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BRANCHING PROCESSES AND PARTIAL DIFFERENTIAL

EQUATIONS

CHAPTER I

INTRODUCTION

A new and surprising model for the analysis of Navier-Stokes equations was discovered

in 1997 by Le Jan and Sznitman [34]. This model is now part of a more coherent yet still

nascent theory involving branching processes and other evolutionary partial differential

equations. Some of this new theory is presented here.

§1.1 A brief introduction to the Navier Stokes equations

The Navier-Stokes equations are for an unknown velocity vector

u = u(x,t) = (uk(x,t)1<k<fl) e

and scalar pressure p = p(x, t), and describe the evolution of the motion of an idealized

incompressible viscous fluid of constant density filling all space. Here n = 2 or 3. We

consider the Navier-Stokes equations in the following form, in which a rescaling of the

variables has already been made, thereby reducing the number of free parameters that

arise in their derivation:

a
Uk + U Vuk 11LUk - + gk(x, t), 1 k <n, (1)

3Xk

divu=) aUk0
k=1

DXk

A more condensed expression is simply

Ut+uVu= vLuVp+g,

\7u=O.

IbI'

Here v is the kinematic viscosity, and g = (gk(x, t)1<k<fl) is the external forcing, a gener-

alization of gravity, the body force typically found in applications. Equation (2) expresses
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the incompressibility condition. For simplicity the external forcing is assumed to be diver-

gence free, and continuity of the solution at t = 0 is afforded by the assumption that the

initial datum, a(x,0+) uo(x), is divergence free. Once these are specified, the problem

is to find the unknown solution u(x, t) on RTh x [0, T] for some positive T or on W x [0, oo).

In the first case the solution is said to be local in time, and in the second case the solution

is said to be global in time.

The Navier-Stokes equations never come like this in scientific or engineering appli-

cations: applied problems typically have boundaries and boundary conditions and other

variables such as temperature; free surfaces, sloping beaches, sediment, walls, porous

media, chemical kinetics, multi-component fluids, etc. So why study the Navier-Stokes

equations in the form of (3) and (4)? One answer is that these model an idealization

of flows far from boundaries. Another answer is that the same mathematical subtleties

that occur in applications also appear in these equations, and understanding these sub-

tleties becomes easier once extraneous concerns have been eliminated. One such subtlety

quite important mathematically - is that in three spatial dimensions these equations

have never been shown to possess regular solutions for all time, given arbitrary initial da-

tum, no matter how smooth. This problem has attracted a huge amount of research going

back to Leray [36] whose introduction of weak solutions, specifically for the Navier-Stokes

equations, was itself an important advance in the theory of partial differential equations.

1.2 Summary of the main features of the branching process representation

The major discovery of Le Jan and Sznitman is that the equations obtained from ap-

plying the Fourier transform to the Navier-Stokes equations, the FNS equations, admit

solutions that may be represented, pointwise, as the expected value of a multiplicative

functional on a multi-type branching process. The purpose of this section is to explain

this representation, with a bias toward making the sequel readable. This is not a proper

summary of their paper. Several of their important constructions are omitted, in par-

ticular, the martingales. These reappear in the uniqueness results in Chapters 6 and 7

and in [7]. This summary is also interpreted in light of the understanding gained by the
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authors of [7], comprising the Focus Research Group (FRG) at Oregon State University.

The concept of a majorizing kernel owes its existence to the FRG. Certain manipulations

of equations are more detailed here than in either the FRG paper [7] or in [34].

Starting with equations (3) and (4) the computation of the Fourier transform is facili-

tated by expressing the vector valued u(x, t) in terms of its components, and incorporating

the incompressibility condition into the nonlinear term:

=0. (6)

Here the Einstein convention holds: repeated indices denote summation. The Fourier

transform in the spatial variable is applied to these equations. The version of the Fourier

transform used here is

1= 1(e' t) = (2)_f12 f ef(x, t)dx.

This results in the system of of transformed equations

Duk i
at + (2 )fl/2i('uk*fi) = -k- v}el2uk + 1 <k

kUk = 0.

In vector form this is, using the notation e = L' provided 0,

+ ()/ f {,t).e] - i,t)d = i l2+

The standard technique of reducing the number of equations and the number of unknowns

is the application of the orthogonal projection P± : -* that projects onto the

subspace that is the orthogonal complement of , i.e. P± () = 0. Application of P± will

remove the pressure term, so that the resulting equation may be solved for velocity alone.

Then the pressure may be recovered from the velocity solution with the following Poisson

(7)

1 <k n, (5)
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equation that is obtained by taking the divergence of (3) using (4) and the assumption

that the forcing is divergence free [22, P. 35]:

n n
0U2 OUk

(12)

An application of P to equations (10) and (11), using the hypothesis that the forcing

term is divergence free, gives

+ iI(2)/2 f uI(i, t) . eel Peii - 17, t)dij v2u + , (13)

Pe± = U. (14)

These convert immediately to the integral equation

il(, t) = e_L!f12tio() +

(15)

fe"12 { f [,t - s) . et]Piü( - ,t - s)d + , s)}

that describes the evolution of the transformed velocity field i, t) within the subspace

of divergence free vector fields. Some notational simplification is achieved by introducing

the following ®-product, a bilinear operation that depends on the parameter E W'/{O}:

z w iI'(z )Piw = i(z e)P±w, , W E CTh. (16)

This becomes the predominant algebraic operation at the nodes of the branching process.

With this notation equation (15) becomes

t) = e ve2ti:2:o() +

Jo

ft {f , t - s) ø - , t - s)di + , t) } ds.
(/2ir) IR

(17)

A key idea introduced by the FRG subsequent to [34], is the notion of a majorizing

kernel. This is a locally integrable function h() with the property that for almost all

dKe(17)
h(17)h(e -

h*h(e)
(18)
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is the law of a fully supported random vector (assuming that nothing less than fully sup-

ported solutions to FNS are of interest). The probabilistic interpretation of (18) requires

0 < h() <oc and 0 <h*h() <oc (19)

holding almost everywhere. A majorizing kernel must also satisfy the defining inequality

h*h(e) <BJh() (20)

where B is a positive constant; the reason for this condition is explained below. The prob-

ability measure (18) is expressed either symmetrically as the law K(d1, d2) (supported

on the set j + 2 ) of a pair of correlated random vectors summing to , or as the law

dKe (ij) for just one of the two vectors. Examples of majorizing kernels appear below.

Equation (17) is adjusted for probabilistic interpretation using a majorizing kernel

h(): Divide through by h() and also multiply and divide by 2, h(ij), h( - ), h*h(),
and vIj2. The result is the FNS:h equation:

x( t) = e_ItXo() + f {.. } ds

{. } = x(mt - s) ®e x( - - s)dK(ij) + t s)

where

2Ih*h()
= h()' xo() h()' m() =

2,t)dK('q) = h*h(e)
d'q, (t) -

This is the form of the FNS equations that admits the interpretation in terms of a branch-

ing process: Let S be an exponentially distributed random variable with parameter vjj2.

Let K6 be a Bernoulli random variable with parameter . Let E1 and 2 be a pair

of correlated random variables distributed as Kt(di, d2). Assume So, K6, and are

independent. Then equation (21), interpreted probabilistically, may be written

Xo()ls0>tj+
=

- S6)1[so<tJ1[Koo1+ (23)

m()X(i,t - S9) ® X(2,t - S8)l[s9<t]1[K0=1}.



The recursive interpretation of (23) leads to the representation

x(, t) = X9 (r(, t)) (24)

for the solution of (21) where X9 (r (, t)) denotes a multiplicative functional on a branching

process whose evolutionary history is recorded by the random tree r(, t). The branching

process and multiplicative functional are described next. A proof that (24) holds appears

in [7]. The proof involves conditioning on the first branching in t) and appeals to the

strong Markov property of the process, imitating the original Le Jan - Sznitman proof.

The proof also requires the integrability of Xa(r(e, t)), a point discussed shortly.

Here is how the branching process works: The elapsed time in the branching process

runs contrary to the elapsed time in the partial differential equation. Starting at (, t),

a particle having frequency type = lives for an exponentially distributed length of

time S0 with parameter vj2 (so its mean is 1/vl2) and then it dies. In discussing such

particles it is useful to confuse the animate particle with its frequency. At the death

of a coin K9 is tossed. If K9 = 0 no new particles are born. If K9 = 1, then two

new particles, and 2 are born, distributed as K(di, d2). The process is repeated

independently for each of the new particles , E, whose exponential lifetimes S1, S2,

have parameters uIEi2, 112J2, respectively. This process is iterated with Ei and 2

subject to the same holding laws and splitting rules, and branching continues long as

there are living particles above the threshold t = 0. This results in a random tree, r(, t),

as illustrated in Figure 1. Such a tree records the path of a branching random walk,

comprised of particles { : v E V} having exponential lifetimes {S : v E V} which are

either terminated or not according to the Bernoulli variables {K : v E V}, where the

index set 7 = {9, 1,2, 11, 12, 111, 112, 121,... } is the natural labeling scheme for binary

reproduction. One can see that this branching process is the result of interpreting the

left hand side of (23) as a random variable, and proceeding recursively and iteratively

with this interpretation wherever possible, and then reducing the result of the iteration

procedure to a skeleton of random frequencies, their exponential lifetimes, and the kismet

Bernoulli variables.

6
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Here is how the multiplicative functional works: Figure 1 shows how such a tree r(, t)

may have two types of nodes: operational nodes, and input nodes. Operational nodes

(.) occur at branch points, when a particle dies and is replaced by two new particles.

Input nodes (o) occur at the leaves, when a particle either dies and is not replaced, or else

when it dies below the threshold t = 0. If an input node, located at (, t*) say, occurs

above t = 0, the forcing is evaluated at this point: y(e*, t*). If this input node occurs

below t = 0, then the initial datum is evaluated: xo(*). The multiplicative functional

combines these sampled values, working from the leaves toward the root, through the

non-associative binary operations

(a,b) i*m()a®b (25)

where the nesting of the operations corresponds to the branching structure of the tree. The

parameter value of any particular ®-product is the frequency type of that particular

operational node. The value of the multiplicative functional X0 (r(, t)) is the value that

is attained at the root of the tree located at (, t). As an example, the multiplicative

functional on the tree r(, t) shown in Figure 1, would assume the value

Xe(r(,t)) = m() [m(Ei)o(ii) ® xo(E12)] ® (E,t - - S2). (26)

The representation x(, t) = lEX0(r(, t)) depends on the finiteness and integrability

of the multiplicative functional. It is finite because by standardizing all the particle

lifetimes to a single epoch in discrete time, the resulting critical binary Galton-Watson

process terminates with probability one, and consequently, the branching random walk

in continuous time also terminates with probability one. Integrability holds by requiring

that for all E R and for all t 0,

Ixo()I 1, jo(,t) < 1, and m() 1. (27)

Then the multiplicative functional is bounded by 1 almost surely, because the inputs are

all combined though ordinary multiplications and ®-products, and a simple geometric

argument establishes that a ® b ajb.
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Figure 1: One realization of the random tree i-(, t) representing the branching process. A particle
of type E W lives for an exponentially distributed lifetime with parameter then depending
on the outcome of the Bernoulli random variable K0, it is replaced by either zero particles, or two
particles distributed as K(d1, d2), and the process begins anew. Here K0 = 1, K1 = 1, and
K2 = 0. The multiplicative functional samples the initial datum and forcing at the input nodes
(o) and then combines the results together at the internal nodes (.) according to the operation
(a, b) '- m()a ® b.
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The defining inequality (20) for majorizing kernels comes from the requirement m()

1. In three dimensions the equality h*h() = Ih() has the solutions

h()
= 7r3jI2

3 e1el
and h() /3 0, (28)

2ir ei

from which the constant B can be adjusted by scaling either the independent or dependent

variable. Even more fully supported solutions to the inequality h*h(e) h() in three

dimensions are known [71. The result is that the 3-dimensional Navier-Stokes equations

have solutions admitting the Fourier side representation

= h(e)JEXo('r(,t)) (29)

for a variety of majorizing kernels. A more precise statement of this result is given in [7]; es-

sentially whatever majorizing kernel h() is chosen, there is a corresponding Banach space

comprised of those functions whose Fourier transforms are commensurate with h(e), and

for suitably small initial datum and forcing as measured by the norm in this Banach space,

the representation (29) holds, which in turn yields global existence and uniqueness results.

§1.3 Overview of new results

The stochastic model introduced by Le Jan and Sznitman depends on the three di-

mensional situation; in the context of their paper it boils down to properties of the Riesz

kernel 71 3J2 on R3. This dimensional constraint is part of a more general phenomenon

involving the properties of majorizing kernels. It is now known that there do not exist

fully supported solutions to the convolution inequality

h * h() <B!h() (30)

R2 [45] The problem of extending the Le Jan - Sznitman results to the 2-dimensional

Navier-Stokes equations still remains, but it will require deeper ideas than simply trying

to replace (28) by a 2-dimensional analogues. The closest thing to such an extension is

that the local existence results described in Chapter 6 work equally well in dimensions 2

or 3.
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Solutions to (30) are majorizing kernels of exponent 9 = 1; more general majorizing

kernels of exponent 0 are defined (precisely in Chapter 2) as solutions to

h * h(.) BIeI°h(e). (31)

Notwithstanding the non-existence result mentioned above, there still remains the problem

of characterizing majorizing kernels of all exponents in all dimensions, and describing their

properties.

Here is what is covered in the remaining chapters: Chapter 2 deals with prerequi-

site topics. Analysis begins in Chapters 3 where a modicum of progress is made on this

apparently difficult problem of characterizing majorizing kernels. The integral represen-

tation described in Chapter 3 is extended in a utilitarian way in [7] but nothing close

to a complete theory exists. Chapter 4 addresses analyticity questions about functions

whose Fourier transforms are commensurate with majorizing kernels. Its utility is that

certain partial differential equations within the scope of this methodology have solutions

admitting holomorphic extensions; this chapter provides basic material for addressing this

phenomenon. In Chapter 5 the model introduced by Le Jan and Sznitman is put on a

more comprehensive foundation: the basic stochastic object, the multiplicative functional

X0 (r(, t)), is constructed without relying on any Markov process; it is replaced by a suc-

cessor, the spacetime random field X0(, t). In Chapter 6, the theory is extended to cover

local existence of solutions to the Navier-Stokes equations given arbitrarily large initial

datum and forcing. In Chapter 7 the focus is on the semi-linear KPP equation. A Fourier

side branching process representation of solutions is presented that complements known

results on branching Brownian motion. Then these two branching processes, in physical

and Fourier space, along with a second Fourier space branching process, and the Yule pro-

cess for stochastic comparison, are utilized to explain the finite time blow-up of the KPP

equation. As a corollary we see that the solution operator for the KPP equation preserves

the class of non-negative definite functions that have integrable second derivatives.



CHAPTER 2

PREREQUISITES AND NOTATION

2.1 Fourier transform calculus

The Fourier transform plays a central role in the theory. Since different versions of

the Fourier transform exist with different factors appearing in formulae, the purpose of

this section is to fix a version of the Fourier transform, record some of the consequences,

and state some notation. Some local departures from this choice are made in the sequel,

but these are explicitly noted. These departures occur when tying into the results of

other authors, and when the Fourier-Stieltjes transform plays the role of the characteristic

function of probability theory.

Given a complex valued function f L1(R), the Fourier transform

3: L'(R'') -* L°°(W) fl Co(1R) (32)

is defined by

1(e) = (f)(C) = (2/2 f eef(x)dx (33)

Here C(W') denotes the space of continuous functions on R and Co(R72) denotes the

subset of C(R) consisting of functions vanishing at infinity; C' (R') denotes the space of

functions possessing continuous partial derivatives of order k.

The Gauss-Weierstrass inversion formula says that for each Lebesgue point x of f,

(2)'2f(x) = lim f e1(C)e'2dC. (34)

(x) = (x) = (1g)(x) = (2)12 eg()d. (35)

The notation denotes the composition of g with the linear map x '-p x, that is,

(x) = g(x).

With the choice of factor (27r)/2 in front of the integral, the transform becomes a L2-

isometry: if f(s) E L1(R) fl L2(R) then If 12 = 11112. This is a basis for the Plancherel

) is defined by

11

In view of (34) the inverse Fourier transform of g(x) e L'( II,
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Theorems that extend the transform to a unitary operator T : L2(JR) L2(W). The

same notation is used even though these are distinct transformations on different spaces.

Although there is no need for this in the sequel, two representations of this Fourier-

Plancherel transform are (for ii 1)

1
rN

f() L2 urn J ef(x)dx (36)N*ooJ N
and

d (°° e'-1
1(e)

1-00 ix f(x)dx. (37)

We have the following theorems for the Fourier transform and its inverse acting on

and L2 functions. These are standard theorems, proofs for dimension n = 1 may be found

in [24], for example.

2.1 Theorem. Given f and g in L1(R), we have

f*g() = (2/21()
.

if in addition f and are in L'(R), then

= (2n)/21()*). (38)

2.2 Theorem. Given f and g in L2(R12), we have

'(f )(x) = (2ir)/2f*g(x) with the equality holding everywhere,

() = (2)/21*) for all E R.

Another useful extension of the Fourier transform is from 8, the Schwartz class of

C°°functions on R rapidly decreasing at infinity, to the dual space 8' of temperate

distributions on R'. Since 8 C L1, equation (33) is perfectly applicable for defining the

transform on 8. In fact, the Fourier transform is an isomorphism of $ onto itself, as well

as a continuous seif-adjoint linear operator on 8. Following the general procedure for

extending operations from $ to 8' [23, p. 259], we obtain the extension 3: 8' -* 8' defined

through the dual pairing

= (T, ), T E 8', E 8. (39)
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This extension is also a surjective homeomorphism. The formulae given in Theorems 2.1

and 2.2 do not necessarily apply to this extension of the Fourier transform, most notably,

the convolution of two temperate distributions need not be defined. However, if f and g

are in L2 (Rn), this extension of the Fourier transform can be used to extend Theorem 2.2:

2.3 Theorem. Given f and g in L2(1R), then

j) = (2r)n/21()
T) = (2i)/21*).

The reason for bringing temperate distributions into the analysis, is that unlike or-

dinary differential equations whose solutions are curves in lR', and where all norms are

equivalent, solutions to partial differential equations belong to infinite dimensional spaces,

and finding the space where the solution exists is part of the problem. The technique of

finding solutions informs the choice of function spaces. The branching process method-

ology induces its own method adapted function spaces called majorization spaces -

which vary according to the choice of majorizing kernel h(). For certain h(), the ma-

jorization spaces become subspaces of more familiar classical Banach spaces. The a priori

use of temperate distributions covers this variability while retaining the Fourier transform.

At the same time the convolution operation (which is not generally defined for temperate

distributions) is also retained, thanks to the defining property of majorizing kernels.

One final extension of the Fourier transform is needed. This is the FourierStieltjes

transform defined on the space M(R) of complex Borel measures on R. If u E M(R)

then its Fourier transform jl is defined either by recognizing i as a temperate distribution,

or by the formula

= (2f12 f eed(x). (40)

The two definitions agree [23, p. 283}. If i is a probability measure it is sometimes con-

venient to adjust the factor in front of the integral so that the transform becomes the

complex conjugate of the characteristic function of probability theory.
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2.2 Convolution and deltasequences

We make use of the following theorems on convolution. These are standard theorems;

proofs may be found, for example, in [23] and in [24].

2.4 Theorem. If f and g are in L ( ), then f * g is defined almost everywhere and

f*gEL'(R) with

If * gIi If IlL' llgIILl. (41)

2.5 Theorem. If f e L1(R') and g E L2(R), then f * g is defined almost everywhere

and f*g E L2(R') with

< jf12. (42)

) with i/p + 1/q 1 then f * g is defined

everywhere and is continuous and bounded with

f*gL IIfIILPgIILq. (43)

The relationship between the norms stated in Theorems 2.4, 2.5, and 2.6 has the

following generalization, that follows from Young's inequality [37, p. 91]:

2.7 Theorem. Let p, q, r and i/p + 1/q = 1 + 1/r. 1ff E LP(R'7) and g L(W2)

then f *g E

In the following theorem, the family of functions { : > 0} is manufactured from any

L'-function (x) with fçb(x)dx 1 by setting q(x) (C'x). It is not necessary to
assume that (x) > 0. A proof may be found in [46, p. 72].

2.8 Theorem. Let 1 <p < oc. 1ff E LP(W') then f*4 -p f in LP(R) as e -* 0.

In applications in the sequel, (x) is a Gaussian the density of a Gaussian random

variable, and Theorem 2.8 is expressed as a corresponding statement holding for k -f 00

under the correspondence = k' (and writing /k for k-1 ). This is referred to as a

deltasequence, for the obvious reason that as k -* oo, k(x) is converging weakly to the

delta function at the origin.
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§2.3 The substitution lemma

A theorem used several times in the sequel is the following substitution lemma for

conditional expectation and independence and is referred to simply as the substitution

lemma. Proofs may be found in Durrett [19, p. 224] and in Bhattacharya and Waymire

[8, p. 640].

2.9 Theorem. Let X: -* (Si,81) and Y: (1l,F) -* (S2,S2) be measurable maps

and : (S1 x 52, S x 52) -p C be measurable. Assume q5(X, Y) is integrable and that

cr(X) and u(Y) are independent. Then

{l(X,y)] (44)

§2.3 The index set V

The index set V is the collection of all finite words whose letters are taken from the

two element set {1, 2}, with the empty word denoted by 9. A typical index element is

vil...iflwithikE{1,2}fork_-1,...,n.Thatis,

V={O}u U1,2. (45)
n=1

The set V is equipped with the following additional structure.

The lexicographic order: 0 < 1 <2 < 11 < 12 < 21 <22 < 111

The length function : V - {0, 1,2,... } defined by 01 = 0, and ifv ui2.

then lvi = n.

The truncation operation, that truncates a word at k letters: if v = i1 . . . . i

then vlk_il...ik. IfkIvi,thenvfk=v.

The meet operation: vAw=vinwheren=max{k0:vlk=wlk}.

The partial order: v w if and only if v A w = v.

The concatenation operation: if v = i1 . . . ik, and w j, then

VW1...Zk31...jm. (46)



(S : v E V) =

(Sit V E V) =

821 822

Si

S11 S

8122

and S = (S2 v E V) is defined similarly. The superscript notation S is used to denote

the collection of all objects S such that v w.

§2.3 The sets J-U and other types of majorizing kernels

In the context of the analysis of Navier-Stokes and related equations (such as Burger's

equation) a majorizing kernel of exponent 0 is a non-negative locally integrable function

h() satisfying the inequality

h * h() <BIeh() (49)

for some positive constant B. The probabilistic interpretation of

dK(ij) - h(_u])h(1])d (50)

requires that h() be non-negative, and not be identically equal to zero. We also require

the support of h() to be a closed convex sub-semigroup (W, +) c (Wi, +) that contains

the origin, and has the same topological dimension as W', with

16

The boundary: t9V = {1, 2}°° consisting of all countably infinite words whose letters

are taken from the set {1,2}.

It is useful to view objects indexed by V as belonging to an infinite triangular array

with the rows ordered lexicographically, e.g.

s- (47)

The recursive definition will require an index shift that exploits the evident isomorphism

between S, S and S as partially ordered sets under the partial order . Here

= (48)

0<h()<oc and 0<h*h()<oo (51)
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holding almost everywhere on W. Typically W is a wedge or cone shaped region with the

apex at the origin, unless W is all of Rn. To be safe from pathologies we require that h()

be continuous wherever it is strictly positive.

With the exception of the majorizing kernels utilized in the analysis of Burger's equa-

tion, the majorizing kernels considered in the sequel are fully supported. The half-line

support of the majorizing kernels for Burger's equation helps sanction the notion of defin-

ing more general majorizing kernels supported on W properly contained in R. However,

the additional generality afforded by taking W R' is presently not matched by any

interesting application beyond Burger's equation. In fact, their use seems bizarre. Thus

the notation J-C'0 is used here to denote the collection of all fully supported majorizing

kernels of exponent 6 on R.

Within J-C are the standardized or normalized majorizing kernels satisfying the bound

sup = 1. (52)

Pursuant to the analysis of other evolutionary partial differential equations, a ma-

jorizing kernel is any function h() whose role in the theory is similar to that described in

Chapter 1 for the Navier-Stokes equation. Examples of more general types of majorizing

kernel appears in Chapter 7 in the analysis of the the KPP equation.

2.10 Remark. The following is perhaps relevant to any extension of the methodol-

ogy involving less than fully supported majorizing kernels: if a majorizing kernel li() is

supported on the cone about a of opening angle 8,

Fa,e{eER:a>IeIcos8}, (53)

where a 6 RTh, al = 1, and 0 < 0 < n/2, then any function ii(, t) that is dominated

by such a majorizing kernel also has support in the cone Fa,O, and its inverse Fourier

transform is the boundary value function of an analytic function defined on the open

region R - iF0, where = is the dual cone. Reed and Simon [47, pp. 19,

109] characterize the Fourier transforms of temperate distributions whose support lie in

such symmetric cones, and remark on generalizations to arbitrary convex cones.



CHAPTER 3

THE STRUCTURE OF MAJORIZING KERNELS, PART I

§3.1 Background and introduction

The convolution inequality that defines a majorizing kernel for the Navier-Stokes equa-

tions comes from the bound on the multiplier m(e) in the Fourier side branching process

representation of solutions. In Chapter 7 a similar bound gives rise to a majorizing ker-

nel for the Fourier transformed KPP equation. Presumably these are representative of

the general situation for branching process representations of solutions to certain non-

linear evolutionary partial differential equations. For FNS the bound m() { 1 is one

of three bounds that together force the multiplicative functional to be integrable. The

other bounds are on the initial datum and forcing: xo(e)l 1 and p(e, t) 1. These

bounds may appear brutal, but they are actually quite sharp in general, a fact readily ver-

ified by considering the non-linear ordinary differential equation y' = - y. The bound

xo()I < 1 is sharp in the KPP equation; this is exploited to demonstrate its finite time

blow-up, in Section 7.13.

For the Navier-Stokes equations in dimension 2 and 3 the inequality m() 1 leads

to the convolution inequality h*h() < jh(e). Although devoid of the incompressibility

condition, the 1-dimensional Burger's equation

'Ut + UU = _oo<x<oo, t0,
(54)

u(x, 0) 'uo(x),

shares with the Navier-Stokes system the structure

Ut = quadratic first order term + diffusion term, (55)

an analogy successfully pursued by Kreiss and Lorenz [31, p. 122}. This also leads to the

convolution inequality h*h() < jh(), except that it is in dimension 1.

Here is a list of known solutions to the equality h*h() = h() in various dimensions:

(i) In dimension 1, for any E R,

18

h() = e'1[ 0], (56)



In dimension 3, for any parameter i3> 0,

h() =
2ir

In dimension n 3,
p2 eni

h() = F(n)ic(fl+2)/2 eI1 (58)

This list is essentially complete (as a list of known solutions) up to the following modi-

fications: in any dimension, multiplication by ea , a E 1W, maps the solution set onto

itself; and, any of these solutions may be embedded into higher dimensions as singular

measures supported on linear subspaces, as these measures will still satisfy the convolution

equation. Such thin set solutions are not useful.

Solutions (i) in this list (with a > 0) serve as majorizing kernels for the stochastic

representation of solutions to Burger's equation constrained, for example, to lie in the

Hardy space H2 (R), i.e. the subspace of L2 (]R) consisting of those functions whose Fourier

transforms vanish on the negative half line. As noted above in (55), Burger's equation is a

natural choice for attempting to extend the probabilistic methodology introduced in [34]

to different equations. The half line support of these majorizing kernels is an artifact of the

non-existence of fully supported solutions to the convolution inequality h * h()

in dimension n = 1.

3 e31'

The family of solutions (ii) stem from Lemma 3 1 in the Le Jan - Sznitman paper [34]

where it is asserted that

L'a() = Ke('bc ® 'çbc) for = (59)

The kernel Ke is defined by equation (1.14) therein, and accordingly,

K ® ) = i f - (60)= --aIe
J(3

This implies that

satisfies h*h()

L'c)h() =
a e

(61)
1r 2

ejh(). The function

27r
!

C() G3) 1 e1e1
(62)

19

(57)
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is one of the infinite family of Bessel kernels introduced by Aronszajn and Smith [5].

This particular Bessel kernel, and the convolution with itself, are among several that

may be expressed in terms of elementary functions, and for this reason they stand out as

noteworthy examples. Beginning with this example, the analysis of the connection between

majorizing kernels and Bessel kernels, as well as other related functions, is explored in

Sections 3.4 and 6.5, and in [7].

Solutions (iii) are generalizations of the Le Jan - Sznitman solution

h() = irj (63)

to higher dimensions. These are the Riesz kernel solutions. They may be found by Fourier

analysis, and this is done in Section 3.4. Attempting to extend this family of solutions to

dimension n 2, say by defining

h() = C211, e e (64)

with some constant C2, encounters the integrability problem that

h*h(Cf11111doo. (65)

The results of this chapter are motivated by an attempt to enlarge this list and elucidate

the structure of majorizing kernels, with emphasis on solutions to the equality h * h() =

jh(). This appears to be a difficult problem with either the equality or inequality. A

modicum of progress has been made, with the introduction of the integral representation

given in Propositions 3.2 and 3.8, that is extended in a utilitarian way in [7] for the

purpose of constructing majorizing kernels (with inequality) for the FNS equation. Still,

nothing close to a complete theory of majorizing kernels exists. Moment relations are

explored in Sections 3.5 and 3.6. The connection to Brownian motion and other stable

processes is explored in Sections 3.7 and 3.8. Questions about the infinite divisibility of

majorizing kernels are raised in Section 3.9. Finally, in the last section, a weaker property

than infinite divisibility is considered, leading to results on the positive definiteness of

majorizing kernels. It should be noted that the discussion of Bessel kernels in Chapter 6
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could have been included here as part of the structure theory, but are included in Chapter

6 because of their immediate application to the FNS local existence results.

3.2 An integral representation in one dimension

The motivation for seeking non-negative solutions to the convolution inequality

h*h() (66)

in one dimension comes from the analysis of Burger's equation, and foreshadows the

integral representation of solutions (ii) and (iii) above. We begin with a summary of

one particular method of obtaining a stochastic and recursive representation of solutions

to the Fourier transformed Burger's equation, distinguished by its close parallel with the

Navier-Stokes theory presented in Chapter 1. Its rigorous construction requires simply a

prudent translation to Burger's equation the theory presented in Chapter 5 for the Fourier

Navier-Stokes equation.

After including a forcing term g(x, t) on the right hand side of equation (54), the

Fourier transform of the resulting equation is, in integrated form,

,
t) = e_1 2t0() + f eI28{ *

, t - s) + , t - s)}ds. (67)

Adjusted for probabilistic interpretation this becomes

x( t) = etXo() +
f

. . . } ds

1 1
(68)

{. . . } m() f x(mt - s)( - , t - s)dK) + t - s),

where

ieh*h(e)
= h(e)' xo()

h(e)'
m()

2(,t)
h*h(e) vl2h(

By using the majorizing kernel h() ee1[e>o], a > 0, the multiplier reduces to

l'\/21r
(69)
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and the splitting distribution dKe(i) is uniform on [0,]. The adapted Banach spaces

given by Definition 6.1 have analogues here, also denoted h and '1h,T, except that h(e),

with its half-line support and exponential decay, puts II into a subspace of the Hardy

space H (R), for any p in the range 2 p < oc (at least).

Following the procedure discussed in Chapter 5, but applied to Burger's equation,

produces the representation

= (70)

with the random scalar field X0 (, t) admitting the recursive description

Xo() if A'S0 t,

X9(,t) - - if 1Sot,KG=0, (71)

m(e)Xi(E1,tA'S6)X2(E2,tA'So) if )'S0 <t,K9 = 1.

Interpreted pointwise, equation (70) relates the solution to the expected value of a multi-

plicative functional on a branching process whose particle types cascade toward the origin.

Integrability of Xa(e, t) is achieved by requiring that the initial datum and forcing satisfy

the bounds

./vh(), (t)
2

(72)

Equipped with this summary, we return to the problem of solving the convolution in-

equality (66). Solutions h() different from the one-sided exponential functions considered

above will change the computation of the multiplicative functional slightly, due different

multipliers m(). Define a generic h() by

h() hx(e) = JE(e_X)1[ (73)

where X is any random variable taking values in R satisfying the condition

E(e') <oc for all 0. (74)

Then h() is essentially the bilateral Laplace-Stiltjies transform of dF (t) where Fx (t)

IP(X <t), except that the transform is restricted to, and supported on, the right half line.

Without this restriction, such transforms are known to be analytic in , for lying in
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some vertical strip in the complex plane {54, p. 238]. The condition (74) on the random

variable X means that this vertical strip contains the entire right half plane. It turns out

that h() so defined satisfies h * h() < Ih(). This is the content of Proposition 3.2.

3.2 Proposition. If h() = E(e')1[ 0] and X satisfies E(e_ex) <oc for all 0,

then h*h() <h(), with equality when IP(X = a) = 1, a E R.

Proof For > 0,

I.E

h*h(e)
= J

h( - r1)h(r1)dr1 (78)

where X1 X and X2 X are independent, and defined on a common probability space

(1l,.F,P). By independence of X1 and X2,

h* h() f E(e'eX2 ) (79)

3.1 Lemma. For any a,f3ER, a3, andO,
1

< + e1).

(X
)}.

ify0
if y<O.

- ,8, using

=(1+e

0.

(75)

(76)

(77)

II

Proof. Rearranging the inequality

Integrating this between 0

Equation (75) follows from

e(1+e)e

- e)a (e

1 + x eX gives

x d

and y produces

1eY<(1+e')
1en> (1+e')
the substitution y = a

and by Fubini's Theorem

h*h() = (f e_1e_21)d). (80)

Let N and M denote events that X1 and X2 agree and disagree, respectively:

N-LXi=X2]={we1l:Xi(w)_X2()}, (81)

M [X1 $ X2] = {w e : Xi(w) X2(w)}. (82)



Using the notation l(Y; A) = JA Y(w)dP(w),

h*h() = E e_1e_2_X1)d; N) + E
(f

e_1e_X21)d; M
-x2 -ex1= E (6_exi. N) + E

(e
x1 I 2

; M).

An application of Lemma 3.1 with c -X2 and 3 = -X1 gives

h*h() <E (e1; N) +E ( (e_2 + eX1); M

1E (e_X2 + e1; N) + (eX2 + e1; M)

= E(e1) + E(e2) =

3.3 The idea of an integral representation and its supporting lemma.

The 1-dimensional integral representation in the previous section (Proposition 3.2)

involves mixing exponential functions according to the law of the random variable X,

adumbrating solutions to h*h() = h() in any dimension admitting integral represen-

tations. In this section functions of the form

G() = f (e,t)d(t), (85)

are considered as candidates for solving G* G() = G(). The integrand

p(,t) (4ne e (86)

is the Gaussian kernel in n-dimensions, and -y is a measure supported on the positive half

line. For certain choices of the measure -y, solutions (ii) and (iii) may be obtained.

In general -y is a positive measure; in the special case that 'y is a probability measure,

C() becomes a weighted average of scaled Gaussian densities. Whether or not y is a

probability measure, it may happen that lim0 G() = cx. It is desirable that there be

no other R such that G() = oo; this is the only requirement made on the representing

24

(83)
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measure 'y. Once this requirement is made, it follows that G() is a strictly decreasing

function of IP:

0$ iI < l2I = pfl(2,t) <p(i,t) Vt> 0

= G() <G(1) <oc.

One benefit of the representation (85) stems from the following lemma. The idea is

that by pushing the convolution operation onto the representing measures, the higher

dimensional problem may be reduced to a problem about measures supported on [0, oc).

This lemma may be viewed as a generalization of the well-known Theorem 3.13 below

about subordinating Brownian motions.

3.3 Lemma. Suppose that

G1() = f p(,t)i(dt) and G2() = fP(e,t)72(dt). (87)

Then the convolution of G1 and C2 may be computed through the convolution of the mea-

sures 'yi and 'y2:
Poe

G1*G2() = I p(e,t)-y1*y2(dt). (88)
0



f
0000

= f ffn( d

00
0000

/ / f p - , ti)p(i, t2)di

0000

=
ff p(,ti)*p(,t2) di(t1)d2(t2)

0000 00

=Jf p(,ti+t2) d71(ti)d2(t2) =f p(,t) 1*2(dt). (89)

The last equality follows from the definition of the convolution of two measures:

* ff 1(t + t2)d1(t1)d2(t2). (90)

It is a theorem, e.g. [23, p. 281], that for any bounded Borel measurable function h,

fh(t)71 *2(dt) = ffh(ti (91)

El

§3.4 The Riesz kernel and Bessel kernel solutions

In this section the integral representation of the previous section, and Lemma 3.3, is

applied to the convolution equality h * h() = jh(), and the Riesz and Bessel kernel

solutions.

Fourier analysis may be used to initially guess, and then prove, that in dimension

n 3 , G() = Cjj' satisfies C * C() = eIG() on R12, where the C are certain

26

Proof. Fix E apply the Tonelli Theorem repeatedly.

G1*G2()
=

f G1( -
R

00 00



constants. Indeed, for the version of the Fourier transform used here, that satisfies

* g) = (2n)/2'(f)S'(g) (92)

we have
1= c(n,)

where

c(n, ) 2 (94)

An indication of the computation behind equation (93) is given in Rudin [48, p. 205].

Assuming that the Fourier transform calculus holds as when the convolution of the

two distributions is well-defined, then by equations (92) and (93)

3l(l-fl * 1n) = (2fh2[c(n,1)]21x12

and

= c(n,2)1x12.

Putting these together with the given factor suggests that

h() c(n,2) 1

solves the convolution equation, as both h * h() and Ih() have the same transform.

Proposition 3.5 below verifies the extension of (92) to the class of distributions consid-

ered here, establishing that h() given by equation (97) does indeed solve the convolution

equation. However, this may also be proved directly - and more easily - using the

integral representation (85).

3.4 Theorem. The distribution

GR()
F(-i) 1

- 2rr/2 n-1'

has the integral representation

27

(93)

(98)

coo
1

GR()
= J _pn(, t)dt, (99)ov

(2n)/2[c(n, 1)]2 IV' - Iin-1



and satisfies the convolution equation

GR*GR() - F(i) 2IIGR(').

Before proving this we consider a heuristic argument for finding the measure t1/2dt.

Suppose that G() C'-, which is expected to verify C * G() = IIG() for some

constant C, has an integral representation of the form (85) for some measure 'y. The

goal is to find this measure, which is now assumed to have a density 'y(t). According to

Lemma 3.3 then,

G*G() = fp(,t)*7(t)dt. (101)

Now exploit the fact that G * G() = CIJ is harmonic on W1/{0}. (There appears

to be no additional benefit in computing the distributional Laplacian LG * G() on all of

lRrl.) Starting from LG * G() = 0 on R'7{0}, take the Laplacian inside the integral, use

the fact that t) solves the heat equation, and then integrate by parts. The result is

that for e 0,

G*G()

= _f p(,t)*7(t)dt = fPn( at)--'y*'y(t)dt = 0. (102)

From this, and the assumption that 'y(t) 0, we may extract the identity

7*7(1) c1[to} (103)

where c is a positive constant.

The following calculation solves this for 'y(t). Provided that a> 1 and b> 1,

ta1>j *tbl[t>o} f(t - s)asbds = f(t - tU)a(tU)bdU (104)

1

= ta+b+1 1(1 - U)aUbdfl = B(a+ 1,b+ 1)ta+b+hl1t>01, (105)
0

where

B(m,n)
F(m)F(n) xm_l(1 - x)''dx (106)F(m+n) 0

28

(100)



is the Euler beta function. In particular,

- B(1 ')1t>o] =- \2'2

This suggests that the representing measure for G() = on IR, 71 3, should be

d'y(t) = t1/2dt, up to multiplication by a constant.

Although several steps in this heuristic argument are without rigorous justification,

e.g. taking the Laplacian inside the integral in equation (102), the result is correct.

Proof of Theorem 3.4. By a straightforward calculation,

001 00

GR() f p(,t)dt
= I 1 e2/4tdt

0
(4)n/2

1 I t(+1)/2e_I2/4t 1

I00u(fh2e4= (4)n/2 J t (4)n/2
0 U

1 / 4 \ (n-1)/2
= (4)n/2 J(n_i)/2e_u

F() 1

0 U 2ir/ n-1

The convolution is computed using Lemma 3.3 and equation (107):

(00 00

GR*GR() j p,t)irdt = f t/2e_j2/4tdt
0

(471)12/2
0

I00
t(_12+22e_I2/4t 71 100 u_2)/2e_h12/4

(471)12/2 0 t (4-)n/2
0 U

71 4 (n-2)/2
- (471)12/2 () I00U(n-2)/2eu

F(2)
0 U 4(fl-2)/2 ejn_2

Combining equations (108) and (109) shows that GR() satisfies the equation

GR*GR() =

and that 2'nl'defF(T)2G() F (-) 1h() F(-) F()r(+2)/2 eJnl
satisfies the convolution equation h*h(e) =

29

(107)

D
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We return to the problem of extending (92) to the class of distributions considered

here. Its proof uses the integral representation for the Riesz kernels. Perhaps this is

unavoidable. It does not appear to be possible, for example, to give a proof based on

the fact that when n/2 < c < n, the distribution is the sum of an L'-function and

an L2-function. A general theorem that says that (92) holds for temperate distributions

when either the product or the convolution is well-defined is elusive. Such a theorem is

stated, but without proof, in Champeney [13, p. 142]. The original work of Schwartz may

be the best source.

3.5 Proposition. Suppose that 0 < c <n, 0 < <n, and 0 < a + i < n. Then the

convolution on R of the distributions and has inverse Fourier transform

* = (2ir)f1231(p) .

Proof. Let R.)() = 'Y', for 0 <'y < n. This has the integral representation

2tirf/2 POO

=
J

p(,t)t22dt,F() o
and by Lemma 3.3 and calculations similar to (108) and (109) we have

* R() n/2 F()F()F(

Define the approximation R() to R() by
NR() = I p(,t)t2V2dt.

iN-1

It is straightforward to check that RN) () E S and consequently, using this fact along

with R) e 8', we have

(R) *R()) = (2r)/2(R))(Y'R). (116)

Since Rc, * R() is a temperate function [23, p. 258], the value of the functional acting

on any b E S may be computed as the integral

(RQ * Rp, i f Ra * R)d, (117)



1G() G)()
= J

t2_1e_jej2h'4t_tdt.
0
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and moreover Ra+)kb( e L'(W), making it a dominating function for the sequence

R' * R)), and

urn f * R))d
=
f R * R))d, (118)Noo .n

from which we conclude

urn RN) * R R * R (convergence in 8').
N*oo

Similarly (and this requires + < n),

urn (2/2('Ra)(1R) (convergence in 8').
N*oo

(120)

Using the fact that the transform Y :8' 8' is a homeomorphism, the two convergent

sequences are in one-to-one correspondence and their limit points correspond:

Y'(Ra * R) = (2)/2(1Ra)(3'R). (121)

This completes the proof. D

We return to the list in the beginning of Section 3.1. An integral representation for

solution (ii) is obtained simply by recognizing this function as a Bessel kernel. The Bessel

kernels were introduced by Calderón [11] and by Aronszajn and Smith [5]. Here it is

sufficient to define them according to the integral representation (85), taking the measure

'y to be the law of a gamma random variable:

1y(t)dt = ta/2_letdt.F()
3.6 Definition. The Bessel kernel of order o > 0 on R is the function Ga : [0, oc]

defined through the integral representation

(119)

An immediate benefit of this particular definition is that in light of Lemma 3.3, the

Bessel kernels on W form a semigroup under convolution.



32

Actually, the gamma random variables belong to a two parameter family of distribu-

tions. Building both parameters into the integral representation achieves a slight gen-

eralization over Definition 3.6. Certain results of this generalization are recorded for

computational reference.

3.7 Proposition. Let
r00

= / p(,t)'y.çj2(t)dt
Jo

where

= F() te (125)

is the density of a gamma random variable with shape parameter a/2 and scale parameter
2 Then

(m)
1 fin G 1(e)d = 1

2. G*G()

s. ('c) (x) (2/2 (2
2)a/2

/ -
Proof The first assertion is established by exchanging the order of integration, justified by

Tonelli's Theorem, integrating the Gaussian kernel to 1, and then integrating the gamma

density to 1. The second assertion follows from Lemma 3.3 and the fact that for the

convolution of two gamma distributions that have the same scale parameter, it is the

shape parameters that add. For the third statement, the order of integration is exchanged

giving

J°0
e_t1xj2t2e_2t('G) (x) = (2n)/2()

0 t

(2ir)/2
/3c

faQ
t c/2 _dt

= F() 0 (2+Ixj2) e

= (2)/2 (2
+ Ix!2)

A straightforward change of variables established the fourth assertion.

(124)

(126)

Li
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There are two identities that are useful in computing the Bessel kernels of order n - 1

and n+1. These are
ae2cth =

ç J
and

e2
- f (128)

An elementary proof for these identities can be found in Jones [27, P. 315]. Equations

(127) and (128) are also referred to as subordination identities by Taylor [51, pp. 218,

220] who gives a more sophisticated proof in the context of a discussion of the classical

evolution equations. A straightforward application of these identities yields, respectively,

1
[00 _t_j2/4t 2/ e-IeI

(129)n-1\ I F(-)(4n)fl/2 j e - F(Th1)(4r)f/2

and
1

I00
e_t_1e12/4tn+1() = F()(4/2 tV2 F()(4n)/2

From (129) and (130) we obtain

G3) = (131)
4n 87r

Consequently G() = 2G () is a solution to the convolution equation h * h() =

Ih(). Scaling both the independent and dependent variables (see Lemma 4.2) shows

that 32G(iT3) solves the same equation. Combining this with the previously discussed

results on the Riesz kernels proves the following proposition:

3.8 Proposition. All of the known fully supported and rotationally invariant solutions

to C * C() = IG() on R (listed in the beginning of section 3.1) have the integral

representation

G() = f(e,t)(t)dt, e (132)

for some representing measure '-y(t)dt. These are, in dimension n = 3, the scaled Bessel

kernel solutions

(127)

(130)

G() 3 e
= with y(t) = 2/3e_2t, 3 > 0; (133)



and in dimension n 3, the Riesz kernel solutions

G()_(2) 1 1

- F(n) ir II'
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(134)with 'y(t)
=

3.5 Random variables, moments, and the convolution equation

The convolution equation h*h(e) IIh() on W, h() 0, has the following prob-

abilistic interpretation when h() is integrable. The scaling of both the independent and

dependent variables according to

. h() (135)

forms a 1-parameter group of transformations mapping the solution set onto itself. (The

group is the multiplicative group of positive real numbers.) This transformation also

scales the integral f ,i3. h()d, and consequently there is a member of the solution set

that integrates to 1. Without loss of generality then, when considering h() E L1 (Rn) it

may be assumed that h() is the density of a random variable X. Under this assumption,

the convolution equation h*h(e) = Ih(), is equivalent to the statement

x1 +X2 =X (136)

where X1 and X2 are independent, both distributed as X, and X has the size-biased

distribution of X. The concept of size-biased is usually formulated for nonnegative random

variables. Here it is extended to random variables taking values in R: let Y be random

variable in W' with E(IYI) < oo, then has the corresponding size-biased distribution if

_
(jyT))

(137)

for every positive Borel function g.

The formulation of the convolution equation as a size-biased equation gives a direct

way of computing certain moment restrictions on XI. The analysis of the convolution

equation h*h() = )Ih() via the sized-biased equation Xi + X2 = X is first done in the

case that the density of X has the integral representation

'00

= Ip(,t)(t)dt, (138)
0



Proof. The joint density of the pair (Z, T) on W' x [0, oc) is

£ f \ 'y(t) _zI2/2JZ,TZ,t) (2ir)i

where z = (zi,... , z7) E and t > 0. Let (X, S) denote the pair of random variables

a(z,t)
a(,$)

I'

defined through the transformation

Jx =
(141)

S=T,

and for the corresponding change of variables, employ the notation

I s = t = 8,
(142)

where (i,. . . ) R' is the argument of the density of X. The joint density of

(X,S) is

and the Jacobian is easily computed as

fx,s(,$) = fZ,T(Z(,S),t(,S))

3(zl,.. . ,z,t)
,,$)

ô(z,t)
a(e,$)

= = (2s)"2.
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and then simply under the hypothesis that X is rotationally invariant. Unfortunately

these moment restriction are of no help in actually solving the convolution equation, or

even excluding the existence of solutions in certain dimensions.

The connection between (138) and the Gauss transform is now established. The n-

dimensional Gauss transform of the law of a strictly positive random variable A is the

law of the random variable \/AZ where Z is an n-dimensional multivariate standard

normal random variable that is independent of A. (Some less obvious and more interesting

properties of the Gauss transform are discussed in [14, p. 108]).

3.9 Proposition (well-known). Let Z be a standard normal random variable on

and let T be independent of Z with density 'y(t) on [0, oc). Then X = \/Z has density
/00

= Jp(,t)7(t)dt. (139)

U

(143)

(144)



Then
'y(s) e2/4s,fx,s(, s) - (4irs)''/2

and the marginal density of X in the pair (X, S) is

ffx,s(, s)ds
= f (4)fl,2eh/4(S)dS. (146)

D

Proposition 3.9 makes transparent the relationship between the moments of Gx ()

and 'y(t). Let

= / l8Gx()d (147)
JJp

and

= f t'y(t)dt. (148)

Here s is any positive real number so perhaps i& and 'Ys should be called generalized

absolute moments and generalized moments respectively, but for brevity all are referred

to as moments.

3.10 Lemma. The moments i.9 and 'Ys are related by

( n±)
= 2 'Ys/2 (149)

2)

Proof. Since z 2 is a chi-squared random variable with n degrees of freedom, it follows

that
2/2

= I''' = 25/2 2

x F()
Now apply Proposition 3.9 and use the independence of Z and T:

p(n+8)
= = 28/2'Y5/228/'2 F() (151)

3.11 Theorem. Let X be a random variable on R satisfying the size-biased equation

X1 + X2 4 X where X, X1 and X2 are independent and identically distributed. Suppose

that the density of X enjoys the representation
,00

Gx()
= J p(,t)(t)dt. (152)

0

(150)
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Then the following moment relation holds for the representing measure 'y:

(*'y)3F(s + ) = 2y3iF(s + + ).

Proof. According to Lemma 3.3 the density of X has the form

'OO

Gx*Gx() = J p(,t)'y*'y(t)dt,
0

and by Lemma 3.10 f-in2s,2sç Sm
iL L

At the same time, using the fact that .5 is distributed as size-biased X, let g(x) =

in the definition of sizebiased, equation (137), to conclude that

EII2s = EiXIE
1 F(s + + )- EjxI22s++ F()

with

ElxI=f Gx()df Gx*G()d1.
Equating these to expressions for lE!XI2 gives equation (153). LI

3.12 Theorem. Let X be a rotationally invariant random variable on RT' satisfying the

size-biased equation

Xi +X2 =X (158)

where X, X1 and X2 are independent and identically distributed. Then the moments

= EIXIk satisfy the infinite system of equations

112k-2j/-1'2j
1;

j=0

The first few moment relations given by (159) are

fork>1. (159)

Remarkably, the relation between the second and third moment is independent of the

dimension. Perhaps this could be construed as evidence that dimension as a parameter

Iti = 1, = 2P2, 5 = 2 +
2(Th ± 2)2

7 = 2 + 6(
+ 2)24. (160)

37
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can not be varied, i.e. that a solution to (158) exists only in dimension 3. (See Open

Problem 4.23).

In the following proof of this theorem w denotes the uniform measure on the unit

sphere S1 C R', normalized to a probability measure by dividing by 27rfI2/F(). We

let ee /I and ii = ii, and use the notation dw(e) when the measure w is integrated

against a continuous function. The Fourier transform of w is

(x)
= f exdwn(ee) = 2VF()L, (161)

lxi

where v (n - 2)/2. It is convenient to temporarily adopt the particular version of the

Fourier transform implicit in equation (161), and for this version, f*g = f'. Folland [23,

p. 247] provides an indication of this computation of i (x) in terms of Bessel functions

by obtaining a differential equation satisfied by the radial component, starting with the

fact that (1 - e12)w is the zero measure. This is also worked out in detail in Donoghue

[18, p. 202].

Proof of Theorem 3.12. Let Li denote the law of XI on [0, cc). Under the hypothesis of

rotational invariance of X, knowing either or /1 is equivalent to knowing the other, and

ILk = iLk for all k 0. The Fourier transform of t may be computed as the Hankel

transform of :

°° J,,(rp)
(x) = (CiZ)(r) = 2IT() / d(p),j (rp)

where r = xl. Indeed,

(x)
= f edp)

=
ffS'x[O,00) e_iPeexd(w ® )(e, P)

00

= L ffl-
'00 Poe

= J (plxI)d(p) = 2vF()J
Jv(IxlP)d(P)

o (lxIp)

The plan is to compare moments through the equation

= (Cvpi)(T)



J(z)1
Z1' 2'

Comparing this with the power series expansion of the exponential function establishes

thatforz>Oandu>-
00 z2k 1

00 2k
Z 1

e'.
J(z) <4k

k=O k!F(k + ) = 2V (2k)' - 2Vzil 2"
k=O

This is used to justify the exchanging the order or integration and summation in computing

(164). The abscissa of convergence of the Laplace transform of i is o R where R is
the radius of convergence of the following power series:

00. 00 00

= >: I
rkpk

dZ(p) = 100 erPd/Z(p).

k=O k=O 0

Of course, this is certain to hold as an equality between finite magnitudes only for r <R.

It turns out that R because the moments of X satisfy /1k k! (See Lemma 4.3). It

follows that for Ir < 1,

eTd(p) < (168)

making a dominating function for (rp)J(rp) with respect to the measure 7, as long

as - <v, and ri < 1. Then by Fubini's Theorem, both sides of (164) may be evaluated

by exchanging the order of summation and integration, and integrating term by term.

The result is
( 00 (_1)kF()2kr2k

2 00 (_1)kF()2k+lr2k
(169)

k=0
4kk!F(k+)

} = k=0 4kk?F(k+Th)

Collecting coefficients of r2k gives the desired result, equation (159). E

A converse of Theorem 3.12 is that if X is a rotationally invariant random variable on

RTh whose absolute moments Pk satisfy (159), and if

00 (i)kz1
4k!f( 1)

k=O

39

which is just the Hankel transform analogue of p2(x) = Jp(x). The integrand in the

right hand side of (163) has the well-known power series expansion

(165)

/J2kM4kk!F(k+) forall kO (170)



for some constant M independent of k, or more generally, if

1 1/2klimsupt2k
k*oo

then X satisfies the size-biased equation (158). Here is a short explanation. Either of

these conditions assure that the Hankel transform of ,7, the law of X , may be computed

by exchanging the order of summation and integration when the integrand J (rp) /(rp)"

is expanded in the power series (165). The resulting series is

(K14Z)(r) = F()
00 )kr2k

(172)
k=O

that represents the transform locally at the origin. It has a positive radius of convergence,

R1 say, that is related to the limit in (171). The Hankel transform of p/7, which is the law

of X , also has radius of convergence R1, and has the power series expansion

k 2k(-1) p2k+lr
4kk!F(k+l!)

(JCpjZ)(r) = F()
k=O

Condition (159) implies that for r

(1Cii)2(r) = (Cvpi7)(r).

Thanks to just even powers of r appearing in the Hankel transforms, the corresponding

Fourier transforms are necessarily analytic in the open ball B (0, R1) E C of radius R1

centered at the origin. Inside B (0, R1) the same identity holds for the Fourier transforms.

This identity persists on all of R by analytic continuation: according to the theory

presented in Chapter 4, if the Fourier transform of a positive function on R' is locally

analytic at the origin, then it is necessarily holomorphic on a tube in Ctm whose width

is determined at the origin. The equality of the characteristic functions of Xi + X2

and X establishes the advertised distributional equality between the random variables:

40

(171)
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3.6 The duplication formula for the gamma function

Suppose that the random variable X has the density of the Bessel kernel C2 () on lf

whose representing measure is exponential, as established in Section 3.4:

1 e1'1
G2(e) = = / p(,t)e dt. (175)

'±'lt ç J

A direct computation of the moments of X shows that

EXl2s
1 I II2s_led = I r'edr = F(2s + 2). (176)

Jo

At the same time, by Lemma 3.10,

= 2F(s + 1)()2) (177)

Equating these two expressions and letting z = s + 1 yields

F(2z) = 22Z_1F(z)F(z + (178)

which is the duplication formula for the gamma function. The explanation for this lies in

equivalence between the subordination identity (127) and the duplication formula. This

equivalence is discussed in Taylor [51, p. 2651.

3. 7 Subordinated Brownian motion

Lemma 3.3 shows how the convolution of two functions - within a certain class -

may be pushed onto the convolution of the two representing measures. This works for

any pair of measures, finite or not. Now suppose that 'y and 72 are the laws of random

variables, T1 and T2, say. A probability model that illuminates Lemma 3.3 interprets

C1 () and C2 () as the densities of independent Brownian motions sampled at the times

T1 and T2, respectively. Then the sum of the induced random variables is controlled by

the the addition T1 + T2. Here is how this works: Let , and 2) be i.i.d. Brownian

motions on R, for example, Brownian motions such that for any Borel set A E R' and

for all t 0,

E A) f 1 ej2/4tdt.
A ('/4irt)'

(179)



(1) (2)Randomize the sampling times for X and X , as T1 and T2, respectively, where the

pair (Ti, T2) is independent of the three Brownian motions. It is not necessary to stipulate

independence between T1 and T2. Then and XT1+T2 have the same distribution.

3.13 Theorem. With the hypotheses on the Brownian motions and sampling times spelled

out in the previous paragraph, +

Proof A fundamental property of Brownian motion is its independent increments. This
(1) (2) d .may be used to establish that X1 + X2 = Z,+t2 for any deterministic times ti and t2.

The extension to random times may be accomplished using the substitution lemma: for

any Borel set A c i,

EA): (180)

i {i {i[4) + E A] u(Ti,T2)}} = (181)

E { [E (ix) + e A]) ]ti=Ti,ti=T2} (182)

E{[E(1[t1+t2 E Al) ]ti=Ti,t2=T2} =
(183)

E A] u(Ti,T2)}} =(T1+T2 E A). (184)

In the application of this lemma, the Brownian motions z assume values in the

state space (C[0, cc), C), where C is the Borel u-field determined by the metric

00

p(w1,w2) max (p1(t) - w2(t)( A 1).
O<t<n

n=rl

This u-field coincides with the u-field generated by the finite dimensional cylinder sets

C = {w E C[0, cc) : w(ti), . . . , (t) E A} (186)

where A is Borel in R' [29, p. 60]. The random variables T1 and T2 assumes values in

([0, cc), B) where B is the Borel u-field on the half line. The integrable function y is the

composition of the indicator with the map that evaluates a given continuous function at

a given argument, for example, y(t, T) =

42

(185)



respectively. For the other values of a we may obtain a power series expansions of the radial

part of the stable density by writing (187) as a Hankel transform, and then expanding

43

§3.8 Other semigroups of stable laws, and Schoenberg's Theorem

Lemma 3.3 is a generalization of Theorem 3.13 with a more general measure dy(t)

playing the role of the random sampling time T. The probabilistic interpretation suggests

ways that Lemma 3.3 may be generalized by replacing the Brownian process with another

stable process. Let q$ (, t) denote the marginal at t of a symmetric stable process of

order a on lR' with 0 < a 2. An easier description is

q$(,t) = (2ir) f e_tjaeedx, (187)

with the Fourier transform adjusted here for interpretation as the inversion of a char-

acteristic function. We could define q (, t) for a outside (0, 2], but it would not give

probability measures, because e_ti is positive definite only for a in this range. These

stable densities satisfy

q *... *q$)(,t) = q$.)(,tct) = k q$(Ic_1,t), (188)

i factors

a fact directly connected with the defining property of the a-exponent strictly stable

multivariate random variables: such a random variable X, at least in the rotationally

invariant case, enjoys the distributional equality

X1++Xk"X, (189)

where X, and , X are independent and identically distributed.

The only two radially symmetric stable laws with densities that have expression in

terms of elementary functions are the multivariate Cauchy and Gaussian distributions.

For these we have

q(,t) _(n+i)/2p(Th
) (t2 +

(190)

and

q,c12)(,t) = p(,t) = (41rt)_2e2/'4t, (191)
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either the exponential or Bessel function into a series depending on weather a < 1 or

a [52, p. 212].

The essential property of the Gaussian kernels exploited by Lemma 3.3 is the isomor-

phism between the convolution semigroup and the additive semigroup of non-negative real

numbers,

({p(,t) t 0},*) (ii,+), (192)

a fact that follows directly from the relation

p(,t1) *Pfl(e,t2) =p(,t1 +t2). (193)

Since this isomorphism property is also shared by the convolution semigroup of the stable

laws, Lemma 3.3 may be generalized by replacing Pn (, t) by q (, t). Even further

generalizations are possible, using the transition densities of Levy processes on R, but

these are not considered here.

What is not obvious, and therefore expressed in the following theorem, is that this

generalization using stable densities does not produce a larger class of functions. In par-

ticular, it does not enlarge the class of available candidates for solving the convolution

inequality h * h() < jih(), although the alternative representation may purchase some

computational efficiency. An example of the use of the stable laws in this capacity may

be found in [7, pp. 5015-5021].

3.14 Theorem. Let G() have the representation

C() = fq(,t)dv(t), 0< a 2, (194)

for some measure v, not necessarily finite. Then there exists a measure 'y such G() has

the representation
'00

G()
= J

p(,t)d7(t).
0

(195)

It is interesting that a special case of this theorem may be proved analytically using

Schoenberg's Theorem.
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3.15 Theorem (Schoenberg). A function F(r) defined for r has the property that

for every integer n, the function

= F(j) (196)

is a function of positive type on W if and only if there exists a positive measure z of finite

total mass such that
'00

F(r) =J
e_r2d(,\). (197)

0

This is proved in Donoghue [18, p. 205]. The finiteness of the measure occurs because

of an appeal to Helly's selection theorem. This restriction carries over to the proof of the

special case.

Proof of Theorem 3.14, special case. The special case is when a = 1 and when the total

mass of v is finite. Then the hypothesis is that G() has the representation

G() fq,t)dv(t). (198)

For the purpose of applying Schoenberg's Theorem, let (r, t) q$, (j, t) where r =

The function

F(r) = fn(r,t)dv(t)
has the property that in any dimension, in say,

'00
= F(jj) I (r,t)dv(t)

Jo

is positive definite. To see this, observe that if m = n then q$j1)
, t) is obviously positive

definite on R', its transform implicit in (187). The key point is that even when in $ n,

the functions

__-1( 201ç"" ç , t) = (t + I2)1)/2'
E

are still positive definite, for all t > 0. Indeed, up to a scaling of the independent and

dependent variables, these are Fourier transforms of Bessel kernels, (see Proposition 3.7).

The function m() is essentially a mixture of the functions given by equation (201).

Applying Schoenberg's Theorem obtains
'00

F(r)
= J

eT2d) (202)
0



for some finite measure i, and therefore

G()
= f e12d()). (203)

Let denote the pushforward of [t under the involution ) -+ (4A) 1, meaning that for

all Borel sets A ç [0, oo),

= E l: (4x)1 E A}). (204)

Then G() has the representation (195) where d'y(t) = (4irt)nI2d,u*(t).

The proof of general case of Theorem 3.14 depends on the following lemma. Feller

discusses the one dimensional version of this in a Feller sort of way [20, p. 336]. We need

the convolution semigroups of one-sided stable laws {uC@) (, t) t 0} of characteristic

exponent 0 <j3 < 1 whose Laplace transforms are

cc

e'u (, t)dx = et. (205)

For these densities the analogue of (188) is

3) u(j(, t) = (/3)(, ict) = ic'/u) (ic', t). (206)
, factors

3.16 Lemma. For any 0 < a 2 and 0 < 3 < 1

t)
= f q) (, s)u() (s, t)ds. (207)

Proof. Fix t> 0 and let q(, t) be defined by the right hand side of (207). The function

q(, t) is rotationally invariant and it can be recognized as the density of a strictly stable

random variable of exponent a/3 on R by showing that the for any positive integer ), the

)-fold convolution with itself satisfies

q*A(t) = (208)

First,
'00

q*A( t)
J

q) (, (s, \t)ds (209)
0

46
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by the generalization of Lemma 3.3 and using the semigroup properties of (s, t). Next,

using the stability properties of (i3) (s, t)

q*) t) f q$) (, s)u() (A1L°s, t))C1ds, (210)

and the variable substitution s A"3s' achieves (208), using properties of s) and

the definition of q(, t). This holds for any t> 0. Now letting t vary,

q(, t1) * q(, t2) = q(, ti + t2) (211)

again by the generalization of Lemma 3.3. This characterizes {q(, t) t 0} as a

semigroup of rotationally invariant strictly stable laws, and identifies it up to semigroup

isomorphism with {q$ (, t) : t> 0}. In order to exclude the possibility that

q(, t)
qça/3) (, Ct) (212)

for some c 1, take the inverse Fourier transform of both sides of (207) (with the trans-

form adjusted to be considered a characteristic function) and note that the transform of

(, t) is essentially the Laplace transform of (s, t) evaluated at x:

f q(,t)ed = fe_5au(s,t)ds
0

= et

= f q(t)ed (213)

The first equality uses the definition of q(, t), with an exchange in the order of integration.

Since the transforms of q(, t) and q3)(, C) agree for all C> 0, c = 1 in equation (212).

Proof of Theorem 3.L, general case. Suppose

G() = f t)dv(C) (214)

for some 0 < c < 2. By means of Lemma 3.16,

P00/COO
G()

= J (j q(2)(s)u(O/2)(st)ds) dv(t), (215)
0 0



and by Tonelli's Theorem

where

G() = s)(s)ds (216)

(s)
= f u(2)(s,t)dv(t). (217)

Cn_c_/3CaC/3

Cc+3Cn_aCn_I3

For yet another example, coming from a different type of convolution equation, in Chapter

7 the function
6

- 'sinhir
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E

§3.9 Size-biased and infinitely divisible random variables.

A random variable X taking values in RTh is infinitely divisible if for each positive
(k) (k)integer k there exist z. i. d. random variables Y1 ,.. . , Y such that

XY1++Y. (218)

The notion may be extended to non-negative functions f : 11 - R+ U {oo} that are not

necessarily integrable. Such a function is infinitely divisible if for each positive integer k

there exists a non-negative function g such that

f=gk=g*...*g. (219)

k factors

With this extension the known solutions to h*h() = h() presented at the beginning

of this chapter are all infinitely divisible. Indeed, the exponential distribution is infinitely

divisible, and multiplication by any e does not alter the infinite divisibility of this or

any other solution to the convolution equation. The Bessel kernels are infinitely divisible,

as they belong to a convolution semigroup as noted in Section 3.4. Finally the infinitely

divisibility of the Riesz kernel solutions may be seen by the following convolution formula

that appears in Proposition 3.5: With 0 < a, /3, a + /3 < n,

(ix * (y)
= f - zldz (220)

in

(221)

(222)
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is shown to solve the convolution equation

h*h() = v(1+IeI2)h() (223)

and suitably normalized, this is the density of an infinitely divisible random variable whose

associated Levy process is the Meixner process [49, p. 24]. The infinite divisibility of all

of these solutions suggests the following:

3.17 Open problem. Prove or disprove, adding as needed hypotheses on the symmetry

of h(), positive definiteness of h(), or support of h(): In any dimension non-negative

solutions to h*h() = IIh(), or more generally the equation h*h(e) = Iah(), 0> 0, or

even h*h() = g()h() for certain g(), are necessarily infinitely divisible.

This appears to be a difficult problem that will probably not be solved until there is a

complete characterization of the solutions to such convolution equations in all dimensions.

Adhering to the methodology of approaching hard problems by first considering easier

ones, observe that if h() is infinitely divisible and solves h*h() = h(), then lh()
is also infinitely divisible. This observation leads to the following ancillary question, that

recognizes that perhaps the convolution equation itself is not necessary for the conclu-

sion: If X is an infinitely divisible random variable, is the size-biased random variable X

necessarily infinitely divisible? The answer is no. Some examples of infinitely divisible

random variables whose size-biased random variables are, and are not, infinitely divisible,

are given next, and then an open problem is stated.

In each of the following cases both the original and sizebiased random variable are

infinitely divisible:

Any gamma random variable.

A geometric random variable X with probability mass function ]P{X = k} qpk,

k 0, has X 1 + X1 + X2 where X1 and X2 are independent and distributed as

x.

For a Poisson random variable Y, Y 4 1 + Y.
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These examples are fairly easy. Poisson random variables are central to discussions of

infinite divisibility, see for example [50].

The first of the following three counter-examples relies on the arithmetic structure

of the support of the random variable, the second is analytic. The third is included for

general mathematical interest, as it involves a property of the Riemann zeta function.

3.18 Counterexample (arithmetical). There exists an infinitely divisible random vari-

able Z such that Z (having the size-biased distribution of Z) is not infinitely divisible.

Proof Let X be a (shifted) geometric random variable, that is, with probability mass

function

1P(X_k)=qp' for k0,
with q = 1 - p E (0, 1). The probability generating function of X is

Gx(s) = E(sX) = q(1 -

with nth root

[Gx(s)]' -_ ql/Th

(-1/n\(1ps)'/''
=ql/fl

k
)(l)kpksk

k=O

where /) 1)(c-2)...(c--k+1)
ts\k =

(a0).

The parity of the number of negative terms in the numerator of is matched by the

factor (_i)c, so that the coefficient of is always positive. Since [G(1)]1/ = 1, these

positive coefficients sum to 1, and there exists a well-defined random variable y(Th) whose

probability generating function is Cy()(s) = [Gx(s)]'/. In fact, let y(n) be such that

(- 1/n\
IF(Y = k) k )

(_i)kpk for k 0.

This shows that X is infinitely divisible and gives an explicit construction of the i.i.d.

summands such that

(229)
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Let Z = aX1 + /3X2 where X1 and X2 are independent, both distributed as X, and

a </3 < 2a, /3 a. Then Z is infinitely divisible, and assumes values in the set

L = {ma + n13 : m 0, n 0} = {0, a, /3, + /3, }. (230)

Observethat/3aLand(a+/3)/2L.
The size-biased random variable Z is not infinitely divisible. Indeed, Z assumes values

in L/{0}, since IP(Z = 0) = 0, but otherwise Z assumes the same set of values as

but with different (size-biased) probabilities. Suppose Z T1 + T2 where independent

random variables T1 and T2 have the same distribution. This will produce a contradiction.

The smallest value assumed by Z with positive probability is a, hence P(T1 = a) > 0.

The second smallest value assumed by Z with positive probability is 3, hence one of the

3.19 Counterexample (analytic). Let Z be a rotationally invariant lRTh-valued random

variable. Assume that Z has a strictly positive density, fz(x) say, and in particular, that

fz(0) < oo. Then the size-biased random variable is not infinitely divisible.

Proof. Suppose Z were infinitely divisible. Then there is a random variable Y such that

two independent copies of Y sum to Z in distribution. Moreover Y itself is infinitely

divisible, and so the characteristic function of Y, say qy(), is never zero. Whereas Z

is rotationally invariant, its characteristic function is both real and rotationally

invariant. The relationship ) = () holds; and by continuity, and the fact that

following holds:

= > 0 or IP(T1 = /3 - a) > 0. (231)

The first case implies that

IP(Z= (a+/3)) =IP(T1 = a)IP(T2 = /i3) >0;

the second case implies that

1P(Z = 2/3 - a) = 1P2(T1 = /3 - a) > 0.

(232)

(233)

Both of these values lie outside the support of Z. LI
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y () is never zero, y () is everywhere the positive square root of Thus y ()
is rotationally invariant and the same holds Y. Let g(x) > 0 be the RadonNikodym

derivative of the law of Y with respect to Lebesgue measure. (The singular part of the

law of Y in the Lebesgue decomposition with respect to Lebesgue measure must be zero,

because if Y has atoms so would Z.) Using the rotational invariance of y(x), and the

hypothesis that fz(0) <00,

f(x)
x=o

x=O

= 0 = g * g(0)
= f g2(x)dx, (234)

arriving at the conclusion g(x) 0, contradicting the fact that g(x) is a probability

density. El

3.20 Counterexample (number theoretic). Fix a> 1 and let Zq denote the random

variable whose characteristic function is related to the Riemann zeta function via

qz(t) _1(a)(a - it). (235)

Then Za is infinitely divisible but Za (having the size-biased distribution of Za) is not

infinitely divisible.

Proof. The infinite divisibility of Z is proved in Chung [16, pp. 256-259]. The random

variable Za assumes values in the additive semigroup

L={logn:n=1,2,3,...} (236)

while assumes values in L' L/{0}, a fact associated with the equation

= (a)(t). (237)

Applying the same argument as given in the proof of Counterexample 3.18 obtains the

fact that Z is not infinitely divisible. El

In all these counterexamples we see that where an obstruction to the infinite divisibility

of the size-biased random variable occurs, it occurs at the origin. This has to do with the

absolute value function going to zero, at zero.
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3.21 Open problem. Characterize the infinitely divisible random variables whose size-

biased distributions are also infinitely divisible.

Even though it is not known if solutions to the convolution equation h*h() II°h()
are necessarily infinitely divisible, the next section established that certain solutions to

convolution equations of this type share an important property with the symmetric in-

finitely divisible laws.

§3.10 The positive definiteness of majorizing kernels

Known rotationally invariant solutions to convolution equations of the form h * h() =

are either integrable and positive definite, or else they are distributions of positive

type. No counter-examples are known. A partial reason for this is given in this section,

although it might not be the key reason: the arguments presented here depend on there

being an even number of convolution factors, and there could exist alternative arguments

that generalize to equations having triple convolutions, for example.

3.22 Theorem. Let h(), not necessarily positive, solve the convolution equation

h*h() = g()h(), (238)

and suppose that h() is the sum of an L1-function and an L2-function, and satisfies the

condition h() = h() for all RTh. Suppose that f() = [g()]1 is a bounded integrable

function with f(x) = (3'f)(x) strictly positive and integrable. Then h(x) = (31h)(x)

is strictly positive.

3.23 Theorem. Let h() > 0 solve the convolution equation

h*h() = g()h(), (239)

and suppose that h() is integrable and satisfies the condition h() = h() for all E Ri'.

Suppose that the multiplicative inverse of g() has the integral representation

e112/4tdy(t)
g() =I' 1= (4t)

for some positive measure 'y. Then (3'li)(x) is strictly positive.

(240)
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To prove these theorems the key idea is that (1h)(x) is the convolution of a strictly

positive function and the square of a real valued function. Knowing the specific function

g() can facilitate implementing this idea. Since trying to prove the most general case

encounters technical difficulties with the Fourier transform operational calculus, the hy-

potheses on g() are taken to be sufficiently general to cover many interesting convolution

equations, but at the same time, permit fairly straightforward proofs of these theorems.

These conditions include the case g() for various 0 > 0, that arise in the analysis

of the Navier-Stokes equations, and the case g() = 1 + II2 which occurs in the analysis

of the FKPP equation. Generalizations of these theorems are certainly possible.

Proof of Theorem 3.22. We may assume that h() is integrable. To see this, write the

equation as

f()h*h() = h(), f() = L fl L°°. (241)

Let h() = hi() + h2() where h1 E L1 and h2 E L2. Then

2

f h()d= ff()h*h()de
i,j=1

flIL°°II1 * hlILl + 2IjfIjLIIhl * h2IILl + If L' 1h2 * h2IjL

If))o Ihi ji + 2HfIILOO Ihi IL' jh2 1L2 + lfL' 1h2 J <oc. (242)

This uses Theorems 2.4, 2.5, and 2.6.

Taking the inverse Fourier transform of equation (241) (justified below), implies that

h(s) solves

h(s) = (1h)(x) = {7(x)}*{(3'h)2(x)} = j*2(s). (243)

The hypothesis on h() implies that h(s) is real, and consequently h(s) is strictly positive,

being the convolution of a positive function and a non-negative function.

Obtaining (243) is now justified. Let {k()}O be a delta sequence of Gaussians,

each element of which integrates to 1. Then as k - oc,

h*h*k() h * h() (244)



rT 0
h * h() p (, t) d7(t)] d = jh(e)IL1 <00, (251)
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and since f() L°°, we also have the L'convergence

f()h*h*k() f()h*h(). (245)

Let qk(x) = ('ck)(x) and note that limk,0 k(x) (2ir)/2. Applying 3 to the

sequence in the left hand side of (245) obtains, for each k,

{f()h*h*ck()} = (21r)_fh2{f(x)} * { ('h*h*) (x)}

= (2V2{f(x)}*{h2(x) . ç(x)}. (246)

The first equality holds by Theorem 2.1 as

f(), h*h*q(), f(x), (3'h*h*k) (x) = h2(x) k(X) (247)

are all L'-functions. The second equality holds by Theorem 2.1. We have the pointwise

convergence

(2)fh2{f(x)}*{h2(x)
. (x)} f(x)*h2(x), (248)

and the convergence is also in L°° fl CO3 because the entire sequence is the image of a

Cauchy sequence under the continuous transformation between Banach spaces:

' :L'(R') + L°°(R') fl Co(R). (249)

Thus the pointwise limit agrees with the L°°-limit, and the limits of the two Cauchy

sequences are Fourier transform pairs: f()h*h() f* h2(x). LI

Proof of Thereom 3.23. First, write the convolution equation as

f()h * h()
=

f h * h()p, t)d(t) = (250)

Then for any x e R, using the hypothesis that h() > 0,



and it follows by the Fubini-Tonelli theorem that

('h)(x) = (2n)2 f If eh * h(e)p(, t)dl d(t)
io URn j

too
= (2irY2 I {(1h)2(x)} * {(x,t)}d7(t)

Jo

{(3'h)2(x)} * {('f)(x)}.

The symmetry of h() implies that its transform is real, and therefore (3'h)(x) is the

convolution of a non-negative function and a strictly positive function. The middle equality

is justified by applying the same argument as the preceding theorem, using the fact that

(x,t) (9'p)(,t) EL' flL°°. (253)

Here (3'f)(x) = j°p(x, t) d'y(t) by definition, since there is no a priori assignment of

f() = [g()}' to any particular space where the Fourier transform is defined. LI
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CHAPTER 4

THE STRUCTURE OF MAJORIZING KERNELS, PART II

§4.1 Introduction: a question about log-convexity

This chapter continues with the structure theory of majorizing kernels, discussing those

majorizing kernels whose inverse Fourier transforms are analytic. It is motivated by the

following two facts and their juxtaposition, leading to Question 4.1 below:

The sets fC'0 (consisting of majorizing kernels on R'2 of exponent 0) are logarith-

mically convex. That is, if h1() and h2() > 0 satisfy

h1 * BiII°h(), and h2 * h2(e) B2II9h(e), (254)

then h() = [h1()]1[h2()}°2 verifies the inequality h * h() BIe°h() where

B = B'B2, cTi + o2 = 1 and 0 < o1, o2 < 1. Moreover, if hi() e J-00' and

h2(e) J(nO2, then h() - [hl()]cr1[h2()]cr2 E Jf1O3, where 03 = c7101 + a202.

The inverse Fourier transform of

e8'h()
,

(255)

(which solves h*h() = h() for any 3> 0) is analytic on the tube R3 + iU =

{x + iy E C3 jy </3}. The fact that (1h)(x) is analytic on some tube R3 + iLJ

may be determined directly from the equation h*h() h(), along with the

condition h() E L1(R3), without actually knowing this family of solutions.

The first fact is useful in constructing exponent 0 majorizing kernels across a range of

values for 9, applicable in the construction of Banach spaces Wh and Ih,T* used in the

local existence and uniqueness proofs for Navier-Stokes equations. The utility of the

second fact is this: Suppose u(x, t) e R3 is a solution to Navier-Stokes equations such

that t)I <Kh() for some constant K with h() given by equation (255). Then the

components flj(X, t) of u(x, t), which are given by

u(x,t) = (')(x,t)
2 f ej(,t)d, 1 <j <3, (256)

(2ir) j3

57
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each extend in the spatial variable to a holomorphic function of several complex variables.

This particular h() is an example of a type of majorizing kernel that may be called

analytic-majorizing (even though it is the inverse Fourier transform that is analytic, not

h() that is analytic). It is natural to ask: Is the sub-collection of such majorizing kernels
J{7O

C J-C'0 say, also log-convex? The confluence of log-convexity and analyticity of

the inverse Fourier transform (within a certain class of majorizing kernels) leads to the

following question, that is slightly more general than asking if J-C'° is log-convex:

4.1 Question. Let h1() and h2() > 0 solve

h1*h1(e) II°'h1(e) and h2h2(e) < jO2h2() (257)

respectively, and suppose both of these have analytic inverse Fourier transforms. Then does

h() [h1()]a[h2()]2, which necessarily solves h*h() 3h(), 03 O0 + 0202,

also have analytic inverse Fourier transform?

It may not be obvious that the answer is yes. The analyticity discussed in Theorem

4.7 below traces back to the equality in h*h() = °h(), and when this is replaced by an

inequality, as occurs when taking log-convex combinations, trying to prove an analogous

result encounters an inequality that "goes the wrong way".

Using this question as a starting point, this chapter presents some results about ma-

jorizing kernels whose inverse Fourier transforms are analytic, the moments of such ma-

jorizing kernels, and the connections between these things. It is organized as follows: First

assertions (i) and (ii) above are justified. Question 4.1 is made precise and well-posed,

and then answered by Theorem 4.17. A comparison with a related theorem in harmonic

analysis is made. Finally open problems are stated.

§4.2 Motivating statements justified; theorems about moments, analyticity

The first assertion, about the logarithmic convexity of ?f'°, and its generalization,

may be proved by applying Holders inequality to the integral expressing the convolution.

This is done in detail in Corollary 2.1 of [7]. The rest of this section deals with the second

assertion.
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4.2 Lemma. Suppose that h() solves h*h() = B II°h() and h() E L'(W').

Let h1() = B'h() and let h2() = °B'h(/3). Then h1() solves
h1*h1() = )°hi(x) and h2() also solves h2*h2() = II°h2(x) for any 3 > 0. If the

particular value = (M/B)'/° is used, where M = 5 h()d, then 5 h2()d = 1.

For this choice /3 = 1, the moments Uk = 5 eIch()de and 11k = 5 JIkh2()d are related

by
Mk/O

Uk = B/3ak = M(--) ,Uk.

Proof Just compute: h1*h1(e) = B2h*h() = B2Bj°h() = I9h1(), and for any

,3>0

h2*h2() = /3220h1*h1(/3) /32n26 fhi(
/3n_29 f h(/3

= /3m_2&hi*h1(/3) = /3°jh1(3) = (259)

Since

f h2()d = f h1(/3)/3d = /3°f hi()d = /38B' f
(260)

the choice of 3 = /3 = (M/B)1/° yields 5 h2()d = 1. Finally

Uk
= f Ikhd

= f /3kh/3fld /3k+OBf k/3n-OB_lh(/3)de

= /3k+OBf kh()d = B/3°tk. (261)

E

4.3 Lemma. If h() solves h*h() B ° h(), where 9 1, and h(,)(L1 = M <

oc, then the absolute moments Uk = 5 h()d are bounded by Uk k!

Proof. As in Lemma 4.2, let h2() /36B1h(/3), with /3 = (M/B)'10. The moments

= 5 jk/() will be computed by letting X, X1, and X2 be i.i.d. random variables

on I' with law h2(). First observe that = 1 and either < 1 for all s 0, or else

(258)



f eh()d
= fR

M>tk(M\k/0) =M
k=O k=O

r
I '

JJi k.

k <cc
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12s > 1 for some so > 0. The bound k <k! for all k> 1 is established: In the first case

this is obvious since 1 k!, so assume that j > 1 for some SO > 0. Since

= f(log 2I()d 0, (262)

it follows that is a convex function of .s and therefore increasing on the interval (so, oo)

using uo = 1, and > 1. (The proof will show that exists for all s 0.) The

argument is by induction. Let k0 denote the smallest integer such that 12k0+1 > 1 while

< 1. Then certainly ji, <j! for 1 j k0. Consider 12k+1 for k k0 + 1

with the induction hypothesis being < j! for 1 < § k. Since is increasing on

(k0 + 1, oc) c (so, oc), it follows that

k+1 k+6 = f ihd = f kh*h()d

= 1Xi + X21k - j)! = (k + 1)k!, (263)

which completes the inductive step, and so ,u < k! for all k and hence for all k.

Combining Pk k! with equation (258) completes the proof. Lii

4.4 Lemma. If h() solves h*h() = B 6 h(e), where 0? 1, and lh(e)L1 M <

cc, then eth() E L'(R) for any t < B"°M'/8.

Proof. Fix t < Bh/OM_l/e. The series expansion of etlel combined with Tonelli's Theorem

gives

(264)

where r < 1 is defined by t rB"0M'/0. U

The following theorem is fundamental, so a proof is included. No specific reference is

known. Note that the hypothesis does not require h() to be positive.

=
k=O
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4.5 Theorem. Let 1(x) = (27r)/2 f eh()de where h() e L'(1R), and suppose

that etIe1h() L'(R') for some t > 0. Then 1(x) has a holomorphic extension to the

tube lR + jut C C where R + iU {x + iy E C: II <t} given by

f(z) (2)_2 f eh(e)de. (265)

Proof For fixed , the function z -* eh() is analytic on Ci', except perhaps on a set of

measure zero where h() = oo or else is not defined. Redefining h() on a set of measure

zero so that it is everywhere finite, if necessary, the following formula holds for all E RTh:

/ 1 r deh(e) I . (266)
\27r1J Jr (Wi - z) (w - z)

The domain of integration is the set F = {w e : wj - = r, 1 j n} where

(= ((i,.. . , ('ri,) is fixed, and equation (266) holds, at least, for any z that is an element of

for example the proof of Osgood's Lemma in [26, p. 2]. It is worth observing that with

the exception of dimension n = 1, F 3L(; r), and if n = 1 then F = &(; r). This

fact is not exploited here in this proof.

Choose any z E W' + iU and polydisc (; r) centered at such that z E ((; r) and

(ç; r) C R' + Consider the function

ei'U) h(1-'
G(w,) (267)(w - z1)... (w - z)

defined on F x RTh with F c (; r) described above. Since F is compact, there is a

minimum distance R0 from z to F and

1 1- (268)
(w1 - zi)... (w - z) R

for all w E F. Moreover G(w,) E L'(F x W1, dw x de), where Idwi is the product of

the arc-length measures: dwl dwit... This uses the hypothesis that etIeIh() is

integrable for some t> 0:

f eh()j ' e1h(jffiG(w)HdwIdJJ R
ldwIdJJ R dwId

(2n)ri. r f etIh()jde < . (269)



1 f eh()de(27r)7V2 IR

1 [ (1 \fl f
- (2ic)n/2 J j} Jr (wi - zi)... (w

1 f
' 1 "

(27r)n/2 (\) / G(w,e)dwde
R 2iri Jr

(2) (2/ f G(w, )ddw

/i\Tz I.

dw
= ) Jr(wi_zi).(wnzn)

where

(w)
1

2 f ewh()d (271)
(2ir) jn

is defined for w e F; and (w) is continuous on F by the dominated convergence theorem,

using F C RTh + jut. Still keeping z e (; r) fixed, the series expansion

1

(w - zl)... (w - z)
(zi i)V1 ... (z -n

(wi - (i)111+l ... (w,

is absolutely and uniformly convergent for w E F. Substitute the expansion into (270)

and interchange the order of summation and integration, using the boundedness of the

continuous function on the compact set F. It follows that f(z) has the power series

expansion
00

- iY' ... (z - n) (273)
Ill .....lJn=O

where

a111...11

= 1 (w1 - Zi)111+l . . . (w - z)+l
/ 1 '\ ' ço(w)dw

(274)

and (w) is given by (271) LI

dwd- z)
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The inequality ej <etlel holds because if w = x + iy E F C 1R + iU, then
I eI

yj <t with ee = For any z E (; r), using the integrability of G(w, ) and Fubini's

Theorem,

(270)

(272)

The only topological fact about U,, that gets used in this proof is that Ut is a nonempty

open set. The same proof works mutatjs mutandis for the following theorem with U

00

11,1=0
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replaced by V°. It is recorded here because of the similarity with Theorem 4.5, and it is

used in the sequel in the proof of the log-convexity of JC°.

4.6 Theorem. Let ('h)(x) = (2fl/2 f. eth()de where h() e L1(ll), and suppose

that V = {t E : eteh() E L'(R)} has nonernpty interior V0. Then (31h)(x) extends

to a holomorphic function f(z) on 1W' + iV° C Ci', given by

f(z) = (2)_f12 f eh(e)de. (275)

The sequential application of Lemma 4.4 and Theorem 4.6 gives the following theorem,

and this justifies the second part of statement (ii) given at the beginning of this chapter.

4.7 Theorem. If h() solves h*h() B j° h(), where 0 1, and h(e)L1 = M <

oc, then f(x) = (3'h)(x) = (2ir)f/2 f eixeh()d extends to a holomorphic function

f(z) on the tube RTh + jut {x + iy E Ctm: Il <t} where t = B"°M19.

This bound is sharp in one sense and not sharp in another. It is sharp because in

dimension n = 1 the function h() = Be satisfies li*h() = BIh() with M

Ba1. According to the theorem (3'h)(x) extends to an analytic function on the strip

{x + iy: y < a}. In fact, the inverse Fourier transform is

(9'h)(x) 1 1
(276)

/27r a - 'ix

which extends to a holomorphic function on the set {x+iy : y> -a}. In higher dimensions

or in the case that h() is radially symmetric, this bound is not sharp. For example, the

Bessel kernel solution given by equation (133) satisfy the convolution equality with B = 1,

o 1, and
2M=-f (277)

and the theorem gives the region of analyticity being a tube of diameter /3/2 while the

actual bound is twice this: The inverse Fourier transform of these Bessel kernels are (see

Section 3.6)

n/2
(

/32 c/2('G3)(x) = (2ir)
/32 + x12)

. (278)
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§4.3 Analytic-majorizing kernels and their integrability

Question 4.1 is made well-posed by specifying the domain of the inverse Fourier trans-

form, and then made precise by saying what it means for an inverse Fourier transform of

a majorizing kernel to be analytic.

Recall that a majorizing kernel h() E is a positive locally integrable function

h() (belonging to the space 3' of temperate distributions on 1R), that solves the nonlinear

convolution inequality h*h() <BI°h(). The Fourier transform on 8' is the standard

extension of

n"2 e ço(x)dx (279)
(27r) / Ji

as a continuous seif-adjoint linear operator on the Schwartz class S of C°°-functions rapidly

decreasing at infinity [23, p. 259].

Analyticity of (3'h)(x) is taken to mean the weakest thing possible, requiring only

that it be analytic in some neighborhood of the origin. This idea is analogous to Lukacs

treatment of analytic characteristic functions [38, p. 191]. According to Lukacs, an ana-

lytic characteristic function is

"a characteristic function which coincides with a regular analytic function in some neigh-
borhood of the origin in the complex z-plane".

4.8 Definition. A majorizing kernel h() is analytic-majorizing if there exists a function

1(z) admitting power series expansion

00

1(z) (280)
111 .....iin=O

that converges for allz (zi,. . . z1) E (O; p), where (O; p) is the open polydisc (O; p) =

{z E C' : zI < pj, 1 <j nJ., and the distribution (T'h)(x) 3' coincides with 1(x)

in the neighborhood B(0; p) L(O; p) fl W'. The subset of consisting of analytic-

majorizing kernels is denoted

This is a well-defined property. A distribution T E D' is equal to zero in the neigh-

borhood of a given point if for every c.p D with support within this neighborhood, we

have (T, ) = 0. Two distributions T1 and T2 agree locally if their difference T1 - T2 van-

ishes locally [25, p. 144]. The same applies to the temperate distributions 8' C D'. Note
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that the term analytic-majorizirig refers to this property of the inverse Fourier transform

(1h)(x), not that h() is analytic.

It turns out that the inverse Fourier transform of a majorizing kernel is analytic every-

where on lR7 if it is locally analytic at the origin. Even more, the width of its holomorphic

extension into a tubular region in C is determined locally at the origin. As a first step

in the proof of this, the following theorem shows that given an analytic-majorizing kernel

h() e S', h() is actually in L1(W'). The proof requires some topology, which is first

reviewed (basic reference: Folland, [23]).

The vector space S becomes a topological vector space with the family of seminorms

Hl(m,) = sup (1 + xDmJô(x)P. (281)
x E1R

Endowed with the weakest topology making all of the seminorm maps continuous, S be-

comes a Frechet space, that is, a complete, metrizable, locally convex topological vector

space. A sequence con converges to zero in this topology if all of its seminorms converge to

zero, but the convergence of the seminorms need not be uniform. In order to verify that

cok -* 0 it suffices to check that k0kl(m,cx) -* 0 for an arbitrary m and ci. The space 8' of

temperate distributions (continuous linear functionals on 5) is endowed with the weak-star

topology: a sequence Tk in 8' converges to T0 if and only if (Tk, co) converges to (To, y)

for every co in S. The topology on 5' is not metrizable.

In the proof of the following theorem, we use the version of the Fourier transform

whose inverse corresponds to the characteristic function of probability theory.

4.9 Theorem. J-00 C L1(R) n

Proof. Let h E Of course h E already; the important thing is to show that

h E L1(R1). The hypothesis is that h is a locally integrable function and the temperate

distribution Ii = 31h agrees with an analytic function f(x) on an open ball B(0, ). Let

h(0) denote f(0).

Let k(z) = (27r)_f12kf/2e_H2 and qk() = eII2 be sequences of Gaussians

(which for any fixed k are Fourier transform pairs). Then ql is a deltasequence while
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1k converges to 1 pointwise as k -* oc. According to the extension of the inverse Fourier

transform from S to 8'

(h,k) = (h,qk) for all k 1. (282)

The right hand side has limit f h(x)dx by the monotone convergence theorem. It remains

to show that (h, q) -* h(0) <cxi The immediate difficulty in asserting this is that q5

8o in 8' and o acts on continuous functions, whereas Ii itself is a temperate distribution.

The action of the delta-sequence is isolated by means of a cut-off function 'b with the

following properties:

E 8,

O 1 on B(O, /2),

0 on B(0,)c.

Then for all k

(h,k) (h,k)+(h,(1)k) (283)

and the right hand side has the following limits

urn (h,k) lirn f f(x)(x)k(x)dx f(0)(0) = h(0), (284)koo koo B(O,E)

urn (Ii, (1 k) =0. (285)koo

The first holds because k is a delta-sequence and the product f'/ is continuous, while the

second holds because K1 1/')k II(m,cx) -i 0 for arbitrary (m, ). To verify this, fix (m, o).

By the product rule and triangle inequality

!

jô(1(x)).j5k(x)I. (286)

Since all of the proper derivatives &(1 - '(x)) vanish outside the region f/2 IXI

let

C=sup sup ô(1(x)). (287)
3<c



= p(k, xi,. . . ,

lim sup (1 + !xDmIDk(x)I < lim sup(1 + r)mkl q(r)e2 . (291)
kOO

J
k*OC (r>

Each term in the expansion of the right side of (291) has the form

CkHr3e''2 where j 'yj + m, (292)

(and the constant C is not the same for each term). Each term reaches a maximum at

r = /j/k. By taking k sufficiently large,

sup Ckj Th/2rje_12 =
k (
2k21
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This is a finite constant, being the maximum over a finite collection of supremums of

continuous functions over a compact set. Accordingly, it is sufficient to show that

k2' sup(l + lxp)m(1 + C) ôk(x)I =0, (288)

and since this is a finite sum, it suffices to show that for arbitrary y,

lim sup (1 + xDmIUk(x)I 0. (289)
koo

The following facts about &Ye_11xI2 may be established by induction:

There exists a polynomial p'y p(k, x1, . . , x7) of total degree 'yj such that

Ye_H2

The degree of p as a polynomial in k is 'y.

The degree of p as a polynomial in x1,. . . , x,, is y.

Consider the following substitutions made to the polynomial p7(k, x1,. . . , xn): replace each

occurrence of k (m < 'y) by kH, replace each occurrence of x by r = xJ, and finally

replace each numerical coefficient with its absolute value. Making these substitutions with

an implicit use of the triangle inequality gives

kHq(r)e'2 (290)

where q(r) is a polynomial of degree whose coefficients are all positive. Then returning

to equation (289)

(293)



(3'g)(x) =
1

[00

1 [00

1

1+X2+

e2g()d

( 1

1+n2(xn)

[00

Jo0 fl n
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and the limit of each of these terms is 0 as k -+ 00. This completes the proof, since

f h(x)dx = limk,( h, k) limko(h, k) h(0) <00. E

4.4 The log-convexity of J-f

Before addressing the log-convexity of we consider a counter-example: the inverse

Fourier transform of a function g() E L' (JI) need not be holomorphic on any strip, even if

it is analytic in the unit disc centered at the origin. This sheds some light on Theorem 4.16

below, which asserts that for analytic-majorizing kernels, the inverse Fourier transform is

always holomorphic on some -tube W' + iU.

4.10 Example. Let T() = ,JIeHeI for R, and define g() by

g() ) +
11

(294)
n=1

The factors of 2 assure integrability, and Fubini's Theorem gives

(295)

This has a meromorphic extension to C with poles at z = ±i and at z = n ± in1 for

n 1; it is analytic in the unit disc but not analytic on any strip containing the real axis.

Let f(x) = ('h)(x) be the inverse Fourier transform of h() E J{;°. Define functions

for 1 <j <m by setting all the coordinates except xj equal to zero:

(296)

Let and j3 denote the (single coordinate) moments and the absolute (single coordi-

nate) moments of h() respectively:

= f h()d, i)
= f = (b,... ,). (297)

The key idea in the proof of the following theorem comes from Lucaks [38, p. 20].

1

+



2k
1

(2)n/2 fR
(sineit) h()de.
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4.11 Theorem. Let h() E J-C'. Then all of the moments of h() that involve just a

single coordinate exist: c <j3 <00, for 1 j n.

Proof. Let g(x) be any function. For all k 1, define the difference operators i by

g(x) =g(x+t)-g(x-t), (298)

and the higher order difference operators by induction:

(299)

For the function g(x) = eixe, induction shows that = (2i sin

By hypothesis, f(x) = (3'h)(x) is the inverse Fourier transform of an analytic-

majorizing kernel. Then each of the functions 1 < j < n, has a power series

expansion valid for x <p3:
00

= a,3x. (300)

ii =0

1g(x) t/Xtg(x).

(303)

Since all of the derivatives of f3 (x3.) exist at x = 0, they may be expressed using the

inferior limits and difference operators:

f(k)(0) = lim
(0)

liminf
f(0)

(301)=
(2t)k t-oto (2t)k

Using the continuity

urn inf

of the absolute

2kfi (0)

value function,

liminf 2kfi(0) <M<oo. (302)
(2t)2k t_*0 (2t)2kt-0

At the same time,

2kfi (0) -
(2t)2k f k(e)

(2w) n
h()d

x=O (2t)2k

= (2isin3t 2k

h()d
(2n) 2t )f



L n

f()

i
ôx

1e3h()}

the derivatives f(.x.) may be computed [23, p. 54] as

ak
1 1 f eiih(e)d}1 (2/2 = (2)n/2 {eih()

In particular,

d <f Ieh(e)de <oo, (306)

1 I ikkh()d 1 k (3)
xj=o - (2ir)'/2 R (2ir)f/2 ck
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Then by Fatou's Lemma (and of course, using h() 0),

M > liminf
1 f (sint2k

h()dt*O (2-)n/2 JRn \ t )

(2/ f liminf
(sinjt) h()d (2)n/2

2kh()d (304)

This establishes that the moments c exist for k 1. Lemma 4.2 shows that for a

probability measure, the absolute moment function i& is a convex function of s. Exactly

the same argument shows that the continuous extension of is also a convex

function of s. Since cj < oc for all k, using this convexity, c < oo for

ailk. El

4.12 Lemma. Each f3(.x3.) has the power series expansion

k
1 i cxf(x.) = (2i-)n/2

that converges for Ixj <Pj, where the p3 are the polydisc radii given in Definition .8.

Proof. The coefficients off3 (.x3.) in equation (305) are identified using the standard theory

of Taylor series [9, p. 543] and the existence of the moments /3. Since

(305)

(307)

(308)

and the coefficients a, in the power series (280) are a LI

4.13 Theorem. Let h() L1(J1), h() c = fh(e)de, and I3k = f
for some particular 1 j n. Then the power series

a2kzr °° akZ

(2k)!
' Fm(zj)> k''

and Fa(zj), (309)
k=O k=O k=O



and therefore Pa < P < pa. The inequality on the left holds because the largest cluster

point of the subsequence does not exceed the largest cluster point of the original sequence;

the inequality on the right holds because the for each k, c /3k. If p = 0, the conclusion

of the theorem is trivial, so assume 0 < t < p6. Expanding etIij in a power series, and

using Tonelli 's Theorem gives

fetjh(e)d < f (ei1 + e_t) h()d

132k 2k - 2Y' 2k t2k < 00. (311)-
k=O k=O

This shows that if t < Pa then t < Pa, and hence Pe Pa, closing the chain of inequalities:

Pa P Pa. This also establishes the second conclusion of the theorem, that etiIh()
L1(R) provided t < p.

4.14 Theorem. If h() J-('0, and Pi (1 < j < n) are the polydisc radii given in

Definition 4.8, then etiiIh() E L'(R) whenever tj <p3.

Proof. By definition, each of the functions f3(.x3.) has a power series expansion at the

origin with radius of convergence Pj. Using Lemma 4.12 these are precisely the power

series
1

(j)
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share the same radius of convergence, p (= pj) say. If p 0, then etiIh(t) E L'(W') for

all t < p.

Proof. Let p6, p, and Pa denote the convergence radii of F6(z), Fm(zj), and Fa(Zj) re-

1
Fm(ixj) (312)(2)/2 k! (2/2

krrO

and by the last sentence of Theorem 4.13 etiiIh() E Ll(JRl) for t3 <p3.

The next theorem extends the conclusion of Theorem 4.14 to include the general form

eth(), where t is first assumed to lie in a convex polyhedron constrained by the polydisc

L(0; p), and then is allowed to lie in a maximal convex open set.

spectively. Observe that

urn sup 2k

1

2k
<urn sup

k!

1

k <lim sup /3k

1

k
(310)

(2k)!



4.15 Theorem. If h() then there exists an open set V° ç R, such that 0 E V°

and for all t E V°, eth() E L'(R). The largest such open set is convex.

Proof For any fixed v . . . V E W define a(w, ) by

e
a(w,e) = -m (313)

e

It turns out that 0 < a(w, ) < 1 whenever w lies inside the convex hull of v1 . . . Vm.

Indeed, suppose w = a3vj with o and cr = 1. Then

J_Jlfl (e'°i )'7i
a(w,)=

and the numerator is between the maximum and the minimum of the summands in the

denominator.

Suppose 0 <t <pj for 1 <j <n. Define v and v by v = (0,... ,O,±t,0,... ,0).

'i e"i
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(314)

let V denote the interior of the convex hull

of vt,. .. , v. Define a(t, ) as in equation (314) using this set of vertices. By Theorem

4.14, eti((h() E L1(R). For any t E V in

n n n
et = a(t,) ( ; (e'i + e_ti') 2etjI, (315)

3= j=1 j=1

so that eteh() E L' (Rn). This exhibits an open set Vi-, c R such that 0 E V and
eteh() L'(I) for all t V. Repeating this argument shows that any such open set

may be assumed to be convex, and the largest such open set is convex.

4.16 Theorem. If h() e J'°, then (3'h)(x) has a holomorphic extension

f(z) 1 f iZh()d (316)
(2ir) R

defined on R'+iV° where V° is the nonempty interior of the convex set {t e ]ffl
: eth() E

L1(1R)}. In particular, W + iV° contains an c-tube R'2 + iU = {x + iy E Ctm: Iyi<}.

Proof By Theorem 4.15 the open set V° is nonempty and convex, and contains the origin,

since h() is integrable. By Theorem 4.6, f(z) is holomorphic on W + iV°. E

These are the vertices of a polyhedron in I'
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Note that the width of the tube R + iU is determined by the size of the sphere U,

which is determined by the polydisc radii P3 given by the local analyticity of (3'h)(x)

at the origin.

4.17 Theorem. Question 4.1 has a positive answer, and in particular the set JC is

log- convex.

Proof. Suppose that h() E jçflOi for i 1,2. Let V = {t : ethj() E Li(RTh)}

for i = 1, 2. By Theorem 4.15 the interiors of these sets are nonempty. Consider any log-

convex combination h() = [h1 ()' [h2 ()]a2. Let V° denote the corresponding convex

combination of sets: V° uiV10+a2V. If t V°, then Holder's inequality with conjugate

exponents oj' and a establishes the integrability of et h() [etl e h1 ()]° [et2h2 (c)] 2;

and by Theorem 4.6 ('h)(x) has a holomorphic extension to the region R + iV°. L

§4.5 Summary and open problems

A positive integrable function h() that satisfies the convolution equality h * h() =

j°h() has the property that (3h)(x) is analytic, as long as 6 1. The method of

proof uses the absolute moments of h(). This method does not appear to be extendible to

the case that 9 < 1 or to the case that h() satisfies the convolution inequality, although

there are probably analogues to Theorem 4.7 covering these cases.

A fairly easy proof of the log-convexity of J-° may be given once Theorem 4.16 is

established. The hard part is getting to Theorem 4.16 from our definition of of 1C;°. J

this way, the log-convexity question turns out to be less interesting than the structure

theory that it motivates: The membership requirement for h() E is weakened to a

local analyticity condition on (Y h)(x) at the origin, and when this condition is met, it

follows that h() L'(JR). It also follows that (Y1h)(x) is analytic on all of W and that

the width of its holomorphic extension into a tubular region in C is determined locally

at the origin. This is deduced using moment and growth conditions on h() that follow

from the local analyticity of (3 'h) (x). Both of these results depend essentially on the

fact that majorizing kernels are positive functions.
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This global conclusion about (31h)(x) given the local hypothesis is similar to the

following theorem in harmonic analysis:

Theorem: Let f(x) be of positive type and belong to the class C2 in some neighborhood

of the origin; then f(x) is everywhere C2'.

This is stated and proved in Donoghue [18, p. 186]. The method of proof used therein is

quite different from the methods used in this chapter.

The results of this chapter are introductory; here are some problems indicating direc-

tions for further research.

4.18 Open problem. Extend Theorem . 7 to include majorizing kernels of exponent

0<1.

An extension of Theorem 4.7 could not include 0 = 0 because there are no majorizing

kernel of exponent 0 that satisfy the equality. The Cauchy densities satisfy the inequality,

but their inverse Fourier transforms are not analytic.

4.19 Open problem. Prove or disprove: The extremal elements ofJC'° satisfy the convo-

lution equality. Extremal means in the sense of log-convexity, but only up to multiplication

by ete.

An extremal element is one which can not be expressed as a proper log-convex com-

bination of other elements: According to this definition, J-C does not contain extremal

elements because for any h() E J-C'°, the set of t W1 such that in eth() E J1' is not

compact. For this reason we have to consider extremal elements modulo the multiplication

by an exponential factor ete.

4.20 Open problem. Prove or disprove: J{0 1CnG fl L'(R).

We already have c J-C'° fl Ll(1ln1) by Theorem 4.9. Since integrable majorizing

kernels satisfying the equality are in it might be possible to prove this by using

extremal elements, if Open problem 4.19 has a positive solution.

4.21 Open problem. Sharpen the bound given in Theorem .7 under the additional

hypothesis that the majorizing kernels are rotationally invariant.



4.22 Open problem. Describe the topological structure of and J-C.

The topological structure depends on the what topology is imposed on these sets.

Determining the correct topology is part of the problem. The closure of J-C"0 and JC'6

under log-convex combinations show that under any reasonable topology these sets are

connected. Yet the majorizing kernels that satisfy the equality may or may not form

a connected subset. There is some evidence that in dimension n = 6 a continuum of

rotationally invariant solutions to h*h() = IeI2h(e) exists between the Riesz and Bessel

kernel solutions. This evidence comes from the solution to the second order differential

equation arising as the inverse Fourier transform of this convolution equation. After a

change of variables putting the ordinary differential equation into Hamiltonian form, the

Riesz kernel corresponds to a center, and the Bessel kernel corresponds to a homoclinic

orbit. In between, there is a continuum of solutions to the differential equation. It is not

known if these correspond to positive solutions to the convolution equation.

4.23 Open problem. Prove or disprove: the only rotationally invariant integrable solu-

tions to the convolution equality, h*h() = Ij°h(), h() > 0 are Bessel kernels, up to

scaling the independent and dependent variables.
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CHAPTER 5

STRUCTURE THEORY FOR THE BRANCHING PROCESS REPRESENTATION

OF SOLUTIONS TO THE FOURIER NAVIER-STOKES EQUATION

§5.1 Introduction

The probabilistic representation of solutions to FNS:h may be obtained without in-

voking the strong Markov property, as was done in [34] and [7]. This is an improvement

on the methodology used therein, and it should permit the probabilistic representations

of solutions to partial differential equations using processes with non-exponential hold-

ing times; this would be quite natural for those partial or ordinary differential equations

whose conversion to an integral equation requires something other than an exponential

integrating factor. The theory presented here could be presented in greater generality, but

this is unnecessary, as it is expected that the key ideas are easily transported.

The basic construction is the spacetime random field X0(, t). Pointwise, this is a

multiplicative functional on a discrete time branching random walk {, V E V} started

at E, = , the point of interest, and augmented by the collection of random variables

{(S, K) : v E V}. The random variables in the array {(S, K, ,) v E V} are intrinsic

to the branching process and are certainly essential to computation of X0(, t). However,

for some more theoretical purposes it is better to replace { : v e V} by one of two other

possible arrays, the first being an array of a-valued random variables {F v E V}, where

denotes the space of all Borel maps from R into itself. This exploits the fact that for

any v e 3V the genealogical line {vjn : n ? O} is a Markov chain, any Markov chain may

be viewed as iterated random mappings. But to avoid the dependence on the theory of

iterated random mappings, instead of this replacement, we replace {E, : v E V} with the

second possibility, an array {U : v e V} of i.i.d. random variables uniformly distributed

I [0, 1].

With this replacement, the branching random walk {E : v E V}, with all its ge-

nealogical dependence, becomes ancillary to the simpler array {U v E V} that has no

dependence structure, and it turns out that by treating this as the primary source of

randomness, it becomes easier to prove things. Theorem 5.5 for instance. Another benefit



if h*h() <Do,

e E RTh,G E B(RTh). (317)
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is that it brings coherence to the stochastic process across all values of e allowing for

example, the samplewise computation of the inverse Fourier transform 9-'X9 (, t) (w).

§5.2 The construction of the branching random walk

The family p(,.) defined next is a family of Borel probability measures on RTh with

the property that for any C B(RTh), the map p(, G) is Borel. Let

f h(_r1)h(cr1)d

p(,C)= Ic h*h()

5o(G) if h*h()=oc,

The second line here is a technical completion that is useful for further constructions based

on p(, C), but is otherwise inconsequential.

5.1 Theorem. There exists a probability measure m on the space of Borel maps from

R' into itself such that

m{f E : f() E G} = p(, C) (318)

for all in RTh and and all C E B(R").

The most general form of this theorem is stated and proved in Kifer [30, p. 8]. At this

point we could construct an i.i. d. array of s-valued random variables {F : v E V} and use

this to construct the branching random walk { : v e V}. Instead, a more self-contained

alternative is given next by Theorem 5.2 in which the random maps are parameterized by

the unit interval, and selected uniformly therein according to the array of random variable

{U v e V}. This approach is followed here.

5.2 Theorem. Let and U be independent random variables defined on the same pro b-

ability space, where assumes values in R' but is otherwise arbitrary, and U is uniform

on I = [0, 1]. Then given any non-negative measurable function h() on R such that

h * h(E) is finite almost surely, there exists a o-(, U)-measurable random variable X such

E Ccr()) =p(,C).

Proof. There exists a measurable function f : R'' x I R such that for any E R?, and

any Borel set C ci RTh, IP(f(e, U) A) = p(, A). The construction of such a measurable

that for any Borel set C C I'
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function is outlined below. Let X f(, U); this is clearly a(E, U)-measurable. Then we

have

IP(XEAja(E)) =

p(E,A). (319)

The second equality uses the independence of U and and the substitution lemma. It

remains to construct f. Since I and 100 = fl-i Ik are measurably isomorphic, it suf-

fices to construct it on R' x I°°. Let Qk, k > 1 denote the set of semi-open intervals

[al, b1) x ... x [an, b) whose corners belong to 2'1Z'. Call (ai, . . . a) the distinguished

corner. Use the first coordinate of J00 to select a member R1 E Qi according to the

transition probabilities p(, Qi), Qi Qi. This means that the pre-image of any Qi

under the selection function has Lebesgue measure equaling p(e Qi). Thereafter, use the

first k coordinates of 100 to select Rk E Qk fl Rk_1 according to the relative probabilities

p(, Q)/p(, Rk_1), Qk e Qk fl Rk_1. The result is a decreasing sequence of rectangles

R1 .... By passing to distinguished corners amongst these rectangles, a sequence

of measurable functions fk : x W c J00 x -k R1' may be obtained, whose pointwise

limit f is both well defined and measurable. By construction, for any E W and with

U (U1, U2,...) uniform on

l(f(,U) e Q) =p(,Q) for all Q E UiQk, (320)

which extends immediately to any Borel set G in place of Q. E

Either Theorem 5.1 or Theorem 5.2 may be used to construct a discrete time branching

random walk with starting frequency E0 = . Here Theorem 5.2 is used; statements in

the sequel have analogues with I replaced by and U, replaced by F. For all v E V

let vi = f(E,, U) and v2 E. This results in a coherent family of branching



random walks {, : v 2}, parameterized by , such that for any v E ÔV the

sequence is is a Markov chain with

-
th7.e G

= L h *

From now on the more symmetric notation d1 and d2 will be used: We write

= di(, U) and v2 = d2(v, U0),

instead of

i=f(,U0) and v2vv1 (323)

5.3 The random field X9(, t) and solutions to FNS:h

The random field Xe(, t) is constructed by separating the recursive and random as-

pects. First a recursive deterministic function is defined, and then the randomness is

introduced be replacing some of the arguments with random variables.

Define the deterministic function

R3 x [O,T*) x fl(i x {O, 1} x I) C3 U {cx} (324)
vEV

according to the following recursive scheme that may or may not terminate in a finite

number of steps: For the first step

x(,t;s,k,4) =

xo(e)

+ +'m()x(di(, ue), t - ; 4, k1 , U1)

® x(d(, nO), t - AI's0 ;$, k, u)
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if )'so t,

if As9 <t, k0 0,

if )1s <t, k0 = 1.

(325)

This exploits the fact that while the indices shift between the arrays (4, k, n) and

(sjj, kj, u) say, the poset structure of the two index sets remain the same. On the



®ex(d2(,uv), t-

(326)

If this scheme terminates in a finite number of steps then x(, t ; s, k,4) evaluates to

a finite ®-product. On the subset where finite halting does not occur, the assignment

x(,t;s,k,4) 00

is made. Note that at this point, the domain of the function is not equipped with a

measure, and so any question about the size of the non-halting set is not well-posed. This

does become an issue next, when a measure is imposed by replacing the arrayed arguments

of x(, t; 4, kt, 4) with random variables.

For each v E V define the spacetime random field t) on x [0, T*) by substituting

into x(, t; 4, k, 4) the random variables (St, K, U) for the arguments (4,k, 4),
with the index set adjusted accordingly. (This means that S replaces s9, Si replaces Si,

etc.) In particular,

Xo(,t)=x(e,t;S,K
rT+\ (327)

0 L'o ),

and

X1(,t) =x(,t;S,Kt,U), (328)

Then evidently for any v

(329)

On the right hand side X1(Ei, t - )isv) denotes the random field - whose randomness

derives from the functional dependence on (Sj, Kj, Uj) - evaluated at the random

point (Ei,t - AS), and similarly for X2(2,t - AS).

subsequent steps (and this includes the first step v = 0 as well)

xo()

- A's)

if A's0 t,

if )'s, <t, kv =

80

0,
x(e,t;s,k,u) -

rn()x(di(, un), t - ; sj, k, nj)
if A's <t,k = 1.

X(e, t) =

xo()

p(, t - )is)
if AS t,

f <t, K = 0,

m()Xi(i,t AiSv) ®X2(E2,t )S) if <t,K 1.
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After replacing the arrayed arguments in x(, t; s, k, u) with random variables, the

possible non-halting of the recursive scheme (329) occurs with zero probability. This is

best proved by considering the underlying stochastic model.

5.3 Proposition. For any fixed (, t), the random variable t) is a finite concate-

nation of ordinary products and ®-products almost surely (weather or not t) is

integrable).

Proof. The underlying branching process i-(, t) is a continuous time multi-type branching

process. Suppress the information on particle types, and standardize all particle lifetimes

to a single epoch in discrete time, and the result is a binary Galton-Watson branching

process in discrete time, in which the objects in each generation produce zero descendents

with probability 20 and two descendents with probability P2. The probabilities P0 and

P2 are just the two probabilities of the Bernoulli random variables K, which we assume

to have mean 1. Thus the Galton-Watson process is critical binary (the mean number

of descendents is 1 exactly) and it is well known that if this parameter is 1 then the

extinction probability of the process is 1, e.g. [55, p. 4J, [6, p. 7}. Thus the same holds

for the tree t) in continuous time, and the number of input nodes is finite almost

surely. El

5.4 Proposition. If X(e,t) is integrable at a point (,t) for some v E V then X(,t) is

integrable for all v E V and EX(, t) does not depend on v.

Proof. By definition t) = x(, t; S+, K, Ut), and the arrays (St, K, U) all have

the same distribution independent of v e V, by construction. Thus for any fixed (, t) the

random variables X (, t) all have the same distribution; and if any one is integrable then

all are integrable with the same expectation. Li

Precisely what is meant by a solution to FNS:h is stated next. The data are measurable

functions:

(initial datum) Xo : - C with xo() = 0,

(forcing) x [0,T*) -* C' with . (,t) = 0 for all t E [0,T*).



A soltition to FNS:h for is a measurable function such that

x(, t) = e_ 2txo() + f vII2e125
{. } ds (330)

{...}=m()f x(,ts)®ex(mts)dKe(ui)+(e,ts)
2

holds a. e. for (, t) E x [0, T*). This definition of a solution is technically different than

the one given in [34] and [7].

Note that if we replace such a solution x(, t) by the right hand side of (330), the

function has been altered on at most a set of (n + 1)-dimensional measure zero (by defi-

nition). We may then replace x( t) by this modification in the right hand side as well,

without changing the value of the double integral, as both dKe (1/) and the exponential

are absolutely continuous with respect to Lebesgue measure. Thus if two functions are

considered to be equivalent if they agree a. e. then there is a version of x( t) satisfying

the integral equation everywhere. It can then be shown that for this version, the following

properties hold:

x(e,t) is continuous in t for any fixed ,

.X(,t)=0foralltE[0.T*).

5.5 Theorem. If the random field X9(, t) is everywhere integrable on R3 x [0, T*), then

x(, t)
dJ

EX, t) solves FNS:h therein.

Proof. Compute EX9(, t) by conditioning on = o(S9, K9, U0):

E{X0(e,t)F1} o()1 [A'So t] + ,t_A1Sa)1[A1So <t, K90]

{m()x(',t_1sg

Uj),k1
+E F1 1[-'s0<t,K9=1]

(331)

where i = d1(, U0) and 2 = d2(, U9). The conditional expectation in the third term

is now computed using the independence structure of the random variables involved, the

®x(2, t-
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substitution lemma, the fact that the ®-product is bilinear, and Theorem 5.5 coupled

with Proposition 5.4:

{ m()x(i, t - ; S, Kj, Uj) )

E
®x(2, t'So;S,K,U)

J

® x(2, t - ; S, K, U J ''

m()Ex(j, t - ; Sj,K U1' 1)

®eEx(2, tA'so;S,K,U) J i

1 2=2,50S0
m()]EXi(i, t - )4s8)

EX2(2, t A1 so) =

2, SO = S0

= m()X(i, t - A'S0) ® x(, t - 'S0). (332)

Upon replacing this in equation (331) and taking the expectation of both sides, we

obtain

The following martingale and attendant constructions are useful in uniqueness proofs.

To start with, it is based on an existing solution to FNS:h on W' x [0, T*}, denoted by

xo()1[1So
X(,t) = E y(,t - x's0)1[A-'se <t, K0 = (333)

m((Ei, t - 15) ø x(E, t - A'So)1 [A'so <t, K0 = 1].

This is FNS:h expressed probabilistically. El

§5.4 A martingale associated with the pointwise evaluation of X9(, t)



'y(, t). Define the sequence of deterministic functions

x(m) x [O,T*) x fl(lR x {O,1} x I) -* C3 (334)
vEV

starting with

x(°)(,t;4,k,4) = (335)

and thereafter according to the recursive formula

X(m+l)(, t; 4, k,4) m()x(m) (f( uo), t - ; k, 4-)

t )1s ;s,k,4)
if 1s <t, k9 = 1.
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(336)

For each v E V and n define the spacetime random field (, t) as before, by

substituting the array of random variables (St, K, U) for the arguments (4, k, 4)
with the indices adjusted accordingly. Then for all v V

x°)(,t) = y(,t) (337)

and for all n> 0,

if A'S

x' (, t) = , )'S) if 'S <t, K = 0,

- A'S) ® X(2,t - A'S) if 'Sv <t,K = 1.

(338)

Of course x' (, t) does not really depend on the entire array of random variables, just

those up to the nth level. For example, the randomness in X1(,t) derives entirely from

(So, K9, U9). In general, t) is F-measurable where FI is defined for n 1 by

.Fn =o(S,K,U : VI n-1), (339)

Xo() if )Ts0 t,

- )1so) if)'s6 <t,k8 =0,



+E
(m()Xl(lt - AS)

,(n)i
®1'2 2,
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and F0 {ø, 1l}. This may be seen by drawing a few diagrams

For fixed t) the random variable (, t; 'y) is the multiplicative functional obtained

by truncating the branching process at the ends of the nth generation lineages, and,

wherever the branching process would have been started anew, the known solution is

input instead. For this reason the random field X (, t; 'y) will be referred to as the nth

level truncation of X9(, t). If we want to emphasize that an element of the sequence

martingale actually - is based on a particular solution, 'y = 'y(, t) say, we write

x (, t; '-y). In most applications, this martingale is based on an essentially bounded

solution, but this is not necessary for its almost sure convergence. Theorem 5.8 addresses

this. The boundedness of t) is one way of assuring each element of the sequence is

integrable.

5.6 Theorem. If the sequence (Xj(,t) : n is based on a solution'y(,t) E L°°(Rx

[O,T*)), then for any fixed and 0 <t <T*, X(e,t) is integrable for all v E V
(n)and truncation levels n 0, and IEX,, (, t) = 'y(, t).

Proof. The sequence {X (, t) : n o} is based on a solution 'y(, t) that is assumed to

be in L°°(W1 x [0, oc)); we may take 'y(, t) to be a version that is everywhere bounded

by R, say. Whereas each t)(w) is a Ø-product of at most 2 vectors, we have

x)(e, t)() <max { 1, R2Th }. (340)

Thus each (, t) is integrable. The rest of the proof is by induction starting with

EX°, t) = E'y(e, t) = 'y(, t). Compute EX', t) by conditioning on F1:

E{X(,t) 1F1} = xo()1[A'S9 > t] +,t x'so)i['s9 <t, K9 =o]

F1) i[A's0 <t, K0 = 1]. (341)

Computing the third term in the manner that was done in Theorem 5.5, and applying the



inductive hypothesis, obtains

F1} =

Taking the expected value of both sides and noting that the new right hand side is just the

right hand side of FNS:h gives EX'(e, t) t), completing the induction step.

The sequence {x (, t) : n 0} is actually a martingale. To show this it is useful to

introduce a family of u-fields indexed by v E V and n 0. These are defined recursively

as follows:

(0) {ø1} (343)

and for all n

(n+i) = u(S, K, U) V V (344)

5.7 Theorem. For fixed (,t), {X(,t) : n o} is a martingale adapted to the filtration
(n)

Proof. The proof is by induction on ii starting with

E{x') (, t) O)
} = EX' (, t) = x° (, t)

that holds for any v e V. The inductive hypothesis is that for all v E V,

E{x) (e, t) Fç') } - I(n_l)(e t).-
Let us compute:

xo()1[AT1Sv t]

+(e, t - A1S)1{A's <t, K = 0]

\m(),i (' - e v)+E{
(ri)®X (2,t 'S)

Xo()1[AT1Se

t - )'S)1 [-1S9 <t, K0 o] +

(m1,t_1se )
i['s0 <t, K0 = i].

®e'y(E2, t)'S0)
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(342)

n) i[.x's <t, K = 1]. (347)



The conditional expectation in the third term may be written as

m()E {x(E1,t - (n)} ®E{x)(E2,t - (348)

using conditional independence of the factors. Using

v v1
.(n-i) Va(S,Kv,U), (349)

and the role of independence in the conditional expectation, the factor on the left in (348)

may be written as

E{x(n) t)1S)V

The theorem that is being

independent, then

E{X(i,t_ )'S)
Similarly,

E {x(n),t -v2
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(m)F)} =E{x1 (1,t-1S) T')va(S,K,U)}.
(350)

used here, e.g. [55, p. 88], is that if fl and cr(X) V are

E{X!gv71} =E{xg}, a.s. (351)

Here X = X(1,t 1S0), 7- = T', and = V cr(S,K,U). A similar

expression holds for the factor on the right in (348). Now using the independence of

ci(S, K, U) and 1), the substitution lemma, and the induction hypothesis, we my

express this as

V u(S,, K, U)} = Avl (' t )'S). (352)

,(n-i)r1) va(S,K,U)} = "v2 (2,t A'S). (353)

Putting (352) and (353) back into (348) and (347) using (350) obtains t), as ex-

pressed for example in the right hand side of (338), (but with n replaced by n 1).

Explicitly,

- (354)

completing the induction step and the proof. Li
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5.8 Theorem. For any fixed (, t), the martingale (x)(, t; 'y) : n as described by

equation (388), converges almost surely to the completed multiplicative functional X9(, t).

Proof Consider X8 (, t) as a multiplicative functional on the branching process that is

started with a single ancestral particle of type o = . The branching process does not

explode almost surely, and as a corollary to this fact, the random variable

N(t) = inf{n 0 X(,t;'y) = X,t)} (355)

is finite almost surely. In terms of the branching process, N(t) is one more than the

highest number of splits up until elapsed time t along any genealogical line. The events

Ak = [N(t) <k] = [X(,t;) = X',t;'y) = ... = X(x,t)] (356)

form an increasing and exhaustive sequence, implying the assertion to be proved. LI

5.9 Remark. Theorem 5.8 is really about the comportment of the nth level truncations

in relation to the completed multiplicative functional. There is no martingale convergence

theorem at work here; in fact these martingales are not necessarily L1-bounded.



CHAPTER 6

LOCAL EXISTENCE AND UNIQUENESS OF SOLUTIONS TO FOURIER

NAVIER-STOKES EQUATIONS

In this chapter the stochastic methodology is applied to obtain local existence and

uniqueness results for the Navier-Stokes equations given arbitrarily large initial datum, as

measured by the norm on certain method adapted Banach spaces. Local means local in

time. The Banach spaces are h and Ih,T*, whose construction require a majorizing kernel

h() of exponent 0 < 0 < 1. Examples of such majorizing kernels may be found in among

the Bessel kernels, whose characteristic exponential decay at infinity put them in the class

of analytic-majorizing kernels discussed in Chapter 4. By using such a majorizing kernel,

becomes a Banach space of analytic functions. Thus the existence and uniqueness

results presented here, in the context of solutions to the FNS:h integral equation, may be

translated to statements about the spatial analyticity of solutions to the Navier-Stokes

equations.

§6.1 The method adapted Banach spaces

Detailed motivation for employing the Banach spaces

Basically the methodology requires the initial datum to belong to this space, and the

forcing term g(x, t) to be such that for any fixed t

C2(/v_1x) *g(x,t) E I,, (357)

where G2(x) is the Bessel kernel of order 2. One approach to the definition of the

would be the following:

{ f E '(RTh)} : fE L°(R;C), I(e)[h()}' L(R;C)} (358)

Here S'(R71) is the space of temperate distributions on RTh and {S'(RTh)]Th is the space of

vector fields whose components are in S'(R). The L0notation denotes measurability

(measurable functions as opposed to temperate distributions); L°(R; C) is the space of

measurable complex n-vectors on R. This is essentially the approach taken in [7], but

II)
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h appears in the next section.



6.1 Definition. The Banach spaces

The norms are

= {()h) x() E L°°(Rtm)},
{1)

: I() E .

'p.
h,T* {x(,t)h() x() E Lco(

h,T* = Y1l'I')hT*.

p.
I,, Ii.

'a,
II,

1

'a'I'

II(e). 1(e)
h() L00(R.)'

f(x, t)hT I1( t) Rim
J(, t)

h,T*

where f(x) = ('f)(x), and f(x,t) = (_11)(x,t).

For each of these Banach spaces the onus of membership lies on the Fourier side; this

just reflects the fact that the analysis occurs on the Fourier side. The norms on these

spaces are just a translations of the L°°-norms naturally arising from the methodology.

Note that equation (357) is just a more complicated way of expressing that for each t,

t) E
6+'I'e12

h,T* are defined as follows:

x [0,T*]), X(,to) E L°°(RTh) Vt0 e

h()
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the exact approach used therein is not quite satisfactory, particularly for the purpose of

defining Banach spaces of time-dependent functions, e.g. t)h,T*. Definition 6.1, below is

better. This chapter is concerned exclusively with analytic-majorizing kernels, meaning

that the class of function spaces under consideration is smaller than that induced by

more general majorizing kernels that are not necessarily integrable. The restriction to this

smaller class of function spaces means that inverse Fourier transform acts on L1functions.

Here L°°(W2) and L°°(R x [0, T*]) are just more compact expressions for L°°(R, C) and

L°°(R x [0, T*I, Ctm) respectively.

Presumably the results discussed here can be translated to statements about local exis-

tence of classical solutions to the Navier-Stokes equations provided the forcing term g(x, t)

Ii (359)
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has sufficient regularity, and that these classical solutions admit holomorphic extensions

to tubes RTh+iU cCtm.

§6.2 The delta method: an exponential time-dependent transformation

Recall the Navier-Stokes equations for the velocity field of a viscous incompressible

fluid:

+uVu = vuVp+g(x,t), (360)

Vn=0. (361)

The time-dependent transformation v(x, t) = u(x, t)e_8t appears in the analysis of par-

tial differential equations of parabolic type. In fact, one demonstration of a maximum

principle for Burgers equation begins with this transformation [31, p. 132]. Applying this

transformation to the Navier-Stokes equations gives the modified system of equations

3v + öv + etv . Vv = v/v - etVp + e_tg(x, t), (362)

Vv = 0. (363)

However, we actually want to apply this transformation directly to the the FNS:h integral

equation, anticipating that the newly induced 8 terms will become useful. In fact they

are, and we are lead to the exponent 0 majorizing kernels defined by the inequalities

h * h() <BII°h(), B > 0, 0 < 0 < 1. (364)

Many solutions of these are known.

The FNS:h equations are

t
x(, t) = e VItx() + f v2eI2s{ ... }

0

} = m()J x(mts)®x(emts)dK+(,ts).
R'

(365)

In terms of the function x( t), the transformation becomes x*(, t) = x(, t)et, and the

initial datum remains unchanged: x) = xo(). Applying this transformation gives the



new integral equation, denoted 8-FNS:h:

= e_t() + e_A3{ }ds

{ ... } I X(Tht - s) ® x*( - - s)dKj)
J R

+ e_5(tco*(,t - s)

where

x*(e, t) et = x( t)e_t, = vj +8

*(
)

2h*h()Ij * 4Jço(,t) 2(,t)
m (2)n/2(I2 + 8)h()' ' - v +8 - (vIP2 + 6)h(e)

Applying the same methodology as described in Section 5.3 leads to the stochastic repre-

sentation of solutions to 6-FNS:h,

x*(e, t) = Ex, t). (368)

The multiplicative functional (or random field) X(, t) has the usual recursive expression:

Xo() if S6

X,t) = ö(tS0) (1,t - ifS0 <t,K0 = 0,

t - )'Se) ® X(2, t - if S < t,K8 = 1.

(369)

Of course, the representation holds just in case t) is integrable. The exponential

term e(tS) precludes global control of integrability, but this is balanced by the particular

functional form of m* (f), with the new 8 term, allowing control of the size of X (, t) locally,

over a finite time interval 0 <t < T*, but with arbitrarily large initial datum and forcing.

Conforming to this goal, the bound

e8T*m*()
: (370)

is obtained next, with the result that each binary operation in the computation of X (, t)

is controlled for increasing norm. That is, for

z,wEC, 0<s,t<T*, zJR, IwlR, (371)
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where the multiplication and division by exploits the existence of majorizing kernels

of exponent 0 < 0 < 1. Taking h() to be such a majorizing kernel, the middle factor is

B sup , (374)

and the supremum on the right is

8(1+0
v'1-0

Next, let
/,11+o1ç1a

(377)

which is the inverse of the left hand side of (375) upto a multiplicative factor. The auxiliary

variable k is left unspecified for now, but will be determined later according to the goal

of maximizing T*. The reason for introducing k is explained in Remark 6.4 below. From

the definition of R and equations (373) through (375), it follows that

m*() (378)

where
1

c = (2)n/2 (1 + 9)1+0(1

Solving equation (377) for 8 obtains

r B2 1
8 = (Rk)2/(°)

L

(1 + 0)1+0(1
vl+O 8°

which is attained at
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and 0, the output of the binary operation has norm

et_m*()z ® W <eöT*m*() Iz ® WI < R2 = R. (372)

Accordingly, we have

2h*h()IIm*()_- (27r)f/2(vII2 + 6)h()
(373)

2 ( h*h 'I I I'°
(2)n/2 7 II0h() vJ + }



and taking T* to be

= (log k - log c)

achieves

eT*m*() < kc' C 1

Rk R

The value of k that maximizes T* is now determined The function

f(k) = k-21'° (log k - log c)

captures the essential dependence of T* on k, attaining its maximum at k km, where

The maximum value of f(k) is

(2ir)'/('°)supf(k) f(km)
k>O 2e (1 + 0)(1+0)1(1_0)

Using this value, k km, in equations (380) and (381) gives

]

11(1-0)

and

T* 1

(
(2ir) 1/(1-0) 1v'° 1/(1-0)

2e (1 + 0)(l+o)R2) L
B2]

The main result of the preceding calculation is that with 6 and T* and determined by

(386) and (387), then for any 0 s,t < T*, the binary operation that appears in the

recursive expression (369), including the attached multiplicative factor, satisfies

IzHwiR = et_3) m* () z (388)

This forms the basis of the local existence results presented in Section 6.4.

§6.3 Remarks on the variables, units, and majorizing kernels

Here is a summary of the dependence relationship between n, 0, ii, B, R, 6 and T*.

The dimension m is fixed, and 0 is considered as given, constrained only by the existence

log km
1-0

2
+logc.

( (1 + 0)(1+0)R2\
1/Ii-t)

I B
6 = e (1 - 0)

(2ir) )

(384)
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of a majorizing kernel of exponent 0 < 1 but is otherwise arbitrary. The space

fixed, determined by some majorizing kernel h() satisfying

h * h() : BII°h(e)

but is otherwise arbitrary. Of course, the standardization of h() has no effect on the

computation of T*, as the change B -p 1 brought about by standardization is balanced

by the change R -* BR. Having fixed h, with h() either standardized or not, a and T*,

which are determined from R, B, and u, are inversely related: 2T* 1 - 6.

6.2 Remark (on units). Let [L] denotes units of length and [T] denote units of time.

In order to compare 2(,t) and h(), both should have the same units, namely [LJ4[T}'.

Then R is dimensionless, and FNS:h is a dimensionless equation, as is equation (366) that

is obtained via the transformation

x*(, t) = x( t)e_t (390)

applied to FNS:h. In these equations

2IeIh*h() * 2h*h()Im()
- (2/2vIl2h() and m () - (2/2(vI2 + S)h()

(391)

are both dimensionless. When 0 < 9 < 1, m*() is bounded by the product of the

dimensional quantity B, having units of [L}1[T}', and another factor having units

inverse to those of B. The ratio iil+O/B2 has units of [T]1°, from which a time can be

obtained. When 0 = 1, B and v both have the same units, and between them no time or

length can be obtained. Here are the units on all the variables (with 0 0 < 1):

x [L] ii k dimensionless

h [L]4[T]' x xk dimensionless

t [T} B {L}1[T}1 m,m* dimensionless

8 c dimensionless R dimensionless

In equations (386) and (387) the quantity in the square bracket carries units; the other

factor is dimensionless. If we standardize h() and take B 1, then the 1 so obtained

carries units.
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h is

(389)
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6.3 Remark (on standardizing the majorizing kernel). Recall that 7(n,0 admits a

1-parameter group of transformations

/3.h(e) > o, (392)

by scaling both the independent and dependent variables. Thus if h() is a majorizing

kernel of exponent 0 and constant B, as in equation (364), a standardized majorizing

kernel h3td() may be constructed using any transformation of the form (with B made

dimensionless),

h3td() - B3'0h(i3e), j3> 0. (393)

This includes the scaling of alone by taking /3?2 = B.

6.4 Remark (on the auxiliary variable). The variable k is introduced because without

it, the computation of T* is not invariant under scaling the Fourier transform. To illustrate

this, consider the computation of T* with k = 1:

1111+0 1/(1-0) 7 1 \ 1/(1-O) (2irVh/2
T*(k = 1) 1 - 1 log " / (394)

L B2 /(1+0)1+0(1_0)1_6

Were another version of the Fourier transform used, )J say, then T* would be

computed as:

111+01 1'(10) / 1
1/(1-0) )(2)fl/2

T*(k 1) = I log (395)
B2 j \X2R2) \/(1+0)l+0(10)bO

On the other hand, equation (387) is invariant under scaling the Fourier transform. The

effect of optimization over k increases as 0 -* 1. For example, with n = 3 and 0 = 0, the

ratio between T* computed with k = km and T* computed with k = 1 is

T*(kkm) (2r)
T*(k = 1) = 2e

(log(2ir)312) 16.6, (396)

and with ii = 3 and 0 = 1/2, this ratio is 1280. As 0 -* 1 this ratio increases to infinity.

§6.4 Local existence and uniqueness of solutions to FNS:h

With S given by equation (386) in the construction of the branching process and

recursively defined multiplicative functional t), the control of norm increase at the
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binary nodes, e.g. equation (388), extends to the entire multiplicative functional, as long

asO<t_<T*.

6.5 Lemma. If the initial datum and forcing satisfy the bounds

!)Xo()lIL°o(Rn) R, *(t)pIL(I,n[oT*]) R, (397)

then the multiplicative functional t) given recursively by (369) satisfies the same

bound. That is, almost surely,

R (398)

for 0 t T*, where T* is given by equation (387).

Proof. Almost all realizations of the branching process produce trees with at most finitely

many binary nodes. Given such a realization, the computation of the multiplicative func-

tional is done through a finite sequence of binary operations, where the nesting of the

operations corresponds to the branching structure of the tree. At each stage in the com-

putation, the two operational inputs are bounded by R, and as equation (388) shows, the

output is bounded by R. This output is either the final value, or the input of another bi-

nary operation. After all binary operations are complete, the final value must be bounded

byR.

6.6 Theorem (Existence and Uniqueness). Let h() be a majorizing kernel of expo-

nent 0 <0 < 1, normalized to supj h * h()/II°h() = 1. Suppose that the initial datum

and forcing satisfy the bounds

R and *(t)IIL([o)) R, (399)

Then there exists a function x(e t) measurable in , and continuous in t, that solves

FNS:h, locally in time, at least on the interval [0, T*) where T* is given by equation (387).

The solution x( t) satisfies the bound

SUpX(,t)) Re (400)

where ö is given by equation (386). This is the unique solution to FNS:h in the class

[0,T*}).
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Proof. For existence, let x*(, t) EX(, t) where X(, t) is defined recursively by (369)

on R3 x [0, T*]. Lemma 6.5 explains the integrability of the random field therein. Arguing

exactly as in Theorem 5.5 we conclude that x (, t) solves ö-FNS:h. Of course x*(, t)

as well. This bound coupled with the definition x*(, t) x( t)et gives the bound

(400).

To establish uniqueness, observe that the following two statements are equivalent:

x(e t) uniquely solves FNS:h in the class L°°(W7'>< [0, T)) for any 0 <T T,

x*(, t) uniquely solves ö-FNS:h in the class L°°(lR' x [0, T]) for any 0 < T T*.

We verify the second statement. Suppose that 'y(, t) E L°°(R' x [0, Tfl) is some alter-

native solution to FNS:h up to an alternative time T T*. Let y*(, t) 'y(, t)e_öt be

the corresponding solution to -FNS:h. Let R' denote the larger of the two solutions to

8-FNS:h:

= max{x*(,t)llLoc, R}. (401)

Here the R takes into account the the initial datum x) and forcing co*(, t), and L°°-

norm refers to the Banach space L°°(R x [0, T)). Define T1 by equation (386) with

R replaced by RI; this gives a time interval [0, T1] on which the output of the binary

operation is bounded by R' when the two inputs are bounded by R'. Equipped with this

fact, fix and t T1 and consider the two martingales

(X(,t;x*) : n >0), (X)(,t;y*) : n 0), (402)

that are based on the solutions x*(e, t) and y*(, t) respectively. Both of these martingales

are bounded by R' almost surely, and converge in L1 to their respective almost sure limits.

But these limits are the same, being the completed multiplicative functional t) whose

inputs are consist entirely of forcing terms and the initial datum. It follows that the two

solutions agree up to time T1. Repeating this argument with the equation restarted at

time T1 and taking as initial datum the function x*(, T1) establishes uniqueness up to

time T2 = 2T1, and iterating gives uniqueness up to T, which verifies the last statement

of the theorem. LI
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6.5 Bessel kernels as majorizing kernels

The utility of majorizing kernels of exponent 0 0 < 1 in Theorem 6.6 motivates

the search for particular majorizing kernels of such exponents, and an exploration of their

properties. In this section the Bessel kernels are considered as candidates for

solving the convolution inequality h * h() II6h(), with 0 < 0 < 1. One benefit of

exhibiting majorizing kernels in this class of functions, is that the Bessel kernels decay

exponentially at infinity, and the corresponding Fourier majorization spaces are actually

Banach spaces of analytic functions.

Some necessary facts about () and K (z) are first presented. The references are

Jones [27, pp. 314-316] or Adams and Hedberg [2, pp. 10-12] for the firstly presented

representation of the Bessel kernels; Aronszajn and Smith [5, pp. 413-417] for the repre-

sentation of the Bessel kernels in terms of the Bessel functions K (z), and the asymptotics

of the Bessel kernels; Lebedev [35, pp. 108-120] for the integral representation for K(z),

and the recurrence relations satisfied by K(z); and Watson [53, p. 440] for the integral

representation of the product of two Bessel functions.

The Bessel kernel of order c on R may be defined (as in Definition 3.6) through the

integral representation

1

F() J
p(t,)t2etdt

- 0

J
t()/21e214t_tdt,1

= F()(4ir)n/2 0

where R'. It also has the representation

1
= Kn-(I)jLT. (404)2(2)/27rfI2F() 2

The Bessel function K(z) is an analytic function of z except at z = 0, and for z 0 it

extends to an entire analytic function of ii. It has the integral form

Ku(z)
1

-J e_0S_du
2

= f00
e_z00scosh(un)du argz < , v arbitrary. (405)

(403)



Making the substitution t = e gives the

1 f0
K(z) = zt/2_z/2t t_h1_letdt,

and replacing t by 2t/z gives the integral representation

K(z) = (f)VfOOe_z2/4tt_U1_1e_tdt, argz < . (407)

This establishes agreement between representations (403) and (404).

The integral form (405) shows that K(z) = K_(z), and by differentiating with

respect to ii under the integral, we see that K(z) is an increasing function of v, for fixed

z > 0, when v is real and positive. In addition, the following recurrence relations are

satisfied by K(z):

[zvK(z)] = _zvKv_i(z), (408)
dz

[zK(z)} = zK+i(z), (409)
dz

Ki(z) + K+i(z) = 2K,(z), (410)

2v= ----K(z). (411)
z

The product of K,1(z) and K(z) has the integral representation

K(z)K(z) 2fK+(2zcosht)cosh(ti - v)tdt (412)

2 f K_(2z cosh t) cosh(ut + u)t dt, (413)

when arg z! <7r/4 and t and v are unrestricted.
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(n)The Bessel kernel G() G () has the following asymptotics:

If a = n/2, then

As oc,

Ifn/2 <a <ii, then

Ga * Gc)
j°G)

Ifa=ri, then

I

G) F()
2airn/2F()

1 1
As ü, 2Th'7r/2F()

log

IT ( )G) 2/2F()
a-n-i

na-i 2

2 2 7j 2 F()
The following lemma shows how these asymptotics restrict the order of the Bessel kernel

if it is to serve as a majorizing kernel of a particular exponent.

6.7 Lemma. Let G() = G() denote the Bessel kernel of order a on R.
If a<n/2, then

Ga*Ga()J00
lim
*O (19Ga() 0

Ga*G)
= 10

1

if 0>0,
if 0=0.

if a<n,

if a>n.

if 0<na.
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(414)

(416)

0 if 0>na,
a-n 2 )F() if 0= na, (418)F(a)F(a)

(419)

r G*G()
00

2

0

F1Th2a

if 0>a,

if 0=a,

if 0<a.

2 )F()
l°Ga() F()F(a)

if 0a,
(417)

if 0<a.

e (415)



if 0>.
Proof. These statements follow directly from the asymptotics given by (414) and (415),

and the convolution structure of the Bessel kernels, i.e. Ga * Ga(e) = G2a().

Lemma 6.7 says that when the desired exponent of the majorizing kernel is 0 < 0 <

n/2, it is necessary to take 0 < a < min{n - 0, 20} as the order of the Bessel kernel. The

following theorem establishes that this necessary condition is also sufficient. Lemma 6.7

also says that when the desired exponent of the majorizing kernel is 0> n/2, there are no

Bessel kernel solutions.

6.8 Theorem. The Bessel kernel Ga(e) is a majorizing kernel of exponent 0 if and only

ifo<0<n/2 and 0amin{n-0,20}.

Proof. For Ga () to be a majorizing kernel of exponent 0 it is necessary and sufficient

that

lim <00, lim
G2() <00. (422)

O j°Gc() j- j6Ga()
The asymptotics at infinity imply a <20, from (421). Since there are no Bessel kernels of

order a = 0, 0 must be strictly positive. Take 0 to be fixed and consider the implications

of various a. It can not be the case that a n, lest 0 = 0 by (419) and (420). For the

other possible values of a, the following implications hold from (416), (417), and (418),

respectively:

=

(423)

= a<nO.

Ifn<a, then
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if 0>0,
Ga * C)

=

JO0
if 0=0.

(420)I°Ga()
F()F(a)

The asymptotics at infinity are

if

Ga*Ga()
hm _a/21'() if 0=,

2
(421)

((-+oo II°Ga() - F(a)
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Each of these statements separately implies that 0 < , and together, along with the

previously noted constraint a < 20, they give the stated constraints on a. 0

When the desired exponent of the majorizing kernel is 0 < 0 < n/2 and the order of

the Bessel kernel is one of the two extremes a 0 or a = min{n-0, 20}, the normalization

constant for the majorizing kernel may be computed exactly. In the following theorem

Ge() = G () denotes the Bessel kernel of order 0 on

6.9 Theorem. For 0 <n/2, G0(e) is a majorizing kernel of exponent 0; the normalization

h()
2°F()F(0)

- r(20)r() G9() (424)

satisfies h*h() < J°h() with

h*h() h*h()
urn =1.S

Il8h() -o 8h()

For n/3 <0 < n/2, C9() is a majorizing kernel of exponent 0; the normalization

h() 26F()F(n - 8)
Gn_o ()- F(20)F()

satisfies h*h(e) < °h() with

h*h(e) h*h()
urn =1.IIh() = iio I°h()

If 0 = n/3 then rf\
h()=2/3

F() -a-

satisfies h*h()

Proof. For the first assertion, define Fi(z) by

Fi(z)
G0 *

z . (429)-
By Lemma 6.7

limF1(z)=2 2

F()F(0)

(425)

(430)



Fj(z)

z"1 K,11 (z)
= with

and where C6 > 0 is the indicated constant. Differentiating F1 (z), and using the recurrence

relation (413), gives

zV2 [K,11 (z)K2_i (z) - K1_1 (z)K,12 (z)]
F'(z) = C9

[zv2K2(z)]2

The quantity in the numerator is always negative, utilizing 1 < v. To see this, apply

the product representation (413) to obtain

K,11(z)K,2j(z) - K,11_1(z)K,12(z) =

2J{Kv2_vi_i(2zcosht) - Kv2vi+i(2zcosht)}cosh(vi + 2 - 1)tdt.
0

(433)

Since v < 2, the inequality 2 - 1 - 1 < "2 - vi + 1) holds, and because K(z) is an

increasing function of ii, it follows that for any fixed z > 0,

K2_1_i(2zcosht) - K21+i(2zcosht) <0. (434)

This is integrated against the positive function cosh(vi + - 1)t so the entire integral,

and hence F'(z), is always negative.

The maximum value attained by F1 (z) at z = 0 indicates the correct normalization

for h() in equation (424).

For the second and third assertions, define F2(z) by

F2(z) =
* z=j. (435)
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The plan is to show that F1 (z) is decreasing on [0, oo). Indeed, by the representation (404)

ne
F'° K-2o (z)z 12_0/2 ) 2

n-28F(0) K_o (z)z 2

(431)

(432)



Again by Lemma 6.7, but this time equation (418),

urn F2(z) = 2_0'2)2)
F()F(n - 0)

The representation (404) and the symmetry condition K_ (z) = K (z) give

F(-) K2o_(z)z 2
F2(z)=2 2 F(ni9) Ke(z)z ?

--
z'12K2(z)'
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(436)

Note that v v2 with equality when 0 = n/3. (Recall the hypothesis: n/3 0 < n/2.)

Repeating the previous argument shows that for u1 < F2(z) is strictly decreasing.

The maximum of F2 (z), given by equation (436), determines the normalization for h()

in equation (426). Finally, when 0 = n/3,

F2 (z) 2' 3fl)), (438)

and the inverse of the constant on the right hand side is the correct normalization for h()

in equation (428). El

n-20
2

with (437)
--



CHAPTER 7

THE EQUATION OF KOLMOGOROV, PETROVSKII, AND PISKUNOV

7.1 Background and introduction

The subject of this chapter is the KolmogorovPetrovskiiPiskunov (KPP) equation

for u = u(x, t) in the form

ut=uxc+U2u, oo<x<oo, t0,
(439)

u(x, 0) = f(x).

This equation (or the variant obtained from the substitution u -p 1 - u) is also known as

Fisher's equation because Fisher introduced

a a2=k-----+mp(lp) (440)
Dt 3x2

as a model of the spread of an advantageous gene throughout a population [21]. For this

reason it also called the FisherKPP or FKPP equation, but here the appellative "FKPP"

pertains to the Fourier transformed KPP equation for i = i, t),
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(441)

Equation (439) is probably really too simple to be a compelling model of any physical

situation. Its importance is historical and pedagogical; it is the classic simplest case of a

reaction-diffusion system. Such systems typically have the form

au(, t) - Du(x, t) = F(u(x, t)), x, u E (442)

for some nonlinear function F(u(x, t)) and diffusion matrix D. There is an enormous

amount of research on these equations, much of it centered around the existence of wave-

front solutions. Many basic questions about global existence of solutions and stability are

still open.

A few examples of reaction diffusion equations are given. Somewhat more complicated

than the KPP equation is Nagumo's equation

- u(u - 1)(u - a), 0 < a < , (443)
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considered by McKean [41] as capturing certain essential behavior of transmission of nerve

impulses. A still more complicated example is the well-known Fitzllugh-Nagumo model

- EUXX cry -
(444)

vjv =v(v---a)(vb)u.
Here a and 'y are positive constants, and 0 < a < b. This system is a more

tractable simplification of the Hodgkins-Huxley equations also a reaction diffusion

system consisting of four coupled equations which was set up by 1959 Nobel prize

winners Hodgkins and Huxley in their investigations on the transmission of impulses in

nerves [4, p. 224], [42]. A traveling wave model arising from the Belousov-Zhabotinskii

oscillating chemical reaction is the system

Ut
(445)

Vt = - b'uv,

with r,b>0, and 0< u(x,t),(x,t) < 1 [43, p. 236].

Solutions to equations (443) and (444) admit solutions defined as the expected value

of a functionals on branching Brownian motion, like the KPP equation, except more

complicated. The general relationship between a given reaction-diffusion equation and

the possible expression of solutions with such branching Brownian motion representations

is a new and open problem.

The reason for our interest in the KPP equation is that it admits recursive stochastic

representations of solutions in both physical and Fourier space, with the underlying pro-

cesses being branching Brownian motion and a multi-type branching process respectively.

Information flows both ways, with properties of the two branching processes being derived

from the partial differential equation and visa versa.

It should be mentioned that the physical and Fourier space branching processes are

not really dual to each other as they do not lend themselves to the analysis of phenomena

in a symmetric or dual way. As an example, there exist solutions to the KPP equation

whose qualitative behavior resembles the traveling wave solutions, an example of which is

the following 1-parameter family of solutions in explicit form discovered by Ablowitz and



Zeppetella [1]:

u(x,t) = 1 1

[1 + rexp{(x - ct)/V}]2'
r>0.
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(446)

These solutions all satisfy u() = 0 and n(+oo) = 1 or visa versa. McKean [39], [40]

proved results on such traveling waves by using the branching Brownian motion repre-

sentation. But these traveling waves, having the typical property of being flat at both

ends far away from the wave front, are not integrable; and in any distributional sense

their spatial Fourier transforms are not functions. This rules out their analysis with any

Fourier side branching process, at least without the introduction of new ideas.

This chapter starts with known results on the branching Brownian motion representa-

tion of solutions to (439), which are then extended. The basic stochastic functional is put

into the recursive framework used in the analysis of other partial differential equations,

and it is constructed without relying on the Markov property. This framework is used to

prove the uniqueness of any steady state solutions, which then used to establish the L'-

convergence of the martingale associated with the steady state solution. This is part of an

intertwined set of results involving the partial differential equation and the multiplicative

functional. They stem from the simple observation that the previously known bound on

the initial datum, If(x)! < 1, is a bound by a steady state solution, f(x) 1, which serves

as a separatrix distinguishing finite time blow-up from global existence. Analogous results

hold when other steady state solutions serve as bounds on the initial datum, and for such

solutions the multiplicative functional remains integrable. This is the first known example

of the integrability of this sort of recursively defined stochastic functional holding globally

in time under a condition other than the initial datum bounded in absolute value by 1.

Turning to the Fourier side, another recursively defined stochastic representation is

presented. The underlying multi-type branching process is called the FKPP process. A

large portion of this section is devoted to analyzing the convolution equation that defines

for it a suitable majorizing kernel. After an excursion into the theory of elliptic functions,

suitable majorizing kernels are found for both the periodic and unrestricted KPP equation.

Finally, equipped with branching process representations in physical and Fourier space,
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and drawing on the obtained uniqueness results, a non-explosion result for the FKPP

process is derived, and this in turn, is used to obtain finite time blow-up for the KPP

equation.

7.2 Review of McKean's branching Brownian motion representation

In 1937 Kolmogorov, Petrovskii, and Piskunov [44] proved results on the existence of

traveling wave solutions to (439) complementing results of Fisher [21] also in 1937. In 1975

McKean extended these results by employing the branching Brownian motion representa-

tion of solutions [391. The origin of such ideas is not clear. Expected values functionals on

branching diffusion processes satisfying nonlinear partial differential equations of parabolic

type appears in Watanabe, 1967 [15].

For the KPP equation, the underlying stochastic process may be informally described

as follows: At time t = 0, a single particle executes a Brownian motion (t) starting from

the origin. (McKean discusses the equation u1 +u2 - u and the Brownian motion is

standard; here the Brownian motion corresponds to the heat equation Ut After an

exponential waiting time T independent of (t), with JP(T > t) = e_t, the particle splits

in two, and the new particles starting from X(T) continue along independent Brownian

paths and are subject to the same splitting rule. After an elapsed time t > 0 there are Z(t)

particles located at the points X()(t), i = 1,. . . , Z(t). The KPP equation has a solution

admitting the representation

Z(t)

u(x,t) =Efl f(x - (447)

provided that the initial datum satisfies If(x) < 1 to insure the integrability of the random

product. (McKean requires 0 < f < 1 pursuant to the physical interpretation of the model.

In fact, in Fisher's equation, p is a probability.) The representation (447) is proved as

follows: Let u(x, t) be defined by (447). Making use of the notation {H = et1 : t 0}

to denote the semigroup of convolution operators that is convolution with the respective



Gauss-Weierstrass kernel, and conditioning on the time of the first split,

u(x, t) = P(T> t) ! Y)(Z E dy)

+ / P(TEds) / u2(xy,ts)(Zedy)
Jo J-

= &tHtf(x) + J &H8u2(x,t - s)ds.
0

Then after making the substitution s -* t - s in the integral, differentiation produces

(439). This is done rigorously in Theorem 7.2 below.

Inspection of this argument reveals an apparent use of the strong Markov property.

The proof involves an implicit recursiveness; at the random branching point (X(T), T), the

quantity u2(x - X(T), t - T) is recognized as the expected value of the product of the two

(factor) multiplicative functionals on the independent branches of the after-T process. At

the same time, the simplicity of this argument suggests that the strong Markov property

is not really needed. In fact, there is a way to do this without invoking the strong Markov

property, and this carefully presented in the next section.

Also, no indication of how one would come up with such a representation is given by

McKean. It is useful in this context of analysis of partial differential equations through

recursively defined stochastic processes, to see how Duhamel's principle can guide its

discovery. Without worrying about the technical details, Duhamel's principle says roughly

that for an initial-boundary value problem on a domain ci in R7, the solution to the

inhomogeneous equation

tu=g, inhlxR+,

u=O, onacixR+, (449)

u(.,O)=f, in Il,

may be expressed as

u(x, t) Htf(x) + f Ht_3g(x, s)ds, (450)

where H is the solution operator for the homogeneous equation. A more abstract variant

has A as the infinitesimal generator of a semigroup of operators on a Banach space, D(A)
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the domain of A, and g E C([O, T), V(A)). The solution to

=Au+g(t), u(0) = 1,

is given by

u(t) = etAf +
f

e(t_3)Ag(s)ds. (452)

It is this last form that makes the representation idea transparent. Simply treat the

nonlinear term u2 in the KPP equation as a forcing term, justified a posteriori, and let

A = I. Writing the solution as

I..t

u(t) = etAf +
J

e(t_s)Au2(x, s)ds (453)
0

and noting etA etlit, gives (448) after the substitution s t 5.

The equivalence of the integral equation form and the differential equation form of the

KPP equation is now established. The fundamental solution to the heat equation (the

Gauss-Weierstrass kernel) is denoted by

K(x,t) 1 e_t2/4t (454)
Vr4lIt

The action of ii,, is convolution with K(x, t) in the spatial variable. The proof of Theorem

7.2 follows somewhat the discussion of the volume potential for the inhomogeneous heat

equation in [12, p. 329].

7.1 Lemma. For any )> 1 there is a constant M such that

a
y,t) - (455)

M<K(xy,At),t (456)2K(x y,t)

M
K(x - y, t) < ---K(x y, )t). (457)

Proof. For any a > 0 and 0 < < 1 there exists an M such that

zae_z MeZ, z 0, (458)

and the proof of these statements is an application of this fact. LI
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7.2 Theorem. Let u(x, t) E L°° (IR x [0, TI) solve the KPP integral equation

u(x, t) = e_t Htf (x) + eH5u2(x, t - s)ds

with f(x) e L°°(R). Then u(.,t) E L°°OR) for all t [0,T}, and u(x,t) is a classical

solution (differentiable in t, twice differentiable in x on R x (0, T]) to the initial value

problem

ut=u+u2u, oo<x<oo, OtT,
(460)

u(x,0) = f(x).

Moreover, if f(x) E L1(R) fl L°°(IR), then u(.,t) E LP(R) for all t E [0,T] and for all

1 :poo.

Proof. For any t E [0, T] we have by equation (459)

etf(x) + (1 et)2 (461)

where R= u(x,t)IILo (Rx[O,T}) hence u(.,t) E L°°(R). We now let

R.z sup IIu(.,t)jIL(R)
0<t<T

and employ R, not R, for the rest of the proof. If f(x) L'(R) n L°°(R), then again by

equation (459),

t

(., t) iLl <et$If(x) L + etR f ejiu(., s)ijLlds
0

and utilizing Gronwall's Lemma applied to the function etju(., t)IIL1 it follows that

ju(.,t)IIL1 If(x)IILI exp {(R - 1)t}. (464)

Thus u(., t) e L'(R) on [0, T], and by convexity of the Lnorms, u(., t) E 11(R) for all

1 <p oo on [0,T].
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-etHtf (x) <
Cie_t
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Next, provided that differentiation under the integral sign is guaranteed, a straight-

forward differentiation yields

( - = etfK(x_y,t)f(y)dy

+e_t / - - _-_)K(x - y, t)f(y)dy
_00 at ax

ft too

JJ e8K(x - y, t - s)u2(y, s)dy
0 -00

00 8
+e_t [ f eS( -

JO Joo

= u(x, t) + u2(x, t). (465)

The rest of the proof is a justification of these steps. The constants arising in the estimates

are denoted C1, C2, C3, and C4.

We first need the existence of the derivative (8/0x)u(x, t) along with the estimate

u2(x,t) . (466)

The derivative of the first term in the right hand side of (459) may be computed as

etHtf(x) et f _K(x - y, t)f(y)dy. (467)

The justification for taking the derivative under the integral is by Lebesgue dominated

convergence: according to Lemma 7.1,

K(x y, t)f(y) K(x - y, At) IIf(x)lL, (468)

and for any fixed (x, t) e R x (0, T} and > 0, we have on an interval of length 2, the

bound

K(x - y, At) G,,(y) sup{K(x' - y, At) : x - < x' < x + }. (469)

The dominating function G (y) is clearly integrable since it is bounded and decays

exponentially at infinity. Equation (467) along with the estimate (468), gives the bound

(470)
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Similar arguments establish that the derivatives a/at and a2/ax2 may be taken inside the

integral in the first term on the right hand side of (459):

:x2 etHtf(x) 1100 -K(x - y, t)f(y)dy (471)

and

etHtf(x) = _e_tHtf (x) +1100 K(x - y, t)f(y)dy. (472)

For the purpose of taking the derivatives of the second term in (459), we introduce the

following family of functions defined for h sufficiently close to t:
th 00

vh(x, t) = e f f eSK(x - y,t - s)u2(y, s)ds. (473)
0 -00

Since the singularity of the kernel K(x - y, t - s) occurs at x = y, t = s, we can differ-

entiate under the integral, justified by arguments similar to the one given in the previous

paragraph. The derivatives exist and are continuous:

aVh
t-h 00

(x, t) = e_tf f eK(x - y,t - s)u2(y, s)dyds, (474)
ax ax

a2v th 00 a2

ax2
(x, t) = et I f e8K(x - y,t - s)u2(y, s)dyds, (475)

-00 8x2

and

aVh
'OO

at
(x,t) = _vh(xt)+eJ K(x y,h)u2(y,t - h)dy

+ et
jt-hf eK(x - y,t - s)u2(y, s)dyds. (476)

Next, let

pt poo

v(x, t) = et
J J

esK(x - y,t - s)u2(y, s)dyds, (477)
0 -00

g(x, t) et f i: eK(x - y,t - s)n2(y, s)dyds. (478)

A comparison of v(x, t) and vh (x, t) and a simple estimate established the uniform con-

vergence of vh(x, t) to v(x, t). Indeed,

pt-h p00

Iv(x,t) - vh(x,t)j = et J
J

esK(x - y,t - s)n2(y, s)dyds R2h. (479)
t -00



We also have the the uniform convergence of (O/Dx)vh(x,t) to g(x,t):

DVhg(x, t) - (x, t) = e_t f f e K(x - y,t - s)u2(y, s)dyds
Dx

R2 ft
00 I

(t - s)"2 / x - YI K(x - y,t - s)dyds 2R2ir"2V7. (480)th Joo 2(t - s)'!2

From

Vh(X,t)
fDJfl

xo

and the uniform convergence of vh to v and Dvh/Dx to g, we have

v(x,t) f g(x',t)dx' +v(xo,t) (482)

on any compact interval [x0, xJ, implying that

too D
t) = g(x, t) et f e8_K(x - y,t - s)u2(y, s)dyds. (483)

From a calculation similar to (480) we also have the estimate

Dv(x,t)I <2R2'12v.
Dx I-

Combining this with the bound (470) gives

Cie_t C2
<- +2R2"2V

for some positive constant C2, and

-U (x,t
Dx

where C3 = 2RC2.

We now consider the derivatives (82/Dx2) and (D/Dt) applied to the second term on

the right hand side of (459). An application of the identity

f00
K(x - - s)u2(x, s)dy

= f x2K - y,t - s)U2(x, s)dy = 0 (487)

gives
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(481)

D2Vh
th 00 a2

Dx2
= e J f es_K(x - y,t - s) [u2(y, s) - u2(x, s)] dyds. (488)

C3
(486)



The immediate goal is to show that

02v def
00 02

= g2(x, t) = - f e3K(x - y,t - s)u2(y, s)dyds. (489)
0 -00

The differentiability of u2(x, t), the mean value theorem, and the bound (486), obtains

the following estimate, which establishes the uniform convergence of O2vh/0x2 to g2:

02Vh
g2(x,t)

- Ox2
(x,t)

t 00 02et
100

e8K(x - y,t - s) [u2(y, s) - u2(x s)]dyds
Jth Ox2

[00

3_1/2{IYI +
Ixy3

hJoo ts 2(ts)2

<BC3 I (t - s)_u/2s_h/2ds < c4 (
h

h)- \/Jth
Here B is a constant arising from the transformation p = (x - y)/(2(t - s)'/2). From

0 pX2 a
Vh(X,t)

= JXO a
2Vh(X,t)dx + vh(X0,t)

Ox Ox

and the uniform convergence of Ovh/Ox to Ov/Ox and O2vh/0x2 to 92, we have

v(x,t) = f2x'tdx' + Vh(X,t)y

on compact intervals [xo, x], which implies that

023v(x, t) g2(x, t). (493)

Finally let

g3(x,t) = v(x,t)+u2(x,t)+ v(x,t). (494)

From equations (475) and (476), we have

(x,t) = _vh(x,t)+e_hf K(x y,h)u2 (,t h)d + vh(x,t), (495)

which converges uniformly to g3(x, t) as h -p 0. From

Vh(X, t) = f vh(x, t')dt' + Vh(X, to) (496)
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(490)
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and the uniform convergence of vh to v and ôvh/ôt to g3(x, t), we have on compact

subintervals [to, t] C [0, T]

t av(x,t)= / g3(x,t')dt'+
Jt0

v(x,to),

which implies that
a
-äv(x,t) =g3(x,t).

Combining the appropriate equations establishes equation (465). E

§7.3 The stochastic recursion obtained without the Markov property

A basic object is the multiplicative functional

Z(t)

M(x,t) = fi f(x - ()(t)) (499)

that is determined by the branching Brownian motion process and whose expected value

solves the KPP equation. In this section this object is constructed without explicit appeal

to the strong Markov property, or even the Markov property of Brownian motion. The

fact that Brownian motion is a Markov process is incidental.

We would like to define the random product (499) recursively by writing the entire

product in terms of self-similar functionals defined on the independent branches deter-

mined by the first split, say as

(f(x - 0(S9)) if S0 t,
M0(x,t) = (500)

Mi(x-9(S9),tS8)M2(x-0(So),tS9) ifS0 <t.

The problem of making rigorous sense of this leads to a construction along the lines of

the multiplicative functional for the FNS:h equation. The basic idea is the same, that of

beginning with a deterministic function whose arguments are later replaced by arrays of

random variables. While it is not necessary to repeat this construction for each partial

differential equation under consideration, it is worth going into the details here as it

involves Brownian motion instead of simple random variables.

There are two arrays of V-indexed random objects from which the randomness of the

multiplicative functional derives. These are (S v V) and ( : v E V). The S are



i.i.d. exponential random variables with parameter 1. The X = are i.i.d. Brownian

motions with
r 1 2iP((t) e A)

= IA
te_x /4tdx

for all t > 0 and Borel sets A c JR. These Brownian motions correspond to the heat

equation t U.
Recall the notation of the superscript + used in arrays of V-indexed objects to denote

the collection of all successive objects in the partial order on V. For example, for any

V E V,

= {S1, S2, Svii, Sv12, Sv21, 8v22, . .
.

(502)

and S = (S v e V) denotes the entire V-indexed array.

The deterministic function

JR x [0,T*) x H (C(lR,JR) x lR) -* IRu {oc} (503)
vEV

is defined according to the following recursive scheme. For the first step

m(x,t;,$) =
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(501)

m(xe(so),t--so;,$)m(x(so),tso;,4) ifs6 <t.

This definition makes sense by virtue of the natural shift isomorphism between arrays

(st, ) and (sj, j) say, under the partial order induced by the index set V. On the

subsequent steps and including the first step v = 0 as well,

I f(x (s)) if Svm(x,t;,$) =
ifs<t.

If this scheme terminates in a finite number of steps then m(x, t ; , s) evaluates to a

finite product. On the subset where finite halting does not occur, the assignment

m(x,t;$) = 00
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is made. The issue of the size of the non-halting set becomes germane only after a measure

is introduced by replacing the arrayed arguments with random variables. We will see that

non-halting has probability zero.

For each v V define the spacetime random field M (x, t) on ]1 x [0, T*) by substituting

the array of random variables (St, ) for the arguments (st, j) with the index set

adjusted accordingly. (This means that S, replaces s6, S,,i replaces s, etc.) In particular,

t) = t (506)m(x, ; , Si),

On the right hand side Mi (x - t - S,) denotes the random field whose ran-

domness derives from the functional dependence on (X, Sj) evaluated at the random

point (xX(S),tS).

7.3 Proposition. For any fixed x and t the multiplicative functional M9(x, t) is finite

(weather of not it is integrable) and the event of non-halting has probability zero.

Proof. The number of factors in the random product M0 (x, t) is completely determined by

the number Z(t) of Brownian particles at time t. We may forget the spatial diffusion; the

collection of exponential holding times (S1, : v E V) is sufficient for computing Z(t). By

forgetting spatial diffusion, the process reduces to the Yule process, for which the number

of particles at any given time is geometrically distributed. 0

The event of non-halting before a fixed time t in the recursive definition of M8 (x, t) is

equivalent to the event of an explosion of the associated branching process before time t.

Another proof of Proposition 7.3 is that explosions occur in branching Brownian motion

with probability zero.

and

M1(,t) = m(x,t;X S1' i)' M2(,t) = m(x,t;,S). (507)

Then evidently for any v e

M(x,t) =
f(x - if S

if S <t.
(508)
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)-- so = S0,9
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7.4 Proposition. If M(x, t) is integrable at a point (x, t) for some v E V then, with x

and t fixed, M(x, t) is integrable for all v e V and EM(x, t) does not depend on v.

Proof. By definition M(x, t) = m(x, t; , St) and the arrays (, S) all have the same

distribution independent of v E V by construction. Thus for any fixed (x, t) the random

variables M (x, t) all have the same distribution; and if any one is integrable then all are

integrable with the same expectation.

7.5 Theorem. If the random field Mo(x, t) is everywhere integrable on JR x [0, T*) then

u(x, t) '
EM0(x, t) solves the KPP equation therein.

Proof. Compute M0(x,t) by conditioning on .F =

JE{Mo(x,t) = f(x - Xo(t))1 [So t}

<t]. (509)+E
xm(x(Se),tSo;S,)

The conditional expectation in the second term is now computed using the independence

structure of the random variables involved, the substitution lemma, and Proposition 7.4:

E Jm(x(So),tSa;St,)
xm(xXe(So),tSo;S,)

Em(x o(s9),t so;St,t)

xEm(x - 9(s9),t - o; S, = = 3Z0

1EMi(x - 6(s0),t - so)

xEIt42(x - 9(s8), t - so)
so = S07t9 =

= u(x o(S9),t - S)u(x 9(S9),t - So). (510)

E
(m(x - o(s&), t - s ; S, t)

xm(xo(so),tso;S,)
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Replacing this in equation (509) and taking the expectation of both sides obtains

u(x,t) =lEf(x*To(t))1[So t]+Eu2(xo(So),tSo)1[S6 <t}, (511)

which the KPP equation expressed probabilistically (compare with (448)).

If we want to emphasize that the random field M0(x, t) is constructed from a partic-

ular initial datum, f(x) say, the notation Mo(x,t f) is used. This should be carefully

distinguished from the notation (x, t; u), introduced next, that denotes an element of

a martingale sequence.

Just as in Section 5.4 where a martingale is associated with the multiplicative func-

tional X9(, t) for the FNS:h equations, there is a natural martingale

{MTh)(x,t;n) n 0} (512)

that is associated with Mg(x, t). Here u n(x, t) L°°(lP x [0, T)) is an existing solution

to the KPP equation, and the martingale is said to be based on u(x, t). It is possible

to give a detailed construction of this martingale along the lines of the construction of

the FNS:h martingale. This would involve a similar sequence of deterministic functions

that in the end are replaced by random variables. However, it would be overly pedantic

to repeat such a construction. Here it suffices to describe it recursively. Given any pair

(x,t) eR x [0,T) we have

M°(x,t;u) =

and for all n > 0

(n+1) {f(x_o(so)) ifS9t,
1v10 (x, t; u) =

, ,(n)
fy11 (x - 9(S0), t - S9)M (x - (S6), t - S6) if S <t.

Here is another way of describing the martingale: For fixed x and t the random vari-

able M4) (x, t; u) is the multiplicative functional on branching Brownian motion that is

obtained by truncating at the ends of all of the nth generation lineages, and at the ramifi-

cation point where the two new particles would have commenced new Brownian motions,

the known solution is input instead - but squared because there are two new particles.



if s<1,
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(The known solution u(x, t) is evaluated at the random branch point if the elapsed time

for the branching Brownian motion process is considered to run contrary to the evolution

of the partial differential equation.) Otherwise, if an nth generation particle lives past

elapsed time t, the initial datum is input as usual.

7.4 Local and global existence: comparison with the Yule process

If the KPP equation (439) is given an initial condition that is constant, f(s) = a say,

then all of the Brownian motion becomes extraneous to the computation of the solution.

In this case the recursively defined multiplicative functional may be replaced by the sim-

pler recursively defined functional that is obtained from (514) by suppressing all spatial

dependence:

a ifS,>t,
Y(t) - (515)

- S)Y2(t - S) if S <t.
The underlying stochastic process reduces to the Yule process, or exponential binary

fission. The solution u(x, t) = u(t) = EY9(t) coincides with the generating function for

the branching process evaluated at s = a:

F(s, t) (516)

Here Z(t) counts the number of particles alive at time t; it is geometrically distributed.

The generating function is usually defined for s! 1, because for s > 1, the random

variable inside the right hand side of (516) is not necessarily integrable. Integrability

holds oniy for 0 t T*, where

T*=
log ifs>1,si

and on this time interval we have

F(s, t) - (1 e_t)s (518)

This is well-known; it may be obtained by solving either the forward or backward Kol-

mogorov equations for the Yule process [6]. Similar results hold for the KPP equation.

(517)



7.6 Proposition. If the initial datum for the KPP equation satisfies f(x)I a then

M0(x, t) is integrable on I x [0, T*), where

a
(519)

log ifa>1.ai
In either case, u(x, t) EM9(x, t) solves the KPP equation on the interval 0 t < T
and the following bound holds:

1 (t) (520)

If a> 1, the initial datum f(x) a produces finite time blow-up, with blow-up time T*

given by (519).

Proof. The total number of particles alive at time t is the same for the branching Brownian

motion process and the exponential binary fission process. Let Z(t) denote this common

number. It is easy enough to couple these two processes just by forgetting the spatial

variation in the diffusion process to produce the exponential binary fission process. Then

we have
Z(t) Z(t)

flf(xx4) =11 f(xX) <a2(t). (521)

i=1

Since aZ(t) is integrable on [0, T*), the same holds for Mo(x, t) and we have the bound

00 ifa<1,

<EM0(x,t) <EaZ(t) = 1 (1 e_t)a (522)

If the initial datum is f(x) a then the inequalities in (522) are actually equalities and

computing the blow-up time T* is immediate. El

Proposition 7.6 shows that the function that is identically 1 is a separatrix of sorts,

distinguishing initial data that produces finite time blow-up from initial data for which

global solutions exist. In itself this is unremarkable. However this should be seen in the

following context: The constant functions 0 and 1 are the two trivial steady state solutions

to the KPP equation. This means that they solve the ordinary differential equation

y" + y2 - y = 0. (523)

ae_t
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It turns out that there are other steady state solutions which are not bounded by 1, for

which an analogue of Proposition 7.6 holds. Moreover, the branching Brownian motion

representation holds as well, for as long as the solution exists.

§7.5 The steady state solutions, arid the L'convergence of the martingale

In Sections 7.10 and 7.11 a 1-parameter family of steady state solutions to the KPP

equation is exhibited. The parameter c arises naturally as the first constant of integration

of Weierstrass elliptic functions. The salient feature of these solutions is their positivity;

for all c in this range,

0 < min'b(x) <1 <max(x) < . (525)

There are other steady state solutions but they are unbounded and not strictly positive.

The next few theorems make use of the almost sure convergence of the martingale

{M() (x, t; u) : n 0} introduced at the end of Section 7.3. One way to explain this

convergence is by introducing the random variable N(t) that is defined to be one more

than the highest number of splits in any genealogical line up to elapsed time tin branching

Brownian motion. Clearly N(t) does not depend on x. Given a region R x [0, T) on which

a solution u(x, t) to the KPP equation exists, N(t) may also be described, for t T, as

N(t) = inf{n 0: M(x,t;u) = Mo(x,t)} (526)

as long as the equality between M(x, t; u) and M0(x, t) is understood as an identity

between functional expressions, and that accidental numerical equalities do not count. By

drawing a few diagrams one can see that N(t) satisfies the bounds

1 + log2 Z(t) N(t) Z(t). (527)

for the corresponding ordinary differential equation (523),

equation has a strictly positive steady state solution

and 7.11). The extremes are

1 and bo(x) =

For intermediate values of c, the (x) are periodic functions

and for

'(x) (called

[cosh
(X)]2

that

- c 0 the KPP

yc(x) in Sections 7.10

(524)

are described in terms
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Let Ak Ak(t) denote the event [N(t) < k}. With t fixed the sequence (Ak k 1) is

clearly increasing, and the right hand bound in (527) implies

IP>(Ak) = lE(N(t) <k) IP(Z(t) <k) = 1 - (1 - e_t)k -* 1. (528)

Thus (Ak k 1) is an increasing and exhaustive sequence. Noting that the event Ak is

also the event

Ak = {M(x,t;u) = M'(x,t;u) = ... = Me(x,t)], (529)

it follows that the martingale {M (x, t; u) : n > O} is eventually constant almost surely,

and the constant value so attained coincides with the value of the completed functional

Me(x, t).

Here is a more general way to describe the situation. Let the sequence of events

Ak be defined by (529). Then the non-explosion of the branching process is equivalent

to this sequence being exhaustive, and this gives an easy way to establish the almost

sure convergence of the martingale to the completed multiplicative functional. This is

essentially the content of Theorem 5.8.

7.7 Theorem. If the initial datum for the KPP equation is any nonzero steady state

solution 'çL'(x) that is bounded and strictly positive, then u(x, t) '(x) is the unique

solution in the class L°°(R x [0, oc)).

Proof. Let u(x, t) (x), and suppose that for some T > 0, an alternative solution

v(x, t) E L°°(R x [0, Ta)) also solves the KPP equation with initial datum '(x). We have

to allow for the possibility that v(x, t) exists on a shorter time interval than u(x, t), hence

the introduction of the time Ta. Define T1 by

10 ifR=1,
T1=?

R
flog ifR>1,R-1

where

(530)

R = max{IIv(xt)IlLx{o,Ta)) suP(x)}. (531)



We have R by the properties of b(x). Fix x E l and t <T1, and let

{M(x,t;u) : n O} and {M(x,t;v) : n O}

denote the martingales based on solutions u(x, t) and v(x, t) respectively. Since R

and the number of input factors is always bounded by Z(t), we have the bounds

I (n) (n)
M9 (x,t;u)j RZ), jj-9 (x,t;v) Rz,

independent of m, and Rz(t) is integrable since t < T1. Then by standard martingale

theory e.g. [55, p. 128], the two martingales are uniformly integrable, and they converge

in L' to their respective almost sure limits, and the notation for these limits is introduced

as well:

M(x,t;u) - M00)(x,t;n) and M(x,t;v) ---+ M°°(x,t;v). (533)

It is clear from the remarks preceding this theorem that

M$°°(x,t;u) = M9(x,t
I ) and M$°°(x,t;v) = M&(x,t ) (534)

where Mo(x, t ) is the multiplicative functional associated with the initial datum (x).

From the L1convergence (533), and equation (534) it follows that

EM0(x,t
I ') = u(x,t) and EM0(x,t ) = v(x,t), (535)

so the two solutions agree up to time T1. Repeating this argument with the equation

restarted at time T1 and and with initial datum O(x) = u(x, T1) gives uniqueness up to

time T2 = 2T1. Iterating gives uniqueness of the steady state solution up to the time

Ta that was associated with the possible alternative solution v(x, t). This establishes the

uniqueness of the steady state solution for all time t > 0. LI

The following theorem shows that the uniqueness of the steady state solution implies

the L'convergence of each of the martingales (parameterized by x) that are based on the

steady state solution. The proof invokes Scheffe's Lemma, e.g. [55, p. 63], that states that

if (X : n> 1) is a sequence of random variables and X -* X almost surely, then
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(532)

IEIXI EIXI implies EIX - X 0, (536)



with the reverse implication holding if all the random variables are integrable.

7.8 Theorem. The random field M9(x, t ), that is constructed taking the initial datum

to be any bounded and strictly positive steady state solution '(x), is integrable for all x

and t. For any fixed x and t the martin gale that is based on this steady state solution /(x)

converges almost surely and in L1 to the multiplicative functional M&(x, t

a.s. L1M$(x,t;) Mo(x,t I (537)

Proof. Fix x and t. Let {M$ (x, t; 'sb) : n > O} denote the martingale based on the

solution (x) > 0 as described by (513) and (514). As the martingale is non-negative,

M°°(x,t,) def . (n)= urn M9 (x,t;)n*oo
(538)

exists almost surely, by general martingale convergence theory e.g. [55]. By the remarks

preceding Theorem 7.7, M00) (x, t; ) M0 (x, t v'). (Or this can be seen directly

from these remarks without invoking the almost sure convergence of the non-negative

martingale.) Then applying Fatou's lemma,

EM0(x,t I ') E(lirninfM(x,t;i/)) <liminfM(x,t;) çb(x). (539)

This establishes the integrability of M0(x.,t I v'). By Theorem 7.5, u(x,t) := EM9(x,t I II')

solves the KPP equation with initial datum O(x). But by the uniqueness of the steady

state solution, Theorem 7.7, u(x,t) must actually equal '(x). Then with the convergence

being quite trivial

EM$(x,t;) EMo(x,t ) = (x) (540)

and as the random variables are positive anyway, we may applying Scheffe's lemma to

conclude

jM$(x,t; b) - Mo(x, t;b) *0, (541)

This establishes the L'convergence of the martingale. LI
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7.6 Global solutions for larger initial datum: existence and uniqueness

We now come to the main theorem, that addresses the branching Brownian motion

representation for solutions to the KPP equation when the initial datum does not satisfy

If(x)I < 1. The interest here is that this moves beyond the original bound stated by

McKean. From a broader perspective, this is the first discovered example of a recursively

defined expected value product solving a partial differential equation in which the integra-

bility holds globally in time, under a less restrictive condition on the initial datum than

it being bounded by 1 in absolute value. (Compare with the bound Xo( stated

in Section 1.2 that is required for the global integrability of the FNS:h multiplicative

functional.)

7.9 Theorem. Suppose that the initial datum for the KPP equation satisfies the bound

f(x) I
'(x) where '(x) is a bounded and strictly positive steady state solution. Then

M8(x, t f) is integrable for all x and t, the solution u(x, t) exists for all time enjoying

the representation u(x, t) = EM0(x, t f), and u(x, t) uniquely solves the KPP equation

in the class L°°(R x [O,T)) for any T> 0.

Proof. Let Mo(x, t f) and M&(x, t
)

denote the random fields constructed with initial

data 1(x) and (x) respectively. We have integrability of M9(x, t ) for x and t arbitrary.

Of course integrability also holds for any smaller the initial datum, since almost surely,

that is, on the event of non-explosion where the comparison can be made,

M(x,t 1)1 M0(x,t ).
(542)

Then by Theorem 7.5, u(x, t) = IMa(x, t; f) solves the KPP equation with initial condition

If(x)j <(x), and this representation holds for all time t > 0. Note that u(x, t)I

To show uniqueness, suppose that an alternative solution v(x, t) E L°°(R x [0, Ta)) also

solves the KPP equation with initial datum f(x). Let

{Mo(x,t;u) n o} and {Mo(x,t;v) n o}

denote the martingales based on the solutions u(x, t) and v(x, t) respectively. Let R



be defined by

R = max { Iv(x, t)IIL(jX[OTa)) sup b(x)}.
a,

Define T1 by

T14 R(log1 ifR>1.
00 ifR=1,

Then for any t < T and x E 11 the following bounds hold, independent of n:

(fl)
1v.LO (x, t; )

Rz(t), 1W(n) (x, t; v) R'(t). (545)

Now the same argument given in the proof of Theorem 7.7 works here as well. Here it

is again: As long as t < TI1, the two martingales are uniformly integrable and converge

almost surely and in L' to their respective limits. But these limits are identical it is

the multiplicative functional Mo(x, t f) that is constructed from the initial datum f(x).

This establishes uniqueness of the solution up to time T1. Repeating the argument with

the equation restarted with the initial datum u(x, Ti), and using the fact that u(x, T1))

b(x), yields uniqueness up to time T2 2T1, and iterating gives uniqueness up to Ta. fl

7.7 The representation with non-negative initial datum

The ideas of the previous two sections can be applied to the situation in which the

initial datum for the KPP equation is non-negative. The resulting theorem is the best

possible: as long as the solution exists, the multiplicative functional is integrable, and

moreover, the solution may be represented as the expected value product on branching

Brownian motion.

7.10 Theorem. Suppose that u(x, t) L°° (i x [0, TI) solves the KPP integral equation

u(x,t) = e_tHj(x) + f eH3u2(x,t - s)ds (546)

with initial datum f(x) E L°°(R) with f(x) 0. Then

for any Ta <T, u(x,t) is the unique solution to (546) in the class L°°(R>< [0,TaJ),

n(x, t) 0,
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u(x, t) is a classical solution to the initial value problem

ut=ux+u2u, <x<oo, 0<t<T,
(547)

u(x,O) f(x).

for all (x, t) E R x [0, T] the branching Brownian motion representation is valid:

Z(t)

u(x,t) = EM9(x,t) = lF. [f f(x - (548)

Proof. Suppose that v(x, t) L°° (R x [0, Ta]) also solves equation (546) with the same

initial datum f(x). Define R by recalling Theorem 7.2 and letting

R = max { sup Iv(, t)IIL, sup jv(., t)L, f(x)L }, (549)
O<t<T

Let T1 denote the minimum of T, Ta and TR, where

{oo

ifR1,
TR= R (550)

lo1 ifR>1.
Fix x E R and 0 < t < T1. Let (x, t; u) and (x, t; v) denote the martingales

based on it = u(x, t) and v v(x, t) respectively. If R> 1 we have the bounds
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P(n)0 (x,t;u) ;

if R <1 we have the bounds

and M(x,t;v)l (551)

<1, and M(x,t;v)l <1. (552)

Since t < T, the bounding random variable Rz(t) is integrable, and the two martin-

gales are uniformly integrable: they converge in L1 to their respective almost sure limits,

which in both cases is the completed multiplicative functional M(x, t) M0(x, t f).
Consequently

u(x, t) = v(x, t) = EM0(x, t). (553)

Thus, the two solutions agree up to time T1, and on R x [0, T1}, we have u(x, t) by

the positivity of the factors in the integrable random variable M9(x, t). Repeating this
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argument with the equation restarted at time T1 with initial datum u(x, T1) gives

uniqueness and positivity of the solution on Jl x [0, T2} where T2 = 2T1 (but adjusted

accordingly so that T2 does not exceed T or Ta). Note that by hypothesis the solution

exists up to time T T1, so the equation can be restarted with initial datum u(x, Ti)

exactly, not u(x, T1 - ). Repeating this argument as many times as necessary verifies (i)

and (ii).

The assertion (iii) is just a restatement of Theorem 7.2, included here to emphasize

that u(x, t) <00 everywhere on R x [0, T].

For (iv), fix x e IR and 0 < t < T and consider the martingale M(x, t; u). Each

element of the martingale is a positive random variable, and integrable, as

Mni)(x,t;u) R. (554)

Since M(x, t; u) converges almost surely to M0(x, t) it follows from Fatou's lemma that

EIVI0(x,t) E(Iiminf1W(x,t;u)) < liminf (E.1$(x,t;u)) = u(x,t). (555)

This established the integrability of Me(x, t). Let w(x, t) = IEM0(x, t) where now x and

t are variables. By Theorem 7.7, w(x, t) solves the KPP equation on R x [0, T}. Then

by part (i) of this Theorem, w(x, t) u(x, t) and the inequality in (555) is actually an

equality, so the representation is valid.

§7.8 The KPP equation without the linear term

In the branching Brownian motion representation of solutions to the KPP equation,

the exponential waiting times between the splitting of the Brownian particles may be

traced back to the existence of the linear term u. It is therefore of interest to see that

a similar representation holds for the following equation obtained from KPP by removing

this term:

= + u2 u(x,0) = f(x). (556)

The technique for dealing with this just as easily handles the generalization

ut=u+u2Au, u(x,0)=f(x) (557)



where A 0. We obtain for this generalization the representation

( Z(t) f(x - X()(t))

}
u(x,t) - (S+A)E eö1t) H (8+A)i=1

as long as the random variable in the right hand side is integrable. The underlying

stochastic model is branching Brownian motion with the exponential waiting times having

parameter S + A. Here L(t) is the random variable that is the sum of the lifetimes of all

particles in the branching Brownian motion process, up to elapsed time t. Of course L(t)

also depends on the parameter A + 5.

How to obtain this representation is outlined. Following the discussion in Section 7.2,

equation (557) converts to the integral equation

I.t
u(x,t) e_tHtf(x) +

J
e"H3u2(x,t- s). (559)

0

This is adjusted for the probabilistic interpretation with the introduction of the parameter

5> A:
I

u(x,t) - e_()t eötHtf (x) + f(S + A)ee(8 + A)'Hu2(x,t - s). (560)
0

Following the standard procedure produces the representation u(x, t) = EM8 (x, t) with

the following recursive definition of the M (x, t), v E V:

etf(x - X(S)) if S,

M(x,t) = sv
(561)

if S <t.

If there are Z(t) particles alive at elapsed time t, then the number of branch points is

Z(t) - 1; and each binary operation contributes a factor of (5 + A)-'. The time dependent

multipliers eöSv can be amalgamated as the single multiplicative factor giving the

random product in equation (558).

Presumably one can argue that integrability, and hence this representation, holds for

all t > 0, if the initial datum 1(x) bounded in absolute value by any positive bounded

steady state solution. This program has not been carried out. Note that even with A = 0,
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and Ae=1+I2.
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integrability holds locally, at least for sufficiently small (5 and sufficiently small initial data.

The sharpest criteria that delivers integrability with ) = 0 has not been determined It

appears likely that the restriction \ may be lifted also.

7.11 Open problem. Explain or utilize the possible simultaneous scaling of the the initial

datum and the solution by ((5+ )' evident in equation (558).

7.9 Analysis on the Fourier side: the FKPP equation and process

Formally computing the Fourier transform of the integral equation (448) gives the

following integral equation:

, t) = et(1(2o() + f e('12) 1 t - s)ds. (562)

Suitable adjustments leads to the Fourier side representation of the solution as the ex-

pected value of a multiplicative functional on a multi-type branching process. Equation

(562) may also be obtained from the Fourier transformed KPP equation. The integral

equation and the differential equation are equivalent.

In order to obtain the branching process representation, divide by a majorizing kernel

h() (to be determined) and make the other indicated adjustments:

et(1+12)( + j + I2)e_S(1+2) {.. . }ds (563)

where

{ }
h*h()

[°°
- i, t - s)(i, t - s) h( - ij)h(i7) d.

= 2(1 + 2)h() h( - )h() h*h()

Assuming that a suitable majorizing kernel may be found, let

h*h() dK(i) h( -m()
= 2(1 + I2)h()' - h*h()

(t)
xo()X(,t) - h()' -

Equation (563) is then more compactly expressed as

X(,t) etXo()+
( jOO

Jem()J x(emts)x(mts)dKi)Jds.
0 -00



134

This admits the usual probabilistic and recursive interpretation leading to the branching

process representation of solutions, given recursively by

I xo() if A'S0

This representation is valid as long as X8(, t) is integrable. Integrability is assured by

requiring that the initial datum satisfies io()I < h(), with h() subject to the the

constraint m() < 1.

Equation (566) is a compact expression that is intended to convey the recursively

defined random field X (, t) whose full construction parallels X0(, t) for FNS:h, given in

Section 5.3. Rather than repeating an analogue of that construction here, it suffices to

describe it informally and comment on some important differences.

Just as with the FNS equations, the random field X0(, t) is first constructed as func-

tion of the array

{(S,U) : v E V}. (568)

Once this construction is made, we may fix and t and see that the actual random variables

involved in any realization of the process, the random variables

v (569)

may be naturally organized into a branching process on which X9 (, t) is a multiplicative

functional. This associated process is defined next. The random variables and U are

related in the same way as the identically named random variables of Section 5.2

7.12 Definition (The FKPP process). The FKPP process is a continuous-time multi-

type branching process whose particle types are real numbers. It is parameterized by E R

and elapsed time t > 0. Starting with index v = 0, a single ancestral particle of type

= lives for an exponentially distributed length of time with parameter 1 + 2, and

X0(,t) =

with the solution

- )'S9)X2(2,t -
having the expected value representation

if A1S9 <t,
(566)

= h()EX9(,t). (567)
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then splits into two new particles E1 and v2, correlated according to E1 + Evi = and

distributed according to

P(Ei E A E) f h(E_17)h(11)d (570)

These new particles, in turn, are subject to the same holding laws and splitting rules, and

are independent of each other and the history of the process. After an elapsed time t there

are a random number ((,t) of particles.

Just as with the FNS branching process, the multiplicative functional X0 (, t) is com-

puted by attaching initial datum Xo() to the input nodes of the associated tree 'r(e, t),

where the argument of the initial datum corresponds to the particle type. Then this ran-

dom number of inputs is combined through a sequence of binary operations, where the

order of the operations corresponds to the branching structure of the tree. At each binary

node, the two arguments, a and b say, are combined through the ordinary multiplication

a, b -* m()ab. (571)

The initial datum is multiplied together in this way up the tree - until the root is

reached, giving a particular value for X0 (, t) corresponding to the particular realization

of the branching process.

The difference between the multiplicative functionals for the FKPP process and the

FNS process are as follows:

For Xe(, t) the binary operation is commutative and associative, being ordinary

multiplication. For Xe(, t) the binary operation is neither commutative nor asso-

ciative.

For the FKPP process a particle always splits at the end of its life; there is no

termination without replacement. For the FNS process particles may terminate

without replacement with probability one half.

It is the termination of particles without replacement that insures non-explosion in the

FNS process. The non-explosion of the FKPP process is proved directly in Theorem 7.20.
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So far a majorizing kernel for the FKPP equation has not been determined. This issue

is addressed next.

7.1O A majorizing kernel for the FKPP equation, with equality

The solution representation t) = h()EX (, t) depends on the integrability of

X6(, t) that is achieved by making m() <1 and taking Ixo()l 1. The extremal case

m() = 1 constrains the majorizing kernel to solve the nonlinear convolution equality

hh(e) = v"(1 + Jej2)h(), (572)

with h() naturally required for the probabilistic interpretation. The rest of this

section is devoted to solving this equation by Fourier analysis. Before commencing, observe

that appropriately scaled, both the bilateral exponential density and Cauchy density solve

the corresponding convolution inequality. The use of these would introduce a multiplicative

factor m() < 1 at each of the operational nodes in the branching process.

The analysis of (572) is simplified by looking for solutions that satisfy h() = h();
in this case y(x) = (3'h)(x) is real valued, and the theory of real ordinary differential

equations can be applied to the problem. This is not a severe restriction because the

KPP equation itself is usually analyzed with real initial data and solutions, and part of

the goal here is the dual analysis of the KPP equation with two stochastic processes:

branching Brownian motion, and a multi-type branching process on the Fourier side. A

bridge between the two process is the fact that if h() is integrable and solves (572) then

y(x) = (Jh) (x) solves the steady state KPP equation

y(x) = y(x) - y2(x). (573)

7.13 Question. Are there solutions to the equation h * h() = \/(1 + II2)h(e) that are

positive, integrable, and satisfy h() =

It is easy to see that solutions to the differential equation (573) may be found, so the

question really is: do these solutions have Fourier transforms that are positive functions?

Before answering this question, some facts about solutions to (572) are recorded.
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7.14 Proposition. Let h() E L2(R) solve h*h() /(i + j2)h(). Then h() is
actually bounded and continuous. It is not necessary to assume that h() 0.

Proof. This follows from the general result that given any f, g e L2 (R), f* g is bounded

and continuous on R (proved in detail in Gasquet [24, p. 181]). This is a special case of

Theorem 2.6. Li

7.15 Proposition. If h() E L'(R) solves h*h(7) = + 2)h() and h() 0, then

IIh()IL1 > .

Proof. Denote the absolute moments of h() by pk I h()de. Integrating the equa-

tion gives '(io + /12)

This shows a rigid aspect of the convolution equation. This is different than say, the

equation h*h() = 8h() on R whose 1-parameter group of transformations h() =

R+, can transform any integrable solution into a solution of any given

L'-norm.

7.16 Proposition. If h() e S' is a non-negative function that solves h*h(e) = /(i +
j2)h(), and y(x) (3'h)(x) is continuous in a neighborhood of the origin, then h()

is actually in L'(R) and y(x) c C2(R).

Proof Theorem 4.9 states that if h() E 8' is a positive function whose Fourier transform

is analytic in a neighborhood of the origin, then h() E L1. The same argument works,

almost verbatim, with analytic replaced by continuous. Once it is established that h() is

in L1(R), the convolution equation shows that eI2h() is integrable, and its inverse Fourier

transform is continuous. A convexity argument shows that I h() is also integrable. Two

applications of the Lebesgue dominated convergence theorem gives

a2 1

a2) = f eIeI2h()d (574)

showing that y(x) C2(R). Li
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Figure 2: The level curves 71(p, q) = c.

Returning to Question 7.13, equation (573) is put into Hamiltonian form. Let q y

and p = y'. The ordinary differential equation (573) becomes the Hamiltonian system

with Hamiltonian 7L(p, q) q3 - q2 + p2:

dp 2 dq 37-1=-----=qq, --------. (575)

The family of curves 7I(p, q) c, where c is a constant are first integrals of the system.

These are shown in Figure 2.

The system has two critical points: a hyperbolic fixed point at (q, p) = (0,0) (with

c = 0) and a center at (q,p) = (1,0) (with c = -i). Also determined by the value c = 0

is the homoclinic orbit connecting the hyperbolic fixed point to itself, which is just part
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of the self-intersecting elliptic curve 1-1(p, q) = 0. The closed curves inside the homoclinic

orbit are determined by the values - < c < 0. These are the bounded components

of real elliptic curves having two components. The curves outside the homoclinic orbit

are determined by the values c > 0; in this case the real elliptic curve is connected. The

corresponding solutions to (573) are either bounded and periodic, bounded and integrable,

or unbounded, as - < c < 0, c 0, or c> 0, respectively. Of course, this classification

pertains to just those solutions with q(0) > 0 (corresponding to h() 0).

It turns out that only the homoclinic orbit produces a majorizing kernel, and even

then only for a single choice of initial conditions. The solutions inside the homoclinic or-

bit fail to provide majorizing kernels because their Fourier transforms (as elements of 3')

are lattice supported measures. The solutions outside the homoclinic orbit fail to provide

an integrable majorizing kernels because they are unbounded, or alternatively, by crossing

the line q = 0. These three cases are now considered in detail.

§7.10.1 INSIDE THE HOMOCLINIC ORBIT

This is the case that - < c < 0. The elliptic curve 7-I(p, q) = c corresponds to the

differential equation
/dq\2 2'j) -q +q2+2c,

which leads to elliptic integrals of the form

f dq
X

J (_q3 + q2 + 2c)h/2
(577)

Solutions are found by turning to the theory of elliptic functions. Basic references are [3],

[33], and for a more algebraic and geometric treatment, Jones and Singerman [28]. Let

q 6w + putting the equation into Weierstrass normal form:

(dw'\2 1 1+12c-) = 4w - gw with g = ,
63\ dx,,

(576)

(578)

The roots e1 > e2 > e3 of the polynomial P(w) = 4w3 - g2w - g3 are distinct, being the

affine images of the three points where the original elliptic curve ?i (p, q) = c crosses the



Wi = AGM(ei - e3, e1 - e2)
71 71i

W2 AGM(/ei - e3, .,/e2 - e3)
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q-axis: see Figure 3. This may be verified algebraically by computing the discriminant

2 2 2 c(c)
Lip l6(ei - e2) (e2 e3) (e3 - ei)

72
(579)

which is strictly positive for -i < c < 0. This uses the fact that Lip = g - 27g for

polynomials in Weierstrass normal form [28, p. 274]. Since P(w) has distinct roots, there

exists a lattice 1 = wl, w2) such that the Weierstrass elliptic function

(z)=-+>'((')2 )wEc

solves the differential equation

[i(z)]2 = 4[(z)]3 - g2(z) - g3.

The direct relationship between g and g and the lattice 1l(wi, w2) is

92 = 60 w and 9 = 140w6. (582)
wEZ

An inverse algorithm for computing w1 and W2 from 92 and g is given by Cohen [17,

pp. 394-398]. First, recall the definition of the arithmetic-geometric mean (AGM) of two

numbers.

7.17 Definition. Let a and b be two positive real numbers. The arithmetic-geometric

mean of a and b is the common limit of the two sequences defined by a0 = a, b0 =

an+1 (a + b)/2, and b+i =

Next, the following facts are relevant: (z) is a real function (meaning p() = p(z) )

if and only if the lattice is real (meaning = ). A real lattice is either real rhombic

(w1 W2) or real rectangular (wi is real, and w2 is purely imaginary). For a real lattice

l the corresponding elliptic curve has either one or two components as Q is real rhombic

or real rectangular respectively. Since the analysis here is concerned with solutions inside

the homoclinic orbit, the algorithm should give w1 real and w2 purely imaginary. In fact

it does:

(583)
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Figure 3: The roots ci > e2 > e of the polynomial P(w) = 4w3 - g2w - g are the three
points where the elliptic curve 7(p, q) c crosses the q-axis. Here c 1/12 with 92 and
g3 determined by equation (578). The curve 1-1(p, q) 0 is shown with the dashed line.

It may be verified that as c -p 0 from below, w1 -f oc and w2 -* 2iri. This should

be compared with the solutions corresponding to the homoclinic orbit which are simply

periodic with period 2iri. Similarly as c -* 1/6 from above, w -* 27r, and -* 00.

Equation (581) is solved by (z) for all complex z, but the goal here is find real

solutions that traverse the bounded component of elliptic curve iI(p, q) = c. This is not

obtained by simply restricting (z) to the real numbers, because (z) has a pole of order

2 at each w E ft This problem is solved by recognizing that (R) is the unbounded

component of the elliptic curve while the image of R + w2 is the bounded component [28,

p. 114]. Taking this into account, the periodic solutions to the equation y" y - y2 that



satisfy y'(0) - 0 are

JYc(X) - 6p(x + w2) + ,

Yc(x + w1) = 6(x + W1 + w2) + ,

with the parameter 1/6 < c < 0 determining y (0). This uses the fact that the zeros of

i(z) inside the fundamental parallelogram occur at w1, w2, and (w1 + w2). Of course

the particular p-function depends on the lattice l(w1, w2) which depends on c through

equations (578) and (583). These two solutions may be distinguished by the fact that with

e1 > 3,
= e, wi + w2) = 2, J(W2) = e3. (585)

This is stated without proof in Byrd [10, p. 310]. Another way to distinguish these so-

lutions is given in Section 7.11 where yc(x) is shown to be positive definite by a direct

computation of its Fourier series, and then of course the translate, yc(X+ w2), is not pos-

itive definite. Since these solutions are periodic, their Fourier transforms can not serve as

majorizing kernels for the unrestricted KPP equation. However, the theory carries over to

the periodic KPP equation, and the family of functions hper (Ic) (yc) (k) are majorizing

kernels for the periodic KPP equation. We will return to this in Section 7.11.

§7.10.2 OUTSIDE THE HOMOCLINIC ORBIT

This is the case that c> 0. The inverse Fourier transform of an integrable majorizing

kernel h() > 0 achieves its absolute maximum at the origin. Solutions corresponding to

any curve outside the homoclinic orbit are unbounded; for this reason none of them could

be the inverse Fourier transform of a non-negative integrable function. This proves the

following proposition.

7.18 Proposition. If h() E L1(R) solves h*h(e) = /2ir(1+j2)h(), with h() = h()
and h() 0, then y(x) = (1h)(x) does not correspond to a curve outside the homoclinic

orbit.

Remarkably, it is possible to weaken the positivity and integrability conditions on

h() and still assert that y(x) = (9'h)(x) does not correspond to a curves outside the
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oo<x<oo, (584)



h * h() (590)
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homoclinic orbit. This is because y(x) > 0 by the next proposition, and curves outside

the homoclinic orbit cross the line q = 0.

7.19 Proposition. Suppose h() solves h * h() = i/(1 + 2)h() with h() = h()
and that h() is the sum of an L' -function and an L2-function. Then y(x) > 0. It is not

necessary to assume h() 0.

Proof. We may assume that h() is integrable. To see this, write the equation as

f()h*h() h(), (586)

where

f() (2ir)'/(1 + 2)_1 E L' fl L°°. (587)

Let h() = h1() + h2() where h1 E L' and h2 E L2. Then

fh()d=
i,j=rl

jfLjjhl *hl!IL1 +2fjtL4hl *h21!L1 + ifIIL1ilh2*h2Loo

IIL°° IhiII1 + 2111 IlL IIhlIILl 1h2 11L2 + If iLl IIh2IIL2 <00. (588)

This uses Theorems 2.4, 2.5, and 2.6.

Taking the inverse Fourier transform of equation (586) (justified below), implies that

y(x) solves

y(x) = (f*y2)(x) = {e} * {y2(x)} (589)

where f(x) = (V'f)(x). Since h() is an even function, y(x) is real, and consequently

y(x) is strictly positive, being the convolution of a positive function and a non-negative

function.

Obtaining (589) is now justified. Let {k()} be a delta sequence of Gaussians,

each element of which integrates to 1. Then as k -* oc,



and since f() E L°°,

f()h*h*k() f()h*h().

Let qk(x) = (3'ck)(x); note that we have lim cbk(x) (27r)'/2. Applying 3' to
the sequence in the left hand side of (591) obtains, for each k,

(2h/2{f(x)}*{ (1h*h*k) (x)}

(27r)h/2{f(x)}*{y2(x)k(x)}. (592)

The first equality holds by Theorem 2.1 as

f(), h * h * k(), 7(x), (9-'h * h * k) (x) = y2(x)k(x) (593)

are all L1-functions. The second equality holds by Theorem 2.1. We have the pointwise

convergence

(2)h/2{j(x)}*{y2(x) (x)} 'f(x)*y2(x), (594)

and the convergence is also in L°° n CO3 because the entire sequence is the image of a

Cauchy sequence under the continuous transformation between Banach spaces:

3:-1 :L1(R') -f L°°(R7) fl Co(RTh). (595)

Thus the pointwise limit agrees with the L°°-limit, and the limits of the two Cauchy

sequences are Fourier transform pairs: f()h*h(e) f-* f* y2(x).

§7. 10.3 THE HOMOCLINIC ORBIT

This is the case c 0. Solutions that traverse the homoclinic orbit may be found by

a second integration. The curve 7-((p, q) = 0 corresponds to the differential equation

1dq2 2

\dx)
=q2(1-q)

which leads to

x=f dq

q(1
2
q)

(596)

(597)
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The integral may be computed with the substitution q = cos2 0. According to the

location of the homoclinic orbit it may be assumed that 0 lies in the interval (ir/2, ir/2).

Then
' dO 1

J=logsec0+tan0=--x+CcosO 2

so that

secO +tanO = BeX (599)

and the constant B is determined by the initial conditions. In fact, according to the

program of finding positive symmetric solutions in answer to Question 7.13, the correct

choice of initial conditions is q(0) 3/2 and p(0) 0, which corresponds to B = 1.

Letting w = sec2 0 3/2y one arrives at

/J+ 1/w 1 = Bec, (600)

and solving for \/ii gives
- 1+B2e

2Be_x/2

Finally, the general solution to equation (573) associated with the homoclinic orbit is

3( 2B V
y(x)

= 2 ex/2 + B2e_x/2)
(602)

and the particular solution of interest is y(x) = [cosh(x/2)]2. It still remains to show

that h() = (Sy)() (when B = 1). This leads to questions about when a solution

to a differential equation is positive definite and under what conditions that fact may be

inferred from the differential equation itself. Theorems along these lines are apparently

unknown.

The Fourier transform of y(x) [cosh(x/2)}2 may be found by evaluating the

Fourier integral using contour integration and the residue theorem. The singularities

of y(z) are simple poles that lie on the imaginary axis at 2iri(k + ), k E Z. To evaluate

the Fourier transform, fix e and let

1 3
[00

6
[00

1= - I dx= I dx. (603)
v'27r 2 J00 cosh2(x/2) Y2r j,0 2+ ex + e

(598)

(601)



Consider the contour integral

LR=--- f dz
JFR 2 + e'- + e

where FR is the rectangular anti-clockwise contour

ç 1R çR+2iri pR+2iri fR
I =1 +1 +1 +1

JTR JR JR JR+2iri JR+2iri

that surrounds the pole at z = in. As R * cc the contribution from the vertical segments

vanish and the contribution from the horizontal segments combine to give

6 coo eifZ 6
çoo+2iri -jze

L== lim LR= I dz+ I dzRoo '12n J_oo 2+ ez + e_z JoO+27ri 2+ ez + e_z

6 6 e2e
2 + ex + e 2in 2 + ex + e_xdX

oo
dx-

= (1 e2)I. (606)

At the same time, using the residue theorem and L'Hospital's rule, the finite contour

integrals (for any R) evaluate to

Then

LR = 2ini Res ( = 6 e_t

)\/2 + ez + e

l2ini ) _12iree= urn { (z - ini)2 + ez + ez

(1 - e2)I 12ire-v,
giving the Fourier transform

6 2ir 6
h() = (3y)()

e - /sinhir

§7.11 Majorizing kernels for the periodic KPP equations

The solutions inside the homoclinic orbit have Fourier transforms that are lattice

supported measures. If these periodic functions are developed into Fourier series instead,
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or equivalently,

('1*)(x) = /f(x)g(x). (614)

The development of the periodic function yc(x) = 6g(x + w2) + into Fourier series

is achieved using the calculus of residues. For k E Z, let

wi /2
2,rk-ix

ak = ak(c)
Y2 I e i y0(x)dx. (615)
Wi I

-Wi/2

Fix k 0 and consider the contour integral

L(k) = e 'i y(z)dz
IF

(616)

1(x) = ('1)(x) =

with the sum converging in an appropriate function space depending on the nature of

1(x). If the function 1(x) is differentiable then the series (612) converges absolutely, a

fact from the theory of Fourier series e.g. [51, p. 183]. When it makes sense, this version

of the Fourier transform satisfies

I(k - j)(j),
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the result is a class of majorizing kernels supported on Z. These become the majorizing

kernels for the periodic KPP equations

Uxx + U2 - U, Wl <X < W1, t 0,

u(x,0) = 1(x).

Recall that the period w1 depends on the first constant of integration in solving (575).

Recall also that the Fourier transform of a periodic integrable function 1(x) of period w is

w/2
1(k) = (f) (k) f_w/2 f(x)dx, (611)

and the inversion formula (which defines the inverse Fourier transform) is

(610)

(612)

(613)(k) = (fg)(k) = (f*g)(k) = 1
00

j=-00



so that

ak =
Wi (1 - e2k2l/'u1)

By the residue theorem

1L(k) = 2iri Res (z w2, 6e ' p(z + W2) + e 'a'),

and thanks to the Weierstrass representation (580) this may be evaluated as

iz -d
{( W2)2

2,k
L(k) = l2iri lim - - - e i (z +

Z*W2 dz

247r2kkjI/

Combining this with equation (618) gives for k 0

6/2ir=
/11 2irk'Wi sinhIW2!---i

Remarkably, these Fourier coefficients are, up to a multiplicative factor, the majorizing

kernel h() for the unrestricted KPP equation sampled at = IW2IW11k, for all k 0:

ak
42

h(Iw2wik), k E Z/{0}. (622)

(The function h() is given by (609).)

These Fourier coefficients are all positive. We have not yet computed a0, but it also

must be positive, as yc(x) is strictly positive. Setting aside the problem of ao for the

moment, we may now define the family of majorizing kernels hper(k) on the integers by

hper (k) = ak. Of course, there is an implicit dependence on the parameter c. These are

L(k) = (1 - e22'1)
'i /2

2irkf eTy(x)dx,

L(k)
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where F is the rectangular anti-clockwise contour with corners at W1, W1, Wi + W2,

and - wi + W2. Along the path of integration the contributions from the vertical segments

cancel and the contributions from the horizontal segments combine to give



j=-00

and consequently
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the majorizing kernels for the periodic KPP equations (of period w1 also depending on c)

and they satisfy

hper*hper(k) = /(i + 4ir2k2w2)hper(k). (623)

This may be verified directly by computing the transform of the steady state KPP equation

(573), with periodic boundary conditions.

We now compute a0 by evaluating equation (623) at k 0. This gives

1]1W2 - 172W1 = 27ri. (627)

ao = (625)

The extreme values of the parameter c indicate the branch of the square root. As c -* -,
Yc(X) approaches the constant function 1 having period 2ic, and a0 -* '2ir. Consequently

for c in a neighborhood of -i, the positive square root is taken. As c -* 0, the real period

w1 of y0(x) approaches infinity, and the imaginary period w2 approaches 2iri, and so from

equation (615), a0 -p 0. Consequently for c in a neighborhood of 0, the negative square

root is taken. The number of sign changes in the radical must be odd, as c varies between

- and 0; presumably there is a single sign change occurring at the particular value of c

for which a0 = /r/2.

It may be that the expression (625) can not be improved. One program that has

not been carried out is the expression of the periodic solutions yc(X) in terms of the

Jacobi elliptic functions, and this may help. But there is a reason for suspecting that the

expression (625) admits no simplification: There are two constants associated with any

p-function. These are

fZO+W1 fZO+W2

= J(z)dz, and i2
= j p(z)dz, (626)

z0 Z0

where z0 ft These integrals are independent of z0, as g(z) has zero residues, and its

anti-derivative is a single valued function. A fundamental relation between ji, , and the

periods w, w2 is Legendre's relation, e.g. [3, p. 274],

00

= a +2 (624)
j=1



Because of this, and the equation

a0=
( 6i1j,

Wi 2 /

determining c0, i, and 172 are essentially equivalent. Lang [32, P. 249] gives the following

formula for computing 172 considered a function of the lattice 1l(r, 1) and referring to the

second of the pair of fundamental periods:

172(T, 1)
(2iri)2

[ 1+ 24
]

(629)

Here qy = e2iT with r lying in the upper half plane. Compared to the complexity of this

expression, equation (625) for a0 is better.

This ends the discussion of the majorizing kernels for the periodic KPP equation. The

functions Yc(X) = 6g(x + w2) + with - <c < 0, which are the periodic steady state

solutions to the KPP equation, are elsewhere designated (x).

§7.12 The non-explosion of the FKPP process

The non-explosion of the FKPP process is derived from the uniqueness of the steady

state solution. This refers to the unique integrable steady state solution '(x) =

Although not presented here, there are analogous results for the periodic KPP equations

and the periodic steady state solutions b(x) with - < c < 0. For these there are

corresponding periodic FKPP processes whose particle types are integers.

7.20 Theorem. The FKPP process, as given by Definition 7. 1, never explodes.

Proof. Let q(, t) denote the probability that the FKPP branching process, started with

a single ancestral particle of type , does not explode by time t. Conditioning on the time

of the first split, and using the independence of the two branches, we have

q(,t) = et + f e_AS f q( - 17,t - s)q(17,t - s)dKe(17)ds. (630)
0 Joo

Let Q(, t) h()q(, t) and note that Q(,.) inherits integrability from h(). Substituting
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1= h()e_t + e_t f e
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Q*Q(,$)ds. (631)

where c, t) counts the number of particles (of any type) by elapsed time tin the FKPP

process started with a single ancestral particle of type .

this into (630) establishes that Q(, t) satisfies the integra' equation

Q(,t) = h()e_t + f e f - , t - s)Q(, t - s)dds
Jo

= + [t * Q(,t - s)ds
Jo

Differentiating yields the equivalent differential-convolution equation

t) = (1+ 2)Q(, t) + * Q(, t), (632)

with initial datum Q(, t) = h(). Let (x, t) = (31Q)(x, t). Then (x, t) solves the

KPP equation (439), with initial datum being a steady state solution

3 r X)]2
(633)Q(x,0) = (x) = 3'h() = - Icosh(-

2L 2

By its probabilistic construction, 0 < Q(, t) < h() and consequently

I(x,t)I (0,t)
1 f h()d = (0) = , (634)-

R

so that Q(x, t) E L°°(R x [0, oc)). By Theorem 7.7 the steady state solution is unique in

this class. Hence Q(x, t) b(x), and using the injectivity of the inverse Fourier transform

L'(R) Co(R), we have Q(,.) h() almost everywhere, and continuity implies

the equality holds everywhere, and so q(, t) 1, and the probability of explosion is

zero. LI

This utilizes the independence of the branches and the fact that for the function of

interest, the appropriate binary operation at the branch points is multiplication. There is

nothing special about the probability of non-explosion. The same technique works for the

generating function

F(s; , t) Esc(,t) (635)
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7.21 Corollary. Let u9(x, t) denote the solution to the KPP equation started with initial

datum u3(x,0) = s(x), with s <1 and (x) given by equation (642). Then

(3u3)(x,t) h()F(s;e,t). (636)

Proof. Fix s such that s <1. Just as in the proof of Theorem 7.20, we have F3(, t)

F(s; , t) satisfying the integral equation

F8(,t) = set + fAet' f FS( - ,t - t')F(,t - t')dK)dt', (637)
0 R

and G(e, t) = h()F (, t) solves (632) but with different initial datum. Proceeding just as

before, u5(x, t) (91G)(x, t) solves the KPP equation with the initial datum s'b(x). LI

§7.13 The finite time blow-up of the KPP equation

The finite time blow-up of the KPP equation is based on a stochastic comparison

between the FKPP branching process and the Yule process. Once it is known that the

FKPP process never explodes then the stochastic comparison between the random vari-

ables t) and Z(t) becomes useful. Both ((, t) and Z(t) are expressed as functions of

the common array {(,,, S1,) : v e V} and in this way coupled. We express , t) according

to the following counting procedure:

2,t) 1+1[i(1+ I-vIkI )1SvIk <t]. (638)

VEV

The interpretation of this formula is that the number of particles alive at time t is one

more than the number of binary nodes appearing before the elapsed time t; and these are

counted using the indicator functions. Similarly, for the Yule process,

Z(t) = 1 + 1['IOSV1k <t]. (639)

vEV

For any v E V it is obvious that

(1 + I2)_ls s, (640)

and consequently

i[>j0s <t] <1[o(1+IvI2)_Sv <t], (641)

so that on the event of non-explosion, we have Z(t) <((f, t). This holds for any and t.



ae_t
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7.22 Theorem. If the KPP equation has the initial datum a(x), where a> 1 and

-2 X'O(x)=cosh (i), (642)

then the solution ceases to exist sometime between Tjk <T, where

i 3a \ f a \Tr=1og(32) and T,=log1).

Proof. Let u(x, t) solve the KPP equation on 1R. x [0, T*) with initial datum a(x), and

suppose that [0, T*) is the largest time interval on which the solution exists. Then by

Proposition 7.6, we have I < T using the fact that the size of the initial datum is

bounded by a. At the same time, on the Fourier side, assuming that the representation

x(, t) EX6(, t) = Ea,t)

is valid, we have

, t) h()Eat) h()Ecx)
= 1 - (1 - et)a

which blows up for all as t T. This means that T* T because as t -* T,

u(O,t)
1 f u,t)dx 00.

It remains to validate (644). Since we are no longer in a situation where the initial

datum is bounded by a majorizing kernel, it is not known a priori that the multiplicative

functional is integrable, or if this represents yet another solution distinct from the solution

of interest. Here is how this may be done: Let T = T* - e. Working with the integrated

form of the KPP equation, it can be shown in general that if u(x, t) E L°° (R x [0, TI) solves

the KPP equation with initial datum satisfying f(x) e L' fl L°° fl C2 and f(x) e

then n(, t) L1(R) on [0, T]. The specific initial datum ab(x) satisfies these conditions,

so for the solution of interest, I!2%(, t) E L°°(R) for all 0 <t < T. Moreover, u(., t) takes

values in the Banach space (h) of Definition 6.1 built from the majorizing kernel

\/27r 1 13

2 132+lI2

(643)



where /3> 0 is arbitrary. This scaled Cauchy density has the property that

<1m
- 4/32j2 -

Using this particular majorizing kernel the FKKP equation may be expressed as

, t) etetlI2o() f e)e52 f - (i)dk(i)ds
0 R

where

t) *o() dk) d.

Assuming integrability of the multiplicative functional X0 (, t), a fact established shortly,

this produces the representation

(t) =E.ke(,t), (651)

with t) described recursively by

X6(,t) = Ie_t2o() if Sot,
(652)

- So)2(2,t B0) if S0 <t.

As usual, the E particle is distributed according to dk(1), and the two new particles

are completely correlated: + = . The notable difference between this representa-

tion and (566) is the inclusion of the time dependent multipliers, and the fact that the

exponential lifetimes {S : v V} are i.i.d. with mean 1.

We now consider the representation (651) and (652) with the specific initial datum in

question:
ah() 6cr(/32 + 2)

/3sinhr

Let (,t) E LOO(R x [0,T]) be defined by

2

,t)
(e,t) ,t)

where t) is the Fourier transform of the hypothesized solution u(x, t) E

R = max{ sup (.,t)L), Xo(e)IIL)}
0<t<T

I,,
I,,

(653)

(h). Let
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and let T1 = min{T, TR} where

100 ifR=1,
TR= R (656)

if R>1.

We would like to assert that the function t) of equation (654) is a solution to (649)

started with the initial datum (653), and this solution is unique in the class L°° (R x [0, T]).

For this purpose we construct the solution t) to (649) using the recursively defined

(, t) given by (652). A comparison of the stochastic model underlying the recursive

description (652) with the Yule process shows that the number of particles alive at time

t is the geometrically distributed random variable Z(t). Also, the multipliers for X0 (, t)

which appear at the input and operational nodes are, respectively,

e_t12 <1 and i()e2 <1. (657)

Consequently

Rt) (658)

and k9(, t) is integrable as long as 0 <t < T1. Then by an analogue of Theorem 5.5,
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(659)

solves (649). An application of a martingale argument similar to that given for (i) and

(ii) of Theorem 7.10 shows that (,t) = '(,t) and (t) for 0< t T1. Repeating

this argument by restarting the equation with initial datum T1) shows that t) is

the unique solution to (649) in the class L°° (R x [0, T2]) where T2 = 21', and that t)

remains non-negative up to time T2. Iterating this argument as many times as necessary

yields the desired uniqueness of (t) up to time T, and that (t) on R x [0,T].

Armed with the knowledge that t), and hence i, t), is non-negative, we return

to the FKPP equation in the form

x( t) = exo() + Aes {m(e) f x(e - , t - s)x(, t - s)dK)} ds
0 -

(660)



with

X(,t) m() = 1, Xo() = a,

(and the other functions given by (564)). The multiplicative functional X9 (, t) with this

particular initial datum is described recursively by

ía ifA'S0>t,
x9(e,t) = - (662)

X1(1,t - ASe)X2(E2,t -1Se) if <t.

We would like to complete the proof with an analogue of the martingale argument given

in part (iv) of Theorem 7.10. The problem is that x(, t) is not known to be bounded a

priori. (Recall the hypothesis of Theorem 7.10; see also the comments preceding Theorem

5.6.) We get around this by the following device. Define the sequence of random fields

((k)
. . .Z9 (, t) k > 0) just as in the martingale construction of Section 5.4, except that the

sequence begins with z° (, t) 0. Thereafter

ía ifA1S0t,
(, t) = (663)

z(1,t - A'S6)Z(E2,t - A'S6) if <t.

(k) .We know that Z0 (, t) is positive and mtegrable, enjoying the bounds

0 z(,t) <a2k. (664)

An induction argument establishes that for all k 0,

0 <1EZ(k)(,t) <X(,t). (665)

Yet the sequence z (, t) still converges almost surely to the completed multiplicative

functional X8(, t). Then

'y(,t) EX(,t) =E(1iminfZ(,t)) < liminf (EZ'(,t)) X(,t). (666)

Since X0(, t) is integrable, we have by an analogue of Theorem 5.5, that 'y(, t) solves

the FKPP equation (660). It remains to show that t) = x(, t) or equivalently, that

ii(, t) = t) where

= h()'y(,t). (667)
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This follows from uniqueness: By Theorem 7.2 u(., t), and hence i(., t) are both square

integrable on [0, T], so the bound 0 < iui(, t) ü(, t) implies that ii(, t) E L2(IR) for

0 t <T. Both t) and , t) are integrable as well, as they solve the equation

t
,
t) = h()e_t(1+2) + (2)_h/2 f * , t - s)ds (668)

0

implying that for fixed 0 t T,

Bh() + E L'(R)
(i+jJ2)

where

B = (27r)_h/2 sup iil(.,$)2(R). (670)
0<s<T

Let w(x,t) = ( 'ili)(x,t). Both u(x,t) and w(x,t) are bounded solutions to the KPP

equation on R x [0, T] started with the same initial datum ab(x), so by the uniqueness

part of Theorem 7.10, u(x, t) and w(x, t), are really the same functions, and by injectivity

of the inverse Fourier transform ' : L' (R) Co(R) coupled with the continuity of the

functions t) and i5(x, t) we have t) = ii(x, t) holding everywhere. This equality

extends immediately to '5'(, t) = t), so the inequalities in (666) are actually equalities,

and the representation (644) is valid. LI

Embedded in the previous proof is following remarkable fact, recorded here as a corol-

lary to the theorem.

7.23 Corollary. Suppose that u(x, t) defined on R'7 x [0, T] is a classical solution to the

KPP equation started with initial datum f(x) E L1(R)nL°°(R) that is non-negative definite

(its Fourier transform satisfies 1(e) > 0) and whose second derivative is integrable. Then

at all later times 0 < t < T, both u(x, t) and (a2/ax2)u(x, t) are integrable and u(x, t) is

non-negative definite.

(669)
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