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This work comprises two main parts: creating and shaping narrowband, pulsed 

THz radiation in a table-top optical setup; and applying THz pulses to 

semiconductor nanostructures to study electron dynamics. 

I developed a scheme to shape the THz output of a fanned-out periodically-

poled lithium niobate (PPLN) crystal.  The pulses are generated by optical 

rectification of 800-nm pump pulses.  The periodicity of the PPLN determines the 

exact THz frequency, and the PPLN crystal was grown in such a way that different 

regions of the crystal generated different THz frequencies. Spatial filtering 

controls the power spectrum of the output pulses, which we measured by electro-

optic detection in a nonlinear crystal. 



I created an optical arrangement to generate tunable, narrowband THz 

radiation by difference-frequency generation in zinc telluide (ZnTe).  A single, 

chirped pump pulse was used for the optical source, and the difference-frequency 

was obtained by mixing two chirped optical pulses with a relative time delay in a 

ZnTe crystal.  The generated THz pulse energy was measured using a silicon 

bolometer, revealing conversion efficiencies as high as 4 ä 10
-6
.  Using a 

Michelson interferometer, the THz field autocorrelation was also measured, 

showing tunability of the emitted field with a spectral range of 0.5 - 2.2 THz. 

I used THz radiation as a tool for examining excitonic states in GaAs quantum 

wells.  The optical transmission spectra of these quantum wells were observed near 

the light-hole and heavy-hole excitonic 1s resonance lines around 800 nm.  The 

spectral modulation of the exciton resonances was measured as intense single-

cycle THz radiation was applied, reaching field strengths as high as 10 kV/cm.  By 

varying the delay between the IR probe pulse and the THz driving pulse, I 

observed coherent, transient extreme-nonlinear effects in the transmission spectra. 
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Generation of Narrowband THz Pulses and THz Studies of 

Ultrafast Phenomena in Semiconductor Quantum Wells 

 

 

1. Overview of THz TDS Spectroscopy 

 

1.1 Terahertz Radiation, Sources and Detectors 

 

The terahertz (THz) section of the electromagnetic spectrum refers loosely to 

electromagnetic radiation with frequency 0.1ä10
12

 to 10ä10
12

 Hz.  The corresponding 

wavelength range is 30 µm to 3 mm, and the energy range is 0.4 to 40meV.  It is 

commonly referred to as far-infrared radiation or submillimeter radiation due to its 

wavelength. 

In the laboratory of Dr. Yun-Shik Lee at Oregon State University, I have 

conducted a number of studies into methods for generating and shaping specific THz 

pulses, as well as applying these pulses to the study of carrier dynamics in 

semiconductor nanostructures.   

In the first chapter I introduce the methods we employ for generation of THz 

radiation, specifically optical rectification.  I also discuss some of the methods we’ve 

used to characterize THz pulses such as electro-optic sampling and field 

autocorrelation. 

In the second chapter I discuss work I’ve done in shaping THz pulses generated in 

a fanned-out, periodically-poled lithium niobate crystal.  We take advantage of the 

crystal structure to generate a range of selectable THz frequencies.  This chapter is 

based on our published work in Applied Physics Letters [1]. 



2 

 

 2 

The third chapter discusses a novel arrangement we’ve developed for the 

generation of narrowband THz radiation.  This arrangement has the advantage of 

being pulsed and easily tunable, and uses a single mode-locked femtosecond laser as 

its pumping source.  This work is being submitted for publication in the Journal of 

Applied Physics. 

In the fourth chapter, I describe a study in which the excitonic states of a GaAs 

quantum well are driven by THz frequency pulses, and probed with optical frequency 

light.  This work has observed coherent and transient excitonic effects which are 

nonlinear in the THz driving field. The experiment was conducted in concert with a 

theoretical investigation by M. Hanno and S.W. Koch at Phillips University in 

Marburg, Germany. This work was presented to CLEO in May 2007 and was 

published in Physical Review Letters in December 2007 [2]. 

 

1.1.1 Terahertz Studies 

 

Terahertz radiation is as useful as any other region of the electromagnetic 

spectrum.  Just as there are a myriad of uses for visible light, infrared radiation, or 

radio-frequency regions of the spectrum, the far-infrared portion of the spectrum is 

uniquely situated for a number of purposes. 

The photon energy of THz radiation is too low for atomic transitions, and does not 

directly excite electrons in semiconductors.  Because of this, it will penetrates many 

materials that will absorb visible light, such as plastics and silicon wafers.  Unlike 
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microwaves, THz radiation has a sufficiently small wavelength that it can discern 

small structures of submillimeter size [3,4,5]. It can therefore be used for a number of 

imaging applications, such as scanning for material defects, scanning for weapons and 

explosives [6], and in the area of medical imaging.  There are a number of molecular 

and vibrational modes in the THz regime, so THz radiation can be used to differentiate 

between different tissue “signatures”.  Unlike X-rays, THz radiation is non-ionizing, 

and is therefore not expected to damage living cells and tissue.  For this reason, there 

has been a lot of interest in “T-rays” in the area of medical imaging of skin, teeth, and 

other tissues [7]. 

Because there are so many molecular resonances in the THz region, there are 

many spectroscopic applications.  THz has been used to study rotational and torsion 

dynamics of molecules [8,9] and protein folding dynamics [10]. It can also be used for 

molecular identification.  Possible applications include identification of chemical and 

biological agents [11], pharmaceutical differentiation between drug polymorphs [8], 

remote sensing for atmospheric and pollution studies [12], and solar system studies 

[13, 14]. For spectroscopic analysis, THz radiation has an advantage over optical 

spectroscopy in that its oscillations are slow enough for time-domain recording of the 

electric field.  This yields not only frequency information of the THz response, but 

phase information as well, opening the door to real dynamic spectroscopic studies. 

THz has proven quite useful in studies of carrier dynamics in semiconductors. The 

photon energy of 1-10 meV corresponds with a number of electronic effects such as 

excitons, plasmons, impurity localization, and magnetic level-splitting. It also 
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corresponds to electronic resonances in semiconductor nanostructures such as 

quantum wells and quantum dots.  Since carrier and coherence relaxation times are 

typically on the order of picoseconds, THz frequencies are sufficiently fast for 

dynamic studies of carrier effects. These studies are important for development of 

devices such as optical modulators and quantum well qubit systems, as well as 

miniaturization of semiconductor devices. 

THz frequencies are also quite useful for material characterization.  It couples 

easily to phonon modes and can be used to study lattice dynamics.  Additionally, it is 

slow enough to cause large carrier motions, and can be used for conductivity studies 

and characterization. This has an advantage in characterizing bulk carrier and crystal 

properties without contacting or destroying a sample, being a “contact-less” method. 

 

1.1.2 Terahertz Sources 

 

Terahertz studies have been somewhat limited in the past, due to a lack of 

convenient sources.  THz photon energies are too low for atomic transitions, ruling out 

atomic sources; and electronic sources are limited to gigahertz frequencies.  Even so, a 

number of THz sources have been developed: 

 

Black-body sources take advantage of the wide range of energies emitted from 

a warm emitter.  One can use filtering to extract the desired frequency range.  The 
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radiation gained in this way is continuous and incoherent, but can be useful for 

absorption studies. 

 

Free electron lasers (FEL) take advantage of the synchrotron radiation 

emitted by accelerating electrons and passing them through an array of transverse 

magnetic fields, alternating in their polarity.  The resulting acceleration of the 

electron beam produces coherent radiation which is widely tunable by altering the 

magnetic field array.  While FELs give strong, coherent THz radiation, they 

require a great deal of space and are expensive, being limited to a number of user-

facilities. 

 

Backward Wave Oscillators follow a similar principle to FELs.  Electrons are 

emitted from am electron gun and passed through an array of electrodes which 

slow them.  A coherent GHz – THz beam is formed in the direction opposite the 

electron beam’s.  The emitted frequency is determined by both the electrode 

spacing and the accelerating voltage in the electron gun, both of which are 

adjusted to tune the emission 

 

Molecular gas lasers, using gasses like CO2, have been created which emit in 

the THz spectrum.  These lasers take advantage of the lower energies of molecular 

state transitions to emit in the MeV regime.  These lasers give coherent THz 
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radiation with highly precise lines, but suffer from low output powers and a lack of 

tunability. 

 

Frequency Mixing has also been used to create THz radiation.  Two optical 

beams of slightly different frequency are sent into a resonance cavity, enhancing 

their interior field strengths.  They are then passed through a crystal with a large 

second-order susceptibility such as GaAs.  The two frequencies mix in the crystal, 

resulting in THz emission through difference-frequency generation. 

 

The sources listed above share the property of being continuous-wave sources.  

Since the advent of the femtosecond mode-locked laser, pulsed sources have been 

developed, taking advantage of the short duration of the mode-locked pulse. 

 

Photoconductive antenna arrays are made from semiconductors placed 

between two electrodes at different voltages.  Photo-excitation by an incident 

beam injects carriers into the material, which are accelerated by the electrodes, 

causing the emission of EM radiation.  Assuming a sufficiently short carrier 

lifetime the current in the antenna will be proportional to the envelope of the 

exciting pulse.  Given a pulse of duration ~ 1ps, the emitted radiation will be in the 

THz spectrum.  For a PC antenna, the emitted frequencies are limited by the 

carrier relaxation rate, and frequencies as high as 3 THz have been obtained. 
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Optical Rectification in nonlinear crystals also generates THz radiation using 

the short pulse duration of a femtosecond pulse.  In this arrangement, a pulse is 

sent into a nonlinear crystal with a strong second-order susceptibility, resulting in a 

rectification of the polarization.  This rectified polarization lasts as long as the 

pulse, and is proportional to the envelope of the pumping pulse.  Similar to the PC 

antenna, it emits a frequency spectrum given by the duration of the driving pulse. 

 

These two sources have the property of being pulsed, allowing them to be used to 

probe dynamic processes in materials.  Additionally, they can be installed easily into 

an optics lab containing a femtosecond laser.  Finally, while the average power of 

these sources is not very high (on the order of nanowatts) the energy of the pulses is 

compressed within very short time scales, giving peak powers of 5 kW and peak 

electric fields of 10 keV. 

 

1.1.3 Terahertz Detectors 

 

There are a limited number of ways of detecting THz radiation.  The photon 

energy is well below the bandgap of most semiconductors, so phototransistors will not 

work.  Calorimeters are commonly employed as detectors, measuring the energy 

deposited from the THz source.  Examples of these are bolometers and Golay cells.  

THz bolometers measure the change in photoresistivity of a chilled silicon sample 
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when heated by the THz beam.  A Golay cell measures the expansion of gas in a cell 

due to temperature changes. 

For short-pulse THz radiation, PC antennae and nonlinear crystals can be 

employed.  Both use an optical probe pulse to sample the incident THz field.  In the 

PC detector, the short optical probe creates photocarriers, which are accelerated by the 

THz electric field, acting as a bias.  The resulting photocurrent is then measured and 

the THz field is mapped out as a function of the delay between the optical and THz 

pulse.  Nonlinear crystal detectors take advantage of the electro-optic effect, in which 

the THz field induces a temporary birefringence in the crystal.  The polarization of a 

short optical pulse is rotated by this birefringence, which is then detected and 

correlated to the THz field in the same way.  I will discuss this technique further when 

describing our methods. 

 

1.2 Optical Rectification in Nonlinear Crystals 

 

One common method of creating THz frequency pulses is through the optical 

rectification of ultrashort laser pulses. In this technique one takes advantage of the 

nonlinear response of various optical materials to create a low-frequency pulse from a 

driving optical frequency pulse. 
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1.2.1 Nonlinear Optical Responses 

 

The linear response of a material’s polarization to a driving EM field is given 

byP Eχ=
�� ��

, where χ  is the susceptibility tensor.  For isotropic materials, χ can be 

reduced to a constant. To model nonlinearities in the material’s optical response, this 

relation is generalized in the form of a Taylor series 

 (1) (2) (3)

i ij j ijk j k ijkl j k lP E E E E E Eχ χ χ= + + +⋯  (1.2.1) 

where summation over repeated indices is implied.  The number in parentheses over 

each tensor is the order of the susceptibility component.  Optically responsive 

materials commonly have first and third order responses.  Nonzero second order 

susceptibilities are less common, as the primary condition for them is a lack of 

inversion symmetry.  This requires an ordered crystal structure in which an 

asymmetric bonding pattern exists.  Examples of such crystals are GaAs, ZnTe, GaSe, 

and LiNbO3. 

 

1.2.2 Frequency Dependence of the Response 

 

Consider a single-frequency beam incident on an optical crystal.  Its electric field 

can be described as 0
0( ) cos( ) [exp( ) exp( )]

2

E
E t E t i t i tω ω ω= = − +

�
�

. Retaining the first 

two terms in the polarization expansion, 



10 

 

 10 

 

(1)

0

(2)

0 0

1
exp( ) . .

2

1
[exp( 2 ) exp(0) . .]

2

i ij j

ijk j k

P E i t c c

E E i t c c

χ ω

χ ω

= − +

+ − + +
 (1.2.2) 

The first term describes the linear response of the material and leads to linear optic 

effects such as attenuation and a change in phase velocity.  It is important to note that 

while the polarization may have a phase shift relative to the incoming wave, it 

oscillates at the same frequency.  As a result, there will be no frequency conversion as 

a result of the linear susceptibility. 

The second term, on the other hand, contains a term of frequency 2ω and as well 

as a non-oscillating term.  The first leads to frequency doubling, and the second leads 

to a nonzero offset, or rectification, in the polarization. 

 

1.2.3 Rectification of an Ultrashort Pulse 

 

Now consider an incident pulse which has central frequency ω and a gaussian 

envelope parameterized by τ: 

 
2

0 2
( ) cos( )expopt

t
E t E tω

τ
 

= − 
 

 (1.2.3) 

Assume the envelope is varying slowly with respect to the carrier wave, so that the 

electric field can be considered monochromatic.  I suppress the vector nature of the 

polarization, which will be discussed in detail later. In this approximation, the rectified 

polarization has time dependence 
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 ( )
22

2

2
2

exp exp

2

R

t
t

P t ττ

 
 

   − ∝ − =              

 (1.2.4) 

as represented in fig. 1.1. 

 

Fig 1.1: Rectified Polarization vs. Time.  The rectified polarization 

follows the envelope of the driving pulse, and does not oscillate. 

 

The time dependence of the emitted field is given by  

 
2

2
( ) ( )R R

d
E t P t

dt
∝  (1.2.5) 

 

2
2

2
2

2
2

2
2

4

exp

2

8
exp 2

2

2

t
d

dt

t
t

τ

τ
ττ

 
 

− =   
     

 
 

 − = ⋅ −          

 (1.2.6) 

Driving Field Crystal Polarization Driving Field Crystal Polarization Eopt P
(2)

 

time time 
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shown in fig 1.2. 

Polarization vs Time Emitted Field vs time

 

Fig 1.2: Emitted Field vs. Time.  The emitted field follows the curvature 

of the rectified polarization. 

 

The spectrum of the emitted pulse is given by  

 2 2 21
( ) exp

2 8
RE

π
ω τ ω ω τ

   = −       
ɶ  (1.2.7) 

 

Fig 1.3: Spectrum of Emitted Field. Emission spectrum for a rectified 90 

fs pulse, not accounting for propagation effects. 

 

P
(2)

 ETHz 

time time 
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As shown Fig 3, by rectifying a sufficiently short pulse (typically 90 fs in the lab), 

one can create THz frequency pulses. 

 

1.2.4 Effects of Propagation through a nonlinear crystal 

 

For an infinitely thin nonlinear crystal, the description above would suffice to 

calculate the shape of the emitted THz pulse.  Unfortunately, the signal would also be 

vanishingly weak.  In the calculations above, the expected THz signals are much 

higher frequency (~20 THz) than those typically created in the lab with this method.  

To create a real THz pulse, the pump beam must be sent through a finite slab of 

material, and propagation effects in nonlinear crystals play an important role. 

 

1.2.5 Dispersion and Walk off Length 

 

If the THz and optical pulse have the same velocity traveling through the nonlinear 

crystal, the THz field will continue to build up through the entire crystal.  In reality, 

the THz and optical pulses will have a velocity mismatch.  As they propagate, the THz 

pulse will fall behind or get ahead of the optical pulse.  After traveling a certain 

distance through the crystal, the THz created by the optical pulse will be 180° out of 

phase with the THz waves created previously, and they will destructively interfere. 

This distance is called as the walk-off length. 

 Since the group velocities of the two pulses are determined by the material and 

frequencies used, it is impossible to perfectly match the phase velocity of every 
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frequency component of the THz pulse.  This puts a limit on how thick a nonlinear 

crystal should be to maximize its emission. For ZnTe, the walk-off length between an 

800 nm pulse and 0.5-2.5 THz pulse is on the order of 1-2 mm [15].  For THz 

frequencies outside this range, the velocity matching is worse, and those frequencies 

will be filtered out. 

All nonlinear crystals exhibit some dispersion.  For ZnTe, the index of refraction 

drops from 3.4 at 0.5 THz to 3.2 at 2 THz.  Aside from affecting the walk-off lengths 

mentioned above, this will also cause the THz pulse to broaden in time and reduce its 

peak power as its frequency components become spread out. 

 

1.2.6 THz Absorption 

 

THz photons tend to match phonon energies in most materials, so absorption plays 

a significant role in propagation through a nonlinear crystal.  Most crystals used for 

optical rectification have a transverse-optical phonon resonance between 5-10 THz.  

ZnTe, for example, has a TO phonon resonance at 5 THz (shown in fig. 1.4).  Not only 

does this act as a low-pass filter below 5 THz, but there are also many other influences 

on the absorption spectra such as two-photon processes.  As a result, there is 

significant frequency filtering in ZnTe above 3 THz. 
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Fig. 1.4: ZnTe Absorption Curve [16]. 

 

1.2.7 Polarization Considerations 

 

In the following discussion, I will be dealing mainly with second order 

susceptibilities.  Assuming the indices are permutable, one can redefine the nonlinear 

susceptibility with the so-called d-matrix [17] 

 (2)1

2
il ijkd χ=  (1.2.8) 

Making the identifications 

 
1 2 3 4 5 6

11 22 33 23,32 13,31 12,21

l

jk
 

this allows one to write the second order d-matrix: 
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2

2

11 12 13 14 15 16 2

0 21 22 23 24 25 26

31 32 33 34 35 36

2
2

2

2

x

y

x

z

y

y z

z

z x

x y

E

E
P d d d d d d

E
P d d d d d d

E E
P d d d d d d

E E

E E

ε

 
 
         = ⋅            
 
 
 

 (1.2.9) 

This allows one to write the crystal susceptibilities as a two dimensional array. 

Crystal symmetries generally reduce this matrix further, forcing a number of 

components to zero and reducing the number of degrees of freedom.  For example, 

ZnTe and GaAs both share the zincblende structure, for which the d-matrix is  

 

14

14

14

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

d

d

d

 
 
 
 
 

 (1.2.10) 

The linear susceptibility of ZnTe is isotropic, so changing the orientation of the 

incident field will not change the phase-matching of the optical and THz pulses.  

However, because of the tensor nature of the second-order susceptibility, it will affect 

the efficiency of the rectification process.  Consider a ZnTe crystal cut so that its 

surface is normal to the [110] crystal axis.  This is typical to maximize THz emission.  

The polarization of the incident optical field will lie somewhere in the [001]ä[-110] 

plane, as shown in fig. 1.5.  Let the angle between the optical field and [001] axis be θ. 
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Fig 1.5: Driving Field in the Crystal Frame 

 

The optical field can be described as 

 ( )1
ˆ ˆˆ cos sin ( )

2
optE z x y E tθ θ 

= + − + ⋅ 
 

 (1.2.11) 

where E(t) is the time-dependence of the field. Inserting this into the second-order 

polarization equation, 

 

2

2
(2)

(2) 22
0 14

(2)

2

1
sin

2

1
sin0 0 0 1 0 0 2

2 0 0 0 0 1 0 ( )cos

0 0 0 0 0 1 2 sin cos

2 sin cos

sin

x

y

z

P

P d E t

P

θ

θ

ε θ

θ θ

θ θ
θ

 
 
 
 

     
     = ⋅ ⋅           

 
 −
 

− 

 (1.2.12) 

Neglecting the factors independent in angle, 



18 

 

 18 

 ( ) ( )(2) 2 1
ˆ ˆˆ( sin ) 2sin cos

2
P z x yθ θ θ∝ − + − + ⋅ −
�

 (1.2.13) 

Squaring this gives the emitted THz power as a function of angle 

 
2

(2) 4 2 2sin 4sin cosP θ θ θ= +
�

 (1.2.14) 

giving a strong angular dependence to the power, shown in fig 1.6.  The THz emission 

goes to zero when the driving optical field is aligned with the [001] axis.  In practice, 

we see some divergence from this calculation due to third-order effects such as carrier 

excitation. 
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Fig 1.6: THz Power as a Function of Crystal Angle. The dots are 

measured powers for various crystal rotations, where the angle is 

measured from the [110] axis. The solid line is the calculated amount.  

While the angular dependence agrees with the second-order calculation, 

there is some difference in the measured values. 
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The emitted THz polarization is an important parameter, especially when detected 

through electro-optic sampling.  The direction of the THz polarization above is given 

by  

 tan tan 2φ θ =  (1.2.15) 

where φ is the THz polarization relative to the [001] axis of the crystal.  This is shown 

in fig. 1.8. In the lab, the driving polarization is typically held constant and the crystal 

itself rotated.  For a rotation θL in the lab frame, the pump polarization undergoes an 

opposite rotation θ = -θL in the crystal frame. Therefore the THz polarization in the lab 

frame should actually be given by φL= φ+θL, as seen in fig. 1.7. 

 

Fig 1.7: Polarization Angles of the Fields. 
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Fig 1.8: THz Polarization in the Lab Frame.  The dots represent 

polarization measurements made using a wire grating.  The line is the 

calculated polarization.  All angles are measured from horizontal. 

 

1.2.8 Conversion Efficiency 

 

Using optical rectification in ZnTe, we typically create pulses with a spectrum of 

0.5 – 2 THz and pulse energy of ~100 nJ.  Being a second-order process, the emitted 

THz field strength is proportional to the square of the driving field strength.  Similarly, 

the THz power should be quadratic with the driving pump power.  In practice, this is 

true for lower optical pulse energies but becomes inaccurate for fluence greater than 

5x10
8
 W/cm

2
, corresponding to 350 mJ pulses in a typical configuration.  Fig. 1.9 

shows that above this value, the conversion efficiency (THz pulse energy / Optical 

pulse energy) becomes constant with increasing power, indicating the process is no 



21 

 

 21 

longer quadratic.  This is typical in ZnTe, and can be attributed to various parasitic 

processes such as free carrier generation. [18] 
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Conversion efficiency vs. Driving Pulse Energy
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Fig. 1.9: ZnTe Emission Curves.  THz pulse energy emitted from a 

ZnTe crystal was measured when driven by a 90 fs, 800 nm pulse. The 

top graph shows the emitted THz power as the driving pulse is increased 

in energy.  The second graph shows the conversion efficiency, ETHz/Eopt. 
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1.3 Characterization of THz Pulses 

 

While calorimeters can measure the energy of THz pulses, they do not provide 

information about their frequency or dynamic qualities.  To measure these, we have 

employed the techniques of interferometry and electro-optic sampling. 

 

1.3.1 Autocorrelations 

 

An interferometric autocorrelation can be used to determine the frequency 

spectrum of a THz pulse.  The detection arrangement is quite simple (fig 1.10), 

consisting of a Michelson interferometer whose output is sent to a power detector such 

as a bolometer. Fig. 1.11 shows a representative autocorrelation signal. 

 

 

Fig 1.10: Field Autocorrelation Arrangement. 
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The power as a function of path delay is measured and follows the form 

 
2

( ) ( ) ( )I dt E t E Tτ τ
∞

−∞

= + −∫  (1.3.1) 

which expands to 

 2 2( ) ( ) ( ) 2 ( ) ( )I dt E t E T dtE t E Tτ τ τ
∞ ∞

−∞ −∞

 = + − + − ∫ ∫  (1.3.2) 

The first integral is constant with delay τ, and can be neglected for the purpose of 

characterizing the pulse.  The second integral varies with delay, and is proportional to 

the field autocorrelation 

 ( ) ( ) ( )A dtE t E Tτ τ
∞

−∞

= −∫  (1.3.3) 

Applying a fourier transform on the autocorrelation, 

 ( ) ( ) iA A e dωτω τ τ
∞

−∞

= ∫ɶ  (1.3.4) 
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The Fourier transform of the field autocorrelation is the power spectrum of the THz 

pulse. 
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Fig 1.11: Typical Field Autocorrelation 

 

This characterization technique is similar to an intensity autocorrelator, which is 

used to characterize ultrashort optical pulses.  Because it is in common use and optical 

pulse durations are central to THz pump-probe spectroscopy, I describe it here. 
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Fig 1.12: Intensity Autocorrelation Arrangement 

 

The autocorrelator is shown in fig. 1.12.  It has a similar arrangement to a 

Michelson interferometer, but one path is sent through a corner-cube retroreflector.  

This reflects the beam parallel to its incident path, but offset to one side.  The two 

output beams are parallel but offset from each other.  One path length is adjusted with 

a transducer rather than a track, which speeds up the sampling rate.  They are focused 

to a single point in a nonlinear crystal (BBO in our lab), where frequency doubling 

occurs.  After the lens, light doubled from each individual beam walks away from the 

center path, but light which results from mixing of the two beams will travel straight 

along the lens axis due to momentum conservation.  The power of this beam is 

measured with a photodiode. 

Corner Cube 50/50 
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When there is no temporal overlap of the two pulses, there will be no inter-beam 

mixing, and the signal is zero.  As the pulses overlap increases, the central beam 

power becomes stronger. 

The combined electric field is ( ) ( ) ( )TE t E t E t τ= + + ; when mixed, the strength of 

the second harmonic terms is proportional to the squared field, 

 2 2 2( ) ( ) ( ) 2 ( ) ( )TP E t E t E t E t E tτ τ∝ = + + + +  (1.3.5) 

The first two terms propagate to the left and right of the central beam and are not 

recorded.  The final term produces the beam which is sent to the photodiode.  The 

photodiode response is much slower than the pulse duration, so the recorded signal is  

 
2 2 2

( ) ( ) ( ) ( )S dt E t E t dt E t E tτ τ
∞ ∞

−∞ −∞

∝ + = +∫ ∫  (1.3.6) 

which is defined as the intensity autocorrelation.  This signal is useful for finding 

the duration of ultrashort pulses.  For a Gaussian pulse given by 

 
2 2( ) expE t at = −   (1.3.7) 

The FWHM duration is 

 
ln 2

2FWHMt
a

=  (1.3.8) 

The signal in the autocorrelator is  

 
2

exp
22

a
S

a

π τ 
∝ − 

 
 (1.3.9) 

which is a gaussian pulse with FWHM longer than FWHMt by a factor of 2 1.41≈ .  

By measuring the signal strength vs. delay, one can estimate the optical pulse duration. 
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1.3.2 Electro-Optic Sampling 

 

A second technique we’ve employed to measure THz pulses is electro-optic 

sampling.   In this method, the pulse to be sampled induces a birefringence in a 

nonlinear crystal.  This birefringence is detected by passing a short optical probe 

through the crystal and measuring the change in its polarization.  By varying the delay 

between the THz pulse and optical probe, the THz electric field can be mapped out as 

a function of time. 

 

1.3.3 The Index Ellipsoid and the Pockels Effect 

 

The Pockels effect is a nonlinear optics effect in which the index of refraction of a 

material changes linearly with an applied field.  In an isotropic medium, the 

relationship between the electric and displacement fields is  

 D Eε=  (1.3.10) 

where ε is the dielectric permeability.  In an anisotropic medium, the permeability 

becomes a tensor, 

 i ij jD Eε=  (1.3.11) 

Assuming a lossless medium, the permeability tensor is real and symmetric.  It can 

therefore be diagonalized by finding the principal axes.  In the basis of those principal 

axes, we have the three equations, i ii iD Eε= , where i iin ε=  is the refractive index 

for light polarized along each axis.  To find the influence of the THz field on an 
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optical pulse, one needs to find how the field influences the permeability tensor and 

then diagonalize it to find the fast and slow axes. 

It is typical to treat the impermeability rather than the permeability tensor, defined 

as the inverse,  

 ( )1

ij
ij

η ε −=  (1.3.12) 

The impermeability tensor is often used because the index ellipsoid describing the 

refractive index of the material can be written  

 
2 2 2

2 2 2 2 2 2
1i ij j

ij x y z xy yz zx

x y z xy yz zx
R R

n n n n n n
η = + + + + + =∑  (1.3.13) 

In a basis where the impermeability tensor is diagonalized, the last three terms vanish. 

Now consider an impermeability tensor which depends on an applied electric field.  

The slowly-varying THz field plays the role of this applied field.  Expanding the 

tensor in the field, we have 

 (0)( )ij ij ijk k

k

E r Eη η≈ + ∑  (1.3.14) 

where the (0)

ijη and ijkr  are specific to the crystal structure.   

Zinc telluride has a zincblende structure, which is isotropic when no field is 

applied ( 1 2 3n n n= = ). Additionally, all ijkr are zero except for the six identical 

elements 231 321 132 312 123 213r r r r r r r= = = = =≐ . The index ellipsoid becomes 

( )
2 2 2

(0)

2 2 2

0 0 0

2i ij ijk k j x y z

ij k

x y z
R r E R r E yz E zx E xy

n n n
η

 
+ = + + + + + 

 
∑ ∑  (1.3.15) 
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To maximize electro-optic effects, our ZnTe crystals are cut normal to the [110] 

crystal axis.  I therefore introduce a basis in which x̂ points in the [-1,1,0] 

direction, ŷ points in the [0,0,1] direction, and ẑ points in the [1,1,0] direction. 

 

Fig 1.13: THz Polarization in an Electro-Optic Crystal. 

 

As shown in fig. 1.13, let the THz field ETHz propogate in the ẑ direction, such that 

its polarization is at an angle α from the x̂ direction.  By diagonalizing the 

impermeability tensor in this basis, the principal axes can be found to be [19]  

 1
2

2

1

11 sin( )
1

2 2 cos( )2 1 3cos ( )

1 3cos ( ) sin( )

P
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αα
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 
− 

 + = +  +  
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 
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 (1.3.16) 
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 2
2

2

1

11 sin( )
1

2 2 cos( )2 1 3cos ( )

1 3cos ( ) sin( )

P
α

αα
α α

 
+ 

 − = −  +  
+ − 

 
 

 (1.3.17) 

 3

1

1

0

P

− 
 = − 
 
 

 (1.3.18) 

P1 and P2 are in the plane ˆ ˆx y× , P1 making an angle ψ with the x̂ direction given 

by  

 
2

sin( )
cos(2 )

1 3cos ( )

α
ψ

α
=

+
 (1.3.19) 

Under the approximation 
2

0

1
rE

n
≪ the principal refractive indices are 

 ( )
3

20
1 0 sin( ) 1 3cos ( )

4

n rE
n n α α= + + +  (1.3.20) 

 ( )
3

20
2 0 sin( ) 1 3cos ( )

4

n rE
n n α α= + − +  (1.3.21) 

 
2

0
3 0 sin( )

2

n rE
n n α= −  (1.3.22) 

A THz pulse passing through a ZnTe crystal will induce this birefringence.  If a 

short optical pulse is passed through the crystal, it can sample the THz field as they 

co-propagate.  Projecting the optical pulse along the fast and slow axes, the relative 

phase shift between the two components is given by 
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 2 2

2 1 0( ) ( ) 1 3cos ( )
2

o o
THz

d
n n d n rE

c c

ω ω
α αΓ = − = +  (1.3.23) 

where ωo is the optical pulse frequency, d the thickness of the crystal, and c the speed 

of light.  This will make the probe beam slightly elliptic, by an amount proportional to 

the THz field.  This birefringence is maximized for α = 0°, where the THz field lies 

along the ˆ [ 110]x = −  direction.  In this situation, ψ = 45°, so the effect on the probe 

beam is maximized with the probe beam’s polarization either 0° or 90° from the THz 

polarization. 
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1.3.4 Ellipsometry of the THz beam 

 

A typical arrangement for sampling the THz pulse is shown in fig. 1.14: 

 

Fig 1.14: Electro-Optic Sampling Arrangement. The input beam is an 

800 nm, 90 fs pulse from a mode-locked laser. 

 

The THz pulse induces a birefringence in the ZnTe detector crystal.  The optical 

probe beam passes through the detector and acquires a slight ellipticity.  It is then 

passed through a quarter-wave plate where it becomes almost circularly polarized (for 

ETHz = 0, the wave is exactly circular).  It is then passed through a Wollaston prism, 

which is a cube polarizer that separates the horizontal and vertical components.  The 

power in these two components is measured using two photodetectors, and the 

difference between them measured. 

To calculate the effect of the THz field, I consider a maximum signal situation 

where α = 0 and ψ = 45°.  This corresponds to the THz field pointing in the x̂ direction, 

with the fast axis of the induced birefringence 45° from this.  It is important to note 
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that even though the index of refraction along the principal axes depends on the field 

strength, the direction does not.  To maximize the effect on the probe beam, it will be 

polarized in the x̂ direction as well. 

The incoming optical beam’s polarization is  

 
1

0
oP

 
=  

 

�
 (1.3.24) 

corresponding to the x̂ direction.  Projecting this on the fast and slow axes, which are 

rotated by 45°, 

 

1 1

1 12 2

1 12 2

2 2

oP

   
   
   = +
   −   
   

�
 (1.3.25) 

A relative phase shift of Γ is introduced to one of the axes by the birefringence, 

 

1 1

1 2 2

1 12 2

2 2

i

o

e
P

− Γ

   
   
   = +
   −   
   

�
 (1.3.26) 

In addition, the probe beam is sent through a quarter-wave plate, adding an 

additional
4

π
 phase shift. 

 
4

1 1

1 2 2

1 12 2

2 2

i

o

e
P

π − Γ+ 
 

   
   
   = +
   −   
   

�
 (1.3.27) 

Projecting the probe beam back in the x̂ and ŷ directions; 
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and  
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 ( )4
1 1

sin sin cos1
2 4 2

i

e

π π − Γ+ 
 

   = = Γ + = Γ + Γ −      
 (1.3.31) 

Assuming a small phase shift Γ,  

 ( )1
1

2
oxP ≈ − Γ  (1.3.32) 

 ( )1
1

2
oyP ≈ + Γ  (1.3.33) 

For zero THz field, the optical polarization is circular, and the power for horizontal 

and vertical linear polarizations is the same.  The difference is zero in this case.  For a 

nonzero THz field, the difference between the two component powers is  

 ( ) ( )
2 2 1 1

1 2 1 2 2
2 2

oy oxS P P= − ≈ + Γ − − Γ = Γ  (1.3.34) 
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Since the relative phase shift is proportional to ETHz, the difference signal is 

proportional to the THz field.  As the relative delay between pump and probe is varied, 

this difference signal is recorded, yielding the THz field strength as a function of time. 

In practice, this difference signal is fairly weak, so a lock in amplifier is used to 

boost and filter the signal.  An optical chopper is placed in the optical pump beam 

which modulates that beam with a frequency of 200-1000 Hz.  We use a Stanford 

Research Systems lock-in amplifier to record and digitize the signal from a balanced 

photodiode. The lock-in amplifier multiplies the signal by a sine and cosine wave with 

the same frequency as the chopper.  Since sinusoids of different frequencies are 

orthogonal, only the modulation frequency is amplified, and noise at other frequencies 

is filtered out. 

Driving 



36 

 

2. Generation of Shaped, Multiple-Cycle THz Pulses in PPLN 

 

2.1 Narrowband THz Generation in PPLN 

 

Optical rectification in ZnTe is sufficient to create a short, single-cycle THz pulse.  

This is useful for some studies, such as broadband THz spectroscopy and investigating 

exciton dynamics in semiconductor nanostructures.  One can extend the utility of THz 

spectroscopy by generating other pulses.  In the following, I describe our work on 

creating shaped, multiple-cycle pulses in lithium niobate (LiNbO3). 

To create multiple-cycle pulses, we use crystals of periodically-poled LiNbO3, 

commonly denoted PPLN.  The nonlinear effect used in THz generation is optical 

rectification, just as in ZnTe.  In LiNbO3, the THz refractive index is nTHz = 5.3, while 

the optical refractive index is no = 2.9.  Because of this, the THz frequency radiation 

moves slower through the crystal than the optical pump pulse creating it. If it travels 

sufficiently far through the crystal, the THz emission created at later parts of the 

crystal interferes destructively with the emission at earlier parts of the crystal.  For 

unpatterned LiNbO3, this will suppress THz generation. An estimate of the distance 

required for the THz to begin interfering with itself is the walk-off length,  

 w

THz o

c
l

n n

τ
=

−
 (2.1.1) 

where τ is the optical pulse duration.  For a pulse duration of 100 fs, nTHz = 5.3 and no 

= 2.9, the walk-off length is 125 microns. 
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Fig 2.1: Periodically-Poled Lithium Niobate. As the optical driving pulse 

passes through the crystal, it leaves a THz “trail” behind it. 

 

By patterning the LiNbO3, quasi-phase matching can be achieved.  As shown in fig. 

2.1, the crystal’s poling is reversed periodically with a spatial period comparable to the 

walk-off length.  Reversing the poling has the effect of reversing the direction of χ(2), 

which reverses the direction of the rectified polarization.  As the pump pulse traverses 

each domain, a THz half-cycle is created, which falls behind as the pump enters the 

next domain.  After traversing the length of the PPLN, a trail of THz half-waves is left 

behind, effectively making a narrow-band, multicycle pulse. 

The emitted THz wavelength can be calculated by using the difference in group 

velocities of the two pulses.  For a LiNbO3 crystal, after crossing a domain width d, 

the optical pulse leads the THz pulse by a distance 

VOpt > VTHz 

optical pulse 

THz pulse 
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corresponding to a half-wavelength of the THz pulse.  The frequency associated with 

this wavelength is  

 
( )2

2 1

THz
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THz oo
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d n nn
d

n

= =
− 

− 
 

 (2.1.3) 

In PPLN, a 1 THz emission (300 µm) would be given by a crystal with domain length 

62.5 microns. 

Ideally one would like a tunable source for multicycle pulses.  To achieve this, one 

can use the fan-out structure (fig. 2.2). 

 

Fig 2.2: Fanned out PPLN. The domain thickness increases as the driving 

beam is swept across the crystal from left to right. 

 

To create THz of a specific frequency, the pump beam is focused onto an area 

much smaller than the crystal face.  As the beam is swept across the face, it creates 

THz with a frequency determined by its vertical position. This is shown in fig. 2.3. 

2. Wedged PPLN 

d=20 micron d=90 micron 

L
 =
 5
m
m
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Fig 2.3: THz frequency vs. Domain Width.  The circles represent 

measured values, the solid line is calculated [2]. 

 

2.2 Shaping THz pulses emitted by FO-PPLN 

 

Since each region of the fanned-out PPLN emits a different THz frequency, it 

becomes possible to create a number of different frequencies and recombine them.  An 

arrangement for doing this is shown in fig.2.4: 
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Fig 2.4: Pulse Shaping Arrangement. Various regions of the FO-PPLN are 

masked off, suppressing THz frequencies emitted from those regions. 

 

The driving pulse for the arrangement comes from a 76 MHz Ti:Sapphire mode-

locked laser operating at 800nm with a bandwidth of 14nm. The pulse duration of the 

laser was ~100 fs, and its output is about 1W, giving a pulse energy of 13 nJ. This was 

amplified in a Ti:Sapphire regenerative amplifier which also had an output of 1 W, but 

operated at a repetition rate of 1 KHz, giving a pulse energy of ~1mJ.  The output 

spectrum of the regenerative amplifier matched the output spectrum of the mode-

locked laser. 

The fanned-out PPLN used in the experiment contained domain widths ranging 

from 40 microns at one end to 100 microns at the other; so that the emitted THz 

frequency was continuously tunable from 0.6 THz to 1.5 THz.  
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The driving beam was brought to a line focus using a 10 cm cylindrical lens.  This 

illuminated a long line across the PPLN face, so that the THz output would consist of 

many THz frequency components. 

After the PPLN, the optical driving beam is filtered out using a piece of 

polyethylene.  The THz beam is collected using a spherical mirror.  The advantage of 

the spherical mirror over a parabolic mirror is that a spherical mirror has a different 

focal length in the vertical and horizontal directions.  The vertical focal length is given 

by fv = R/(2cosθ) and the horizontal by fh = (Rcosθ)/2; where θ is the incident angle.  

Because the two beam axes have two different focuses, we can compensate for the 

cylindrical focus used to make a line.  The THz beam is collected in this way and sent 

to an electro-optic sampling arrangement and the THz electric field recorded as a 

function of time.  The waveforms are measured with 0.1-ps time step and 80-ps time 

window, which gives the spectral resolution of 0.0125 THz. 

The spectrum of the PPLN’s output is shown in fig 2.5a.  It is notable that the 

spectrum does not have a smooth profile.  There are a number of water absorption 

lines in this region which suppress certain frequencies.  Additionally, the PPLN crystal 

used in the experiment had some previous damage which led some regions to be less 

emissive than others.  However, its output was sufficient to demonstrate pulse-shaping. 

To this end, a metal mask was placed in the optical beam just before the crystal.  

This mask allowed some parts to emit THz and suppressed that emission from others.   
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Fig 2.5: Spectral Filtering of FO-PPLN Output.  The black region of the 

bar above each spectrum represents the crystal region that was masked off.  

The dashed curve in each spectrum is the unmasked spectrum [1]. 

 

Fig. 2.5 shows the frequency filtered data. In each spectrum, a bar at the top 

indicates what sections of the PPLN were illuminated.  In the second spectrum, 

frequencies higher than 0.65 THz were blocked, forming a low-pass filter.  The 

emitted spectrum is narrower, and the time-domain recording reflects this, showing a 

fairly long, narrowband pulse.  In the third spectrum, frequencies lower than 0.64 THz 

were blocked, forming a high-pass filter.  In this case, most of the THz spectrum is 

present, and though there are some differences between this spectrum and the full 

spectrum, the two are quite similar to the eye.  In the last spectrum, the central part of 
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the spectrum from 0.55 to 0.85 THz is blocked.  In the accompanying time-domain 

image, there is a noticeable beat with a period ~10 ps.  This is consistent with the 

higher (~0.75 THz) and lower (~0.65 THz) parts of the THz spectrum combining to 

form a beat frequency (~0.1 THz). For the high-pass and low-pass spectra the cutoff is 

quite abrupt.  The double-slit arrangement in the fourth spectrum does not share this, 

but instead appears somewhat noisy.  In fact, the larger portion of the spectral power 

has been removed by blocking the center of the beam, so the signal was significantly 

weaker.  As a result, the signal-to-noise ratio is much worse for that filter. 

This demonstrates that a fanned-out PPLN can be used to create a shaped THz 

pulse.  Different regions of the crystal can be made to emit, and the spatially separated 

components recombined to make the composite pulse.  For complete control over the 

pulse shape, one could incorporate a MEMS mirror, consisting of an array of very 

small movable mirrors.  This would allow one to add a phase delay to the different 

components before reassembly.  Using a programmable filter for the spatial filtering 

and a MEMS mirror for phase control, one could completely control the shape of the 

THz pulse during the course of an experiment. 
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3. Creating Multiple-Cycle Pulses through Difference-Frequency 

Generation 
 

We have developed a simple method for creating multi-cycle, narrowband THz 

pulses.  It is similar to our other THz generation techniques in that it uses a second 

order χ(2)
 effect in a nonlinear crystal. Rather than rectifying an optical pulse, as is 

done in the previous methods described, we use frequency mixing of light with two 

slightly different frequencies. 

Frequency mixing to produce THz is not a new idea.  In 1965 Zernike and Berman 

demonstrated the method using a pulsed neodymium glass laser [21], and later Brown 

et al. produced THz mixing CW lasers on a photoconductive antenna [22]. 

To do dynamic studies of systems with THz pulses, one would like to use a 

femtosecond laser to generate them.  This allows high-resolution pump-probe studies 

to be performed.  In 1996 Weling and Austin introduced a technique in which chirped 

ultrashort pulses were mixed in a PC antenna [23]. While this technique was tunable 

and could be used in pump-probe studies, it suffered from a frequency spectrum 

limited by the carrier relaxation time to signals less than 800 GHz.  Additionally, PC 

antennas saturate at a lower fluence than nonlinear processes, so a method 

incorporating nonlinear crystals could give higher THz energies. 
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3.1 Difference Frequency Generation Using Chirped Pulses 

 

3.1.1 Difference Frequency Generation 

 

Consider an electric field with two frequency components,  

 

 [ ]0 1 2exp( ) exp( ) .E E i t i t ccω ω= − + − +
� �

 (3.1.1) 

 

When inserted into the second-order term for a material’s polarization, that term 

becomes 

 

 [ ]2(2) (2)

0 0 1 2

1
exp( ) exp( ) .

2
i ijk j kP E E i t i t ccχ ω ω= − + − +  

 [ ] [ ] [ ](2)

0 0 1 1

1
{exp 2 exp 2 2exp 0

2
ijk j kE E i t i tχ ω ω= − + − +  

 ( ) ( )1 2 1 2exp exp . .}i t i t c cω ω ω ω   + − + + − − +     (3.1.2) 

 

The last two terms represent sum and difference frequency generation (DFG and 

SFG).  Using a laser operating at 800nm, a 1 THz emission corresponds to a difference 

of 2 nm.  Since a mode-locked femtosecond laser typically has a bandwidth between 

11 and 14 nm, this suggests that a single laser pulse could be used as the source for 

both frequencies.  To do so, we introduce a linear chirp into the probe beam. 
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3.1.2 The Chirped Pulse 

 

A linearly chirped pulse (shown in fig 3.1) can be written as  

 2

0 0( ) exp[ ]exp[ ( ) ]E t E at i bt tω= − − +  (3.1.3) 

where ω0 is the central angular frequency, 2 ln 2 /p aτ = is the pulse duration, and 

b is the chirp parameter. The instantaneous angular frequency is  

 0( ) 2ins

d
f t bt

dt

φ
ω= = +  (3.1.4) 

 

Fig 3.1: The Chirped Pulse. 

 

There are a number of ways to create a chirped pulse. Typically, a beam is passed 

through a set of prisms or diffraction gratings so that lower frequency components of a 

pulse travel a longer distance than higher frequency components, or vice versa.  This 

introduces a group delay dispersion along the optical path; the pulse will become 

elongated in time, and acquire a chirp.  Example methods for introducing a chirp are 

shown in fig. 3.2. 

time 
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Fig 3.2: Group Velocity Dispersion Arrangements.  Above is a double-

pass prism pair, which forms a four prism arrangement.  The beam 

enters from the left, passes through the prisms and is reflected back by a 

mirror.  Importantly, longer wavelength components of the pulse travel a 

different distance than shorter wavelengths.  The second arrangement is 

a pair of diffraction gratings, again in a double-pass configuration. In 

this case, longer wavelength components travel a farther distance. 

 

For a linearly chirped pulse, the instantaneous frequency varies linearly with time.  

If we should mix earlier parts of the pulse with later parts, there will be a difference-

frequency which will result in DFG.  Specifically, we split the pulse into two, add a 

delay to one path by a time τ and recombine them.  Then the difference between the 

central frequencies of the two pulses is  

λlong 

λshort 

λshort 
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 ( )1
( ) ( )

2 2
f t t

ω
ω τ ω

π π
∆

∆ = = + −  

 
bτ
π

=  (3.1.5) 

By passing the recombined pulses through a nonlinear crystal such as ZnTe, a field 

with frequency ∆f will be created. 

 

3.1.3 Pulse Splitter and Recombiner 

 

Fig 3.2 shows the arrangement for the pulse splitter: 

 

 

Fig 3.3: Pulse Delay Arrangement 
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All the optics used were optimized for infrared light with wavelength close to 800 µm. 

The beam is initially s-polarized.  It is split with a 50-50 beam splitter into two paths.  

The thin film polarizer (TFP) is chosen such that it transmits s-polarization 

(horizontal) and reflects p-polarization (vertical) at a certain angle – 53° in this case.  

One path is reflected from two mirrors and passed through the s-polarizer unchanged.  

The second path passes through the TFP once and is sent through a quarter wave plate.  

It is reflected from a mirror back through the quarter-wave plate and towards the TFP.  

Passing through a quarter-wave plate twice is the same as passing through a half-wave 

plate once, and that beam is then reflected from the TFP.  The recombined beams 

travel out of the arrangement collinearly. 

Since the recombined beams are orthogonally polarized, they will mix through 

type II generation in a nonlinear crystal (ZnTe in our arrangement).  Alternatively, one 

could use a simple Michelson interferometer to split and recombine the beams with the 

same polarization.  The disadvantage to the latter is that 50% of the input power is 

necessarily lost, an undesirable outcome.  Additionally, ZnTe exhibits parasitic effects 

at high fluence such as two-photon absorption and carrier generation.  These effects 

are minimized for light polarized in the [001] direction [19], but that direction also 

gives the least DFG, just as for optical rectification.  In a type II arrangement, one 

beam will be polarized in the [001] direction, reducing the total parasitic effects.  Type 

II becomes slightly more efficient due to the anisotropy of third-order generation in 

ZnTe. 
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3.1.4 Angular Dependence of the Emission 

 

To calculate the angular dependence of the DFG emission, I examine the factor  

 (2) (2)

0 0

1

2
i ijk j kP E Eχ=  (3.1.6) 

from eq. 1.2.2. In the crystal frame, the orthogonal field polarizations are given by  

 ( )1

1
ˆ ˆˆ cos sin

2
E z x yθ θ= + − +
�

 (3.1.7) 

and 

 ( )2

1
ˆ ˆˆ sin cos

2
E z x yθ θ= + − +
�

 (3.1.8) 

Returning to the d-matrix,  
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after some algebra,  
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 (3.1.10) 

Neglecting the overall factors, the emitted power as a function of angle (fig. 3.4) is 
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 THz Power
2

2 41 cos ( ) cos ( )P θ θ∝ ∝ + −
�

 (3.1.11) 

and the angle of polarization is given by 

 2 tan cos 2 1φ θ =  (3.1.12) 

in the crystal frame (fig. 3.4).  In the lab frame, the crystal is rotated by an angle -θ 

and the driving polarizations held constant, so the THz polarization in the lab should 

be φL= φ+θL. 
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Fig. 3.4: THz Power vs. Angle. The solid line is the calculated THz 

emission for carious crystal angles, the dots are the measured emission. 

 

The angular dependence of this process is significantly different than that of 

optical rectification.  As a result, the type II DFG process can be distinguished from 

rectification by rotating the crystal and observing the emitted THz power. 
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3.2 Experimental Arrangement 

 

The laser source was our femtosecond mode-locked laser emitting at 800 nm with 

a 14 nm bandwidth. The pulse duration of this pulse was ~100 fs.  The pulse was then 

amplified by a regenerative amplifier (Legend by Coherent, Inc.) In the regenerative 

amplifier, the seed pulse is stretched in time by passing the beam through a pair of 

diffraction gratings.  This lowers the peak power so that the pulse can be amplified 

without damaging the amplifying rod.  At the same time, this induces an optical chirp 

in the pulse.  After amplification, this chirping is reversed in another pair of gratings 

which recompresses the pulse.  To introduce a chirp in the pump pulse, we adjusted 

the output compressor so that it didn’t entirely compensate for the first grating pair. 

We used a silicon bolometer to measure the THz radiation power. Taking into 

account the pulsed nature of our source, we applied a detector responsivity of 

9.26ä10
9
 V/J; or 9.26ä10

6
 V/W with a 1-kHz repetition rate. This is about one tenth of 

the responsivity calibrated with CW sources. To measure the spectra of the emitted 

radiation, we built a THz Michelson interferometer using a Mylar beamsplitter and 

performed field autocorrelations. This arrangement is shown in Fig 3.3. While this 

method loses the phase information of the spectrum, it preserves the power spectrum 

of the pulse. 
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3.3 MEASUREMENTS 
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Fig. 3.5: Example THz Field Autocorrelation 

 

 
Fig 3.6: THz Spectrum vs. Pulse Delay.  The numbers on the left show 

the delay used for the pulse splitter. 
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Fig 3.5 shows a typical THz-field autocorrelation and associated spectrum when 

the optical pulse duration and the time delay are 4.1 and 1.9 ps, respectively. The THz 

radiation is narrowband: the spectrum centered at 2.34 THz has a spectral width of 

~0.2 THz with an associated quality factor of  ~11. The experimental setup is capable 

of fine and continuous tuning of frequency. Fig 3.6 shows a set of spectra of the THz 

radiation with central frequencies ranging from1.8 and 2.5 THz. The water absorption 

lines near 2.2 THz are visible. For this measurement, the optical pulse duration is held 

constant at 4.11 ps, and the time delay between the two pulses are varied from 1.50 to 

2.03 ps. The frequency of the THz radiation varies linearly with pulse delay as shown 

in the inset of Fig. 3.6. The solid line is the best linear fit to the data, which leads to 

the chirp parameter b = 3.85 ps
-2

 using ∆f = bτ/π from eq. 3.1.5. 
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Fig 3.7: Power vs. THz frequency for Various Pulse Durations. From top to bottom, 

the durations are τ = 1.06, 2.13, 2.78, 3.35, and 4.61 ps. 

 

 

Fig 3.7 shows the emitted THz power as a function of frequency adjusted by the 

delay time for a variety of optical pulse durations, τ = 1.06, 2.13, 2.78, 3.35, and 4.61 

ps. As the pulse duration is increased, the peak power of the THz radiation is reduced: 

3 µW for τ = 1.06 ps and 1 µW for τ = 4.61 ps. For the pulses shorter than 3.35 ps the 

maximum power is obtained near 1 THz and the tuning range is between 0.5 and 1.5 

THz. The longest pulses (τ = 4.61 ps) produce the maximum THz power around 1.5 

THz and the frequency is tunable from 0.7 to 2.2 THz. The data shows two dips at 1.7 
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and 2.2 THz corresponding to water absorption lines. The spectral profile of the 

radiation power is mainly determined by two factors. First, the radiation field is a 

quadratic function of frequency, which accounts for the low radiation power at lower 

frequencies. Second, as we tune the frequency by adjusting the time delay, the two 

optical pulses overlap less and less in time as the frequency increases, and so for larger 

frequencies the THz radiation power also falls away. For the 1.06 ps pulse duration the 

THz power does not vanish at either high or low frequencies, because the relatively 

short pulses produce additional THz radiation by optical rectification. The process 

involves only the pulses with polarization parallel to the [1 -1 0] axis. Optical 

rectification gives a broadband THz emission, and is easily distinguished from the 

type-II DFG emission since it has a different angular dependence as the ZnTe crystal 

is rotated. 

 

Fig 3.8: THz Power Asymmetry for Negative Delay.  The inset shows 

the power when the pulse is unchirped and fully compressed.  The THz 

in that run is generated through optical rectification. 
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 Figure 3.8 shows the THz radiation power as a function of time delay. In this case, 

the range is extended to negative time delays, where the pulse with the polarization 

parallel to the [1 -1 0] axis, pulse 1, precedes the other, pulse 2. The data shows a 

notable imbalance of the emission for negative time delays, which can be accounted 

for by the anisotropy of the nonlinear absorption processes. The inset of fig. 3.8 is 

useful to understand this asymmetry. It shows the THz emission power for a fully 

compressed 90 fs pulse. In this case the whole emission is generated by optical 

rectification. The pulse is still sent through the splitter, so the driving pulse incident on 

the ZnTe crystal is two orthogonally-polarized pulses, one leading the other. In this 

arrangement, only the pulse 1 contributes to the THz generation by optical 

rectification. For positive time delays, the pulse 1 and the THz pulse are absorbed by 

the free carriers generated by the preceding pulse 2 through parasitic nonlinear effects, 

thus the THz power is lower than the one for negative time delays, where the pulse 2 

has no effect. The effect diminishes as the pulse duration increases: it is still 

pronounced for the 1.06-ps data, visible for 2.13, 2.78, and 3.35 ps data, and negligible 

for 4.61 ps data. The THz power of DFG shows an opposite trend: the efficiency of 

THz generation is higher for positive time delays. The reason is following. Eventually, 

pulse 1 exerts stronger parasitic nonlinear effects than pulse 2 [19]. Therefore, the THz 

radiation by DFG, involving both pulses 1 and 2, sees less of the parasitic effects for a 

positive time than the other way around. For the longest pulse duration of 4.61ps, this 

asymmetry disappears. 



58 

 

0 200 400 600 800
0

1

2

3

 

 

T
H
z
 P
o
w
e
r 
(W

)

Optical Pump Power (mW)

0 200 400 600 800

1

2

3

4

 

 

C
o
n
v
e
rs
it
io
n
 E
ff
ic
ie
n
c
y 
(x
1
0
-6
)

Optical Pump Power (mW)

 

Fig 3.9 THz Power vs. Pump Power 

 

Finally, fig. 3.9 shows the THz radiation power as a function of input optical 

power and the optical-to-THz conversion efficiency curves. We see that in the range 

of powers we used, the emitted power reached a threshold. Below this threshold with 

an average intensity of 3.8 W/cm
2
, the THz power varies quadratically with the input 

power, as expected for a second-order process. Above the threshold it varies almost 

linearly with input power. The saturation of the conversion efficiency can be attributed 

to the parasitic nonlinear effects in the ZnTe crystal. 

We have demonstrated an experimental scheme for generating strong, narrowband 

and tunable THz radiation. This arrangement is advantageous over previous 

incarnations for two reasons: First, no pump power is wasted in the pulse splitting 

device; Second, the THz generation mechanism is Type-II DFG, allowing less 
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parasitic nonlinear effects comparing with Type-I DFG. This tabletop source is 

relatively simple and compact, and can be integrated easily into an ultrafast 

spectroscopy setup. 
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4. THz-Driven, Nonlinear Transient Effects in Semiconductor 

Quantum Wells 

 

In recent years, the development of coherent Terahertz (THz) sources has 

established a new regime of semiconductor optics where internal transitions between 

quasi-particle states can be probed directly. Investigations have employed time-

resolved spectroscopy with weak THz pulses to detect and monitor conductivity [24], 

the build-up of plasma screening [25] and bound exciton formation [26-30]. In parallel, 

it has been shown that the application of intense THz fields to semiconductors strongly 

modifies and controls the optical properties [31– 44]. 

In this context, it is interesting to study excitation of a semiconductor quantum 

well (QW) with an intense single-cycle THz pulse whose Rabi energy approaches the 

energy of the excitonic 1s-to-2p transition. Such investigations enter the regime of 

extreme-nonlinear optics [36, 45] where the rotating-wave approximation (RWA) 

breaks down. Instead, the light-induced transitions depend on both the envelope of the 

THz pulse and its carrier-envelope offset phase [46]. Furthermore, the contributions 

beyond the RWA lead to high harmonics in the spectrum. The extreme-nonlinear 

dynamics induced by THz excitation of a QW is particularly interesting since, in 

contrast to optical excitation in this regime [47], Coulomb effects remain important. 

Thus, new insights into the internal dynamics of excitonic QW polarization can be 

obtained. 
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4.1 Excitonic Structure in Semiconductor Quantum Wells 

 

4.1.1 Quantum Wells in GaAs 

 

A quantum well (QW) is a structure that traps a particle in 1 dimension.  Shown in 

fig. 4.1, this localization gives rise to a series of discrete particle states inside the well. 

 

Fig 4.1: Quantum Well Potential. The hole occupies the lower band and 

the electron the upper.  Each is trapped in the well.  The excitation and 

intraband energies are shown. 

 

This can be created in semiconductors by growing sheets of crystal with different 

composition, typically by introducing impurities into the structure.  An example of this 

is Al0.3Ga0.7As/GaAs quantum wells, in which the well “boundary” regions are made 

of a GaAs crystal where Al is substituted for 30% of the Ga in the lattice.  Such 
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structures confine free carriers in the GaAs sheets, which forms a quantum well in the 

growth direction.  Typical thicknesses of the wells are on the order of tens of 

nanometers. The carriers are free to move in the plane of the wells, but the band 

structure is altered by strain and confinement so that the Γ-point degeneracy between 

light holes and heavy holes is lifted, as shown in fig. 4.2. 

 

 

Fig 4.2: Band Structure for Carriers Traveling in the QW Plane. The left 

band structure is for carriers in bulk GaAs; the right is the modified 

structure within the quantum well. 

 

Quantum wells are usually grown in stacks to increase their optical response.  For 

instance, the QW sample used for THz studies in our lab was supplied by the Prineas 

group at the University of Iowa.  It was a stack of 10 wells with GaAs thickness 11.7 

nm and Al0.33Ga0.67As thickness 16 nm.  This was grown between buffer layers of 
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AlGaAs on a GaAs substrate to provide protection for the nanostructure as well as 

mechanical strength. 

Quantum wells are used in electronic studies for a number of reasons.  The 

confinement of electrons and holes leads to strong interband transitions [48].  

Additionally, the well structure gives rise to a discrete set of subbands which can be 

manipulated through optical means.  Additionally, the confinement enhances many-

body effects and carrier-carrier scattering [49].  

 

4.1.2 Excitons 

 

When an electron is excited from the valence band it leaves a positively charged 

hole behind.  These two particles interact through Coulomb forces, and can form a 

bound state called an exciton.  In GaAs, the electron effective mass is 0.067me and the 

hole effective mass is 0.34me, giving a reduced mass of µ = 0.0226me.  With a 

dielectric constant of 12.9, a simple calculation gives a Bohr radius of  

 0
em

a a ε
µ

= =13 nm (4.1.1) 

corresponding to about 23 times the GaAs lattice constant of 0.56 nm.  This is 

sufficiently large that a first-order calculation can be made for the excitonic states 

which treats the lattice potential as a somewhat smooth background. 

Schrödinger’s equation for the electron-hole system is 

 
2

2 ( ) ( ) ( )
2

V r r E rψ ψ
µ

 
− ∇ + = 
 

ℏ � � �
 (4.1.2) 
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In cylindrical coordinates, this becomes 

 ( )
2 2 2

2 2 2

1 1
( ) ( ) ( ) 0

2

f f f
r r V r E r

r r r r z
ψ ψ

µ θ
 ∂ ∂ ∂ ∂ − + + + − =   ∂ ∂ ∂ ∂  

ℏ � � �
 (4.1.3) 

To simplify the analysis, I make the approximation that the potential is a hard-

walled quantum well potential in the z direction, and that the Coulomb potential 

between the two particles depends only on the polar radius r, and not z.  Since the well 

length (~10 nm) is much narrower that the estimated Bohr radius, this should give a 

reasonable approximation.  In this case, it is possible to separate variable so that 

 ( ) ( ) ( ) ( )r R r Z zψ φ= Φ
�

 (4.1.4) 

The solution in the z direction is 

 ( ) sin( )zZ z k x=  (4.1.5) 

where 

 z

n
k

l

π
=   for n = 1,2,3, … (4.1.6) 

and l is the thickness of the well.  In the polar variable, the solution is  

 ( ) ime φφ ±Φ =  for m = 1,2,3, … (4.1.7) 

From here we can see that the states are canonical quantum well states in the z 

direction, and similar to hydrogen states in the polar variable, containing a well-

defined angular momentum. The remaining equation for the radial part is 

 
2 2 2

2 2 2 2

0

1 2 2 1
( ) 0

4
z

R R m e
k E R r

r r r r r

µ µ
πεε

 ∂ ∂
+ − − + − = 

∂ ∂  ℏ ℏ
 (4.1.8) 
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This is identical to the radial part of the Schrödinger equation for the hydrogen 

atom with the substitutions 2( 1)l l m+ → and
2

2

zp
E E

µ
→ − . The radial quantum number 

must also be modified so that 1/ 2n n→ − .  The result of these differences is that the 

energy levels go as 

 
2

1

2

R
n

E
E

n

= −
 − 
 

 (4.1.9) 

instead of 2/n RE E n= − as in the 3D case.  Additionally, the orbital radii follow the 

form 0 ( 1/ 2)na a n= − .   

For this reason, the excitonic states are often called hydrogenic.  They have well 

defined angular momentum states which can be labeled s, p, d, f, … in accordance 

with the hydrogen conventions.  The values for m are constrained so that m n< , 

where n is the radial quantum number.  Because of the lower effective mass and 

screening from the lattice, the binding energy of GaAs QW excitons is about 10 meV, 

and the 1s – 2p transition energy is 8.9 meV ≈ 2 THz. It is notable that the orbital 

radius for the 1s state is half of that of the exciton in bulk GaAs.  Likewise, the 

binding energy is four times the 3D excitonic energy.  The constraint in the z-direction 

enhances the electron-hole interaction. 
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4.2 Experimental Investigation 

 

4.2.1 Experimental Arrangement 

 

 

Fig 4.3: Experimental Arrangement for THz-Driven Spectral 

Modulation. 

 

Here I present an experiment-theory investigation of a pump-probe measurement 

using a strong single-cycle THz pulse and a weak optical probe to study time-resolved 

nonlinear effects in the optical spectrum in multiple GaAs/AlGaAs QWs. The 

experiments were conducted at OSU, and the theoretical calculations made by M. Kira 

working in the theoretical group of S.W. Koch in Marburg, Germany.  A schematic of 

the experimental setup is shown in fig. 4.3. The measurements were performed using 

805-nm, 100-fs pulses from a 1-kHz Ti:sapphire regenerative amplifier (Coherent Inc., 

Legend). The optical beam was split into two components: the major portion for THz 

tDel 

= tOpt - tTHz 

THz  

pulse 
Optical  

pulse 

Quantum 

Wells 
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generation and the minor portion for the optical probe. Single-cycle THz pulses were 

generated by optical rectification in a 1-mm ZnTe crystal. The incident optical pulse 

energy was 0.8 mJ, irradiated on a roughly 3-mm spot in the ZnTe crystal. The THz 

pulses were collimated with an off-axis parabolic mirror and the THz beam diameter 

was 1.5 mm at the focus. The THz pulse shape was measured using electro-optic 

sampling in a 1-mm ZnTe crystal. The absolute THz power was determined using a 

silicon bolometer at liquid helium temperature. The THz electric-field amplitude at the 

peak is estimated at 10 kV/cm when the optical pump pulse energy is 0.8 mJ. 

 

Fig. 4.4: 1-T(ω) for the QW sample.  The solid line is the calculated 

value, the shaded area the experimental measurement. 

 

We put a GaAs QW sample at the focus of the THz pulses and measured the 

optical transmission spectra. The sample studied had ten high-quality, undoped 12-nm 

wide GaAs wells separated by 16-nm-wide Al0.3Ga0.7As barriers. Fig 4.4 shows the 1-

T(ω) spectrum of the sample.  This is somewhat like an absorption spectrum, but the 

spectrally-resolved reflection was not measured, and so it is not a true absorption 
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spectrum.  The spectrum is analyzed combining Koch’s standard microscopic theory 

[50] with a k·p-bandstructure calculation including the heavy-hole (HH) and light-hole 

(LH) valence bands as well as the strain inside the sample. The results are shown as a 

solid line in fig 4.4. 

The sample was excited by strong THz pulses (inset to Fig. 4.4) and probed by 

weak optical pulses having central times tTHz and topt, respectively. I measured the 

spectrally-resolved intensity of the optical pulse as function of the delay ∆t = tTHz - topt 

yielding the normalized transmission probability T(ω,∆t). The THz induced changes 

are obtained as the differential spectrum ∆T ≡ T(ω) - T(ω,∆t). 

 

4.2.2 Calculation of Spectral Modulation 

 

The theoretical description of the nonlinear experiment follows from the standard 

many-body Hamiltonian [50] for the Coulomb-interacting carriers that are coupled to 

light via the minimal-substitution Hamiltonian [51-54]. To obtain the optical response 

under the influence of an intense THz excitation, we solve the generalized multi-band 

Semiconductor-Bloch Equations for the microscopic polarization kPα with carrier 

momentum k
�

between conduction band and valence band α 
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+ scattering. (4.2.1) 
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 Here, a

k
ε � contains the kinetic energy of the single conduction- and multiple 

valence-band carriers having occupations e

k
f � and ,h

k
f α
� , respectively. Furthermore,

k
dα
� is 

the interband dipole-matrix element, 

 cosk

k k

e
j

k

α
α ε

φ
∂

≡ −
∂

�

� ��
ℏ

 (4.2.2) 

is the current-matrix element with the angle φk between k
�

and polarization direction of 

the THz field, and µ
α
 is the effective reduced mass [54, 55]. We evaluate a

k
ε � ,

k
dα
� ,

k
jα� , 

µ
α
 and the Coulomb-matrix element

k
V α
� using the wavefunctions from the k·p-

bandstructure calculation. The presence of carriers and the coupling to phonons and 

disorder lead to scattering of the polarization. Since excitation-induced dephasing [53, 

56] is not appreciable for the weak optical excitation used, we implement scattering 

via a constant dephasing. 

The polarization couples to both the optical electric field Eopt and the THz vector 

potential ATHz at the QW position. The term proportional to dEopt describes the optical 

generation of polarization whereas the two terms containing ATHz describe intraband 

processes. The A
2
-dependent renormalization of the kinetic energies is always positive 

and it can be directly related to the so called ponderomotive energy [31]. The 

ponderomotive energy can be understood conceptually by considering the classical 

case of a free electron in an oscillating electric field given by  

 0( ) cosE E tω ω=  (4.2.3) 

Using F = ma, the equation of motion for the electron is 
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 0 cos
e

x E t
m

ω= −ɺɺ  (4.2.4) 

The solution to which is 

 0

2
( ) cos

eE
x t t

m
ω

ω
=  (4.2.5) 

The average kinetic energy of the electron is 
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which is often called the ponderomotive energy.  It represents the energy charged 

particles gain when placed in an oscillating field.  Importantly, it is always positive 

and always increases the particle energies. 

The strong THz pulse couples to the optical polarization via the THzj Aα term that 

has a different parity than the purely optically generated polarization since
k k

j j
−
= −� � . 

Thus, the experimental single-cycle THz pulse converts the initially s-like polarization 

into p-,d- ,. . . like contributions via linear and nonlinear transitions. The transition 

frequencies between the different excitonic states fall into the region of a few THz, 

e.g. 2 1

HH HH

p sν ν− =1.96 THz and 2 1

LH LH

p sν ν− = 1.65 THz where ελ = hνλ is the energy of 

state λ. These THz-induced transitions can be observed as large changes in the 

differential spectrum ∆T(ω,∆t). 
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Treatment of the light propagation through the experimental multiple well 

structure was accomplished by solving Maxwell’s wave equation via a transfer-matrix 

technique [57]. The theoretical vector potential 

 

2

0( ) exp cos(2 )THz THz

t
A t A tπν φ

τ

  = − +  
   

 (4.2.7) 

was matched to the experimental single-cycle THz pulse choosing the central 

frequency νTHz = 0.9 THz, carrier-envelope offset phase φ = π/2, duration τ = 300 fs, 

and A0 such that the peak strength of the electric field is 9.2 kV/cm. 

At the pulse peak we note the ratios between the Rabi energy hνR and the 1s-2p 

transition energy are 2 1/ 0.63HH HH

R p sν ν − =  and 2 1/ 0.79LH LH

R p sν ν − = . These values are 

clearly in the regime of extreme-nonlinear optics where one expects ultrafast 

nonlinearities. 
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Fig 4.5: Differential Transmission Spectra.  I) Measured differential 

transmission. II) Calculated differential transmission.  In the top pane of 

each panel, the vertical axis is pump-probe delay, the horizontal axis is 

photon energy.  The horizontal lines in the top panes mark cross sections 

at times ∆t = 0.22 ps and 0.78 ps, which are shown in panes b) and c). 

 

 

Fig 4.6: Differential Transmission vs. Time. I) Measured differential 

transmission. II) Calculated differential transmission. Each pane 

corresponds to a vertical section of 4.5-a.  d, e, and f correspond to 1.533 

eV, 1.540 eV, and 1.548eV, respectively. 

 

1 THz 
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Figures 4.5 I(a) and 4.5 II(a) show the experimental and theoretical ∆T as a 

function of optical energy ħω and time delay ∆t. The horizontal lines indicate energy 

cross sections and the vertical lines time slices for fixed energies. A comparison of 

Figs. 4.5 I and 4.5 II shows that the theory excellently reproduces not only the 

magnitude of the essential features in ∆T; but also their spectral and temporal shapes. 

We note that the THz-induced features are strong – changes are almost 50% of the 

linear T in Fig. 4.4 – and several transient ∆T signatures appear on an ultrafast sub-

picosecond time scale. As we discuss in the following paragraphs, the experimental 

signal contains well-defined characteristics of (i) ponderomotive contributions, (ii) 

signatures of the excitonic dynamical Franz- Keldysh effect [34] , and (iii) large 

deviations from the RWA including THz harmonic generation. Performing a detailed 

switch-off analysis, the theory clearly identifies the physical origin of the different ∆T 

contributions. 

In both Figs. 4.5 I(a) and 4.5 II(a), we observe for small time delays (∆tb = 0.22 

ps) a positive ∆T (white region with arrow) that exists transiently for about 500 fs – 

shorter than the other transients around the 1s resonances. This feature is energetically 

slightly above the 1s- LH resonance at ħωe = 1.540 eV. In the cross-sections (b) and 

(e) in Figs. 4.5 I and II this feature is indicated by an arrow. To reveal its origin, Figs. 

4.5 II(b) and 4.6 II(e) compare the full computation (shaded area) with calculations 

where either the A
2
 term in eq. 4.2.1 is switched off (dashed line) or the RWA is 

applied (solid line). Without the A
2
 term the positive ultrafast ∆T feature is nearly 

washed out and the overall shape of the experimental ∆T is not reproduced at all. Thus, 
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we can directly link this ultrafast transient to the presence of the ponderomotive A
2
 

contribution of the single-cycle THz pulse. As shown in eq. (4.2.6), the A
2
 term can be 

interpreted classically as the kinetic-energy change of the electron in a strong 

electromagnetic field. As this energy is quadratic in ATHz, it is clear that this feature is 

shorter-lived than the other transients. 

In addition, we find that the non-RWA contributions are needed to obtain the 

correct oscillatory shape of ∆T around the ponderomotive ∆T transient, demonstrating 

the extreme nonlinearity of the induced ∆T. In both experiment and theory, the shape 

of ∆T suggests that the excitonic 1s-HH resonance in T is redshifted whereas the 1s-

LH resonance in T is blueshifted for early and redshifted for later delay times due to 

the THz pulse. Comparing in Fig. 4.5 II(b) calculations with (shaded area) and without 

(dashed line) the A
2
 term shows that the ponderomotive term contributes as a 

compensating blueshift. In particular, the blueshift of the excitonic 1s-LH resonance in 

T for early delay times can only be explained when the A
2
 term is included. These 

observations are in agreement with earlier investigations [33–35] of the excitonic 

dynamical Franz-Keldysh effect for continuous-wave THz excitations. For small delay 

times, the THz interaction with the optical polarization is strongest and the 

ponderomotive A
2
 dominates causing an overall blueshift for the 1s-LH resonance. At 

later delay times, this resonance is redshifted.  This can be viewed as a manifestation 

of the AC stark effect. 

In the AC Stark effect, the excitonic 1s and 2p states couple to the electromagnetic 

field.  As a result of this coupling, the energy eigenstates become “dressed”, lowering 
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the energy of the 1s state and increasing the energy of the 2p state.  This causes an 

overall redshift of the 1s resonance.  In the Hamiltonian, the AC stark effect arises 

from the THzk
j Aα
� term, which is linear in the field, as opposed to the A

2
 term. For later 

delay times, the field becomes weaker, and the term linear in A dominates over the 

term quadratic in A, resulting in a redshift of the resonance. 

Figure 4.6 II(d) displays the temporal evolution of ∆T at the energy ħωd = 1.533 

eV that is below the 1s-HH resonance. Again, the full computation (shaded area) 

reproduces the experimentally measured [Fig. 4.6 I(d)] features. When we switch off 

either the A
2
 contribution (dashed line) or apply the RWA (solid line), the result no 

longer agrees with the experiment. We observe again that the A
2
 and the jA  

contributions compensate each other. In addition, the fast oscillations in ∆T induced 

by non-RWA parts clearly indicate that the experiment is in the regime of extreme-

nonlinear excitations as the dynamics is determined by the full oscillations of the THz 

pulse and not only by its envelope. The theoretical analysis confirms that the actual 

positions of the oscillations in ∆T can be controlled by the carrier-envelope offset 

phase. 

As a last feature, we investigated ∆T at ħωf = 1.548 eV where shallow resonance 

features are centered at the energy matching 1 / 2 2s THzhε ν+ ∆ + ; where ∆ is the 

detuning of the THz pulse with respect to the 1s-2p transition. Since the THz spectrum 

– the bar in Fig. 4.5 I(b) indicates the full width at half maximum – is much narrower 

than the extension of the high energy features, we can rule out the explanation that 

they arise due to absorption of a single THz photon. These features are best explained 
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by THz-frequency third harmonic generation, since one needs the absorption of two 

additional THz photons, a contribution which is neglected in the RWA. Figure 4.6 

II(f) presents ∆T(ωf ,∆t) for the full computation (shaded area) and with the RWA 

(solid line). Only residual oscillations are observed with the RWA; for slightly longer 

THz pulses these residual oscillations vanish altogether. Since the oscillatory features 

are at the correct energetic position and require non-RWA contributions, these 

experimental features can also be connected to extreme nonlinearities. Our theoretical 

analysis shows that the positions of the ∆t-dependent oscillations of ∆T depend on the 

carrier envelope offset phase φ and that the spectral position depends on the central 

frequency of the THz pulse [39]. 

In conclusion, we performed experimental and theoretical investigations of the 

interaction of strong single-cycle THz pulses with semiconductor QWs. The measured 

spectra are excellently reproduced by the results of our microscopic calculations. A 

detailed switch-off analysis clearly identifies extreme-nonlinear effects including 

ponderomotive contributions and THz harmonics. 
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5. Conclusion 

In the Lee laboratory we have been examining quantum well structures as a model 

system to study electron dynamics.  Semiconductor quantum wells, as well as 

excitonic states within them, show promise for a number of reasons.  The states are 

relatively simple to calculate, making computational/experimental studies possible.  

They form discrete subbands, and can often be treated as two or three level systems.  

In high quality well systems, decoherence times are long enough to probe/manipulate 

the system through ultrafast spectroscopic means.  In AlGaAs/GaAs wells, for 

instance, the coherence time is ~2-3 ps [50], much longer than the 10 – 100 fs pulses 

which can be created in a tabletop apparatus.  This reveals interesting possibilities for 

coherent control experiments. 

As mentioned in earlier chapters, the typical transition energies of these systems 

lie in the THz regime.  To exploit this, we have developed a number of methods for 

generating and shaping THz pulses.  Many of these schemes use emission from 

orientation-patterned lithium niobate to emit specific kinds of THz pulses [1, 19, 20]: 

Examples include chirped pulses, 0-π pulses, elliptically polarized pulses, etc. 

Complementing these techniques is the DFG method we developed, which has a fairly 

good conversion efficiency and quality, giving narrowband pulses with field strengths 

on the order of ~ 1 kV/cm at 2 THz. 

The Rabi frequencies of these pulses are comparable to the transition energies of 

excitonic states in quantum wells.  This introduces the possibility that they can be used 

to coherently control the states.  For instance, one could apply a series of π/2 pulses to 

do photon echo studies of homogeneous coherence times; or use a π pulse to prepare 
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excitons in a 2p state.  We have shown through the quantum well study of chapter 4 

that excitonic orbitals can be manipulated with a single-cycle THz pulse.  A natural 

direction for further study is to use narrowband and shaped pulses as a more precise 

tool.  This could prove fruitful for applications in quantum computing and quantum 

cryptography, as well as more traditional material studies such as carrier-carrier 

interactions and dephasing characteristics. 
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Bolometer Calibration 

Our bolometer for these experiments was loaned by Konstantin Vodopyanov at 

Stanford University.  Before it was lent to us, it had been calibrated to a black-body 

standard and assigned the responsivity 9.26ä10
5
 V/W.  In that calibration, the THz 

source was modulated with a 100 Hz optical chopper so that the beam was on for 5 ms, 

then off for 5 ms.  The signal had the waveform shown in fig. A.1: 

 

Fig A.1 CW THz signal. Vs is the measured signal. 

 

The pulsed signal was significantly different.  Rather than a CW source, the THz 

we measured had a repetition rate of 500 Hz or 1 KHz and a pulse duration of ~ 2 -10 

ps.  This is much faster than the bolometer’s response time, so the signal appears as a 

series of decaying spikes, as shown in fig. A.2: 

 

Fig A.2 Pulsed THz Signal. 
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This calls the bolometer’s calibration into question; this is clear because the listed 

responsivity has units Volts/Power, but the power is poorly defined for a series of 

ultrashort pulses.  To resolve this, I examine the time response of the bolometer to an 

incident beam. 

The bolometer’s detection crystal is a helium-cooled silicon wafer.  The 

conductivity of the wafer is proportional to its temperature, which is itself proportional 

to the amount of energy deposited by the beam. The conductivity is measured and 

amplified by internal electronics.  Specifically, 

 S Uα=  (A.1) 

where S is the signal and U the thermal energy of the crystal. With an input power P(t), 

the rate equation for the system is 

 ( )S U P t S
β

α α
α

 = = − ⋅ 
 

ɺ ɺ  (A.2) 

where β is the temperature decay rate.  When measuring a CW source, the signal 

comes to equilibrium with the beam on, so that 

 0CW CWS P S
β

α
α

 = = − ⋅ 
 

ɺ  (A.3) 

 CWS P
α
β

⇒ =  (A.4) 

The difference in the signal when the beam is blocked and unblocked is measured.  

Importantly, it is inversely proportional to the decay rate, and the units for SCW is 

kV/W 

In the case of a pulsed source, the system is not allowed to come to equilibrium.  

Instead, the energy is deposited very rapidly, and the signal decays over time.  The 
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power is appropriately represented as a delta function 0( ) ( )P t E tδ= where E0 is the 

pulse energy.  In this case, the rate equation becomes 

 0 ( )pulsed pulsedS E t S
β

α δ
α

 = − ⋅ 
 

ɺ  (A.5) 

Integrating across t = 0, the discontinuity in the signal is given by 

 0 0lim ( )pulsedS E t S dt

ε

ε
ε

β
α δ

α→
−

 ∆ = − ⋅ 
 ∫  (A.6) 

 0pulsedS Eα∆ =  (A.7) 

after which it decays with the rate β, 

 0( ) t

pulsedS t E e βα −=  (A.8) 

The height of the discontinuity is what is measured for a pulsed source.  This does 

not depend on the decay rate.  In essence the energy is deposited far more rapidly than 

it can dissipate, so that the decay doesn’t affect the initial signal.  The units for ∆Spulsed 

is V/J, and should be greater than the CW responsivity by a factor of β.  With a decay 

time of about 0.1 ms, the pulsed responsivity is 9.26ä10
9
 V/J 
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