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COST STRUCTURE OF THE LOCAL TELECOMMUNICATIONS INDUSTRY 

1. INTRODUCTION 

The objective of this paper is to study cost structure of the U.S. local telecommunications 

industry and answer the following two questions. Is local telecommunications service a 

natural monopoly? Is local service provided efficiently? The answer to the first question is 

crucial in determining the optimal market structure of the industry competition or 

regulated monopoly. The second issue is important as it gives an estimate of the degree of 

productive inefficiency in this industry that has been regulated as a natural monopoly until 

the issuance of the Telecommunications Act of 1996. Government regulation of a 

monopoly can induce inefficiency, and therefore, monetary measure of inefficiency reflects 

potential benefits of competition in this industry. 

The 1982 court decree' that ended the antitrust case against AT&T separated 

telecommunications services in the USA into two distinctive parts, long distance and local 

markets. The decree created special geographic areas (called Local Access and Transport 

Areas or LATAs) around population centers and defined local markets as any telephone 

service within these areas. As a result of this decree, long distance markets became open 

to competition, while local markets remained under government regulation as natural 

monopolies. The decree assigned a single local service provider to each local area and 

prohibited local companies from entering long-distance markets. Long distance 

' U.S. vs. AT&T. Modification of Final Judgment. January 6, 1982. 
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companies, which carry calls between local access and transport areas, were not allowed 

to enter local markets. 

In the late 80's state governments, which regulate the intrastate intraLATA 

jurisdictions, began to open the intraLATA toll markets to competition. Today intraLATA 

toll competition is permitted in most states. The local telecommunications industry 

remained under rate of return regulation at the federal level until 1990, and some states 

continued to impose rate of return regulation after 1990. 

Local telephone companies own local telecommunications networks wires, poles, 

switching facilities that constitute an essential input for telephone service providers. 

These local telephone networks present an economic barrier to entry into local telephone 

markets. Until recently, regulatory authorities in the U.S. believed that it would be 

wasteful to allow more than one company in a local telephone market because a new 

entrant would have to build its own local telephone network, thus, duplicating the existing 

facilities. The Telecommunications Act of 1996 reversed the traditional policy that local 

telephone markets should be regulated monopolies. The Act not only removed legal 

barriers to entry into local telephone markets, but also created guidelines designed to 

eliminate economic barriers to entry. In particular, the Act obliged the incumbent local 

telephone companies to provide access to their network facilities to new entrants at a just 

and nondiscriminatory price2. 

The provisions of the Act indicate that regulatory authorities do not consider local 

telecommunications industry to be a natural monopoly. Despite this important change in 

2 Telecommunications Act of 1996, section 252(c). 
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the regulatory attitude, little evidence exists regarding the production structure of the 

industry. Apart from technological arguments of the feasibility of bypass of the local 

telephone networks, the only empirical evidence against the natural monopoly status of the 

local telecommunications industry is a study by Shin and Ying (1992). This paper rejected 

the natural monopoly hypothesis by conducting a subadditivity test on the estimated cost 

function of the U.S. local telecommunications industry. 

A new study of the cost function of local telecommunications can shed light over 

the future market structure and explain the current developments in the industry the lackexplain 

of competitive entry and a series of mergers between local telecommunications companies. 

The first purpose of this paper is to conduct a subadditivity test on the U.S. local 

telecommunications industry. The subadditivity test, which is based on Shin and Ying 

(1992), improves on their work in the following aspects: 1. While their results were based 

on the old, pre-divestiture data, I use recent data, which are more relevant to the current 

production structure of this industry that has been experiencing rapid technological 

changes. 2. Strong multicollinearity in the data set of Shin and Ying could have affected 

their findings. I reduce multicollinearity by changing the definitions of the output variables. 

3. Instead of the traditional iterative SUR technique, I apply an asymptotically efficient 

estimator of Mandy and Martins-Filho (1993). This estimator is designed to correct for 
-

heteroscedasticity that naturally emerges in asystem of cost and share equations and has 

been first pointed out by Chavas and Segerson (1987). A.. I use a different set of 

independent variables that, as explained below, better account for the cost variations in the 

local telephone industry. 
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The second purpose of this paper is to estimate the degree of technical and 

allocative inefficiency of the telecommunications firms. The issue of production efficiency 

has been given little attention in the empirical literature, despite the existence of 

technological and institutional factors that might cause inefficiency, such as rate of return 

regulation, unionized labor and large investment cycles. Regulatory authorities have been 

using econometric cost studies of telecommunications in support of major institutional 

changes. Such well-known studies as Evans and Heckman (1984), Shin and Ying (1992) 

were based on the theoretical assumptions of the cost minimization that might not hold in 

reality. If telecommunications firms are productively inefficient, then the estimated 

parameters of a cost model that ignores inefficiency lack the desirable statistical 

properties, and therefore, the subadditivity measures are distorted. 

To my knowledge, this study presents the first attempt to estimate technical 

inefficiency and the second attempt after Oum and Zhang (1995) to estimate allocative 

inefficiency in telecommunications. I adopt the same generalized cost function approach as 

Oum and Zhang, but improve upon their work in the following directions: 1. I use 

disaggregated panel data on the local telephone companies instead of aggregating long-

distance and local markets into one observation. 2. I estimate allocative inefficiency on 

the level of holding companies, while Oum and Zhang estimated it only on the industry 

level. 3. As opposed to Oum and Zhang , I use non-monetary measures of the output, 

thus, isolating fluctuations in the output prices from the cost model. 4. I estimate relative 

technical inefficiency of the holding companies simultaneously with allocative inefficiency. 

The major findings of my paper are as follows. First, comparison of the costs of 

the monopoly provision of the local telecommunications service to the costs of different 
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two-firm industry configurations resulted in numerous violations of the subadditivity 

condition, indicating that the local telecommunications industry is not a natural monopoly. 

In general, my subadditivity results present a weaker evidence against natural monopoly 

than Shin and Ying's (1992). Though the point estimates of maximum savings from a two-

firm industry compared to a monopolized industry are positive, average savings are 

negative for most observations and as a total: 

Second, I found no substantial qualitative difference between the subadditivity 

results generated by the SUR technique, which ignores heteroscedasticity inherent to a 

system of cost and share equations, and the estimator of Mandy and Martins-Filho (1993), 

which corrects for heteroscedasticity. 

Third, my estimates indicate that telecommunications firms exhibit different levels 

of relative technical inefficiency. The two alternative assumptions about the nature of 

technical inefficiency deterministic versus stochastic effects produce different rankings 

of the firms in terms of relative technical efficiency. 

Fourth, contrary to the theoretical predictions about the effects of rate of return 

regulation, my allocative inefficiency estimates indicate that capital was under-employed 

relative to materials. 

Fifth, the subadditivity test on the generalized cost function that accounts for 

technical and allocative inefficiency provides a much stronger evidence of potential savings 

from the division of the monopolized markets than the traditional cost function. 
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2. METHODOLOGY AND LITERATURE REVIEW
 

2.1. Subadditivity of the Cost Function 

2.1.1. Natural Monopoly in the Multiproduct Context 

An industry is a natural monopoly if its, cost function is subadditive. An industry 

cost function is subadditive if one firm can produce any given output vector Q at a cost 

C (Q) that is lower than the costs. ofproduchig the same output by any combination of 

two or more firms. Formally., 

C (Q) < EC(q') for all n =2,3,..., and any vectors Q, q' such that = Q (2.1) 

Despite the simplicity of the definition, it is often impossible to determine whether 

a particular multiproduct cost function is subadditive by examining its mathematical 

expression. Instead, empirical studies often test for the presence of various necessary or 

sufficient conditions for subadditivity. The rejection of the necessary conditions presents 

evidence against subadditivity, while failure to reject sufficient conditions is interpreted as 

evidence in support of subadditivity. 

Baumol, Panzar and Willig (1988) developed the most comprehensive list of 

necessary and sufficient conditions for subadditivity. They name two necessary conditions: 

economies of scope and ray subadditivity. 
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A cost function exhibits economies ofscope if the following condition is satisfied: 

C (Q) < E C( q Ti) for any partition (q ri, q rz, ...q Tn ) of the m-dimensional vector Q 

such that q ri 11 q Ti 0 for i *j and U qr, Q. 

A cost function is ray subadditive at Q if C (Q) < E C( v, Q) for any set of two 
1=1 

or more v, > 0 such that E v . 
,-1 

While economies of scope indicate economies in joint production, the concept of 

ray subadditivity captures single-dimensional economies of scale decreasing average cost 

along the ray. 

A sufficient condition for subadditivity combines two requirements: 

1) economies of scope; and 2) decreasing average incremental costs of each product. The 

average incremental cost of product j is defined as AIC, (Q) = (C (Q) - C(Q. _J)) / Q 

where Qm j =(Q 1, Q2, ..Q j -1, 0, Q, 1, Q n). 

2.1.2. Empirical Tests of Subadditivity 

Empirical tests for subadditivity are complicated by the fact that subadditivity is aslobal 

property. These tests may require information on the values of the cost function for output 

levels that lie outside the range of the observed output levels. For example, calculating 

economies of scope requires knowledge of the stand-alone costs of each product, which 

are often not observed in a multiproduct industry. The global nature of subadditivity also 

creates asymmetry in informational requirements necessary to prove or reject 

subadditivity. On the one hand, in order to establish subadditivity, the researcher needs 



9 

information on the costs of all potential levels of output. On the other hand, a local 

violation of subadditivity is sufficient to reject global subadditivity. 

Most empirical studies on the subject use estimates of the industry cost function to 

check for the satisfaction of certain necessary or sufficient conditions for subadditivity. 

Sing (1987) used cross-sectional data on U.S. firms to estimate the hybrid translog cost 

function of the combination of gas and electric utilities. The data set contained informatiOn 

on joint, as well as separate production of gas and electricity, which allowed the author to 

examine economies of scope. Sing found that the estimated cost function had regions of 

both economies and diseconomies of scope, with no economies of scope present at the 

mean. Thus, one of the necessary conditions for subadditivity was violated. 

Kim (1987) evaluated product-specific economies of scale for U.S. water utilities 

by estimating average incremental costs and ray average cost curves. Although the data 

set did not contain observations on stand-alone costs, the author used arbitrary small 

levels of one output (instead of zero) to evaluate the incremental cost of producing the 

other output. This method generated decreasing average incremental cost of nonresidential 

water, and increasing average incremental cost of residential water. The result was 

insufficient to establish cost subadditivity. Ray average cost functions appeared to be U-

shaped, thus, violating necessary condition for subadditivity. 

Pulley and Braunstein (1992) used the same "quasi-scope" measure as Kim (1987) 

to avoid extrapolation problem. Instead of stand-alone cost, their scope measure included 

cost of specialized production with non-specialized outputs produced in small quantities. 

The authors found that the estimates of scope economies in banking varied with respect to 

the choice of the functional form for the cost model. 
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Some studies estimate economies of scope by evaluating the sign of the derivative 

of the marginal cost of one output with respect to another output. Keeler and Fromby 

(1994) calculated the values of the second cross derivative of an estimated cost function of 

the U.S. airline industry. They found that the sign was consistently negative for each 

observation in their data set, implying economies of scope between passenger and freight 

services. 

Hunt and Lynk (1990) and Seabra (1993) conducted empirical tests of another 

sufficient condition for subadditivity the simultaneous existence of ray subadditivity and 

transray convexity of the cost function. Transray convexity at a given output point implies 

that the cost function is convex alone a hyperplane that connects the given output point to 

the output axes. In other words, transray convexity indicates that the weighted average 

cost of specialized production is higher than the cost of producing a weighted average of 

the specialized vectors jointly. In order to verify transray convexity, both studies evaluated 

the minors of the bordered Hessian defined in Baumol, Panzar and Willig (1988, p.456). 

Hunt and Lynk (1990) used cointegration analysis to estimate the long-run cost 

function of the British telecommunications using a time series data set for 1951-81. 

Because of the simple functional form of the cointegrating regression, both the transray 

convexity and ray subadditivity followed directly from the negative sign on the interaction 

term between the two outputs. The authors concluded that the British telecommunications 

industry was a natural monopoly. 

The study by Seabra (1993) used time-series data for 1950-79 on the Portuguese 

telecommunications industry. The estimated hybrid translog cost function exhibited strong 

overall economies of scale. Transray convexity followed from the signs of the estimated 
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coefficients. The presence of the sufficient conditions for subadditivity allowed Seabra to 

conclude that the Portuguese telecommunications industry was a natural monopoly. 

However, the study seems to be incomplete because the author limited the subadditivity 

analysis to the year of normalization, instead of checking the sufficient condition for each 

year of observation in the sample.. 

Guldmann (1990) used the estimated cost function for a cross section of small 

local exchange carriers to evaluate potential cost savings from competition. The author 

used two measures of the output in the model the number of telephone lines and the 

service territory. He found that the level of economies of scale and density declined with 

size, and larger firms in the sample experienced diseconomies of scale. Guldmann 

calculated the costs of the competitive provision of the telephone services using several 

alternative configurations of the market. The author found that the costs of competitive 

market organization tend to be lower than the costs of monopoly in larger markets. 

Territorial division of the markets turned out to be cost effective for most markets, while 

side-by-side competition (division of customers within the same territory between two or 

more firms) was cost effective only in several markets. The author concluded that the 

optimal size of a telecommunications firm is small, but emphasized two limitations of the 

study. First, his results applied primarily to small companies serving low density telephone 

markets. Second, calculation of total costs of a competitive market using the estimated 

cost function of a monopoly does not account for the cost of interconnection necessary 

when the market is divided. 

Gabel and Kennet (1994) used an engineering model of local telecommunications 

to test for the presence of scope economies one of the necessary conditions for 
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subadditivity. Using the simulation model, they evaluated costs necessary to provide 

different combinations of the four outputs local and toll switched services, local and toll 

private lines. Gabel and Kennet found diseconomies of scope between the switched and 

non-switched services (private lines) in densely populated markets, and strong economies 

of scope between switched services in all markets. Although the necessary condition for 

subadditivity was violated, the authors decided that the presence of diseconomies of scope 

in densely populated markets was not a sufficient evidence to prove superadditivity of the 

cost function. 

Evans and Heckman (1983, 1984) were the first to propose and implement a local 

test for natural monopoly based on the definition of subadditivity itself rather than its 

necessary or sufficient conditions. The test was based on the idea that if subadditivity is 

rejected over one region, then global subadditivity is also rejected, and the industry is not 

a natural monopoly. Evans and Heckman estimated a two-output cost function of a 

regulated monopoly and used the parameter estimates to calculate cost of a hypothetical 

two-firm industry. They compared the cost of a monopoly to the cost of all possible two-

firm industry configurations for all output levels in an admissible region R. In other words, 

they checked the following reduced version of the definition of the subadditive cost 

function (2.1): 

C(Q)< C(qI)+C(q2) for any observed Q and q q 2 e R : +q2 = Q (2.2) 

The authors restricted the admissible region R to the values of the output vectors that 

satisfy the following two requirements: a) no hypothetical firm produces less than the 

observed level of each product; b) the output structures of both hypothetical firms lie 

within the range of the observed ratios of the two products. 
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In order to empirically implement the test, Evans and Heckman evaluated the cost 

function for the finite number of two-firm output combinations constructed using a grid. 

They measured the degree of subadditivity as a percentage difference between the cost of 

a monopoly and the cost of a two-firm industry. Evans and Heckman used the maximum 

values of the percentage difference in cost for each data point as an indicator of 

subadditivity. Negative values of the maximum percentage difference supported the 

subadditivity hypothesis, while positive values indicated violation of subadditivity. 

Evans and Heckman applied their subadditivity test to the U.S. telephone industry. 

They estimated an autoregressive translog cost and share system using aggregated time-

series data on the Bell system for 1947-77. Their specification included three inputs 

capital, labor and materials, and two outputs toll and local calls. The authors controlled 

for technological change by including an index of lagged R&D expenditures by Bell 

Laboratories. They found that the calculated maximum percentage differences between the 

costs of monopoly and the two-firm industry were positive for 1959-77, and no two-firm 

output combinations in the admissible region existed for 1947-58. The results suggested 

that the cost function of the Bell System was not subadditive for the period of study. 

Roller (1990a, 1990b) noted that the translog cost function estimated by Evans 

and Heckman violated monotonicity as one of the outputs was approaching zero. In 

Roller's interpretation, the calculated savings from a two-firm configuration actually 

stemmed from negative marginal costs. Roller (1990a) modified the subadditivity test of 

Evans and Heckman by restricting the admissible region further to output combinations 

with positive marginal cost. The results of his modified test did not contradict the natural 

monopoly hypothesis. Roller (1990b) estimated an alternative functional form that 
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imposes regularity conditions prior to estimation generalized CES quadratic function 

using the same data. He found no violations of local subadditivity his maximum 

percentage differences between the costs of a monopoly and a two-firm industry were 

negative for all years. 

Shin and Ying (1992) applied the subadditivity test of Evans and Heckman using 

an estimated translog cost function of the U.S. local telephone industry. Their data set 

contained a much broader and detailed sample of 58 local exchange carriers during 1976­

83. The output vector included three components toll and local calls, and the number of 

telephone lines. Shin and Ying widened the admissible region by allowing the outputs of 

the two hypothetical firms to vary from 10 to 90 % of each monopoly observation. They 

also modified the subadditivity test of Evans and Heckman by concentrating not on the 

maximum percentage savings from a two-firm industry, but on the average percentage 

savings and their distribution. 

Shin and Ying found that the average percentage savings from a two-firm industry 

configuration aggregated annually were positive for all years and varied from 1.6 % to 3.8 

% of the monopoly cost in each year. Monopoly costs were lower than the costs of the 

two-firm industry in the minority of cases, ranging from 20 % of all possible output 

configurations in 1976 to 40 % in 1982. Their findings suggested that the cost function of 

local telephone industry was not subadditive. Following Roller's criticism, Shin and Ying 

repeated the subadditivity test with the restriction that narrowed the admissible region to 

the output combinations with positive marginal cost. Imposition of this restriction only re­

enforced the conclusion that the industry was not a natural monopoly during the period of 

study. 
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Gentzoglanis (1993) applied the subadditivity test of Evans and Heckman to a time 

series data set on a small Canadian publicly owned telecommunications firm. The author 

found no evidence against the natural monopoly hypothesis. However, the robustness of 

the results is questionable due to the small size of the data set, which contained only 18 

observations. 

A study by Gilsdorf (1995) presents a rare application of the subadditivity test to 

an industry other than telecommunications. The purpose of the study was to examine 

whether a vertically integrated electric utility exhibits natural monopoly properties. Thus, 

the two outputs measured the two stages of production electric generation and 

distribution. Gilsdorf adopted the test procedure of Evans and Heckman (1983) with 

Roller's (1990a) restriction on marginal cost. The resulting values of the maximum 

percentage difference between the costs of the two alternative industry configurations 

turned out to be positive for 37 out of 53 companies, and at the sample mean; however, 

none of the signs for the maximum difference were statistically significant. The author 

rejected the hypothesis that integrated electric utilities were multistage natural monopolies. 

2.2. Measurement of Production Performance 

2.2.1. Introduction to Technical and Al locative Inefficiency 

The estimation of a cost function assumes that the observed costs are generated from the 

solution to the following minimization problem: 
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C (W,Q) = mini W* L s.t. f(L).?_Q (2.3) 

where L = input vector; 
Q = exogenous output vector; 
W= exogenous input price vector; 
C = cost of producing output Q given input prices W; 
f(L) = exogenous production function. 

Cost minimization, as described above, might not occur for a number of reasons, 

including government regulation, unionized labor and the incentive systems that exist 

inside the firms. Government regulation and unionization might distort input prices. 

Internal incentive systems can create a discrepancy between the goals of the employees 

and the goals of the firm. For example, a bonus system that is tied to the performance of 

the company stock might induce managers of the company to avoid major capital 

investments, because these investments can lower the stock price. The violation of cost 

minimization results in cost inefficiency, defined as production of the observed level of the 

output at cost higher that the minimum possible cost. 

Farrell (1957) decomposed cost inefficiency into technical and allocative 

inefficiency. Technical inefficiency occurs if a proportionally reduced input vector can still 

produce the observed level of the output. In other words, a technically efficient firm uses 

the smallest input vector to produce a given output. Allocative inefficiency occurs if the 

observed combination of input quantities deviates from the cost minimizing combination of 

inputs. Allocative inefficiency means that the marginal rate of substitution between some 

pairs of inputs is not equal to the ratio of the corresponding input prices. 

Technical inefficiency indicates reduced productivity of all inputs, which can be 

caused by exogenous shocks such as adverse weather conditions or by endogenous factors 

such as internal incentive systems. 
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Allocative inefficiency might be caused by firms' inability to adjust certain inputs in 

a short period of time. A firm whose operations require substantial levels of fixed capital 

structures might not be able to quickly change its capital stock in response to changing 

relative prices of capital. Because of the lengths of investment projects, a firm that 

experiences an unexpected growth in demand might need to temporarily substitute other 

inputs for capital. If demand drops, a firm might not be able to reduce capital stock 

because of the negative salvage value of the embedded stock. 

Allocative inefficiency can be treated as a situation in which firms base their 

decisions on a set of shadow prices that are not observed by econometricians. Government 

regulation or legal contracts may impose additional constraints on the minimization 

problem and create systematic deviations of the shadow prices from the observed prices. If 

systematic discrepancy between the shadow and the observed input prices exists, then the 

ratios of the observed input prices are not equal to the corresponding ratios of marginal 

products. A well-known example of this approach is the Averch-Johnson (1962) effect, 

which suggests that a firm subject to rate of return regulation may use more than the cost-

minimizing share of capital. 

2.2.2. Technical Inefficiency 

Technical inefficiency is modeled by estimating the production or cost frontier rather than 

the "average" production or cost functions. Schmidt and Lovell (1979) were the first to 

estimate a stochastic production frontier system using Aigner's et al. (1977) specification 

of technical inefficiency as a factor that reduces productivity of all inputs. In this 
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specification the technical inefficiency factor shifts the cost function C away from the cost 

frontier C F. The natural logarithm of the cost function derived using this specification of 

technical inefficiency is a sum of the natural logarithm of the cost frontier (ln CF ) and the 

error term that includes not only the white noise disturbance 6, but also a nonnegative 

disturbance p that accounts for technical inefficiency: 

1nC =ln CF + e+ p (2.4) 

If the technical inefficiency term is assumed to vary over firms but not over time, 

then firm-specific technical inefficiency can be identified in a panel data framework. The 

technical inefficiency measure for firm i is defined as the difference between the firm-

specific estimate for 1u (m ,) and the estimate m for the most efficient firm in the sample: 

technical efficiency , = m - min { m } (2.5) 

If the inefficiency term p , is assumed to be fixed (nonstochastic), then the frontier 

cost model in logarithmic representation reduces to a traditional cost model, but with firm-

specific intercepts. This model is estimated using the within estimator or, equivalently, the 

Dummy Variable model with intercept = I p, D , where D, is a binary variable that 

corresponds to firm i. The least-squares estimates for ,u , are then used to measure 

technical efficiency as defined in equation 2.5. 

If the inefficiency term p , is treated as random with firm-specific variance and the 

expected value that is constant over firms, then the model is estimated using methods that 

take into account the structure of the composite error term e, t + p ,. The Feasible 

Generalized Least Squares (FGLS) methods present a two-step estimation that uses 

residuals from the within model to estimate the unknown variance of the composite error 
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(see, for example, Greene, 1990, pp. 474-476, Kumbhakar, 1997a3 for details). The 

estimates for the firm-specific disturbances p , are then obtained from the residuals of the 

estimated model. The FGLS assumes that firm-specific random effects p , are independent 

of the explanatory variables in the model. If this assumption does not hold, then the FGLS 

estimates are biased and inconsistent (see Judge et al., 1985, pp. 527-529, for the 

discussion of fixed versus random effects). The Maximum Likelihood method is an 

alternative to the FGLS, though it requires additional distributional assumption for s, p 

and the explanatory variables. 

Seale (1990) compared four stochastic frontier estimation methods OLS, within, 

FGLS and Maximum Likelihood applied to an unbalanced panel data of Egyptian floor 

tileries. Using Hausman specification test, he concluded that the within estimator that 

treats firm-specific effects as fixed, was the best estimator for the sample, with the 

Maximum Likelihood estimator being the second best. Seale interpreted the results of the 

test as evidence that the technical inefficiency terms are correlated with the explanatory 

variables in his production frontier system. 

Fare and Lovell (1978) distinguished two measures of technical inefficiency input 

technical inefficiency, defined as over-employment of inputs to produce a given level of 

the output, and output technical inefficiency, defined as failure to produce the maximum 

possible output with the given inputs. Input technical efficiency is measured as a factor 

that scales inputs from the production frontier, while output technical efficiency is a factor 

3 See section 3.2 for the description of Kumbhakar's (1997a) method. 
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that scales output down from the production frontier. Fare and Lovell showed that the 

two measures are equivalent only under constant returns to scale. 

Atkinson and Cornwell (1993) derived dual measures of input and output 

efficiency as fixed parameters of a cost frontier. They defined input technical efficiency 

similar to Aigner et al. (1977), as a firm-specific parameter a , 1 that scales the cost 

1 

frontier down: C, = C (Q,W,). Thus, input inefficiency parameter a , represented the 
a, 

potential reduction in cost that firm i could achieve without decreasing the output level. 

Output technical efficiency was introduced as a parameter b 1 that scales output up, to 

reflect the potential increase in the output possible without reducing inputs: 

c, .c(T, ,w). 

While the input efficiency parameter in a translog version of the cost model is 

absorbed in the firm-specific intercept and can be estimated using the above mentioned 

within estimator, the output technical efficiency specification makes the translog system 

nonlinear in parameters. This system can be estimated by either nonlinear least squares or 

maximum likelihood methods. Atkinson and Cornwell estimated both measures of 

technical efficiency for a panel sample of airline carries using the translog specification of 

the cost function and found that the two measures gave substantially different efficiency 

rankings. 
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2.2.3. Generalized Cost Functions 

A generalized cost function relaxes the assumption that the observed input prices are equal 

to the shadow prices prices that firms use in cost optimization. The shadow input 

prices, which are considered known to the firm but not to the econometrician, are assumed 

to depend on the observed input prices, as well as on some inefficiency parameters. 

Lau and Yotopoulos (1971) introduced the shadow price specification that is now 

common in parametric studies of allocative inefficiency. They defined the shadow price of 

input j (Wsh i) as a product of the observed input price (w-1) and the unobserved 

inefficiency parameter ) in their estimation of the profit function with Cobb-Douglas 

technology: Wsh, I. If the inefficiency parameter is greater than one, then the 

shadow price of the input is greater than the observed price, and therefore, the quantity of 

the input employed by the firm is less than the amount derived from minimization of the 

cost function using actual input prices. If the inefficiency parameter is less than one, then 

the firm over-employs the input. If the inefficiency parameter is equal to one, then the 

shadow input price equals to the actual price, and no allocative inefficiency is present. 

Toda (1976) adopted the same specification of the shadow input prices in order to 

estimate a cost function. Prior to estimation, Toda derived the observed cost function 

from the conditions of minimization of the shadow cost function for the Generalized 

Leontief functional form. Atkinson and Halvorsen (1980, 1984) extended the above 

approach to the translog forms of the cost and profit functions. Eakin and Kniesner (1988) 

used an additive specification of allocative inefficiency by modeling the inefficiency 
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parameter as the difference, rather than the ratio, between the shadow and the observed 

input prices: Wsh = ' + 

The derivation of a generalized translog cost function includes four steps. 

Step 1. Formulation of the shadow translog cost function: 

ln C sh = ao + E. a, In q, + fin Wsh; + yk In ak +.5(E I In q,lnqi 
i=i J=1 

E13I 
InWshi InWsh; + I yij Ina, Ina; EE4au lnWsh, lnq (2.6) 

In q, Ina; + EE wsh, Ina
 

Wshi +in
 

where sh = shadow cost;
wsh = shadow price of input j; 
w; = observed price of input j; 

= inefficiency parameter for input j; 
q, = level of output i; 
ak = level of control variable k; 
ao, yk,yifigifi pifiri; = parameters of the translog function. 

Step 2. Derivation of the input demand functions from the shadow cost function by 

applying Shephard's Lemma to the shadow cost function: 

e Csh Csh 
sh Ssh (2.7)ey wishI w 

ish = A +EA, In Wish +E8,; Inq + E lna (2.8) 

Step 3. Formulation of the observed cost function (C) as a sum of the factor inputs 

weighted by actual input prices; derivation of the observed cost as a function of the 

observed input prices and inefficiency parameters: 
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C = Ew L Csh Fish S,sh = Csh 
Ssh 

(2.9) 

SSh 
C --= Csh + (2_, (2.10) 

Step 4. Derivation of the observed input shares as functions of the observed prices and 

inefficiency parameters: 

w L S71 /
S (2.11)

E S 

The above exercise gives rise to a system of the actual cost and share equations 

that does not include unobserved shadow variables and thus, can be estimated: 

InC = a 0+ a lnqi + w + In ) + yk lnak 
i=i k=-1.1=1 

{EZcz,, Ina, lnq + EE flu On w, +In ,)(Inwi +In ) Ezy, Ina, Inaj} 
(2.12) 

+II(5;j(lnw, +1n, )1nqj +EE,u,j In q; +EEr,j(Inw, +In ,)Inaj 

)+ In Effli+Efi 

j)+Egulnqi lnaik, 
S (2.13) 

Eif3 k +EP .)+Eg lnqi+Erki lnaikk 

Aside from the inefficiency parameters, the actual cost function includes the same 

parameters as the shadow cost function. These parameters must satisfy certain restrictions 

to ensure that the properties of the theoretical cost function hold for the shadow cost 

function. As in the traditional translog cost function estimation, continuity in input prices 
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follows from the choice of the functional form. Linear homogeneity in input prices and 

symmetry of the matrix of the second order derivatives are imposed as linear restrictions 

on the parameter estimates. Concavity in input prices, as well as monotonicity in outputs 

and input prices, cannot be imposed as linear restrictions, but are checked after the 

estimation. 

Linear homogeneity of the cost function in input prices implies that the vector of 

inefficiency parameters is under-identified. The first order conditions for minimization 

can be written in terms of the ratios of marginal products: 

fie AT, w, 
(2.14)f Id Xi w 1....N' 

This system of the first order conditions includes N unknown inefficiency parameters for N 

inputs, but only N - 1 distinct equations. Therefore, one of the inefficiency parameters has 

to be normalized, so that only relative allocative inefficiency can be estimated. 

The normalization of one of the inefficiency parameters to one is common in 

generalized cost function studies because it permits convenient interpretation of the 

inefficiency estimates. If an estimate of the inefficiency parameter is greater than one, the 

input is under-utilized relative to the input chosen as the norm. If the estimate of the 

inefficiency parameter is less than one, the input is relatively over-utilized. If the estimate 

is equal to one, the input is used in efficient proportions relative to the normalized input. 

Atkinson and Halvorsen (1986) showed that the estimates of allocative inefficiency are 

invariant to the choice of the normalized input. 

The addition of the inefficiency parameters to the model reduces the number of 

degrees of freedom. The choice of the specification for the inefficiency parameters is often 



25 

dictated by the limitations of the degrees of freedom. For example, a cross-sectional data 

set does not provide enough degrees of freedom to specify the inefficiency parameters as 

individual to each firm. Therefore, allocative inefficiency in a cross-sectional study can 

only be estimated on the industry level. Because of the degrees of freedom, most empirical 

studies that involve generalized cost estimation utilize restrictive specifications of the 

inefficiency parameters (see, for example, Eakin and Kniesner, 1988). Firm level allocative 

inefficiency can be estimated using panel data. To my knowledge, Atkinson and Cornwell 

(1994) is the only study that uses panel data and estimates firm-specific allocative 

inefficiency parameters. 

The majority of studies treats the inefficiency parameters as fixed coefficients (see 

Atkinson and Halvorsen, 1984, Lau and Yotopoulos, 1971, Farber, 1989, Parker, 1994, 

Atkinson and Cornwell, 1994). Some authors assume that the inefficiency parameters 

depend on other variables (Farber, 1989, Atkinson and Halvorsen, 1990, Oum and Zhang, 

1995). In a study of parametric efficiency for a sample of new electric utility plants built 

during 1953-81 Farber (1989) assumed that the inefficiency parameters varied over inputs 

but not observations, which implied that all new plants in the sample were equally 

inefficient. The author also tried a specification with the fuel inefficiency parameter being a 

linear function of a time-dependent dummy in order to account for an institutional change. 

Atkinson and Halvorsen (1990) modeled allocative inefficiency as a function of 

exogenous variables that vary over firms. In order to test the hypothesis that competition 

in the U.S. long-distance telephone market had positive effect on allocative efficiency of 

the U.S. telecommunication industry as a whole, Oum and Zhang (1995) specified the 
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inefficiency parameters as an exponential function of three alternative competition 

measures, which allowed the inefficiency parameters to change over time. 

The shadow price divergence parameter , though usually referred to as the 

allocative inefficiency parameter, captures not only any systematic over- and under­

valuation of the inputs by the firm and sluggish adjustment to price changes, but also 

systematic measurement errors made by the observer. 

The generalized cost models are nonlinear with respect to their parameters and are 

usually estimated by means of iterative nonlinear methods of optimization. Unfortunately, 

the small sample properties of these estimators and their tests statistics are unknown. In 

general, consistency and asymptotic distribution of the nonlinear estimators can be 

established under certain assumptions (see Judge et al., 1985, pp. 198-201). Some of 

these assumptions are often violated in practice, such as the assumption that none of the 

explanatory variables exhibit a time trend. In addition, Judge et al. (1985, pp. 203-5) 

showed that, if an iterative algorithm is applied, the distribution of the estimator depends 

on the consistency of the initial estimator that was used to compute the starting values. 

2.2.4. Stochastic Versus Nonstochastic Modeling of Inefficiency 

The violation of cost-minimizing behavior has been modeled in two different ways. First, 

through introduction of inefficiency parameters directly in the model. Second, by 

developing special error-component structures that reflect inefficiency. The first approach 

assumes that systematic inefficiency is nonstochastic, while the second approach assumes 

that inefficiency is purely random. 
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Both approaches model technical efficiency in a similar way, by estimating a 

production or cost frontier, often through introduction of firm-specific intercepts in a 

model with panel data. The parametric approach treats these intercepts as fixed 

coefficients (fixed effects), while the error-component approach treats them as stochastic 

one-sided disturbances (random effects). The choice between the two models depends 

largely on whether the inefficiency terms are correlated with the explanatory variables in 

the model (Judge et al., 1985, p. 527). 

The two approaches differ in the treatment of allocative inefficiency. Schmidt and 

Lovell (1979) were the first to incorporate allocative inefficiency as the departure from the 

first order conditions for optimization in a stochastic frontier framework. They derived the 

structure of the error term as a function of allocative inefficiency for a Cobb-Douglas 

production function. Greene (1980) defined allocative inefficiency as error terms in the 

share equations for the translog cost function, though he assumed independence of the 

error terms in shares from the error term in cost equation a rather strong assumption. 

Several studies adopted an approximate specification of the relationship between the 

allocative inefficiency error terms in cost and shares. Kumbhakar (1997b) derived the 

exact formulas for the allocative error disturbances in a system of translog cost and share 

equations. 

The main drawback of the error component approach to modeling allocative 

inefficiency is that it requires distributional assumptions for the error terms. Allocative 

inefficiency terms might be correlated with the explanatory variables in the model, which 

would result in inconsistent estimates. In addition, the estimation method for Kumbhakar's 

(1997b) analytical model is yet to be developed. Atkinson and Cornwell (1994) argue that 
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the error component approach concentrates on random nonsystematic deviations from 

allocative efficiency, while the primary interest of researchers and regulators lies in a study 

of the systematic deviations. 

In this paper I adopt the parametric approach to modeling allocative inefficiency, 

though I estimate technical efficiency using both approaches in order to see whether the 

two methods give significantly different measures of inefficiency. 

2.2.5.	 Studies of Productive Performance of the Telecommunications 
Industry 

The majority of efficiency studies in telecommunications focuses on the effects of the 1984 

divestiture of AT&T on the industry performance. Ying and Shin (1993) estimated the 

translog cost function of the local telephone industry using panel data on the U.S. local 

exchange carriers for 1976-87. They used a post-divestiture dummy variable in order to 

evaluate changes in productivity due to the AT&T breakup. The authors measured 

productivity changes as the percentage difference between fitted costs for the pre-

divestiture and the post-divestiture periods. The estimation results suggested that local 

exchange carriers experienced cost savings after the divestiture. Ying and Shin attributed 

decreased costs to the competitive pressures from the long-distance market, though their 

specification does not separate competitive pressures from other factors that might have 

affected costs after the divestiture, such as technological change and falling labor prices. 

Oum and Zhang (1995) estimated the generalized translog cost function of the 

U.S. telephone industry using aggregated data on all carriers reporting to the FCC during 

the period of 1972-90. The main goal of the study was to test the hypothesis that 
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allocative inefficiency due to the Averch-Johnson (1962) effect reduces as the industry 

under the rate of return regulation becomes more competitive. The theoretical model 

behind their hypothesis assumed that the same incumbent firms operated in both long-

distance and local markets, and the long-distance market was being opened to competition 

during the period of study. It can be argued that the model is inconsistent with the 

institutional setting of the U.S. telecommunications industry. This assumption also raises 

questions about the validity of aggregating data on local and long-distance firms in the 

study. 

Oum and Zhang (1995) modeled the allocative inefficiency parameters as 

exponents of the linear functions of some time-dependent competition measure the 

authors used three alternative measures. The labor inefficiency parameter was normalized 

to one. The estimates of allocative inefficiency for capital and materials turned out to be 

less than one, suggesting that both capital and materials were over-employed relative to 

labor. The inefficiency estimates for capital were substantially smaller than for materials, 

and the values changed significantly depending on the choice of the competition measure. 

For example, the inefficiency measure for capital ranged from 0.301 to 0.657 in 1972, 

depending on the competition variable used, while the inefficiency measure for materials 

ranged from 0.648 to 0.925 in the same year. The inefficiency estimates for capital 

exhibited a positive time trend. This result provided evidence in support of the authors' 

hypothesis that increased competition reduces Averch-Johnson effect. However, Oum and 

Zhang admitted that the positive time trend in the capital inefficiency estimates could be 

due to other factors, such as technological change. The relative inefficiency estimates for 
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materials were decreasing slightly over time. Oum and Zhang attributed this reduction in 

efficiency to the substitution of capital for materials. 

Using nonparametric data envelopment analysis, Majumdar and Chang (1996) 

evaluated scale efficiency of a set of local telephone companies for six different years 

during 1975-90. In order to derive the scale efficiency scores, the authors used the 

observed input and output quantities to construct the production possibility set for each 

year. The observed inefficiency was decomposed into pure technical and scale 

inefficiencies. 

The calculated scale efficiency measures suggested that the scale efficiency of the 

U.S. local telephone industry was improving over the studied period. In order to explain 

the observed changes, the authors regressed the obtained scale efficiency scores on a set 

of institutional and firm-specific factors. According to the regression results, neither Bell 

Operating company dummy, nor the variables included to account for different types of 

regulatory setting had any significant impact on the scale efficiency. The scope of 

operations the number of states in which the firm operated was significant for most 

years and had a negative effect on scale efficiency. Technology, measured as average 

percent of digital switches, turned out to be the only variable to be significant for all years, 

though of unexpected negative sign. The authors explained this counterintuitive result by 

the adjustment process that could have been accompanying digitalization. It should be 

noted that Majumdar and Chang used the number of telephone access lines as one of the 

inputs for the two outputs, local and toll calls, while recent studies in local 

telecommunications such as Ying and Shin (1993), and Wilson and Zhou (1997) treat 
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telephone access lines as an output. It is possible that their unexpected results were driven 

by this choice of inputs and outputs. 
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3. MODEL SPECIFICATION AND ESTIMATION TECHNIQUES
 

3.1. Model with No Inefficiency 

3.1.1. General Specification 

Traditionally, production behavior of the regulated U.S. telecommunications industry is 

modeled using the neoclassical cost function (see, for example, Evans and Heckman, 

1984, Shin and Ying, 1992). Each firm is assumed to minimize production cost given the
 

output level, input prices and technology:
 

C (W,Q) = min L W * L s.t. f (L) Q , (3.1)
 

where W, f(L) and Q are considered exogenous.
 

The institutional setting of the industry one firm is assigned to each market and is 

required to meet customer demand in this market, with prices being set by regulators 

validates the treatment of the output as exogenous. Each telecommunications firm is 

assumed to have access to the same technology, which is probably appropriate given the 

regulatory provisions for the developers of the telecommunications equipment (such as the 

former Bell Laboratories). 

Most studies utilize the translog functional form in the empirical estimation of the 

cost function because of its flexibility. Roller (1990a, 1990b) criticized the translog 

functional form for its poor global behavior. However, as the observed range of variables 

increases, this shortcoming becomes less pronounced. 
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Following the traditional approach, I adopt the translog functional form for the 

cost function and add share equations to the system: 

m n K m m 
lnC =ao+ E ai inqi+ E fif. Inwf+ E yk Inak+0.5(EE aiflnqilnqi

k=1 1=1 j=1 

n n K K n m
+ EE fliilnwilnw+EZ ri inailnaj)+ZE 8ijlnw,ingj (3.2) 

m K n K
+EE piilnqilna +EE rijlnwilnaj 

where qi = output i=1,...m; 
= price of input j = 1,...n; 

a k = control variable k = 1,...K; 
C = cost; 

ao, ai,aii, fl if, P rii = parameters of the translog 
function. 

Application of Shephard's Lemma yields input share equations: 

n m K 

Si =/3i +E 13i; lnwi-FE 8ijinqi+E ro in a (3.3) 
j=1 1=1 k=1 

where S ,= share of input i. 

Two properties of the theoretical cost function can be expressed as linear 

restrictions on the parameters of the system linear homogeneity in input prices and 

symmetry: 

Homogeneity restrictions: E fli=1 E fiu=0 E 13 if = 0 E 8 i j= 0 E ri-= 0 
j=1 j =1 

Symmetry restrictions: a if = a 1, fli fiii Y if = Yji 

The continuity of the theoretical cost function follows from the choice of the 

functional form. Other properties of the theoretical cost function monotonicity in the 

outputs and concavity in input prices cannot be imposed as linear restrictions, and are 

usually verified after the estimation. 
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The addition of random error disturbances to the cost and share equations (3.2) 

and (3.3) generates the empirical model: 

1nC=a0+ ai lnqi+ fij lnwi+ E yk lnak+ 0.5(i aiInqilnqi
i=1 k=1 i=1j=1 

n n K K n m 
+ EE )36.1nwilnw+ E yi; ln a i ln ai) +EE

i=1;=/ 

m K n K 

+ E ,u if lnq ln a + E E riilnwilnai+c°
i=0,/ i=1;=/ 

Si=-13i +1 13 if lnwi+E if ln q +E pi; ln a; + (3.4) 
i=1 k=1 

E fii=1 E Pi; = 0 E,l3if =0 E 8i; =0 E rii = 0 
i=1 

aij =a Yij Yli 

This system can be rewritten in the general matrix form: 

Y=Xfi+ c (3.5) 

Rfl=r, 

where Y= the vector of dependent variables (cost and shares); 
X= the matrix of explanatory variables; 
fi= the vector of unknown parameters; 
R= the restriction matrix of full row rank; 
r= the restriction vector; 
c = the vector of error disturbances for cost and share equations. 

3.1.2. SUR Estimator 

The error structure in the model is usually assumed to exhibit contemporaneous 

correlation, which is described by the following assumptions on the error term 

,= (£O £/ 
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1) cov (e e 1) = cr2,,, i = 0, 1, ...n, t = 1, ...T. 

2) cov (el r, e r) = 0, t T (3.6)
 

3) E(e) = 0 E(e `,19 = 0
 

8 (0, l eh), = [o- =
 

where n= number of inputs; T= number of observations. 

Conventional Zellner's SUR method uses Ordinary Least Squares (OLS) residuals 

of the original system of n + 1 equations to estimate the parameters of E. The covariance 

matrix of this system E0 IT is singular because the shares add to one. In order to eliminate 

singularity, Zellner's SUR method suggests dropping one of the share equations and 

correcting for contemporaneous correlation in the system of n equations. Zellner's method 

results in non-unique estimates because they depend on the choice of the share dropped. 

Applied researchers usually use the iterative version of Zellner's SUR method, which 

asymptotically eliminates non-uniqueness. 

Mandy and Martins-Filho (1993) noted that if the OLS method is applied to the 

entire system, including the restrictions, then the estimated matrix of contemporaneous 

correlation is unique and invariant to the equation dropped on the second stage of the 

SUR method. I follow the recommendation of Mandy and Martins-Filho (1993) and 

calculate the SUR estimates using the following three step procedure: 

1) Application of the restricted OLS to the entire system of n + 1 equations: 

b 
ROLS (X 'AV X 'V + (X 'AV R [R 1(X R ](r - R 'Xi' X 'Y ) (3.7) 

2) Estimation of E by S = [su J using the residuals from the restricted OLS: 

e=y_xbROLS={eo,e1,...en), (3.8) 

s if = (e" ) / T; j = 0, ...n (3.9) 
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3) Application of the restricted SUR estimator to the system ofn equations: 

RSUR s.1 -I -1 xi s.1 (3.10) 

+ -1)(4)-1 R..] (r..1 - R_I `S_I-1 K1)-1 XI `S..11 ), 

where superscript `-1' denotes the inverse, and subscript `-1' indicates that one share is 

eliminated. 

3.1.3. Consistent Error Structure 

Chavas and Segerson (1987) noted the following corollary of Shephard's Lemma: the 

error terms in share equations are the derivatives of the error term in cost because share 

equations are generated as derivatives of the logarithm of cost with respect to the 

logarithms of input prices: 

e ° 
, i = 1, ...n (3.11)

0 ln w 

In order for the statistical disturbance to be present in the shares, the error term in the cost 

equation has to depend on the input prices. Therefore, the random error component in the 

cost equation is necessarily heteroscedastic. In other words, the components of the 

covariance matrix of the SUR model vary across observations t =1,... T: = [ 62 J. 

I assume that heteroscedasticity takes additive form and apply the consistent 

estimator for a system with additive heteroscedastic contemporaneous correlation derived 

by Mandy and Martins-Filho (1993). Following Mandy and Martins-Filho, I adopt the 

simplest linear specification for the error term in cost that generates the consistent error 

structure. For a case of three inputs this specification takes the form: 
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e° = a 0 00 + a I 01 (ln w - ln w2) + a 2 02 an w3- ln w2) (3.12)
 

where 00, 01, 02 are random error components of Or; 
Or (0, [ 72r, = 0, 1,2); 
a 0, ai, a2 are unknown parameters. 

Application of Shepherd's Lemma generates specification for the error terms in shares: 

= a i 01 

E
2 

= - a 1 01 a2 02 (3.13)
 

3 
= a 2 02 

Clearly, this error structure is heteroscedastic because the covariance between 

errors in different equations depends on input prices. For example, the covariance between 

the error term in the cost equation and the first share takes the following functional form: 

2 2 _L 2 2 /7 2 /7ol =a0a17 oi -Ear 7 11(inwi-lnw2)+ala27 12(rn W3 lnw2) (3.14) 

In general, the covariance parameters 6 2,,t can be expressed as a linear function of the a 

set of the observed variables z and unknown parameters d: 

(72 r zr 
(3.15)
 

For example, the set of the observed variables z oi that corresponds to (3.14) includes the 

following three vectors Txl: the identity vector, (In wit - in w 2r) and (In w3r - In w2'). 

In order to estimate the system with the specified error structure, I utilize the 

three-step Feasible Generalized Least Squares (FGLS) method developed by Mandy and 

Martins-Filho (1993): 

1) Use OLS residuals of the cost and share system of equations to generate the 

preliminary estimates of a2 lit: 

e=y_xbROLS= leo, e' e3}, 
(3.16)
 

s = (el ) / T; j 0,...3 (3.17) 
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2) Use OLS method to estimate the stochastic version of (3.15) using s as a 

proxy for the dependent variable. The error term in this system violates two assumptions 

of the Gauss-Markov theorem its mean is not zero, and its covariance matrix is not 

scalar identity. In order to improve the efficiency of the estimates, Mandy and Martins-

Filho (1993) apply the FGLS method to the system (3.15) after deriving the structure of 

the covariance matrix. The authors show that the effects of nonzero mean are negligible 

asymptotically. 

3) Use the FGLS estimates of d to calculate the fitted values of 621;' in the system 

(3.15). These fitted values are then used as components of the estimated heteroscedastic 

contemporaneous correlation matrix S of the original system (3.5): 

RHSUR x1)-1 
(3.18)
 

+ ( X_1 `S_I-1 X.1)-1 R_1 [R_1 Y X.1 X4)" 1 R_1 R_1 r X_I `S_I-1 X4)-1 Y-1 ). 

3.2. Specification and Estimation of Technical Inefficiency 

I model input technical inefficiency as a firm-specific additive term in the translog cost 

function. I estimate it using two alternative assumptions about the nature of systematic 

technical inefficiency. First, I assume fixed effects and formulate the model with firm-

specific intercepts the Dummy Variable Least Squares (DVLS) model. The intercept 

term in the original model is substituted by the sum of the products of the firm-specific 

dummy variables (D,) and firm-specific intercept coefficients (a°,): 

ao= E, a°, Di (3.19) 
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I measure relative technical inefficiency of firm i as the difference between the 

estimate for the firm's intercept (a ° ,) and the smallest intercept: 

oi oi 
(3.20) 

Second, I assume random effects, and follow Kumbhakar's (1997a) FGLS 

estimation method for a one-way Error Component Model (ECM) of a system of cost and 

share equations with unbalanced panel data. The method assumes that the random error 

term of the cost equation is composed of the white noise disturbance si (0, a2d 

and of the firm-specific effect p, (A cr2,). The expected value of the firm-specific 

effects is assumed to be constant across the firms, and therefore, can be aggregated with 

the intercept. As a result of this aggregation, the expected value of the composite error 

term v t = Si t + ,u, p is zero. The two components are assumed to be independent of 

each other and of the explanatory variables in the model. 

Since the variance of the firm-specific effect changes across firms, the covariance 

matrix of the composite error V= [v it] t=1 F, t=1..T is heteroscedastic: 

6 2 2 2 
C21 +a 

2 2 2cov(V) = where fl, = E (v,'v,)= 6 a e +a 
0 0 Q F 

V 1 = I I, ... V I = 1, F and T, is the number of observations on fnin i. 

Residuals of the DVLS model provide a consistent estimate for a2e. Following 

Kumbhakar (1997a), I use the residuals from the original model that ignores 

2 e 
heteroscedasticity ( e ,t) to estimate 77,=a 2 = .- where A denotes ane : 77 

estimate. The estimate for a2, is calculated as the difference between the estimate for 77, 
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and the estimate for ate. Once the covariance matrix of the composite error coy M is 

estimated, both sides of the cost equation are multiplied by cov (V) -12 in order to 

remove heteroscedasticity. Finally, the SUR method is applied to the system that includes 

the transformed cost equation and the original share equations. 

Kumbhakar's (1997a) model presents an extension of the Generalized EC model of 

Baltagi and Griffin (1988) to a case of a multiple equation system with an unbalanced 

panel. As noted in section 2.2.2, consistency of this estimator depends on whether the 

firm-specific effects are correlated with the explanatory variables. Asymptotic efficiency of 

this family of estimators follows from the consistency of the estimator for ci-2, and the 

positive definiteness of the probability limit for the matrix of estimates for a21(see Baltagi, 

1994, p.104). 

I estimate technical efficiency p, as in Schmidt and Sickles (1984) using residuals 

from the cost equation of the estimated system (res t) averaged for each firm over time. 

The relative technical inefficiency of firm i is measured as: 

res min { res } , where res = Eres (3.21) 

3.3. Specification and Estimation of Allocative Inefficiency 

I model allocative inefficiency by using the generalized cost function approach and 

specifying allocative inefficiency V for input j as a ratio between the shadow and the 

observed input prices: Wth = w'. My cost function includes three inputs capital, 

labor and materials ("residual" or "other cost"). I normalize the allocative inefficiency 



41 

parameters for materials to one, and allow the capital and the labor inefficiency parameters 

to vary across holding companies and time: V = tr trend + E d D , where j = K, L 

(input index), trend is a time trend variable, D , is a holding company dummy variable, tr' 

and d , are parameters to be estimated. 

I allow the intercepts of the generalized cost function to vary across companies 

and time in order to account for technical inefficiency. I estimate the system of cost and 

two share equations using the iterative nonlinear SUR method. After the estimation I 

calculate the allocative inefficiency of input j (V ) for each holding company i and 

year of observation t using the estimates for tr' and d , . The values of the allocative 

inefficiency term that are greater than one imply that the input is being under-employed 

relative to materials, while the inefficiency terms that are less than one indicate that the 

input is over-employed compared to materials. 
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4. MODEL VARIABLES AND DATA
 

4.1. Model Variables 

4.1.1. Output Vector 

A telephone firm supplies two types of the output a) a telephone call (toll or local) and 

b) the ability to make a call at any time (determined by the presence of telephone lines). 

The number of telephone lines, as well as calling patterns of customers, affect the required 

capacity of the telephone plant. The type of a call, local or toll, influences switching cost 

cost incurred to connect calling parties. The type of a telephone line residential, 

business, special access, private affects telephone loop cost (cost necessary to establish 

and maintain connection between a customer and the telephone network), as well as 

switching cost. For example, business customers tend to reside in areas with dense 

customer locations, thus, requiring relatively short cable lengths per line. Special access 

lines present dedicated high capacity lines that bypass local switching facilities and require 

special electronic equipment. The capacity of a special access line also determines the type 

of cable necessary fiber optic or metallic. Business customers are more likely to make 

calls during business peak hours, while residential customers make relatively more calls 

during off peak periods. 

The choice of the output vector is particularly important in cost subadditivity 

studies because the parameter estimates for the output variables determine the outcome of 

the subadditivity test. Subadditivity studies use the estimated parameters of the cost 
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function to forecast the cost at different levels of the output. As noted by Judge et al. 

(1985, p. 901), the precision of the forecast forecast variance depends on the degree 

of collinearity between the regressors. Suppose that the components of the output vector 

exhibit strong multicollinearity in the original data set the data set used in the estimation 

of the cost function. The forecast variance is relatively small if in the forecast year the 

proportions between the levels of different outputs follow the same near collinear 

relationship as the variables in the original data set. However, as the structure of the 

output vector used to calculate the forecast moves further away from the near collinear 

dependence between the components of the observed output vector, the forecast variance 

increases. The later situation is typical for the subadditivity studies, which use the 

observed costs of a diversified monopoly to forecast cost of an alternative market 

structure, with the output combinations that diverge significantly from the observed 

proportions. Therefore, in the presence of strong multicollinearity the forecast for the cost 

of a hypothetical competitive industry might be rather imprecise if, for example, the 

hypothetical firms engage in specialization. 

Traditional measures of the output include the number of telephone lines (Shin and 

Ying, 1992, Wilson and Zhou, 1997, Guldmann, 1990), and the number of local and toll 

calls (Evans and Heckman, 1984, Shin and Ying, 1992, Gabel and Kennett, 1994). 

Different physical measures of the output of the monopolized telecommunications industry 

tend to be highly correlated: the bigger the market as measured by the number of 

telephone lines, the more calls it generates. Correlation between the physical output 

measures creates serious multicollinearity problems in the panel data sets such as Shin and 

Ying's (1992). For example, correlation between the natural logarithm of the number of 
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telephone lines and the natural logarithm of the number of local calls in my panel data set 

the data set on the local exchange carriers reporting to FCC for 1988-95 is 0.9865. 

Correlation between the natural logarithm of the number of telephone lines and the natural 

logarithm of the number of toll calls is 0.9684. 

In order to reduce severe multicollinearity, Wilson and Zhou (1997) used the total 

number of calls instead of local and toll calls in their attempt to replicate Shin and Ying's 

(1992) estimation for a newer data set. The elimination of the distinction between local 

and toll calls is not desirable because local calls require less switching than toll calls, and 

thus, the two have different effects on cost. In addition, the total number of calls is also 

highly correlated with the number of telephone lines (the correlation coefficient between 

the logarithms of these two variables is 0.9913 in my data set). Therefore, inclusion of the 

total number of calls along with telephone lines does not add much information to the 

model. 

In order to capture cost differences associated with different types of calls and 

avoid serious multicollinearity, I include, along with telephone lines, the variable 'percent 

of local calls in the total number of telephone calls.' Similarly, 'the percent of 

nonresidential lines' (business, special access and private) accounts for cost differences 

associated with the different types of customers. Thus, the output vector Q in my model is 

composed of a single physical measure the number of telephone lines, and two measures 

of the output attributes the percent of nonresidential lines and the percent of local calls: 

Q = (TL, BL, LC), 

where TL = the number of telephone lines; 
BL = the percent of nonresidential lines in the total number of lines; 
LC = the percent of local calls in the total number of calls. 
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4.1.2. Inputs 

I adopt the traditional classification of inputs into labor, capital and residual expenses (see, 

for example, Shin and Ying, 1992). Capital expenses include interest and depreciation 

costs, while residual expenses present operating expenses with the exclusion of wages, 

depreciation and amortization. Thus, residual expenses cover such inputs as materials, 

fuel, electricity, software and advertisement. 

4.1.3. Control Variables 

Telecommunications firms serve different types of markets, and the differences between 

these markets affect their costs. Customers in rural areas are generally more dispersed than 

customers in urban areas. Therefore, a rural telephone company is likely to have longer 

cable distances than a company that serves urban markets. Customer dispersion also 

determines engineering decisions, such as the choice between copper and fiber cables. 

In order to account for cost differences that stem from customer density, I follow 

Shin and Ying (1992) to include in the model variable 'length of wire per line.' This 

variable measures average loop length and is defined as kilometers of wire in cable (as 

opposed to sheath cable length) per telephone line. 

In a panel of companies that have different size and age, technological differences 

are likely to exist. Many parts of the telecommunications plant have long lives, and, 

therefore, technological differences could be persistent. Therefore, a proxy variable for 

technology is necessary to capture cost variations that stem from differences in 

technology. 
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Early studies on the Bell system prior to its divestiture used the index of lagged 

research and development expenditures for the Bell Laboratories (Vinod, 1976, Evans and 

Heckman, 1984). Time series studies often include time trend as a proxy for technological 

change see, for example, Hunt and Lynk (1990) and Gentzoglanis (1993). 

Unfortunately, time trend is often highly correlated with the output variables, as noted by 

Shin and Ying (1992) and Seabra (1993). In addition, time trend does not capture cross-

sectional technological differences and adversely affects the asymptotic properties of the 

estimator. Detailed cross-sectional data on engineering parameters, such as the age of the 

telecommunications plant and the system design used in Dalton and Mann (1988), are 

usually not available. 

Often technological proxies used in the past studies become outdated due to the 

fast advances in technology. Among them the percentage of automatic local telephone 

stations (Seabra, 1993, Gentzoglanis, 1993, Oum and Zhang, 1995) and the share of 

electronic switches (Guldmann, 1990, Shin and Ying, 1992, Gentzoglanis, 1993). 

Monetary measures of technology in panel data sets such as the percentage of electronic 

switching equipment assets used by Wilson and Zhou (1997) are not desirable because 

they reflect changes in the equipment prices along with the technological change. 

As a proxy for technological differences between companies and across time 

during 1988-95, I include variable 'percent of fiber optic cable in the total cable length.' 

The deployment of fiber optic cable became a significant technological change as fiber 

prices fell in late 80's and early 90's. As noted above, the placement of fiber optic cable is 

often dependent on the customer types and their location. I was unable to account for 
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another technological development introduction of remote switches, because the data on 

the number of switches were unreliable for a group of companies. 

In addition, I considered four other variables that might have strong effect on cost 

or were used in the previous studies the dummy variable for the Bell Operating 

Company, the number of central office switches, the time trend and the average sheath 

cable length per line. Inclusion of any of the four variables resulted in strong 

multicollinearity, with the condition number of the design matrix being above 30. Both the 

Bell dummy and the number of central office switches are highly correlated with the 

output vector. The time trend exhibits strong correlation with the input prices, while the 

average sheath cable length is correlated with a number of variables. 

4.2. Data Construction 

The primary source of my data is the Statistics of Communications Common Carriers 

published annually by the Federal Communications Commission (FCC). The 

telecommunications companies reporting to the FCC companies with annual revenues of 

$ 100 million or more serve more than 90 % of the U.S. telephone market according to 

the FCC estimates. My unbalanced panel data set consists of 379 observations on 66 

companies during 1988-95, which constitute the majority of companies reporting to the 

FCC. I had to exclude several small companies because of the missing data. 

The majority of the firms belong to one of the 14 holding companies such as 

Ameritech or GTE, several companies are independent. Tables 4.1 and 4.2 contain 

information on the names of the holding companies and firms, the structure of the panel 
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Table 4.1. Firms: Codes, Names and Ownership by Year 

Firm Firm number of Ownership by Holding Company* 

Code Name observations 88 89 90 91 92 93 94 95 
I NEVADA BELL 8 P P P P P PPP 
2 THE BELL TELEPHONE COMPANY OF PENNSYLVANIA 8 BA BA BA BA BA BA BA BA 
3 CHESAPEAKE POTOMAC TELEPHONE CO. 8 BA BA BA BA BA BA BA BA 
4 CHESAPEAKE AND POTOMAC TELEPHONE CO. OF MARYLAND 8 BA BA BA BA BA BA BA BA 
5 CHESAPEAKE AND POTOMAC TELEPHONE CO. OF VIRGINIA 8 BA BA BA BA BA BA BA BA 
6 CHESAPEAK AND POTOMAC TELEPHONE CO. OF WEST VIRGINIA 8 BA BA BA BA BA BA BA BA 
7 CINCINNATI BELL TELEPHONE CO. 4 0 0 0 0 
8 THE DIAMOND STATE TELEPHONE CO. 8 BA BA BA BA BA BA BA BA 
9 ILLINOIS BELL TELEPHONE CO. 8 AM AM AM AM AM AM AM AM 
10 INDIANIA BELL TELEPHONE CO. INC. 8 AM AM AM AM AM AM AM' AM 
11 MICHIGAN BELL TELEPHONE CO. 8 AM AM AM AM AM AM AM AM 
12 THE MOUNTAIN STATES TELEPHONE AND TELEGRAPH CO. 3 W W W 
13 NEW ENGLAND TELEPHONE AND TELEGRAPH CO. 8 N N N N N N N N 
14 NEW JERSEY BELL TELEPHONE CO. 8 BA BA BA BA BA BA BA BA 
15 NEW YORK TELEPHONE CO. 8 N N N N N N N N 
16 NORTHWESTERN BELL TELEPHONE CO. 3 W W W 
17 THE OHIO BELL TELEPHONE CO. 8 AM AM AM AM AM AM AM AM 
18 PACIFIC NORTHWEST BELL TELEPHONE CO. 3 W W W 
19 PACIFIC BELL 8 P P P P PPPP 
20 SOUTH CENTRAL BELL TELEPHONE CO. 4 BS BS BS BS 
21 SOUTHERN BELL TELEPHONE AND TELEGRAPH CO. 4 BS BS BS BS 
22 THE SOUTHERN NEW ENGLAND TELEPHONE CO. 8 IND IND 0 0 0 0 0 0 
23 SOUTHWESTERN BELL TELEPHONE CO. 8 SW SW SW SW SW SW SW SW 
24 WISCONSIN BELL INC. 8 AM AM AM AM AM AM AM AM 
25 CONTEL OF CALIFORNIA 8 C C C G G G G G 
26 CONTEL OF VIRGINIA d/b/a GTE VIRGINIA 5 C C C G G 
27 GTE FLORIDA INC. 8 G G G G G G G G 
28 GTE NORTHWEST INC. 8 G G G G G G G G 
29 GTE SOUTH INC. 7 G G G G G G G 
30 GTE SOUTHWEST INC. 8 G G G G G G G G 
31 GTE HAWAIIN TELEPHONE CO. INC. 8 G G G G G G G G 
32 UNITED INTER-MOUNTAIN TELEPHONE CO. 4 UT UT UT UT 
33 UNITED TELEPHONE CO. OF INDIANA 8 UT UT UT UT S S S S 
34 UNITED TELEPHONE CO. OF 01410 8 UT UT UT UT S S S S 
35 CAROLINA TELEPHONE AND TELEGRAPH CO. 8 UT UT UT UT S S S S 
36 CENTRAL TELEPHONE CO. (NEVADA) 2 CT CT 
37 GTE CALIFORNIA INC. 8 G G G G G G G G 
38 LINCOLN TELEPHONE AND TELEGRAPH CO. 5 0 0 0 0 0 
39 PUERTO RICO TELEPHONE CO. 4 IND IND PR PR 
40 ROCHESTER TELEPHONE CORPORATION 2 IND IND 
41 UNITED TELEPHONE CO. OF FLORIDA 8 UT UT UT UT S S S S 
42 UNITED TELEPHONE CO. OF PENNSYLVANIA 8 UT UT UT UT S S S S 
43 UNITED TELEPHONE CO. MISSOURI 7 UT UT UT S S S S 
44 CENTRAL TELEPHONE CO. OF ILLINOIS 5 CT CT S S S 
45 CONTEL OF NEW YORK d/b/a GTE NEW YORK 5 C C C G G 
46 ANCORAGE TELEPHOBE UTILITY 1 0 
47 CENTRAL TELEPHONE CO. OF FLORIDA 5 CT CT S S S 
48 CENTRAL TELEPHONE CO. OF VIRGINIA 6 CT CT CT S S S 
49 CONTEL OF ILLINOIS 5 C C C G G 
50 CONTEL OF TEXAS INC. d/b /a GTE TEXAS 7 C G G G G 
51 GTE NORTH INC. 8 G G G G G G G G 
52 CONTEL OF MISSOURI 5 C C C G G 
53 US WEST COMMUNICATIONS INC. 5 W W W W W 
54 COMMONWEALTH TELEPHONE CO. 3 0 0 0 
55 CONTEL OF INDIANA INC. d/b/a GTE INDIANA 2 G G 
56 UNITED TELEPHONE CO. OF NEW JERSEY INC. 5 S 

CC 

SS SS 
57 BELLSOUTH TELECOMMUNICATIONS INC. 4 BS BS BS BS 
58 CITIZENS UTILITIES CO. OF CALIFORNIA 3 0 0 0 
59 CONTEL OF THE WEST INC. d/b /a GTE WEST I G 
60 UNITED TELEPHONE-SOUTHEAST INC. 4 SS SS 
61 UNITED TELEPHONE CO. OF TEXAS 4 SS SS 
62 CONTEL OF THE SOUTH INC. d/b/a GTE SYSTEMS 3 G G G 
63 GTE MIDWEST INC. 3 G G G 
64 UNITED OF THE NORTHWEST 2 S S 
65 CENTRAL TELEPHONE CO. (NEVADA AND NORTH CAROLINA) I CT 
66 CENTRAL TELEPHONE CO. (NORTH CAROLINA) 3 S S S 

TOTAL 379
 
empty cells correspond to years in which the firm was not in the sample
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data set, as well as firm codes and abbreviations for holding companies that I use in the 

presentation of my results in chapter 6. 

Out of the total of 379 observations, 162 observations correspond to one of the 

seven Regional Bell Operating Companies (RBOCs). RBOCs are listed first in Table 4.2, 

and their company abbreviations are marked in bold font throughout the paper. They serve 

more than 80 % of the telephone lines in the sample. Table 4.3 presents the distribution of 

telephone lines among the holding companies. 

Table 4.2. Holding Companies: Codes, Names and Observations by Year 

Holding Company number of observations in each year 
Code Name observations 88 89 90 91 92 93 94 95 
AM Ameritech Corporation 40 5 5 5 5 5 5 5 5 

BA Bell Atlantic Corporation 56 7 7 7 7 7 7 7 7 
BS BellSouth Corporation 12 2 2 2 2 1 1 1 1 

N Nynex Corporation 16 2 2 2 2 2 2 2 2 
p Pacific Telesis Group 16 2 2 2 2 2 2 2 2 
sW Southwestern Bell 8 1 1 1 1 1 1 1 1 

Corporation 
W US WEST, Inc. 14 3 3 3 1 1 1 1 1 

c Contel Corporation 18 6 6 6 0 0 0 0 0 
CT Centel Corporation 10 2 4 4 0 0 0 0 0 
G GTE Corporation 81 7 6 7 12 15 13 11 10 
cl Other holding companies 22 3 2 3 2 2 3 4 3 
pR Puerto Rico Telephone 2 0 0 0 0 0 0 1 1 

Authority 
S Sprint Corporation 51 0 0 0 1 9 13 14 14 
UT United 27 6 7 7 7 0 0 0 0 

Telecommunications, Inc. 
IND Not a part of a holding 6 1 3 2 0 0 0 0 0 

company 

total 379 47 50 51 42 45 48 49 47 
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Table 4.3. Telephone Access Lines by Holding Company and Year 

Year 
Holding Co. 88 89 90 91 92 93 94 95 
AM 13% 13% 13% 13% 13% 13% 13% 13% 
BA 14% 14% 13% 14% 14% 13% 13% 13% 
BS 14% 14% 14% 14% 14% 14% 14% 14% 
N 13% 12% 12% 12% 12% 11% 11% 11% 
P .11% 11% 11% 12% 12% 12% 11% 11% 
SW 9% 9% 9% 9% 9% 9% 10% 10% 
W 10% 10% 11% 11% 11% 11% 11% 11% 
C 1% 1% 1% 0% 0% 0% 0% 0% 
CT 1% 1% 1% 0% 0% 0% 0% 0% 
G 10% 9% 10% 10% 11% 11% 11% 11% 
0 1% 1% 2% 2% 1% 2% 2% 2% 
PR 0% 0% 0% 0% 0% 0% 1% 1% 
S 0% 0% 0% 0% 3% 4% 4% 4% 
UT 2% 3% 3% 3% 0% 0% 0% 0% 
IND 2% 3% 1% 0% 0% 0% 0% 0% 
total RBOCs 84% 83% 82% 85% 85% 84% 83% 83% 

Telephone Lines 120,846,727 124,734,004 130,424,258 132,806,444 135,975,498 146,233,395 155,486,188 163,624,827 

In addition to the Statistics of Communications Common Carriers, I used The 

Economic Report of the President and the databases of the Bureau of Labor Statistics as 

the data sources on interest rates and price deflators. Moody's Public Utility Manual was 

the source of information on the interest rates and prices of telecommunications stocks 

and bonds. 

I obtained information on the output and control variables directly from the outside 

plant statistics of the telephone firms. I calculated nonresidential lines as the difference 

between the total number of telephone lines and residential lines. 'Length of wire per line' 

is the ratio of total cable (kilometers of copper wire and fiber) to the number of telephone 
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lines. I define the percent of fiber in cable as kilometers of deployed fiber divided by 

kilometers of cable (copper wire and fiber). 

I construct economic cost from the accounting data on local exchange carriers. 

Total cost is the sum of capital cost, operating taxes and total operating expenses 

excluding depreciation and amortization. Capital cost is the sum of cost of capital stock 

and interest on cash in vaults (current assets minus current liabilities). Following Shin and 

Ying (1992), costs of capital stock C KS are calculated using the annuity form of interest 

and depreciation expenses: C KS = r KS / (1 - e'T), where KS is real capital stock, T is 

the life of capital, and r is the interest rate. Since the information on the age of capital and 

historical investments is not available, I adopt the same simplifying assumptions as Shin 

and Ying (1992): I assume that capital has an average life of 20 years, and its age 

distribution is uniform. I use a series of 20-year average deflators on telecommunications 

equipment to convert book values of capital stock into net real capital stock. Labor cost is 

given by total compensation. Residual cost is equal to operating expenses plus operating 

taxes minus labor cost. 

In order to calculate the price of capital, I adopt the simple version of the rental 

price of capital (Jorgenson, 1963). This measure is used in many empirical studies, 

including Kim (1987), Oum and Zhang (1995) and Krautman and Solow (1988), and is 

appropriate if capital stock is measured in real dollars as opposed to physical units. Rental 

price of capital is equal to the average of dividend and interest rates weighed by the debt 

structure, plus annual depreciation rate, and minus the annual rate of capital gains. The 

price of labor is equal to total compensation divided by the number of employees. The 
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price of 'residual inputs' is the ratio of residual cost to the length of sheath cable, which I 

considered to be the best available measure of the quantity of residual inputs. 

Finally, I follow the conventional practice (see, for example Friedlaender et al., 

1993) and use the producer price indices to convert all monetary variables into real 1987 

dollars. In general, I use the same methods of data construction as Shin and Ying (1992), 

with three major exception: Shin and Ying calculated the price of capital as capital 

expenditures per line, they also used the number of lines as a proxy for the quantity of 

residual inputs and did not adjust for inflation. 

Table 4.4 contains descriptive statistics for the variables in the data set. 

Table 4.4. Descriptive Statistics for the Data Set 

Variable Mean over All Standard Minimum Maximum 
Observations Deviation 

Number of Telephone Lines 2,929,106 4,213,132 76,235 22,595,391 
Percent of Nonresidential Lines 30.32% 9.41% 5.63% 71.49% 

Percent of Local Calls 83.51% 7.48% 45.87% 96.65% 

Total Cost 1,657,319,742 2,260,750,743 80,765,010 11,929,732,65 

Share of Capital 38.29% 3.74% 28.60% 50.37% 

Share of Labor 22.75% 5.31% 5.57% 55.77% 

Rental Price of Capital 0.12 0.01 0.09 0.14 

Price of Labor 35,385 5,106 25,404 60,134 

Price of Other Inputs 5,652 5,409 178 40,930 

Average Loop Length 16.99 3.05 8.43 26.69 

Percent of Fiber in Cable 0.36% 0.27% 0.00% 1.95% 

Since the translog functional form represents approximation to an arbitrary twice 

differentiable function around one, I mean-center all variables in the model to increase the 
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precision of the estimation. Mean-centering of the explanatory variables also permits 

interpretation of the first-order coefficients of the translog function as elasticities at the 

sample mean. 



54 

5. SUBADDITIVITY TEST: THE PROCEDURE
 

5.1. Modified Admissible Region 

I adopt the general procedure of the subadditivity test developed by Evans and Heckman 

(1983) and calculate the combined costs of the different combinations of the outputs 

produced by the two hypothetical firms. I use the grid search to construct different output 

vectors of the two hypothetical firms and limit the grid search to certain admissible region. 

The unusual structure of my output vector requires special formulation of the admissible 

region. Following Shin and Ying (1992), I allow the number of telephone lines for the two 

hypothetical firms to vary from 10 to 90 percent of the observed monopoly number of 

telephone lines: 

TL A = k TL, TL = (1 - k) TL, 0.1 k 0.9, (5.1) 

where TL = the observed monopoly number of telephone lines; 
TL A = the number of telephone lines of hypothetical firm A; 
TL B = the number of telephone lines of hypothetical firm B; 
k = the fraction of the monopoly lines assigned to firm A. 

Nonresidential lines appear in the output vector as a fraction of total lines. 

Therefore, in order for the two hypothetical firms to meet the market demand, the 

following condition should hold: the average percent of nonresidential lines of the two 

firms weighed by total lines should be equal to the observed percent of the nonresidential 

lines: 

(BL A TL A+ BL B TL B)/(TL A TL B) = BL, (5.2) 

where BL = the observed monopoly percent of nonresidential lines; 
BL A = the percent of nonresidential lines of hypothetical firm A; 
BL B = the percent of nonresidential lines of hypothetical firm B. 
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Define v A as BL A / BL the ratio of the percent of nonresidential lines of firm A to the 

percent of nonresidential lines of the monopoly. Also, let v B = BL B BL. Using (5.1), 

equation (5.2) reduces to the following: 

v A k+vB (1-k)=1 (5.3) 

which is equivalent to v B = (1 - v A k) / (1 - k), or v A = (1 - VB (1 - k)) / k. 

In order for BL A to be positive, v A has to be positive. In order for BL B and v B to 

be positive, v A has to be less than 1 / k. For BL A to be less than 100 percent, VA has to be 

less than 1 / BL. Similarly, v B has to be less than 1 / BL, which can be expressed as the 

following restriction on VA: v A > (1 - (1 - k) /BL) /k. Therefore, the admissible region 

for v A lies within the following interval: 

max[0,(1-(1-k)/BL)/k]<vA<min[1 /k,1 /BL] (5.4) 

In the empirical implementation of the grid search, I follow Evans and Heckman 

(1984), as well as Ying and Shin (1992) to add 0.1 to the lower boundary, and subtract 

0.1 from the upper boundary. 

I construct the admissible region for the third component of the output vector, LC, 

in a similar fashion. Variable LC is defined as a fraction of local calls in the total number of 

calls. Therefore, total calls carried by each hypothetical firm represent the appropriate 

weights for calculating the average proportion of local calls. Since total number of calls is 

excluded from the model, restriction such as (5.2) is not necessary. However, given that 

total calls are closely correlated with telephone lines, and in order to construct a 

conservative admissible region that does not contain implausible output combinations, I 

require the average fraction of local calls for the two firms weighed by telephone lines to 

be equal to the observed fraction of local calls. 
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I define w A as a multiplier on the monopoly fraction of local calls that generates 

the fraction of local calls for firm A: LC A =WA LC. The fractions oflocal calls for both 

firms have to lie between 0 and 100 percent, which imposes the following boundaries on 

AW : 

max (0, (1-(1-k)/LC)/ki <wA <min [1/k,l/LC] (5.5) 

5.2. Grid Search 

Using the grid search described in Shin and Ying (1992), for each observation t I construct 

different output configurations for the two-firm industry using a grid step of 0.1 in the 

following output space: 

QA (TLA t,BLA LEA QB,(TLBt,BLBt,LCBd (5.6) 

TLAt=kTLt TLB t= (1 -k) TL 

BLA t=-VA BL, BLBt=1-(1-vA k)/(1-k)JBLt 
LCAtwA LCt LCBt = [(1-wA k)/ (1-k)] LCt 

0.1 Vs' 0.9 

0.1 +max[0, (1-(1-k)/BLd/k]. vA .min[l/k,11BLt] -0.1 
0.1+max[0,(1-(1-k)/LCd/kl_wA..s-min[1 /k,1 /LCt]-0.1 

The number of admissible output combinations varies from observation to observation 

because the admissible region depends on the values of BLt and LCt . 

Following Roller's (1990a, 1990b) criticism of the subadditivity test of Evans and 

Heckman (1984), I impose an additional restriction on the admissible region: I calculate 
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marginal cost for each Q r, Q A rand Q B r and exclude from consideration any output 

vector with negative marginal cost4 . 

I use the parameter estimates of the translog cost function and the constructed 

output vectors to calculate the cost estimates. Since none of my other explanatory 

variables the input prices, the average loop length and the percent of fiber in cable are 

tied to the units of the output, I keep them at the observed level when calculating the cost. 

5.3. Interpretation of the Subadditivity Test 

For each observation I calculate the costs of different two-firm industry combinations 

C (Q A + C (Q B) using the estimated cost function. I then compare the cost of the two-

firm industry to the fitted cost of the monopoly provision of the output, C(Q d. 

Theoretically, if there exist k, v A and Iv A such that C(Q) - C (Q A - C B) > 0, 

then the subadditivity condition is violated at Qt. Empirically, the calculated difference 

between the monopoly cost and the cost of a two-firm industry presents merely a point 

estimate. The distribution of this estimate depends on a number of factors, including the 

forecast variance in the model, as well as on the likelihood of each two-firm market 

configuration. Evans and Heckman (1984) chose the maximum value of the percentage 

difference between the monopoly and the two-firm industry cost as their test indicator for 

subadditivity. Their choice implies an assumption that a two-firm industry would operate 

in a competitive equilibrium at minimum cost. 

4 In the empirical implementation of the test reported in chapter 6, marginal costs turned 
out to be positive for all Q r. Approximately 0.4 % of the output combinations were 
excluded from the admissible region because of the negative marginal costs for Q A or QB. 
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Shin and Ying (1992) used the average percentage cost difference for all possible 

output configurations, the sample distribution of this average, as well as the fraction of the 

output combinations that make monopoly effective, as indicators of subadditivity. Their 

approach presents a more conservative test against subadditivity since it implies that all 

alternative two-firm industry configurations are equally probable. 
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6. ESTIMATION RESULTS 

6.1. Subadditivity Test under the Assumption of No Inefficiency 

6.1.1. Trans log Estimation 

Table 6.1. presents the estimation results for the translog parameters of the cost equation
 

for the two estimation techniques, SUR and Heteroscedastic SUR (HSUR) estimators.
 

Notations for the variables in the table are as follows:
 

TL = the number of telephone access lines (natural logarithm);
 

BL = the percent of nonresidential lines (natural logarithm)
 

LC = the percent of local calls (natural logarithm);
 

PK = the price of capital (natural logarithm);
 

PL = the price of labor (natural logarithm);
 

PO = the price of other inputs (natural logarithm);
 

WI = the average loop length (natural logarithm);
 

FI = the percent of fiber in cable (natural logarithm)
 

The coefficients of determination are similar to the ones obtained by Shin and Ying 

(1992). The cost equation has a much better fit than the shares equations, with the 

coefficient of determination in the cost equation being 0.987 in both SUR and 

heteroscedastic SUR models, 0.40 in the capital share and 0.32 in the labor share (the 

coefficients of determination reported by Shin and Ying are 0.998, 0.51 and 0.27 

correspondingly). 

In order to check whether the estimated parameters correspond to a valid cost 

function, I calculate the fitted shares, marginal cost and the Hessian for each observation 
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Table 6.1. Trans log Estimates for the SUR and Heteroscedastic SUR Methods 

variable SUR Heteroscedastic SUR 
coefficient t-statistics coefficient t-statistics 

INTERCEPT 0.08 6.01 * 0.09 6.52 * 
TL 0.98 82.20 * 0.97 83.11 * 
BL -1.07 -15.66 * -1.07 -15.91 * 
LC 0.10 0.68 -0.01 -0.05 
WI 0.19 2.48 * 0.24 3.22 * 
TLBL -0.07 -1.95 ** -0.04 -1.12 
TLTU2 0.07 5.92 * 0.06 5.08 * 
BLBU2 -1.23 -10.87 * -1.18 -10.68 * 
LCWI -0.71 -1.40 -1.22 -2.45 * 
LCLC/2 -2.83 -2.74 * -3.90 -3.85 * 
WIWI/2 0.62 1.59 0.76 1.98 * 
TLLC 0.19 1.86 ** 0.26 2.66 * 
TLW1 0.05 1.10 0.08 1.73 ** 
BLLC 0.15 0.32 -0.16 -0.37 
BLWI -0.49 -2.77 * -0.54 -3.13 * 
PK 0.39 183.80 * 0.38 181.94 * 

PL 0.23 77.77 * 0.22 76.00 * 
PO 0.39 106.17 * 0.39 112.64 * 
TLPK 0.01 6.02 * 0.01 5.77 * 
TLPL 0.01 6.33 * 0.01 6.16 * 
TLPO -0.02 -8.43 * -0.02 -8.56 * 

BLPK 0.00 -0.53 -0.01 -0.79 
BLPL 0.04 3.46 * 0.04 3.40 * 

BLPO -0.03 -2.42 * -0.03 -2.34 * 

LCPK 0.06 3.06 * 0.05 2.96 * 
LCPL 0.04 1.42 0.03 1.32 
LCPO -0.09 -2.93 * -0.09 -2.93 * 

WIPK 0.01 1.24 0.02 1.49 
WIPL -0.08 -5.48 * -0.08 -5.28 * 

WIPO 0.06 3.59 * 0.06 3.48 * 

PKPK/2 0.04 5.14 * 0.04 4.60 * 

PKPL -0.02 -1.97 * -0.02 -1.81 ** 
PKPO -0.03 -7.55 * -0.02 -7.07 * 

PLPU2 0.05 5.70 * 0.05 5.33 * 

PLPO -0.04 -7.43 * -0.04 -7.33 * 

POPO/2 0.06 10.13 * 0.06 10.32 * 

FIPK 0.00 -2.24 * -0.01 -2.53 * 

FIPL -0.03 -11.44 * -0.03 -11.47 * 

FIFO 0.04 10.80 * 0.04 11.59 * 

TLFI 0.00 0.53 0.01 0.74 
BLFI -0.08 -1.53 -0.13 -2.52 * 

LCFI 0.15 1.49 0.07 0.75 
WIFI 0.08 1.09 0.08 1.25 
111.1/2 0.00 -0.04 0.00 -0.05 
Fl 0.02 1.16 0.02 1.55 

R-squared in C 0.987 0.987 
R-squared in SK 0.396 0.400 
R-squared in SL 0.317 0.322 

* - significant at 95 % level; ** - significant at 90 % level. 
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in the sample. All fitted shares are positive. Positive marginal cost of the physical output 

`telephone lines' for all observations indicate that the estimated cost function is non-

decreasing in the output. The Hessian matrix of the second-order derivatives of the cost 

function with respect to the input prices is negative semi-definite for all but two 

observations. The components of the Hessian are determined by the values of the second-

order coefficients on the input prices, as well as the input shares. The shares of capital and 

labor for these two observations are very high relative to the sample average, which 

explains why the concavity condition is violated. The Hessian matrix is also negative semi-

definite at the sample mean, indicating concavity in the input prices. 

Parameter estimates for both STIR and Heteroscedastic SUR models are relatively 

close, with only a few noticeable changes in the magnitude and the significance level: the 

parameter values and the levels of significance increases substantially in the 

Heteroscedastic SUR model for two terms LCWI and BLFL Two other coefficient 

estimates change sign, but their t-statistics are all less than 0.7 in absolute value. The 

Heteroscedastic SUR estimator gives a slightly better fit, with more parameters being 

statistically significant. The relative stability of the parameter estimates between the two 

models indicate that the degree of heteroscedasticity in the system might not be very 

strong. 

The first-order coefficient on the number of telephone lines TL, which represents 

elasticity of the cost function with respect to the telephone lines at the sample mean, is 

slightly less than one, indicating that at the sample mean the cost function is inelastic with 

respect to the number of telephone lines. The 95 % confidence interval for the estimate 

obtained using the SUR method includes one, while the estimate for the heteroscedastic 
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model is strictly less than one at the 95 % level of confidence. The cost elasticity with 

respect to total lines calculated for the individual data points ranges from 0.6 to 1.3 for 

both estimators, with the sample average being 0.9. The individual coefficient on the 

number of telephone lines is much higher then the estimate obtained by Shin and Ying 

(1992). However, the variable 'total lines' is the only physical measure of the output in my 

model, and therefore, it is more appropriate to compare this coefficient with the measure 

of overall scale elasticity of Shin and Ying (0.958 at the sample mean). 

As expected, the first-order coefficient on the percent of nonresidential lines BL is 

significant and negative, indicating that it is cheaper to serve business customers compared 

to residential customers. The cost elasticity with respect to nonresidential lines is negative 

and less than one in absolute value for most observations, as well as for the sample 

average. Significant negative coefficient on the squared percent of nonresidential lines 

indicates that costs decrease rapidly as the percent of nonresidential lines increases. 

The first-order coefficient on the percent of local calls LC is statistically 

insignificant even at the 90 % level of confidence. This result suggests that the distribution 

of calls between local and toll has no effect on cost at the sample mean, which is not 

totally unexpected given that modern digital switches are not sensitive to usage. 

Elasticities calculated for individual observations vary widely, from -1.1 to + 1.5 in the 

SUR model, with the sample averages being slightly below zero in both models. 

Average loop length (WI) has small but statistically significant positive impact on 

cost, supporting the conventional wisdom that lower customer density is associated with 

higher cost. Input prices (PK, PL and PO) have positive and highly significant first order 

coefficients, while the proxy for technology FI the percent of fiber in cable has only 
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indirect impact on cost through interaction with other variables. The estimates for the 

interaction terms between fiber and the input prices suggest that, as the percent of fiber 

increase, capital and labor shares decrease, while the share ofother inputs increases. This 

result might be explained by several factors. On the one hand, during the sample period 

the price of capital was falling, while the percent of fiber was rising steadily. One the other 

hand, fiber optic cable is probably associated with higher network support expenses, and 

therefore, higher levels of residual inputs, because it requires conduit placement and 

complex electronic equipment. 

6.1.2. Subadditivity Test 

Tables 6.2 - 6.7 summarize the results of the subadditivity test. Tables 6.2 and 6.3 present 

details on the subadditivity calculations for the observations in 19885. For each data point 

I use the estimated parameters of the translog cost function to compare the fitted 

monopoly cost to the cost of producing the monopoly output vector by a two-firm 

industry. Columns three in tables 6.2 and 6.3 contain the number ofcases two-firm 

industry configurations for which the combined costs of the two hypothetical firms were 

higher than the fitted cost of a monopoly. Column four measures this number as a fraction 

of all possible two-firm configurations on the grid of the admissible region. 

Columns five through eight report the difference between the costs of a two-firm 

industry configuration and a monopoly measured as a percent of the monopoly cost: 

'Tables 6.2 and 6.3 provide the full output of the subadditivity procedure for the data 
points in 1988. Year 1988 is chosen at random to illustrate the details of the test. 
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Table 6.2. Detailed Subadditivity Results for the Data Points in 1988: SUR Model 

Firm Monopoly Cost is Lower Savings From a Two-Firm Industry (Percent 
Observation Code than Two-Firm Cost of Fitted Monopoly Cost) 

Number of Percent of Minimum Maximum Average Standard 
Cases Cases Error 

1 1 824 86% -35.6% 60.0% -8.9% 13% 
2 2 1229 67% -34.5% 70.9% -0.2% 16% 
3 3 295 . 89% -86.4% 14.0% -15.0% 17% 
4 4 578 78% -32.6% 60.5% -2.4% 9% 
5 5 569 79% -43.4% 49.0% -4.3% 11% 
6 6 835 70% -13.6% 88.6% 1.0% 13% 
7 7 361 84% -13.6% 28.9% -3.1% 4% 
8 8 992 80% -35.2% 62.5% -6.5% 13% 
9 9 981 71% -37.1% 61.7% -2.2% 14% 
10 10 1033 70% -17.6% 90.2% 1.1% 14% 
11 11 950 69% -33.2% 87.7% -0.4% 15% 
12 12 839 64% -33.3% 87.5% 0.0% 14% 
13 13 773 47% -10.9% 93.7% 7.1% 16% 
14 14 1101 56% -17.4% 82.0% 5.2% 16% 
15 15 629 66% -37.6% 57.6% -2.3% 12% 
16 16 929 63% -21.8% 90.1% 1.6% 14% 
17 17 892 65% -15.5% 90.3% 2.3% 13% 
18 18 1017 70% -25.2% 89.6% 0.2% 15% 
19 19 620 62% -51.0% 46.0% -2.4% 13% 
20 20 392 60% -16.2% 89.6% 0.3% 8% 
21 21 378 61% -35.1% 84.8% -1.6% 10% 
22 22 807 58% -9.7% 89.7% 4.2% 16% 
23 23 494 56% -29.6% 86.6% -0.1% 12% 
24 24 953 72% -16.9% 89.6% 0.5% 13% 
25 25 983 58% -14.9% 87.8% 5.3% 19% 
26 26 773 47% -11.0% 97.3% 8.4% 21% 
27 27 689 73% -12.7% 89.0% 0.6% 10% 
28 28 539 65% -6.9% 88.1% 2.6% 13% 
29 29 723 61% -8.2% 89.1% 3.4% 13% 
30 30 602 56% -4.0% 96.0% 4.8% 15% 
31 31 271 79% -11.3% 14.1% -2.8% 3% 
32 32 510 62% -11.6% 93.9% 2.8% 15% 
33 33 706 46% -13.5% 91.2% 9.9% 21% 
34 34 780 41% -11.1% 98.5% 11.4% 22% 
35 35 638 42% -5.7% 96.4% 9.2% 19% 
36 36 441 46% -4.7% 87.2% 5.4% 13% 
37 37 484 59% -5.7% 89.1% 2.8% 11% 
38 38 697 62% -13.2% 87.2% 2.0% 14% 
39 41 753 53% -6.8% 89.3% 6.3% 17% 
40 42 700 40% -12.2% 96.1% 12.3% 22% 
41 45 716 37% -12.8% 96.5% 14.1% 24% 
42 46 294 89% -17.2% 26.2% -5.3% 6% 
43 48 702 52% -12.9% 94.5% 6.5% 19% 
44 49 875 43% -14.3% 98.1% 11.8% 23% 
45 50 855 43% -13.6% 97.7% 11.7% 22% 
46 51 364 30% -1.0% 96.4% 8.5% 17% 
47 52 1109 41% -15.3% 99.8% 13.8% 24% 
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Table 6.3. Detailed Subadditivity Results for the Data Points in 1988: HSUR Model 

Firm Monopoly Cost is Lower Savings From a Two-Firm Industry (Percent 
Observation Code than Two-Firm Cost of Fitted Monopoly Cost) 

Number of Percent of Minimum Maximum Average Standard 
Cases Cases Error 

1 1 787 83% -37.7% 53.1% -7.9% 13% 
2 2 1207 66% -31.7% 67.7% 0.7% 16% 
3 3 275 86% -82.8% 24.9% -13.0% 17% 
4 4 536 72% -31.8% 56.7% -1.6% 10% 
5 5 536 75% -47.7% 41.0% -3.7% 12% 
6 6 826 69% -15.3% 87.6% 0.9% 12% 
7 7 350 82% -14.8% 28.5% -2.9% 4% 
8 8 960 79% -37.3% 55.0% -5.8% 14% 
9 9 938 68% -32.6% 59.3% -0.9% 14% 

10 10 994 67% -16.8% 87.9% 1.6% 14% 
11 11 914 66% -29.6% 85.4% 0.5% 14% 
12 12 806 62% -26.9% 85.8% 1.2% 14% 
13 13 624 38% -4.2% 94.2% 9.3% 17% 
14 14 896 45% -8.0% 85.6% 8.6% 17% 
15 15 614 65% -34.1% 55.2% -1.6% 12% 
16 16 908 61% -20.3% 88.0% 2.3% 14% 
17 17 843 61% -12.7% 88.8% 3.1% 13% 
18 18 985 68% -22.5% 87.4% 1.0% 15% 
19 19 601 60% -39.3% 48.2% -0.6% 13% 
20 20 376 57% -15.2% 88.4% 0.5% 8% 
21 21 367 60% -36.1% 82.2% -1.4% 10% 
22 22 653 47% -8.2% 88.5% 6.9% 16% 
23 23 479 54% -28.0% 84.7% 0.5% 11% 
24 24 913 69% -15.7% 87.5% 1.1% 13% 
25 25 921 55% -13.7% 87.5% 6.4% 18% 
26 26 802 50% -10.0% 96.7% 8.0% 20% 
27 27 659 70% -13.1% 88.0% 0.6% 10% 
28 28 555 67% -6.4% 87.5% 2.1% 12% 
29 29 715 60% -9.3% 88.3% 3.2% 13% 
30 30 603 56% -3.8% 95.6% 4.6% 15% 
31 31 262 83% -10.2% 14.1% -2.6% 3% 
32 32 495 63% -10.4% 94.1% 2.8% 15% 
33 33 677 45% -12.5% 91.7% 10.1% 20% 
34 34 755 41% -11.3% 98.6% 11.4% 22% 
35 35 595 39% -5.3% 95.5% 9.0% 19% 
36 36 392 41% -4.3% 86.2% 6.0% 13% 
37 37 393 48% -4.5% 873% 4.3% 12% 
38 38 700 64% -11.6% 87.3% 2.2% 13% 
39 41 750 53% -6.6% 88.5% 6.1% 17% 
40 42 684 40% -12.1% 96.1% 12.3% 22% 
41 45 708 37% -12.6% 96.7% 13.7% 23% 
42 46 272 86% -20.9% 25.8% -5.1% 5% 
43 48 686 52% -11.4% 94.8% 6.7% 19% 
44 49 886 44% -13.4% 98.1% 11.0% 21% 
45 50 852 43% -12.6% 97.7% 11.4% 21% 
46 51 382 31% -1.5% 95.7% 8.2% 17% 
47 52 1107 41% -14.9% 99.5% 13.6% 24% 
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[C(Q - C(Q A d - C(Q B C(Q,). If the combined costs of the two firms are higher than 

the cost of a monopoly, then the entry is a negative number. If the combined costs of the 

two firms are lower than the monopoly cost, than the entry is a positive number (saving 

from a two-firm industry). Column six maximum saving from a two-firm industry 

corresponds to the measure of subadditivity used by Evans and Heckman (1984). Column 

seven average savings from a two-firm industry is the measure of subadditivity used by 

Shin and Ying (1992). Column eight is calculated, following Shin and Ying (1992), as the 

empirical standard deviation of the savings for all possible output combinations. 

The maximum savings from a two-firm industry are positive for each observation 

in 1988, and, in fact, for all 379 data points in the sample. In other words, for each 

observation in the sample, there exists a two-firm combination such that the combined cost 

of the two firms is lower than the cost of one firm producing the observed output vector. 

Therefore, the condition for subadditivity is violated. 

The average savings from a two-firm combination are of mixed signs. The average 

savings are positive for approximately 40 % of the data points in the sample (42 % in the 

SUR model, and 43 % in the Heteroscedastic SUR model). Interestingly, the sign of the 

average savings tends to correlate with the customer composition of the markets: in a 

subsample of observations with lower than average percent of nonresidential lines only 20 

% of average savings are negative, and the total is positive. However, the average savings 

are negative for almost all (98 %) data points with higher than average percentages of 

nonresidential lines. The maximum savings exhibit similar correlation with the percent of 

nonresidential lines: the level of maximum savings expressed as the percent of the 
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monopoly cost is almost 1.5 times higher in 'residential' markets compared to 'business' 

markets. This result suggests that while efficiency gains from subdividing the markets exist 

in predominantly residential markets, they might be small, if nonexistent, in business 

markets. 

Tables 6.4 and 6.5 summarize the subadditivity calculations by each firm in the 

sample, which represents each regional monopolized market. Each entry in columns two 

through four measures annual dollar savings from a two-firm industry calculated as a 

simple average for observations on each monopoly firm over time. The average savings 

from a two-firm industry are negative for the 59 % of the regional markets in both models. 

Total average annual savings summed over all markets are also negative, indicating that 

total average losses from a two-firm industry exceed gains on the national level. 

Tables 6.6 and 6.7 aggregate savings from a two-firm industry by year. Each entry 

represents combined savings from all firms that existed in a given year. Interestingly, 

average savings aggregated annually are negative for all years except for 1988 the first 

year in the sample. The percent of observations with negative savings is also very low in 

1988: 34 % in the SUR model and 26 % in the Heteroscedastic SUR model (see tables 6.2 

and 6.3). However, this gain in efficiency is compensated by negative savings in the 

following years, resulting in a point estimate of $ 1.6 billion (SUR model) in annual losses 

averaged for 1988-95. 
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Table 6.4. Average Annual Savings from a Two-Firm Industry in Each Market: SUR 

Firm Code (Market) 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

Total Annual Saving 

Minimum Saving (dollars) 
-67,260,457 

-1,265,770,081 

-385,152,200 
-756,289,069 

-878,787,579 
-86,776,019 

-119,329,922 
-103,282,716 

-1,383,611,109 
-371,289,964 

-1,175,597,593 

-1,119,084,716 

-1,383,858,464 

-1,873,468,420 
-3,441,505,033 

-588,007,101 

-663,836,108 
-568,792,136 

-4,257,264,535 
-1,027,458,275 

-2,707,656,903 
-417,923,212 

-3,206,601,505 
-359,575,613 
-40,010,599 
-30,491,369 

-220,983,493 

-77,607,104 
-134,088,295 

-152,130,973 
-80,418,747 

-18,596,785 

-22,260,912 
-38,492,287 

-44,245,880 
-87,591,834 

-598,652,687 

-21,481,516 

-122,136,178 
-43,412,662 

-125,224,594 
-29,317,779 
-26,137,826 
-33,694,968 
-25,347,048 

-9,166,635 
-61,181,947 

-20,059,093 
-16,641,479 
-16,397,048 

-103,278,366 
-19,949,821 

-4,298,270,023 

-19,403,900 
-15,263,915 
-35,384,771 

-5,771,396,410 
-21,610,345 
- 16,251,677 

-25,895,621 
-19,513,283 

-15,850,054 
-37,035,019 
-20,326,198 
-36,091,452 
-63,527,276 

-40,822,996,596 

Maximum Saving (dollars) 
94,784,271 

1,999,357,495 

31,858,761 

840,094,632 

507,357,157 

458,935,599 
482,232,190 
156,063,088 

1,360,292,226 

481,200,799 

1,310,036,201 

2,551,336,516 

2,719,941,992 
2,017,268,688 
3,880,572,911 

1,512,328,186 

1,645,973,939 

1,559,864,812 

3,164,905,101 

4,271,803,704 
4,896,843,946 

1,156,139,313 

4,611,804,900 
762,088,673 

255,883,290 

235,491,844 
1,058,068,287 

578,057,133 

577,972,267 

696,250,900 
161,360,793 

154,475,376 

133,652,085 

284,064,252 
458,498,936 

274,266,060 
1,897,640,179 

81,940,672 
707,903,495 

89,556,836 
676,183,762 
188,055,015 

111,829,449 

97,734,797 
187,814,931 

13,958,113 

78,776,617 

136,513,842 

112,553,688 

121,220,557 

1,780,069,896 
133,586,998 

2,137,444,278 
135,337,835 

101,969,663 

92,081,547 

6,682,525,382 
86,443,312 

85,669,343 
169,951,842 
100,577,349 

116,331,858 

322,833,069 
87,646,526 
96,917,407 

60,705,081 

64,032,899,662 

Average Saving(dollars) 
-15,189,750 
-89,973,610 
-69,475,051 

-71,837,974 
-80,597,324 

-6,859,025 

-23,201,648 
-19,419,437 
-95,352,648 
-35,006,902 

-88,990,612 
-11,464,896 
-51,763,523 

-178,098,128 

-267,270,569 
744,523 

34,638,169 
-15,144,864 
-273,076,367 

-17,514,638 
-127,959,586 

-16,942,200 
-126,775,431 

-26,860,617 
9,349,521 

12,965,312 

-40,749 

9,037,427 
-1,705,335 

11,130,622 
-18,415,101 

4,885,489 
11,103,711 

19,515,334 

26,575,619 
-8,932,760 

-14,887,165 

-2,538,682 
3,855,340 

-12,584,029 
15,077,943 

17,508,237 

-991,243 

-8,163,957 

22,507,629 

-2,843,961 

-10,146,111 

5,355,380 
11,852,322 

14,097,872 

146,097,024 

15,760,614 

-223,528,017 
8,999,357 

7,816,169 
-1,478,130 

-260,461,470 
3,034,055 

4,529,123 
-1,115,293 

9,812,907 
15,351,919 

23,685,198 
231,693 

-9,778,186 
-15,879,885 

-1,836,746,369 



69 

Table 6.5. Average Annual Savings from a Two-Firm Industry in Each Market: HSUR 

Firm Code (Market) 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

I I 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39
 

40
 

41
 

42
 

43
 

44
 

45
 

46
 

47
 

48
 

49
 

50
 

51
 

52
 

53
 

54
 

55
 

56
 

57
 

58
 

59
 

60
 
61
 

62
 

63
 

64
 

65
 

66
 

Total Annual Saving
 

Minimum Saving (dollars) 
-73,170,045 

-1,348,993,014 
-407,955,055 

-868,477,807 
-1,028,400,668 

- 119,969,026 

-142,794,255 

-120,138,901 

-1,386,523,227 
-394,855,807 

-1,250,243,689 
-984,072,268 

-1,444,247,259 

-1,962,972,801 
-3,429,854,697 

-595,977,704 
-698,969,630 

-535,504,869 
-3,810,235,681 

-1,035,504,562 
-2,796,564,235 

-444,928,201 

-3,331,140,590 
-366,358,194 
-40,608,270 
-35,027,784 

-237,830,355 
-87,588,313 

-163,869,147 

-169,112,285 
-91,111,567 
-16,830,082 

-21,297,387 
-41,012,449 

-56,592,290 
-89,629,233 

-563,730,060 
-24,031,468 
-148,200,846 
-46,129,838 
-145,736,412 
-30,649,021 

-26,852,368 
-28,330,224 

-25,056,686 
-10,051,644 

-62,198,216 
-21,734,091 

-15,860,550 
-15,812,014 

-129,561,592 
-19,329,320 

-4,538,167,719 
-17,899,053 
-13,697,748 
-40,046,480 

-5,972,692,809 

-18,916,648 
-14,541,323 
-32,688,146 
-19,034,732 

-15,292,642 
-46,372,359 

-19,351,694 
-31,169,212 
-60,059,058 

-41,781,555,316 

Maximum Saving (dollars) 
86,869,637 

1,772,576,801 

60,492,896 
672,456,781 

445,696,721 

443,732,010 
460,466,071 

127,581,738 

1,308,456,796 

424,523,882 
1,252,498,804 

2,479,126,045 

2,644,856,686 

2,162,000,474 
3,568,987,062 
1,460,491,810 

1,576,861,386 

1,513,147,013 

3,497,326,338 
4,145,757,784 
4,598,530,370 
1,130,591,107 

4,444,629,173 
715,504,315 

253,143,327 
235,149,508 

1,027,363,062 
565,007,335 

555,912,039 
669,579,488 
153,085,195 

150,894,819 

133,058,848 

279,103,334 
454,979,763 

255,898,731 

1,824,865,156 
74,889,804 

697,701,366 

87,448,642 
669,015,833 

189,453,275 

107,402,724 

97,390,074 

190,885,083 

12,416,640 

77,888,990 
134,127,053 

115,575,811 

125,731,378 

1,727,232,347 

136,612,303 

2,021,365,968 
136,657,006 

104,089,375 

89,095,587 

5,847,163,558 
82,882,892 

84,827,757 
165,137,494 

101,863,760 

121,192,003 

X327,158,895 

86,372,959 
93,870,259 

68,555,418 

61,325,206,557 

Average Saving (dollars) 
-13,399,016 
-93,930,088 
-67,448,770 
-70,883,151 

-82,017,232 
- I 2,492,607 

-22,469,527 
-18,856,570 
-71,975,946 
-30,149,484 

-81,177,883 
19,806,242 

-49,684,726 

-154,395,203 
-251,025,106 

13,309,935 

38,228,379 

-1,524,403 
-169,739,166 
-12,926,638 

-122,374,832 
-11,235,551 

-114,605,670 

-21,417,999 
9,231,934 
11,261,819 

-1,350,985 
6,885,501 

-6,047,536 
9,333,445 

-18,969,889 

4,125,525 

10,983,224 

18,583,878 

22,495,671 
-6,907,902 

-1,497,741 

-2,615,085 
-4,354,483 

-11,686,590 
13,173,537 
16,343,866 

-730,262 
-4,705,131 

21,996,246 

-2,429,631 

-8,107,608 
4,549,205 

11,108,749 

13,496,786 

126,837,932 

15,780,667 

-232,796,412 
7,270,772 

6,750,263 
-542,275 

-277,491,260 

2,809,323 

3,301,878 
-2,426,938 
9,780,672 
15,043,657 

21,037,078 

371,074 

-6,395,597 
-12,094,015 

-1,620,981,650 
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Table 6.6. Total Saving from a Two-Firm Industry by Year: SUR Model 

Year Minimum Saving Maximum Saving Average Saving 
(dollars) (dollars) (dollars) 

88 -21,333,175,519 60.768,292,682 430,706.244 
89 -25,719,414,748 59,001,683,806 -750,982,621 
90 -28,227,529,525 58,389,124,673 -1,061,377,901 
91 -30,580,960,021 49,580,865,344 -1,700,624,016 
92 -32,873,532,079 50,729,168,000 -1,228,284,741 
93 -36,940,881,444 41,188,810,214 -2,272,696,485 
94 -42,625,516,337 40,962,853,727 -2,932,623,308 
95 -41,809,858,139 35,504,592,801 -2,917,335,030 

Average for 1988 - 95 -32,513,858,477 49,515,673,906 -1,554,152,232 

Table 6.7. Total Saving from a Two-Firm Industry by Year: Heteroscedastic SUR Model 

Year Minimum Saving Maximum Saving Average Saving 
(dollars) (dollars) (dollars) 

88 -18,853,946,168 59,239,216,506 1,094,513,349 

89 -24,598,544,546 57,680,299,957 -345,522,163 
90 -27,820,251,485 56,473,772,510 -765,356,389 
91 -31,111,855,884 47,258,892,766 -1,483,421,491 
92 -34,821,017,020 48,513,583,582 -1,200,804,059 
93 -38,979,507,370 38,652,391,897 -2,257,864,468 
94 -44,809,568,755 39,204,038,894 -2,983,032,345 
95 -45,457,902,295 33,882,854,221 -2,993,377,666 

Average for 1988 - 95 -33,306,574,190 I 47,613,131,292 -1,366,858,154 

The savings estimates of the model with the consistent error structure are slightly 

more favorable for a two-firm industry the Heteroscedastic SUR cost function generates 

higher point estimates of averages savings from a two-firm industry than the conventional 

SUR model. 

In general, my subadditivity test produces weaker evidence for superadditivity 

than the test conducted by Shin and Ying (1992). Though the authors reported their 



71 

results only on the aggregate yearly basis, several distinctions are noticeable. First, the 

percent of the output combinations for which monopoly was efficient is much lower in 

Shin and Ying's model. Second, their average savings from a two-firm industry were 

positive for each year of observation. Third, unlike in Shin and Ying's study, the average 

savings summed for the period of observation are negative. Fourth, the magnitude of the 

average savings or losses expressed as the percent of the monopoly cost is lower in my 

model compared to Shin and Ying's, though the magnitude of the maximum and minimum 

savings is higher in my model. Similar to Shin and Ying's findings, the maximum savings 

from a two-firm industry exceed the minimum savings (losses) in absolute value for most 

observation and as a total. 

Clearly, the two measures of subadditivity the maximum savings of Evans and 

Heckman and the average savings of Shin and Ying produce qualitatively different 

evidence on the subject. The measure of Evans and Heckman is appropriate only under 

certain ideal conditions: the feasibility of all output combinations and the existence of 

incentives necessary to ensure that the two firms share the market in the cost-minimizing 

proportions. An actual two-firm industry might not choose the cost-minimizing output 

vector due to economic or technological reasons. As table 6.8 demonstrates, the division 

of the market that results in the maximum savings is asymmetric, with one firm serving 

more than 50 % of the market. It is unclear whether the incentives exist to achieve this 

asymmetric equilibrium. The cost-minimizing output vector of the two-firm industry might 

be technologically implausible. Legal limitation such as state laws requiring provision of 

residential service by all telecommunications companies that serve business customers 

impose additional restrictions on the set of feasible output vectors. 
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Table 6.8. Optimal Division of the Markets: Data Points for 1988, SUR model 

Total Telephone 
Percent of Nonresidential Lines Percent of Local Callsobservation Lines 

Firm A Monopoly Firm A Firm B Monopoly Firm A Firm B 
1 41% 35% 81% 3% 85% 72% 94%

31%2 15%32% 95% 3% 72% 97% 
3 11% 91%66% 93% 63% 91% 90% 
4 41% 34% 78% 3% 89% 83% 94% 
5 11% 36% 57% 33% 89% 13% 99% 
6 31 %- 25% 77% 1% 87% 85% 88% 
7 1% 29% 96% 28% 95% 86% 95% 
8 41% 34% 79% 3% 81% 63% 94% 
9 21% 34% 3% 43% 78% 8% 97% 
10 31% 28% 86% 2% 82% 50% 96% 
11 31% 30% 93% 2% 82% 50% 96% 
12 31% 31% 97% 2% 82% 52% 96% 
13 31% 97%29% 90% 2% 77% 34%
 
14 41% 33% 77% 3% 68%
 29% 95% 
15 41% 79%34% 3% 86% 75% 94% 
16 31% 28% 86% 2% 81% 48% 96% 
17 31% 27% 85% 2% 83% 54% 96% 
18 31% 29% 81%89% 2% 46% 96% 
19 11% 39% 23% 41% 83% 8% 92%
 
20 31% 25%
 76% 1% 93% 87% 96%
 
21 31%
 29% 91% 2% 92% 84% 96% 
22 31% 31% 95% 2% 81% 86% 78%
 
23 31%
 28% 87% 2% 89% 75% 96%
 
24 31%
 28% 87% 2% 83% 54% 96%
 
25 31%
 23% 73% 1% 81% 86% 78%
 
26 21%
 19% 90% 1% 84% 84% 84%
 
27
 31% 26% 79% 1% 90% 87% 92% 
28 31% 23% 70% 1% 92% 84% 96% 
29 31% 24% 74% 1% 87% 86% 88% 
30 21% 21% 96% 1% 91% 83% 93%
 
31 1%
 30% 94% 30% 96% 87% 96%
 
32 21%
 19% 89% I% 93% 87% 95% 
33 21% 17% 79% 1% 88% 85% 88% 
34 21% 19% 88% 1% 82% 25% 98%
 
35 21%
 19% 89% 1% 86% 87% 86% 
36 31% 25% 77% 1% 90% 87% 92% 
37 31% 31% 95% 2% 90% 85% 92% 
38 31% 25% 78% 1% 88% 88% 88% 
39 31% 22% 68% 1% 86% 89% 85% 
40 21% 17% 79% 1% 84% 84% 84% 
41 21% 15% 70% 1% 83% 88% 82% 
42 1% 37% 95% 95% 95%36% 86% 
43 21% 20% 93% 1% 88% 88% 88% 
44 21% 17% 76% 1% 83% 25% 98% 
45 21% 17% 76% 1% 83% 84% 82% 
46 21% 20% 92% 1% 90% 87% 90% 
47 21% 17% 76% I% 72% 7% 89% 
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Another factor that affects interpretation of the calculated maximum savings from 

a two-firm industry is the statistical significance of the forecast. Although the exact 

forecast variance does not have a limiting distribution and, therefore, cannot be calculated, 

it is possible to estimate the component of the forecast error that stems from the statistical 

error in estimating the parameters of the cost function. Obviously, the estimated statistical 

error of the calculated savings understates the forecast variance because it ignores its 

other component random disturbance associated with the realization of the forecasted 

state. 

Strictly speaking, the estimated forecast errors of the fitted costs cannot be directly 

translated into the forecast errors for the savings because the calculated savings present a 

nonlinear transformation of the fitted variable the natural logarithm of cost: 

Savings = exp[ In C (Q)] - exp [ In C (Q A) J - exp [ In C (Q B) J. To get an approximate 

lower boundary for the maximum savings, I use the estimated forecast variances for the 

fitted costs and the associated normal 95 % confidence intervals. I calculate the 

approximate lower boundary for the maximum savings using the values for the lower 

boundary of the monopoly cost In C (Q) and the upper boundaries of the costs of the 

`competitive' firms In C (Q A) and In C (Q B). 

Table 6.9 contains the estimates for the forecast errors and the approximate lower 

boundaries of the maximum savings for the data points in 1988. As the last column 

indicates, only three estimates for the maximum savings are insignificant in 1988. In fact, 

out of 379 observations in the data set, only 14 % of the estimates for the lower boundary 

of the maximum savings are negative. In other words, the estimated forecast errors of the 
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Table 6.9. Forecast Errors for the Fitted Costs at Maximum Savings: Data Points in 1988, 
SUR Model 

Lower 

Firm 
In C (Q) In C (Q A ) In C (Q B) 

Maximum 
Boundary for 

Maximum 
Observation Code Savings* Savings* 

value standard 
value 

standard 
value 

standard 
error error error 

1 1 -2.351 0.047 -4.231 0.173 -3.749 0.290 0.057 0.025 
2 2 0.690 0.037 -2.355 0.351 -0.721 0.272 1.413 0.836 
3 3 -1.313 0.051 -3.329 1.128 -1.633 0.080 0.038 -0.312 
4 4 -0.007 0.022 -2.172 0.100 -1.280 0.246 0.601 0.361 
5 5 -0.145 0.027 -2.446 0.122 -1.036 0.227 0.423 0.158 
6 6 -1.204 0,021 -3.766 0.121 -4.500 0.459 0.266 0.231 
7 7 -0.945 0.027 -3.681 0.317 -1.381 0.040 0.112 0.050 
8 8 -1.793 0.022 -3,787 0.172 -3.222 0.286 0.104 0.058 
9 9 0.620 0.022 -1.851 0.215 -0.590 0.250 1.147 0.635 
10 10 -0.419 0,018 -3.439 0.296 -3.429 0.441 0.593 0.500 
11 11 0.463 0.027 -2.915 0.344 -1.961 0.398 1.393 1.094 
12 12 0.710 0.028 -2.688 0.331 -1.677 0.405 1.778 1.381 
13 13 0.755 0.066 -2,711 0.667 -2.696 0.684 1.994 1.365 
14 14 0.676 0.108 -2.232 0.792 -1.401 0.555 1.613 0.354 
15 15 1.432 0,025 -0.922 0.121 0.320 0.257 2.412 1.199 
16 16 0.185 0.027 -3,143 0.345 -2.572 0.418 1.083 0.884 
17 17 0.380 0.022 -2.572 0.264 -2.731 0.467 1.321 1.109 
18 18 0.213 0.020 -3,090 0.346 -2.485 0.418 1.108 0.910 
19 19 1.481 0.041 -1,069 0.204 0.708 0.266 2.026 0.134 
20 20 1.077 0.045 -1.851 0.149 -1.909 0.463 2.630 2.111 
21 21 1.365 0.032 -1.895 0.165 -0.808 0.400 3.318 2.495 
22 22 -0.314 0.082 -2.871 0.540 -3.982 0.756 0.656 0.377 
23 23 1.488 0.040 -1.755 0.200 -0.868 0.421 3.837 2.878 
24 24 -0.317 0.018 -3,228 0.260 -3.323 0.444 0.653 0.551 
25 25 -1.827 0.037 -4.058 0.354 -6.070 0.590 0.141 0.108 
26 26 -1.904 0.020 -5.702 0.538 -7.221 0.713 0.145 0.131 
27 27 -0.242 0.021 -2.869 0.096 -3.516 0.466 0.699 0.612 
28 28 -1.036 0.023 -3,320 0.067 -5.076 0.566 0.313 0.279 
29 29 -0.941 0.017 -3.415 0.130 -4.646 0.508 0.348 0.309 
30 30 -0.672 0.029 4.121 0.214 -5.454 0.631 0.490 0.443 
31 31 -1.240 0.069 -4,957 0.496 -1.421 0.069 0.041 -0.042 
32 32 -2.327 0.052 -5.188 0.203 -7.889 0.731 0.092 0.078 
33 33 -2.603 0.046 -5.048 0.303 -9.138 0.857 0.068 0.055 
34 34 -1.632 0.038 -6.026 0.690 -7.621 0.802 0.193 0.170 
35 35 -1.316 0.031 -4,777 0.399 -6.640 0.681 0.258 0.229 
36 36 -1.908 0.057 -4.050 0.182 -6.441 0.652 0.129 0.102 
37 37 0.270 0.102 -2.203 0.310 -3.421 0.818 1.167 0.706 
38 38 -2.757 0.024 -4.963 0.139 -6.765 0.547 0.055 0.048 
39 41 -0.869 0,019 4.640 0.416 -3.342 0.383 0.374 0.307 
40 42 -2.171 0.045 -5,445 0.449 -8.704 0.869 0.110 0.093 
41 45 -2.189 0.037 -5.582 0.495 -8.900 0.883 0.108 0.094 
42 46 -3.439 0.072 -5.991 0.338 -3.855 0.106 0.008 -0.003 
43 48 -2.500 0.038 -5,490 0.213 -7.852 0.688 0.078 0.068 
44 49 -2.666 0.031 -6.746 0.611 -8.959 0.876 0.068 0.061 
45 50 -2.692 0.027 -6.536 0.643 -9.028 0.835 0.066 0.058 
46 51 0.100 0.049 -3.376 0.202 -5.229 0.714 1.065 0.932 
47 52 -2.584 0.040 -12.419 2.401 -8.600 0.772 0.075 0.069 

* - costs are measured in deviat'ons from the sample mean 
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maximum savings fail to reject the hypothesis that the maximum savings are positive for 

the majority of the data points. 

The subadditivity measure of Shin and Ying (1992) the average savings from a 

two-firm industry implies that each of the two-firm output combination can occur. In 

this case,. the more useful measure of subadditivity will be an interval, rather than a point 

estimate. The distributional characteristics of this estimate would depend on the unknown 

distribution of the feasible two-firm output combinations, as well as on the distribution of 

the forecast. However, in order to get a rough interval estimate, I assumed that savings 

from each two-firm industry configuration are independent and identically distributed, and 

constructed confidence intervals for each estimate of the average savings using the sample 

variance in savings for each observation. As table 6.2 illustrates, the standard deviations of 

each estimate for average savings are rather high, and therefore, the 90 and 95 % 

confidence intervals constructed using normal approximation contain positive and negative 

values. In other words, given the stochastic nature of the estimates of the average savings, 

it is unclear whether a two-firm industry configuration can produce at lower cost than a 

monopoly on average. 

In the above described subadditivity test I follow the previous studies and keep all 

the control variables constant in the calculations of the cost of the two hypothetical firms. 

Therefore, the test assumes a very particular partitioning of the monopolized 

telecommunications markets between the two firms geographical division or the 

purchase of the network elements from the incumbent rather than side by side competition 

that requires facilities entry. In order to test whether side by side competition is 
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economically feasible, I conduct a modified subadditivity test. I assume that side by side 

competition in each market will require complete duplication of the cable facilities, and 

recalculate the average loop length WI, which is defined as length of cable wire per line, 

on each step of the grid search to adjust for the decrease in the number of telephone lines 

of each hypothetical competitive firm. 

Table 6.10 summarizes the results by year. The average savings are negative for all 

observations, but the maximum savings are positive for 92 %, and significant for 62 % of 

observations. The maximum savings under side by side competition are only slightly lower 

than the maximum savings under geographical division of the markets. However, the 

average and the minimum savings differ by a factor of 10 5. These results provide evidence 

that side by side competition is possible, but can also produce substantial increase in costs. 

Table 6.10. Side by Side Competition: Total Saving from a Two-Firm Industry by Year, 
SUR Model 

Year Minimum Saving Maximum Saving Average Saving 
(dollars) (dollars) (dollars) 

88 -1,647,609,452,859,890 48,407,539,153 -15,057,930,476,134 

89 -1,895,899,176,527,000 44,147,410,445 -16,519,680,117,004 

90 -1,848,700,994,034,940 41,544,646,263 -16,813,236,825,864 

91 -1,562,333,830,864,370 30,254,408,091 -14,543,495,817,649 

92 -1,553,786,770,596,360 33,374,606,663 -14,408,631,297,612 

93 -1,308,857,412,695,470 16,905,575,580 -11,906,485,719,079 

94 -1,243,834,721,730,200 16,730,049,146 -10,912,849,321,092 

95 -965,817,618,036,022 10,515,985,601 -10,275,013,176,878 

Average for 1988 - 95 -1,503,354,997,168,030 1 30,235,027.618 -13,804,665,343,914 
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6.2. Estimation of Production Inefficiency 

6.2.1. Technical Inefficiency of the Local Telephone Industry 

6.2.1.1. Firm-Specific Input Technical Inefficiency 

I estimate relative technical inefficiency in the panel data set by assuming that technical 

inefficiency varies across companies but not time. I adopt both specifications of the 

inefficiency effects, fixed and random. Introduction of company-specific intercepts in the 

SUR model (the DVLS model) permits estimation of technical inefficiency under the 

assumption of fixed effects. The error component model (ECM) generates the inefficiency 

estimates under the assumption of random effects. In each model, the company with the 

smallest inefficiency estimate is considered the most efficient company in the sample. The 

difference between the inefficiency estimate for each company and the smallest inefficiency 

estimate among all companies produces the relative inefficiency ranking. 

First, I assume that technical inefficiency varies over firms and estimate firm-

specific effects using both the fixed (DVLS) and random (ECM) effects models. Table 

6.11 presents the estimates of the DVLS intercepts, ECM residuals averaged for each 

firm. The table also contains relative technical inefficiency and firms' efficiency rankings 

for both methods. Twenty eight out of the 66 DVLS intercepts have t-statistics that are 

lower than the critical values at the 95 % level of significance. Despite the high variance, 

the 95 % confidence intervals for the intercepts of these companies lie above the intercept 

of the most efficient firm. In fact, the 95 % confidence intervals for the intercepts of only 
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Table 6.11. Relative Input Technical Efficiency and Efficiency Ranking of Firms 

DVLS model ECM model 
Firm 
Code intercept t-statistics 

relative 
efficiency 

efficiency 
rank 

average 
residual 

relative 
efficiency 

efficiency 
rank 

36 -0.446 -8.28 0.00 1 -0.0023 0.00000 1 

8 -0.431 -6.04 0.02 2 -0.0003 0.00204 20 
3 -0.412 -4.60 0.03 3 -0.0003 0.00202 17 
40 -0.392 -5.92 0.05 4 -0.0002 0.00220 38 
7 -0.375 -7.33 0.07 5 -0.0001 0.00222 45 
56 -0.283 -2.51 0.16 6 -0.0006 0.00178 6 
t -0.241 -2.71 0.21 7 -0.0006 0.00174 5 
24 -0.227 -8.53 0.22 8 -0.0002 0.00216 33 
44 -0.207 -2.02 0.24 9 0.0000 0.00231 60 
60 -0.185 -2.47 0.26 10 -0.0002 0.00219 37 
65 -0.155 -1.49 0.29 11 0.0000 0.00232 61 
32 -0.144 -1.90 0.30 12 -0.0001 0.00220 40 
27 -0.144 -6.29 0.30 13 -0.0003 0.00204 22 
14 -0.140 -3.92 0.31 14 -0.0002 0.00218 35 
66 -0.138 -1.31 0.31 15 -0.0001 0.00224 47 
4 -0.123 -8.43 0.32 16 -0.0005 0.00187 7 
10 -0.116 -3.94 0.33 17 -0.0002 0.00213 30 
17 -0.107 -6.61 0.34 18 -0.0001 0.00221 44 
54 -0.106 -1.23 0.34 19 0.0000 0.00231 59 
55 -0.086 -0.89 0.36 20 -0.0001 0.00228 53 
6 -0.064 -1.16 0.38 21 -0.0003 0.00202 18 
41 -0.060 -1.56 0.39 22 -0.0006 0.00171 4 
39 -0.058 -1.25 0.39 23 -0.0004 0.00197 11 
47 -0.054 -0.67 0.39 24 -0.0003 0.00210 26 
9 -0.041 -1.06 0.41 25 -0.0004 0.00191 10 
22 -0.027 -1.15 0.42 26 -0.0001 0.00226 49 
42 -0.022 -0.29 0.42 27 -0.0004 0.00190 9 
5 -0.017 -0.81 0.43 28 -0.0001 0.00220 41 
2 -0.014 -0.37 0.43 29 -0.0003 0.00201 15 
45 -0.010 -0.13 0.44 30 -0.0001 0.00229 55 
37 0.018 1.08 0.46 31 -0.0003 0.00202 16 
31 0.025 0.39 0.47 32 -0.0003 0.00209 25 
62 0.030 0.31 0.48 33 -0.0001 0.00229 54 
33 0.052. 0.60 0.50 34 -0.0001 0.00228 52 
48 0.053 0.66 0.50 35 -0.0001 0.00225 48 
35 0.063 1.33 0.51 36 -0.0005 0.00189 8 
18 0.064 3.25 0.51 37 -0.0001 0.00227 51 
34 0.075 1.22 0.52 38 -0.0004 0.00198 13 
28 0.107 2.46 0.55 39 -0.0004 0.00198 12 
11 0.110 3.46 0.56 40 -0.0002 0.00217 34 
25 0.111 1.56 0.56 41 -0.0003 0.00204 21 
26 0.125 1.80 0.57 42 -0.0001 0.00220 39 
43 0.130 1.42 0.58 43 -0.0003 0.00207 24 
61 0.146 1.36 0.59 44 0.0000 0.00232 62 
64 0.168 1.47 0.61 45 0.0000 0.00232 63 
49 0.187 1.98 0.63 46 -0.0003 0.00210 27 
58 0.195 1.47 0.64 47 -0.0002 0.00219 36 
38 0.231 2.71 0.68 48 -0.0007 0.00168 2 
13 0.238 4.90 0.68 49 -0.0003 0.00205 23 
15 0.262 3.03 0.71 50 -0.0002 0.00214 32 
59 0.264 2.04 0.71 51 0.0000 0.00232 66 
29 0.318 8.22 0.76 52 -0.0001 0.00220 43 
16 0.333 11.37 0.78 53 -0.0001 0.00224 46 
30 0.333 11.24 0.78 54 -0.0003 0.00201 14 
12 0.347 5.96 0.79 55 0.0000 0.00232 65 
19 0.367 3.00 0.81 56 -0.0002 0.00213 29 
52 0.379 4.15 0.83 57 -0.0003 0.00204 19 
63 0.398 6.85 0.84 58 -0.0002 0.00213 31 
50 0.412 4.52 0.86 59 -0.0006 0.00170 3 
20 0.424 4.93 0.87 60 0.0000 0.00231 58 
21 0.477 4.55 0.92 61 0.0000 0.00230 57 
51 0.511 17.99 0.96 62 -0.0001 0.00220 42 
46 0.528 4.04 0.97 63 0.0000 0.00232 64 
23 0.598 4.75 1.04 64 -0.0002 0.00212 28 
53 0.670 5.21 1.12 65 -0.0001 0.00227 50 
57 0.746 4.31 1.19 66 0.0000 0.00230 56 
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five firms (ranked two through six) include the value of the intercept of the most efficient 

firm. 

The relative inefficiency measures correspond to the logarithmic form of the cost 

function. Therefore, the inverse of the exponent of the relative inefficiency is a factor that 

reflects potential reductions in cost. For example, the relative technical inefficiency 

measure for firm 8 using the DVLS methods is 0.02, which implies that firm 8 could 

reduce its cost by a factor of 0.984 (= e 0 02), or by 1.6 %, without decreasing output. 

It can be easily seen from table 6.11 that the DVLS method produces higher 

relative inefficiency estimates than the ECM method. On average, the relative inefficiency 

is 0.52 for the DVLS method, and only 0.002 for the ECM method. Therefore, the DVLS 

model estimates the losses from technical inefficiency to be 41 % (= 1 - 52) of cost on 

average, while according to the ECM method these losses are only 0.2 % (= 1 - e4o2). 

The two methods produce different efficiency ranking. Firm 8 The Diamond 

State Telephone Company ranked as second most efficient in the sample by the DVLS 

method, is only 20th according to the ECM. The top ranked firm on the ECM list, firm 36 

Central Telephone Company (Nevada and North Carolina), is also the most efficient firm 

according to the DVLS method. The least efficient firm of the DVLS method, firm 57 

BellSouth, is ranked 56th by the ECM method, while the least efficient firm of the ECM, 

firm 59 Contel of the West, is 51s1 according to the DVLS method. In order to compare 

the efficiency rankings of both methods formally, I divided the DVLS ranking list into 

three groups of equal size and calculated the corresponding average ECM ranking for 

each group. The twenty two firms from the most efficient group on the DVLS list have an 

average rank of 31 on the ECM list, the middle group has a rank of 30.7, and the least 
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efficient DVLS group is classified by the ECM as 39th on average. The above exercise 

provides no evidence of any consistency in the rankings by the two methods. 

Table 6.12 compares the translog estimates of all other parameters of the two 

models, DVLS and ECM, with the estimates of the original specification the SUR. 

Estimates of the terms that involve input prices are barely different from the original 

estimates. The most significant changes happened to the output parameters. The first 

order coefficient on the number of access telephone lines (variable TL) in the DVLS model 

dropped to 0.75 compared to 0.98 in the SUR model, indicating strong economies of scale 

at the sample means. The second order coefficient on telephone lines changed its sign to 

positive and remained statistically significant. 

Although the elasticity of cost with respect to the number of telephone lines 

averaged for all observations also decreased from 0.92 in the SUR model to 0.83 in the 

DVLS model, its sample variance increased. The elasticity of cost with respect to access 

lines in the EC model decreased slightly (to 0.94 at the sample means and 0.91 on 

average). The number of telephone access lines turn out to be positively correlated with 

the technical inefficiency measure (the correlation coefficient is 0.56 in the DVLS model 

and 0.15 in the EC model), which explains the decreased average output elasticity. More 

access lines means higher total cost because firms need more inputs to produce the 

increased level of the output; large firms also tend to be less efficient; the SUR model does 

not separate the direct effect of the increased number of access lines on cost from the 

indirect effect of reduced efficiency. 
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Table 6.12. Translog Estimates for the Model with Firm-Specific Technical Inefficiency 

SUR model DVLS Model ECM model 
variable coefficient t-statistics coefficient t-statistics coefficient t-statistics 
INTERCEPT 0.08 6.01 see Table 6.9 see Table 6.9 0.11 10.50 
TL 0.98 82.20 0.75 13.44 0.93 107.44 
BL -1.07 -15.66 -0.36 -8.31 -0.57 -14.21 
LC 0.10 0.68 0.18 2.94 0.32 5.05 
WI 0.19 2.48 0.14 2.99 0.20 4.31. 
TLBL -0.07 -1.95 0.05 2.25 0.04 1.84 
TLTU2 0.07 5,92 -0.08 -2.12 0.04 4.37 
BLBU2 -1.23 -10.87 -0.45 -7.14 -0.75 -12.90 
LCWI -0.71 -1.40 0.35 2.05 0.14 0.77 
LCLC/2 -2.83 -2.74 1.33 2.64 0.36 0.66 
WIWI/2 0.62 1.59 -0.41 -3.32 -0.22 -1.48 
TLLC 0.19 1.86 -0.03 -0.81 0.08 2.04 
TLWI 0.05 1.10 -0.01 -0.28 0.03 1.17 
BLLC 0.15 0.32 -0.09 -0.59 -0.41 -2.27 
BLWI -0.49 -2.77 0.00 -0.02 -0.03 -0.37 
PK 0.39 183.80 0.38 203.14 0.38 203.17 
PL 0.23 77.77 0.22 81.25 0.23 80.56 
PO 0.39 106.17 0.39 120.56 0.39 117.87 
TLPK 
Tun, 

0.01 
0.01 

6.02 

6.33 
0.01 
0.01 

6.60 
6.26 

0.01 
0.01 

6.75 

6.11 
TLPO -0.02 -8.43 -0.02 -9.12 -0.02 -9.02 
BLPK 0.00 -0.53 0.00 0.14 0.00 0.17 
BLPL 0.04 3.46 0.03 3.34 0.04 3.40 
BLPO -0.03 -2.42 -0.04 -2.92 -0.04 -2.99 
LCPK 0.06 3.06 0.05 3.23 0.05 3.05 
LCPL 0.04 1.42 0.04 1.83 0.03 1.38 
LCPO -0.09 -2.93 -0.09 -3.54 -0.08 -3.01 
WIPK 0.01 1.24 0.00 0.51 0.01 0.87 
WIPL -0.08 -5.48 -0.08 -6.38 -0.08 -5.70 
WIPO 0.06 3.59 0.08 5.15 0.07 4.35 
PKPK/2 0.04 5.14 0.05 6.39 0.05 6.29 
PKPL -0.02 -1.97 -0.02 -2.82 -0.02 -2.73 
PKPO -0.03 -7.55 -0.03 -9.46 -0.03 -9.35 
PLPU2 0.05 5.70 0.05 6.15 0.05 5.93 
PLPO -0.04 -7.43 -0.03 -7.47 -0.03 -7.03 
POPO/2 0.06 10.13 0.06 12.51 0.06 11.77 
FIPK 0.00 -2.24 0.00 -2.31 0.00 -2.08 
FIPL -0.03 -11.44 -0.03 -13.65 -0.03 -12.74 
FIPO 0.04 10.80 0.04 14.59 0.04 13.26 
TLFI 0.00 0.53 0.00 -0.29 -0.01 -2.31 
BLFI -0.08 -1.53 -0.08 -4.39 -0.06 -3.08 
LCFI 0.15 1.49 -0.01 -0.52 0.03 0.92 
WIFI 0.08 1.09 -0.04 -2.11 -0.02 -0.70 
111-1/2 0.00 -0.04 0.00 0.06 0.00 0.13 
Fl 0.02 1.16 -0.02 -3.52 -0.02 -2.52 
R-squared in C 0.987 0.999 0.999 
R-squared in SK 0.396 0.4 0.4 
R-squared in SL 0.317 0.317 0.316 



82 

The correlation between the firm-specific intercepts and the number of telephone 

access lines provides some indication that technical efficiency is not independent from the 

explanatory variables in the model. This suggests that the ECM specificationmight result 

in inconsistent estimates because its distributional assumptions are violated° . 

Accounting for variations in technical efficiency also affected some other output 

coefficients. The absolute value of the first- and second-order coefficients on the percent 

of nonresidential telephone lines (variable BL) decreased in both models. The absolute 

value of the cost elasticity with respect to nonresidential lines also decreased on average, 

indicating that serving business (nonresidential) lines is not as cheap compared to 

residential lines as the SUR model estimates. The first order coefficient on the share of 

local calls in the total number of calls (variable LC), insignificant in the SUR model, 

becomes significant in both specifications. The second order coefficient on LC, as well as 

the parameter estimate of the interaction term between the share of local calls and the 

average loop length (W1) change sign in the DVLS model to positive, and become 

insignificant in the EC model. Average cost elasticity with respect to local calls is negative 

in the SUR model, and positive in both DVLS and ECM. This implies that, if technical 

inefficiency is accounted for, the increase in the fraction of local calls has a positive impact 

on cost contrary to the evidence from the SUR model. 

6 
I was unable to test the ECM specification against DVLS formally because the calculated 

empirical covariance matrix used in the Hausman specification test turned out to be non-
positive definite. 
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6.2.1.2. Input Technical Inefficiency for Holding Companies 

It is reasonable to expect that many factors that affect inefficiency are common for firms 

that belong to the same holding company. Evaluation of technical efficiency on the level of 

holding companies might be also useful for regulatory authorities. In order to compare 

holding companies in terms of technical efficiency, I estimated the DVLS and EC models 

assuming that technical inefficiency varies over holding companies rather than firms. 

Table 6.13 compares the relative technical efficiency estimates from the two 

models. As in the model with firm-specific effects, the DVLS method gives on average 

higher estimates of inefficiency, though the difference between the two methods is smaller 

the relative technical inefficiency obtained from the DVLS model averaged over holding 

companies is 0.18, while the average inefficiency from the ECM is 0.09. Seven out of 15 

intercepts in the DVLS model have insignificant estimates even at the 90 % level of 

confidence. 

The two models give inconsistent efficiency rankings. Bell Atlantic, ranked as most 

efficient by the DVLS method, is the 3d worst company in the ECM ranking. The second 

most efficient ECM company, "Other Holding Companies", is ranked 11th by DVLS. The 

top five DVLS companies have an average rank of 9.4 in the ECM specification, the 

middle five 8.2, and the bottom five 6.4. According to the DVLS method, nonRBOCs 

are approximately two times less efficient that the RBOCs, while ECM gives RBOCs just 

a slightly better averaged efficiency estimate. 

Table 6.14 compares the translog estimates of the SUR model to the parameters of 

the DVLS and the EC models with technical efficiency varying over holding companies. 
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Table 6.13. Relative Input Technical Efficiency of Holding Companies 

DVLS model EC model 
Holding intercept t- relative efficiency average relative efficiency 

Company statistics efficiency rank residual efficiency rank 

BA -0.113 -4.91 0.00 1 0.0560 0.142879 13 
AM -0.037 -1.57 0.08 2 -0.0868 0.000000 1 

BS -0.012 -0.19 0.10 3 -0.0004 0.086468 11 

PR -0.008 -0.09 0.10 4 -0.0002 0.086651 12 
N 0.001 0.03 0.11 5 -0.0012 0.085649 10 
SW 0.022 0.32 0.14 6 -0.0014 0.085456 9 
P 0.024 0.52 0.14 7 -0.0066 0.080279 6 
CT 0.032 0.65 0.15 8 -0.0105 0.076336 4 
S 0.080 3.07 0.19 9 0.1249 0.211781 15 
IND 0.090 1.66 0.20 10 -0.0034 0.083475 7 
0 0.100 3.16 0.21 11 -0.0378 0.049042 2 
UT 0.141 4.21 0.25 12 -0.0095 0.077385 5 

W 0.147 3.52 0.26 13 -0.0033 0.083583 8 
G 0.247 12.89 0.36 14 0.0656 0.152408 14 
C 0.305 7.87 0.42 15 -0.0150 0.071808 3 

As table 6.14 demonstrates, the changes to the translog estimates due to the introduction 

of the inefficiency on the level of holding companies are similar to the changes observed 

for the model with firm-specific inefficiency, though not as pronounced. The main 

difference is in the stability of the first-order coefficient on the number of telephone lines. 

Compared to the model with firm-specific inefficiency, the model with inefficiency on the 

level of holding companies has an opposite effect on the estimate of the first-order 

coefficient for the technology proxy variable 'percent of fiber in cable' (FI). On the one 

hand, this parameter, insignificant in the SUR model, is negative and significant in both 

models with firm-specific effects. On the other hand, it is positive and significant in the 

models with inefficiency for holding companies. Thus, the two specifications of 



85 

Table 6.14.Translog Estimates: the Model with Input Technical Inefficiency for Holding 
Companies 

SUR model DVLS Model ECM model 
variable coefficient t-statistics coefficient t-statistics coefficient t-statistics 
INTERCEPT 0.08 6.01 see Table 6.11 see Table 6.11 0.03 2.06 
TL 0.98 82.20 0.98 63.86 0.97 90.92 
BL -1.07 -15.66 -0.75 -10.84 -0.82 -12.77 
LC 0.10 0.68 0.17 1.15 0.09 0.71 
WI 0.19 2.48 0.46 5.42 0.40 5.74 
TLBL -0.07 -1.95 -0.08 -2.72 -0.08 -2.63 
TLTL/2 0.07 5.92 0.08 5.53 0.08 7.03 
BLBLJ2 -1.23 -10.87 -0.81 -7.66 -0.92 -8.96 
LCWI -0.71 -1.40 0.72 1.62 0.84 1.85 
LCLC/2 -2.83 -2.74 -0.81 -0.90 -1.00 -1.08 
WIWI/2 0.62 1.59 0.37 1.08 0.43 1.26 
TLLC 0.19 1.86 -0.03 -0.30 -0.04 -0.47 
TLWI 0.05 1.10 0.09 1.90 0.09 2.23 
BLLC 0.15 0.32 1.02 2.59 0.97 2.40 
BLWI -0.49 -2.77 -0.25 -1.55 -0.31 -2.01 
PK 0.39 183.80 0.38 190.46 0.38 187.80 
PL 0.23 77.77 0.22 78.75 0.22 78.87 
PO 0.39 106.17 0.39 110.91 0.39 109.98 
TLPK 0.01 6.02 0.01 6.23 0.01 6.18 
TLPL 0.01 6.33 0.01 6.06 0.01 6.14 
TLPO -0.02 -8.43 -0.02 -8.50 -0.02 -8.52 
BLPK 0.00 -0.53 0.00 -0.26 0.00 -0.37 
BLPL 0.04 3.46 0.03 3.12 0.03 2.99 
BLPO -0.03 -2.42 -0.03 -2.38 -0.03 -2.19 
LCPK 0.06 3.06 0.05 3.11 0.05 3.06 
LCPL 0.04 1.42 0.03 1.38 0.03 1.35 
LCPO -0.09 -2.93 -0.09 -2.97 -0.09 -2.91 
WIPK 0.01 1.24 0.01 1.01 0.01 1.04 
WIPL -0.08 -5.48 -0.08 -5.60 -0.08 -5.52 
WIP 0 0.06 3.59 0.07 3.95 0.07 3.82 
PKPK/2 0.04 5.14 0.05 5.65 0.05 5.55 
PKPL -0.02 -1.97 -0.02 -2.26 -0.02 -2.21 
PKPO -0.03 -7.55 -0.03 -8.35 -0.03 -8.15 
PLPL/2 0.05 5.70 0.05 5.66 0.05 5.55 
PLPO -0.04 -7.43 -0.03 -6.95 -0.03 -6.83 
POPO/2 0.06 10.13 0.06 10.42 0.06 10.19 
FIPK 0.00 -2.24 0.00 -2.46 0.00 -2.41 
FIPL -0.03 -11.44 -0.03 -11.97 -0.03 -11.89 
FIPO 0.04 10.80 0.04 11.69 0.04 11.52 
TLFI 0.00 0.53 0.00 -0.16 0.00 0.39 
BLFI -0.08 -1.53 0.00 0.05 0.02 0.39 
LCFI 0.15 1.49 0.30 3.43 0.30 3.35 
WIFI 0.08 1.09 0.10 1.64 0.12 1.90 
FIFV2 0.00 -0.04 0.01 1.72 0.01 1.45 
FI 0.02 1.16 0.05 3.23 0.04 2.90 
R-squared in C 0.987 0.992 0.991 
R-squared in SK 0.396 0.398 0.398 
R-squared in SL 0.317 0.318 0.318 
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inefficiency firm-specific versus holding company-specific provide mixed evidence on 

the cost elasticity with respect to the percent of fiber in cable. 

6.2.1.3. Output Technical Inefficiency 

I introduce output technical efficiency in the model as a coefficient that scales down the 

output vector. My output vector consists of three components the number of telephone 

lines (TL), the percent of nonresidential lines (BL) and the share of local calls in the 

number of total calls (LC). Only the first component measures the absolute, quantitative 

levels of the output, while the last two components control for heterogeneity of the output 

vector. Therefore, only the first variable (TL) is relevant to the evaluation of the output 

technical inefficiency. 

I include the output inefficiency into the model by dividing variable 'telephone 

lines' (TL) by the output inefficiency parameter b (TL / b) in both the translog cost 

function and the share equations. I allow the output inefficiency parameter to vary over 

holding companies: b=E,b,D,, where D , is a holding company dummy variable, b , is 

an output inefficiency parameter specific to holding company i, and i = 1 , . . . 1 5 . The 

output parameters in this specification are perfectly collinear with the intercept of the 

translog function a 0 . Therefore, in order to be able to estimate the model using the least 

squares method, I drop the intercept. The model is nonlinear in the output inefficiency 

parameters. I estimate the system using nonlinear iterative SUR method (SAS procedure 

PROC MODEL). 
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Table 6.15 compares the output inefficiency estimates for holding companies to the 

input inefficiency estimates obtained from the DVLS model. Note that the DVLS 

intercepts represent the natural logarithm of the inefficiency factor that scales the cost 

frontier up to the observed cost, while the output inefficiency parameters scale the 

observed cost down to the frontier. Therefore, the appropriate relative output inefficiency 

measure that permits comparison to the input technical efficiency estimates is 

In [ max , { b } / b ,], where index i corresponds to company i. Alternatively, the inverse 

of the exponent of the DVLS intercepts (column 4 of table 6.15) can be directly compared 

to the output inefficiency parameters. 

Table 6.15. Relative Input and Output Technical Efficiency of Holding Companies: 
Comparison 

DVLS model (Input Inefficiency) Model with Output Inefficiency 
holding intercept t- inverse of relative efficiency efficiency t- relative efficiency 

company statistics exp efficiency rank parameter statistics efficiency rank 
(intercept) 

1BA -0.113 -4.91 1.120 0.00 1 1.129 38.15 0.00
 

AM -0.037 -1.57 1.037 0.08 2 1.047 39.06 0.08 2
 

BS -0.012 -0.19 1.012 0.10 3 1.017 16.55 0.10 3
 

0.16 7PR -0.008 -0.09 1.008 0.10 4 0.960 9.68
 

N 0.001 0.03 0.999 0.11 5 0.992 26.82 0.13 4
 

SW 0.022 0.32 0.978 0.14 6 0.984 14.90 0.14 5
 

P 0.024 0.52 0.977 0.14 7 0.951 18.63 0.17 8
 

CT 0.032 0.65 0.969 0.15 8 0.974 16.02 0.15 6
 

0.20 9S 0.080 3.07 0.923 0.19 9 0.927 32.41
 

IND 0.090 1.66 0.914 0.20 10 0.877 15.67 0.25 11
 

0 0.100 3.16 0.905 0.21 11 0.891 26.93 0.24 10
 

UT 0.141 4.21 0.869 0.25
 12 0.855 25.79 0.28 13 

W 0.147 3.52 0.864 0.26 13 0.876 22.52 0.25 12
 

G 0.247 12.89 0.781 0.36 14
 0.771 48.48 0.38 14 

0.45 15C 0.305 7.87 0.737 0.42 15 0.722 22.38 
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The model with output inefficiency results in a slightly higher variance of 

inefficiency across holding companies. According to the model with output inefficiency, 

the least efficient holding company can decrease its cost by 36 % (= 1 - e 0 
45), while the 

0 42)DVLS model estimates the potential cost reduction as 34 % (= 1 - e Ordinal 

differences in relative inefficiency are also small four out of the five firms ranked as most 

efficient by the DVLS method are in the top five in the relative output efficiency. A total 

of six changes of rank occur, with correlation between the two rankings being 0.96. 

The translog estimates for the slope coefficients of the model with output technical 

efficiency (table 6.16) are close to the estimates of the model with input technical 

efficiency. The only noticeable changes include the parameters on the interaction terms 

with variable "share of local calls" three of them reduced in absolute value, and the 

interaction term between the number of telephone lines TL and the average loop length 

WI, which became insignificant at the 95 % level. 

As a result of the model specification, the output cost elasticities depend on the 

inefficiency parameters. The second order coefficient on the number of telephone lines is 

positive and significant. This suggests that costs increase faster for relatively more efficient 

companies as the number of telephone lines increases. Negative and significant estimate 

for the coefficient on the interaction term between the number of telephone lines TL and 

the percent of nonresidential lines BL indicates that the costs of the relatively more 

efficient companies are less sensitive to the changes in the composition of customers. The 

point estimate for the coefficient on the interaction term TLLC is small and insignificant, 

indicating that relative output inefficiency does not affect the cost elasticity with respect to 

the share of local calls. 
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Table 6.16. Translog Estimates: Models with Input and Output Technical Inefficiency 
(Holding Companies) 

DVLS Model (Input Inefficiency) Model with Output Inefficiency 
variable coefficient t-statistics coefficient t-statistics 

TL 0.98 63.86 0.98 61.34 
BL -0.75 -10.84 -0.76 -10.44 
LC 0.17 1.15 0.15 1.00 
WI 0.46 5.42 0.48 5.44 
TLBL -0.08 -2.72 -0.07 -2.33 
TLTL/2 0.08 5.53 0.07 5.05 
BLBL/2 -0.81 -7.66 -0.83 -7.32 
LCWI 0.72 1.62 0.58 1.24 
LCLC2 -0.81 -0.90 -0.33 -0.34 
WIWI/2 0.37 1.08 0.48 1.37 
TLLC -0.03 -0.30 -0.06 -0.57 
TLWI 0.09 1.90 0.12 2.30 
BLLC 1.02 2.59 0.97 2.43 
BLWI -0.25 -1.55 -0.21 -1.28 
PK 0.38 190.46 0.38 204.49 
PL 0.22 78.75 0.22 77.86 
PO 0.39 110.91 0.39 na * 
TLPK 0.01 6.23 0.01 6.84 
TLPL 0.01 6.06 0.01 5.94 
TLPO -0.02 -8.50 -0.02 na * 
BLPK 0.00 -0.26 0.00 0.11 
BLPL 0.03 3.12 0.04 3.78 
BLPO -0.03 -2.38 -0.04 na * 
LCPK 0.05 3.11 0.05 3.26 
LCPL 0.03 1.38 0.04 1.51 
LCPO -0.09 -2.97 -0.09 na * 
WIPK 0.01 1.01 0.01 1.24 
WIPL -0.08 -5.60 -0.08 -5.41 
WTPO 0.07 3.95 0.06 na * 
PKPK2 0.05 5.65 0.05 5.92 
PKPL -0.02 -2.26 -0.02 -2.41 
PKPO -0.03 -8.35 -0.03 na * 
PLPL2 0.05 5.66 0.05 6.02 
PLPO -0.03 -6.95 -0.04 na * 
POPO2 0.06 10.42 0.06 na * 
FIPK 0.00 -2.46 0.00 -2.51 
FIPL -0.03 -11.97 -0.03 -11.87 
FIPO 0.04 11.69 0.04 na * 
TLFI 0.00 -0.16 0.00 0.13 
BLFI 0.00 0.05 0.00 -0.09 
LCFI 0.30 3.43 0.30 3.22 
WIFI 0.10 1.64 0.10 1.66 
FTF12 0.01 1.72 0.01 1.41 
Fl 0.05 3.23 0.05 3.22 
R-squared in C 0.992 0.991 
R-squared in SK 0.398 0.405 
R-squared in SL 0.318 0.314 

* -- coefficients were calculated after the estimation from the homogeneity conditions 
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6.2.2. Al locative Inefficiency of Local Telecommunications 

6.2.2.1. Allocative Inefficiency Estimates 

I assume that allocative inefficiency varies across holding companies and time, and 

estimate the generalized cost model using the nonlinear iterative SUR method (SAS 

procedure PROC MODEL). 

Tables 6.17 and 6.18 present the estimates for the components of inefficiency 

coefficients the trend coefficient tr./ and the company-specific parameter d , as well as 

their t-statistics. In addition, the tables contain the annual, as well as average, allocative 

inefficiency estimates for each holding company calculated from tri and d ,. If an 

allocative inefficiency estimate is greater than one, then the corresponding input is under­

employed. If the allocative inefficiency estimate is less than one, then the input is over-

employed. The companies in both tables are sorted in ascending order by average 

allocative inefficiency. 

The trend variable is positive for both capital and labor, and statistically significant 

for capital. All coefficients on the holding company dummy variables for capital are 

statistically significant, while none of the coefficients for the labor inefficiency term are 

significant. 

The allocative inefficiency estimates for capital are all greater than one, indicating 

that capital was under-employed compared to materials. This result does not support the 

theoretical prediction that an industry under rate of return regulation tends to employ 

more capital relative to other inputs. The positive time trend also contradicts the theory 
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Table 6.17. Allocative Inefficiency for Capital 

estimate allocative inefficiency* 
variable coefficient t-statistics 88 89 90 91 92 93 94 95 average 
time trend 0.290 3.51 

PR 2.578 2.62 4.61 4.90 4.75 
IND 4.353 4.30 4.64 4.93 5.22 4.93 
UT 5.352 4.69 5.64 5.93 6.22 6.51 6.08 
0 5.034 4.61 5.32 5.61 5.90 6.19 6.48 6.77 7.06 7.35 6.34 
CT 6.256 4.47 6.55 6.84 7.13 6.84 
G 5.690 4.75 5.98 6.27 6.56 6.85 7.14 7.43 7.72 8.01 6.99 
P 6.074 4.58 6.36 6.65 6.94 7.23 7.52 7.81 8.10 8.39 7.38 
SW 6.447 4.13 6.74 7.03 7.32 7.61 7.90 8.19 8.48 8.76 7.75 
BA 6.528 4.80 6.82 7.11 7.40 7.69 7.98 8.27 8.56 8.85 7.83 
S 6.303 4.66 7.46 7.75 8.04 8.33 8.62 8.04 
N 7.100 4.63 7.39 7.68 7.97 8.26 8.55 8.84 9.13 9.42 8.40 
C 7.980 4.70 8.27 8.56 8.85 8.56 
BS 7.332 4.34 7.62 7.91 8.20 8.49 8.78 9.07 9.36 9.65 8.64 
W 7.712 4.47 8.00 8.29 8.58 8.87 9.16 9.45 9.74 10.03 9.02 
AM 8.165 4.76 8.45 8.74 9.03 9.32 9.61 9.90 10.19 10.48 9.47 
INDUSTRY ** 6.260 4.42 6.59 6.92 7.25 7.57 7.90 8.23 8.56 8.89 7.74 

* -- empty ce Is correspond to years in which the holding company did not exist 
** -- estimated from the restricted model; time trend coefficient is not listed 

that suggests that capital over-utilization should decrease after the rate of return 

regulation was replaced with incentive regulation. However, the allocative inefficiency 

estimates should be interpreted with caution, because factors other than rate of return 

regulation could have attributed to the estimated systematic discrepancy between the 

observed and the shadow prices of capital. These factors include the possibility of the 

divergence of the theoretical model from the actual institutional setting, as well as 

measurement errors. 

Although the federal authorities substituted the rate of return regulation with price 

cap regulation in 1991 for most companies, the states continued to pursue different 
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Table 6.18. Allocative Inefficiency for Labor 

estimate allocative inefficiency* 
variable coefficient t-statistics 88 89 90 91 92 93 94 95 average 
time trend 0.091 0.89 
PR -0.583 -0.88 0.06 0.15 0.10 
IND 0.212 0.92 0.30 0.39 0.49 0.39 
CT 0.320 0.94 0.41 0.50 0.59 0.50 
UT 

0 
0.289 
0.196 

0.94 
0.93 

0.38 
0.29 

0.47 
0.38 

0.56 
0.47 

0.65 
0.56 0.65 0.75 0.84 0.93 

0.52 
0.61 

C 0.551 0.91 0.64 0.73 0.83 0.73 
S 0.245 0.93 0.61 0.70 0.79 0.88 0.98 0.79 
G 0.597 0.93 0.69 0.78 0.87 0.96 1.05 1.15 1.24 1.33 1.01 
P 0.650 0.91 0.74 0.83 0.92 1.02 1.11 1.20 1.29 1.38 1.06 
N 0.725 0.92 0.82 0.91 1.00 1.09 1.18 1.27 1.37 1.46 1.14 
SW 0.846 0.90 0.94 1.03 1.12 1.21 1.30 1.39 1.49 1.58 1.26 
BA 0.857 0.92 0.95 1.04 1.13 1.22 1.31 1.41 1.50 1.59 1.27 
AM 0.932 0.92 1.02 1.11 1.21 1.30 1.39 1.48 1.57 1.66 1.34 
BS 1.054 0.90 1.15 1.24 1.33 1.42 1.51 1.60 1.69 1.79 1.47 
W 1.069 0.91 1.16 1.25 1.34 1.43 1.53 1.62 1.71 1.80 1.48 
INDUSTRY ** 1.904 1.84 2.17 2.44 2.71 2.98 3.25 3.52 3.79 4.05 3.11 

* -- empty cells correspond to years in which the holding company did not exist 
** -- estimated from the restricted model; time trend coefficient is not listed 

regulative schemes. In addition, companies were allowed to switch back to the old, rate of 

return system if the price cap made them unprofitable. 

Other federal and state regulatory mechanisms might have been affecting the 

incentive system. The theory assumes free adjustment of capital stock, while in reality new 

investment projects require regulatory approval. The companies might not be able to react 

quickly to capital price changes which have being falling during the period of 

observation because of the lengths of investment projects, or the uncertainty associated 

with technological change and regulatory environment. Capital investments can adversely 

affect stock market valuation of the company, while the company executives who make 
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investment decisions are often evaluated according to the performance of the company's 

stocks and bonds. 

Finally, the allocative inefficiency revealed by the data might stem from 

measurement errors, particularly in the input prices and input shares. For example, I 

calculated real capital stock from the accounting values assuming that capital has uniform 

age across firms. If this assumption is violated, then in the presence of inflation the real 

capital stock of older companies is undervalued relative to the capital stock of newer 

companies. This under-valuation of real capital stock can manifest itself as the estimated 

under-employment of capital input by older companies. Similarly, the assumption that all 

types of capital assets have the same depreciation rates might distort the allocative 

inefficiency measures. 

Labor inefficiency point estimates are much closer to one than capital inefficiency 

estimates, being less than one for seven holding companies, and greater than one for eight 

companies, among them are all the RBOCs. None of the estimates are statistically 

significant even at the 90 % level, and nine of the company-specific coefficients are 

statistically insignificant from one. In fact, the hypothesis that labor has been employed 

efficiently at least during one year of the sample cannot be rejected for any of the 

companies. 

The estimates imply that labor has been employed in relatively more efficient 

proportions compared to materials than capital, and that large companies, such as RBOCs 

and GTE, tend to under-use labor. Interestingly, the same group of companies also tends 

to under-employ capital most. This result might be explained by the fact that category 
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"other inputs" measures all residual expenses (operating expenses other than wages, 

depreciation and amortization), including administrative and marketing expenses. These 

overhead expenses might be higher for large companies, causing relative over-use of 

materials input compared to capital and labor inputs. Alternatively, the differences in labor 

utilization between large and small companies might be due to technological, as well as 

regional factors. For example, RBOCs serve bigger, more urbanized markets and tend to 

have higher proportions of automated operations, ranging from switching equipment to 

bill collecting. Therefore, the technology adopted by large telecommunications firms might 

be less labor intensive than the technology of smaller, rural firms. 

The restricted model that allows the allocative inefficiency terms to vary only over 

time but not companies (d.1 = ) generates similar results (the last rows of tables 6.17 

and 6.18). The industry level allocative inefficiency exhibits a positive time trend, with 

both capital and labor being consistently under-employed over time. The intercept 

coefficient for labor (d') is still insignificant, while the time trend coefficient for labor 

inefficiency term becomes significant at the 90 % level of confidence. 

6.2.2.2. Technical Inefficiency in the Generalized Cost Model 

Table 6.19 compares the input technical inefficiency ranking of the generalized cost model 

to the estimates obtained from the model with only input technical inefficiency (the DVLS 

model ). The generalized cost model gives slightly lower relative inefficiency estimates 

than the DVLS model. This result suggests that firms that are relatively technically 

efficient are also more allocatively efficient, because the intercept terms in the DVLS 
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Table 6.19. Input Technical Inefficiency in the Generalized Cost Model 

Generalized Cost Model DVLS Model 
variable coefficient t­

statatistics 
intercept 
averaged 

average 
relative 

efficiency 
rank 

intercept relative 
inefficiency 

efficiency 
rank in 

for 88-95 inefficiency DVLS 
time trend -0.021 -2.84 na* na* na* na* na* na* 
CT -0.391 -2.31 -0.43 0.000 1 0.032 0.145 8 
AM -0.332 -2.35 -0.43 0.022 2 -0.037 0.077 2 
BA -0.307 -2.27 -0.40 0.047 3 -0.113 0.000 1 

BS -0.252 -1.74 -0.35 0.102 4 -0.012 0.101 3 
SW -0.243 -1.58 -0.34 0.112 5 0.022 0.135 6 
S 

P 
-0.212 
-0.224 

-1.32 
-1.52 

-0.34 
-0.32 

0.119 
0.130 

6 
7 

0.080 
0.024 

0.193 
0.137 

9 
7 

W -0.216 -1.54 -0.31 0.138 8 0.147 0.260 13 
UT -0.238 -1.52 -0.29 0.138 9 0.141 0.254 12 
N 
0 

-0.202 
-0.154 

-1.41 
-0.96 

-0.30 
-0.25 

0.152 
0.200 

10 

11 

0.001 
0.100 

0.114 
0.213 

5 

11 
IND -0.162 -1 -0.20 0.229 12 0.090 0.204 10 
C -0.131 -0.87 -0.17 0.260 13 0.305 0.418 15 
PR -0.015 -0.08 -0.17 0.316 14 -0.008 0.105 4 
G 0.008 0.06 -0.09 0.362 15 0.247 0.361 14 
* -- not applicable 

model accumulate not only technical inefficiency, but also differences in cost that are due 

to allocative inefficiency. However, the two models are not directly comparable because of 

the difference in the methods of estimation. Significant ordinal differences are apparent, 

but certain consistency between the two rankings is present. The top five companies, as 

classified by the generalized cost model, have an average ranking of 4 on the DVLS list, 

the middle five are ranked 9.2, and the bottom five have an average rank of 10.8 in the 

DVLS model. 

A comparison of the estimates for technical and allocative efficiency in the 

generalized cost model reveals no consistency between the two rankings. Therefore, the 

estimates from the generalized cost model do not provide evidence that most technically 
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efficient companies are also most allocatively efficient, as Atkinson and Cornwell (1994) 

found in the airline industry. 

6.2.2.3. Trans log Parameter Estimates 

The most obvious change in the translog estimates of other parameters (table 6.20) 

happened to the first order coefficients on the input prices. The estimate for capital price 

(0.75) almost doubled compared to the SUR value of 0.39, while the coefficients for both 

labor and materials dropped. These changes imply that not only the shadow price of 

capital is higher than the observed price, but the shadow share of capital shadow cost 

elasticity with respect to capital price is higher than the observed share at the sample 

mean. The shadow cost elasticity with respect to the price of labor decreased, despite the 

fact that the shadow price of labor was higher than the observed price for more than half 

of the companies, as well as at the industry level. 

Cost elasticity with respect to the number of telephone lines increased at the 

sample mean (from 0.98 in the SUR model to 1.00). Small and statistically insignificant 

parameter estimates on the interaction terms between the input prices and the output 

vector TLPK, BLPK, LCPK, TLPL, BLPL and LCPL indicate that output cost 

elasticities do not depend on the allocative inefficiency parameters. 

Several other parameter estimates changed their significance level in the 

generalized cost model compared to the SUR model. The coefficient on the interaction 

term between WI and PL became insignificant, indicating that the share of labor is not 
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Table 6.20.Translog Estimates for the Generalized Cost Model 

SUR model DVLS Model Generalized Cost Model 

variable coefficinent t-statistics coefficinent t-statistics coefficinent t-statistics 
TL 0.98 82.20 0.98 63.86 1.00 65.61 
BL -1.07 -15.66 -0.75 -10.84 -0.46 -7.17 
LC 0.10 0.68 0.17 1.15 0.00 -0.01 
WI 0.19 2.48 0.46 5.42 0.26 3.38 
TLBL -0.07 -1.95 -0.08 -2.72 -0.07 -2.94 
TLTL/2 0.07 5.92 0.08 5.53 0.06 5.17 
BLBL/2 -1.23 -10.87 -0.81 -7.66 -0.55 -6.23 
LCWI -0.71 -1.40 0.72 1.62 -0.11 -0.29 
LCLC/2 -2.83 -2.74 -0.81 -0.90 -1.50 -1.92 
WIWI/2 0.62 1.59 0.37 1.08 0.68 2.45 
TLLC 0.19 1.86 -0.03 -0.30 0.03 0.43 
TLWI 0.05 1.10 0.09 1.90 0.05 1.28 
BLLC 0.15 0.32 1.02 2.59 0.58 1.81 
BLWI -0.49 -2.77 -0.25 -1.55 -0.33 -2.54 
PK 0.39 183.80 0.38 190.46 0.75 10.25 
PL 0.23 77.77 0.22 78.75 0.10 1.27 
PO 0.39 106.17 0.39 110.91 0.15 na* 
TLPK 0.01 6.02 0.01 6.23 0.00 0.84 
TLPL 0.01 6.33 0.01 6.06 0.01 1.03 
TLPO -0.02 -8.43 -0.02 -8.50 -0.01 na* 
BLPK 0.00 -0.53 0.00 -0.26 0.01 0.44 
BLPL 0.04 3.46 0.03 3.12 0.01 1.00 
BLPO -0.03 -2.42 -0.03 -2.38 -0.02 na * 
LCPK 0.06 3.06 0.05 3.11 0.01 0.68 
LCPL 0.04 1.42 0.03 1.38 0.01 0.90 
LCPO -0.09 -2.93 -0.09 -2.97 -0.02 na* 
WIPK 0.01 1.24 0.01 1.01 0.01 0.51 
WIPL -0.08 -5.48 -0.08 -5.60 -0.02 -1.04 
WIPO 0.06 3.59 0.07 3.95 0.01 na * 
PKPK/2 0.04 5.14 0.05 5.65 0.04 2.58 
PKPL -0.02 -1.97 -0.02 -2.26 -0.02 -1.00 
PKPO -0.03 -7.55 -0.03 -8.35 -0.02 na* 
PLPL/2 0.05 5.70 0.05 5.66 0.02 1.00 
PLPO -0.04 -7.43 -0.03 -6.95 0.00 na* 
POPO/2 0.06 10.13 0.06 10.42 0.02 na * 
FIPK 0.00 -2.24 0.00 -2.46 0.00 -0.73 
FIPL -0.03 -11.44 -0.03 -11.97 0.00 -1.01 
FIPO 0.04 10.80 0.04 11.69 0.01 na * 
TLFI 0.00 0.53 0.00 -0.16 0.01 1.95 
BLFI -0.08 -1.53 0.00 0.05 0.01 0.29 
LCFI 0.15 1.49 0.30 3.43 0.22 3.09 
WIFI 0.08 1.09 0.10 1.64 0.06 1.26 
FIFI/2 0.00 -0.04 0.01 1.72 0.03 3.32 
F1 0.02 1.16 0.05 3.23 0.09 4.67 
R-squared in C 0.987 0.992 0.995 
R-squared in SK 0.396 0.398 0.574 
R-squared in SL 0.317 0.318 0.620 
* coefficients were calculated after the estimation from the homogeneity conditions 
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affected by the customer density if allocative inefficiency is accounted for. In other words, 

higher share of labor in urban areas, as revealed by the SUR estimates, might stem from 

allocative inefficiency. Similarly, insignificant parameter estimates on the interaction term 

between input prices and the percent of fiber in the generalized cost model suggest that 

the relation between the input shares and the percent of fiber observed in the SUR model 

can be explained by allocative inefficiency. The generalized cost parameter estimates on 

the terms involving fiber are similar to those obtained in the DVLS model. Both first- and 

second-order coefficients on Fl are positive and statistically significant, indicating that, if 

inefficiency is being controlled for, cost elasticity with respect to fiber is positive. 

6.2.2.4. Efficient Input Structure and Losses from Allocative Inefficiency 

The allocative inefficiency parameters suggest that capital is under-employed relative to 

other inputs, and labor is under-employed for some observations and over-employed for 

others. In order to calculate the optimal input mix, I set the inefficiency parameters to one 

and compute the fitted shares. As expected, the optimal capital share increased, and the 

share of residual inputs decreased for all observations. The share of labor also decreased 

for all data points. 

The estimates of allocative inefficiency do not permit comparison of different 

companies in terms of the degree of allocative inefficiency. In order to make this 

comparison, I use the estimated parameters of the generalized translog cost function to 

calculate the monetary measure of allocative inefficiency. In other words, I set the 

inefficiency parameters equal to one and evaluate the cost function for each observation 
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using the estimated translog parameters. I compare these estimates to the fitted values of 

the generalized cost function. The difference between the two monetary estimates of cost 

presents a measure of potential savings from increased allocative efficiency. 

I calculate the fitted cost and the cost of an allocatively efficient firm for each 

observation in the sample. The calculated cost ofan allocatively efficient firm are lower 

than the fitted cost in the presence of allocative inefficiency for all but one observation. 

The allocatively efficient costs are slightly higher than the fitted cost for firm 58 in 1993 

(Citizens Utilities of California owned by 'other' holding companies), but the actual cost is 

significantly higher than the fitted allocatively efficient cost. Savings for other individual 

observations range from 0.1 to 69 % of the fitted cost. On aggregate, the potential savings 

from allocative efficiency constitute 24 % of the total fitted cost, or $ 21 billion annually. 

Table 6.21 summarizes the results by holding company and year, with potential 

savings measured as a percent of the fitted cost of an allocatively inefficient firm. The 

holding companies in the table are sorted from the most allocatively efficient to the least 

efficient. The degree of allocative inefficiency, as measured by the potential percent 

reduction in cost, exhibits an upward time trend. Centel Corporation, which ceased to 

exist in 1991, seems to be most efficient; however, two other holding companies 

Southwestern Bell and Pacific Telesis have lower average potential reductions in cost for 

the same period. Puerto Rico Telephone Authority, Ameritech and Bell Atlantic appear to 

be least allocatively efficient. 
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Table 6.21. Allocative Inefficiency: Potential Cost Savings by Holding Company and Year 

holding ,otential cost reductions as a fraction of fitted cost* 
company 88 89 90 91 92 93 94 95 average 

CT 12% 12% 15% 13% 
SW 4% 7% 11% 15% 18% 23% 26% 30% 17% 
P 10% 15% 13% 18% 19% 21% 22% 22% 17% 
BS 10% 14% 18% 21% 18% 20% 23% 26% 19% 
UT 19% 19% 20% 21% 20% 
IND 24% 20% 16% 21% 
C 20% 21% 21% 21% 
G 16% 18% 20% 20% 22% 25% 26% 28% 22% 
S 34% 22% 26% 24% 27% 25% 
0 18% 21% 25% 25% 27% 26% 26% 29% 25% 
W 17% 21% 22% 20% 29% 33% 35% 31% 26% 
N 20% 24% 25% 28% 31% 32% 33% 35% 28% 
BA 23% 22% 24% 28% 32% 34% 36% 38% 30% 
AM 22% 27% 27% 27% 39% 33% 35% 36% 31% 
PR 33% 40% 37% 

Total 16% 19% 21% 23% 26% 28% 29% 31% 24% 

* -- empty cells correspond to years in which the holding company did not exist 

6.3. Subadditivity Test on a Non-Minimum Cost Function 

The estimation results of the previous section indicate that the hypothesis of technical and 

allocative inefficiency of the telecommunications firms cannot be rejected. Thus, the 

benefits of competitive entry into the telecommunications markets are not limited to the 

potential cost savings from increased scale efficiency, as the subadditivity test indicates, 

but are likely to include the reduction in costs due to increased technical and allocative 

efficiency. In other words, even if the potential savings from the division of the 

monopolized markers are negative on average (as reflected in Tables 6.6 and 6.7), they 

might be fully compensated by the savings from increased production performance. 
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Since the inclusion of the inefficiency parameters affected the parameter estimates 

of the cost functions, the results of the subadditivity test of section 6.1 do not hold. In 

order to test whether a cost function of the telecommunications industry is indeed 

superadditive and evaluate the level of potential saving, I repeat the subadditivity test 

using the estimated cost functions that control for technical and allocative inefficiency. 

The primary question of interest is whether a productively efficient 

telecommunications firm exhibits the properties of a natural monopoly. I start with a cost 

function that permits inefficiency and use this cost function to predict the cost of the 

industry in which inefficiency is eliminated. I consider three models the DVLS and EC 

models with intercepts varying over holding companies, and the generalized cost model. I 

remove technical inefficiency by setting the intercept terms in both parametric models to 

the minimum estimated intercept and assuming that the random error terms in the error 

component model have the same variance. In addition, I assume that allocative efficiency 

is eliminated and set the allocative inefficiency parameters in the generalized cost model to 

one. 

Tables 6.22, 6.23 and 6.24 summarize the results of the subadditivity test for the 

DVLS, EC and the generalized cost models. The estimates of potential savings obtained 

using the DVLS model are similar to the estimates of the SUR model. According to the 

subadditivity test on the DVLS cost model, the subdivision of the monopolized markets 

between two firms would result in losses equal to 2 % of the fitted cost on the national 

level. The average savings are positive for only 40 % of observations, and negative for 

two thirds of the holding companies. The average savings tend to be higher for companies 

with lower than average percentage of business lines. Although the levels of average 
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savings of the DVLS model on the national level are close to the estimates of the SUR 

model, the DVLS model predicts wider variation in savings from a two-firm industry then 

the SUR model. The DVLS estimates for the maximum savings are lower for all holding 

companies, and, in contrast to the SUR model, are less than the minimum savings in 

absolute value for most companies and as a total. 

Table 6.22. Savings from a Two-Firm Technically Efficient Industry: DVLS Model 

Holding Minimum Saving Maximum Saving Average Saving 
Company 

dollars percent of dollars percent of dollars percent of 
fitted cost fitted cost fitted cost 

AM -89,926,873,612 -135% 34,230,191,647 51% -1,965,396,755 -3% 
BA -424,949,482,129 -528% 38,624,788,905 48% -4,995,046,521 -6% 
BS -17,286,386,862 -21% 49,846,812,129 60% 197,876,519 0% 

5%C -4,623,507,753 -95% 4,560,936,143 94% 227,073,687 

CT -4,915.572,239 -131% 2,328,088.088 62% -192,744,629 -5% 
G -78,361,551,188 -151% 39,672,362,152 76% 74,027,004 0% 
IND -118,427,097 -23% 84,480,217 16% -20,156,323 -4% 
N -189,152,121,412 -249% 40,749,912,999 54% -2,366,642,980 -3% 
0 -42,818,887,433 -359% 9,484,368,221 79% -441,562,185 -4% 
P -147,621,747,045 -299% 14,299,121,723 29% -3,507,974,120 -7% 
PR -1,500,928,423 -60% 2,109,071,461 84% 16,768,430 1% 
S -1,727,764,119 -116% 1,297,411,381 87% -57,637,437 -4% 
SW - 19,432,521,462 -38% 29,828,821,751 59% -46,620,570 0% 
UT -13,569,638,517 -106% 11,362,128,892 88% 294,322,253 2% 
W -41,354,146,587 -84% 23,047,572,857 47% -662,252,539 -1% 

Total -1,075,858,627,454 -198% 299,416,997,105 55% -13,462,734,598 -2% 

The subadditivity test on the cost function estimated using the ECM approach 

(table 6.23) produces results that are qualitatively similar to the results of the 

subadditivity test on the DVLS model. The EC model predicts smaller variation in the 

possible savings from a two-firm industry than the DVLS model. The average savings 
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Table 6.23. Savings from a Two-Finn Technically Efficient Industry: EC Model 

Holding Minimum Saving Maximum Saving Average Saving 
Company 

dollars	 percent of dollars percent of dollars percent of 
fitted cost fitted cost fitted cost 

AM -48.889,482,262 -65% 41,684,035,916 55% -2,391,075,520 -3%
 
BA -243,758,181,747 -266% 47,904,617,850 52% -5,396,578,468 -6%
 
BS -19,252,437,099 -21% 60,088,333,338 65% -101,280,135
 0% 
C -1,717,147,328 -29% 5,631,481,997 95% 311,541,805 5% 
CT -3,073,525,980 -69% 2,871,642,725 64% -247,799,299 -6% 
G 43,480,545,823 -71% 48,285,298,229 79% 206,011,971 0% 
IND -99,165,727 -16% 112,882,202 18% -25,912,194 -4% 
N -100,813,235,228 -117% 50,482,951,441 59% -2,550,162,305 -3% 
0 -24,307,434,676 -175% 11,421,274,490 82% -506,275,052 -4% 
P -90.204,600,626 -164% 17,663,952,474 32% -4,076,721,509 -7% 
PR -620,454,107 -21% 2,559,376,671 87% 27,805,019 1% 
S -695,379,875 -39% 1,608,221,314 90% -45,981,839 -3% 
SW - 14,637,461,228 -26% 35,558,164,833 63% -283,619,779 -1% 
UT -5,279,191,505 -34% 13,953,537,576 90% 418,685,538 3% 
W -24,189,113,648 -44% 28,604,055,666 52% -838,398,448 -2% 
Total -621,017,356,859 -101% 368,429,826,721 60% -15,499,760,216 -3% 

from a two-firm industry in the ECM are also positive for approximately 40 % of 

observations and as a total. 

The results of the subadditivity test on the generalized cost function (Table 6.24) 

present a much stronger evidence of the benefits of competition. Average savings are 

positive for all but two holding companies (Ameritech and GTE), for each year and for 77 

% of observations. On aggregate, not only the average savings are positive, but the 

maximum savings significantly exceed the minimum savings, as wellas the SUR estimates 

for the maximum savings. 

In reality it is likely that the two companies that share the formerly monopolized 

market will not be able to eliminate inefficiency for a period of time, for example, due to 

investment lags. The above results can be generalized for a case with the two hypothetical 
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Table 6.24. Savings from a Two-Firm Allocatively and Technically Efficient Industry: 
Generalized Cost Model 

Holding Minimum Saving Maximum Saving Average Saving 
Company 

dollars percent of dollars percent of dollars percent of 
fitted cost fitted cost fitted cost 

1%AM -5.008,715,266 -11% 20,984,051,834 45% 492,374,283 
BA -7,864,723,002 -15% 22,303.262,605 42% 150,334,811 0% 
BS -5,101,341,209 -9% 27,929,613,043 48% 1,015,950,427 2% 
C -340,730,023 -10% 3,101,210,181 87% 217,284,894 6% 
CT -356,817,626 -13% 1,461,494,654 53% -36,581,853 -1% 

G -2,369,730,236 -7% 24,635,017,016 68% 1,213,939,644 3% 
IND -33,012,152 -9% 47,567,894 13% -8,735,732 -2% 
N 6,137,583,693 -13% 22,692,958,969 47% 949,317,058 2% 
0 -1,383,212,316 -18% 5,378,295,911 69% 77,688,023 1% 
P -8,698,325,001 -24% 10,414,889,616 29% 250,756,620 1% 
PR -74,958,915 -5% 1,061,406,067 72% 43,178,483 3% 

80%S -129,302,429 -13% 788,232,540 19,905,736 2% 
SW -3,924,022,697 -10% 17,475,432,519 47% 677,952,826 2% 
UT -721,212,518 -8% 7,601.848,060 80% 434,435,876 5% 
W -4,402,187,617 -11% 15,914,769,652 40% 763,073,431 2% 

Total -46,545,874,700 -12% 181,790,050,561 48% 6,260,874,526 2% 

companies preserving certain levels of technical or allocatively efficiency. All the three 

models specify technical inefficiency through an intercept term either deterministic or 

stochastic as a factor that shifts cost up. Therefore, the higher the level of technical 

inefficiency, the higher the 'fixed' multiplier a multiplier on cost that does not depend on 

the output, and thus, the higher the combined costs of the two hypothetical firms. In other 

words, if the degree of inefficiency for a two-firm industry is the same as for the 

monopoly, inefficiency affects only the magnitude, but not the percentage of savings from 

a two-firm industry. However, two technically efficient firms are more likely to find the 

output vector combinations that would lower the cost of the inefficient monopoly than 

two technically inefficient firms, ceteris paribus. 
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Allocative inefficiency in the generalized cost model affects the costs through the 

translog terms that involve input prices. Interaction parameters between the input prices 

and the outputs determine the effect of allocative inefficiency on the output elasticity of 

cost. For example, if capital is under-employed relative to residual inputs, then a positive 

estimate on the interaction term TLPK would indicate that, as TL decreases, the costs fall 

faster for an allocatively inefficient firm. The actual estimated values of the coefficients on 

all the interaction terms between the outputs and the input prices are close to zero and 

statistically insignificant. Therefore, the presence of allocative inefficiency is likely to have 

little effect on the output elasticity of cost. 

By definition, allocative inefficiency increases cost. If allocative inefficiency does 

not affect the output elasticity, then the total effect of allocative inefficiency on the 

subadditivity test is similar to the effect of technical inefficiency, with the costs of the two 

inefficient firms being scaled up by a fixed multiplier compared to the cost of two efficient 

firms. Here the fixed multiplier includes not only the intercept term, but also the sum of all 

other terms that do not involve the output variables and, therefore, remain the same for 

the monopoly and the two hypothetical competitive firms. 
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7. CONCLUSIONS
 

Though my study indicates that the formal condition for subadditivity of the cost function 

of local telecommunications industry is violated, the evidence is not as overwhelming as 

Shin and Ying's (1992). The point estimates for the cost of the two hypothetical firms 

imply that certain two-firm combinations could have lowered the total cost of the U.S. 

local telephone industry during the period of consideration. However, it is unclear whether 

these estimates are statistically significant because the feasibility of different output vectors 

and the exact forecast variance are unknown. 

My estimates of the savings from the division of the existing markets suggest that, 

while a two-firm industry might be able to provide telecommunications services at lower 

cost than one firm, the subdivision of the predominantly nonresidential markets might 

result in efficiency losses. In other words, potential savings from the division of the 

markets lie mostly in residential areas. The result implies that competition is more 

desirable in areas with large concentration of residential customers, and that regulators 

should encourage competition in these markets. 

The later finding seem to be inconsistent with the fact that the majority of the 

actually observed instances of competitive entry takes place in business markets. While the 

patterns of actual entry are probably caused mainly by lower economic barriers to entry 

into business markets, the difference in potential savings in the two markets residential 

and business might stem from the differences in scale efficiency. In reality 

telecommunications companies can adjust their scale of operation and the composition of 

the output through sale and purchase of individual exchanges (central offices). Business 
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markets are usually served by big companies, while small companies serve mostly 

residential markets. Existing regulatory conditions, such as the universal service fund and 

state-averaged access rates, affect the two groups of companies in a different way: while 

big companies have strong incentives to adjust their scale of operations in order to lower 

cost, small rural companies do not. Thus, firms in business markets tend to be more scale 

efficient than firms in residential markets. Therefore, the unnecessary concentration of 

production in residential markets explains the difference in the potential cost savings from 

the division of the two markets. 

The results of the subadditivity test suggest that the telecommunications 

monopolies are overly concentrated and diversified. The output combinations that 

correspond to the maximum cost savings from a two-firm industry include an uneven 

division of the telephone customers between the two firms and a high degree of 

specialization in business/residential, as well as local/toll markets. It would be useful to 

investigate the likelihood of this asymmetric equilibrium for a two-firm industry with a 

common cost function. The cost-minimizing output combinations might provide some 

guidance for regulatory authorities. 

The modified subadditivity test showed that side by side competition that assumes 

facilities entry is not necessarily wasteful. Despite the restriction requiring that each of the 

two hypothetical firms builds its own cable facilities, the maximum possible savings were 

still positive for the majority of observations and as a total. However, this result might not 

hold as the number of the competitive firms, and the number of duplicate facilities 

increases. 
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The calculated savings from a two-firm industry present a very limited estimate of 

the possible benefits of competition. The subadditivity test did not consider industry 

configurations with three or more firms. It is also incapable of estimating benefits from 

improved service quality or productive efficiency of the telecommunications carriers under 

competitive pressures. As section 6.2 suggests, the degree of productive inefficiency of the 

local telephone monopolies is significant. Therefore, a monetary estimate of the benefits of 

competition in local telecommunications should include not only the potential savings from 

the increased scale efficiency of section 6.1, but also the potential savings from increased 

technical and allocative efficiency of section 6.2. 

Different approaches to modeling inefficiency result in different ordinal and 

cardinal inefficiency measures. The error component model estimates a much smaller 

degree of relative technical inefficiency than the parametric model of fixed intercepts. 

While the parametric method ranks most Regional Bell Operating Companies high in 

terms of technical efficiency, the error component method almost reverses the ranking. 

The introduction of parametric allocative inefficiency changes the technical efficiency 

order, though still ranking most RBOCs higher than other companies 

The generalized cost model resulted in unexpected allocative inefficiency 

estimates. Contrary to the theoretical predictions and the aggregate estimates of 

inefficiency in telecommunications obtained by Oum and Zhang (1995), the estimated 

capital inefficiency parameters indicate that the industry was under-employing capital 

relative to materials. This result should be treated with caution for several reasons. First, 

as Farber (1989) found, the generalized cost estimates might be sensitive to the measures 

of capital price. Second, the specification of shadow input price as proportional to the 
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observed price might be inappropriate. Third, the nonlinear iterative method used in the 

estimation of the generalized cost function does not always find converged solution. 

Convergence problems are partially caused by the large number of coefficients to be 

estimated and by the sensitivity of the method to the choice of the starting values. Because 

of these problems I was unable to obtain converged estimates of the firm-specific 

estimates of allocative inefficiency, or to restrict the time trend coefficients to zero. 

In order to check whether the estimated inefficiency measures translate into 

conventional indicators of firm's performance, I compare the efficiency measures 

generated by different models to the realized rates of return on investment. I translate the 

estimated efficiency measures into monetary terms, as losses from inefficiency expressed in 

terms of the percentage of the actual fitted cost. For each holding company, I calculate the 

average inefficiency losses for the two periods the years of the federal rate of return 

regulation (1998-90) and price cap regulation (1991-95). I calculate the realized rates of 

return following the FCC methodology, as operating revenues minus taxes divided by the 

accounting value of the net telecommunications plant. 

Table 7.1. summarizes the calculations. Holding companies in the first column of 

the table are divided into two groups, with the companies that switched to the federal 

price cap regulation listed first. These companies include the seven RBOCs, GTE and 

Sprint. Columns two and three present the losses from technical inefficiency generated by 

the DVLS and EC models. These estimates are invariant with respect to time and 

therefore, are identical for the two periods of regulation. Column four reflects the losses 

from technical inefficiency in 1988-90 estimated by the generalized cost model. Column 

five presents the losses from allocative inefficiency for the same period. Column six lists 
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the losses from scale inefficiency measured as the maximum potential savings from a 

division of each market between the two hypothetical firms. Column seven contains the 

realized rates of return averaged for 1988-90. Columns eight through eleven contain 

information similar to the columns four through seven, but for the years of price cap 

regulation. 

Table 7.1. Losses from Inefficiency and Actual Rates of Return: Comparison* 

Weighted Average for 1988-90** Weighted Average for 1991-95** 
Holding Technical Inefficiency in the Scale Rate of Inefficiency in the Scale Rate of 
Company Inefficiency Generalized Cost Inefficiency Return Generalized Cost Inefficiency Return 

Model Model 

DVLS ECM Technical Al locative Technical Allocative 
Model 

AM 7% 0% 6% 26% 77% 10% 0% 34% 46% 10%
 

BA 0% 13% 8% 23% 61% 10% 2% 33% 49% 10%
 
BS 10% 8% 13% 14% 86% 10% 8% 22% 58% 10%
 
N 11% 8% 17% 23% 67% 10% 12% 32% 62% 8%
 
P 13% 8% 15% 13% 44% 9% 10% 20% 54% 7%
 
SW 13% 8% 14% 8% 86% 9% 9% 22% 89% 9%
 
W 23% 8% 16% 20% 79% 9% 11% 30% 54% 7%
 
G 30% 14% 33% 18% 85% 10% 29% 24% 95% 9%
 
S 18% 19% 11% 26% 49% 10%
 
C 34% 7% 23% 21% 95% 13%
 
CT 14% 7% 0% 13% 85% 9%
 
IND 18% 8% 20% 20% 80% 10%
 
0 19% 5% 21% 21% 77% 10% 16% 27% 81% 9%
 
PR 10% 8% 32% 37% 88% 6%
 
UT 22% 7% 14% 19% 94% 11% 32% 21% 92% 11%
 

correlation 0.44 -0.09 0.25 0.37 0.50 1.00
 
with rate
 
of return
 
in 88-90
 
correlation 0.06 0.18 -0.22 -0.32 -0.06 1.00
 
with rate
 
of return
 
in 91-95
 

* -- losses from inefficiency are measured as the percent of fitted cost 
** -- federal authorities switched from the rate of return to price cap regulation in 1991 
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The rates of return depend not only on the company's productive efficiency, but 

also on the prices of the output and the accounting levels of net capital stock. 

Nevertheless, for each of the two periods I calculate the correlation coefficients between 

my measures of productive performance and the realized rates of return. The last two 

rows of the table list the correlation coefficients. In 1988-90 the correlation coefficients 

for all measures, with the exception of the ECM technical efficiency, are positive. The 

positive sign indicates that lower productive performance was not translated into lower 

rates of return during this period. In fact, the absolute values of the correlation 

coefficients, which range from 0.25 to 0.5, provide certain evidence that less efficient 

companies were likely to have higher rates of return. This result is not totally unexpected: 

critics of the rate of return regulation suggest that this system induces inefficiency because 

it allows the companies to recover increased expenses through an increase in the output 

prices (see, for example, Loube, 1995). 

After 1991 the correlation coefficients change in sign and size. The estimates of 

the generalized cost model, as well as the subadditivity results, suggest that less efficient 

firms were likely to have lower rates of return. In general, during this period the relation 

between the efficiency measures and the rates of return seems to be much weaker. The 

theory predicts that price cap regulation should improve the firms' efficiency because it 

allows them to retain savings from decreased costs. The positive correlation between 

certain efficiency measures and the rates of return supports the theoretical prediction. The 

weakness of this relation can be attributed to the regulatory lags and restructuring, as well 

as to the fact that the federal authorities regulate only the interstate jurisdiction. 
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The estimator that accounts for the theoretical heteroscedasticity in the system of 

cost and share equations turned out to be extremely computationally intensive but did not 

generate results qualitatively different from the SUR estimator. The closeness of the two 

sets of the estimates suggests that the degree of heteroscedasticity in the cost equation is 

not strong, or that the assumed functional from of heteroscedasticity was incorrect. 

The following four areas present directions for the future research. The first 

direction is to expand the data set. This expansion might include not only addition of 

observations beyond the period of study 1988-95, but also more detailed representation of 

the telecommunications companies. Recently, the FCC made publicly available the detailed 

data bases on the local exchange carriers (the ARMIS data bases) that the agency has been 

using in the compilation of the Statistics of Communications Common Carriers. These 

data bases include a significantly more detailed accounting and telephone plant statistics, 

as well as a disaggregated list of companies. For example, Statistics of Communications 

Common Carriers lists US West Communications as one entry in each year, while the 

original ARMES data base separates US West, which operates in the fourteen western 

states, into fourteen companies. 

The second direction of the future research is to improve the model variables. As I 

have already mentioned, my allocative inefficiency estimates might be driven by the 

measurement errors in the input prices or input shares. In order to check the robustness of 

my allocative inefficiency estimates, I would like to try different measures of the input 

prices. Alternatively, subdivision of the 'residual' input into two or more inputs might 

improve the measurement of the input prices and shares. The inclusion of different proxies 
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for technology, regional cost adjustment coefficients or variables that account for the 

differences in the regulatory settings might also improve the model. 

The third direction for the future research is to use different estimation methods. 

Application of an estimator with a theoretically consistent error structure to the models of 

productive inefficiency presents the next logical step. Other potential estimation methods 

include random specification of allocative inefficiency and the specification of fixed effects 

as varying over companies, as well as time. 

The fourth direction for the future research is to use the estimated cost function to 

assess the feasibility of different asymmetric equilibria under deregulation and predict the 

behavior of the firms in response to different demand-side regulatory changes. 
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