10101010000
5 1* 25 1* 45 2*

000000110000000 00000 1010100000 000110101010000
6 2* 26 3* 46 1*

0000001 10000000 000001010 I 00000 000III I 0I0I0000
7 1* 27 I* 47 2*

00000011 I 000000 00001 I 010 I 00000 000111101010000
8 2* 28 2* 48 1*

00000011 1100000 00001 I0 I 0100000 000111111010000
9 2* 29 I* 49 2*

0000001 II I 00000 0000! II IOI 00000 0001.11'1.1010000
10 I* 30 2* 50 1*

0000001 I ¶0000:00 0000! 11 I0 I 00000 0001 1111111 0000
11 3* 31 1* 51 2*

00000.011 I 000000 0000 1111'1 00000 0.0011111 111000.0
12 1* 32 2* 52 1*

000000101 000000 0000 I III I I 00000 000 111000
13 3* 33 1* 53 2*

000000101000000 0000 1111111 0000 000111111111100
14 1* 34 2* 54 2*

000001101 000000 0000I IIIIIII 000 000111111111100
15 2* 35 2* 55 1*

00000! 101000000 000 000111111111000
16 1* 36 I* 56 3*

0000011 I.I 000000 00001 III 1 10000 000IIIIIIII1000
17 2* 37 3* 57 1*

0000011! 1000000 0000 I I 111110000 000111111101000
18 1* 38 1* 58 3*

00000 1111100000 000011111010000 000111111101000
19 2* 39 3* 59 I*

FIGURE 7. BEHAVIOR OF FAILURE NUMBER SIX.

which is the configuration now after (3. 2n+1- 2n - 5) moves. We

103

are shown in Figure 8. It was not until after an algebraic expression

for the recursion was discovered and a proof by induction was made

to demonstrate that the machine will never stop, that the really

simple behavior of the machine became evident. Although an argu-

ment which was discovered later makes the decision on these two

machines trivial, an inductive proof that the above machine will never

stop will be given for its instructive value. The less obvious but

more elegant hindsight argument will also be given.

Assume a correspondence of the squares of the tape with

the integers similar to the correspondence of the definition given in

§ 2.1. The expression [a, b] which denotes all integers k,

a < k <b, will be used to denote the ath through bth squares of the

tape. Suppose that initially [-2n, 1] are all blank squares, and

after starting in state one on square zero let us agsume that after
(3. 2n-1- - 7) moves in [-211,1j we arrive at the configuration

0 0 . . 0 0 I I I ... III 0 0 ... 0 0 0 ...
3

2n-1 marks

where square number one corresponds to the symbol 0 on the right

of the string of marks. Then in two subsequent moves we obtain

.. 000-1111.1...11100 000...

000000000000000
00 1*

0000000000001 00
01 2*

000000000000 ZOO
02 1*

000000000000100
03 3*

000000000001100
04 1*

00000000001 1100
05 2*

0000000000 I 0 I 00
06 2*

000000000010000
07 2*

0000000000 I 0000
08 1*

00000000001 01 00
09 2*

000000000010100
10 1*

000000000010100
11 3*

0000000000 I I 00
12 1*

00000000001 I I tit)
13 3*

000000000! I I I 00
14 1*

00000000 I I II 00
15 2*

00000osa0 T 0 I I 00
16 2*

00000000 I 0011 00
17 2*

000000001000 I 00
18 2*

00000000 I 000000
19 2*

00000000 I 000000
20 1*

000000001000 100
21 2*

000000001000.100
22 1*

000000001000 100
2* 3*

00000000100 1100
24 1*

0000000010II I 00
25 2*

0000000010 I 0 I 00
26 2*

000000001010000
27 2*

00000000 I 0 I 0000
28 1*

00000000 I 010 I 00
29 2*

000000001010100
30 1*

000000001010100
31 3*

0000000010 11100
32 1*

00000000 10111 00
33 3*

00000000111 I I 00
34 1*

gootp0000ll I I I 00
35 3*

00000001 II III 00
36 1*

000000111 1.11100
37 2*

000000 I 0 I II I 100
38 2*

000000100 111100
39 2*

0000001000111 00
30 2*

000000 I 00001100
41 2*

000000 I 000001 00
2*

000000100000000
43 2*

0000001 00000000
44 1*

000000 I 000001 00
45 2*

0000001 00000 I 00
46 1*

000000100000100
47 3*

0000001 00001100
48 1*

0000001 000 I I I GO
49 2*

0000001 00010100
50 2*

0000001 00010000
51 2*

000000 I 0001 0000
52 1*

000000100010100
53 2*

0000001 00010 I 00
54 1*

000000100010100
55 3*

000000 I 0001'11 00
56 1*

0000001 000 II 100
57 3*

000000 I 00 1111 00
58 1*

0000001 0 I II II 00
59 2*

FIGURE 8. BEHAVIOR OF FAILURE NUMBER TWO.

104

that in (3 2n+1+1-2(n+1)-7) moves always staying inside the interval

1 05

are now in state 2 looking at a mark with 2n-1 contiguous marks to

the right of the scanned symbol. The mark now being scanned will be

replaced by a blank (0) and the machine will move right one square

and remain in state 2. This will be repeated until all of the marks on

the right are erased and we are at square 1 in state 2 looking at

the space. Thus after an additional 2n moves we arrive at the con-

figuration:

... 0 0 0 ... I 0 0 0 0 ... 0 0 0 0 0 ... 0 0 0 ...
2

having made a total of (3- 2n+1 -5) moves. We then leave the space,

move left and go into state 1:

... 0 0 0 ... I 0 0 0 0 ... 0 0 0 0 0 ... 0 0 0 ...
1

having made a total now of (3. 2n+1 -4) moves, Now, by hypothesis,

in (3 2n+1 -2n - 7) moves we will arrive at the configuration

... 0 0 ... 10111... I I I 0 ... 0 0 ...
3

having made a total number of (3. 2n+2 -2n - 11) moves. In two

more moves we arrive finally at the configuration:

... 000... 0IIIII...III00...000...
3

having made a final number of (3 2n+2 - 2n - 9) moves. This shows

[-2(n+1), 1] we will arrive at the configuration

000...0IIIII ... 111 00... 000...
3

2(n+1) -1 marks

It can be verified from Figure 8 that the hypothesis is true

for a particular value of n, and thus we have demonstrated that the

machine will not stop. One may prove the same result in the follow-

ing artificial way. If one considers a binary number encoded two sym-

bols to the "bit" as follows:

o o ,

"1" -- 10,

one will note immediately that whenever the Turing machine is scan-

ning the square number one that a binary number encoded in the above

fashion lies to the left. The immediate act of the machine is to add

"1" to this "binary" string changing all "l's" from the code I 0 to the

intermediate code I I as the carry is propogated left to the first "0",

encoded 0 0 . When the first "0" is encountered it is changed to the

redundant code I I also, but as the machine returns right to its start-

ing point the last I I is changed to I 0 , the code for digit 11111, and

all the redundant codes I I are changed to 0 0, the code for

While a mathematician might feel that both of the above

arguments in proof are so trivial as to not warrant further discussion,

106

107

to the heuristic programmer or other investigator concerned with the

concept of "machine intelligence" it would be interesting to decide

which of the two arguments is the more "sophisticated. " Considered

in this light the simplicity of the second argument is perhaps decep-

tive.'

