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We studied the feasibility of using end-grain characteristics to match 

individual boards and cants back to their parent Douglas-fir (Pseudotsuga menziesii) 

logs.  After reviewing marking/reading and biometric automated identification 

systems, we focused on end-grain biometrics because they appear to have the most 

promise for sawmills.  Biometric identification requires that every individual be 

unique in some quantifiable way and that the trait used remain relatively unchanged 

over time.  To determine whether end-grain characteristics could meet these 

requirements, we imaged 120 Douglas-fir cross-sections three times over the span of 

three days.  An image matching algorithm matched images cropped to simulate cants 

and boards to cross-section images taken at an earlier time.  We analyzed the results 

using standard receiver operating characteristic curves commonly used to evaluate 

biometric identification systems.  Results showed that 98% of the day 2 board images 

were correctly matched back to their day 1 parent cant images, and 93% for the day 3 

to the day 2 images.  When cants were matched to uncropped rounds, 88% of the day 

2 images were correctly matched to the day 1 images, and 83% for the day 3 to day 2 



 

images.  The results are encouraging because they suggest that individual logs can be 

identified using the variability of end-grain characteristics. 
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The Potential of Using Log Biometr ics to T rack Sawmill F low 
 
 

1. IN T R O DU C T I O N  

In an increasingly competitive global market, U.S. sawmills are challenged 

with becoming more efficient while improving quality (Wagner et al. 1998).  

Consequently, sawmill managers increasingly use quality improvement principles to 

maximize lumber recovery and value (Young and Winistorfer 1999).  Successful 

applications of these principles require detailed information of every manufacturing 

step (Wall 1995). 

Many advances in the automated detection of wood characteristics are used to 

optimize processing and increase lumber recovery.  However, research into the use of 

material flow research for sawmills is in its infancy (Maness 1993; Funck et al. 2000).  

According to Wall (1995), monitoring material flow through the production process 

can drastically improve product quality and increase production efficiency by up to 80 

percent.  While the advantages of automatically tracking material flow is well 

understood and commonplace in many industries, it has not yet been successfully 

implemented in a sawmilling environment. 

There are several technologies available to track material flow.  The most 

common, and well-known, technologies are radio-frequency and barcode 

identification, also known as marking/reading systems (Chiorescu et al. 2003).  Both 

systems require an identification tag be placed on each individual -- a process that is 

too costly and complex for a typical sawmill. 
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Another tracking technology explored for use in the forest products industry is 

biometric identification, also known as marking/reading-free systems (Chiorescu et al. 

2003).  Systems based on this technology rely on identifying individual cants and 

boards back to their parent logs using their physiological characteristics, which are 

physiological aspects of an individual that can be measured quantitatively (Chiorescu 

et al. 2003; Luis-Garcia et al. 2003; Jain et al. 2004). 

For the purposes of this study, a cant will be defined as the breakdown 

component of a log that is reduced to a rectangular in cross section after processing by 

the headrig, or primary breakdown saw.  Boards are defined as the breakdown 

components of a cant that are reduced to standard 2-by lumber sizes after processing 

by the gangsaw.  An example of a log, cant, and boards are seen in Figure 1.  

Implementing biometric identification in a sawmill is challenging because as logs are 

processed into boards the original characteristic may be altered or even entirely 

removed. 

Research utilizing log biometrics has focused on longitudinal characteristics 

such as geometric shape to identify logs and face-grain patterns to identify boards.  

These techniques rely on characteristics that are altered as the log is processed, which 

makes them unreliable comprehensive material tracking between machine centers.  

Evaluation of these techniques has also lacked methodological consistency making it 

difficult to compare them. 

Our research is focused on end-grain, which is l -section 

and consists mainly of the annual rings of concentric latewood and earlywood bands 
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(Figure 1).  As logs are processed, the end-grain surface is theoretically untouched 

until the very end of the process.  No previous studies have used the variability of end-

 

 

 

 

Figure 1.  Drawing of a log, cant, and boards showing the longitudinal and cross-
sectional dimensions. 

 

1.1.  Objective 

The objective of this study is to determine whether there is sufficient 

variability in Douglas-fir end-grain to uniquely identify cants and boards back to their 

parent logs.  A secondary, but important, objective is to apply standard biometric 

 

 

1.2.  Hypotheses 

 Douglas-fir end-grain possesses sufficient variability to match sawn 

boards back to their respective cant end-grain. 

Cross-section 
(end-grain) Longitudinal surface 

Log Cant Board 



 

 

4 
 Douglas-fir end-grain possesses sufficient variability to match sawn 

cants back to their respective rounds, or log, end-grain. 
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2. L I T E R A T UR E R E V I E W  

In this section, we will discuss the meaning of material tracking, also known as 

traceability, and its benefits for sawmills.  We will review two types of material 

tracking systems: marking/reading systems, which include radio-frequency and 

barcode identification; and biometric identification systems, which will be our primary 

focus.  An argument will then be presented for identifying logs, cants, and boards 

using end-grain characteristics. 

 

2.1.  Definition of traceability 

Traceability can be defined as attaching a unique identifier to a product to 

collect and monitor production and distribution history (Maness 1993; Wall 1995).  

Many industries rely on traceability to track raw materials and products throughout 

their supply chains.  The food industry must maintain accurate and timely records of 

food from production to the consumer to quickly quarantine or recall contaminated 

products. 

To track material through a sawmill, an automated system would need to 

identify individual logs, cants, and boards (Maness 1993; Wall 1995), and maintain a 

record of their parent-child relationship as they are processed through machine 

centers.  Tracking systems are thus designed to connect every processing step by 

collecting, analyzing, and distributing production data in real-time, which can 

drastically improve quality and efficiency (Wall 1995).  Figure 2 shows how 

extensively material and information flow could be monitored and disseminated 



 

 

6 
through a sawmill as at every machine center each workpiece could be traced to its 

parent log.  This information would be transmitted to a host computer that monitors 

the entire production process providing an increased understanding, of machine center 

interactions. 

  

  

  

  

  

  

  

  

  

Figure 2.  An adaptation of the Stevens Advanced Weighing Systems Ltd. approach to 
materials traceability showing how material flow could be monitored in a sawmill 
(Wall 1995).  Solid lines represent material flow, and dotted lines represent 
identification information flow. 

 

2.2.  Benefits of sawmill mater ial tracking systems 

Material tracking systems are not used in the forest products industry because 

they are difficult to implement, not well understood, and difficult to maintain 

(Chiorescu et al. 2003).  Despite the difficulties of implementing tracking systems, 

they can improve manufacturing systems by providing accurate data for making more 
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informed production decisions.  They also have implications for reducing 

environmental impacts by creating a framework for chain-of-custody documentation 

required for environmental certification. 

 

2.2.1.  System benefit 

A typical sawmill contains a complex array of machine centers that 

automatically execute programmed cutting solutions quickly and accurately.  

However, each machine center works individually, regardless of the optimization 

decisions made up- and down-stream.  The board edger that relies on its own sensor 

data and optimization program can modify an optimized log cutting solution made at 

the headrig.  This lack of integration can lead to inefficient processing and a general 

lack of clarity for the entire system (Maness 1993; Wall 1995). 

Maness (1993) described how an identification system could increase 

information flow between machine centers by tracking parent-child relationships 

through the log breakdown process and thus provide real-time monitoring of piece 

flow.  He proposes that a tracking system could connect optimizer scanning data to the 

parent logs providing the ability to optimize the entire sawmill system, which is 

difficult to do manually, and is virtually never performed (Maness 1993). 

Maness (1993) evaluated this concept using twenty-nine logs scanned with a 

log scanner employing value-based sawing optimization.  The log scanner used laser 

optimal cutting pattern based on volume and value.  The cants processed at the headrig 
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predicted volume and value were then compared to the actual output.  The final board 

di  

Maness (1993) found that the volumes and values calculated for the 29 

sawlogs by the headrig optimizer were lower than the actual output with a predicted 

volume of 790 board-feet (BF) from 76 boards compared to an actual volume of 656 

BF from only 75 boards.  The difference arose from more 1x4 material being produced 

instead of the 2x4 material predicted by the log optimizer resulting in an actual 

product value 20% less than was predicted. 

Maness identified three possible causes of these discrepancies: inaccurate log 

scanning, poor equipment setup, or inconsistent price tables used at one or more 

machine centers.  These issues are difficult to diagnose, because final value is not 

determined until the lumber is graded after processing when all log to lumber 

relationships are lost.  Sirkka (2008) agrees, stating that dimensional lumber is 

considered a bulk material, and is graded after processing to determine if customer 

demands are met.  Quality control is performed manually on a small subset of boards, 

which finds processing errors without revealing their cause or location (Maness 1993; 

Wall 1995). 

The disparity between actual and predicted value and volume has implications 

for production planning and sawing schedules.  Without knowing the true output at the 

beginning of the process, sawmill operators must produce more material to insure that 
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consumer demands are met.  This increases waste as well as the amount of lower 

demand material, fur

boards were actually cut into 1x4 boards resulting in an estimated $310 loss per hour. 

These issues would be difficult to resolve without a thorough mill study that 

tracked material flows through machine centers.  Sawmill processes are complex, 

having both convergent and divergent flows that can loop back into other machine 

centers.  Therefore, a mill study requires extensive manual marking to track material 

flow, which is time consuming and prone to error, leaving mill managers with 

unreliable data on which to base production decisions (Maness 1993).  It also gives 

little indication of how machine centers interact with each other (Kline et al. 1992).   

A material tracking system would allow mill 

initial cutting solution from the headrig to that of the actual products produced.  The 

machine center sawing algorithms could then be adjusted to more closely match the 

global optimization for the mill.  According to Maness (1993), such a system should 

It should also help match production to consumer demand, which is a key concept of 

consumer-driven production (Chiorescu et al. 2003; Maness 1993; Wall 1995)). 

According to Maness (1993), a material tracking system could be used in 

conjunction with common SPC methods utilizing automatic measurements from 

data could be used to adjust downstream machine center optimizers, permitting sawing 
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profits.  This previous research indicates that while scanning optimizers may work 

well individually, the lack of communication among them leads to missed 

 

operation as a whole, making decision-support systems more reliable.  Currently, 

sawmill simulations are created using probability distributions based upon 

measurements taken at the machine centers, which is known as a self-driven model 

(Wiedenbeck and Kline 1994).  These models tend to be costly and time-consuming 

By using actual data to incorporate material flow, rather than theoretical, independent 

distributions, a simulation model would produce more realistic results, and better 

analysis of the whole manufacturing system (Kline et al. 1992; Wiedenbeck and Kline 

1994).  However, these trace-driven models require a lot of material flow data and are 

best suited to automated material tracking systems (Wiedenbeck and Kline 1994). 

 

2.2.2.  Environmental benefit 

Tracking material flow would also p

carbon footprint.  A one percent increase in material recovery would save US sawmills 

over 426.7 terajoules in annual energy usage and reduce their CO2 Global Warming 

Potential increase by 9.3 teragrams, based on IPCC values (Milota et al. 2005).  

Combined with improved raw material utilization, this could improve the overall 

competitiveness of U.S. sawmills. 
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2.2.3.  Certification benefit 

Environmental certification is playing a greater role in the forest products 

indu

that materials be traced through the supply chain using a documented chain-of-

custody.  While the demand for certified building materials is growing, neither 

consumers nor producers are willing to pay the high costs associated with chain-of-

custody for certification (Ozanne and Vlosky 1997; Volsky and Ozanne 1998).  The 

software and hardware to maintain these records are costly, and for companies that 

wishing to process both certified and uncertified material, costs are even higher to 

maintain separate log inventories (Volsky and Ozanne 1998).  An automated tracking 

system could reduce these costs, especially for companies wanting to combine log 

inventories. 

 

2.3.  Marking/reading methods 

Logs are sometimes tracked from the forest to sawmills using radio-frequency 

identification (RFID) or barcode tags, but these methods have not achieved success 

through the sawmilling process, due largely to economic realities and the harsh 

operating environments of softwood sawmilling.  Chiorescu et al. (2003) describes 

marking/reading methods, such as RFID and barcodes, as conventional tracking 

technologies that require the physical application of an identification tag.  These 

methods can also be considered as deterministic identification methods, where a 
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predetermined identification number is attached to, or printed on, the object.  We will 

discuss these technologies as they might be applied to softwood sawmills. 

 

2.3.1.  Radio-frequency identification 

RFID systems are commonly used in supply chain management to track assets 

and product movements, especially in warehouses.  They require RFID tags, a 

reader/writer device, and a computer system to store data.  RFID tags are either 

passive or active.  Passive tags receive power from the reader, and then transmit, while 

active tags have a battery, and continually transmit, identification information to the 

reader.  The information, including its location, is then sent to the host computer.  We 

will focus only on passive tag technology because it is less expensive and thus more 

likely to be adopted in sawmills. 

Chiorescu and Grönlund (2004b) used passive RFID tags to track logs through 

a logyard, with the goal of comparing RFID systems to biometric identification 

technologies.  Their study used 3409 Scots pine and Norway spruce sawlogs that were 

tagged on their top-ends during harvest.  The identification numbers on the RFID tags 

were manually documented before they were scanned at the log sorting station, after 

which the logs were sorted and stored for three weeks.  The logs were then debarked 

checked for accuracy. 

The results showed that 93% of the logs were correctly identified by the RFID 

system, which is not surprising because such systems are capable of reading at 
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distances of several feet, depending upon the environment and type of tag.  RFID 

technology has several advantages over barcodes, such as its insensitivity to dusty 

conditions, and its ability to read several tags at the same time over greater distances 

because it does not require a direct line of sight (Chiorescu and Grönlund 2004b; Lu et 

al. 2006). 

However, just like barcodes, RFID tracking systems are not perfect because 

their tags are susceptible to damage when items are moved or exposed to the elements.  

In the Chiorescu and Grönlund (2004b) study, over 200 RFID tags were not read or 

read incorrectly.  According to the authors, the tags on larger diameter logs may have 

been too far from the RF reader.  Also, RFID signals are susceptible to interference 

from electromagnetic noise emitted by sawmilling equipment.  Finally, the moisture in 

the logs could have absorbed the radio signal, making it impossible to read. 

While RFID tracking systems do have their advantages, many issues must be 

addressed before their use in sawmills becomes practical.  To effectively track 

material flow, tags must be applied to each piece produced during log breakdown.  

This requires a device flexible enough to apply tags to potentially odd shaped pieces at 

each machine center. They also have high operating expenses as passive tags cost 

between 10 and 15 cents for each of the thousands of boards processed in a single 

shift. And, of course, tags may not survive the harsh physical handling experienced by 

lumber in a sawmill.   
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The cost to install the tag applicators, the readers, and the tags would appear to 

make this technology prohibitively expensive for sawmills, which leaves the logyard 

as perhaps the only area where RFID tags can be affordably used. 

 

2.3.2.  Barcode identification 

Barcodes are commonly seen throughout many supply chains because they 

offer an affordable method for tracking products as a one- or two-dimensional data 

array read by a relatively inexpensive optical scanner.  Barcodes could be applied in a 

sawmill either by mechanically attaching a preprinted tag, or by directly printing the 

code on the surface of a workpiece.  Each barcode must be scanned before entering a 

machi

process, reapplied and rescanned to maintain identification. 

The greatest advantages barcodes have over RFID are their general immunity 

to electromagnetic noise and their lower cost tags.  The obstacles for barcodes in 

sawmilling are the susceptibility to handling damage and the complexity of tag 

application, which are the same factors facing RFID systems.  One additional obstacle 

barcodes must overcome is their susceptibility to being obscured by dust or other 

objects. 

RFID and barcode systems have revolutionized supply chain management and 

tracking in many industries.  However, in lumber manufacturing with its low-profit 

margins, these technologies may not provide the financial payback needed for 

viability.  
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2.4.  Biometr ic identification methods 

Acknowledging the weaknesses of RFID and barcode systems, researchers 

have begun exploring the use of biometric principles to identify individual logs and 

lumber.  Biometric identification is defined as the recognition of individuals based on 

unique, measureable physiological characteristics and not on deterministic 

identification tags or markings (Chiorescu et al. 2003; Jain et al. 2004; Luis-Garcia et 

al. 2003).  It can also be defined as probabilistic matching (Mansfield and Wayman 

2002).  

According to Jain and Pankanti (2001), biometric identification relies on two 

main assumptions vital for acquiring characteristics used to identify individuals.  First, 

the relevant characteristics must remain unchanged over time and possible alteration in 

morphology.  Second, these characteristics must be unique among different 

individuals.  These assumptions are also known as intraclass variation and interclass 

variation, respectively (Jain and Pankanti 2001). 

Charpentier and Choffel (2003) reviewed the basic components needed for a 

successful lumber tracking system using wood characteristics.  Figure 3 summarizes 

these components in a hierarchical structure. 
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Figure 3.  Four steps in tracking lumber using the inherent heterogeneity of wood.  
This figure after Charpentier and Choffel (2003). 

 

Biometric methods require that wood characteristics be acquired for an 

individual with a technique that can convert the measurements into digital features, 

which mathematically represents the physiological characteristics. 

The data can be analyzed either in its raw unaltered form or after modification 

by feature extraction (Jain and Pankanti 2001).  Raw digital analysis can be 

computationally cumbersome because non-relevant data is included along with the 

desired digital features, and could lead to exponentially long matching times 

(Mansfield and Wayman 2002).  It could also introduce extraneous data that obscures 

the relevant digital features (Jain and Pankanti 2001).  Digital feature extraction 

reduces the data to only that needed for identification, thus reducing the ill-effects of 
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extraneous environmental factors that can weaken raw digital feature matching and 

increase matching speed (Jain and Pankanti 2001).  According to Jain and Pankanti 

(2001), implementing an accurate digital feature extraction algorithm can be 

challenge.   

Whether raw or extracted features are used, identification relies on acquiring 

one or more physiological characteristics with sufficient resolution and accuracy into a 

digital feature.  These digital features are compared to others in a pre-existing template 

database using a matching algorithm, which provides a matching score that quantifies 

the degree of similarity between the input, or target, digital feature and the template 

(Mansfield and Wayman 2002).  A target is thus compared to each digital feature in 

the database. 

 

2.4.1.  Population requirements of biometric identification systems 

In a review article, Jain et al. (2004) state four criteria a characteristic must 

possess to achieve successful biometric identification: 

 Universality: each individual must possess the characteristic. 

 Distinctiveness: the characteristic is sufficiently unique to maintain 

identity. 

 Permanence: the characteristic must be invariant enough to maintain 

identity throughout the identification process. 

 Collectability: the characteristic must be measurable. 
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There are many characteristics found in wood that meet all four criteria, 

including knot size and location, heartwood location, annual rings, and even exterior 

shape.  We will review previous research that uses these wood characteristics for 

identification. 

 

2.4.1.1.  Universality 

According to Jain et al. (2004), it is important that the characteristics chosen 

for identification are present in each individual.  In forest products, both geometric-

based and pattern-based matching has been found to possess universality.  Geometric-

based methods rely on measuring log geometries and combining them into a unique 

combination of metrics used for identification.  Metrics are scalar measurements 

obtained by scanners that describe the geometric shape of an individual, such as large- 

and small-end diameters, taper, ovality, and taper.  Pattern-based matching uses a 

particular variability characteristic found in the individual that is not necessarily 

dependent upon surface geometry, such as annual ring and knot whorl patterns or 

location. 

Pattern characteristics can be external or internal, while geometric 

measurements are only exterior.  Geometric variability can be acquired using standard 

imaging equipment such as cameras.  Interior variability is found within an individual 

using an instrument such as an x-ray scanner.  Choosing a characteristic for matching 

can be difficult because, while exterior characteristics tend to be removed or altered at 
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machine centers, the measurement of interior characteristics requires expensive and 

complex equipment.  

Chiorescu and Grönlund (2004a) used geometrics to identify debarked logs 

using a 3D log scanner.  This scanner acquired 3D log profiles using infrared laser 

triangulation with scanning resolution dependent upon the feed-rate.  Nine log metrics, 

including volume, length, area minimum diameter, middle diameter, log taper, top 

taper, bumpiness, relative taper, and bow, were calculated from the log scans.   

After initial scanning, 773 Scots pine logs were stored in the logyard and 

scanned twice using the 3D scanner -- the first after two weeks and the second after 

template data, and if all the metrics fell within an arbitrary range, the log was 

considered a match to the one in the template.  After 2 weeks of storage, the system 

was able to correctly match 89% of the logs, and 86% after two months. 

This study demonstrates that geometric-based matching can be used for 

identification by employing a large number of measurement variables, or metrics.  The 

technique was successful only because every log has a relatively distinct geometry.  

However, these geometric-based systems can only be used in the logyard, because the 

identification metrics will be altered as the logs are processed into lumber with 

uniform shapes and sizes (Chiorescu et al. 2003). 

Pattern-based matching was explored in a study using internodal branch-whorl 

distances obtained from x-ray scans to identify individual boards as being from a 

specific Scots pine log (Flodin et al. 2008).  Knot whorls are nodes of higher-density 
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branches characteristic in many softwood tree species, and can be considered a 

universal trait.  

The logs were scanned at the log sorting station using an x-ray scanner and a 

3D optical scanner before being processed into boards, when they were scanned again 

using a surface imaging system.  The boards were matched, using correlation analysis, 

by length and internodal branch-whorl distance to the log template database.  Using 

this method, Flodin et al. (2008) achieved a board identification rate of 95% and 

demonstrated that there are universal characteristics available to successfully identify 

log breakdown components back to their parent logs. 

Both of these studies illustrate the diverse methods for identifying logs, cants, 

and boards using their inherent variability.  Geometric-based matching, while 

universal and effective, cannot be applied during sawmilling because the information 

is removed.  Pattern-based matching shows that universal characteristics can be used 

throughout the sawmilling process to identify individuals.  In this case, the universal 

characteristic was internodal branch-whorl distances, which remained intact through 

the sawing process.   

 

2.4.1.2.  Distinctiveness 

Characteristics must be sufficiently unique to distinguish an individual within a 

population.  Chiorescu et al. (2003) investigated whether biological variation in shape 

could be used to identify barked logs by employing a preexisting database of 879,517 

optical log profile scans acquired using laser triangulation.  In their study, they 
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investigated which, and how many, geometric measures were needed to differentiate 

among individual logs.  The database population consisted of 58% Scots pine and 42% 

Norway s

included measurements of length, maximum diameter, knot placement, total taper, butt 

taper, bow, and ovality. 

The authors developed a search algorithm (TreeSearch) to compare the scan 

data.  They found that identification rates increased as TreeSearch included more 

metrics (Table 1).  Different metric combinations also affected the identification rates. 

 

Table 1.  Geometric measurement variables versus the number of individuals correctly 
identified in both Scots pine and Norway spruce (Chiorescu et al. 2003). 

Measurement 
parameters 

 

Scots pine log 
identification rate 

(n = 510,120) 

Norway spruce logs 
identification rate 

(n = 369,397) 
Diameter + length 3% 3.90% 
Diameter + length + 
butt taper 64% 68% 

Diameter + length + 
butt taper + bumpiness 98% 99% 

 

These results demonstrate that distinctiveness is important in biometric 

identification.  There must be sufficient variability in the characteristic to determine 

the identity of individuals, which can be a challenge, especially when simplifying 

measurements into several scalar metrics.  In this case, the identification results 

increased significantly when butt taper and bumpiness data were added to the metric 

combinations.   
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This demonstrates that some characteristics provide more useful information 

than others and that choosing which characteristics to use is critical when developing 

an identification system.  For instance, including ovality did not improve identification 

rates.  On the other hand, the study also shows that no single characteristic provides 

enough information for error-free identification.   

The usefulness of including more variables is also demonstrated in the Flodin 

et al. (2008) x-ray identification study that found significant improvements in 

identification using a log length filter to reduce the number of potential template 

matches, which improved the probability of obtaining a true match (Jain et al. 2004).  

The study also confirms the benefit of using multiple characteristics to identify 

parent/child relations discussed by Luis-Garcia et al. (2003) and Jain et al. (2004). 

Chiorescu et al. (2003) also used the filter concept by creating three log 

diameter classes from 3000 semi-randomly selected log scans (1000 in each class) and 

used their TreeSearch algorithm to match individuals within each diameter class using 

the diameter, length and butt taper metrics.  The results are shown in Table 2. 

 

 

 

 

 

 

 



 

 

23 
Table 2.  Using three geometric measurement variables, the number of individuals 
identified increased with increasing diameter class (Chiorescu et al. 2003). 

 Diameter + length + butt taper 

Diameter class 
Scots pine log 

identification rate 
(n = 1500) 

Norway spruce log 
identification rate 

(n = 1500) 
Small diameter 
(160 to 190 mm) 76% 86% 

Medium diameter 
(230 to 260 mm) 90% 92% 

Large diameter 
(300 to 330 mm) 99% 99% 

 

By separating the individuals into three diameter classes, identification rates 

were significantly improved.  The probability of having indistinguishable, or twin logs 

decreased as the log population decreased, which improved results and shows that 

population size is important in biometric identification because, as the test population 

 (Chiorescu et al. 2003; 

Jain et al. 2004). 

Chiorescu et al. (2003) also identified several weaknesses in the distinctiveness 

requirement when using log scans for identification.  Large logs with bark have 

greater geometric variability and are therefore more likely to provide correct matches.  

Additionally, debarking logs changes the geometric measurements, violating the 

permanence requirement (Jain et al. 2004), which makes matches between the two 

types of scans less likely.  Another drawback to implementing this tracking scheme in 

Pacific Northwest mills is the necessity of installing another log scanner at the log-

yard receiving station.   
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Additionally, distinctiveness can vary among species.  In this case, Scots pine 

and Norway spruce logs differed slightly when matched with the same metrics.  This 

is largely due to the genetic differences between the two species as Norway spruce 

tends to have more butt taper and a rougher bark surface than Scots pine (Chiorescu et 

al. 2003), and emphasizes that care must be taken when selecting the characteristics to 

use for a given species.  Variability characteristics should not be generalized to other 

species; a given species must be extensively studied to get the best identification 

results. 

 

2.4.1.3.  Permanence 

Permanence, or the ability of a characteristic to retain its distinctiveness over 

characteristics in a sawmilling environment is twofold.  As logs are processed into 

boards, characteristics are removed at each machine center; thus, morphology changes 

must be accounted for when choosing a variability characteristic.  Also, because wood 

is a hygroscopic material, characteristics will change as moisture content changes (e.g. 

shrinking and swelling). 

Chiorescu and Grönlund (2004b) addressed the issue of morphological change 

gs 

with their bark at the log sorting station using a 3D log scanner to calculate length, 

volume, top volume, minimum diameter, middle diameter, maximum diameter, 

diagonal diameter, bow, mean taper, butt taper, bow position, top ovality, top ovality 
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angle, and middle ovality angle.  The logs were then debarked after 3 weeks of 

storage, and scanned again.  To match the barked log scans to the debarked log scans, 

the barked l

matching templates to compare to the actual debarked log scans. 

The results showed that, even with the bark reduction algorithm, only 57% of 

the logs were correctly identified, which demonstrates that permanence is vital to 

successful biometric identification.  Even after addressing the removal of bark using 

their bark reduction algorithm, the results failed to compare favorably with previous 

studies.  While bark provides a unique surface for identification, it is not a permanent 

characteristic in a sawmill and usable information is reduced as it is removed 

(Chiorescu and Grundberg 2001). 

 Similarly, when comparing the Chiorescu et al. (2003) identification results on 

barked log scans to the Chiorescu and Grönlund debarked log study (2004a), the 

debarked log identification results are better in the small and medium diameter classes 

and worse in the large diameter class (Table 3).  This is likely due to the higher degree 

of variability found in larger logs (Chiorescu et al. 2003).  In the Chiorescu and 

Grönlund study (2004a), debarked logs were scanned at the log sorting station and 

were correctly identified.  However, a problem arises when scans of barked log taken 

taken 
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Table 3.  Comparing identification results from barked logs to debarked logs 
(Chiorescu et al. 2003; Chiorescu and Grönlund 2004a). 

Diameter class 
Barked Scots pine 
log identification 

rate  

Debarked Scots pine 
log identification 

rate 
Small diameter 
(160 to 190 mm) 76% 81% 

Medium diameter 
(230 to 260 mm) 90% 92% 

Large diameter 
(300 to 330 mm) 99% 93% 

 

Flodin et al. (2008), who used x-ray scans to match boards to their parent logs, 

also showed that dynamic changes in individual logs can be addressed during 

processing by considering the change in board length after log processing.  As logs are 

processed into boards, internal stresses can be released, resulting in board lengthening, 

which co

(2008) found that board lengths increased an average of 1.2 cm with a standard 

deviation of 1.6 cm; to account for this change, they applied a correction factor to their 

matching algorithm.  This resulted in a 95% identification rate.  

A study by Charpentier and Choffel (2003) also addressed the issue of 

permanence when acquiring microwave characteristics of wood.  Their objective was 

to determine if microwave scans of board surfaces contain enough variability to 

identify individual boards using a pattern-based matching method. 

Microwave sensors were used to measure wood dielectric properties, which 

vary mainly with moisture content, density, and slope of grain.  These characteristics 

could be used to match a sample in a database of digital features, assuming that 
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moisture content differences were minimized.  Charpentier and Ch

were to determine whether there were detectable differences among four individuals, 

and if the measurements were repeatable for a single individual.  The third goal was to 

determine the effect of crosscutting and planing on the microwave measurements. 

They used Maritime pine samples (2000 x 120 x 27 mm) chosen to maximize 

physical differences, mainly knot placement and slope of grain.  Samples were 

equilibrated to 14% moisture content to reduce the effect of moisture content during 

scanning.  Boards were scanned along their length at the centerline with readings 

made every 7 mm.  The digital features were compared using correlation analysis with 

the authors arbitrarily choosing correlations above 0.90 as constituting a correct 

match. 

Charpentier and Ch

highly repeatable with correlations ranging from 0.98 to 0.99 over four scans of the 

same board.  This indicates that the characteristics were consistent over a short period 

of time, although the exact times between scans were not given.  The results indicate 

that the permanence requirement was met for biometric identification under ideal 

conditions. 

Charpentier and Choffel (2003) also experimented with microwave 

measurements as boards were cut shorter.  They found that correlations decreased 

from 1.00 when only 200 mm was removed to 0.93 when 800 mm was removed.  

These high correlations indicated that the longitudinal characteristics were very stable 
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considered correct matches.  These results seem reasonable because the boards did not 

change in thickness, only length. 

During planing, the digital feature correlations decreased from 0.99 when the 

boards were 25 mm thick (unplaned) to -0.07 when they were planed to a thickness of 

10 mm.  The planing was confined to only the side that was measured originally, 

which showed that matching becomes more difficult with increasing morphological 

changes.  According to the Charpentier and Ch

to a changing slope of grain, but it could also result from angled or partial knots as 

well as moisture content differences.   

The Charpentier and Ch

the grain has the potential for biometric identification and that wood meets the 

biometric requirements presented by Jain et al. (2004) and Luis-Garcia et al. (2003) 

under controlled laboratory conditions. However, it also showed that identification 

becomes difficult with the significant morphological changes that occur when boards 

are planed by only a few millimeters.  This would become an issue when tracking logs 

or cants because microwave sensors cannot scan the interior of larger pieces and 

surface readings will change significantly as material is removed.  Also, the variability 

of moisture content within and among sawlogs must be addressed because high 

moisture content could mask characteristics for during acquisition (Charpentier and 

Choffel 2003).  However, the technique appears to be useful for identifying pieces 

close to their final dimensions and moisture content. 
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2.4.1.4.  Collectability 

As the above research has demonstrated, there are many external and internal 

variability characteristics found in wood that could be used for identification of 

individuals; but to do so, they must be measured with sufficient resolution and 

accuracy.  For example, the study by Chiorescu et al. (2003) showed that log 

identification rates increased when higher-accuracy and higher-resolution log scanners 

were used.  While scanning systems might be capable of tracking wood material in 

some cases, they may not have the required accuracy or resolution to allow for 

consistent identification of individual pieces through the whole breakdown process 

(Chiorescu et al. 2003, Maness 1993). 

Another example is the Charpentier and Choffel (2003) study, which 

demonstrated that accuracy and resolution are important to microwave measurements.  

They provided evidence that their microwave system was accurate, but found little 

additional information obtained with resolutions greater than 5 mm.  They used a 

scanning resolution of 7 mm to compromise between resolution and data overload. 

The sawmilling process itself could complicate acquiring accurate 

measurements.  Depending on the acquisition method, sawdust can distort or mask 

measurements.  Physical damage caused by pieces hitting each other or other objects 

could also produce changes as well. One must decide how sensitive, or how much 

resolution is needed to obtain useful information.  Too much detail could decrease 

recognition rates as the system might detect dust and physical damage instead of 

actual characteristics, while reducing the level of detail could alleviate the effects of 
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some environmental factors, it might also adversely affect high identification rates.  

This, however, would depend on the sawmill and how it processes material. 

 

2.4.2.  Biometric identification using end-grain 

We have discussed a number of studies that explore biometric identification of 

logs and boards.  Their findings indicate that wood possesses sufficient variability for 

biometric identification; however, an effective system depends largely on using 

characteristics that change very little during processing.  Such a system could use the 

proposed techniques of Chiorescu et al. (2003; Chiorescu and Grönlund 2004a, 2004b) 

for tracking logs to the sawmill infeed, and those from Charpentier and Choffel (2003) 

for tracking boards; but neither system can identify individual pieces as they are 

processed from the headrig to the trimmer, where boards are cut to their final length.  

This implies that a successful tracking material will require the measurement of 

several biometric digital features to maximize variability while using characteristics 

that change very little.  

Probably the most suitable surface for identification would be the cross-

section, or end-grain because it is not purposely altered until the board is trimmed.  

However, there is currently no research on end-grain characteristics for biometric 

identification.  A major economic advantage to using end-grain for log and board 

identification is that camera systems, which are a practical and affordable alternative 

to x-ray and microwave scanners, can be placed at each machine center.  These 

camera systems could image the end-grain of logs before and after they are sawn by 
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the headrig, after they are sawn by the gangsaw, before and after they are processed by 

the edger, and before being cut at the trimmer.  As a computer identifies each piece by 

matching its end- ugh the sawmill 

could be built.   

There are several end-grain characteristics, affected by both genetic and 

environmental factors that could contribute to the identification of individual pieces.  

As with all temperate zone softwoods, annual-growth rings are universal in Douglas-

fir and vary by the proportion of earlywood to latewood, the number of rings per inch, 

patterns, fertilizations, and local genetic characteristics.  Also, the amount of 

heartwood, the non-living inner core of the tree, is variable and can help distinguish 

individuals when its color is distinguishable, as it is in Douglas-fir.  The overall 

surface texture of end-grain is another universal characteristic that may contribute to 

identification.  Finally, the presence of knots on the surface can also aid in 

identification because, while they will not be present on every end-grain surface, when 

present, they produce a distinct pattern. 

There are, however, some wood properties that can affect characteristic 

permanence.  Changing moisture content is known to affect the dimensionality of 

wood (Panshin et al. 1969).  As moisture content in wood decreases, the volume 

decreases causing annual rings to constrict.  At some point, the internal stresses will 

cause cracking.  It is also known that decreasing moisture content will reduce the 
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contrast in wood.  Annual rings and heartwood become less visible, making these 

characteristics more difficult to detect. 
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3. M A T E RI A LS A ND M E T H O DS 

This section describes the logs used for this study, and the steps in capturing 

their end-grain images.  We will then describe the methods used to analyze end-grain 

image suitability for biometric identification. 

 

3.1.  Mater ial descr iption 

Log cross-sections were taken from untreated 20-foot Douglas-fir 

(Pseudotsuga menziesii) utility pole sections.  The poles were shaved at McFarland 

Cascade Pole & Lumber Company, which involves removing all bark and protrusions, 

such as branches stubs, from the logs, while limiting wood fiber loss.  These utility 

poles were used because of their availability from an unrelated study.  The samples 

measured between 8.13 and 10.93 inch-diameters on the small-end and between 9.29 

and 12.43 inch-diameters on the large-end (Table 4).  For the other study, they were 

stored outside for 4 to 8 weeks during the summer of 2009, and watered constantly 

using a sprinkler system to prevent dimensional change and splitting. 

 

Table 4.  Maximum, minimum, and average diameter values for the 60 Douglas-fir 
utility poles. 

Statistical 

Measure 

Small-end 
diameter 
(inches) 

Large-end 
diameter 
(inches) 

Minimum 8.13 9.29 

Maximum 10.93 12.43 

Average 9.44 11.14 
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Cross-sections three-inches in length were cut from the top and bottom of each 

pole.  The sections were labeled with log identification numbers that also indicated if 

.  The 120 sections were sealed in plastic 

bags along with added water, and placed in a freezer to prevent checking and cracking 

for the two weeks of sample collection. 

 

3.2.  Imaging the samples 

The samples were imaged using a Nikon D90 camera with a Nikon 50 mm 

f/1.8 lens attached to an aluminum-framed camera fixture, set at a height of 52 inches 

(Figures 4a and 4b).  Two 50-watt, 120-volt halogen floodlights were used to provide 

consistent lighting.  The camera was controlled by computer using Nikon Control Pro 

2 imaging software.  For all images, the camera was set to manual mode, using a 

1/100-second exposure and f/3.2 aperture, taking 12-bit per channel color images.  We 

used 12-bit images to minimize in-camera data compression effects.  The ISO 

exposu

image sharpness.  The focal length, or distance from the lens to the sample, was 49 

inches. 
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  (4a)     (4b) 

Figure 4.  The experimental setup for image capture (Sample cross-sections were 
imaged before they could develop splits). 

 

The camera provided a live video feed of the image area to the computer, 

which was used to align, or register, each sample in the image area using cross hairs 

superimposed onto the video feed.  The pith of each sample was placed at the center of 

the cross hairs, and the samples were marked with four reference marks on the outer 

circumference, corresponding to the crosshairs as shown in Figure 5.   
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Figure 5.  An example of the image overlay allowing for consecutive image 
registration. 

 

The samples were randomly imaged three times over a span of three days, 

acquiring the 120 registered cross-section images each day.  The reference points were 

used to align the samples during the second and third repetitions.  This registration 

technique was used to insure all images had the same center point and a similar 

orientation.  The samples were stored in the lab during this period.  Care was taken to 

insure consistent orientation of the samples during imaging.  Reference images were 

also taken of each cross-section with a ruler to measure the pixel resolution of the 

images, which were 200 pixels per inch (ppi). 

 

3.3.  Preparing the images 

To provide compatibility with the image matching algorithm, the blue 

background was replaced with a consistent 50% grey using Adobe Photoshop.  The 
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images were then converted to 8-bit grey-scale by averaging the color channels, after 

which they were cropped around the end-grain to minimize the background.  An 

example image is shown in Figure 6. 
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   Round image 103B from day 1 

   Cant image cropped from round image above 

         Board images cropped from cant image above 

Figure 6.  Image sequence developed from the original cross-section image for each 
image set.  The same procedure was used to develop the second and third day images.  
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The images were placed into three groups with each group representing the 

images taken on a particular day, so that each set had one image of each cross-section 

and were labeled in relation to the day they were imaged.  The center of each image 

was recorded on a computer using two straight lines placed on the four points marked 

on the samples during imaging (Figure 5).  This insured that the images from each 

three imaging sessions were registered to the corresponding image in the other groups. 

The images simulated the three stages of log breakdown: rounds (unsawn 

logs), cants, and boards.  The round images simulated the imaging of the log end-grain 

in the logyard.  Copies of the round images were cropped into 6.5-inch by 6.5-inch 4-

sided cants, which simulate headrig processing.  The images were cropped using the 

center of each image as the reference point.  Finally, cropping four 5.5-inch by 1.5-

inch images from copies of each cant image created the board images, simulating the 

gangsaw processing.  This resulted in three image sets, each with three subsets of 

images consisting of 120 rounds, 120 cants, and 480 boards for each day (Table 5). 

 

Table 5.  Image crops organized into their respective image days. 

Image Day 1 
(N = 120) 

Image Day 2 
(N = 120) 

Image Day 3 
(N = 120) 

Day 1 Rounds (n = 120) Day 2 Round (n = 120) Day 3 Round (n = 120) 
Day 1 Cants (n = 120) Day 2 Cant (n = 120) Day 3 Cant (n = 120) 
Day 1 Boards (n = 480) Day 2 Boards (n = 480) Day 3 Boards (n = 480) 
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3.4.  Analysis of biometr ic identification performance 

The biometric identification method of analysis presented by Jain et al. (2004) 

and Luis-Garcia et al. (2003) relies on signal detection theory; in which an individual 

is, or is not, matched to a given digital feature template.  This results in a binary 

decision space.  Through the use of a matching algorithm, the degree of similarity 

between the individuals being matched (called targets), and templates can be 

quantified.  This measure is known as a matching score, which, in our case, is an 

image correlation between the pixel values contained in the target to the template pixel 

values.  Because identification systems iteratively match every target to every 

template, many thousands of matching score observations can occur during a single 

matching run.  Every target being matched will return a genuine matching score if the 

template is not in the database.  This results in two independent, continuous, matching 

score distributions.   

 

3.4.1.  Signal detection theory 

A genuine match is defined as an individual that is matched to its correct 

identity, or template; called a true positive (TP).  An impostor match is an individual 

that is not matched to another, different identity, or template; called a true negative 

(TN).  In an identification system, a match is attempted for every individual for every 

template in the database.  Ideally, the matching scores from the genuine and impostor 

distributions do not overlap, thus precluding mistaken identifications (Figure 7). 
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Figure 7.  The genuine and impostor distributions showing distinct differences 
between digital feature matching scores. 

 

However, in the event that the genuine and impostor distributions overlap, 

there are two additional possibilities: false positive (FP) and false negative (FN).  A 

false positive is an individual who is mistakenly matched as another individual, while 

a false negative is an individual who is mistakenly not matched to its template.  These 

are commonly known as Type I and II errors, respectively.   

A system that uses matching scores to determine a match must define an 

arbitrary decision threshold that defines the level of misidentification risk.  Scores 
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higher than the threshold are considered positive matches, while lower scores are 

considered negative matches.  

Table 6 shows a contingency table of the four possible identification 

classifications for a given threshold value.  The columns contain the genuine and 

impostor distributions and the rows contain the success and failure rates for each 

distribution.  The results are fractional (TPF + FNF = 1, and FPF + TNF = 1).  These 

proportions change as the threshold value increases or decreases.  The graphical 

representation of these possibilities is shown in Figure 8.  The threshold value set at 

0.5 shows that, while the majority of true positive matches occur, there are some false 

positive matches.   

 

Table 6.  Contingency table showing the possible identification results for a group of 
 

 Genuine identity Impostor identity 

H igh matching 
score 

 (TPF) 

 

(FPF) 

 

Low matching 
score 

 (FNF) 

 

 (TNF) 
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Figure 8.  With a threshold value set at 0.5, 75% of the true positive matches are made, 
but there are 25% false positive matches. 

 

From these contingency tables, another important value can be calculated; the 

accuracy of the system at a given threshold level.  Accuracy is defined as the number 

of true positives plus the number of true negatives over the total number of positive 

and negatives.  The equation is shown in (1). 

   (1) 
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The generic model for a biometric identification system is shown in (2) (Jain 

et. al 2004; Luis-Garcia et al. 2003).  Given a digital feature, known as a target, XQ, 

the system determines the identity of an individual, Ik

target is input into the matching algorithm, S, and is matched to each digital feature in 

the database, known as templates, S(XQ, XIk).  This function returns a matching score 

that measures the degree of similarity between the input digital feature and each 

template digital feature.  There are two possibilities for each comparison between the 

input digital feature and the digital feature database: 

   (2) 

XIk is the digital feature template of the individual, Ik, in the database, S(XQ, 

XIk).  The variable, t, is the threshold value that indicates which matching score must 

be met to be considered a positive match.  If multiple matching scores are above the 

threshold value, then the highest value is used. 

 

3.4.2.  ROC Analysis 

 To fully analyze the binary decision space, the resulting true positive fraction 

and false positive fractions are obtained by varying the threshold value between 0 and 

1.  The TPF and FPF are then calculated at each threshold value, and plotted against 

each other.  These plots are known as a receiver operating characteristic, or ROC, 

curve. 
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 The ROC curve is a useful method for visualizing classifier performance as it 

displays both the costs and benefits of a threshold function.  An ROC curve plots the 

results of a contingency table without being sensitive to differences in the classifier 

populations, which makes them useful in biometric identification studies with 

differences of up to 6 orders of magnitudes in population size (Fawcett 2006; Jain et 

al. 2004).   

ROC curves rank the matching scores from lowest to highest, and calculate the 

proportion of true positive values relative to the proportion of false positive values 

determined by a threshold value.  This can be accomplished with either calibrated 

probability matching scores or uncalibrated relative matching scores (Fawcett 2006).  

With ROC methods, matching algorithms using raw, uncalibrated, matching scores 

can be analyzed, so long as the scores indicate a reliable degree of similarity between 

the target and the template.  However, because the scores are relative to the algorithm, 

the results cannot be compared to other studies using a different matching algorithm 

(Fawcett 2006).  Any measured metric, such as accuracy, will indicate performance 

relative to the analyzed matching algorithm, not a true probability that can be 

extrapolated to other studies (Fawcett 2006). 

The diagonal line in the ROC space (Figure 10) represents completely 

overlapping distributions, where no distinction between genuine and impostor 

populations is possible.  Thus, any curve found above this diagonal indicates the 

algorithm is able to differentiate members of the two populations to some extent.  The 

further up and to the left the ROC curve, the more successful the algorithm is at 
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identifying individuals.  In fact, the point on a curve that is furthest up and to the left is 

the threshold level that provides the highest accuracy of the system.   

An important characteristic associated with the ROC curve is the Area Under 

the Curve (AUC), which is calculated as the proportional area under the ROC curve 

and, therefore, ranges between 0 and 1.0.  The AUC gives a single value that indicates 

the expected performance of the system and measures the probability that a randomly 

chosen genuine individual will have a higher matching score than a randomly chosen 

impostor individual, which is equivalent to the Wilcoxon test of ranks (Fawcett 2006).  

An ROC curve following the diagonal line will have an AUC of 0.5, while the ROC 

curve in Figure 10 has an AUC of 1.0. 

In an ideal binary decision space, where the genuine and impostor distributions 

do not overlap (Figure 9), an ROC curve will be two perpendicular lines (Figure 10).  

The ROC curve has four decision thresholds for reference.  When the threshold is at 0, 

the TPR is 1, while the FPR is 0.  Following the threshold levels along the ROC curve 

shows a decrease in the FPR, while the TPR remains constant.  As the threshold 

increases beyond the impostor distribution (t = 0.5), the FPR decreases to 0.  At this 

point the accuracy of the system is at its highest level of 100%.  However, as the 

threshold increases into the genuine distribution, the TPR decreases to 0, and the 

accuracy returns to 0.  The figure indicates no risk at any threshold level for an error to 

occur; the AUC is 1.0. 
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Figure 9.  Completely separated genuine and impostor distributions indicating that the 
digital features between individuals are significantly unique. 

 

 

Figure 10.  The ROC and accuracy curves of non-overlapping distributions.  The ROC 

the highest performing threshold lies between 0.45 and 0.55, with an accuracy of 1.0. 

 

As the distributions overlap, the matching algorithm is less able to distinguish 

between the genuine and impostor distributions, such as those shown in Figure 11.  
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The resulting ROC curve is shown in Figure 12, with its associated accuracy curve.  

Note that the ROC curve is flatter than the previous ROC curve indicating a poorer 

performing system.  If the threshold value is very high, 0.8 for example, there would 

be almost no false positives, but at the cost of identifying fewer true positives.  

Similarly, a low threshold value would produce more true positives, but at the cost of 

more false positives.  The point at which this system performs best is at the threshold 

value of 0.55 

 

 

Figure 11.  Overlapping genuine and impostor distributions indicated digital features 
that are difficult to distinguish. 
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Figure 12.  The ROC and accuracy curves of overlapping distributions.  The ROC 
curve shows the cost of applying a given threshold value.  The accuracy curve shows 
that the highest performing threshold is at t = 0.55, with an accuracy of 0.69. 

 

 The charts and statistics were created using R, an open-source language and 

environment for statistical computing (Version 2.10.1).  The ROC curves were created 

using the R software package ROCR (Version 1.0-4). 

 

3.5.  Matching the images 

The proprietary image matching algorithm used to match end-grain images 

was developed by Adin Berberovic and uses image correlation on raw images, i.e. no 

-scale 

pixel intensity values to those of each image template in the database, and returned a 

matching score for each comparison.  A matching score is the ratio of correlated 

intensity values between the target and template image. 
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Table 7.  The board-to-cant and cant-to-round matching combinations used to match 
end-grain images. 

Run Target images Matching templates 

Matching Scenario 1 Day 2 boards Day 1 cants 

Matching Scenario 2 Day 3 boards Day 2 cants 

Matching Scenario 3 Day 2 cants Day 1 rounds 

Matching Scenario 4 Day 3 cants Day 2 rounds 

 

We matched four combinations of the three image sets to create the scenarios 

shown in Table 7.  This allowed us to determine how permanent these characteristics 

were with time and changing ambient conditions that affect moisture content by 

comparing images taken between days 1 and 2 and days 2 and 3.  End-grain images 

taken on the same day were not matched because they would be identical.  The 

matching algorithm would consume weeks of computer time for each scenario at the 

original 200 ppi, so the pixel resolution for the board-to-cant matching images was 

reduced to 100 ppi and the cant-to-round matching images were reduced to 50 ppi to 

reduce computer times to reasonable levels.   

To maintain independence between the genuine and impostor distributions, it is 

standard practice to remove a subset of individuals from the database, but still 

included them in the search as targets (Mansfield and Wayman 2002).  For the board-

to-cant matching scenarios, 400 of the 480 board images in the target population came 

from the 100 cant images in the template population for Matching Scenarios 1 and 2.  

The remaining 80 board images came from 20 cant images randomly chosen to be the 

impostor population; thus, 480 boards were matched to 100 cants in the template 
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database.  This design produced 400 genuine matching scores and 8000 impostor 

matching scores for each scenario.  

For the cant-to-round matching scenarios, 120 cants were matched to 100 

rounds in the template database.  Of the 120 cants, 100 were genuine samples whose 

images were included in the template database and 20 were impostors because their 

images were not included in the template database, which resulted in 100 genuine and 

2000 impostor matching scores for each matching scenario. 
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4. R ESU L TS 

In this section, the results for the board-to-cant and cant-to-round matching 

scenarios are summarized. 

 

4.1.  Board-to-cant matching results 

The results for Matching Scenario 1 (Day 2 boards to Day 1 cants) are 

summarized in Table 8.  The genuine and impostor matching scores were statistically 

different from each other (Welch two sample t-test p-value < 0.0001).  Matching 

Scenario 2 (Day 3 boards to Day 2 cants) results are also summarized in Table 8.  The 

genuine and impostor populations were also statistically different from each other 

(Welch two sample t-test p-value < 0.0001). 

The scores varied between the matching scenarios, with a mean difference of 

0.0431 for the genuine matching scores and 0.0174 for the impostor matching scores.  

This decrease was statistically significant (Welch two sample t-test p-value < 0.0001).  

The variance of the population increased significantly between the two matching 

scenarios, from 0.01045 to 0.0 -test p-

-

test p-value < 0.0001). 
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Table 8.  Statistics describing the genuine and impostor matching scores for each 
board-to-cant matching scenario. 

 Matching Scenario 1 Matching Scenario 2 

Distribution Genuine 
n = 400 

Impostor 
n = 8000 

Genuine 
n = 400 

Impostor 
n = 8000 

Mean 0.7556 0.2419 0.7125 0.2245 
Median 0.7718 0.2439 0.7371 0.2293 

Variance 0.01045 0.00424 0.01864 0.00564 

Range [0.4414, 
0.9391] 

[0.0519, 
0.5620] 

[0.2689, 
0.9355] 

[0.0535, 
0.5721] 

 

Figure 13 displays the histograms of the genuine matching scores for each 

board-to-cant matching scenario.  Both show a negative skew.  Matching Scenario 2 

shows more negative skew than Matching Scenario 1.  Figure 14 shows the histograms 

of the impostor matching scores for each matching scenario, showing positive skew.  

Figure 15 shows the normal QQ plot for the genuine distributions.  Deviations in 

normality can be seen at the upper end of the plots for both genuine distributions, but 

both were reported as normal.  Figure 16 displays the normal QQ plot for the impostor 

distributions.  Deviations in normality are also seen at both ends of these plots, but 

both were reported as normal.  
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Figure 13.  Histogram of the genuine matching scores for both board-to-cant matching 
scenarios, each showing negative skew (n = 400). 

Histogram of Matching Scenario 1 genuine matching scores 

Histogram of Matching Scenario 2 genuine matching scores 
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Figure 14.  Histogram of the impostor matching scores for both board-to-cant 
matching scenarios, each showing positive skew. 

 

 

 

 

 

Histogram of Matching Scenario 1 impostor matching scores 

Histogram of Matching Scenario 2 impostor matching scores 
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Figure 15.  Normal Q-Q plots of the genuine matching scores for Matching Scenarios 
1 and 2. 

 

 

Figure 16.  Normal Q-Q plots of the impostor matching scores for Matching Scenarios 
1 and 2. 

 

Matching Scenario 1 genuine scores Matching Scenario 2 genuine scores 

Matching Scenario 1 impostor scores Matching Scenario 2 impostor scores 
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The density distributions for both board-to-cant matching scenarios are shown 

in Figure 17.  They display the overlaps between the two distributions as well as the 

change in the distributions between the matching scenarios, indicating changes in 

matching scores over time.  The figure shows that small portions of the genuine and 

impostor distributions overlap in both matching scenarios.  In Matching Scenario 2, 

the variance between the matching scores increased while the mean matching scores 

decreased in the genuine and impostor distributions. 

 

Figure 17.  Density distributions of the genuine and impostor matching scores for 
Matching Scenarios 1 (solid line) and 2 (dotted line), showing overlapping 
distributions. 

 

The board-to-cant ROC curves are shown in Figures 18 and 19.  For Matching 

-hand corner 

between the threshold values of 0.4 and 0.5 producing a curve with nearly 

Probability density of the genuine and impostor distributions 
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perpendicular lines (Figure 18).  The Area Under the Curve (AUC) was 0.999959 

indicating a very high probability that a randomly chosen genuine individual would 

produce a higher matching score than an impostor individual.  The ROC curve for 

Matching Scenario 2 shows greater curvature than that for Matching Scenario 1 

between threshold values of 0.3 and 0.5 producing a slightly smaller AUC of 0.99841 

(Figure 19).  

 

 

Figure 18.  Receiver operating characteristic curve for Matching Scenario 1 with an 
AUC of 0.999959. 
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Figure 19.  Receiver operating characteristic curve for Matching Scenario 2 with an 
AUC of 0.99841. 

 

Table 9 presents the AUC along with the maximum accuracy (ACC) and its 

associated true positive rate (TPR) and threshold value for each Matching Scenario.  

the overwhelmingly large impostor population.  The results show a decrease in AUC, 

ACC, TPR, and threshold values between Matching Scenarios 1 and 2. 
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Table 9.  AUC, maximum accuracy, true positive rate at the corresponding threshold 
value for the board-to-cant matching results. 

  
AUC   Max  ACC  

TPR  at  
Max  ACC  

Threshold  
value  

Matching  Scenario  1  
(Day  1  cants  and  Day  2  boards)  

0.99959   0.99893   0.9850   0.5212  

Matching  Scenario  2  
(Day  2  cants  and  Day  3  boards)  

0.99841   0.99524   0.9275   0.4933  

 

4.2.  Cant-to-round matching results 

The summary statistics for Matching Scenario 3 (Day 2 cants to Day 1 rounds) 

and Scenario 4 (Day 3 cants to Day 2 rounds) are shown in Table 10.  For both 

matching scenarios, the genuine and impostor populations were statistically different 

from each other (Welch two sample t-test p-value < 0.0001).  There was a slight, but 

insignificant, decrease in mean genuine matching scores between Matching Scenarios 

3 and 4 (Welch two sample t-test p-value = 0.3221).  There was also an insignificant 

increase in mean impostor matching scores (Welch two sample t-test p-value = 

0.2344).  The matching score variance for the genuine populations increased from 

-test p-value = 0.1178), while the 

variance for the impostor populations showed a significant increased from Matching 

-test p-value < 0.0001). 
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Table 10.  Summary statistics describing the genuine and impostor matching scores for 
each cant-to-round matching scenario. 

 Matching Scenario 3 Matching Scenario 4 

Distribution Genuine 
n = 100 

Impostor 
n = 2000 

Genuine 
n = 100 

Impostor 
n = 2000 

Mean 0.7304 0.3458 0.7158 0.3495 
Median 0.7509 0.3414 0.7342 0.3362 

Variance 0.00918 0.00843 0.01259 0.01137 

Range [0.4357, 
0.9604] 

[0.0901, 
0.6352] 

[0.3966, 
0.9351] 

[0.0795, 
0.6989] 

 

Figure 20 shows the histogram distributions of the genuine matching scores for 

the cant-to-round matching scenarios.  Tests showed that both Matching Scenario 3 

and 4 could be considered to have normal distributions with slight negative skews.  

Figure 21 presents the histograms of the impostor matching scores, which show a 

generally normal distribution with a slight positive skew. Figures 22 and 23 display 

the normal QQ plots for the genuine and impostor scores for Matching Scenarios 3 

and 4, and show slight deviations in normality. 
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Figure 20.  Histogram of the genuine matching scores for both cant-to-round matching 
scenarios, each showing negative skew (n = 100). 

 

 

 

 

 

Histogram of Matching Scenario 4 genuine matching scores 

Histogram of Matching Scenario 3 genuine matching scores 
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Figure 21.  Histogram of the impostor matching scores for both cant-to-round 
matching scenarios, each showing positive skew (n = 2000). 

 

 

 

 

 

Histogram of Matching Scenario 3 impostor matching scores 

Histogram of Matching Scenario 4 impostor matching scores 
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Figure 22.  Normal Q-Q plots of the genuine matching scores for matching scenarios 3 
and 4. 

 

 

Figure 23.  Normal Q-Q plots of the impostor matching scores for matching scenarios 
3 and 4. 

 

Matching Scenario 3 genuine scores Matching Scenario 4 genuine scores 

Matching Scenario 3 impostor scores Matching Scenario 4 impostor scores 
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The density distributions for Matching Scenarios 3 and 4 are presented in 

Figure 24 and display an overlap between the genuine and impostor populations in 

both scenarios.  These distributions have more overlap than the board-to-cant 

matching scenarios.  When comparing Matching Scenarios 3 and 4, the variance 

between the matching scores increased while the mean matching scores decreased in 

the genuine distribution.  The impostor distribution, however, did not significantly 

change between Matching Scenarios 3 and 4. 

 

Figure 24.  Density distributions of the genuine and impostor matching scores for 
Matching Scenarios 3 (solid line) and 4 (dotted line), showing overlapping 
distributions. 

 

The ROC curves for Matching Scenario 3 and 4 are presented in Figures 25 

and 26.  In Matching Scenario 3, there is some curvature found between threshold 

Probability density of the genuine and impostor distributions 
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values of 0.4 and 0.6 (Figure 25), but there is more curvature in Matching Scenario 4 

between threshold values of 0.4 to 0.65 (Figure 26).  Table 11 presents the AUC along 

with the maximum accuracy (ACC) and its associated true positive rate (TPR) and 

threshold value for Matching Scenarios 3 and 4.  The table shows a decrease in the 

AUC, ACC, and TPR between Matching Scenarios 3 and 4, while there is an increase 

in the threshold values between the two scenarios. 

 

 

Figure 25.  Receiver operating characteristic curve for Matching Scenario 3 with an 
AUC of 0.99574. 
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Figure 26.  Receiver operating characteristic curve for Matching Scenario 4 with an 
AUC of 0.98292. 

 

Table 11.  AUC, maximum accuracy, true positive rate at the corresponding threshold 
value for the cant-to-round matching results. 

  
AUC   Max  ACC  

TPR  at  
Max  ACC  

Threshold  
value  

Matching  Scenario  3  
(Day  1  cants  and  Day  2  boards)  

0.99574   0.99381   0.88   0.6209  

Matching  Scenario  4  
(Day  2  cants  and  Day  3  boards)  

0.98292   0.98762   0.83   0.6340  
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5. D ISC USSI O N 

To establish if images of wood end-grain can theoretically be used for 

biometric identification, we will consider if the four requirements of universality, 

distinctiveness, permanence, and collectability are met.  There appears to be three 

universal characteristics in end-grain with sufficient variability to provide the needed 

distinctiveness for biometric identification.  Annual ring structure, heartwood shape, 

and surface texture were present in all our images and were probably the major factors 

responsible for image differentiation.  Because our technique did not use any feature 

extraction, there is no way to determine which characteristic provided the most 

information.  However, it seems intuitive that annual ring structure is the most variable 

characteristic, while surface texture is the least.   

Knots and cracks were not present in all images and are, therefore, not 

universal characteristics.  Only about 20% of the samples had knots present on the 

imaged surface, while about 10% had at least one surface crack.  The presence of these 

non-universal characteristics undoubtedly affects the matching scores, but it could not 

be determined to what extent.  However, it seems reasonable that any characteristic 

present in only a few individuals will assist in identification because it reduces the 

number of potential matches to images that possess the characteristic.   

The fact that end-grain meets the distinctiveness requirement is evident from 

the high identification rates in Tables 9 and 11 and is demonstrated in the ROC curve 

graphs in Figures 18, 19, 25, and 26.  The ACC values in these figures show 

identification rates in the nineties for board-to-cant matches and somewhat lower rates 
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in the eighties for cant-to-round matches.  The small areas of overlap between the 

genuine and impostor matching score distributions shown in Figure 17 and 24 also 

visually demonstrate that there are significant differences among the end-grain of 

individuals at the board and cant levels.  All of the matching results agree with the 

studies by Chiorescu et al. (2003), Chiorescu and Grönlund (2004a), and Charpentier 

and Choffel (2003) that found high rates of identification could be achieved using 

wood biometrics. In fact, matching rates could be improved by including a length filter 

or by matching both sides of a workpiece simultaneously. 

The same evidence used to demonstrate distinctiveness also demonstrates that 

end-grain possesses permanence as well -- at least over the three-day time period of 

this study. The ROC curves for both the board-to-cant and the cant-to-round matching 

clearly showed that end-grain is distinctive.  However, they also show that there was a 

slight deterioration in permanence as ninety-eight percent of the Day 2 boards were 

matched to their respective Day 1 cants, while only 93% were matched between Day 2 

boards and Day 3 cants.  These results indicate some deterioration in permanence, as 

was expected.  Over 88% of the Day 2 cants were correctly matched back to their 

respective Day 1 rounds, decreasing to an 83% match between Day 2 and Day 3.  

These results were lower than the board-to-cant matching scenarios most likely 

because lower-resolution images were used to reduce computer-processing time.  

We assume the deterioration in permanence is due to changes in end-grain 

because moisture content was not controlled in this study.  However, the 

characteristics still remained fairly stable as shown by the matching score variances in 
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values, which is statistically significant but practically insignificant. 

While the length of time between the matching scenarios were the same, the 

results were lower when Day 2 and Day 3 images were matched for both board-to-cant 

and cant-to-round matching scenarios. This likely resulted from two factors: a change 

in annual ring dimensions and early/latewood contrast as the surface moisture content 

decreased with time.  The images were taken over a span of three days and the 

samples remained exposed in a laboratory with lower equilibrium moisture content 

conditions.  However, moisture content did not change enough to cause the samples to 

crack, but it did decrease enough to cause minimal shrinkage and slight changes in 

annual ring dimensions.  The lower surface moisture content also reduced contrast, 

which decreased the differences between characteristics (Figure 27) such as the annual 

rings, surface texture, and heartwood making them more difficult to detect. 

 

 

(a) Day 1   (b) Day 2        (c) Day 3 

Figure 27.  T
Day 3. 
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End-grain characteristics were also shown to be collectable using digital 

imaging with sufficient resolution to maintain individual identities.  This was true 

even after reducing the resolution by 50% in the board-to-cant matching scenarios and 

75% in the cant-to-round matching scenarios.  The original 24-bit color images were 

also converted to 8-bit grayscale to limit the amount of data handling, and despite the 

loss of the color information, the TPR was still 93% for the board-to-cant matching 

and 83% for cant-to-round matching when matching Day 2 images to Day 3 images.   

Because the images have different pixel resolutions, we could not compare the 

board-to-cant and cant-to-round results directly.  We can, however, infer that 

increasing pixel size reduces image detail and can lead to a reduction in image 

variability, which can reduce identification rates as reported by Chiorescu et al. 

(2003).  The results seem to suggest that pixel resolution is more important than color 

information for imaging annual rings, which has been found in other studies (Brunner 

et al. 1990; Chiorescu et al. 2003). 

The results of this study support the notion that end-grain characteristics are 

indeed usable for identification of boards to cants and cants to rounds, but there are 

some factors with the potential to affect the results that should be discussed.  The 

origin of the logs used in this study is unknown, and it is likely that they came from 

different stands, which could increase end-grain variability because of different 

growing environments, or genetic stock.  Trees from the same stand should tend to 

have more similar end-grain patterns. 
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The genuine and impostor matching score distributions showed signs of 

negative and positive skew, respectively.  This is seen when comparing the genuine 

distributions with the impostor distributions; the genuine distributions exhibit 

generally more skew than the impostor distributions.  This could be caused by the 

bounded matching score range, as confirmed by Mansfield and Wayman (2002), who 

state that biometric matching score distributions are likely to be skewed as they are 

located near the upper and lower ranges, especially when sample sizes are small.  

These deviations are generally acceptable, especially in a feasibility study such as 

ours. 

Another explanation for this skewness is that a small number of impostor 

samples were simply more similar to some templates than others.  Twins, or two 

different individuals that have very similar characteristics, were common in the 

Chiorescu et al. (2003) and Chiorescu and Grönlund (2004a) studies.  It is unknown 

how unique end-grain characteristics are with regard to a larger population, but should 

be less of a problem in a sawmill where the number of logs in the system is limited at 

any one time. 

The results between board-to-cant and cant-to-round matching scenarios could 

not be directly compared because they use images with pixels of two different sizes.  

The averaging of pixel values necessary to reduce image resolution may have removed 

useable information, or even introduced systematic noise, into the images, which 

could reduce the true positive rate.   
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Similarly, we cannot compare the results of this study to related studies using a 

similar methodology because the matching results represent single observations, and 

not known probability distributions (Mansfield and Wayman 2002; Fawcett 2006).  

Without matching score calibration, study results can be compared only when the 

individual studies use the same technique and matching algorithm (Fawcett 2006). 
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6. C O N C L USI O NS A ND F U T UR E R ESE A R C H 
R E C O M M E ND A T I O NS 

From this st -grain meets the four 

requirements for biometric identification of universality, distinctiveness, permanence, 

and collectability and that a sawmill tracking system based on it is feasible.  

Therefore, end-grain should join the wood characteristics explored by Chiorescu et al. 

(2003), Chiorescu and Grönlund (2004a), Flodin et al. (2008), and Charpentier and 

Choffel (2003) that could potentially be used for biometric identification.   

There are four areas that warrant further research.  The effect of time on the 

permanence of end-grain characteristics should be explored further, even though a 

-

world system.  We would like to match the day 1 images to the day 3 images; 

something we were unable to explore due to time constraints.  We expect the 

identification rates would be less than those between the day 2 and day 3 images as the 

end-grain experienced two full days of moisture loss between imaging. 

The effect of pixel resolution warrants study in a more systematic manner 

because we matched the boards to cants using 100 pixel per inch (ppi) images, and the 

cants to rounds using 50 ppi images to reduce computer run times from months to 

weeks.  Repeating this process using 100 ppi, 50 ppi, and 25 ppi images would 

indicate the importance of image detail on identification rates and provide information 

on which pixel resolution performs best.  It would also allow us to directly compare 
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the board-to-cant and cant-to-round scenarios to determine the effect of sub-image 

area on identification results. 

The effect of end-

our samples had relatively smooth surfaces that may not represent the typical end-

grain cut.  A small sample study using cross-sections obtained from a sawmill log 

bucking station would test how smooth end-grain surfaces must be for identification.   

Finally, the underlying question of whether annual ring structure alone can 

identify individuals should be explored.  The question of how much annual rings 

contribute to identification rates is important because they are less likely to be altered 

during processing, whereas surface texture is more likely to be altered by impacts and 

moisture content changes.  Extracting the annual rings also greatly reduces the data 

manipulated by the matching algorithm.   

This study has shown end-grain can be an effective surface for identification 

way to go before an 

end-grain biometric identification system can be implemented in a sawmill, it is 

encouraging that this feasibility study has shown evidence that end-grain variability 

can lead to high identification rates. 
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