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 The ability for individual cells and multicellular networks to process 

information contained in perceived stimuli is of vital importance to their proper 

functioning and ultimately their cellular fate. The primary mechanism employed by 

cells to this end is the use of biochemical signaling in which a series of molecular events 

results in response to the stimuli. These series of molecular events can be highly 

dynamic in their behavior and recent work has suggested that these dynamics are 

important in the processing of information and resulting cellular response. Further, it 

has been shown that multicellular systems themselves exhibit dynamic, coordinated 

behavior that may act as an additional dimension to information processing in these 

systems. 

 To explore and make rigorous the information processing abilities of individual 

cells and multicellular networks, we focus on the store-operated calcium pathway in 

mouse fibroblast and human breast cancer cells stimulated by ATP. This pathway is 

well-known in its ability to create both spatial (blips, puffs, and waves) and temporal 

(oscillations) cellular calcium dynamics via a nonlinear feedback system. Using 



 

 

microfluidics, fluorescence and confocal microscopy, stochastic modeling, and 

information theoretic techniques we probe how individual cells and multicellular 

networks utilize these dynamics to encode and decode environmental cues.  

In the case of individual cells, we explore possible sampling strategies 

employed by cells to process dynamic biochemical signals. We find that sampling as 

frequently as possible leads to increased information but that this is a costly strategy 

and leads to increased redundant information. Instead an infrequent and well-separated 

sampling strategy arises as the optimal strategy, showing that cells cannot easily 

distinguish fast dynamics and thus act as a low-pass filter. Further, we find that 

information is more affected by extrinsic noise than intrinsic noise in the case of multi-

time point or vector encoding. 

For the case of multicellular networks, we probe how ATP stimuli are encoded 

in the calcium dynamics of varied network architectures. Our results suggest that the 

strength of stimuli is encoded in the magnitude of the calcium response in addition to 

the oscillation propensity of cells in the network. Modeling confirms this behavior and 

predicts that communication via gap junctions is additionally a vital part of encoding. 

We find that modulating communication of the network by adjusting cell density 

influences the oscillation propensity at moderate ATP levels. Further, modulating the 

communication of the network by increasing the fraction of cancer cells produces the 

same result at moderate ATP levels. We conclude that stimuli information is 

multiplexed in the oscillation propensity of the multicellular system, which is 

potentially beneficial in responding with specificity to a wide array of stimuli. 
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1.1 Ca2+ Signaling Mechanism 

The ion Ca2+ is a ubiquitous secondary messenger molecule capable of serving 

as a signaling agent for a host of higher order cell behavior including fertilization, 

embryonic development, cell proliferation and differentiation, and transcription factor 

activation1. Signaling begins when Ca2+ is released from its stores in the endoplasmic 

reticulum (ER) or, equivalently, the sarcoplasmic reticulum (SR) of muscle cells in 

response to stimuli such as chemical changes, mechanical stress, or radiation. These  

 

 

Figure 1.1 Ca2+ dynamics due to nonlinear feedback. (A) Localized channels on the 

ER/SR release Ca2+ in a small “puff” in response to perceived stimuli. (B) Ca2+-

induced-Ca2+-release (CICR) effects may turn a puff into a pulse that triggers a wave 

of Ca2+ (Red) when Ca2+ is exchanged with neighboring cells in a network (Green). 

(C) Temporal oscillations are another possible outcome of the nonlinear feedback due 

to CICR. (D) Bell-curve (Top) and sigmoidal (Bottom) probabilities of Ca2+ release 

(PR) as a function of increasing Ca2+ concentration in the cytosolic fluid. 
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signals have been shown to be highly varied, taking the form of  spatial dynamics (blips, 

puffs, or waves2–4, Fig. 1.1A and 1.1B) or temporal dynamics (oscillations2,3, Fig. 1.1C) 

due primarily to nonlinear feedback from a process known as Ca2+-induced-Ca2+-

release (CICR)1,5. CICR occurs when Ca2+ binds to specific receptor sites dotting the 

ER/SR causing the additional release of Ca2+ via channels that are opened upon binding 

(see Section 1.1.3 for more detail). This has traditionally been represented by a bell-

curve where increasing levels of Ca2+ increase the probability of calcium release until 

the effect becomes inhibitory, however, recent work has suggested that the bell-curve 

may actually be sigmoidal6 (Fig. 1.1D). As the spatial and temporal dynamics of Ca2+ 

are thought to encode necessary cellular information, a better understanding of the 

mechanisms that generate Ca2+ dynamics and how they may be used to communicate 

information is necessary.  

 

1.1.1 Inositol 1,4,5-Trisphosphate Generation 

Though vital to the CICR process, calcium alone is insufficient to generate the 

rich dynamics described above. Experiments have shown that specialized secondary 

messenger molecules working in conjunction with calcium are necessary for the 

opening of the ion channels on the ER and SR allowing for the release of calcium from 

their stores7. One such secondary messenger of primary importance is inositol 1,4,5-

trisphosphate (IP3). IP3 generation can be broken into two major pathways: one 

involving G-proteins and the other receptor tyrosine kinases (RTKs).  
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The G-protein pathway begins when chemical or hormonal ligands bind to G-

coupled (guanine nucleotide binding protein) protein receptors (GPCRs) lining the 

plasma membrane of the cell. GPCRs dot the cell membrane with a variety of sub-types  

 

Figure 1.2 IP3 generation in non-excitable cells. (A) Binding of ligand (ATP) to 

receptor site on GPCR causes generation of PLC𝜷 leading to the hydrolyzing of PIP2 

into the secondary messengers DAG and IP3. IP3 diffuses through cytosolic fluid to 

bind with IP3 receptors located on ER. (B) Signaling molecules binding to the 

receptor sites of RTKs cause the dimerization of RTKs from which PLC𝜸 is created. 

PLC𝜸 acts like PLC𝜷 to hydrolyze PIP2 creating IP3 and DAG. 

 

each exhibiting varying degrees of specificity to the type of ligand allowed to bind8. 

Binding of the ligand leads to the activation of the G-protein which subsequently 

activates the enzyme phosphoinositide phospholipase (PLC). A specific isotype of 

PLC, PLC𝛽, is responsible in this process for hydrolyzing phosphatidylinositol-4,5-

bisphosphate (PIP2)5,9 which results in the formation of IP3 and a byproduct called 



5 

 

diacylglycerol (DAG) as shown in Fig. 1.2A. DAG, though not the focus of this 

discussion, has other important secondary messenger roles and is linked with the 

translocation of protein kinase C (PKC) in the plasma membrane5. While IP3 isn’t the 

only secondary messenger molecule capable of causing the release of calcium from the 

ER stores it serves as the primary secondary messenger capable of doing so.  

RTKs, like GPCRs, dot the cell membrane but are activated in response to the 

binding of growth factor signaling molecules such as insulin, fibroblast growth factor 

(FGF), or vascular endothelium growth factor (VEGF)9. As shown in Figure 1.2B, 

binding of the growth factor to the RTK causes dimerization to occur where two RTKs 

become bound by intermolecular forces. Dimerization starts an autophosphorylation 

process that adds phosphates from cytosolic ATP to the six tyrosine complexes on the 

bound RTKs. This new complex signals the activation other processes to generate the 

isomer PLC𝛾 which, like PLC𝛽, goes on to hydrolyze PIP2 to generate IP3 and DAG.  

 

1.1.2 Calcium Release Channels 

 There are two major channels in endothelial cells that are responsible for the 

pumping of Ca2+ from the ER to the surrounding cytosolic fluid: those linked with IP3 

receptors and those linked with ryanodine receptors (RyRs)1,5,10. The first of the two 

channels form the most studied and well understood mechanism of Ca2+ release from 

the ER. Diffusion of IP3 through the cytosolic fluid after a triggering event leads to the 

binding of IP3 to its IP3 receptor located on the outside of the ER (Figure 1.3). There 

are three isoforms of IP3 receptors (type 1, 2, and 3) with either one or all three of the  
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isoforms represented in all animal and human cells5. Current models of IP3 and IP3 

receptor binding suggest that the IP3 receptor is a tetramer composed of four identical 

subunits, with each of the subunits containing an IP3 binding site that needs to be bound 

with IP3 and Ca2+ for the release of calcium from the ER11. Originally, evidence showed  

 

Figure 1.3 Ca2+ release from endoplasmic reticulum (ER) via secondary messenger 

IP3. Binding of IP3 and Ca2+ to stimulatory sites of the IP3 receptor located on the ER 

causes a conformational change of the receptor allowing for stored Ca2+ to rush into 

the surrounding cytosolic fluid. A similar effect is achieved via ryanodine receptors 

(RyR) typically found in muscle cells, though the exact secondary messenger 

necessary to trigger the opening of the RyR is under debate. 

 

that the binding of IP3 to its receptor on the ER and in the presence of low 

concentrations of Ca2+ caused the channel to open and release Ca2+ into the cytosolic 

fluid; however, if the Ca2+ concentration were sufficiently high the effect became 

inhibitory causing the channel to close7,12. This bell-shaped response allowed for a 

unique positive/negative feedback control for Ca2+ release. More recent work suggests 

that this bell-shape in Ca2+ concentration may be more sigmoidal and that the presence 
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of IP3 bound to the IP3 receptor is the key factor, making the system sensitive to 

stimulatory binding of Ca2+ rather than inhibitory1,6. 

 Ryanodine receptors share many similarities to IP3 receptors. Like IP3 

receptors, RyRs are oligomeric with three known isoforms but unlike IP3 receptors 

(which are found almost universally), RyRs are typically found in cardiac muscle, 

skeletal muscle, and in striated muscle cells5. The first isoform (RyR1) is a voltage 

gated channel that controls the release of Ca2+ while the exact mechanism of RyR2 and 

RyR3 control are debated. RyR2 and RyR3 behave similarly to IP3 receptors in that 

they are sensitive to local Ca2+ concentrations, exhibiting the bell-like response curve, 

but the secondary messenger responsible for binding to RyR2 and RyR3 has not been 

confirmed. Some studies point to the messenger cyclic ADP-ribose (cADPR) but this 

has been contested13. 

The two channels presented here are not the only sources of Ca2+ release but 

rather dominate the discussion of Ca2+ release mechanisms. Mitochondria, another 

source of Ca2+ storage in cells, are able to release Ca2+ in response to a triggering 

event5,8. What is crucial to the above systems are the effects of CICR coupled with the 

bell-like or sigmoidal response curves of the release channels. This coupling stimulates 

or inhibits the release of Ca2+ into the cytosolic fluid leading to the rich spatial and 

temporal dynamics of Ca2+ signaling observed in all cells2,5,13. 

 

1.1.3 Calcium Uptake and Removal Channels 

 Release of Ca2+ from the ER must be followed by mechanisms that restore 

intracellular levels of Ca2+ to basal levels to promote the health and proper function of  



8 

 

the cell. Three main mechanisms of re-sequestering and removing of Ca2+ involve 

sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pumps, the plasma 

membrane Ca2+-ATPase (PMCA), and the Na+/Ca2+ exchangers (NCX)1,2,11. As their 

name suggests, the ATPase pumps utilize ATP by catalyzing their decomposition into 

ADP and energy that is used to exchange one Ca2+ (in the case of PMCA) or two Ca2+  

 

Figure 1.4 Storage and replenishment mechanisms of Ca2+. (A) Hydrolysis of ATP 

into ADP for both plasma membrane Ca2+-ATPase (PMCA) and 

sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pumps allows for either 

removal of Ca2+ to the extracellular fluid or storage of Ca2+ in the SR/ER respectively. 

(B) Depletion of Ca2+ levels in the SR/ER sensed by the STIM1 protein triggers entry 

of Ca2+ from the extracellular fluid through the store-operated channels (SOC) also 

known as OraI. 

 

in the case of SERCA for protons (Fig. 1.4A)11. The NCX do not require ATP to 

complete the removal of Ca2+ but instead exchange three Na+ for each Ca2+, 

demonstrated as well in Fig. 1.4A. PMCA and SERCA pumps have low capacities for 
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exchange making them suitable for maintenance of the low levels of Ca2+ whereas the 

NCX have very large capacities allowing them to exchange Ca2+ quite rapidly; in this 

way, the two systems complement each other in their ability to handle both the slow 

and fast Ca2+ dynamics in exhibited in all cell types11. 

 In addition to the uptake and removal of cytosolic Ca2+ via the pumps and 

exchangers above, Ca2+ may enter the cell from the extracellular fluid through the store-

operated channels (SOC) in the plasma membrane. Recent work has identified a protein 

dotting the ER/SR named STIM1 that acts as a sensor for Ca2+ levels inside the ER/SR. 

Upon store depletion, the STIM1 aggregate along the ER/SR membrane and move to 

within 25nm of channels on the plasma membrane (Fig. 1.4B)14. These channels, called 

OraI, have been identified as crucial for the Ca2+-release activated current (CRAC) 

which is the signature of SOC entry of Ca2+ in cells15. The biochemical specifics behind 

SOC entry are beyond the scope of this dissertation, but Clapham does a nice overview 

in his review article in Cell11. 

 

1.1.4 Gap Junctions 

 The release and re-uptake mechanisms described above give rise to the rich set 

of calcium dynamics that is believed to be an information encoding strategy employed 

by cells. Perhaps equally important, however, is the ability to communicate that 

information to neighboring cells thereby ensuring survival. Intercellular calcium 

waves, which have been demonstrated in a variety of cell types including glial cells, 

neurons, endothelial cells, epithelial cells, and hepatocytes16 provide an example of 

such communication. The propagation of these dynamics is achieved through the  
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diffusion of messenger molecules via small channels called gap junctions16–19. These 

channels allow for the exchange of molecules less than 1 kDa17,20 and are important in 

the normal functioning of organs such as the heart17. 

 

 

Figure 1.5 Gap junction communication. Connexins forming connexon on plasma 

membrane associate with neighboring connexon to create a gap junction between cells. 

Gap junctions allow the diffusion of small molecules such as IP3 and Ca2+ between 

neighboring cells thereby allowing the propagation of intercellular calcium waves and 

information. 

 

 

 Gap junctions are formed when neighboring cells come into contact with one 

another. During this contact, connexons (a hexameric protein structure whose base unit 

is the connexin17,18) located on each cell’s plasma membrane associate to form a gap 

junction (Fig. 1.5). This gap junction facilitates communication through diffusion. In 

the case of intercellular calcium waves, both IP3 and Ca2+ can pass through the gap 

junction provided the channel is open. As gap junctions are voltage-gated channels, 

there has been evidence to show that the large increase in Ca2+ levels during a signaling 

event can restrict or close the channel17. Assuming the channel is open, IP3 propagates 
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ahead of Ca2+ due to its larger diffusion coefficient and if the IP3 and Ca2+ are 

sufficiently high they can trigger a Ca2+ release in the neighboring cell continuing the 

wave21. In this way the information encoded in the Ca2+ signaling dynamics of a single 

cell may be transmitted to neighboring cells to be decoded for further decision making. 

 

1.2 Ca2+ Dynamics Modeling 

 

1.2.1 Deterministic Modeling 

 To better understand the ability of the Ca2+ dynamics to encode information and 

serve as a mechanism of communication, we make use of the Tang and Othmer model 

of Ca2+ dynamics which is a deterministic model for a single cell22. The deterministic 

model used by Tang and Othmer focuses on Ca2+ dynamics triggered by the IP3/Ca2+ 

pathway and assumes a single IP3 binding site and two Ca2+ binding sites. If the IP3 and 

one of the Ca2+ binding sites are occupied, the channel is opened, while if both Ca2+ 

sites are bound the channel is closed. The model also assumes the following reactions: 

𝐶𝑠

𝑔0
⇌
𝑣𝑔0

𝐶,     𝐶𝑠 + 𝑅4

𝛾1
⇌
𝜈𝛾1
𝐶 + 𝑅4,     𝐶

𝜈𝑓(𝑐)
→   𝐶𝑠, (1.1) 

𝑅2

𝑘1𝐼
⇌
𝑘−1

𝑅3,     𝑅3 + 𝐶
𝜆2
⇌
𝑘−2

𝑅4,     𝑅4 + 𝐶
𝜆3
⇌
𝑘−3

𝑅5, (1.2) 

Eqn. 1.1 contains the reactions describing calcium transport between the ER and the 

cytoplasm, while Eqn. 1.2 contains the reactions describing the sequential (un)binding 

of molecules to receptors. In Eqn. 1.1, the first reaction describes leakage between the 

calcium in the ER (𝐶𝑠) and calcium in the cytoplasm (𝐶); 𝜈 is the ratio of the ER volume 
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𝑉𝑠 to the cytoplasm volume 𝑉. The second reaction describes transport of calcium 

through the receptor channels: receptors with both IP3 and calcium bound (𝑅4) are 

active channels. The last reaction describes the pumping of calcium from the cytoplasm 

to the ER; 𝑓 denotes the nonlinear pumping propensity. In Eqn. 1.2, the first reaction 

describes the binding of IP3 to bare receptors (𝑅2), creating the complex 𝑅3; 𝐼 is the 

concentration of IP3, which is treated as a parameter in their model (we later generalize 

this feature, making 𝐼 a dynamic variable and its production rate 𝛼 the control 

parameter, since this is more consistent with the experimental setup). The second 

reaction describes the subsequent binding of cytoplasmic calcium to the complex, 

which activates the complex (𝑅4). The last reaction describes the further binding of 

cytoplasmic calcium to another site on the complex, which deactivates the complex 

(𝑅5). Only receptors in the 𝑅4 state serve as active channels. 

 The six reactions above are turned into a set of six differential equations, that, 

for the sake of brevity will not be expressed here. Using a series of simplifications (e.g. 

conservation of molecule numbers and receptors) brings the total number of equations 

down to four. A final realization by Tang and Othmer that two of the binding/unbinding 

reactions are much slower than the others permits a quasi-steady-state approximation 

bringing the final number of equations to two22 shown below. 

𝜖
𝑑𝑥

𝑑𝜏
= 𝛼1(1 − 𝑥) + 𝛼2(1 − 𝑥)

𝑥(1 − 𝑦)

𝑥 + 𝛽1[1 + 𝛽0(𝐼)]
−

𝑥2

𝑥2 + 𝛼3
2

(1.3) 

𝑑𝑦

𝑑𝜏
= −𝑦 +

𝛽2𝑥
2(1 − 𝑦)

𝑥 + 𝛽1[1 + 𝛽0(𝐼)]
(1.4) 



13 

 

Greater detail of the simplification steps and parameter definitions can be found in the 

supplemental information of the manuscript presented in Chapter 2 of this 

dissertation23. Eqns. 1.3 and 1.4 exhibit four dynamic regimes. As shown in Fig. 1.6,  

the system can be (A) monostable, with low cytoplasmic calcium, (B) excitable, (C) 

oscillatory, or (D) monostable, with high cytoplasmic calcium. In the last regime (D), 

near the boundary, oscillations can also be supported for certain initial conditions. All 

four regimes are accessible by tuning the IP3 concentration 𝐼 (Fig. 1.6E). Transitions  

 

Figure 1.6 The deterministic model (Eqns. 3 and 4) exhibits four dynamic regimes: (A) 

monostable, with low cytoplasmic calcium, (B) excitable, (C) oscillatory, or (D) 

monostable, with high cytoplasmic calcium. In the last regime (D), near the boundary, 

oscillations can also be supported for certain initial conditions. (E) These regimes are 

accessible by tuning the IP3 concentration 𝐼. The letters A-D in panel E correspond to 

the dynamics seen in panels A-D. The critical values 𝐼1
∗, 𝐼2

∗, and 𝐼3
∗ separating the 

regimes (dashed lines) are determined by changes in the number or stability of fixed 

points, which follow from a standard linear stability analysis. 

 

between regimes occur at the critical concentrations 𝐼1
∗, 𝐼2

∗, and 𝐼3
∗. Of particular interest 

is the transition from the excitable to the oscillatory regime (𝐼2
∗), since these are the 

dynamics exhibited by cells in the experiments: transient pulsing or sustained 

oscillations. 
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1.2.2 Stochastic Modeling 

 The success of the deterministic model by Tang and Othmer in replicating Ca2+ 

dynamics measured in experiments provide insight into the key components necessary 

for Ca2+ signaling, however, reactions are rarely, if ever, deterministic in nature. 

Binding and unbinding of IP3 and Ca2+ to their receptor sites are probabilistic and thus 

the extension of the Tang and Othmer model to include stochasticity is necessary.  

In our model, stochasticity is implemented using an adaptive tau-leaping 

method24–27 which is a more computationally efficient approximation of the exact 

Gillespie algorithm28. The simulation accounts for the fact that the number of molecules 

are integer values and that the reactions occur at random, exponentially distributed 

times. Noise is implemented in the model via the volume of the cell (which is 

experimentally accessible) and the number of receptors (which is estimated) in 

conjunction with the number of molecules. Large numbers of molecules correspond to 

low noise due to the low level of fluctuations and vice-versa. Our model also exchanges 

IP3 concentration 𝐼 for the number of IP3 molecules which is a random variable 

controlled by the production rate 𝛼 and the degradation rate of IP3 given by 𝜇. This 

modifies the first reaction in Eq. 1.2 resulting in  

𝐼
𝜇
⇌
𝛼
∅     𝑅2 + 𝐼

𝑘1
⇌
𝑘−1

𝑅3 (1.5) 

Typical Ca2+ dynamics for both the deterministic and stochastic model can be found in 

Figure 1.7. 
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Figure 1.7 Noise expands the oscillatory regime. (B-D) Typical dynamics for the 

deterministic model (red) and stochastic model (black) are shown for the IP3 levels 

corresponding to excitable, oscillatory, and the monostable/high Ca2+ dynamics 

described in Section 1.2.1. IP3 levels corresponding to a monostable/high Ca2+ dynamic 

in the deterministic model are part of the expanded oscillatory regime in the stochastic 

model as shown in (D). 

 

 

1.2.3 Communication 

As we are interested in how Ca2+ signaling can be used as a mechanism for 

communication in multicellular networks, we simulate communication via gap 

junctions by allowing calcium molecules to diffuse between neighboring cells. Though 

recent work suggests this diffusion may be non-linear21, we choose a model of diffusion 

based on Fick’s Law in one dimension as a simple case 

𝐽 = −𝐷
𝑑𝜙

𝑑𝑥
(1.6) 

where 𝐽 is the diffusion flux, 𝐷 is the diffusion coefficient, 𝜙 is the concentration, and 

𝑥 is the position. Doing so introduces new reactions into the model 

𝐶𝑖,𝑗

ℎ
⇌
ℎ
𝐶𝑖+1,𝑗      𝐶𝑖,𝑗

ℎ
⇌
ℎ
𝐶𝑖,𝑗+1 (1.7) 

where 𝑖, 𝑗 index cell lattice sites, and ℎ is the hopping rate of calcium ions from cell to 

cell. We estimate ℎ from the experimentally measured diffusion coefficient 𝐷~1
𝜇𝑚2

𝑠
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(see Fig. 2.7B). Since in our model, ions are hopping between cells on a two-

dimensional lattice, ℎ−1 corresponds to the expected time 𝑙2/4𝐷 to diffuse a cell-to-

cell distance 𝑙. Estimating a cell-to-cell distance of 10 − 20𝜇𝑚 from typical cell 

densities in our devices, we find ℎ ∼ 0.01 − 0.04 𝑠−1, and therefore we use ℎ =

 0.025 𝑠−1. 

 Our calculations are done on a square lattice, where each lattice site is either 

empty or contains one cell, and therefore each cell can have up to four neighbors with 

which to communicate. Density is varied by changing the number of empty lattice sites. 

For each chosen density, we sample over individual realizations, in which cell locations 

are assigned randomly. Thus, the statistics encompass many possible spatial 

distributions of cells for each density. 

 

1.3 Information Theory 

 To quantify information and communication in multicellular networks we 

implement the ideas of information theory in the analysis of the Ca2+ signaling 

dynamics. Biochemical signaling events are inherently noisy due to cell-to-cell 

variability and are often highly complicated in their reliability on multiple messengers, 

feedback loops, and multi-step processes. Information theory reduces this complexity 

of the signaling process to understanding its inputs and outputs and accounts for noise 

through utilization of Shannon entropy, referred to from here on simply as entropy29. 

Traditional approaches to handling noise such as calculations of the standard deviation 

or variance serve to quantify the amount of noise in the system but may not provide 

insight into the information stored in the relationships between inputs and outputs29.  



17 

 

1.3.1 Entropy in Discrete Systems 

Claude Shannon’s work on information theory proved that entropy is the only 

mathematical quantity that satisfies three simple criteria of information: monotonicity, 

independence, and branching30. We expect in systems subject to uncertainty with 

multiple states that the information contained in them should increase monotonically 

with increasing number of possible outcomes. In this way, a flip of a coin contains less 

information than the roll of a die. The second criteria – independence – arises from the 

necessity that the total information contained in a system should be equal to the sum of 

the individual amounts of information contained in two independent constituent 

components. Finally, the branching criteria of information arises from the need of the 

total information contained in a system to be the weighted sum of the information 

gained from the multiple components of the system. 

 For a system with 𝑛 discrete probabilities of its events occurring, we can write 

the entropy of the system as 

𝐻(𝑋) = −∑𝑝(𝑥𝑖) log2 𝑝(𝑥𝑖)

𝑛

𝑖=1

, (1.8) 

where 𝐻 is the entropy, 𝑋 is the random variable (a variable subject to probability, e.g. 

the flip of a coin), and 𝑝(𝑥𝑖) describes the probability of the 𝑖th outcome of the 𝑛 

possible outcomes of 𝑋29. Taking the convention that 0 log2 0 = 0 and keeping in mind 

that the 𝑝(𝑥𝑖) must necessarily be between 0 and 1, the entropy of the system must be 

positive. If we take, as a simple example, calculation of the entropy of a system with 

two equally probable outcomes, the entropy becomes 
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𝐻(𝑋) = −∑𝑝(𝑥𝑖) log2 𝑝(𝑥𝑖)

2

𝑖=1

 

𝐻(𝑋) = − [
1

2
log2

1

2
+
1

2
log2

1

2
] 

= 1 bit 

indicating that a system with two equally likely possible outcomes has an entropy that 

is equal to one, with units of bits. The choice of base 2 in the logarithm was selected 

by Shannon for this reason – so that a system with two  possible states contains 1 bit of 

entropy with 𝑁 such systems containing 𝑁 bits of entropy31. This is purely a statement 

of the monotonicity condition which guarantees that systems with greater numbers of 

possible outcomes have increased uncertainty, and indeed, if we perform the same 

calculation with systems that have 4, 8, and 16 equally probable states we find that we 

receive 2, 3, and 4 bits of entropy respectively. 

 In the case of unequal probabilities, consider the flip of an unfair coin which 

has 𝑝ℎ𝑒𝑎𝑑𝑠 =
3

4
 and 𝑝𝑡𝑎𝑖𝑙𝑠 =

1

4
. The entropy of this system becomes 

𝐻𝑢𝑛𝑓𝑎𝑖𝑟 𝑐𝑜𝑖𝑛(𝑋) = −∑𝑝(𝑥𝑖) log2 𝑝(𝑥𝑖)

2

𝑖=1

 

= −[
3

4
log2

3

4
+
1

4
log2

1

4
] 

= 0.81 bits  

We see that the entropy of the system decreases in the case of the uneven coin as we 

might naturally believe it should; our uncertainty in such a system is diminished 

because we expect to receive heads more often than we do tails. In the extreme case 

where only heads are allowed, the entropy of the system becomes 
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𝐻ℎ𝑒𝑎𝑑𝑠 𝑜𝑛𝑙𝑦 = −[1 log2(1) + 0 log2 0] 

= 0 bits 

which is again consistent with our expectation that there should be no uncertainty in a 

system where only one result is guaranteed. 

 Addressing the properties of independence and branching (or as it is sometimes 

referred to as additivity) we select a system that contains a fair coin and die. The 

independence condition guarantees that a system containing 𝑀 independent random 

variables will have a total entropy equal to the sum of their individual entropies. Taking 

𝑋 to represent the flip of the fair coin and 𝑌 to represent the roll of a fair die, we note 

that  

𝐻𝑓𝑎𝑖𝑟 𝑐𝑜𝑖𝑛(𝑋) = 1 bit 

𝐻𝑓𝑎𝑖𝑟 𝑑𝑖𝑒(𝑌) = 2.58 bits 

𝐻𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝐻(𝑋) + 𝐻(𝑌) = 3.58 bits 

which must necessarily be true as the individual probabilities of the coin and die 

outcomes do not impact one another. The branching condition guarantees that the 

entropy is unaffected by the subdivision of the system into parts. Breaking the 

calculation of the entropy of a fair die roll into the entropy of rolling of a 1-3 and the 

entropy of rolling a 4-6, we find 

𝑝1 =
1

6
= 𝑝2 = ⋯ = 𝑝6 =

1

6
 

𝐻𝑟𝑜𝑙𝑙 1−3 = −∑𝑝𝑖 log2 𝑝𝑖

3

𝑖=1

= −
1

2
log2

1

6
= 1.29 bits 
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𝐻𝑟𝑜𝑙𝑙 4−6 = −∑𝑝𝑖 log2 𝑝𝑖

6

𝑖=4

= −
1

2
log2

1

6
= 1.29 bits 

𝐻𝑓𝑎𝑖𝑟 𝑑𝑖𝑒 = 2.58 bits = 𝐻𝑟𝑜𝑙𝑙 1−3 + 𝐻𝑟𝑜𝑙𝑙 4−6 

it is clear that the entropy of the system doesn’t change just because we have partitioned 

the system in a particular way.  

 

1.3.2 Entropy in Continuous Systems 

 The above discussion introduces the basic concepts and conditions of entropy 

but fails to address a large class of systems – those that cannot be described by discrete 

probabilities. Measurements of biochemical signals (of importance to this work) often 

take on a continuum of values and are thus ill-suited to being assigned discrete 

probabilities. To deal with this case, the entropy of a continuous system is defined as30 

𝐻(𝑋) = −∫ 𝜌(𝑥) log2 𝜌(𝑥)𝑑𝑥, (1.9) 

where the discrete probabilities 𝑝(𝑥𝑖) have been replaced with their continuous analog 

the probability density 𝜌(𝑥) and have been integrated over all 𝑑𝑥. It can be shown that 

the entropy in the case of a continuous probability distribution meets the criteria laid 

out in the beginning thus ensuring that nothing has been lost in the transition. 

 Two issues arise immediately from the representation of the entropy in the 

continuous case. The first comes from a practicality standpoint: a distribution of 

responses, whether they be biochemical in nature or not, aren’t guaranteed to have an 

easily recognizable form. Defining probability densities for distributions that are 

Gaussian, Poisson, exponential, or some other well-known form are simple in that they 
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have unique parameters that define their shape and solving for these parameters 

becomes a relatively simple task. In cases where the form of the distribution is unclear, 

a non-parametric approach to determining the probability density becomes necessary. 

One such method, the k-nearest neighbors method (kNN) is implemented in the two 

manuscripts presented in this dissertation for its relative ease of implementation and 

unbiased estimation32–34. The second problem is that probability densities have units 

associated with them and taking logarithms of objects with units is inherently 

problematic30,35. If, for example, the random variable 𝑥 has units of length we would 

expect that the probability density 𝜌(𝑥) would have units of inverse length. However, 

if differences of entropy are calculated, this problem goes away30,35. 

 

1.3.3 Mutual Information 

The treatment thus far has focused on discussion and definition of entropy in 

the discrete and continuous cases, and – while entropy is a highly important and useful 

property of a system – it doesn’t answer a question we are generally more interested 

in: what information does one random variable contain about another? Re-casting this 

in the context of biochemical signaling: what information does a set of responses 

contain about the set of stimuli used to achieve them? Intuitively, we expect that if the 

responses to one stimuli heavily overlap with the responses to a second stimuli we 

cannot easily determine which stimuli was applied. We effectively know less 

information about the stimuli in this situation than when the sets of responses only 

slightly overlap (as shown in Fig. 1.8). In the perfect case where the sets of responses 
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don’t overlap at all, maximal information has been achieved because we can uniquely 

point to a unique stimulus after measuring a response. 

The information can be quantified using the ideas of entropy that were laid out 

in section 1.3.1. Given a random variable 𝑋 (which we will take to be the applied 

stimuli) with states 𝑥 we can describe the likelihood of obtaining the states with the 

probability distribution 𝑃𝑋(𝑥) and define its entropy as 𝐻[𝑃𝑋(𝑥)] which is often 

 

Figure 1.8 Information as a function of response separation. Given two sets of 

responses to two different stimuli, the amount of information one set of responses 

gives about its stimulus depends directly on the amount of overlap between the two 

sets of responses. Heavily overlapping responses do not provide as much information 

about the stimulus received as weakly overlapping responses. The perfect scenario, 

where the set of responses do not overlap at all, provide maximal information about 

the stimuli received. 
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shortened to 𝐻(𝑥)30. Now, ideally, we have the case that we can make observations 𝑦 

(our biochemical responses) that provide information about 𝑥. Naturally, these  

observations 𝑦 can only be taken from the set of 𝑌 that describes the observations and 

they too can be described a probability distribution 𝑃𝑌(𝑦) with entropy 𝐻[𝑃𝑌(𝑦)] =

𝐻(𝑦). If useful information is to be gained we expect that making an observation 𝑦 

under the condition 𝑥, described by the conditional probability 𝑃(𝑥|𝑦), will have an 

entropy 𝐻(𝑥|𝑦) that is lower than the entropy 𝐻(𝑥). This is intuitive as we hope that 

by making some observation about the system will lower the total entropy of the 

system; or, put another way, results in a gai𝑛 in information. This can be written 

mathematically as 

𝐼(𝑦; 𝑥) = 𝐻(𝑥) − 𝐻(𝑥|𝑦) (1.10) 

and is known as the mutual information30,36. Averaging over all possible observations 

𝑦 we can describe the average information 𝑦 provides about 𝑥30 

〈𝐼(𝑦; 𝑥)〉  = 𝐻(𝑥) −∑𝑃𝑌(𝑦)𝐻(𝑥|𝑌)

𝑦

(1.11) 

Or, if it is convenient, we can make a series of substitutions to express this in a more 

compact form involving the joint distribution 𝑃(𝑥, 𝑦) = 𝑃(𝑥|𝑦)𝑃𝑌(𝑦) 

〈𝐼(𝑦; 𝑥)〉 =  −∑𝑃𝑋(𝑥) log2 𝑃𝑋(𝑥)

𝑥

−∑𝑃𝑌(𝑦)

𝑦

[−∑𝑃(𝑥|𝑦) log2 𝑃(𝑥|𝑦) 

𝑋

] 

= −∑∑𝑃(𝑥, 𝑦) log2 𝑃𝑋(𝑥)

𝑦𝑥

+∑∑𝑃(𝑥, 𝑦)

𝑦

log2(𝑃(𝑥|𝑦)

𝑥
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=∑∑𝑃(𝑥, 𝑦) log2 (
𝑃(𝑥|𝑦)

𝑃𝑋(𝑥)
)

𝑦𝑥

 

=∑∑𝑃(𝑥, 𝑦) log2 (
𝑃(𝑥, 𝑦)

𝑃𝑋(𝑥)𝑃𝑌(𝑦)
)

𝑦𝑥

(1.12) 

and for the continuous variable case we get35 

〈𝐼(𝑦; 𝑥)〉 = ∫𝑑𝑦∫𝑃(𝑥, 𝑦) log2 (
𝑃(𝑥, 𝑦)

𝑃𝑋(𝑥)𝑃𝑌(𝑦)
)𝑑𝑥 (1.13) 

These results are on average, symmetric in 𝑥 and 𝑦30,35,36 which indicates that 

we have some freedom in how we pose the question: how much information does 𝑦 

contain about 𝑥 or how much information does 𝑥 contain about 𝑦? Generally, however, 

we only care about the former question from an experimental standpoint as it is the 

observed 𝑦 under the various conditions 𝑥 that we have experimental access to. From 

a biochemical signaling standpoint, this would be equivalent to having measured a 

series of responses under several stimuli and finding out how much (average) 

information the responses give about the stimuli. Calculating the mutual information, 

then, becomes an extremely useful tool in characterizing information encoding in cell 

networks. 

 One item of importance is that in the case of continuous probability systems it 

is possible to obtain a negative mutual information. In this situation, the uncertainty in 

the conditioned measured responses is larger than the uncertainty in the conditions 

themselves, resulting in an information loss or more uncertainty overall. 
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CHAPTER 2 

 

 

Communication Shapes Sensory Response in Multicellular Networks 

 

 

Garrett Potter, Tommy Byrd, A𝑛drew Mugler, a𝑛d Bo Sun 

 

 

Proc. Natl. Acad. Sci.  113, 10334–10339 (2016). 

 

Collective sensing by interacting cells is observed in a variety of biological systems, 

and yet, a quantitative understanding of how sensory information is collectively 

encoded is lacking. Here, we investigate the ATP-induced calcium dynamics of 

monolayers of fibroblast cells that communicate via gap junctions. Combining 

experiments and stochastic modeling, we find that increasing the ATP stimulus 

increases the propensity for calcium oscillations, despite large cell-to-cell variability. 

The model further predicts that the oscillation propensity increases with not only the 

stimulus, but also the cell density due to increased communication. Experiments 

confirm this prediction, showing that cell density modulates the collective sensory 

response. We further implicate cell–cell communication by coculturing the fibroblasts 

with cancer cells, which we show act as “defects” in the communication network, 

thereby reducing the oscillation propensity. These results suggest that multicellular 

networks sit at a point in parameter space where cell–cell communication has a 

significant effect on the sensory response, allowing cells to simultaneously respond to 

a sensory input and the presence of neighbors. 
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2.1  Introduction 

Decoding the cellular response to environmental perturbations, such as 

chemosensing, photosensing, and mechanosensing, has been of central importance in 

our understanding of living systems. To date, most studies of cellular sensation and 

response have focused on single isolated cells or population averages. An emerging 

picture from these studies is the set of design principles governing cellular signaling 

pathways: these pathways are organized into an intertwined, often redundant network 

with architecture that is closely related to the robustness of cellular information 

processing37,38. However, many examples suggest that collective sensing by many 

interacting cells may provide another dimension for the cells to process environmental 

cues39. Examples, such as quorum sensing in bacterial colonies40, olfaction in insects41 

and mammals42, glucose response in the pancreatic islet43, and the visual processing of 

retinal ganglion cells44, suggest a fundamental need to revisit cellular information 

processing in the context of multicellular sensation and response, because even weak 

cell-to-cell interaction may have strong impact on the states of multicellular network 

dynamics45. In particular, we seek to examine how the sensory response of cells in a 

population differs from that of isolated cells and whether we can tune between these 

two extremes by controlling the degree of cell-cell communication. 

Previously, we described the spatial-temporal dynamics of collective 

chemosensing of a mammalian cell model system19,46. In this system, high-density 

mouse fibroblast cells (NIH 3T3) form a monolayer that allows nearest neighbor 

communications through gap junctions17. When extracellular ATP is delivered to the 

monolayer, store-operated calcium dynamics is mediated by the second messenger 
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IP3
47. The dynamics are complicated by nonlinear feedback between Ca2+ and the ion 

channel opening probability, which leads to rich behaviors, such as cytosolic calcium 

oscillations4. In the situation of collective ATP sensing, we have found that gap 

junction communications dominate intercellular interactions46. Furthermore, these 

short-range interactions propagate and turn the cell monolayer into a percolating 

network19. These characteristics make the system ideal for studying how sensory 

response is modulated by communication in multicellular networks. 

Here, we use this model system to examine how cell–cell communication 

affects collective chemosensing. Combining experiments with stochastic modeling, we 

find that cells robustly encode the ATP stimulus strength in terms of their propensity 

for calcium oscillations, despite significant cell-to-cell variability. The model further 

predicts that the oscillation propensity depends on not only the stimulus but also the 

density of cells, and that denser monolayers have narrower distributions of oscillation 

frequencies. We confirm both predictions experimentally. To verify that the mechanism 

behind the density dependence is the modulation of cell–cell communication, we 

introduce cancer cells (MDA-MB-231) into the fibroblast cell monolayer. As we show, 

MDA-MB-231 cells act as “defects” in the multicellular network, because they have 

distinct calcium dynamics compared with the fibroblasts caused by reduced gap 

junction communication48–50. We find that the oscillation propensity of the fibroblasts 

decreases as the fraction of cancer cells increases, confirming that the sensory response 

is directly affected by the cell–cell communication. 
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2.2 Materials and Methods 

 

 

2.2.1 Fabrication of Microfluidic Devices 

The organic elastomer polydimethylsiloxane (PDMS, Sylgard 184, Dow-

Corning) used to create the microfluidic devices is comprised of a two-part mixture - a 

base and curing agent - that is mixed in a 10:1 ratio, degassed, and poured over a 

stainless-steel mold before curing at 65°C overnight. Once cured, the microfluidic 

devices are cut from the mold, inlet/outlet holes are punched, and the device is affixed 

to a No. 1.5 coverslip via corona treatment (Fig. 2.1A).  

 

2.2.2 Cell Culture and Sample Preparation 

 NIH 3T3 and MDA-MB-231 cells were cultured in standard growth mediums 

(Dulbeccos modified Eagle medium (DMEM) supplemented with 10% bovine calf 

serum and1% penicillin and DMEM supplemented with 10% fetal bovine serum, 1% 

penicillin, and 1% non-essential amino acids respectively). To prepare samples, cells 

were detached from culture dishes using TrypLE Select (Life Technologies) and 

suspended in growth mediums before pipetted into the microfluidics devices and 

allowed to form monolayers (Fig. 2.1C). If MDA-MB-231 cells were the dominant 

species (a fraction greater than 50% of all cells), they were first allowed to attach the 

glass bottom of the microfluidics devices. Red fluorescent tag (CellTracker, Life 

Technologies) was then applied and subsequently washed with growth medium. 

Finally, NIH 3T3 cells were injected into the device so that the desired cell density 

(∼1000 cells/mm2) was reached. If NIH 3T3 cells were the dominant species, they were 
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allowed to attach the glass bottom of the microfluidics devices first. MDA-MB-231 

cells already loaded with CellTracker were then injected into the devices to reach the 

desired cell density. After incubating the microfluidics devices containing cell 

monolayers overnight, fluorescent calcium indicator was applied (Fluo4, Life 

Technologies) making the samples ready for imaging. 

 

2.3 Results 

To study the sensory responses of a multicellular network, we use single-

channel microfluidic devices and deliver ATP solutions (Fig. 2.1B) to monolayers of 

fibroblast (NIH 3T3) cells. The ATP concentrations vary from 0 to 200μM, and the 

calcium dynamics of individual cells is obtained with fluorescent calcium indicator at 

4 frames per second. We ensure the ATP arrival is sufficiently rapid to stimulate all 

cells at the same time (Fig. 2.1D). 

We modulate the degree of communication in two ways. First, we vary the cell 

density. Smaller cell densities correspond to larger cell-to-cell distances, which we 

expect to reduce the probability of forming gap junctions. Second, we coculture the 

fibroblasts with breast cancer (MDA-MB-231) cells in the flow channel as shown in 

Fig. 2.1C. As we later show, MDA-MB-231 cells have reduced communication 

properties and therefore, act as defects in the multicellular network. To distinguish the 

two cell types, MDA-MB-231 cells are prelabeled with red fluorescent dye (Cell 

Tracker Red CMTPX; Life Technologies). Varying cell density and the fraction of 

cancer cells allow us to control the architecture of the multicellular network over a wide 

range. 
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Figure 2.1 Design of the microfluidic device and stimuli arrival time (A) Top-view of 

microfluidic device showing glass slide, PDMS device, inlet/outlet, and connecting 

microfluidic chamber. (B) Side-view of microfluidic device indicating flow direction in 

red. (C) Cross-sectional view of device providing dimensions of flow layer and attached 

fibroblast (Green) and breast cancer (Red) cell monolayer. (D) Temporal profiles of 

chemical stimuli in the flow chamber evaluated using fluorescein. Two devices are 

tested (red and blue). Vertical lines correspond to arrival time and the times when half-

maximum intensity reached. 

 

Fig. 2.3A shows the composite image of a high-density cell monolayer with 

cocultured fibroblast and cancer cells. In this example, MDA-MB-231 cells make up a 

fraction 𝐹𝐶  = 15% of the total population, which has a total cell density of 𝜌𝑇 = 2,500 

cells per 1 mm2. At this density, each cell has an average of six nearest neighbors, from 

which extensive gap junction communication is expected. After identifying cell centers 

from the composite image (Fig. 2.2), we compute the time dependent average  
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Figure 2.2 Determination of single cell centroids. (A) Composite image showing all 

cells (NIH 3T3 and MDA-MB-231, green), MDA-MB-231 (red), and manually 

determined centroids of NIH 3T3 cells (blue). (B) Composite image showing all cells 

(NIH 3T3 and MDA-MB-231, green), MDA-MB-231 (red), and manually determined 

centroids of all cells (NIH 3T3 and MDA-MB-231, blue). 

 

fluorescent intensity near the center of each cell, which represents the instantaneous 

intracellular calcium concentration at the single-cell level. 

 

2.3.1 Collective Response to ATP Stimuli 

  Typical responses of cells to excitation by ATP are shown in Fig. 2.3B. We see 

that, on average, higher concentrations of ATP trigger larger increases in calcium 
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levels. Cell-to-cell variations are significant; for example, response times as well as 

subsequent calcium dynamics of individual cells vary dramatically. In many cells, the 

initial calcium increase is followed by transient calcium oscillations. We quantify the 

oscillation propensity by computing the fraction of non-oscillating cells 𝐹𝑁 using a 

peak-finding algorithm. We see in Fig. 2.3C that higher concentrations of ATP cause a 

larger percentage of cells to oscillate and thus, a smaller 𝐹𝑁. 

The period of the oscillation is characterized by the interspike interval (ISI), 

which has been proposed to dynamically encode information about the stimuli51,52. To 

investigate the characteristics of ISI in the context of collective chemosensing, we study 

the statistics of the ISI from 30,000 cells (See Appendix C for further ISI information). 

Fig. 2.3D shows the histogram (event counts) of ISI values normalized by the number 

of cells of a typical experiment where the ATP concentration is 50μM. We see that the 

distribution is broad, which underscores the high degree of cell-to-cell variability in the 

responses. Fig. 2.3E summarizes the distribution at each ATP concentration using a box 

and whisker plot. We see that there is no significant dependence of the ISI on the ATP 

concentration. This observation is at odds with a familiar property of calcium 

oscillations, termed frequency encoding, in which the oscillation frequency (or ISI) 

depends on the strength of the stimulus4,51,53,54. However, we will see in the next section 

that the lack of a dependence here is likely caused by the high degree of cell-to-cell 

variability. 

Finally, we characterize the spatial correlations of the ISI within the monolayer 

by computing the cross-correlation function 𝐶𝐼𝑆𝐼  as a function of topological distance 

𝑑 between cells [defined by Delaunay triangulation46, see Appendix C]. For each  
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Figure 2.3 Calcium dynamics of cell monolayer in response to extracellular ATP. (A) 

Composite image showing the multicellular network of cocultured fibroblast (NIH 

3T3) and breast cancer cells (MDA-MB-231). Green, fluorescent calcium signal for 

both cell types; red, MDA-MB-231. (B) Normalized fluorescence intensity profiles of 

one typical experiment for each ATP concentration tested. Blue, randomly selected 

single-cell calcium responses; red, average intensity profiles of all cells in each 

experiment. All time series begin ∼50s before arrival of ATP stimuli. Intensity profiles 

of individual cells have been rescaled to [−1,1]. (C) Fraction of non-oscillating cells 𝐹𝑁 

as a function of ATP concentration at fixed cell density. Error bars: SEMs for n≥4. *P 

< 0.05. (D) ISI event counts normalized by number of cells for only NIH 3T3 cells. (E) 

Average experimentally measured ISI values of NIH 3T3 cells at varying ATP 

concentrations at fixed cell density. In B, C, and E, cell density 𝜌𝑇 = 1,200±200 cells 

per 1 mm2, and cancer cell fraction 𝐹𝐶 = 15±6%. (F) ISI cross-correlation as a function 

of topological distance. Data from experiments with 50μM ATP at fixed cell density 

(𝜌𝑇 = 1,400±400 cells per 1 mm2) and cancer fraction (𝐹𝐶 = 20±5%). Error bars show 

SDs from five experiments. 
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experiment, we compute the average ISI 𝑇𝑖  for each oscillatory cell 𝑖. We then define 

𝛿𝑇𝑖 = 𝑇𝑖 − 〈𝑇𝑖〉 and 𝐶𝐼𝑆𝐼(𝑑) = 〈𝛿𝑇𝑖𝛿𝑇𝑗〉𝐷𝑖𝑗=𝑑/〈𝛿𝑇𝑖
2〉 , where 𝐷𝑖𝑗  is the topological 

distance between cells 𝑖 and 𝑗. Fig. 2.3F shows that 𝐶𝐼𝑆𝐼 falls off immediately for 𝑑 >

0. This observation is surprising, because one might hypothesize that communication 

between cells would result in ISI values for nearby cells being correlated. However, as 

described next, evidence from mathematical modeling suggests that this correlation is 

removed by the cell-to-cell variability. 

 

2.3.2 Stochastic Modeling of the Collective Response 

 To obtain a mechanistic understanding of the experimental observations, we 

turn to mathematical modeling. We develop a stochastic model of collective calcium 

signaling based on the works of Tang and Othmer22,51. Their model captures the ATP-

induced release of IP3, the IP3-triggered opening of calcium channels, and the nonlinear 

dependence of the opening probability on the calcium concentration as illustrated in 

Fig. 2.4A. The model neglects more complex features of calcium signaling observed in 

some cell types, such as upstream IP3 oscillations55,56 and spatial correlations among 

channels3,57. The model predicts that, at a critical ATP concentration, the calcium 

dynamics transitions from non-oscillating to oscillating. However, it was previously 

only analyzed deterministically for a single cell22,51. Therefore, we extend it to include 

both intrinsic noise and cell–cell communication via calcium exchange. We also 

explicitly include the dynamics of IP3, which has a constant degradation rate and a 

production rate 𝛼 that we take as proportional to the ATP concentration. We simulate  
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Figure 2.4 Model development and validation. (A) Schematic of the model. ATP 

stimulates IP3 release at rate 𝛼, and IP3 acts jointly with Ca2+ to open the endoplasmic 

reticulum (ER) calcium channels (positive feedback), whereas additional Ca2+ binding 

closes channels (negative feedback). Communication is modeled via diffusion of Ca2+ 

between adjacent cells. (B) Fraction of non-oscillating cells 𝐹𝑁 as a function of ATP-

induced IP3 production rate 𝛼. (C) ISI decreases with  𝛼̅ (green). The decrease is 

severely weakened by cell-to-cell variability (blue). (D) ISI cross-correlation as a 

function of topological distance 𝑑 (green). Cell-to-cell variability removes correlations 

for 𝑑 > 0 (blue). (E) Distribution of ISI values (green). Cell-to-cell variability 

significantly broadens distribution (blue). (F) 𝐹𝑁 vs.  𝛼̅ with cell-to-cell variability. 

Cells are simulated on a (B, C, E, and F) 3×3 or (D) 7×7 grid with density (B, D, and 

F) 𝜌𝑇  =2.5×103 or (C and E) 1.4×103 mm−2. In B and F, error bars are SEMs for 𝑛=5 

subsamples. 
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the dynamics using the Gillespie algorithm28, and we vary the density 𝜌𝑇  of cells on a 

square grid, which modulates the degree of communication.  

Fig. 2.4B shows the dependence of 𝐹𝑁 on 𝛼, the model analog of the ATP 

concentration. Consistent with the experimental findings in Fig. 2.3C, we see that 𝐹𝑁 

decreases with 𝛼. In the model, the decrease is caused by the fact that intrinsic noise 

broadens the transition from the non-oscillating to the oscillating regime. Thus, instead 

of a sharp transition from 𝐹𝑁 =1 to 𝐹𝑁 =0 as predicted deterministically, the transition 

occurs gradually over the range of 𝛼 shown in Fig. 2.4B. Fig. 2.4C shows the 

dependence of the ISI on 𝛼 in the model (Fig. 2.4C, green box plots). We see that the 

ISI decreases with 𝛼, which is expected, because frequency encoding is a component 

of the Tang-Othmer model22,51. However, this property is not consistent with the 

experimental observation in Fig. 2.3E, where the ISI shows no clear dependence on 

ATP concentration. Furthermore, Fig. 2.4D shows the dependence of the correlation 

function 𝐶𝐼𝑆𝐼  on the topological distance 𝑑 in the model (green dashed curve in Fig. 

2.4D). We see that 𝐶𝐼𝑆𝐼  decreases gradually with 𝑑, indicating nonzero spatial 

correlations in the ISI, again inconsistent with the experimental findings (Fig. 2.3F). 

Motivated by the high level of cell-to-cell variability evident in Fig. 2.3B and 

D, we hypothesize that cell-to-cell variability is responsible for these discrepancies 

between the model and the experiments. Indeed, inspecting the ISI histogram from the 

model reveals a very narrow distribution of ISI values, as seen in Fig. 2.4E, green bars, 

which is in contrast to the broad distribution observed experimentally in Fig. 2.3D. To 

incorporate cell-to-cell variability, we allow the model parameters to vary from cell to 

cell. Lacking information about the susceptibility of particular parameters to variation, 
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we allow all model parameters to vary by the same maximum fold change F. F is found 

by equating the variance of the resulting ISI distribution with that from the experiments, 

which yields F=2. As seen in Fig. 2.4E, blue bars, the resulting ISI distribution is 

consistent with that observed in Fig. 2.3D in both width and shape. 

We see in Fig. 2.4C, blue box plots, that including cell-to-cell variability in the 

model severely weakens the decrease of the ISI with  𝛼̅, therefore agreeing with the 

experimental results shown in Fig. 2.3E (with variability,  𝛼̅ is defined as the mean of 

the 𝛼 values sampled for each cell). We also see in Fig. 2.4D, blue curve, that variability 

removes the correlation 𝐶𝐼𝑆𝐼  for 𝑑 > 0 , which is consistent with the immediate fall off 

observed experimentally in Fig. 2.3F. Importantly, even with variability, the decrease 

of 𝐹𝑁 with 𝛼 seen in Fig. 2.4B persists, as shown in Fig. 2.4F. This decrease remains 

consistent with the experimental observation in Fig. 2.3C. Indeed, variability 

significantly broadens the range of  𝛼̅ values over which the transition occurs, as 

expected (compare Fig. 2.4B and F), which is consistent with the broad range over 

which the transition occurs experimentally (Fig. 2.3C). 

 

2.3.3 Effects of Communication on the Sensory Response 

  Having validated the model, we now use it to make predictions about the effect 

of cell–cell communication on collective calcium dynamics. Communication in the 

model is controlled by cell density, with higher density leading to more cell-to-cell 

contacts and thus, a higher degree of communication. Therefore, we first investigate 

the dependence of the oscillation propensity on the cell density. Fig. 2.5A shows 𝐹𝑁 as 

a function of both cell density 𝜌𝑇  and the ATP-induced IP3 production rate  𝛼̅. We see  
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Figure 2.5 Model predictions. (A) Fraction of non-oscillating cells 𝐹𝑁 as a function of 

cell density 𝜌𝑇  and ATP-induced IP3 production rate  𝛼̅. Left and right boxes correspond 

to B and C, respectively. (B) At small  𝛼̅, 𝐹𝑁 is large and density-independent. (C) At 

intermediate  𝛼̅, 𝐹𝑁 decreases with density. In B and C, error bars are SEMs for n=5 

subsamples. (D) Entropy of ISI distribution 𝐻𝐼𝑆𝐼  increases with 𝐹𝑁. 

 

that the fraction of non-oscillating cells transitions from 𝐹𝑁 =1 to 𝐹𝑁 =0 as a function 

of  𝛼̅ and that there is also a dependence of 𝐹𝑁 on 𝜌𝑇. At low  𝛼̅, 𝐹𝑁 is everywhere large 

and independent of 𝜌𝑇  (Fig. 2.5 A, Left and B). However, at intermediate  𝛼̅, 𝐹𝑁 is a 

decreasing function of 𝜌𝑇  (Fig. 2.5 A, Right and C). In this regime, increasing the cell 

density causes more cells to exhibit oscillatory calcium dynamics (thus decreasing 𝐹𝑁), 

even with a fixed sensory stimulus  𝛼̅. At large  𝛼̅ (beyond the range shown in Fig. 
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2.5A), we have checked that the non-oscillating fraction is driven to low values as 

expected, and the density dependence of 𝐹𝑁 is weakened. 

The prediction in Fig. 2.5C is striking, because it implies that cell–cell 

communication causes more cells to oscillate, even while cell-to-cell variability causes 

their ISI values to be spatially uncorrelated (Fig. 2.4D). Therefore, we wondered 

whether communication would have an effect on the width of the ISI distribution in this 

regime. The width or more generally, the amount of uncertainty in the ISI distribution 

is characterized by the entropy. For a continuous variable 𝑥, the entropy becomes the 

differential entropy defined as 𝐻𝐼𝑆𝐼 = ∫𝜌(𝑥)𝑙𝑜𝑔𝜌(𝑥)𝑑𝑥, where 𝜌(𝑥) is the probability 

density. As seen in Fig. 2.5D, the entropy of the ISI distribution increases with 𝐹𝑁. This 

result indicates that, as communication decreases 𝐹𝑁, it also narrows the distribution of 

ISI values. 

We now test these predictions in our experimental system. To test our 

predictions about how the non-oscillating fraction of cells should depend on cell 

density, we measure 𝐹𝑁 as a function of 𝜌𝑇  for various ATP concentrations. We see in 

Fig. 2.6A that, with no ATP, 𝐹𝑁 is large at both low and high densities, and there is no 

statistically significant correlation between 𝐹𝑁 and 𝜌𝑇 . Then, we see in Fig. 2.6B that, 

at intermediate ATP concentrations (10–100μM), 𝐹𝑁 significantly decreases with 𝜌𝑇 . 

Finally, we see in Fig. 2.6C that, at large ATP concentration (200μM), 𝐹𝑁 is small at  

both low and high densities, and again, there is no statistically significant correlation 

between 𝐹𝑁 and 𝜌𝑇 . These results confirm the predictions in Fig. 2.3. 

To test the prediction that the entropy of the ISI distribution increases with the 

non-oscillating fraction of cells, we measure 𝐻𝐼𝑆𝐼 as function of 𝐹𝑁. As seen in               
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Figure 2.6 Experimental tests of model predictions. (A) Fraction of non-oscillating 

NIH 3T3 cells 𝐹𝑁 as a function of cell density 𝜌𝑇  when stimulated by 0μM ATP. Error 

bars: SEMs for 𝑛 > 4. (B) As in A but with intermediate concentrations 10–100μM 

ATP. *P < 0.05. (C) As in A but with 200μM ATP. In A–C, the cancer cell fraction is 

fixed at 𝐹𝐶  = 15±6%. (D) 𝐹𝑁 is positively correlated with the differential entropy of ISIs 

𝐻𝐼𝑆𝐼  (𝜌𝑇  between 600 and 2,500 cells per 1 mm2; 𝐹𝐶  between 5% and 80%). Error bars 

represent SDs of 1,000 bootstrap resampled results. ns, not significant. 

 

Fig. 2.6D, 𝐻𝐼𝑆𝐼  increases with 𝐹𝑁, consistent with the prediction in Fig. 2.3D. This result 

implies that increasing the degree of communication narrows the distribution of ISI, 

making the ISI values less variable across the population. We have also checked that 

the entropy of the distribution of cross-correlation values for nearest neighbors’ entire 

calcium trajectories 𝐶𝑁𝑁
19,46 decreases as a function of cell density. Together, these 

results imply that cell– cell communication has a significant effect on the collective 

sensory response. This finding is especially striking given the strong effects of cell-to-



41 

 

cell variability (Fig. 2.3 E and F). We conclude that the effects of communication 

observed here persist, despite extensive variability. 

 

2.3.4 Effect of Cancer Cell Defects 

  We have seen that increasing cell density increases the propensity of cells to 

oscillate in response to an ATP stimulus. This behavior is consistent with our model, 

which predicts that the mechanism is through increased cell–cell communication. 

However, it could be in the experiments that increasing the cell density introduces other 

effects beyond increased gap junction communication, such as mechanical coupling 

between cells or coupling to the substrate58. To modulate the communication directly, 

we vary the fraction 𝐹𝐶  of cancer cells with which the fibroblasts are cocultured, while 

keeping the density of all cells fixed. Because cancer cells are known to have reduced 

gap junction communication48–50, we expect the fraction of non-oscillating cells 𝐹𝑁 to 

have the opposite dependence on 𝐹𝐶  that it does on cell density (Fig. 2.6B). 

  We first investigate whether MDA-MB-231 cells indeed have reduced 

communication in our system. Figure 2.7A shows several examples of single-cell 

calcium dynamics for NIH 3T3 and MDA-MB-231 cells in a typical experiment. We 

see that both cell types exhibit immediate increases in cytosolic calcium levels at the 

arrival of ATP, but cancer cells typically show long relaxation times, whereas fibroblast 

cells tend to more often exhibit oscillations after stimulation. These qualitative features 

are maintained across all ATP concentrations. Figure 2.7B shows a comparison of the  
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Figure 2.7 Effects of cancer cell defects on collective response. (A) Typical 

fluorescence intensity profiles showing the calcium dynamics on the single cell level, 

where basal-level intensity has been subtracted. For each cell, basal-level intensity is 

estimated by averaging 100s of its fluorescent intensity before ATP arrival (ATP 

concentration = 50μM; 𝜌𝑇  = 2,400 cells per 1 mm2; 𝐹𝐶  = 12%). (B) Fluorescence 

recovery after photobleaching experiments confirm that MDA-MB-231 cells have 

weaker gap junction communication compared with NIH 3T3 cells (error bars: SEMs 

for 𝑛 > 100). **P < 0.01. (C) Spatial map of average ISI of each individual cell. ATP 

concentration is 50μM. Black, non-oscillating cell; circle, MDA-MB-231 cell. (D) 

When stimulated by an intermediate range of ATP concentrations (10–100μM), the 

fraction of non-oscillating cells 𝐹𝑁 increases with increased cancer fraction 𝐹𝐶  at fixed 

total cell density (𝜌𝑇 = 1,200±200 cells per 1 mm2). *P < 0.05. Blue, fraction of non-

oscillating NIH 3T3 cells; red, fraction of non-oscillating cells including both cell 

types. 

 

intercellular diffusion coefficients in the two cell types obtained from a fluorescence 

recovery after photobleaching analysis59. We see in Fig. 2.7B that gap junction-

mediated diffusion between MDA-MB-231 cells is significantly weaker than that 

between NIH 3T3 cells, consistent with previous reports48–50. Therefore, it is evident  



43 

 

         

Figure 2.8 ISI characteristics of a typical experiment. ISI event counts normalized by 

number of cells. Blue: statistics of only NIH 3T3 cells, Red: statistics of only MDA-

MB-231 cells. 

 

that MDA-MB231 cells can be treated as communication defects in the cocultured 

multicellular network. Indeed, Fig. 2.7C shows the spatial distribution of these defects 

in the monolayer. In Fig. 2.7C, the mean ISI for each cell is shown in color, with non-

oscillating cells in black. We see that cancer cells, labeled by white circles, are more 

likely to be non-oscillating, which is consistent with the qualitative characteristics 

shown in Fig. 2.7A. We have further quantified the distinction between the two cell 

types in Fig. 2.8 where we show using the distributions of ISI values that oscillatory 

events are at least five times less likely to occur for the MDA-MB-231 cells. 

  Having established that the presence of cancer cells reduces the degree of cell–

cell communication in the monolayer, we now vary the fraction of cancer cells and 

measure the oscillation propensity of the remaining fibroblasts. Figure 2.7D shows the 
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non-oscillating fraction of fibroblasts 𝐹𝑁 (blue bars) as a function of the cancer cell 

fraction 𝐹𝐶  for a typical experiment at fixed cell density (𝜌𝑇 = 1,200±200 cells per 1 

mm2). We see that 𝐹𝑁 significantly increases with 𝐹𝐶. We also see that 𝐹𝑁 for all cells 

(both fibroblasts and cancer cells) (red bars in Fig. 2.7D) significantly increases with 

𝐹𝐶  and that, as expected, 𝐹𝑁 is larger for all cells than for just fibroblasts. These findings 

imply that reduced cell–cell communication decreases the propensity for calcium 

oscillations, which is consistent with the effects of varying cell density (Fig. 2.6B). 

Finally, we also investigate the effect of cancer cells on the entropy of the ISI 

distribution. 𝐻𝐼𝑆𝐼  is higher for cells that are surrounded by a large number of cancer 

cells and lower for cells with pure fibroblast neighbors. In the latter case, 𝐻𝐼𝑆𝐼  also 

increases as the number of nearest neighbors decreases. These findings imply that 

reduced cell–cell communication increases the entropy of the ISI values, even at the 

local level of a cell’s microenvironment, which is consistent with the effects seen in 

Fig. 2.6D. Taken together, we conclude that the calcium dynamics of individual cells 

is strongly regulated by the degree of gap junction communication inside the cell 

monolayer. 

 

2.4 Discussion 

  We have characterized the collective calcium dynamics of multicellular 

networks with varying degrees of cell–cell communication when they respond to 

extracellular ATP. We have found that increasing the ATP stimulus increases the 

propensity for cells to exhibit calcium oscillations, which is expected at the single-cell 

level. However, we have also found that increasing the cell density alone, while keeping 
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the stimulus fixed, has a similar effect, revealing a purely collective component to the 

sensory response. Modeling suggests that this effect is caused by an increased degree 

of molecular communication between cells. In line with this prediction, we have found 

that increasing the fraction of cancer cells in the monolayer reduces the oscillation 

propensity, because cancer cells act as defects in the communication network. Based 

on these results, we conclude that the collective sensory response, in which nonlinear 

signaling dynamics is coupled with strong intrinsic and extrinsic noise, encodes both 

stimulus strength and degree of communication. 

Our results suggest that the calcium response to extracellular ATP encodes 

multiplexed information under physiological conditions. Typical plasma and 

pericellular concentrations of ATP in animals and human have been reported to range 

from submicromolar to tens of micromolar60–62, whereas hundreds of micromolar have 

been associated with tumor because of the hypoxia microenvironment63. The 

concentration range of ATP in Fig. 2.4B is associated with several physiological 

phenomena, including immunomodulation64–66, traumatic shock66, and platelet 

activation67. Within this range, our results show that calcium dynamics encodes both 

stimuli strength in the magnitude of intracellular calcium concentration (Fig. 2.3B) and 

cell density in the propensity of calcium oscillation (Fig. 2.6B). Such multiplexing has 

been shown to be possible with simple biochemical networks68, and it is thought to 

underlie the ability of single networks to respond with specificity to multiple inputs, 

such as neuronal growth factor and EGF in the rat PC-12 system69. A possible reason 

for multiplexing is that it is beneficial for the responses to each input to be dependent 

on each other70, which in our case, suggests a benefit for a collective component to the 
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ATP sensory response. The ways in which dynamic information is stored in and 

extracted from cellular signals are a topic of ongoing research32,36. 

Recent experiments have put our results in the context of a unique paradigm of 

cell signaling: cells may decode information from the dynamics and not just the 

magnitude of signaling molecules71. For instance, UV and γ-radiation differentially 

trigger non-oscillatory and oscillatory p53 dynamics72. Similarly, when endothelial 

cells are stimulated by VEGF, non-oscillatory and oscillatory calcium dynamics leads 

to migration and proliferation, respectively73. In light of these developments, our results 

suggest that cell density, via gap junctional communication and nonlinear signaling 

dynamics, can impact cellular function, similar to so-called dynamical quorum 

sensing74–76. 

Our results suggest that the dependence of the calcium response on both sensory 

and collective parameters persists, despite significant cell-to-cell variability. Certain 

measures are robust to variability, such as the oscillation propensity and the entropy of 

the ISI distribution, whereas others are not, such as spatial correlations in the ISI and 

its dependence on the ATP input (frequency encoding). This result implies that our 

main finding of communication-dependent sensing is generic, because it persists 

despite large variability, but that traditional measures of information processing, such 

as frequency encoding, may have to be rethought in contexts where cell-to-cell 

variability is pronounced. It is becoming increasingly understood that variability is 

common in cell populations, and recent examples suggest that it may even be beneficial. 

For example, recent studies in a related system (NF-κB oscillations in fibroblast 
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populations) also found a large degree of cell-to-cell variability77 and showed that this 

variability allows entrainment of the population to a wider range of inputs78. 

In our model, the transition from the non-oscillatory to the oscillatory regime 

occurs because of a saddle-node bifurcation, a critical point in parameter space where 

the number of dynamical fixed points changes. This transition is broadened by intrinsic 

noise and cell-to-cell variability into a critical “region,” and cell–cell communication 

causes the oscillation propensity to depend on cell density within this region (Fig. 

2.3A). Our finding that this region is broad and our suggestion that it may be of some 

functional use for the system resonate with recent studies that have argued that 

biological systems are poised near critical points in their parameter space79–81. The 

connection between dynamical criticality, as in our model, and criticality in many-body 

statistical systems remains to be fully explored. 

Gap junctional communications exist among many types of cells. Therefore, 

our results may have far-reaching implications for other biological model systems, such 

as neuronal networks or cardiovascular systems. Because gap junctions mediate fast, 

nearest neighbor communication, we expect our conclusions to also hold for 3D cell 

aggregates, such as tissue organoids. It will be interesting to explore whether 

distinctions in the calcium dynamics in these systems originate from differences in their 

degrees of cell–cell communication. 
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Cells use biochemical networks to translate environmental information into 

intracellular responses. These responses can be highly dynamic, but how the 

information is encoded in these dynamics remains poorly understood. Here, we 

investigate the dynamic encoding of information in the ATP-induced calcium 

responses of fibroblast cells, using a vectorial, or multi-time-point, measure from 

information theory. We find that the amount of extracted information depends on 

physiological constraints such as the sampling rate and memory capacity of the 

downstream network, and it is affected differentially by intrinsic versus extrinsic noise. 

By comparing to a minimal physical model, we find, surprisingly, that the information 

is often insensitive to the detailed structure of the underlying dynamics, and instead the 

decoding mechanism acts as a simple low-pass filter. These results demonstrate the 

mechanisms and limitations of dynamic information storage in cells. 



49 

 

3.1 Introduction 

Cells utilize cascades of biochemical pathways in order to translate 

environmental cues into intracellular responses82,83. Due to extensive feedbacks and 

cross-talk among these signaling pathways84–87, messenger molecules exhibit rich 

dynamic modes, such as waves, oscillations, and pulses. Recent work in cell biology 

has suggested a new perspective in cell signaling: the dynamics, or temporal profiles, 

of messenger molecules allow cells to encode and decode even more rich and complex 

information than static profiles do88,89. For instance, during inflammation response, 

exposure to tumor necrosis factor-𝛼 (TNF𝛼) causes the transcription factor NF-κB to 

oscillate between the nucleus and cytoplasm of a cell90, whereas bacterial 

lipopolysaccharide (LPS) triggers a single wave of NF-κB within the cell91. Therefore, 

the dynamics of NF-κB encode the identity of external stimuli. In another example, 

stimulation of pheochromocytoma cells (PC12) cells by epidermal growth factor (EGF) 

leads to transient mitogen-activated protein kinase (MAPK) activation and cell 

proliferation, whereas stimulation by nerve growth factor (NGF) leads to sustained 

MAPK activation and cell differentiation69. These and other examples raise the 

question of how one quantifies the information carried by signaling dynamics. 

Information theory provides a useful framework to address such 

questions30,92,93. In the simplest case, one calculates the scalar mutual information 

between states of extracellular stimuli (typically well-controlled discretized values) and 

states of the cell (typically protein concentrations measured at a certain time). Mutual 

information characterizes the correlation between environmental cues and cell 

responses, and conveniently expresses such correlations in units of bits. For example, 
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if the mutual information between an environmental stimulus and a cell response is 

measured to be log2 2 = 1 bit, it means that effectively only two stimulus levels can be 

resolved by the response variable; any further resolution is not possible given the shape 

of the stimulus-response curve and the noise in the system93. Similarly, if the mutual 

information is log2 3 = 1.6 bits, then three stimulus levels can be resolved, and so on. 

This framework has been successfully employed to quantitatively understand the 

amount of information that can be transmitted through a biochemical pathway (channel 

capacity)36, mechanisms of mitigating errors94, and design principles of signaling 

network architectures95. 

Recently, inspired by the fact that cells utilize dynamic signaling to encode and 

decode information, a multivariate, or vectorial, mutual information has been 

proposed32. In this new framework, cellular responses are described by vectors of 

dimension 𝑛, which consist of cellular states sampled at multiple time points. The 

vectorial mutual information is generally higher than the scalar mutual information. 

Indeed, the scalar mutual information can be thought of as the limit of the vectorial 

mutual information when the length of the vector is one, and therefore the vectorial 

information cannot be lower than the scalar information. This suggests that signaling 

dynamics allow richer content to be transmitted than static information processing 

alone. It has also been shown that sampling cellular states at multiple time points 

eliminates extrinsic noise—noise that degrades information due to cell-to-cell 

variability32. 

In light of these results, we ask what is the optimal strategy for cells to utilize 

the power of vectorial mutual information? How should a cell sample its own temporal 
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profiles? Can cells use vectorial mutual information to distinguish different dynamic 

states of the underlying signaling pathways? To address these questions, we combine 

experimental measurements of ATP-induced Ca2+ responses with theoretical analysis, 

to systematically study scalar and vectorial mutual information in a dynamic signaling 

system. We find that given different physiological constraints, the optimal sampling 

depends on the starting time, sampling rate and memory capacity. We characterize how 

vectorial information is affected by intrinsic and extrinsic noise, in both the 

experimental system and a simple physical model. Surprisingly, we find that vectorial 

mutual information is often insensitive to the detailed structure of the underlying 

dynamics, failing to distinguish between, for example, oscillatory and relaxation 

dynamics. We explain this observation by deriving the connections between vectorial 

and scalar information, which reveals that in a particular regime vectorial encoding acts 

as a simple low-pass filter. 

 

3.2 Materials and Methods 

 

3.2.1 Cell Culture and Sample Preparation 

The samples were prepared following previously reported protocol46. Briefly, 

NIH 3T3 cells were cultured in standard growth mediums (Dulbecco’s modified Eagle 

medium (DMEM) supplemented with 10% bovine calf serum and1% penicillin. To 

prepare samples, cells were detached from culture dishes using TrypLE Select (Life 

Technologies) and suspended in growth mediums before pipetted into the microfluidics 

devices and allowed to form monolayers. After incubating the flow chamber devices 
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containing cell monolayers overnight, fluorescent calcium indicator was applied 

(Fluo4, Life Technologies) making the samples ready for imaging. 

 

3.2.2 Fluorescence Imaging and Data Analysis 

Fluorescence was detected using an inverted microscope (Leica DMI 6000B) 

coupled with a Hamamatsu Flash 2.8 camera. Movies were taken at a frame rate of 1 

frame/sec with a 20x oil immersion objective. Image analysis and data processing were 

performed in MATLAB. 

 

3.3 Results 

To investigate properties of dynamic encoding, we focus on the calcium 

dynamics of fibroblast cells in response to extracellular adenosine triphosphate (ATP), 

a common signaling molecule involved in a range of physiological processes such as 

platelet aggregation96 and vascular tone97. ATP is detected by P2 receptors on the cell 

membrane, and triggers the release of second messenger inositol trisphosphate (IP3). 

IP3 activates the ion channels on the endoplasmic reticulum (ER) which allows free 

calcium ions to flux into the cytosol. The nonlinear interactions of Ca2+, IP3, ion 

channels and ion pumps generate various types of calcium dynamics which may lead 

to distinct cellular functions57,71. 

 

3.3.1 Quantifying Information in Experimental Dynamics 

In order to measure the calcium dynamics of fibroblast cells in response to 

external ATP stimuli, we employ microfluidic devices for cell culture and solution 
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delivery as described previously46,98. In brief, NIH 3T3 cells (ATCC) are cultured in 

the PDMS (Polydimethylsiloxane) bounded flow channels as shown in Fig. 3.1A. After 

attaching the glass bottom for 24 hours, the cells are loaded with fluorescent calcium 

indicators (FLUO-4, Thermo Fisher Scientific) according to the manufacture’s 

protocol. ATP solutions diluted by DMEM (Dulbecco’s Modified Eagle Medium) into 

10, 20, 50, and 100µM concentrations are sucked into the flow channel with a two-way 

syringe pump (New Era Pump Systems Inc.) at a rate of 90µL/min. At the same time, 

we record fluorescent images of the cell monolayer at 1 Hz for a total of 10 minutes 

(Hamamatsu Flash 2.8). 

In all experimental recordings, ATP arrives at approximately 𝑡 = 10 sec, and 

stays at a constant concentration. Since most responses happen within 2 minutes, we 

use the first 160 seconds of recording for subsequent analysis. The time-lapse images 

are postprocessed to obtain the fluorescent intensity 𝐼𝑖(𝑡) of each cell 𝑖 at a given time 

𝑡. We define the calcium response as 𝑅𝑖(𝑡) =  [𝐼𝑖(𝑡) − 𝐼𝑖
𝑟(𝑡)]/𝐼𝑖

𝑟 , where 𝐼𝑖
𝑟 is a 

reference obtained by averaging the fluorescent intensity of cell 𝑖 before ATP arrives 

(Fig. 3.1B). 

In order to quantify the information encoded in the calcium dynamics of 

fibroblast cells in response to ATP, we have analyzed a total of more than 10,000 cells 

over 4 different ATP concentrations (10, 20, 50, 100µM) as inputs. With the underlying 

assumption that each input appears at probability of 1/4, the same number of cells are 

selected for each ATP concentration. Since the mutual information is bounded from 

above by the minimum of the entropies of the two variables, the maximum possible  
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Figure 3.1: Schematics of experimental setup. (A) The top and cross view of the 

microfluidics device to deliver ATP solution to cultured fibroblast (NIH 3T3) cells. 

Inset: fluorescent calcium imaging of a typical experiment. (B) Relative fluorescent 

intensities indicating the calcium dynamics 𝑅𝑖(𝑡) of individual cells (dashed lines) and 

their average (solid lines) when stimulated by external ATP at four different 

concentrations. 

 

mutual information between the input and output is the entropy of the input, or log2 4 =

2 bits.  

The mutual information can be written in terms of the joint probability 

distribution between input and output variables, or equivalently as a difference between 

entropies31. In our case, we will find the latter more convenient. Denoting the dynamic 

calcium response as 𝑅𝑖
𝛼(𝑡), where 𝛼 = 1,2,3,4 for each ATP concentration, and 𝑖 =

 1,2, . . . , 𝑁 for each cell (𝑁 ∼ 2,500), the scalar mutual information is defined as 
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𝑀𝐼𝑠(𝑡) = 𝐻[{𝑅(𝑡)}] −
1

4
∑𝐻[{𝑅𝛼(𝑡)}],

𝛼

(3.1) 

where 𝐻 represents the differential entropy. The first term is the unconditioned entropy 

calculated from cellular responses at time 𝑡 of all four ATP concentrations. The second 

term is the average of differential entropy conditioned at each ATP concentration. 

Intuitively, the scalar mutual information 𝑀𝐼𝑠(𝑡) measures how much the entropy 

(uncertainty) in the output (cellular responses) is reduced by knowledge of the input 

(ATP concentration), and therefore how much information one variable contains about 

the other. It is a function of the time 𝑡 at which we take a snapshot of the system and 

evaluate the differential entropy across the ensemble of cells. 

The vectorial mutual information is defined as 

𝑀𝐼𝑣(𝑡𝑠) = 𝐻[{𝑅(𝑡)}] −
1

4
∑𝐻[{𝑅𝛼(𝑡)}]

𝛼

, (3.2) 

where 𝑡 = (𝑡𝑠, 𝑡𝑠 + 𝑟
−1, 𝑡𝑠 + 2𝑟

−1, … , 𝑡𝑠 + 𝑇𝑑). When generalizing to the vectorial 

mutual information 𝑀𝐼𝑣, one has to specify not only the sampling start time 𝑡𝑠 

(equivalent to the time 𝑡 in the case of 𝑀𝐼𝑠), but also the sampling duration 𝑇𝑑 and the 

sampling rate 𝑟, which opens the possibility of complex sampling strategies. In the time 

between 𝑡𝑠 and 𝑡𝑠 + 𝑇𝑑, a fibroblast cell sampling its calcium concentration at a rate 𝑟 

accumulates a vectorial representation of its calcium dynamics with vector dimension 

𝑛 = 1 + 𝑟𝑇𝑑. Since the cell has to store the vector for further processing, 𝑛 also 

represents its memory capacity. 

In order to calculate the scalar and vectorial mutual information, we employ the 

k-nearest neighbor (kNN) method to estimate the differential entropies32–34, as we have 
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done in our previous work23. This method does not require binning of data, and it has 

been shown to converge quickly even with a small number of data points33. The kNN 

method makes the approximation that the probability density 𝜌(𝑥) around a data point 

𝑥 is uniform within the 𝑛-dimensional sphere that encloses exactly 𝑘 other data points. 

As a result, the performance of kNN method degrades particularly for distributions that 

have long tails or large spatial gradients. Despite these limitations, the kNN method is 

widely employed in quantitative biology for its ease of implementation and superior 

performance. That being said, some of the errors will cancel when calculating the 

mutual information32,33, and we have taken 𝑘 = 50 (square root of the sample size) 

based on the suggestions of 34.  

 

3.3.2 Dynamic Encoding Increases Information 

We first consider the situation where the sampling duration 𝑇𝑑  is fixed. Fig. 3.2 

shows the mutual information of both scalar (𝑀𝐼𝑠) and vectorial encoding (𝑀𝐼𝑣) from 

fibroblast calcium dynamics for 𝑇𝑑  = 30 sec (A, C, E) and 𝑇𝑑  = 60 sec (B, D, F). As 

seen in Fig. 3.2A and B, 𝑀𝐼𝑠 first rises, then falls, as a function of time. This is due to 

the separation, then convergence, of the four ATP-conditioned responses as a function 

of time, as seen in Fig. 3.1B: better-separated responses contain more information about 

the ATP level. This shape is also reflected in 𝑀𝐼𝑣, with additional smoothing due to the 

repeated sampling. 
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Figure 3.2: Information carried by calcium dynamics of fibroblast cells in response to 

ATP, for fixed sampling duration 𝑇𝑑. (A, B) Vectorial mutual information 𝑀𝐼𝑣  as a 

function of sampling start time 𝑡𝑠 at different sampling rates r (color bar), for (A) 𝑇𝑑  = 

30 sec and (B) 𝑇𝑑  = 60 sec. Black curve is scalar mutual information 𝑀𝐼𝑠 at each time 

point. (C, D) Mutual information per sample for the same conditions as A, B. (E, F) 

Maximum 𝑀𝐼𝑣  over all 𝑡𝑠 values, as a function of the memory capacity 𝑛, for (E) 𝑇𝑑  = 

30 sec and (F) 𝑇𝑑  = 60 sec. Maximum 𝑀𝐼𝑠 is plotted at 𝑛 = 1. Error bars in A-F represent 

the means and standard deviations of 100 bootstraps. 
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Fig. 3.2A and B also show that 𝑀𝐼𝑣  increases with sampling rate 𝑟. This is 

intuitive, since a larger sampling rate produces a larger number of samples 𝑛 = 1 +

𝑟𝑇𝑑, which increases the amount of information extracted from the dynamics. While 

the results in Fig. 3.2A and B are intuitively expected, it is also important to know the 

efficiency for dynamic encoding. To this end, we have calculated the mutual 

information per sample, defined as 𝑀𝐼𝑣/𝑛, as shown in Fig. 3.2C and D. It is evident 

that higher coding efficiency is achieved at smaller sampling rate. This is because when 

the sampling rate is large, samples are spaced closely in time, and therefore contain 

increasingly redundant information, which lowers the coding efficiency. The results 

shown in Fig. 3.2C and D suggest that although dynamic encoding mitigates intrinsic 

noise, it is not enough to allow 𝑀𝐼𝑣 to grow faster than linearly with 𝑛. Indeed, scalar 

encoding generally offers better efficiency than vectorial encoding: as shown in both 

Fig. 3.2C and D, 𝑀𝐼𝑠(𝑡𝑠) > 𝑀𝐼𝑣(𝑡𝑠)/𝑛, except at very early times when the cellular 

response has just started. 

The results of Fig. 3.2A-D are summarized in Fig. 3.2E and F, which plot 

𝑀𝐼𝑚𝑎𝑥, the maximum mutual information over all possible sampling start times 𝑡𝑠. As 

seen in Fig. 3.2E and F, 𝑀𝐼𝑚𝑎𝑥,  monotonically increases with 𝑛, which shows that 

dynamic encoding improves the information capture. However, the increase is 

sublinear, i.e. below the dashed line defined by the scalar mutual information, which 

shows that the efficiency of dynamic encoding decreases with vector length 𝑛. 

Considering scalar encoding as the limiting case of 𝑟 → 0, we conclude that as the 

sampling rate increases, mutual information increases but the coding efficiency per 

measurement decreases. 
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3.3.3 Dynamics Determine Optimal Sampling Rate 

Cells have limited ability to process dynamically encoded information. It is 

conceivable that a biochemical signaling network processing a vectorial code of high 

dimension will be complex and expensive, because it requires a high memory capacity 

𝑛 for storage and transfer. Therefore, a relevant question is, what sampling strategy can 

a cell apply when the memory capacity is fixed? Fig. 3.3A and B show the mutual  

 

Figure 3.3 Information carried by calcium dynamics of fibroblast cells in response to 

ATP, for a given memory capacity 𝑛. (A, B) Vectorial mutual information 𝑀𝐼𝑣  as a 

function of sampling start time 𝑡𝑠 at different sampling rates 𝑟 (color bar) for (A) 𝑛 = 2 

and (B) 𝑛 = 4. Black curve is scalar mutual information 𝑀𝐼𝑠 each time point. (C) 𝑀𝐼𝑣 

as a function of 𝑛 at fixed sampling rate 𝑟 = 1/30 Hz and sampling start time (black 

curve 𝑡𝑠 = 0, red curve 𝑡𝑠 = 40 sec). 𝑛 =1 corresponds to 𝑀𝐼𝑠. (D) Maximum 𝑀𝐼𝑣 over 

all 𝑡𝑠 values, as a function of 𝑟, for fixed memory capacity (red 𝑛 = 2, blue 𝑛 = 4). Error 

bars in A-D represent the means and standard deviations of 100 bootstraps. 
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information as a function of sampling start time 𝑡𝑠 when the memory capacity 𝑛 is fixed, 

while the sampling rate 𝑟, and therefore the duration 𝑇𝑑  = (𝑛−1)/𝑟, are allowed to vary. 

Comparing Fig. 3.3A to B, we see that larger memory capacity 𝑛 generally allows more 

information to be transmitted, as was the case in Fig. 3.2. This trend is quantified in 

Fig. 3.3C, which plots the mutual information as a function of 𝑛, for fixed sampling 

rate and at two particular starting times 𝑡𝑠. We see that the amount of information 

significantly depends on 𝑡𝑠  for small 𝑛, while the difference diminishes at larger 𝑛. 

Therefore we see that larger memory capacity not only encodes higher information, but 

also helps cells to obtain more uniform readouts. We suspect that the convergence is 

due to the fact that information is upper-bounded (at 2 bits in our case), which requires 

that all curves, regardless of 𝑡𝑠, ultimately saturate with increasing 𝑛. Although our 

current sample size is not large enough to calculate 𝑀𝐼𝑣  at larger 𝑛, the saturation of 

𝑀𝐼𝑣  has been shown in32 to occur at around 𝑛 = 12 for ATP-induced calcium dynamics. 

We also see in Fig. 3.3A and B that for a given 𝑛, there is an optimal sampling 

rate r that maximizes the information. This is made more evident by considering, as 

before, the maximum mutual information 𝑀𝐼𝑚𝑎𝑥,  over all possible start time 𝑡𝑠, which 

is plotted as a function of 𝑟 in Fig. 3.3D. Particularly, for 𝑛 = 4 (blue curve), we see 

that 𝑀𝐼𝑚𝑎𝑥,  is maximal at a particular sampling rate. This is because, for a fixed 

number of samples 𝑛, sampling too frequently results in redundant information, as 

discussed above; while sampling too infrequently places samples at late times, when 

the dynamic responses have already relaxed (see Fig. 3.1B). Therefore it is generally 

beneficial to sample at a lower rate except when the sampled points are too far apart, 
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which places samples outside the ‘high yield’ temporal region. The tradeoff between 

these two effects leads to the optimal sampling rate, where the information gathered is 

the largest. 

 

3.3.4 Vectorial Information is Insensitive to Detailed Dynamic Structure 

Is vectorial encoding sensitive to the underlying details of the dynamic 

response? In order to answer this question, and to provide a mechanistic understanding 

of dynamic information transmission in biochemical networks, we construct a minimal 

stochastic model with the aim of recapitulating the key features of the fibroblast 

response. As a minimal model we consider a damped harmonic oscillator in a thermal 

bath, driven out of equilibrium by a time-dependent forcing 𝐹(𝑡). The magnitude of 

the external forcing is proportional to a scalar input, which is analogous to the ATP 

concentration. The displacement of the particle 𝑥(𝑡), like the calcium dynamics, can 

then be analyzed to infer the information that the oscillator encodes about the input. 

The equation of motion for the oscillator is given by the Langevin equation99 

𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝛾

𝑑𝑥

𝑑𝑡
+ 𝑘𝑥 = 𝑔𝛼𝐹(𝑡) + 𝜓(𝑡), 

⟨𝜓(𝑡)𝜓(𝑡′)⟩ = 2𝑘𝐵𝑇𝛾𝛿(𝑡 − 𝑡
′), 

𝐹(𝑡) = {

0 𝑡 < 𝑡1
1 𝑡1 ≤ 𝑡 ≤ 𝑡2

𝑒−Β(𝑡−𝑡2) 𝑡 > 𝑡2

} (3.3) 

Here 𝑚 is the mass, 𝛾 is the drag coefficient, and 𝑘 is the spring constant. 𝜓(𝑡) is the 

random forcing arising from thermal fluctuations with energy 𝑘𝐵𝑇; it is Gaussian and 

white, and represents intrinsic noise. The form of the external forcing 𝐹(𝑡), illustrated 
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in Fig. 3.4A for four magnitudes 𝑔1,2,3,4, is chosen to reflect the fact that following 

initial elevation, cells relax to their resting level of cytosolic calcium concentration at 

the end of experimental recording (see Fig. 3.1B). To account for the extrinsic noise 

observed in our cellular system23, we have allowed the spring constant for each 

oscillator trajectory to vary uniformly around 〈𝑘〉 with a standard deviation 𝛿𝑘. Fig. 

3.4B shows sample trajectories 𝑥(𝑡) for two cases: when the oscillations are 

overdamped (𝑚 < 𝑚𝑐) or underdamped (𝑚 > 𝑚𝑐), where 𝑚𝑐 ≡ 𝛾
2/4𝑘 is the mass at 

critical damping. 

Fig. 3.4C and D show, for the overdamped and underdamped cases, the scalar 

and vectorial mutual information between input 𝑔𝛼  and output 𝑥(𝑡), as a function of 

sampling start time 𝑡𝑠, for various sampling rates 𝑟 and fixed memory capacity 𝑛 = 2. 

Additionally, Fig. 3.4E shows the mutual information as a function of 𝑛 at fixed 𝑟 for 

the overdamped case, while Fig. 3.4F shows the maximum mutual information as a 

function of 𝑟 at fixed 𝑛 for both cases. Comparing Fig. 3.4 to Fig. 3.3, we see that our 

minimal model is sufficient to capture the key features of the experiments. Specifically, 

comparing Fig. 3.4C and D to Fig. 3.3A, we see that the model captures the non-

monotonic shape of the mutual information as a function of start time 𝑡𝑠, as well as the 

improvement of vectorial encoding (colors) over scalar encoding (black). Comparing 

Fig. 3.4E to Fig. 3.3C, we see that the model captures the increase of mutual 

information with memory capacity 𝑛, as well as the large-𝑛 convergence of curves with 

different 𝑡𝑠 (although it is evident that the model appears to saturate at a lower 𝑛 value 

than the experimental results). Finally, comparing Fig. 3.4F to Fig. 3.3D, we see that 

the model captures the presence of an optimal sampling rate 𝑟 that negotiates the  



63 

 

 

Figure 3.4 Information encoding in the noisy harmonic oscillator model. (A) Oscillator 

at position 𝑥(𝑡) is subjected to random thermal forcing as well as deterministic forcing 

𝐹(𝑡) (Eq. 3). Four force magnitudes 𝑔1,2,3,4 = {0.6 pN, 1.2 pN, 1.8 pN, 2.4 pN} serve 

as input, while 𝑥(𝑡) is output. Other parameters are 𝑡1 = 10 sec, 𝑡2= 60 sec, and 𝛽= 0.01 

sec−1. (B) Two sample trajectories (red and green curves) and the average of 5,000 

trajectories (black curves) corresponding to 𝑔4 = 2.4 pN. Upper: overdamped oscillators 

with 𝑚 = 0.4𝑚𝑐, where 𝑚𝑐  = 𝛾2/4𝑘 = 0.25 mg is the mass at critical damping, 𝛾= 1 

pN·sec/µm, and 𝑘 = 1 pN/µm. Lower: underdamped oscillators with 𝑚 = 9𝑚𝑐. Other 

parameters are 𝑘𝐵𝑇= 0.5 pN·µm and 𝛿𝑘 = 0.2 pN/µm. (C, D) Vectorial mutual 
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information 𝑀𝐼𝑣 as a function of sampling start time 𝑡𝑠 at different sampling rates 𝑟 
(color bar) and memory capacity 𝑛 = 2, for (C) overdamped and (D) underdamped 

oscillators. Black curve is scalar mutual information 𝑀𝐼𝑠 each time point. (E) 𝑀𝐼𝑣 as a 

function of 𝑛 at fixed sampling rate 𝑟 = 1/30 Hz and sampling start time (black curve 

𝑡𝑠 = 0, red curve 𝑡𝑠 = 40 sec). 𝑛 =1 corresponds to 𝑀𝐼𝑠. (F) Maximum 𝑀𝐼𝑣  over all 𝑡𝑠 

values, as a function of 𝑟, for fixed memory capacity 𝑛 = 2. Error bars in C-F represent 

the means and standard deviations of 20 independent trials each. 

 

 

tradeoff between samples that are well-separated, yet confined to the high-yield region 

(t1 ≤ t ≤ t2 in the model). These correspondences validate the model, and allow us to use 

the model to ask how vectorial encoding depends on the structure of the underlying 

dynamic responses. 

The noisy oscillator model allows us to explore two qualitatively different 

regimes of dynamic structure. In the overdamped regime, the thermal noise overpowers 

the oscillations, and the dynamics are dominated by fluctuations (Fig. 3.4B, upper). In 

contrast, in the underdamped regime, the oscillations overpower the thermal noise, and 

the dynamics are dominated by the underlying oscillatory structure (Fig. 3.4B, lower). 

Since vectorial mutual information corresponds to sampling the dynamics at regular 

intervals, it is natural to hypothesize that the amount of information extracted from 

underdamped dynamics will be higher than that extracted from overdamped dynamics, 

because underdamped dynamics have a more ordered structure. Fig. 3.4C and D 

compare the mutual information in the overdamped and underdamped cases. 

Surprisingly, we see that the amounts of information are roughly equivalent in the two 

cases. It is evident from Fig. 3.4C and D that the equivalence holds at varying sampling 

rates 𝑟 and start times 𝑡𝑠 (including the start time at which the information is maximal, 

Fig. 3.4F). In particular, the equivalence holds when the sampling rate 𝑟 equals the 



65 

 

oscillation frequency of the underdamped oscillator, 𝜈 = √(𝑘/𝑚)(1 − 𝑚𝑐/𝑚)/2𝜋 ≈

10 Hz in Fig. 3.4. This is true despite the fact that 𝑟 ≈ 𝜈 or nearby frequencies is the 

regime where one might have expected the vectorial information to benefit most from 

sampling the periodic dynamics instead of noisy dynamics. We have also checked that 

the equivalence holds for a large range of intrinsic and extrinsic noise levels. The 

previously demonstrated correspondence between the model and the experiments 

suggests that in the fibroblasts as well, ordered dynamics would not provide more 

information than noisy dynamics, at least as quantified by the vectorial mutual 

information. We expand upon this conclusion in the Discussion. 

 

3.3.5 Differential Effects of Intrinsic and Extrinsic Noise 

Vectorial mutual information 𝑀𝐼𝑣  is larger than scalar mutual information 𝑀𝐼𝑠 

in part because repeated sampling helps to mitigate intrinsic noise32. Yet, in the case of 

the fibroblast cells, the gain of 𝑀𝐼𝑣 over 𝑀𝐼𝑠 is often small. For example, as seen in 

Fig. 3.3A, at 𝑛 = 2 and 𝑟 = 1/10 Hz, whereas 𝑀𝐼𝑠 can be as large as ∼0.4 bits, the further 

increase of 𝑀𝐼𝑣  over 𝑀𝐼𝑠 is less than ∼0.1 bits. We make this observation quantitative 

by defining the information gain 𝑀𝐼𝑣,𝑚𝑎𝑥 = 𝑀𝐼𝑠,𝑚𝑎𝑥, where each is maximized over 

the start time 𝑡𝑠. Fig. 3.5 shows the information gain vs. 𝑀𝐼𝑠,𝑚𝑎𝑥 for the fibroblasts at 

𝑛 = 2 and 𝑟 = 1/10 Hz (pink circle). The fact that the gain is small (0.1 bits) suggests 

that additional factors, apart from intrinsic noise alone, reduce the efficacy of vectorial 

encoding. 
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Figure 3.5 Gain of vectorial over scalar mutual information, where each is maximized 

over start times 𝑡𝑠. For vectorial information, memory capacity is 𝑛 = 2 and sampling 

rate is 𝑟 = 1/10 Hz. Fibroblast data are compared against over and underdamped 

oscillator model. In oscillator model, parameters are as in Fig. 3.4, and intrinsic noise 

is governed by𝑘𝐵𝑇, which varies from 0.2 to 1 pN·µm, while extrinsic noise is 

governed by 𝛿𝑘/〈𝑘〉, which varies from 0 to 0.4. Error bars represent means and 

standard deviations of 100 bootstraps (fibroblast data), 20 independent trials of 5,000 

trajectories each (oscillator model). 

 

 

To explore this hypothesis in a systematic way, we again turn to our minimal 

oscillator model. For both the overdamped and underdamped oscillator, we compute 

𝑀𝐼𝑠,𝑚𝑎𝑥  and the information gain. In the model, the intrinsic noise is governed by the 

thermal energy 𝑘𝐵𝑇. The model also provides an opportunity to investigate the effects 

of extrinsic noise, which is governed by 𝛿𝑘/〈𝑘〉, the relative width of the distribution 

of spring constants. As shown in Fig. 3.5, when the intrinsic noise increases while the 

extrinsic noise is fixed, both the scalar information and the information gain decrease, 
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as expected (dashed lines). The decrease in scalar information is more pronounced than 

the decrease in the gain, which is consistent with the fact that vector information is 

beneficial for mitigating intrinsic noise. On the other hand, when the extrinsic noise 

increases while the intrinsic noise is fixed, the gain decreases more rapidly, while the 

scalar information decreases less rapidly (the different symbols). This implies that the 

gain is more sensitive to extrinsic noise than intrinsic noise. 

In the context of the fibroblast population, these results suggest that extrinsic 

noise (cell-to-cell variability), not intrinsic noise, is primarily responsible for degrading 

the performance of vectorial encoding and producing small information gains. 

 

3.3.6 Redundant Information and Low-Pass Filtering 

The vectorial mutual information 𝑀𝐼𝑣  can never be larger than the sum of the 

scalar mutual information values 𝑀𝐼𝑠(𝑡𝑖) taken individually at each time point 𝑡𝑖. The 

reason is that there will always be some nonnegative amount of redundant information 

between the output at one time and the output at another time100. Denoting the 

redundant information as 𝑀𝐼𝑟𝑒𝑑, we formalize this statement as 

𝑀𝐼𝑟𝑒𝑑 = [∑𝑀𝐼𝑠(𝑡𝑖)

𝑛

𝑖=1

] − 𝑀𝐼𝑣 = 𝑛〈𝑀𝐼𝑠〉 − 𝑀𝐼𝑣 ≥ 0, (3.4) 

whereas before 𝑡𝑖 = 𝑡𝑠 + 𝑖𝑟
−1, and in the second step we rewrite the sum in terms of 

the temporal average 〈𝑀𝐼𝑠〉 = 𝑛
−1∑ 𝑀𝐼𝑠(𝑡𝑖)

𝑛
𝑖=1 . In the limit that the dynamics are 

approximately stationary, such as in the high-yield regions of Figs. 1B and 4B, 𝑀𝐼𝑠 is 
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approximately independent of time, and 〈𝑀𝐼𝑠〉 = 𝑀𝐼𝑠. For 𝑛 = 2, as in Fig. 3.5, Eq. 4 

then becomes 

𝑀𝐼𝑣 −𝑀𝐼𝑠 ≤ 𝑀𝐼𝑠, (3.5) 

Eq. 5 expresses the intuitive fact that the gain upon making an additional measurement 

can never be more than the information from the original measurement, for a stationary 

process. Eq. 5 is plotted in Fig. 3.5 (dash-dotted line), and we see that it indeed bounds 

all data from above, as predicted. 

The redundant information in Eq. 4 can be directly measured in the 

experiments. Fig. 3.6 shows the redundant information in the fibroblast calcium 

dynamics as a function of the memory capacity 𝑛, computed from the scalar and 

vectorial mutual information according to Eq. 4. Here 𝑡𝑠 = 70 sec, and for each curve 

the sampling rate 𝑟 is fixed, such that the duration 𝑇𝑑  increases with 𝑛. We see that the 

redundant information depends on 𝑟 and appears to be bounded from above by a 

roughly linear function of 𝑛. Can we understand this dependence theoretically? To 

address this question, we return to Eq. 4. We rearrange Eq. 4 as 𝑀𝐼𝑟𝑒𝑑 =

(𝑛 − 1)〈𝑀𝐼𝑠〉 − Δ, where we define Δ = 𝑀𝐼𝑣 − 〈𝑀𝐼𝑠〉. Since the vectorial information 

is not smaller than the scalar information corresponding to any of its time points, it is 

also not smaller than the average scalar information. Therefore, Δ ≥ 0, and we have 

𝑀𝐼𝑟𝑒𝑑 ≤ (𝑛 − 1)〈𝑀𝐼𝑠〉, (3.6) 

Eq. 6 is a linear function of 𝑛, weakly modified by the fact that 〈𝑀𝐼𝑠〉 itself depends on 

𝑛 since it is computed for varying numbers of time points. Eq. 6 is compared with the 

data in Fig. 3.6, and we see that it indeed predicts the bound well. Eq. 6 makes another  
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Figure 3.6 Redundant information of dynamic encoding for fibroblast cells. Redundant 

information 𝑀𝐼𝑟𝑒𝑑 (Eq. 4, 𝑡𝑠 = 70 sec) is plotted as a function of memory capacity 𝑛 

for varying sampling rates 𝑟 and compared with the theoretical bound (Eq. 6). 

 

prediction, namely that the bound is reached for a stationary process when Δ = 𝑀𝐼𝑣 −

〈𝑀𝐼𝑠〉 → 0, i.e. when the vector information provides vanishing improvement over the 

average scalar information. We expect this situation to occur in the limit of large 

sampling frequency 𝑟, when samples occur in close succession and offer little 

additional information beyond a single, scalar measurement. Indeed, we see from the 

data in Fig. 3.6 that consistent with this prediction, the bound is approached in the limit 

of increasing 𝑟. 

Clearly, the benefit of vectorial encoding is largest when the redundant information 

is small (the lowest data points in Fig. 3.6). In the ideal case, there is no redundant 

information at all, and Eq. 4 becomes 

𝑀𝐼𝑣 =∑𝑀𝐼𝑠(𝑡𝑖)

𝑛

𝑖=1

, (3.7) 
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Here, we see that the vectorial information is simply the sum of the scalar information 

at each time point. In this sense, Eq. 7 describes a low-pass filter: vectorial encoding 

captures the temporal accumulation of scalar information, as long as the sampling is 

sufficiently slow to remove the redundancy. Therefore, in this limit the vectorial 

information records only the slow (low-frequency) variations in the dynamics. This 

feature may help explain the previous counterintuitive result that the vectorial 

information is insensitive to the detailed dynamic structure, as we expand upon in the 

discussion. 

 

3.4 Discussion 

The dynamic waveforms of signaling molecules have offered a new perspective 

to understand cellular information encoding. Indeed, dynamic encoding, as quantified 

by the vectorial mutual information 𝑀𝐼𝑣, has larger channel capacity than the static 

encoding, as quantified by the scalar mutual information 𝑀𝐼𝑠
32. From both 

experimental data and a minimal model we presented here, we find that dynamic 

encoding has several key advantages over static encoding. First, the maximal vectorial 

information is larger than the maximal scalar information, suggesting that dynamic 

encoding provides a more reliable readout of environmental inputs than static encoding 

does. Second, while the scalar information can vary significantly with sampling time, 

the vectorial information is more uniform across sampling start times, even with small 

vector dimensions (Fig. 3.3C and Fig. 3.4E). 

However, the benefit of dynamic encoding comes with the cost of increasing 

the memory capacity 𝑛 of cells. For a fixed memory capacity, we have shown that the 
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best strategy for cells to adopt is to sample as slowly as possible while keeping their 

samples within a “high-yield” region, where the mean dynamics depend significantly 

on the input. Nonetheless, we find that within this region, the benefit of dynamic 

encoding can depend very little on the detailed structure of the dynamics (persistent 

oscillation vs. monotonic relaxation). Moreover, the gain of dynamic encoding over 

static encoding can be small, largely due to the presence of extrinsic, as opposed to 

intrinsic, noise. 

The finding that vectorial information is largely insensitive to the detailed 

dynamics is surprising, and is likely a reflection of the type of dynamics we investigate 

here, as well as the vectorial measure itself. To accurately model the experimental 

dynamics, we have considered noisy dynamics arising from a driven oscillator. 

Although this has allowed us to probe both noise-dominated and oscillation-dominated 

regimes, these dynamics remain mean-reverting and confined to a stationary or cyclo-

stationary state. It is likely that other classes of dynamics, such as temporal ramps, 

would emerge as having uniquely higher vectorial information than stationary 

dynamics. Furthermore, the vectorial information itself, as defined here, reports 

correlations between a categorial input variable and a regularly sampled output 

trajectory. It is likely that more sophisticated information-theoretic measures would be 

more sensitive to dynamic details, such as the mutual information between input and 

output trajectories, which has been argued to play a biological role in cell motility101,102. 

Our results suggest that dynamic and static encoding mechanisms are deeply 

connected. By invoking the redundant information 𝑀𝐼𝑟𝑒𝑑
100, we have made this 

connection rigorous. Specifically, combining Eqs. 4 and 6 yields 〈𝑀𝐼𝑠〉 ≤ 𝑀𝐼𝑣 ≤
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𝑛〈𝑀𝐼𝑠〉, which shows explicitly that the vectorial information is bounded from both 

above and below by quantities determined by the window-averaged scalar information 

〈𝑀𝐼𝑠〉. Taking a window average of the scalar information is equivalent to the 

downstream network acting as a low-pass filter, accumulating temporal measurements 

at sufficiently low frequencies. We find that such low-pass filtering effects are evident 

from both the experimental and modeling results. 

In this study, we have taken the approach that an understanding of both the 

static and dynamic encoding behaviors of the fibroblast cells can be obtained from a 

model based on noisy harmonic oscillators. Despite the simplicity of the model, we 

find that it reproduces the experimental results very well. The agreement between the 

experiment and this simple model highlights our central conclusion: the vectorial 

mutual information is intrinsically connected with the scalar mutual information and 

therefore has limited capability to distinguish underlying dynamics. Because the model 

is minimal, we anticipate that it can be extended to answer more general questions 

about information encoding on a large, multicellular scale. This is particularly desirable 

as understanding collective information processing is a new frontier in systems 

biophysics23,46,98,103–105. On the other hand, many interesting questions, such as the 

precise functional form of 𝑀𝐼𝑣(𝑛), the dependence of mutual information on nonlinear 

effects such as feedback, bifurcations, and coupling of multiple time scales may require 

more realistic models beyond noisy harmonic oscillator. 
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CHAPTER 4 

 

Conclusion 
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 The unifying theme of this work is the communication of cells in multicellular 

networks in response to chemical stimuli. Cells routinely experience a wide variety of 

stimuli from their environments and – whether this is chemical, mechanical, radiative, 

or other – they need a reliable way of communicating information about these stimuli 

to ensure survival and proper functioning of both the individual cell and the higher 

order network of cells.  We specifically focus on the chemosensing abilities of cells in 

multicellular networks and their ability to communicate information via biochemical 

signals generated in response to the applied chemical stimuli. Using the well-known 

Ca2+ signaling dynamics of cells, we look at how the Ca2+ signaling dynamics may be 

used to encode information about the sensed stimuli and network properties. 

 In chapter 2 we explore the collective Ca2+ dynamics of multicellular networks 

with varying degrees of cell-cell communication in response to differing concentrations 

of ATP. We do so by making use of a simple microfluidic device with one inlet and 

outlet that allow for the creation of the monolayer as well as the flowing of the ATP 

over the monolayer. Pre-labeling the monolayer with a Ca2+ binding dye coupled with 

fluorescence microscopy and image processing techniques allowed for the 

determination of the single cell Ca2+ dynamics. Our results show that the collective 

Ca2+ dynamics exhibit the ability to encode both stimulus strength as well as cell 

density. This was readily shown in Fig. 2.3B and Fig. 2.6B with the magnitude of the 

Ca2+ response increasing with ATP concentration and the propensity for oscillations 

increasing with cell density. Modeling using a modified Tang and Othmer Ca2+ 

dynamics model showed agreement with these experimental results further confirming 

the Ca2+ response multiplexing ability of the cell network. Recent work has shown that 
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this ability for multiplexing in biochemical signaling is advantageous in that it allows 

for a greater level of response specificity to an event. 

 In chapter 3 we look at two information encoding strategies of fibroblast cells 

in their Ca2+ dynamics: vector encoding of information and static encoding. Static 

encoding is the simplest case of encoding in which the cell samples the Ca2+ dynamics 

at a single timepoint whereas vector encoding relies on multiple samples over time. 

Vector encoding has been proposed as a method for cells to encode and decode more 

information in their dynamics than that of a static case. Our results show this to indeed 

be the case as we have found that vectoring encoding, in general, has a higher mutual 

information (a measure of the correlation between inputs and outputs) associated with 

it than static encoding. Further, the readouts from vector encoding are less sensitive to 

the underlying dynamics than scalar encoding. The trade-off with vector encoding is 

that it requires a larger memory capacity and we find that by fixing the memory 

capacity, the best strategy for a cell to employ is to sample infrequently over a larger 

period of time. Finally, our results show that the vector information is bounded above 

and below by the window averaged scalar information, showing that the downstream 

network acts as a low-pass filter. 

 The future of this work aims to focus more directly on the gap junction, the 

mode of communication that is at play in the exchange of Ca2+ between neighboring 

cells. To do so, we are stepping away from the multicellular network and instead 

working with a one-dimensional wire of cells that is created using a new two-layer 

microfluidic device. Direct injection of a cell suspension into narrow trapping channels 

allows for the cells to align in a wire such that communication is forced between nearest 
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neighbor cells via gap junctions. Use of pressure pumps in conjunction with ATP will 

creates strict control over the spatiotemporal profile of the stimulus to leading cells in 

the chain and will allow us to probe questions about intercellular wave and information 

propagation, as well as recent work suggesting that diffusion through gap junctions 

may be non-linear in nature as opposed to the often assumed linear diffusion. 

 



77 

 

BIBLIOGRAPHY 

 

1. Berridge, M. J., Lipp, P. & Bootman, M. D. The versatility and universality of 

calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11–21 (2000). 

2. Berridge, M. J., Bootman, M. D. & Roderick, H. L. Calcium signalling: 

dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517–29 

(2003). 

3. Swillens, S., Dupont, G., Combettes, L. & Champeil, P. From calcium blips to 

calcium puffs: Theoretical analysis of the requirements for interchannel 

communication. Proc. Natl. Acad. Sci.  96, 13750–13755 (1999). 

4. Dupont, G., Combettes, L., Bird, G. S. & Putney, J. W. Calcium oscillations. 

Cold Spring Harbor Perspectives in Biology 3, 1–18 (2011). 

5. Tran, Q. K., Ohashi, K. & Watanabe, H. Calcium signalling in endothelial 

cells. Cardiovasc. Res. 48, 13–22 (2000). 

6. Bootman, M. D. & Lipp, P. Calcium signalling: Ringing changes to the ‘bell-

shaped curve’. Curr. Biol. 9, R876–R878 (1999). 

7. Mak, D.-O. D., McBride, S. & Foskett, J. K. Inositol 1,4,5-tris-phosphate 

activation of inositol tris-phosphate receptor Ca2+ channel by ligand tuning of 

Ca2+ inhibition. Proc. Natl. Acad. Sci. 95, 15821–15825 (1998). 

8. Reece, J. & Urry, L. Campbell biology. Campbell Biology (2011). 

doi:10.1039/c3ra44507k 

9. Kadamur, G. & Ross, E. M. Mammalian phospholipase C. Annu Rev Physiol 

75, 127–154 (2013). 

10. Berridge, M. J. Inositol trisphosphate and calcium signalling. Nature 361, 315–

325 (1993). 

11. Clapham, D. E. Calcium Signaling. Cell 131, 1047–1058 (2007). 

12. Iino, M. & Tsukioka, M. Feedback control of inositol trisphosphate signalling 

bycalcium. Mol. Cell. Endocrinol. 98, 141–146 (1994). 

13. Fill, M. & Copello, J. a. Ryanodine receptor calcium release channels. Physiol 

Rev Rev 82, 893–922 (2002). 



78 

 

14. Wu, M. M., Buchanan, J., Luik, R. M. & Lewis, R. S. Ca2+ store depletion 

causes STIM1 to accumulate in ER regions closely associated with the plasma 

membrane. J. Cell Biol. 174, 803–813 (2006). 

15. Feske, S. et al. A mutation in Orai1 causes immune deficiency by abrogating 

CRAC channel function. Nature 441, 179–185 (2006). 

16. Leybaert, L. & Sanderson, M. J. Intercellular Ca(2+) waves: mechanisms and 

function. Physiol. Rev. 92, 1359–1392 (2012). 

17. Kumar, N. M. & Gilula, N. B. The gap junction communication channel. Cell 

84, 381–388 (1996). 

18. Löwenstein, W. Junctional intercellular communication: the cell-to-cell 

membrane channel. Physiol.Rev. 61, 829–913 (1981). 

19. Sun, B., Duclos, G. & Stone, H. A. Network characteristics of collective 

chemosensing. Phys. Rev. Lett. 110, 1–5 (2013). 

20. Evans, W. H. & Martin, P. E. M. Gap junctions: structure and function 

(Review). Mol. Membr. Biol. 19, 121–136 (2002). 

21. Goldberg, M., de Pittà, M., Volman, V., Berry, H. & Ben-Jacob, E. Nonlinear 

gap junctions enable long-distance propagation of pulsating calcium waves in 

astrocyte networks. PLoS Comput. Biol. 6, (2010). 

22. Othmer, H. G. & Tang, Y. in Experiemntal and theoretical advances in 

biological pattern formation 277–299 (1993). 

23. Potter, G. D., Byrd, T. A., Mugler, A. & Sun, B. Communication shapes 

sensory response in multicellular networks. Proc. Natl. Acad. Sci.  113, 10334–

10339 (2016). 

24. Gillespie, D. T. Approximate accelerated stochastic simulation of chemically 

reacting systems. J. Chem. Phys. 115, 1716–1733 (2001). 

25. Rathinam, M., Petzold, L. R., Cao, Y. & Gillespie, D. T. Stiffness in stochastic 

chemically reacting systems: The implicit tau-leaping method. J. Chem. Phys. 

119, 12784–12794 (2003). 

26. Cao, Y., Gillespie, D. T. & Petzold, L. R. Efficient step size selection for the 

tau-leaping simulation method. J. Chem. Phys. 124, 44109 (2006). 



79 

 

27. Cao, Y., Gillespie, D. T. & Petzold, L. R. Adaptive explicit-implicit tau-

leaping method with automatic tau selection. J. Chem. Phys. 126, (2007). 

28. Gillespie, D. T. Exact stochastic simulation of coupled chemical reactions. J. 

Phys. Chem. 81, 2340–2361 (1977). 

29. Rhee, A., Cheong, R. & Levchenko, A. The application of information theory 

to biochemical signaling systems. Phys. Biol. 9, 45011 (2012). 

30. Bialek, W. Biophysics: Searching for Principles. (Princeton University Press, 

2012). 

31. Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 

27, 379–423 (1948). 

32. Selimkhanov, J. et al. Accurate information transmission through dynamic 

biochemical signaling networks. Science 346, 1370–3 (2014). 

33. Kraskov, A., Stögbauer, H. & Grassberger, P. Estimating mutual information. 

Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 69, (2004). 

34. Loftsgaarden, D. O. & Quesenberry, C. P. A Nonparametric Estimate of a 

Multivariate Density Function. 1049–1051 (1965). 

doi:10.1214/aoms/1177700079 

35. Dubuis, J. O., Tkacik, G., Wieschaus, E. F., Gregor, T. & Bialek, W. Positional 

information, in bits. Proc. Natl. Acad. Sci. 110, 16301–16308 (2013). 

36. Cheong, R., Rhee, A., Wang, C. J., Nemenman, I. & Levchenko, A. 

Information Transduction Capacity of Noisy Biochemical Signaling Networks. 

Science (80). 334, 354–358 (2011). 

37. Lauffenburger, D. A. Cell signaling pathways as control modules: complexity 

for simplicity? Proc. Natl. Acad. Sci. U. S. A. 97, 5031–5033 (2000). 

38. Lodish, H. et al. Molecular Cell Biology, 4th Edition. (W.H. Freeman, 2000). 

39. Barritt, G. J. Communication Within Animal Cells. (Oxford University Press, 

1992). 

40. Miller, M. B. & Bassler, B. L. Quorum Sensing in Bacteria. Annu. Rev. 

Microbiol. 55, 165–199 (2001). 

41. Jones, W. D., Cayirlioglu, P., Grunwald Kadow, I. & Vosshall, L. B. Two 



80 

 

chemosensory receptors together mediate carbon dioxide detection in 

Drosophila. Nature 445, 86–90 (2007). 

42. Smear, M., Shusterman, R., O’Connor, R., Bozza, T. & Rinberg, D. Perception 

of sniff phase in mouse olfaction. Nature 479, 397–400 (2011). 

43. Benninger, R. K. P., Zhang, M., Head, W. S., Satin, L. S. & Piston, D. W. Gap 

Junction Coupling and Calcium Waves in the Pancreatic Islet. Biophys. J. 95, 

5048–5061 (2008). 

44. Greschner, M. et al. Correlated firing among major ganglion cell types in 

primate retina. J. Physiol. 589, 75–86 (2011). 

45. Schneidman, E., Berry, M. J., Segev, R. & Bialek, W. Weak pairwise 

correlations imply strongly correlated network states in a neural population. 

Nature 440, 1007–1012 (2006). 

46. Sun, B., Lembong, J., Normand, V., Rogers, M. & Stone, H. A. Spatial-

temporal dynamics of collective chemosensing. Proc. Natl. Acad. Sci. 109, 

7753–7758 (2012). 

47. Berridge, M. J. & Irvine, R. F. Inositol phosphates and cell signalling. Nature 

341, 197–205 (1989). 

48. Lowenstein, W. R. & Kanno, Y. Intercellular Communication and the Control 

of Tissue Growth: Lack of Communication between Cancer Cells. Nature 209, 

1248–1249 (1966). 

49. McLachlan, E., Shao, Q., Wang, H. L., Langlois, S. & Laird, D. W. Connexins 

act as tumor suppressors in three-dimensional mammary cell organoids by 

regulating differentiation and angiogenesis. Cancer Res. 66, 9886–9894 

(2006). 

50. Zhou, J. Z. & Jiang, J. X. Gap junction and hemichannel-independent actions 

of connexins on cell and tissue functions - An update. in FEBS Letters 588, 

1186–1192 (2014). 

51. Tang, Y. & Othmer, H. G. Frequency encoding in excitable systems with 

applications to calcium oscillations. Proc. Natl. Acad. Sci. U. S. A. 92, 7869–

7873 (1995). 



81 

 

52. Thurley, K. et al. Reliable encoding of stimulus intensities within random 

sequences of intracellular Ca2+ spikes. Science Signaling 7, ra59 (2014). 

53. Woods, N. M., Cuthbertson, K. S. R. & Cobbold, P. H. Repetitive transient 

rises in cytoplasmic free calcium in hormone-stimulated hepatocytes. Nature 

319, 600–602 (1986). 

54. Meyer, T. & Stryer, L. Calcium spiking. Annu. Rev. Biophys. Biophys. Chem. 

20, 153–174 (1991). 

55. Meyer, T. & Stryer, L. Molecular model for receptor-stimulated calcium 

spiking. Proc. Natl. Acad. Sci. U. S. A. 85, 5051–5055 (1988). 

56. Politi, A., Gaspers, L. D., Thomas, A. P. & Höfer, T. Models of IP3 and Ca2+ 

oscillations: frequency encoding and identification of underlying feedbacks. 

Biophys. J. 90, 3120–3133 (2006). 

57. Falcke, M. Reading the patterns in living cells —the physics of ca2+ signaling. 

Adv. Phys. 53, 255–440 (2004). 

58. Janmey, P. A. & Miller, R. T. Mechanisms of mechanical signaling in 

development and disease. J. Cell Sci. 124, 9–18 (2011). 

59. Abbaci, M., Barberi-Heyob, M., Blondel, W., Guillemin, F. & Didelon, J. 

Advantages and limitations of commonly used methods to assay the molecular 

permeability of gap junctional intercellular communication. BioTechniques 45, 

33–62 (2008). 

60. Gordon, J. L. Extracellular ATP: effects, sources and fate. Biochem. J. 233, 

309–319 (1986). 

61. Falzoni, S., Donvito, G. & Di Virgilio, F. Detecting adenosine triphosphate in 

the pericellular space. Interface Focus 3, 20120101 (2013). 

62. Trabanelli, S. et al. Extracellular ATP exerts opposite effects on activated and 

regulatory CD4+ T cells via purinergic P2 receptor activation. J Immunol 189, 

1303–1310 (2012). 

63. Pellegatti, P. et al. Increased level of extracellular ATP at tumor sites: In vivo 

imaging with plasma membrane luciferase. PLoS One 3, (2008). 

64. Cameron, D. J. Inhibition of macrophage mediated cytotoxicity by exogenous 



82 

 

adenosine 5’-triphosphate. J. Clin. Lab. Immunol. 15, 215—218 (1984). 

65. Schmidt, A., Ortaldo, J. R. & Herberman, R. B. Inhibition of human natural 

killer cell reactivity by exogenous adenosine 5'-triphosphate. J. Immunol. 132, 

146 LP-150 (1984). 

66. Green, H. N. & Stoner, H. B. Biological actions of the adenine nucleotides,. 

(H.K. Lewis, 1950). 

67. Ingerman, C. M., Smith, J. B. & Silver, M. J. Direct measurement of platelet 

secretion in whole blood. Thromb. Res. 16, 335–344 (2017). 

68. de Ronde, W., Tostevin, F. & ten Wolde, P. R. Multiplexing Biochemical 

Signals. Phys. Rev. Lett. 107, 48101 (2011). 

69. Marshall, C. J. Specificity of receptor tyrosine kinase signaling: Transient 

versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–

185 (1995). 

70. Schwartz, M. a & Madhani, H. D. Principles of MAP kinase signaling 

specificity in Saccharomyces cerevisiae. Annu Rev Genet 38, 725–748 (2004). 

71. Purvis, J. E. & Lahav, G. Encoding and Decoding Cellular Information through 

Signaling Dynamics. Cell 152, 945–956 (2017). 

72. Batchelor, E., Loewer, A., Mock, C. & Lahav, G. Stimulus-dependent 

dynamics of p53 in single cells. Mol. Syst. Biol. 7, 488 (2011). 

73. Noren, D. P. et al. Endothelial cells decode VEGF-mediated Ca2+ signaling 

patterns to produce distinct functional responses. Sci. Signal. 9, ra20-ra20 

(2016). 

74. Mehta, P. & Gregor, T. Approaching the molecular origins of collective 

dynamics in oscillating cell populations. Current Opinion in Genetics and 

Development 20, 574–580 (2010). 

75. De Monte, S., d’Ovidio, F., Danø, S. & Sørensen, P. G. Dynamical quorum 

sensing: Population density encoded in cellular dynamics. Proc. Natl. Acad. 

Sci. U. S. A. 104, 18377–81 (2007). 

76. Taylor, A. F., Tinsley, M. R., Wang, F., Huang, Z. & Showalter, K. Dynamical 

quorum sensing and synchronization in large populations of chemical 



83 

 

oscillators. Science 323, 614–617 (2009). 

77. Tay, S. et al. Single-cell NF-κB dynamics reveal digital activation and 

analogue information processing. Nature 466, 267–71 (2010). 

78. Kellogg, R. A. & Tay, S. Noise facilitates transcriptional control under 

dynamic inputs. Cell 160, 381–392 (2015). 

79. Mora, T. & Bialek, W. Are Biological Systems Poised at Criticality? J. Stat. 

Phys. 144, 268–302 (2011). 

80. Krotov, D., Dubuis, J. O., Gregor, T. & Bialek, W. Morphogenesis at 

criticality. Proc. Natl. Acad. Sci. U. S. A. 111, 3683–3688 (2014). 

81. Hidalgo, J. et al. Information-based fitness and the emergence of criticality in 

living systems. Proc. Natl. Acad. Sci. U. S. A. 111, 10095–100 (2014). 

82. Pires-daSilva, A. & Sommer, R. J. The Evolution of Signaling Pathways in 

Animal Development. Nat. Rev. Genet. 4, 39–50 (2003). 

83. Bhattacharyya, R. P., Reményi, A., Yeh, B. J. & Lim, W. a. Domains, motifs, 

and scaffolds: the role of modular interactions in the evolution and wiring of 

cell signaling circuits. Annu. Rev. Biochem. 75, 655–680 (2006). 

84. Papin, J., Hunter, T., Palsson, B. & Subramaniam, S. Reconstruction of cellular 

signalling networks and analysis of their properties. Nat. Rev. Mol. Cell Biol. 6, 

99–111 (2005). 

85. Lim, W., Mayer, B. & Pawson, T. Cell Signaling: Principles and Mechanisms. 

(Garland Science, 2014). 

86. Mestre, J. R. et al. Redundancy in the Signaling Pathways and Promoter 

Elements Regulating Cyclooxygenase-2 Gene Expression in Endotoxin-treated 

Macrophage/Monocytic Cells. J. Biol. Chem.  276, 3977–3982 (2001). 

87. Logue, J. S. & Morrison, D. K. Complexity in the signaling network: Insights 

from the use of targeted inhibitors in cancer therapy. Genes and Development 

26, 641–650 (2012). 

88. Kholodenko, B. N. Cell-signalling dynamics in time and space. Nat. Rev. Mol. 

cell Biol. 7, 165–176 (2006). 

89. Purvis, J. E. & Lahav, G. Encoding and decoding cellular information through 



84 

 

signaling dynamics. Cell 152, 945–956 (2013). 

90. Hoffmann, A., Levchenko, A., Scott, M. L. & Baltimore, D. The IκB-NF-κB 

signaling module: temporal control and selective gene activation. Science 298, 

1241–1245 (2002). 

91. Covert, M. W., Leung, T. H., Gaston, J. E. & Baltimore, D. Achieving stability 

of lipopolysaccharide-induced NF-κB activation. Science 309, 1854–1857 

(2005). 

92. Adami, C. Information theory in molecular biology. Physics of Life Reviews 1, 

3–22 (2004). 

93. Levchenko, A. & Nemenman, I. Cellular noise and information transmission. 

Current Opinion in Biotechnology 28, 156–164 (2014). 

94. Uda, S. et al. Robustness and compensation of information transmission of 

signaling pathways. Science 341, 558–61 (2013). 

95. Voliotis, M., Perrett, R. M., McWilliams, C., McArdle, C. A. & Bowsher, C. 

G. Information transfer by leaky, heterogeneous, protein kinase signaling 

systems. Proc. Natl. Acad. Sci. U. S. A. 111, E326-33 (2014). 

96. Léon, C. et al. Defective platelet aggregation and increased resistance to 

thrombosis in purinergic P2Y1 receptor-null mice. J. Clin. Invest. 104, 1731–

1737 (1999). 

97. Yitzhaki, S. et al. Uridine-5'-triphosphate (UTP) reduces infarct size and 

improves rat heart function after myocardial infarct. Biochem. Pharmacol. 72, 

949–955 (2006). 

98. Sun, B., Duclos, G. & Stone, H. A. Network characteristics of collective 

chemosensing. Phys. Rev. Lett. 110, (2013). 

99. Van Kampen, N. G. Stochastic Processes in Physics and Chemistry. Stochastic 

Processes in Physics and Chemistry 96–133 (2007). doi:10.1016/B978-

044452965-7/50016-7 

100. Schneidman, E., Bialek, W. & Berry, M. J. Synergy, redundancy, and 

independence in population codes, revisited. J. Neurosci. 25, 5195–206 (2005). 

101. Tostevin, F. & Ten Wolde, P. R. Mutual information between input and output 



85 

 

trajectories of biochemical networks. Phys. Rev. Lett. 102, 1–4 (2009). 

102. Tostevin, F. & Ten Wolde, P. R. Mutual information in time-varying 

biochemical systems. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 81, 

(2010). 

103. Mugler, A., Levchenko, A. & Nemenman, I. Limits to the precision of gradient 

sensing with spatial communication and temporal integration. Proc. Natl. 

Acad. Sci.  113, E689–E695 (2016). 

104. Ellison, D. et al. Cell-cell communication enhances the capacity of cell 

ensembles to sense shallow gradients during morphogenesis. Proc. Natl. Acad. 

Sci. U. S. A. 113, E679–E688 (2016). 

105. Camley, B. A., Zimmermann, J., Levine, H. & Rappel, W. J. Emergent 

Collective Chemotaxis without Single-Cell Gradient Sensing. Phys. Rev. Lett. 

116, (2016). 

106. Varennes, J., Han, B. & Mugler, A. Collective Chemotaxis through Noisy 

Multicellular Gradient Sensing. Biophys. J. 111, 640–649 (2016). 

107. Garcia, D. Robust smoothing of gridded data in one and higher dimensions 

with missing values. Comput. Stat. Data Anal. 54, 1167–1178 (2010). 

108. Meister, M. Multineuronal codes in retinal signaling. Proc. Natl. Acad. Sci. U. 

S. A. 93, 609–614 (1996). 

109. Schnitzer, M. J. & Meister, M. Multineuronal firing patterns in the signal from 

eye to brain. Neuron 37, 499–511 (2003). 

 

 

 

 

 

 



86 

 

APPENDICES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



87 

 

Appendix A: Photolithography 

The ability of photolithography to reliably generate high-resolution features 

ranging from hundreds of microns to submicron in scale makes it an ideal candidate for 

the creation of microfluidic devices capable of studying cells and cell signaling 

behavior. Limitations of photolithographic techniques for these purposes are generally 

due to equipment limits and/or improper development procedure though many creative 

solutions have been found to create devices spanning orders of complexity based on 

the needs of the investigator. The general process involves the deposition of a 

photoresist onto a substrate that, in conjunction with a pre-generated photomask, prints 

a desired pattern into the resist that is then used for device creation. One type of 

photolithography utilizing negative photoresist is the basis for our device fabrication 

as the final features of the master are permanent, allowing for near limitless uses in the 

creation of microfluidic devices for our studies.  

 Creation of the master can be broken down into a series of steps: photomask 

generation, spin-coating, soft bake, exposure, post-exposure bake, and development.  

 

A1 Photomask Generation 

Photomasks are comprised of a square, fused quartz substrate coated on one 

side with photoresist and chromium. Mask generation begins by loading a design file 

generated from CAD software such as AutoCAD into the mask writing software. The 

mask writing software converts the file into a series of instructions that, while the laser 

of the mask writer raster scans the photomask, causes the exposure of the photoresist 

in the pattern described in the design file. A series of chemical baths after the mask 
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writing results in the removal of photoresist and chromium in the regions exposed to 

laser light creating the design in the fused quartz that allows the passage of UV light 

(See Figure A1). 

 

Figure A1 Photomask generation. (A) Mask blanks are pre-purchased consisting of 

fused quartz with a thin layer of photoresist and chromium deposited on one side of the 

photomask. (B) Laser light is raster scanned across the mask blank, exposing the 

chromium/photoresist layer according to the pattern created in the design file. (C) 

Development of mask in series of chemical baths removes the exposed chromium and 

photoresist allowing for passage of UV light in desired pattern.  

 

A2 Spin Coating  

A uniform photoresist layer is deposited on a silicon wafer by a series of 

controlled ramp rates by the spin-coater and spin time duration. Manufacturers of  

negative photoresist have detailed spin speed versus thickness documentation and 

suggested ramp rate and duration times. Note that it is possible that a non-uniform 

photoresist thickness is generated rendering the wafer unusable. This will generally 

look like pooling of the photoresist on the substrate and is due to insufficient wetting 

possibly due to an unclean surface or a high humidity environment. If this is the case, 

a photoresist primer can be spun onto the wafer and baked before the application of the 
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photoresist to increase wetting or the wafer can be plasma treated for several minutes 

to achieve the same effect (See Appendix A8 for more details).  

 

A3 Soft Bake 

After a uniform photoresist is achieved, the wafer is transferred to a leveled hot 

plate for a soft bake. The soft bake takes place at two temperatures (typically 65°C and 

95°C) to reduce thermal stress and lasts for several minutes depending on the thickness 

of the photoresist. If the photoresist does not pre-bake for the correct amount of time it 

is likely to result in poor adhesion quality of the features to the substrate after 

development and may result in removal during rinsing of the wafer after development. 

 

A4 Exposure 

Following the soft bake is the exposure of the photoresist to the UV source via 

the photomask shown in Fig. A2. During the exposure step a strong acid is formed that, 

in conjunction with the post-exposure bake (PEB) catalyzes the epoxy cross-linking. 

The exposure step is vital to the proper formation of the microfeatures and is one of the 

main steps that is tweaked to generate the desired outcome. Exposure time is directly 

related to the desired film thickness and intensity of the UV source; it is best practice 

to rely on the photoresist manufacturers recommendations and to measure the intensity 

of the source being worked with before exposure to ensure replicability of device 

fabrication. Improper contact between the photomask and the coated wafer or too 

long/short of exposure time can cause poor feature resolution. Too short of exposure 
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time has the added disadvantage of not generating enough of the acid to form all the 

features resulting in poor substrate adhesion. 

 

Figure A2 Cross-section of photoresist exposure. (A) Photomask is brought into 

contact with substrate coated with negative photoresist after spin-coating and soft bake 

steps. (B) Regions of photomask where chromium and photoresist were removed in 

development allow UV light to pass through the fused quartz to begin acid formation 

of the negative photoresist. All other UV light is blocked to prevent exposure in 

undesired regions. (C) Acid formed during exposure of the negative photoresist begins 

the cross-linking process resulting in rigid features in desired pattern. 

 

A6 Post-Exposure Bake (PEB) 

The acid formed during the exposure step is thermally driven with the PEB to 

catalyze the cross-linking step creating the insoluble epoxy features. The PEB, like the 

soft bake, takes place at 65°C and 95°C and has bake time dependent on the desired 

feature height, with larger features requiring longer bake times. Improper PEB time 

creates insufficient epoxy formation resulting in poor adhesion and feature resolution. 

A trace of the features should appear within the first few minutes of the PEB as an 

indicator that the epoxy is forming and serve as a check that things are progressing as 

desired. 
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A7 Development 

Having removed the wafer from the PEB hotplate and allowed it to cool to room 

temperature, the wafer is submerged in developer to remove any un-crosslinked  

 

Figure A3 Wafer development process. (A) Photomask is brought into contact with 

substrate coated with negative photoresist after spin-coating and soft bake steps. (B) 

Regions of photomask where chromium and photoresist were removed in development 

allow UV light to pass through the fused quartz to begin acid formation of the negative 

photoresist. All other UV light is blocked to prevent exposure in undesired regions. 

 

photoresist (Fig. A3). Total time in the developer is dependent on feature height but is 

expedited with gentle agitation. For particularly tight features, holes, or large vertical 

walls, a more vigorous agitation is generally required though caution must be taken as 

too much time in developer or too vigorous agitation may cause the erosion of cross-

linked photoresist resulting in rounding or removal of features. When finished, the 

wafer is removed from the developer and rinsed with isopropyl alcohol followed by de-

ionized water and blown dry with nitrogen. A white film appearing during the rinsing 

of the wafer is an indicator that further time in the developer is needed. If, during the 
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rinsing or drying process, the epoxy features warp or are removed from the substrate, 

adjusting of the baking times – particularly during the soft bake – may need to be made. 

 

A8 Protocols 

The protocol for generating a single layer and multi-layer SU-8 master mold on 

a standard 3-inch silicon wafer is found below. These protocols assume cleanroom 

conditions and access to a spin-coater, two hotplates, plasma cleaner, and contact 

aligner, all of which can be found in Owen Hall on the Oregon State University campus 

under the supervision of Dr. Chris Tasker and Rick Presley. Also assumed is that the 

proper training and certification has been obtained. 

 

Necessary materials: Silicon wafer (at least one highly polished side), negative 

photoresist (SU-8 2000 series, MicroChem), SU-8 developer (MicroChem), 

lithography mask, acetone, isopropyl alcohol (IPA), de-ionized water (DIH2O), tongs, 

syringes (at least 5ml), glassware for developer, developer waste container, wipes. 

 

A8.1 Single layer protocol 

(1) Select silicon wafer from carrier, visually inspect for defects. 

(2) Over acetone, IPA, and DIH2O waste container and holding wafer with tongs, 

rinse wafer with acetone, IPA, and DIH2O in that order. Blow wafer dry with 

compressed nitrogen. 

(3) (Optional) Plasma treat wafer at 50% power for 4-5 minutes. Note: this tool 

requires additional training to be certified on. 
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(4) Place wafer on spin-coater chuck, test to make sure wafer is centered properly.  

(5) Using syringe, deposit negative photoresist (approximately 1 ml/inch of wafer) 

(6) Begin pre-programmed spin-coating sequence. Sequence depends on desired 

feature height as well as the resist being used. Refer to resist manufacturers 

protocol for best practice. Sample instructions for ~2𝜇m feature height using SU-

8 2002 given below: 

a. Ramp spin speed to 500 rpm/s at rate of 100 rpm/s 

b. Hold at 500 rpm/s for 5s 

c. Ramp spin speed to 3000 rpm/s at rate of 300 rpm/s 

d. Hold at 3000 rpm/s for 30s 

e. End sequence 

(7) Transfer wafer to 65°C hotplate and let stand for 1 minutes. 

(8) Transfer wafer to 95°C hotplate and let stand for 3 minutes. 

(9) Allow wafer to cool to room temperature on benchtop surface or similar. For 

thinner films, it may be beneficial to bring temperature down at controlled, slow 

rate to prevent thermal stress. 

(10) Transfer wafer to contact aligner and ensure proper contact and separation of 

wafer from photolithography mask is achieved to create best resolution possible 

in SU-8 features. 

(11) When in contact mode, expose wafer to UV light for ~8s 

(12) Transfer wafer to 65°C hotplate for 3 minutes. A trace of the desired design should 

be apparent on the wafer after ~1 minute. 

(13) Transfer wafer to 95°C hotplate for 5 minutes. 
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(14) Remove wafer from hotplates and allow to cool to room temperature. 

(15) Place wafer in glassware containing fresh SU-8 developer and gently agitate 

wafer/developer for ~2 minutes. Enough developer to cover the silicon wafer in 

1-2 inches of liquid is generally all that is needed. 

(16) Remove wafer and rinse with IPA followed by DIH2O. If white residue forms 

after the application of the IPA this is an indicator that further development time 

is needed. The wafer can be returned to the developer for additional time such that 

the residue disappears. Rinse again with IPA and DIH2O. 

(17) Blow dry with compressed nitrogen and view under microscope to verify design 

meets requirements. 

(18) (Optional) Hard bake the final product on a 120-150°C hotplate for 20-30 minutes 

to create more permanent features. 

 

A8.2 Multi-Layer Protocol 

 The protocol for the multi-layer case follows the same steps as above but is 

repeated to stack differing feature heights to generate the desired design. As such, each 

set of bake times, exposure times, and development times will vary per design needs. 

Additionally, it is critical that alignment marks are created for each photolithography 

mask so that all features align properly. Below is a truncated protocol for a two-layer 

design with ~2𝜇m features connected to ~40𝜇m features. 

 

(1) Complete steps 1-18 above to generate the 2𝜇m features and necessary alignment 

markers. 
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(2) Pre-treatment of wafer with plasma cleaner for second layer is generally 

unnecessary and can prove damaging to the SU-8 features already in place. 

(3) Place wafer on the spin-coater and adjust ramp rates as necessary for feature 

height. For 40𝜇m features using SU-8 2025, the same ramp rates and from the 

previous description are suitable. Ensure wafer is centered. 

(4) Load syringe with 3ml of SU-8 2025 and carefully deposit the resist around the 

alignment markers making sure not to cover alignment markers. 

Note: Covering of alignment markers will result in the inability to align 

to the markers when using the contact aligner due to the similar indices 

of refraction. Other techniques using a positive resist for alignment 

markers have been suggested to solve this problem in the literature due 

to its deep red color, however, we haven’t achieved success using this 

method. 

(5) Pre-bake the wafer at 65°C and 95°C for 3 minutes and 5 minutes respectively. 

(6) Ensuring proper alignment in the contact aligner utilizing second layer mask, 

expose wafer for ~9.5s 

(7) Post-exposure bake wafer at 65°C and 95°C for 5 minutes and 8 minutes 

respectively. 

(8) Develop wafer in SU-8 developer for ~3.5 minutes. 

(9) Rinse with IPA, DIH2O, and blow dry with compressed nitrogen as usual. 

(10) Hard bake finished wafer at 120-150°C for 20-30 minutes. 
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A9 Troubleshooting 

Due to the uniqueness of each designs needs and variability in the 

photolithography equipment and even daily weather conditions, these protocols serve 

only as a starting point. In general, the most sensitive parameters to the successful 

generation of the SU-8 master are the pre-bake, exposure, and post-exposure bake times 

and are good places to start when adjusting a protocol. A table of common problems 

and causes in master generation and potential fixes is given below. 

 

Problem Possible Cause Fix 

Poor feature 

resolution 

Under/overexposure of 

SU-8 features in contact 

aligner 

Adjust exposure time in small 

increments around initial time 

 

Overdeveloped in SU-8 

developer 

Lower development time 

 

Poor contact of wafer to 

photolithography mask 

Ensure tighter contact in contact 

aligner 

  

Use edge-bead removal 

techniques to remove edge-bead 

Poor adhesion of 

features to wafer 

Unclean wafer surface 

before spin-coating 

Clean surface thoroughly with 

acetone, IPA, and DIH2O 
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Use plasma cleaner or increase 

plasma cleaning time before SU-8 

deposit 

 

Pre-bake times 

insufficient 

Increase pre-bake time at both 

temperatures by 1-2 minutes 

Rounding of 

features on wafer 

Overdevelopment in SU-8 

developer 

Reduce development time by 

small increments, avoiding 

characteristic white residue of 

underdevelopment 

Uneven coating of 

SU-8 on wafer 

after spin-coating 

Poor wetting of SU-8 

Plasma clean or increase plasma 

cleaning time of wafer 

  

Purchase a wafer pre-treatment 

solution and apply to wafer 

before SU-8 to increase wetting 

Cracked features Thermal stress 

Adjust baking times or add 

intermediate baking temperatures 

to slow the temperature ramp 

Previous exposure 

time now 

insufficient 

Bulb failure in contact 

aligner 

Use power meter to test UV 

power to ensure it is up to 

specifications. Replace if 

necessary 
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Appendix B: Cell Wire and Chemical Gradient Generation 

 It has been demonstrated previously46 that cell colonies exposed to pulses of a 

chemical stimulus (ATP) highlighted the existence of pacemaker cells and that the 

temporal order exhibited in the Ca2+ response of nearest neighbor cells to the 

pacemakers suggested communication via gap junctions. When the gap junctions were 

chemically blocked, the temporal order between pacemaker and nearest neighbors 

vanished providing evidence for the vital role gap junctions play in cell-cell 

communication. To further explore this role and better understand the spatiotemporal 

dynamics involved in Ca2+ signaling, we created a microfluidic device capable of 

aligning cells in a 1D wire as shown in Fig. B1.  

 The device is a two-layer microfluidic device that is everywhere ~40𝜇𝑚 tall 

except for a series of ~2𝜇𝑚 tall pads connecting the trapping channels to a flow 

channel where the ATP stimuli is applied to the leading cells in the wire. Trapping 

channel widths have been empirically determined to be ~15𝜇𝑚 to allow for sufficient 

room for cell attachment and viability without compromising the one-dimensionality 

of the wire.  A series of inlets and outlets allow for the direct injection of the cell 

suspension necessary for wire generation, the application of growth media and Ca2+ 

binding dye, and the application of the ATP stimuli. A pressure pump system 

(AF1/OB1, Elvesys) allows for the tight control over the spatiotemporal profile of the 

stimulus. Previous single layer designs proved incapable of generating the cell wires 

due to the limitations of the photolithography process and deformability of cells as they 

slipped past the junctions between trapping channel and flow channel.  
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Figure B1 Generation of cell wire in two-layer device. Insertion of adherent cells via 

a syringe loaded with a cell suspension allows for alignment and attachment of cells on 

glass bottom. Side channels allow for application of the Ca2+ binding dye Fluo-4 (Life 

Technologies) while subsequent fluorescent imaging allows for monitoring of calcium 

dynamics in response to stimuli. 

 

 Currently, we have demonstrated the ability to reliably insert cells into the two-

layer device, keep them viable for experimentation, apply and remove the Ca2+ binding 

dye, and apply a wide range of stimuli profiles via the pressure pump and a recently 

added flow switching device (Fluigent). Preliminary evidence shows the ability to 

stimulate the release of Ca2+ from the leading cells in the wire and some evidence 

showing propagation of a intercellular calcium wave. Further testing is required to 

confirm the existence of intercellular waves and adjust the experimental protocol to 

reliably generate such waves. Once this is achieved we can begin to explore the  
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Figure B2 Gradient formation in two-layer microfluidic device. Constant flow 

provided by two syringe pumps in conjunction with fluorescein (Sigma Aldrich) and 

growth media (Thermo Fisher) allow for demonstration of a stable chemical gradient. 

 

spatiotemporal dynamics of Ca2+ and the role of gap junction communication outlined 

at the beginning, answering questions such as: what is the natural propagation length 

of a Ca2+ wave? Is consistent stimulation and propagation achievable and, if so, what 

are these conditions? and is diffusion through gap junctions linear or non-linear? 

 Discussions with our collaborator at Purdue, Dr. Mugler, has led to another 

potentials use for the two-layer device and that is the generation of chemical gradients. 

Recent work by Dr. Mugler has predicted that large clusters of cells in a chemical 

gradient are able to sense the gradient with greater precision but that these larger 

clusters reduce mobility in collective motion106. Though unable to experimentally 

verify this with the current two-layer design, we are able to explore the gradient sensing 

ability of individual cells and how gradient strength impacts mobility, potentially 



101 

 

linking Ca2+ to such behavior. We have thus far been able to demonstrate in several 

instances the ability to create stable gradients (Fig. B2) in bare two-layer devices. 

Further work is necessary to develop consistent control of the gradient characteristics 

and the ability to implement such a system with cells in device. Such experiments 

would require high levels of stability due to the long imaging times required for 

studying cell migration. 
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Appendix C: Signal Analysis Techniques 

 

C1 Inter-Spike Interval 

As calcium spike trains are unsuitable for Fourier analysis due to their varying 

amplitudes and irregular periods, the inter-spike interval (ISI) has been used as a 

suitable substitute for determining how the period of calcium oscillation affects 

information encoding within and amongst cells in the network. To determine the ISI’s 

from a single cell’s calcium dynamics 𝑅(𝑡), we first smooth the time series 𝑅(𝑡) to 

remove outlying data points107, to obtain 𝑅𝑠(𝑡). We then find all local peaks {𝑡𝑖} in 

𝑅𝑠(𝑡) using the following criteria: a local peak must be higher than its neighboring 

valleys (local minimums) on both directions by a certain value, which we refer to as 

the sensitivity parameter; the first and last frames are excluded as peaks or valleys. 

Third, we obtain ISI’s {𝛿𝑡𝑖} from the distances of peaks {𝛿𝑡𝑖 = |𝑡𝑖+1 − 𝑡𝑖|}. Finally, to 

obtain the true ISI’s corresponding to calcium oscillations, we only keep {𝛿𝑡𝑖} that fall 

in the range of 5 seconds and 150 seconds. This final step excludes about 5% of ISI’s. 

Figure C1A and C1B provide two examples of the peak finding algorithm’s 

ability to determine peak locations for a fibroblast cell calcium profile (A) and cancer 

cell calcium profile (B). The sensitivity parameter used for all experiments and in 

Figure C1A and C1B is ¼  the standard deviation of the normalized intensity 𝜎𝐼 as 

determined empirically. Figure C1C and C1D show the algorithms diminished ability 

to determine peaks and to detect spurious peaks when the sensitivity parameter is set 

to 𝜎𝐼 and 
𝜎𝐼

8
 respectively. 
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Figure C1 Intensity peak determination for single NIH 3T3 and MDA-MB-231 cell 

profiles. (A) Labeled peaks for a NIH 3T3 cell. Sensitivity parameter set to ¼ of the 

standard deviation of the time series. (B) Labeled peaks for a MDA-MB-231 cell. 

Sensitivity parameter set to ¼ of the standard deviation of the time series. (C) and (D) 

Same MDA-MB-231 intensity profile in (B) but with sensitivity parameter set to be the 

standard deviation and 
1

8
 of the standard deviation of the time series respectively. 

 

C2 Differential Intensity and Nearest Neighbor Cross Correlation 

It has previously been demonstrated46 the effectiveness of using nearest 

neighbor cross correlation functions (𝐶𝑁𝑁) to characterize the calcium dynamics of 

collective chemosensing. 𝐶𝑁𝑁 is not only a statistical characterization of the collective 

cellular dynamics, but also may provide robust channel for cellular information 

encoding45,108,109. As a result, we can study how network architecture may affect the 
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spectrum of 𝐶𝑁𝑁. For any cell 𝑖, we represent its calcium dynamics (fluorescent 

intensity profile) as 𝑅𝑖(𝑡), and define 𝐶𝑁𝑁 as: 

𝑅̇𝑖(𝑡) =
𝑑𝑅𝑖
𝑑𝑡
(𝑡) − 〈

𝑑𝑅𝑖
𝑑𝑡
(𝑡)〉 

𝐶(𝜏)𝑖𝑗 =
1

𝜎𝑖𝜎𝑗
〈𝑅̇𝑖(𝑡)𝑅̇𝑗(𝑡 + 𝜏)〉 

𝐶𝑁𝑁𝑖,𝑗 = 𝐶(𝜏 = 0)𝑖𝑗  |𝐷𝑖𝑗 = 1 

To evaluate 
𝑑𝑅𝑖

𝑑𝑡
(𝑡), we numerically differentiate the response curve 𝑅𝑖(𝑡) using the 

five-point stencil method; 〈
𝑑𝑅𝑖

𝑑𝑡
(𝑡)〉 is the time average. Note that 𝜎𝑖

2 is the variance of 

𝑅𝑖(𝑡), which normalizes 𝐶(𝜏)𝑖𝑗 to be dimensionless. Based on Delaunay triangulation 

of the multicellular network, topological distance 𝐷 can be defined for each cell pair 

where 𝐷 = 1 for nearest neighbors. The mean nearest neighbor cross-correlation 

function 𝐶𝑁̅𝑁 is obtained by averaging 𝐶𝑁𝑁𝑖,𝑗 over all nearest neighbor pairs 𝑖, 𝑗.
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Appendix D: Standard Lab Protocols 

 

D1 Subculture Protocol 

(1) Ensure culture flask is ≥70% confluent before subculturing cells. Percentages 

lower than this risk low yield and poor pellet formation. 

(2) Pipette 7ml/15ml of 1x TrypLE Select (Thermo Fisher Scientific) into a 

25cm2/75cm2 flask respectively. In general, enough TrypLE Select should be 

used to completely cover cells in a few millimeters of liquid. 

(3) Place flask back in incubator, wait ~10 minutes for cells to detach off the 

bottom of flask. This should be visible by holding the flask up to a light 

source and seeing floating cells. If uncertain, use microscope to check 

detachment. 

(4) Transfer cell suspension to 15ml tube, labelling appropriately. 

(5) Insert cell suspension into centrifuge being careful to counterbalance 

centrifuge to ensure proper functioning and prevent damage to the instrument. 

(6) Using settings outlined by cell provider, set the rpm and time on centrifuge. 

Typical settings for centrifuge in Sun lab is 1000-1200 rpms for 5 minutes. 

(7) Pour off the supernatant and re-suspend cell pellet in fresh growth medium. 

The quantity of fresh growth medium is dependent on application specifics 

and size of pellet. 

(8) Transfer fraction of cell suspension to new flask and add appropriate growth 

media until desired final volume. Fraction of cells transferred depends on 

density of suspension from (7) and desired time to next subculturing – more 
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cells decreases time to subculture, fewer results in longer times until next 

subculture.  

 

D2 Liquid Nitrogen Storage 

(1) Turn on -80°C freezer and let reach -80°C (typically takes ~1 hour). 

(2) Complete subculture protocol listed above until (7). Pour off supernatant and 

re-suspend cells in 1.5ml of Recovery Cell Culture Freezing Medium (Thermo 

Fisher Scientific). 

(3) Transfer freezing medium cell suspension into 2ml cryovial for liquid nitrogen 

storage. Label cryovial with cell type, date, and initials. 

(4) Place vial in Mr. Frosty (Nalgene) and place in -20°C freezer for ~2-4 hours. 

(5) Transfer Mr. Frosty to -80°C freezer and store there for ~48 hours. 

(6) Transfer to liquid nitrogen tank for long term storage. 

 

D3 Liquid Nitrogen Retrieval 

(1) Prepare a shallow dish with ~2cm of lukewarm water. 

(2) Remove desired vial from liquid nitrogen tank, place in dish with lukewarm 

water for thawing. 

(3) With ~50% of vial thawed, add 500𝜇l of growth medium to contents of the 

vial and gently pipette to create cell suspension. 

(4) Continue with subculturing procedure from step (4) as normal. 

 

 


