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A situation is investigated where the air-water temperature

difference, 0, is 25°C and the friction velocity u., is

16 cm/sec. The predicted sensible heat flux at a 20 meter fetch is

about 28 mw/cm2, using model parameters estimated to be most

appropriate. Neglecting buoyancy effects, the predicted sensible flux

scales with Ou,,. The predicted temperature profile is in fair

agreement with one observed by Badgley (1966) under these conditions.

The predicted latent heat flux for this case is about 30% of the sensible

flux, although the latent flux may exceed the sensible flux if O is

less than 10° C. A prediction of the sensible heat flux in the absence

of wind, the minimum flux possible over a lead, is approximated by

0.ZZ4(i0) + O.005l5(0)2 mw/cm2.
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A NUMERICAL MODEL OF HEAT TRANSFER TO THE
ATMOSPHERE FROM AN ARCTIC LEAD

1. INTRODUCTION

As its ultimate objectives this study is aimed at providing a

means for theoretical prediction of turbulent heat flux from an Arctic

lead, a narrow break of open water in the pack tce. Under winter

conditions the surface of a lead may easily be 30°C hotter than the

overlying air. Even though only a small percentage oL the Arctic is

composed of leads, the upward heat flux must play a major role in the

heat budget of the Arctic region (Badgley, 1966).

Figure 1. 1 depicts a typical lead situation. As an idealization

one may consider a neutrally buoyant atmosphere encountering an

abrupt increase in surface temperature and vapor pressure; the lead

may be considered of infinite extent in the crosswind direction. A

numerical model treating this situation would have as its primary

objectives the prediction of profiles of the turbulent fluxes of sensible

arid latent heat at various fetches, under different wind speeds arid air-

lead temperature differences. Also of interest would be the alteration

of stress and velocity profiles, which, although induced by the heat

flux, will secondarily influence the magnitude of the flux. The

related geophysical problem promotes assumptions of small roughness

lengths (over ice, snow and water) which change little or not at all.
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Figure 1. 1. An idealized Arctic lead.
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Although some of the results may be non-dimensionalized, the lead

should be thought of as several tens of meters in width. If a numeri-

cal model can be shown to be an accurate heat flux predictor, and

surveys delineate typical lead conditions as well as the distribution of

open water and thin ice in the Arctic Basin, then the impact of leads

on the total heat exchange between the ocean and atmosphere may be

judged.

The radiative flux is not treated in this study and may be a

significant contributor to the total heat transfer. Badgley (1966)

estimates that the net upward long wave radiation may be 25% of the

sensible heat flux under winter conditions. The establishment of a

constant heat flux layer applies strictly to turbulent plus radiative

transfer, and the latter may show significant variation in the lower

one meter (Priestly, 1959), Coantic and Seguin (1971) make

theoretical estimates of the radiative heat flux divergence in the sur-

face layer over water. Results forthe lowest surface temperatures

5°C, and the lowest friction velocity, 8 cm/sec, indicate that the

variation of sensible heat flux may approach 10 percent of its surface

value in the lower two meters due to the radiative flux divergence.

However, this result is computed with a relatively small air-water

temperature difference of 5°C. The typical lead situation would have

a larger temperature difference, higher wind speed and lower surface

temperature (lower vapor pressure) and hence the percentage



variation of the sensible heat flux may be significantly less. On the

other hand, Coantic and Seguin base their calculations on absorption of

infrared solely by water vapor. Over the lead, the existence of con-

densed water droplets would further complicate the radiative transfer.

Investigations of the situation where air flow encounters an

abrupt change in surface characteristics have concentrated principally

on those involving roughness change under neutral conditions. How-

ever, some attempts have been made to predict heat flux following a

step increase in surface temperature. Assuming logarithmic profiles

for both temperature and horizontal velocity, Elliott (1958) predicts

the height of the internal boundary layer (IBL), the region where air is

subject to heating by the new surface temperature. Using conservation

of heat, the surface flux may then be calculated. The approach is

dubious because of the need to assume the profiles a priori and the

assumption that there is a flux discontinuity at the top of the IBL.

Miyake (1965) uses dimensional arguments to arrive at expressions for

the surface heat flux and height of the IBL. However, no appeal is

made to conservation of heat, and the model fails in this respect. A

review of Russian work is presented by Panchev and Donev (1971).

Few details are given, but the main predictions are the height of the

IBL and vertical temperature profiles. Results are dimensional and

reflect fetches of up to three kilometers, not particularly useful for

small scale leads. P. A. Taylor (1970) presents an eddy diffusivity
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model which is perhaps the most adequate of those found in. the litera-

ture. However, objections may be raised concerning the lower bound-

ary conditions and the heavy reliance on relationships which hold only

under conditions of horizontal homogeneity. Also some of the results

indicate instability in the solution; for instance, the shear stress atthe

top of the IBL becomes infinite after a relatively short fetch, equiva-

lent to 20 meters assuming a roughness length of 0. 02 centimeters.

Evaluation of a numerical model is hampered by a paucity of

data. In addition to the theoretical development, Miyake (1965) pre-

sents observations of wind velocity and temperature profiles from

experiments carried out over artificial ponds of 20 meters diameter

at Barrow, Alaska. Similar data of higher quality is presented by

Badgley (1966). Bau On Young et al. (1973) present wind tunnel data

which has some applicability in evaluating the model. A discussion of

the data and comparison with the author1s model will be presented in

this dissertation.

This study concentrates on a two -dimensional eddy diffusivity

model which has been developed to treat the lead situation. Since it is

difficult to conceive of a model which does not employ an eddy

diffusivity assumption to some degree, an explanation of the assump-

tion in this model is necessary. The model is aimed primarily at

producing heat flux predictions and uses the eddy diffusivity assump-

tion in a fundamental way: the heat flux is computed indirectly from a



predicted temperature gradient by assuming the form and magnitude of

an eddy transfer coefficient for heat. This type of simple model has

not yet been adequately explored, particularly with respect to the

lower boundary conditions. The current model is unique in that the

lower boundary condition on temperature enforces an equality between

molecular and turbulent heat fluxes at the top of the surface molecular

sublayer, and this crucial assumption recognizes that heat must

always be transferred at the surface solely by molecular means. The

existence of a molecular sublayer is a reasonable assumption men-

tioned by many authors; Sverdrup (1937) adequately states the case

concerning water vapor transfer from the ocean. However, the

molecular sublayer has apparently never been directly incorporated

into this type of numerical model. Use of Such a lower boundary

condition necessitates the solution of two-point boundary value prob-

lems; a computational technique is developed which allows consider-

able flexibility in imposing boundary conditions in two-dimensional

models and solves profiles with high accuracy near the surface, where

finite difference schemes may have difficulty representing rapidly

changing vertical derivatives.

Criticism of an eddy diffusivity model may center on the

assumption of a particular form of the eddy transfer coefficient for

heat, which, while well known under horizontally homogeneous condi-

tions, would probably not hold in the lead situation. Therefore, an
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investigation is made into the possible utilization of the second moment

equations in a model. Such a model would, for instances carry a con-

servative equation for heat flux, so computations of that primary

quantity would be direct.

Employed in this study is a philosophy which asserts that it is

both a virtue and an art to keep a numerical model simple when first

considering some physical process. Every model contains assurnp-

tions, such as assigned constant values, which are the subject of

sometimes heated debate. Only in very simple models is it possible

to make a systematic determination of the effects of the assumptions

on the results. Models may easily become so complex that only a few

runs are possible within allotted computer time, and it can only be

hoped that the assumptions are appropriate. Only by a thorough

understanding of a simple model will it be known in which directions

to expand, if indeed any added complexity is necessary. It is the

purpose of this study to produce the best possible two-dimensional

eddy diffusivity model to provide heat flux predictions from an Arctic

lead. To this end, a broad spectrum of basic assumptions are tested,

and heuristic discussions of relevant equations are undertaken to

provide insight into the behavior of the model.

In Chapter 2 the model equations and boundary conditions for

sensible heat transfer are set forth. In Chapter 3 solutions based on

the assumption of heat as a passive contaminant are investigated. The



effect of heat flux on stress and wind velocity are included in a full

simulation discussed in Chapter 4. The latent heat flux is dealt with

separately in Chapter 5, Chapter 6 is devoted to a detailed discussion

of the computational method employed in the eddy diffusivity model.

The possibility of using a set of first and second moment equations i

an Arctic lead model, thereby improving on the eddy diffusivity model,

is evaluated in Chapter 7. The numerical model is designed for simu-

lation of a forced convection situation; Chapter 8 deals with the special

case of windless convection. A summary of the study is found in

Chapter 9.
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2. THE MODEL: EQUATIONS AND BOUNDARY CONDITIONS

2. 1 Notation

The definitions of the most commonly used symbols are given

below. Fluctuating turbulent quantities are in lower case, and the

covariance between them is designated by an overbar. Dimensional

computations and results are in cgs units.

x downwind coordinate

z vertical ordinate

U mean horizontal velocity

W mean vertical velocity

k von Karman's constant (0.4)

u* friction velocity ("J)

K,K eddy coefficient for momentum (T/)m

Kh eddy coefficient for heat

Ke eddy coefficient for water vapor

a. the ratio K /Kh h m

a the ratio K /Ke e m

g acceleration of gravity (980 cm/sec)

roughness length

ZH roughness parameter for temperature

ZE roughness parameter for watervapor
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D thickness of the molecular sublayer

Ri gradient Richardson number

H heat flux (Ow)

L Monin-Obukhov length (-uT0/gk Ow)

V viscosity

K molecular diffusivity for heat

%4J molecular diffusivity for vapor

T stress (-uw)

dissipation of stress

q specific humidity

specific humidity at surface

specific humidity at top of the molecular sublayer

q0 specific humidity at roughness length

ambient specific humidity

o potential temperature

potential temperature at top of the molecular sublayer

potential temperature at surface

potential temperature at roughness length

ambient potential temperature

non-dimensional wind shearm

non-dimensional temperature gradient
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2.2 The Equations

The basic set consists of conservation equations for heat,

momentum, and stress, and the equation of continuity. Throughout

this dissertation, 'heat't will refer to sensible heat if no other

designation is given.

U+W(K ) (2-1)8x az az h8z

(2-2)
ax az az az

(2-3)0z az az az T0

3x 8z (Z-4)

Two additional equations, those for water vapor and condensed water

droplets, will be considered in Chapter S where latent heat flux is

investigated.

The stress Equation (2-3) is a reduced form of the moment

equation for -uw, where an eddy diffusion term has replaced the

third moment and pressure transport terms, and other terms have

been eliminated when deemed small by dimensional analysis. Mellor

(1973) discusses the reduction of the Navier-Stokes equations to sec-

ond moment equations applicable to the atmospheric surface layer.
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Tennekes and Lumley (1972) discuss how insignificant terms may be

identified and eliminated from the equations. The form of the stress

dissipation term, assumptions on the terms of (2-3) necessary to pro-

duce a closed set of equations, and results of the full-set simulation

will be discussed in Chapter 4. Solutions of the heat equation (2-1)

are of prime importance to satisfy the objective of the study and will

be considered in detail in Chapter 3.

23 Boundary Conditions

It is assumed that a neutrally stratified flow in a constant

stress layer encounters an abrupt change in surface temperature. In

the lead situation, changes in surface roughness will probably be

small; in the model it is assumed that the roughness remains constant.

The upwind boundary conditions, applied at x 0, are

o

U = (u/k) ln(z/z)
(2-5)

w=o
,2

1- (uJ

where primes indicate quantities at x < 0. After the step change in

surface temperature is encountered, the following conditions are

applied at the upper boundary
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80 and 008z A

UI

and U (ut/k) ln(zlz ) (Z-6)8z kz 0

8T Iaand T(u.)

W is determined by continuity. Only one of the dual conditions on

each quantity in (2-6) may be satisfied exactly, but the solution may be

continued in the vertical until the other is very nearly satisfied. A

reliable procedure was to force = 0 and increase the range of

vertical integration until 0_OAI " I
OB_OAI < 0.0007.

The lower boundary condition on temperature is of critical

importance. The usual approach (Elliott, 1958; Taylor, 1970) is to

assign the surface temperature at the roughness length; this appears

to be an error brought about by adapting a roughness-change model to

treat the temperature-change problem and failing to recognize the

inherent difference between the manners in which heat and momentum

are transferred at a rough surface. Very near the surface, momentum

transfer may be achieved primarily by pressure fluctuations acting on

roughness elements. Although it is merely an asymptotic approxima-

tion, the mean wind velocity may indeed become zero above the stir-

face. No mean velocity gradient is necessary at the surface since

momentum transfer may have virtually no molecular component.

However, for a heat flux to exist, there must be a mean temperature
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gradient at the surface; heat is transferred solely by molecular means

at the surface. The existence of a thin surface sublayer, through

which heat is transferred primarily by molecular means, is not in

doubt; only the thickness of such a layer is open to debate. In reality,

there will also be a transition layer with a blending of molecular and

turbulent transfer. The model, however, is two-layered with no

transition layer; consequently, the thickness of the molecular sublayer,

D, is an effective thickness which might be determined from a tern-

perature profile in the turbulent layer. One estimate of D may be

obtained from laboratory data for flow over a flat plate; in such a

case it has been found that momentum is transferred through a surface

layer of thickness llv/u* by purely molecular means, assuming an

abrupt transition from viscous to turbulent flow (Tennekes and Lurnley,

197Z, p. 160). It will be a basic assumption in this study that the

thickness of the molecular layer for heat will also be 11v/u,, even

on slightly rough surfaces such as water. If similarity between

molecular transfer of heat and momentum over a flat plate is accepted,

the sublayer thickness for heat should be increased by a factor of the

Prandtl number (v/K) to the -1/3 power (Schlichting, 1960, p. 323).

The Prandtl number for air is about 0. 72, 50 the molecular layer for

heat might be taken 11 percent thicker than that for momentum. Like-

wise, considering the Schmidt number (v/i.).i), the molecular layer

for vapor might be taken 18 percent thicker. It will be demonstrated
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in Section 3. 2 that such adjustments in D would change the

predicted fluxes by less than five percent. The difficulty in

empirically determining D is that temperature gradients, unlike

velocity gradients, are not usually large in the near-surface turbulent

layer. In Chapter 3 other values of D will be discussed as well as

the type of data needed to refine the estimate. The assumption of a

molecular sublayer of thickness D implies a maximum possible

heat flux for a given temperature step and friction velocity, regard-

less of the transfer properties in the turbulent layer. Specification of

the temperature at the top of the molecular sublayer is tantamount to

specification of the surface heat flux. In order to support a moderate

heat flux, the temperature change across the molecular sublayer may

easily be 40 percent of the total change from the surface to the ambient.

This temperature change must not be ignored since the equations of the

model describe turbulent flow and hence react to the temperature at

the lower edge of the turbulent layer; the lower edge of the turbulent

layer is the top of the molecular sublayer, not the surface.

The proper lower boundary condition on temperature is a state-

ment of equality between the molecular and turbulent heat fluxes at the

top of the molecular sublayer. The condition is imposed at the

greater of z0 or D, since the equations are applicable to the

turbulent layer. Figure 2. 1 illustrates typical temperature profiles
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8(z) TURBULENT LAYER

MOLECULAR
LAYER
7///////////////////////////////1 /1/1/11/

(a)

TURBULENT LAYER

\ 8(z)

I CONSTANT HEAT
FLUX LAYER

O

I MOLECULAR
* LAYER D

(b)

Figure 2. 1. Idealized temperature profiles resulting from the
imposition of a molecular layer. (a) z0 < D.
(b)z0>D.
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for cases < D and z0 > D. The following conditions are

imposed at the lower boundary where unsubscripted variables are

evaluated at or D (whichever is greater).

where

ae
(DKh/K) for z0 D

e0
(m+l)(DKh/K) eB for z0>D

m = (K/ukDh) ln(z0/D) (2-7)

U

U ln(z/z0)

3 /2
1. 1(1-

T + ; = 0
z kz T

The condition on U requires that the velocity is unchanged from the

upwind value; this is obviously true if applied at z0 and approxi-

mately true if applied at ii The condition on T arises from the

stress conservation equation applied at the surface and is discussed

further in Chapter 4. W 0 at the lower boundary.

The introduction of the relevant length scale V /u, which

contains the velocity scale u, renders impossible a profitable

non-dimensionalization of the complete problem. However, non-

dimensiona.lization is useful in cases where heat is treated as a passive

contaminant.



2. 4 Computational Method

Details of the numerical scheme are presented in Chapter 6.

Basically, finite, differences are taken in the x-direction to reduce the

Equations (2-1), (2-2), and (2-3) to second order equations of a linear

form, and these are solved in the vertical using a highly accurate

seventh order predictor-corrector. Progressive steps are taken in

the downwind direction, using the previously computed profile to form

x-derivatives. This method has distinct advantages over some other

techniques.

(a) Accurate profiles are obtained very near the surface where

second derivatives of temperature are expected to be large.

Although the lower boundary condition on temperature could

be enforced with a finite difference grid, the lowest deriva-

tive of temperature could be quite inaccurate.

(b) The step-by-step method in the x-direction eliminates the

need for the storage of a large finite difference grid.

(c) The solution may be continued for any desired fetch.

Boundary conditions may be changed at any step.

(d) Boundary conditions are easily implemented and very flex-

ible. They may consist of specifying a value of the variable,

its vertical derivative, or a linear combination of the two.

(e) There is rio need to assume profile shapes near the surface,

as is done by Taylor (1970).
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3. HEAT AS A PASSIVE CONTAMINANT

Treating heat as a passive contaminant is desirable for several

reasons. First, there are a minimum of complicating and contro-

versial assumptions which may obscure the essential strength or

weakness of the eddy diffusivity model and the numerical technique.

Second, the results may be used as a baseline for comparison with

more complicated formulations, those including stress and velocity

changes. Last, and quite
important2

a non-dimensionalization is pos-

sible which allows the solution to hold for any temperature step and

friction velocity with a given roughness length. Therefore, an exten-

sive investigation is made into the passive contaminant case

Equation (2-1) is the only equation entering the solution, and is

constant. Non-dimensionalization is performed with length scale

v/uS,, velocity scale u), and temperature scale 0B 0A
A

tilde denotes quantities transformed by the non-dimensionalization.

= U/u

= zu,/v (3-1)

= (e_OA)/(eB_eA)

Since the roughness length must be expressed in terms of V

each z0 constitutes a separate case. The appearance of two ele-

mental length scales restricts the generality of the solution. Although
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this study is concerned with an abrupt increase in surface temperature,

the non-dimensional results hold equally well for a sudden decrease in

surface temperature. The general method employed here can be

readily adapted for the treatment of water vapor, which must also

pass through a molecular layer and might be considered a passive

contaminant in a forced convection situation.

3.JA Basic Solution Over a Flat Plate

It is attractive to first consider the problem over a flat plate

since there is data on the molecular layer thickness. Laboratory data

(Tennekes and Lumley, 1972) indicate a velocity profile over a flat

plate, assuming an abrupt change from viscous to turbulent flow.

- -Uz, z<ll
(3-2)

UZ,5ln'+5, _.l1

If the simplicity of the two-layer model is accepted, there is a layer

of thickness llv/u* on the surface where strong viscous forces

inhibit turbulent motion. If turbulence is negligible, then heat, like

momentum, must be transferred through the layer by molecular

means. Thus, over a flat plate, the estimate D = 11 may be

accepted with some confidence. In this case it will also be assumed

that
0h From (3-2) it is seen that e. The downwind

step was taken to be 4000 after tests showed 1000 was
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not significantly more accurate.

After solution, a return to ordinary dimensional values may be

obtained as shown in (3-3) The Richardson number is computed but

is not allowed to influence ah in this passive contaminant case.

where

and

U U

0 +
0A (33)

H H.u(OBOA)

Ri Ri.(g/T0)*(0e)v/u

'd

H -K
n az

'- ae 8U2Ri 8z az

Subject to the transformations in (3-3), Figures 3. 1, 3.2 and 3.3 give

profiles of temperature. heat flux and gradient Richardson number at

fetches of 2x 4 x 10, 1 x 10, 2 x 1O, 3 x l0 and 4x l0.

For a friction velocity of 30 cm/Sec these fetches would be about

1, 2, 5, 10, 15 and 20 meters. As an example, suppose

u = 30 cm/sec and the temperature step is 20 centigrade degrees.

Then referring to Figure 3.2. the surface heat flux at a fetch of five

meters, -K , would have a numerical value ofh az

0.049 x 20 x 30 = 29 which converts by a factor of 1.3 to

38 milliwatts cm
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Figure 3.1. Temperature profiles at fetches of 0.2, 0.4, 1.0, 2.0, 3.0, and
4. 0 , (temperature increasing with fetch). Flat plate.
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Figure 3.2. Heat flux profiles at fetches of = 0.2, 0.4, 1.0, 2.0, 3.0, and
4. 0 x 10 (surface flux decreasing with fetch). Flat plate.
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Figure 3.3. Gradient Richardson number profiles at fetches of = 0.2, 0.4, 1.0,
2. 0, 3. 0, and 4. 0 x (Ri decreasing with fetch). Flat plate.
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p.- 5Although not indicated in the figures, at x 4 x 10 it was

assumed that the surface temperature returns to its original value,

and the run was continued to 5 x 10g. Results show that less than

15 percent of the heat which had entered the air would return to the

surface, and this would undoubtedly be lessif buoyancy effects were

considered.

Bau On Young et al. (1973) have performed wind tunnel experi-

ments to study transfer processes from both a flat plate and a free

water surface. Because this data is not geophysical, caution must be

exercised in comparison with model results. For instance, in the

wind tunnel, the measured -uw decreases rapidly with height,

reaching zero at 1800 on a fetch of 80, 000. This is in

sharp contrast to the model which assumes a constant stress layerof

unspecified depth. In any case, some basic model assumptions seem

to be verified by the data for flat plate heat transfer. First, the law-

of-the-wall velocity profile (3-2) holds below 1000. Second, the

temperature profile behaves as though there is a surface molecular

layer, although the thickness is about 16 v/u (see Appendix 13).

This increased thickness is not explained fully by the dependence

on Prandtl number. Third, is near unity in the lower 113L.

Fourth, the surface stress seems unaffected by heating and remains

constant with fetch. At a fetch of ' 80, 000, the measured non-

dimensional heat flux is 0. 040 versus a model prediction of 0. 042,
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using ah 1, D 16. The wind tunnel data will be discussed further

with respect to heat and vapor transfer over water surfaces.

3.2 Dependence of the Results on Model Parameters

In treating heat as a passive contaminant, the model contains

three parameters, ah, and , whose values may affect the

results. Figures 3.1, 3.2 and 3.3 give results of a single case, and

such graphs could be generated for any case desired. In order to gain

insight into how the parameters affect the surface heat flux predictions,

a wide range of cases were considered to a moderate fetch of

80, 000. The results are found in Tables 3. 1, 3.2 and 3.3 and

indicate a surprisingly small sensitivity of heat flux to the basic

parameters of the model.

Table 3.1. Surface H at x 80, 000 as a
function of

ZO
°h 1, D 11

(.14) .04964

4.28 .04678
1.1. .04580

100. .04303

Table 3. 1 shows surface H as a function of roughness, where
-Z

e corresponds to a flat plate. There is a slight rise in H

as roughness decreases, but in the lead situation will generally
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lie in the range 1 to 20, making the variation of H with

negligible.

Table 3.2 shows the surface H as a function of ah.

Considerable change is possible in H by increasing Uh increas-

ing the efficiency of turbulent heat transfer relative to momentum

transfer. However, the largest values of ah in the table appear to

be physically improbable. Observations of under near-neutral

stratification lie in the range 1 to 1.35 (Businger et al., 1971).

Table 3.2. Surface H at x 80, 000 as a
function of ah.

cLh e , D 11

1 .04960
1.5 .05953
2. .06715
3. .07662
4. .08312

p..
Table 3.3 gives surface H as a function of D. It is clear

that a very thick molecular layer should result in smaller heat flux,

but it is seen that a very thin layer will also result in a smaller flux.

The maximum heat flux occurs for D such that Kh(D) ', that

is, for D 3.28 when ah I and D 1.64 when ah = 2.

Stated in simple terms, the heat flux will be largest when the largest

available transfer coefficient is utilized. If D becomes very small,



Kh as formulated in this model will actually be less than K, and

a reduced heat flux will result. This behavior for small ID is

purely an artifact of the model formulation and would be at variance

with the physical situation. However, the reasonable estimates for

ID are well above these critically small values. In a two-layered

model, assuming an abrupt change from molecular to turbulent

transfer, the molecular layer must be chosen large enough to encom-

pass part of a transition layer. The choice of D 11 was based on

the thickness of a viscous layer necessary for the two-layered repe-

sentat ion of the velocity profile over a flat plate. There appears to

be no compelling reason at this time to choose a smaller value for D.

Table
p..3.3. Surface H at x 80, 000 as a function of ID,

H H H

ID
-2 i-'

z0 e , ah I 11, 'h 11, 2

40 .02570 .02443 --
20 .03933 .03689 .04587
11 .04964 .04560 .06335

8 .05358 .04880 .07211
5 .05686 .05162 .08169

3.28 .05768 .05258 --
2 .05684 .05159 .09029

1.64 -- -- .09015
0.5 .04620 .08546

From Table 3. 1, H varies little with however, the height.

of the IBL increases significantly as increases. Figure 3.4

shows the isotherm 0.001 as a function of fetch for a wide range
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of
'

assuming ah 1 and 11. In a qualitative sense,

Figure 3.4 indicates how much Figures 3. 1, 3.2, and 3.3 should be

stretched in the vertical to fit a rough case. The approximate 4/5

power law for IBL growth, which is mentioned by Elliott (1958), is

confirmed here. Assigning an approximate slope to IBL growth

depends on how the top of the-IBL is defined, the roughness length,

and the downwind distance involved. Considering flow over water for a

fetch of tens of meters, the slope of the = 0.001 isotherm is about

1/10, and the slope of the 0 0.01 isotherm is about 1/20.

3. 3 The Badgley Data and Heat Flux Estimates

It is possible to calculate the average heat flux over a lead from

the profiles of temperature and velocity at the upwind and downwind

edges. Letting h be the height of the IBL at the end of a fetch of

length f, conservation of heat implies

$h(o+e)(UU)d
+ S OAW(h)dx S

8Udz = 5H(x, 0)dx

(3-4)

where 0 and U are changes over the lead from the ambient

0A and UA. The second integral on the left may be rewritten using

continuity,

S0WOAdX = (3-5)
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Figure 3.4.The isotherm' 0.001 for surface roughness'0 = e, 4.Z8, 11
arid 100 (IBL height increasing with0).
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(Thf

H(x,O)dx O(TJ+tU)dz (3-6)
0 0

Equation (3-6) provides a means of computing the total heat flux at the

surface of the lead by knowing the temperature increase and velocity

at all levels. In reality data will be taken at distinct levels, but the

data points could reasonably be connected with logarithmic arcs,

making possible a piecewise, closed integration of the right side of

(3-6). Such a method of heat flux estimation will be termed the flow

method.

Badgley (1966) reported measurements of temperature and

velocity profiles at the downwind edge of a ZO meter artificial pond at

Barrow, Alaska; the data is presented in Table 3.4. The integral of

heat flux (3-6) was computed piecewise as described above; the results

in Table 3 5 are presented for each level in order to emphasize that

significant portions of the calculated flux are accounted for in the

higher levels where temperature changes are slight. The temperature

profile should be accurate to 0. 01°C to obtain accurate flux estimates.

If, for instance, 0. 10G is subtracted from each non-zero 9 in

Table 3.4, the calculated heat flux will drop 15%. Thus, any bias

between the upwind and downwind sensors could substantially alter the

results. Despite its potential inaccuracy, the flow method is attrac-

tive because it provides an average heat flux over the lead and does not
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Table 3.4. Badgley data at 20 meter fetch.

Height
cm

0A

0 -26.5 24.8 0

5 -27.0 5.6 160
10 -27,2 3.8 195
20 -27.2 2.1 215

40 -27.2 1.6 230
60 -27.2 1.3 250
80 -27.2 0.9 265

100 -27.2 0.7 275

150 -27.2 0.5 290
200 -27.2 0.3 320
300 -27.2 0.2 360
400 -27.2 0,0 390

Table 3.5. Integral (3-6) computed between each level
assuming logarithmic profiles between
Badgley's data points.

Level Excess Heat Flow
(cm) (milliwatts)

0- 5 5754
5- 10 5330

10- 20 7608
20- 40 10561
40- 60 8997
60- 80 7297
80-100 5589

100-150 10897
150-200 7821
200-300 10901
300-400 4585

0-400 85344
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rely on assumptions concerning ah D or ZH The average heat

flux computed from Badgley's data is 42. 7 mw/cm2 over the 20 meter

fetch.

Badgley, using the Uaérodynamic method, estimates a heat flux

at 20 meters of 29. 1 mw/cm2 (18.2 Kcal/cm2 per month). This

estimate seems consistent with that from the flow method, reflecting

a drop of heat flux with fetch. However, for the purpose of computing

the heat flux, Badgley assumes z0 ZH taken as 0. 02 cm over

water. Under the conditions of the Badgley experiment this would set

ZH to about 2 v/u,, a value which is in direct conflict with the

supposition of a molecular sublayer for heat (see Section 3.5).

3. 4 Temperature Profiles Gene ratejy the Model under
Conditions of the Badgley Experiment

Badgley's (1966) experimental data, consisting of temperature

and velocity profiles at a 20 meter fetch over an artificial pond, are

the best available. The ambient air is at -27. 2°C while the water is

at -1. 7°C. The wind profile shown in Figure 3.5 is well approximated

below 1.5 meters by a logarithmic expression with u. 16 cm/sec

and 0. 096 cm (in this case about equal to 11 V /uJ. The

above values define eA 0B' u and which will be used to form

the initial and boundary conditions in the model for any dimensional

case which seeks to simulate the Badgley experiment. Above
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Figure 3. 5. The Badgley wind data and the log-profile used for the model
initial condition.
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1, 5 meters the wind data deviates from the log-profile so as to

indicate stable stratification. For simplicity this deviation was not

incorporated into the model initial conditions, since it was above the

region of most radical change in the TEL. It is commonly accepted

that z0 over water is about 0. 023 cm (Kondo et aL, 1973); thus it

is possible that the Badgley wind profile at 20 meters reflects a larger

upwind roughness or the effect of stability.

Figure 3. 6 presents the Badgley temperature profile at 20

meters and results of the model using ah 1 and 0h
2 and two

different lower boundary conditions. Condition 1, the lower condition

advocated in this paper, enforces an equality between molecular and

turbulent heat fluxes at the top of the molecular sublayer. Condition 2

sets the temperature at the roughness length to the surface tempera-

ture (Taylor, 1970). The surface heat fluxes corresponding to Figure

3.6 are given in Table 3.6 and are generally 10 to 15 percent lower

than the average over the lead. Condition 1 imposes a theoretical

maximum on the flux, about 65 mw/cm2 in the Badgley case, so the

rise in flux is less dramatic than for Condition 2 as ah increases.

There are two reasons for preferring Condition 1 over Condition 2.

First, for this one temperature profile, Condition 1 produces a much

better fit, especially at low levels. The turbulent layer under Condi-

tion 1 senses, not the surface temperature, but a temperature sub-

stantially reduced by a molecular layer. The second reason for
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Figure 3. 6. The Badgley temperature data and model results
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preferring Condition 1 is found in the behavior of the temperature

profile with increasing Uh It is a reasonable expectation that higher

surface heat flux will be coincident with colder air adjacent to a warm

surface, under any given boundary condition. Whereas heat flux

increases with ah under both Conditions 1 and 2, only under Condi-

tion 1 is this increase accompanied by a colder air adjacent to the

surface. In fact, under Condition 2 the behavior of the temperature

profile is opposite to expectation, showing increased air temperature

at all levels with increased heat flux. Therefore, use of Condition 2

produces a model inconsistent with the concept of a surface molecular

layer. Even if the assumed z0 is reduced so that the model under

Condition 2 would fit the data in Figure 3. 6 this inconsistency would

remain. Furthermore, in Section 3. 5 it is shown that ZH should

scale with v/U, in contrast to z0 which is approximately inde-

pendent of u.

Table 3. 6. Surface heat fluxes corresponding to
Figure 3.6.

Condition ah uc (mw/cm2)

1 1 22.1
1 2 31.5
2 1 33.6
2 2 61.7



In view of the relatively good fit of the temperature data when

treating heat as a passive contaminant, it may be possible to obtain

reliable heat flux estimates by refining the estimate of D and

choosing a suitable constant value of ah. In reality, °h is a func-

tion of Ri and hence z (Bus inger et al., 1971). It may be that

this dependence could explain why the model predicts higher tempera-

tures at low levels and lower temperatures at high levels as compared

to the data in Figure 3. 6.

3. 5 A Relation between D, ZH and ah

In a two-layer model with molecular layer of thickness ID,

there will be a relation between D and the roughness parameter of

the variable under consideration, temperature or velocity. In the

case of temperature, the relation will also include ah. A constant

flux layer will exist near the surface where a logarithmic temperature

profile is expected to hold just above the molecular layer.

ê(z) 0(D) H in (z/D) (3-7)
ahuk

Defining ZH such that O(z) 0B
leads to

ZH D exp(ahvk/K) (3-8)

The corresponding expression for momentum over a flat plate is



39

= D exp (-kD) (3-9)

-2Data has shown that = e so that D 11 for a two-layer

momentum model. In the case of temperature, (3-8) implies a locus

of (ah,D) for a single value of 'H Figure 3.7 displays such loci

over a wide range of this figure provides a ready reference

once ZH are experimentally determined and also some indication of

the magnitude of to be expected. For example, if the two-layer

temperature model is essentially correct and ah is greater than

unity, then it is seen that will not exceed 1. 1. Accurate deter-

mination of would require a large vertical gradient in tempera-

ture, a situation likely to occur only following an abrupt and

substantial change in surface temperature.

If is determined from a low level temperature profile and

an independent measurement of heat flux, Ow, is made, then ah

and D will be determined. The procedure will be illustrated here

using the lowest data points of the Badgley profile (Table 3.4). For

illustrative purposes, the Badgley heat flux estimate of 29. 1 mw/cm2

is adopted as though it were an independent measurement of Ow, and

the friction velocity is taken as 16 cm/sec based on the Badgley

velocity profile, The temperature profile in the turbulent layer is

written

0(z) -1.7 + A ln(z/zH) (3-10)
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A = H/ahku)

and A may be determined by any two points.
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(3-li)

A = (0(z1)-O(z2))/ln(z1/z2) (3-12)

The temperature roughness parameter is then determined.

ZH z1 exp(-(0(z1)+1.7)/A) (3-13)

Results of calculations using (3-8), (3-11), (3-12) and (3-13) are pre-

sented in Table 3. 7.

Table 3.7. Triads of 'H' D and ah based on the
Badgley experiment.

(cm) A ZH °h
D

5,10 -2.597 .268 1.35 8.38
5,20 -2.525 .216 1.38 8.80

10,20 -.453 .164 1.42 9.36

A pairwise determination was made in order to point out the

difficulty in calculating
H

accurately, even though the temperature

gradient is large and the lower points are virtually along the same

logarithmic arc (see Figure 3,6). The values of
0,h

are close to

those found by Businger et al. (1971) while the corresponding D are

somewhat smaller than the value for momentum. When using a
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particular set of (ah,D) in the numerical model, the only result

which is guaranteed is that will be maintained according to (3-8),

However, using ah 1.38 and D = 8. 8 in the model gave a heat

flux of 28. 2 mw/cm2 at 20 meters fetch. In other words, the model

predicted a heat flux very close to the one assumed in order to deter-

mine 'h and ID, This internal consistency in the theory spurs the

hope that a pair of and may be found which will allow the

model to accurately predict heat flux in the lead situation.

The above analysis assumed the Badgley flux estimate was

independent in order to illustrate a procedure to be used when more

data is gathered. A more straight forward approach might be to

accept
h

= 1.35 based on Businger et al. (1971). The temperature

profile would then imply a flux of about 29 mw/cm2; (3-8) will collapse

to a simple relation between ID and and ID will be esti-

mated at about 9. At this point, however, revision of the value of ID

is unwarranted because of the little data available. From Table 3.3

it is seen that changing ID from 11 to 9 in the model would increase

the predicted heat flux less than 5%.

Wind tunnel data (Bau On Young, 1973) over a free water surface

exhibit major differences from those taken over a flat plate (see

Appendix B), The measured value of ah is about 2, and the tem-

perature profilesindicate that the molecular layer has a thickness of

about 6 V/u*. In fact, the temperature profiles do not in all cases
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agree with the concept of a molecular sublayer. However, over a

water surface, profiles might be distorted by latent heat release or a

divergence of the radiative flux. Non-dimensional heat fluxes meas-

ured in the wind tunnel average 0. 079, whereas the model with

Z and D 6 yields H = 0. 078, There is some increase in

surface stress with fetch, but it is not clear whether this is due to

increased surface roughness or buoyancy effects. Ultimately, the

success of the eddy diffusivity model as a predictor rests in establish-

ing universal values of the basic model parameters, ah and ID.

Experimental data is needed to show if indeed one set of these param-

eters is always applicable to a given situation.

3.6. The Independence of z0 and ZH on Slightly Rough Surfaces

Some models (Elliott, 1958; Taylor, 1970) have used a lower

boundary condition equivalent to asserting that z0 and are

identical. On the other hand, it has been a basic tenet of this study

that the near-surface transfer processes for heat and momentum are

dissimilar, and thus there is no foundation for asserting a relation

between the roughness parameters. Arguments in favor of the latter

proposition, as well as comparative model results, have been pre-

sented. However, since the issue is of such importance, additional

data will be examined. Recently Garratt and Hicks (1973) have sum-

marized a large number of simultaneous z0 and measurements
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which indicate that the roughness parameters are not only unequal but

probably independent for Re(uz0/v) less than about 50. This

range of Re would include most atmospheric flows over water

Garratt and Hicks point out that if one assumes additivity of the

molecular and eddy diffusivities,

then

Kh ahukz + K (3-14)

= K/cLhUk (3-15)

Before concluding that this is a reasonable estimate, it should be noted

that the corresponding result for momentum is

v/uk (3-16)

Expression (3-16) is derived by assuming that molecular viscosity

becomes the dominant mechanism for momentum transfer at the sur-

face; such a circumstance would seem to imply the modeling of flow

over a flat plate. However, the roughness length for a flat plate is at

least an order of magnitude smaller than that given in expression

(3-16), and therefore, one might suspect also that (3-15) would sub-

stantially overestimate the magnitude of Indeed, based on the

Badgley data, Table 3. 7, this seems to be the case.
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Figure 3. 8 is an adaptation of Figure 2 of Garratt and Hicks,

showing the bands encompassing data gathered from numerous sources.

Also shown is the line which results from (3-15). Atmospheric flows

over water will have Re < 50, where Re and ln(zO/zH)

maintain a single valued relation, However, this relation by no means

implies that there is a relation between z0 and ZH.

It might generally be assumed that ZH scales with the length

scale V/U*. So,

ZH = Cv/u, (3-17)

where C is some constant. Dividing both sides of (3-17) by z0

and taking logarithms,

ln(zo/zH) ln(1O) .log10(Re) - ln(C) (3-18)

No relation between and ZH is implied. Plotted on Figure

3.8, (3-18) will be a line with (linear) slope of ln(1O). Thus, the

assumption that is independent of z0 and inversely propor-

tional to u will result in a family of parallel lines, of which line

(a) in Figure 3. 8 is just one. Because the general data trend follows

the same slope, the assumptions on ZH may be deemed correct.

The constant of proportionality C in (3-18) will control the ordinate

of the line, and the value C 3.3 from (3-15) could be reduced to

C 1 while still producing a line within the data band. However, use
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Figure 3.8. Bands encompassing data from simultaneous z0 and zH

measurements. Line (a) expresses (3-15) with = 1.
Adapted from Garratt and Hicks (1973). Points b, c, d
and e are computed by the present author based on the
data of Bau On Young (1973) and Badgley (1966).
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of C Z 0. 2 indicated by the Badgley data, Table 3. 7, is not supported

by the data compiled by Garratt and Hicks.

Additional points in Figure 3. 8 have been calculated by the

present author from the available data which was taken following an

abrupt increase in surface temperature. Points b, c and d are based

on the wind tunnel data of Bau On Young et al. for a flat plate (b) and

free water surfaces with friction velocities of 18.2 cm/sec (c) and

36. 5 cm/sec (d). The point e is based on Badgley's data over an

artificial lead. The dashed line is parallel to line (a) and indicates

independence of z0 and ZH

There seems to be a conflict between the newly computed points

and the previous data. It should be recognized that the data compiled

by Garratt and Hicks were taken under conditions approaching hori-

zontal homogeneity; the largest temperature gradients resulted from

changes of only two degrees between the surface and 10 meters height.

The difficulty in determining ZH even with a large near-surface

gradient has been demonstrated in Table 3.7. The very width of the

data band in Figure 3. 8 attests to this difficulty, reflecting a factor of

seven in the determination of ZH A question remains as to why the

estimates of ZH indicated by the data band are systematically higher

than those based on the temperature-change experiments.



4. CHANGES IN STRESS AND ALTERATION OF
THE WIND PROFILE

4. 1 The Stress Conservation Equation

Development of a method for modeling stress and velocity

changes seems particularly difficult, principally because the appear-

ance of a stress dissipation term in Equation (2-3) which is unknown

in terms of mean quantities. B efore proceeding, it is well to imagine

the type of stress and velocity profiles which may result over a lead.

Assuming a constant stress layer with a logarithmic wind profile

initially and no change in surface roughness, it is clear that there will

be increases in stress near the surface. There would be two simple

stress profiles possible; the first would be monotonically decreasing

from the surface to the top of the IBL, while the second would have a

maximum at an intermediate level. Convective plumes would tend to

overturn the flow in the IEL, bringing higher velocities to low levels

and lower velocities to high levels. This type of velocity redistribu-

tion would be consistent with a stress profile having an intermediate

maximum. Figure 3.5 presents the wind data from Badgley's experi-

ment with the logarithmic profile assumed in the model for initial

conditions. An S-shaped alteration of the wind profile may be iridi-

cated, but, since no initial profile is given by Badgley, no direct

comparisons are possible between the data and model results. Ignored
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in this study is the possibility that a roughness change may contribute

to the velocity changes. It is likely that roughness would decrease

from ice to open water, although the change is expected to be small

for Badgley's data.

Taylor (1970) presents numerical solutions of the horizontal

momentum, heat and continuity equations for a case considering only a

surface temperature change. In Taylors method, stress is computed

indirectly using universal relationships holding under conditions of

horizontal homogeneity. The resulting stress profiles appear unstable

near the top of the IBL and wind velocity shows increases at all levels,

Although it is difficult to avoid the assumption of horizontal homo-

geneity completely, for instance in choosing an empirically determined

constant, it is probably unwise to make it a cornerstone of the theory,

since the situation being studied is distinctly inhomogeneous. The

inclusion of a stress conservation equation seems advisable.

Peterson (1969) transformed the turbulent energy equation to a

stress equation by using the empirical relation that stress is approxi-

mately 0, 16 of turbulent energy in the boundary layer. Although

Peterson was concerned with a roughness change only, a buoyancy

production term could be added giving Equation (4-1).

U+W=C T-E Ow (4-1)
az 1 az 8z az 2T0
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with C1 = C2 0.16 and E /kz. Before any judgement is

made on the appropriate values of the constants C1 and C2, it is

interesting to look at the reduced moment equation (2-3). The

mechanical production term will be rewritten using w2 -1. 1 uw

(Lumley and Panofsky, 1964), although some recent data (Haugen

et al., 1971) suggest that w2 -1.7 uw. Monin and Yaglom (1972,

p., 667) point out that the eddy viscosity tensor K.. has significant

off diagonal terms and so

where

0u-K -K (4-2)
xzaz

K /K z3
xz zz

K K =K
XX zz m

This author has verified that the second term on the right of (4-2) will

be negligible compared to the first in the Badgley lead situation. Thus

Equation (2-3) may be written as (4-1) with C1 = 1. 1 and C2 3;

presumably under neutral, homogeneous conditions E C1T'/kZ.

The moment equation therefore would have production and dissipation

terms an order of magnitude larger than those in the equation derived

by Peterson. The difficulty in adapting the turbulent energy equation

as a stress equation lies in ascribing rates of production in the same

ratio as the quantities themselves. Two reservoirs may have storage
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in a fixed ratio but that implies nothing about the flows in and out of

them.

There is additional support for using the higher values of C1

and C2 in that the observed non-dimensional wind shear for small

zIL may be derived from the reduced moment equation. In near

neutral conditions with E = C1T/kz and taking a constant flux

layer, Equation (4-i) reduces to

which becomes

3

+ C2 Ow = 0 (4-3)

1 -() (4-4)

Observations by Businger et al. (1971) set C2 IC1 at about 3, for

unstable stratification and small z IL. This ratio is consistent with

the above individual values which will be retained, although a slight

adjustment of C2 may be justified so that c21c1 would agree

exactly with the data. This computation also implies that the very

near surface constant flux layer following a change in surface condi-

tions will have a log-linear profile and Equation (4-3) should be used to

state the lower boundary condition on stress as given in (2-7).



4.2 The Roughness Change Re-examined

In view of the relative success of Peterson (1969) and Shir (1972)

in fitting the data of Bradley (1968), the presumption of a radically

higher value for C1 should be tested in the roughness-change prob-

lem. It is not the purpose here to make a complete analysis but only

to determine the influence of the magnitude of C1 on the surface

stress following an abrupt change in surface roughness. The equations

and boundary conditions used are those of Peterson; only the numeri-

cal technique differs. The stress equation is

1/2U+W=CT{- ]+---(K--) (4-5)
8x az 1 az kz &z az

while the horizontal momentum equation is (2-2). Shir's approach

was somewhat different, using the vorticity equations with C1 0. 22.

Letting M ln(z /z0), where the prime indicates upwind roughness,

cases were run to moderate fetch for M -4. 82 and M +4. 82,

the smooth-to-rough and rough-to-smooth cases corresponding to the

Bradley data. The problem is non-dimensionalized by the larger of

z0 and zcD. Figure 4. 1 shows the results of the cases run; the

vertical scale has been chosen to accentuate the differences in the

curves, and should not obscure the fact that the curves are quite

similar. It should be recalled that Bradley found near-equilibrium
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Figure 4. 1. Non-dimensional surface stress (inverse of surface

stress) as a function of x/z0 (x/zÔ) for smooth-to-rough
(rough-to-smooth) case M -4.82 (M = +4. 82).
Roughness change only.
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values T/T' 3.1 and 0.32 for M = -4.82 and 4.82

respectively, at fetches of 1000 and 1600.

For the smooth-to-rough case with C1 = 0. 16 there is good

agreement with the data and previous models. Use of C1 1. 1,

gives stress predictions about 15% higher after a moderate fetch of

2000, although the curves appearto be converging. It thus seems that

a smaller value of C1 is indeed desirable in the smooth-to-rough

case.

For the rough-to-smooth case with C1 = 0. 16 the equilibrium

stress value is again approached but more rapidly than in either the

data or Shir 's results. Comparison with Petersons results suggests

that he had computational difficulties in this case, predicting smaller

stress values. Shir had supposed that his agreement with Bradley's

data was due to use of the vorticity equations. The case was not run

with C1 1. 1 because of prohibitive computer time requirements.

The numerical method developed for the temperature problem is very

inefficient when applied to the roughness change problem.

It is no accident that the equilibrium values of T and

are nearly the same for M of equal magnitude and opposite sign.

Equation (4-5) may be transformed to an equation in T
1
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-1 -1 1/2
aT +aT =CT1{ au
8x Bz 1 kz az

-1 -1
+ (K

aT
) + 2

3T 8T / (4-6)
az az a2 az

The last term on the right of (4-6) is a second order term in the stress

gradient, which should be small near the surface. lit has the same

a
-1

magnitude as the small part of in the diffusion term.

aK aT au au -2 a2u/-T()
az

(4-7)

Equations (4-5) and (4-6) are highly similar. Remembering that the

velocities and transfer coefficient scale with T
2, the values pre-

dicted for T from Equation (4-5) due to a sudden increase in

(smooth-to-rough) should be similar to those predicted for T

from Equation (4-6) due to a sudden decrease in (rough -to-

smooth).

These numerical experiments suggest that C1 affects the rate

at which the surface stress approaches its equilibrium value but does

not alter the value approached. Higher C1 produce slower con-

vergence. Large changes in the value of C1 make relatively minor

changes in the predicted stress. However, for M = -4. 82 a value

of about 0.2 seems to best fit Bradleys data. For M of equal

magnitude and opposite signs the equilibrium stress predictions
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will be recipricals.

The previous analysis points up the difficulty in applying an

equation which holds under homogeneous conditions to the change-of-

terrain problem. Examining Equation (4-5) vis-a-vis the stress

moment equation (2-3), it is apparent why a single value of C1 is

not appropriate in the roughness-change problem. The C1T factor on

the right side of (4-5) is more correctly w2, which would tend to

change slowly. When surface roughness suddenly increases, T

becomes large because the same vertical velocity fluctuations are in

the presence of an increased velocity gradient. In terms of the new

7, w2 is small and hence a small value of C1 will provide a more

accurate representation in the transition region. When the roughness

suddenly decreases, a higher value of C1 would be better. It is

believed that C1 1. 1 is a proper average value, but is inaccurate

when dealing with very large roughness changes. Because of the

interrelation in the various moment equations, there would be a dis-

tinct advantage in carrying the entire set in the calculations. For the

heat problem the situation is different. There is no sudden, step

change in the velocity gradient or stress, and for this reason the use

of C1 1. 1 should be more acceptable.

This section has sought to demonstrate how assumptions, which

are reasonable under horizontally homogeneous conditions, may be in

error when applied to the change-of-terrain problem.



57

4. 3 The Dissipation of Stress

The word "dissipation" used here is a carry-over from its use

with the turbulent energy equation. The dissipation term is a sink

term in the uw moment equation arising from the pressure-velocity

correlation; the sink is not viscous dissipation, but rather it is

erasure due to the onset of isotropy at the low frequency end of the

inertial subrange.

The assumed, explicit form for dissipation

E C1T/kz (4-8)

has some essential properties. First it equals mechanical production

in the constant flux layer of the neutral atmosphere. Second, after the

change in surface temperature, it will equal total production (mechani-

cal and buoyant) if the velocity profile is log-linear in the near-surface

constant flux layer. These two properties alone make (4-8) desirable

since they would promote the transition from one equilibrium state to

another. Whether or not (4-8) represents dissipation accurately in the

transition region is not immediately evident.

The computational method developed primarUy to treat the heat

equation was found inadequate to solve (4-1) with (4-8h when any

substantial heat flux was present. For this reason an implicit form

for E was sought which would not introduce a strong non-linearity



into the equation, and thus render it unsolvable by the developed

method. It was perhaps fortunate that this difficulty arose since it led

to greater physical insight into the behavior of (4-8) in the transition

region.

Most of the IBL is a transition region where production and

dissipation of stress are out of balance. The approximate balance

that existed has been disrupted by a change in surface characteristics,

and a new equilibrium is being sought. In order to formulate an

acceptable implicit dissipation term, emphasis is placed on the nature

of production and dissipation and their imbalance in the IBL. Produc-

tion of stress occurs on large scales while its destruction takes place

on small scales. There is a time delay within a parcel of air between

a production increase and the corresponding dissipation adjustment,

and this delay translated into a down-stream distance. While following

a fluid element, the central question which must be answered is: If

an abrupt increase occurs in stress production, how long will it take

for the dissipation to rise to the same level?

Tennekes and Lumley (1972) discuss the various time scales of

turbulence in detail. Given a length scale 1 and a velocity scale u,

turbulent energy dissipation is about u3/l. This implies that a

significant portion of the energy of large scale eddies is lost indirectly

to dissipation in one turn-over time (1/u). The energy of the large

scale eddies must be passed down the energy cascade and start
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arriving at the dissipation level. If extra energy were added at large

scales, the dissipation would adjust on this time scale. Thesame

scale will be adopted for stress. In the boundary layer, the length

scale will be 0. 4z while the velocity scale will be '[T ; the time

scale tT is formed from their quotient. It is assumed that for a

parcel of air moving with the mean flow the time rate of change of

dissipation will be proportional to the net production (production minus

dissipation) and inversely proportional to the local time scale. Using

P for total production,

A(P-E)
dt t' (49)

Once the constant of proportionality has been set, (4-9) provides an

implicit E which may be numerically implemented. The form

insures a smooth transition from one equilibrium state to another.

In addition, the form is consistent with intuitive ideas about the

adjustment of e in the transition region. However, by taking the

time derivative of (4-8), the same behavior of E in the transition

region is evidenced.

1 /2
dE 3 T dT 410dtzCl kz dt

In (4-10), t' kz/Th/2 and dT/dt is the sum of terms on the

right side of (4-1). Thus (4-8) implies that changes at a rate
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proportional to the sum of net production and divergence of stress

flux. If the diffusion term is ignored, (4-9) and (4-10) are the same

representation. In the Arctic lead problem, with no roughness change,

the diffusion term is not relatively large, and the implicit and

explicit forms are similar in the transition region. However, if the

implicit E were used in the roughness change problem, the diffu-

sion term should be included in (4-9) since it is dominant (Peterson,

1972).

The implicit form for E was implemented in this study, with

the constant A taken (arbitrarily) as 2. 24; this means that E will

rise at a rate so as to eradicate 90% of the net production in t'.

From (4-10) the constant of proportionality is suggested as 1.65,

although there is no compelling reason to accept it. The value of the

constant will affect the magnitude of stress changes but not the general

shape of the resulting profties, and, since there are no data on stress

changes in the lead situation, there is no reason to argue over an exact

value of A. The magnitude of stress changes in the model will vary

as exp(-A).

4.4 Effect of Stress Changes on Heat Flux

Viewed in the context of Equation (2-l)-(2-4), increased stress

will cause higher surface heat flux. From (3-3), heat flux scales with

u and the temperature step. When treating heat as a passive
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contaminant, surface heat flux will normally decrease with fetch, as

is seen in Figure 3. 2. However, if stress builds up enough, this

natural trend may be overpowered, and heat flux will even increase

slightly with fetch. Under the conditions of the Badgley data, nurneri-

cal experimentation with the model has shown that heat flux will show a

slight increase with fetch if the stress increases more than 25% in

20 meters.

Such a circumstance may not be unreasonable as buoyancy effects

begin to take hold; in fact Miyakes (1965) data, taken at both 10 and

20 meters, indicate a concave upward growth of the IBL, and such

behavior would carry a strong implication of increasing heat flux with

fetch or strong dependence of ah on Ri. Within the numerical

model, however, there seems to be considerable resistance to

dramatic increases in heat flux, since heat flux scales with u and

not stress. Therefore, if a doubling of local stress seems improbable,

it is unlikely that a model including stress changes would predict a

heat flux more than 40% higher than one which treats heat as a passive

contaminant. It is likely that stress and velocity changes are

small and hence play only a minor role in determining the turbulent

heat flux from the lead.
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4. 5 A Simulation including Stress Changes

For a full lead simulation, the basic set of equations is (2-1),

(2-2), (2-4) and (4-1) using the implicit stress dissipation term.

Non-dimensionalization of the equations is always desirable in order

to portray a class of solutions easily. However, this problem has

interrelated velocity and length scales, a circumstance which pre-

cludes a profitable non-dimensionalization of any equation containing a

dimensional constant such as gravitational acceleration. Therefore,

the model results are dimensional and reflect the conditions of the

Badgley lead experiment; the temperature step is 25.5 degrees, and

the initial friction velocity is 16 cm/sec.

In all cases where heat was considered a passive contaminant, it

was assumed that ah is constant. Businger et al. (1971) give an

empirical relation between and z/L under horizontally homo-

geneous conditions,

ah_ 1.35(l9Z/L)h/2/(115Z/L)1/4 (4-11)

For the small range of z/L experienced in the Badgley experiment,

(4-Il) is approximated simply as

cih 1.35(1-z/L) (4-12)

Furthermore, expression (4-12) is approximated in the full simulation
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by setting z/L Ri (Businger et al., 1971). Von Karman's constant

has been set at 0. 4 throughout this study and is retained at the same

value for consistency, although Bus inger linked ah Z 135 with

k 0. 35. If the smaller value of k were used, the estimate of u.

from the velocity profile would be smaller, and the predicted heat

flux would drop accordingly. However, such refinements are unwar -

ranted in view of the data accuracy.

Figures 4. 2 through 4. 6 give profile results at fetches of 5, 10,

15 and 20 meters. The heat flux profiles in Figure 4. 3 show how

increasing stress overpowers the natural tendency for surface flux to

decrease with fetch (compared with Figure 3.2). At 20 meters, the

surface heat flux is 28. 1 mw/cm2. If the stress is held constant, the

flux prediction is 26. 3 mw/cm2; if in addition ah is taken to be a

constant 1. 35, the flux drops to 26. 0 mw/cm2. Thus the dependence

of üh on z/L reflected in (4-12) has little impact on heat flux

predictions, while stress changes may be important.

The stress profiles are given in Figure 4. 5 and are character-

ized by a maximum at an intermediate level. It may be of some con-

cern that the maximum value of the stress profile shows an

approximate linear increase with fetch. Even though the buoyancy

production decreases with height, the time scale increases and allows

the net production to act longer. The diffusion term may eventually

check the growth of stress; profiles of divergence of diffusion, net

L_
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production, and advection of stress at 20 meters are given in Figure

4.7. It should again be emphasized that there are no data against

which the model may be judged; even if the stress profiles are accu-

rate in general shape, the magnitude of the stress changes are inulu-

enced by the choice of A in (4-9). Stress changes may indeed be

small over the Arctic lead, and therefore have little influence on the

surface heat flux.
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5. THE LATENT HEAT FLUX

5. 1 A Simple Estimate of the Latent Heat Flux

Up to this point only the sensible turbulent heat flux has been

considered. Although vapor pressures are low at the temperatures

found over Arctic leads, the latent heat flux may be significant. The

equation for water vapor in the turbulent layer is

=--(K (5-1ax &z z eaz

Water vapor is assumed to be a passive contaminant, and (5-1) is of

the same form as the heat equation (2-i). In addition, vapor, like

heat, must be transferred across a surface molecular sublayer. It

is the objective of this section to use the similarities between heat and

vapor transfer in order to arrive at estimates of the latent heat flux

and provide insight into when and where condensation, or steaming,

may occur over Arctic leads. The results of this section are qualita-

tive, relying on the previous work for sensible heat transfer. An

explicit solution of the vapor equation, with effects of condensation, is

found in the second section of this chapter.

Before proceeding, several relationships and constant values

should be set forth. The heat of vaporization will be taken as 595

calories per gram of water at 00 C. Internally in the program, the
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vapor pressure e, will be in units of mm Hg, and is related to

specific humidity by q 0,622e/760. The air density at 0°C is

1.29 x 10 gm cm

If the simplifying assumption is made that the turbulent and

molecular transfer coefficients for water vapor are identical to those

for heat, then the non-dimensional results in Chapter 3 may be inter-

preted as results for water vapor also. If cLh = a 1, then Figure

3. 1 may as well represent water vapor profiles over a flat water

surface. The scaling would be by where would be

the saturation value at
0B

Likewise, Figure 3.2 gives non-

dimensional flux profiles which may be converted to latent heat flux

profiles under the proper scaling and conversion factors. Because of

the dependence of vapor pressure on temperature, a dimensionaliza-

tion is always necessary to establish the proper scaling for vapor.

The dimensionalization used here for illustrative purposes will again

represent the conditions of the Badgley experiment. The non-

dimensional surface flux at a 20 meter fetch is 0. 0417 which converts

by the factor 1. 3u*(OB_OA) to a sensible heat flux of 22. 1 mw/cm2,

already shown in Table 3.6. The conversion for latent heat flux is by

3. Zu(qq) x Assuming the ambient air contains no water

vapor, the latent heat flux will be 8. 0 mw/cm2. If the ambient air is

saturated, the latent flux will be about 10% less. Thus it is seen that

in rather typical conditions for an Arctic lead the latent heat flux may
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constitute 25% of the total heat flux.

It is interesting to contemplate the flux scaling factors set forth

in the previous paragraph. Considering the lead situation where

0B = -1. 7°C, there will be a maximum and minimum possible latent

heat flux depending on whether or not the ambient air is dry or

saturated. As
0A approaches 0B' the sensible heat flux neces-

sarily goes to zero, as does the latent heat flux if the ambient air is

saturated. However, if the ambient air is dry, the latent heat flux

will be invariant with °A Thus, if the temperature step is small

over a lead, less than about ten centigrade degrees, the latent heat

flux may exceed the sensible flux, depending on the ambient relative

humidity.

Turning away from the lead situation for a moment, it is apparent

that the latent heat flux will always be predominant for higher surface

temperatures. In view of the above scaling factors, a given tempera-

ture step will yield the same sensible heat flux irrespective of the

absolute temperatures. However, the latent flux behaves much dif-

ferently due to a nearly exponential increase in vapor pressure with

temperature, and this behavior will be illustrated using a temperature

step of 25 centigrade degrees and assuming the ambient air is satu-

rated. Taking surface temperatures of 25° C, 50°C and 75° C, the

latent heat flux will be approximately 1. 7, 6 and 18 times the sensible

heat flux. This observation is certainlyimportant when dealing with



temperate zone problems, such as predicting heat transfer from

cooling ponds. In such cases the latent flux must be treated carefully

since it will overshadow the sensible flux.

In this idealized approach, assuming the transfer of heat and

vapor to be identical, insight is possible into the conditions which

promote condensation, or steaming, over an Arctic lead. Under this

approach, a single non-dimensional profile may be transformed to

either a temperature profile or vapor profile through multiplication by

the appropriate step change and addition of the result to the ambient

profile. Thus, if at a given point the temperature has increased by a

certain fraction of the temperature step, the vapor content will have

increased by the same fraction as the vapor step. Using the Badgley

experiment conditions, this simplified relation between air tempera-

ture and vapor pressure is illustrated in Figure 5. 1 for several differ-

ent ambient relative humidities. Also shown in the saturation vapor

pressure so that the temperatures associated with supersaturation are

evident. Figure 3. 6 gives a dimensional profile of temperature at a

20 meter fetch, = 1 with Condition 1, which may be used to

determine the depth of the condensation region. As can be seen from

the two figures, condensation is restricted to a shallow surface layer

except when the ambient relative humidity approaches 100%. If the

ambient relative humidity is 50%, condensation is confined to the lower

20 centimeters.
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Because of the simplifying assumptions used in this discussion,

there is good reason to expect condensation will be restricted to the

lower portion of the IBL, no matter what ambient relative humidity

conditions exist. First, it may be best to choose ah 1.35, and

this will tend to increase temperatures at upper levels, thus lowering

relative humidities there. Second, the saturation vapor pressure over

ice is less than over water. Even if the ambient air is saturated over

ice, it will be only about 75% saturated over water. Third, the large

supersaturations displayed in Figure 5. 1 will not exist. Condensation

will act as a sink for water vapor in the low levels, and hence impede

the transfer of vapor to the upper levels of the IBL. The only refine-

ment of the assumptions which may increase vapor content is the

setting of the molecular diffusivity of water vapor to its proper value,

about Z5% larger than that for heat.

Although condensation may be restricted to a relatively thin

surface layer, the condensate itself may diffuse upward and be visually

evident throughout the IBL.

Saunders (1964) uses the same assumption of similarity between

heat and vapor transfer to predict the critical air-water temperature

difference necessary for the onset of steaming; typical values of 11 to

15 centigrade degrees, depending on ambient relative humidities, are

basically confirmed by observation. Saunders found that the critical

temperature difference is subject to several degrees variation
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depending on the salinity of the water, and this is striking in view of a

vapor pressure depression of only two percent at ocanic salinities.

The saturation vapor pressures in the present study were calculated

from fresh water expressions, and therefore model results on conden-

sation may be in error when the temperature difference is near

criticaL However, the latent heat flux scales by the vapor pressure

step and hence is affected little by salinity influences. Condensation

is an interesting visual phenomenon but probably not very important

in determining the surface latent heat flux, as is seen in the next

section. Relative to this study, Saunders' work is important in show-

ing that observationally confirmed predictions concerning vapor con-

centration are possible by assuming similarity of conductivity and

diffusivity. Thus, use of a single non-dimensional profile for heat and

vapor may indeed be acceptable for some purposes.

5. 2 A Simulation Including Condensation

This section deals with a dimensional simulation under the

Badgley experiment conditions. Condensation will occur when the

relative humidity exceeds 100%. The equation for condensate, super-

cooled water, is

(5-2)
ax 3z az az

The pertinent equations in the model are (2-1), (5-1) and (5-2).



Sensible heat, water vapor and condensate are all treated as passive

contaminants with the proviso that they may interact throigh condensa-

tion. Once condensate is formed it is not allowed to re-evaporate.

The boundary conditions on (5-1) are analogous to those for tempera-

ture, recognizing that there must be molecular transfer of vapor from

the surface. The boundary conditions on condensate assume there is

no vertical flux at the surface or top of the IBL, It is assumed that

ah 1.35 and 'e 1.0. The ambient relative humidity is taken to

be 50% over ice.

On each step in fetch, the temperature and vapor profiles are

predicted as though the quantities are independent passive contami-

nants. Then, at the points where the relative humidity exceeds 100%,

vapor is removed while simultaneouslyintroducing the equivalent latent

heat and condensate; the resulting relative humidity is 100% at the

revised temperature. This is an incremental method of portraying a

continuous process.

Profiles of vapor and condensate concentration, as well as

relative humidity, are shown in Figure 5.2 for a 20 meter fetch. The

correspond ing surface latent heat flux is 8. 9 mw/cm2; the sensible

flux is 24. 8 mw/cm2. Condensation, indicated by a 100% relative

humidity, is restricted to the lower 7 centimeters, although condensate

diffuses much higher and may be visually evident depending on the

droplet size and lighting conditions. Profiles of temperature and
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Figure 5. 2. Profiles of condensate (C), water vapor (V) and relative

humidity (RH, upper scale) at 20 meters. Model results
using Badgley conditions.
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sensible heat flux show slight perturbations caused by latent heat

release. For instance the heat flux profile increases to 27. 8 mw/cm2

at the top of the condensation layer. However, the profiles are highly

similar to those already presented and are omitted here.

Badgleys (1966) estimate of latent heat flux over the artificial

lead is 4.8 mw/cm2, significantly lower than the model prediction.

Wind tunnel data (Bau On Young et al,, 1973) over a free water

surfaceincludes vapor concentration data. The measured near-

surface °e is about 1, 1, and the concentration profiles indicate a

molecular layer with thickness about 10 v/u. Non-dimensional con-

centration fluxes measured in the wind tunnel average about 0. 047,

very nearly the same as predicted by the model. It has been assumed

that the effective thickness of the molecular layer should be the same

for heat and vapor. This may not be true.



6. DEVELOPMENT OF THE MODEL AND
COMPUTATIONAL METHOD

6. 1 Choice of a Numerical Technique

A model consists of three important elements: a set of equations

describing the natural phenomenon, proper boundary conditions and a

numerical technique which offers a practical and accurate method of

solution. These three elements of the model are interrelated. The

choice of a certain set of equations may dictate the use of a specific

numerical technique which, in turn, may influence the solution. For

example, the Navier -Stokes equations in three dimensions may be

solved completely using a relaxation method on a finite difference

grid. Only subgrid scale activity must be pararneterized using an

eddy transfer coefficient and mean gradients. This approach seems

attractive at first glance and has achieved success in dealing with the

planetary boundary layer (Deardorff, 1970, 1972). The Arctic lead

problem, however, deals with a very thin surface layer within which

gradients of velocity and temperature change rapidly, The use of

finite differences in the vertical tends to inaccura,tely portray the

gradients. Since the boundary conditions may easily involve gradient

expressions, these also will be disrupted. The inaccuracy is

systemic, dependent on the choice of technique, and not computational,

Yet there is no other numerical method available if the full set of
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technique and the implLcations of its use may be equally important as

the more common concerns of the equations and boundary conditions.

If the full set of equations is not used, it must be pared down

using appropriate assumptions to exclude insignificant terms and form

terms which reflect time averaging. The reduction of the turbulent

equations to a solvable set generally involves the introduction of

undetermined constants. The notion that any empirical data may be

fit by choosing certain values of these constants is not really true. It

would be a remarkable discovery if a relatively simple equation were

found to fit any curve by adjustment of several constants. A given

equation can fit only certain general shapes. However, the numerical

modeler must be conservative in how much he asserts about his model.

If a certain choice of constant values leads to agreement with a single

set of experimental results, then there is a possibility that no essen-

tial terms have been excluded from the equations and the boundary

conditions are correct. As more data can be fit with the same con-

stant values, increased confidence can be placed in the model as an

accurate description of the natural phenomenon, and use of the model

for prediction may be contemplated. In this research the number of

undetermined constants was kept at an absolute minimum, and the

values assigned were within ranges clearly prescribed by empirical

evidence. Where a wide range could conceivably be assigned, different



values were tested to determine the effect on the solution. The

simplest approach in reduction of the turbulent equations is to intro-

duce eddy transfer coefficients to model the Reynold's flux terms, and

consider the problem in only two dimensions. This approach was used

because it was felt that no previous model had satisfactorily treated

even this simple case, particularly with regard to lower boundary

conditions.

The Equations (2-1) through (2-4) are partial differential

equations in two dimensions. They could be solved on a finite differ-

ence net, but such a technique would have major disadvantages. First,

vertical derivatives would tend to be inaccurately depicted near the

surface. Second, the finite difference net requires considerable corn-

puter storage if fine grid spacing is desired. Third, the physical

dimensions of the problem would be rigidly determined at the outset by

setting the size of the net. However, by turning away from the finite

difference net, each of these disadvantages may be overcome. The

equations may be reduced to ordinary differential equations in z by

using a finite difference representation of the x-derivative. In the

downwind direction the gradients will generally be small, except at the

actual surface discontinuity. The available computer storage may then

be concentrated on points along just two vertical profiles, one at the

fetch under consideration and the other at the immediate upwind fetch.

Progressive steps are taken in the downwind direction, using the
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previously computed profile to form x-derivatives. The dimensions of

the problem are unrestricted since the downwind steps may continue

indefinitely and the solution in the vertical may be extended in response

to IBL growth.

The basic equations of the model for U, 0 and T may be

reduced to ordinary second order differential equations with a linear

appearance. The equations are not really linear since the coefficients

are functions of the variables being solved. However, bytreating the

equations as linear and cycling through the set several times for each

step in fetch, a convergent solution is possible. The equations solved

in the model are given below: the equations for water vapor and con-

densate are analogous to that for temperature and are omitted for

brevity.

For velocity (2-2) becomes

+
1 ae U 6 1

2 K
-w]8 x.K

az h n h

For temperature (2-1) becomes

U
UU2

(6-2)
2 K 8z az xK

Equation (2-3) for stress was transformed under appropriate

assumptions to (4-1). If the explicit form (4-8) for dissipation is



taken, the equation becomes

1 K &T 1 au 2
U2+K[aW]a+K0la 101 kz

-UT
2 3g

ixK KT0 8w (6-3)

Due to computational instability, this equation could not be solved when

treated as a linear equation if any substantial thermal production was

present. However, in treating the roughness-change only, this formu-

lation was successful. Apparently the appearance of 71 /2 n the

coefficient of T makes the equation strongly non-linear and thus not

amenable to treatment as a linear equation. So in the lead simqlation

a different approach was taken, writing (4-1) as

2&T 1 K U{----w] azLAx.K'az

-UT
(6-4)K x Bz T0

where the dissipation term is implicit and bears resemblance to the

explicit form in (6-3).

The transformation of the stress equation to a linear form is

actually an inefficient procedure, employed because the compiter sub-

routines had already been developed to accurately solve the



temperature and velocity profiles near the surface. In the lead

situation, the stress profiles will not have large derivatives, and it is

more efficient to solve (6-3) by transforming to

3/2 UT[1.1-]T LiT +w++8(K8T) 0 (6-5)
az x kz T x z 8z

which may be solved as an algebraic equation in T by Newtons

Method. This was done in test cases, and results agree within 10

percent of those obtained by (6-4). This agreement is important since

it shows that the explicit form (4-8) yields results similar to those of

the implicit form (4-9), where the constant A in (4-9) was taken as

1. 65 for the purpose of this direct comparison.

In summary, (6-1), (6-2) and (6-4) formed the basic set of

second order differential equations used in the lead situation. For the

roughness-change only, the set was (6-i) and (6-3). The eqiations

are solved in the vertical subject to boundary conditions applied at the

surface and the top of the IBL. The numerical method assumes that

the equations are linear, and, since they are not, several cycles

through the set are required for each step in fetch The cycling pro-

cedure is illustrated in Figure 6. 1.

6. 2 Solution to the Two -Point Boundary Value Problem

Let L be a linear differential operator.
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- - -- - - - a_I

If solution has converged,
entertake another step n
from thefetch. Increase the range
upwindof vertical solution if
stepnecessary

solve for 6
compute cZ, Ri

L-

solve for r

compute Km

solve for U
solve for W

Figure 6. 1. Method of cycling through the equations for temperature,
stress, velocity and continuity.



Ly yfl + p(z)y' + q(z)y r(z)

defined on the interval (a, b). General boundary conditions are

a0y(a) a1y'(a) = a

b0y(b) b1y'(b) P
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(6-6)

(6-7)

(6-8)

A solution may be found by solving the two independent initial value

problems

Ly1 r(z), y1(a) = -c1a, y(a) -c0a (6-9)

Ly2 0, y2(z) = a1, y(z) = a0 (6-10)

where

a1c0 - c1a0 1 (6-11)

By linearity, the combination

y = y1 + sy2 (6-12)

will satisfy the differential equation in (6-9) and the condition (6-7) for

any s provided that (6-11) is obeyed. Thus if s may be chosen

so that (6-8) is satisfied then (6-12) will constitute the solution to the

two-point problem. That is, choose

s (P-b0y1-b1y)/(b0y2-b1y) (6-13)

at zb.



Mathematically the solution of the two -point boundary value

problem is relatively simple and is detailed by Keller (1968). How-

ever, implementation of the solution on a digital computer must be

carefully approached. A generalized subroutine has been developed

to solve (6-6) subject to the boundary conditions (6-7) and (6-8). The

skeleton of the subroutine is the routine MILNE1 from the OSU

Pro gram Library, a seventh order predictor -Co rrector for solving

sets of simultaneous second order linear differential equations with

initial value boundary conditions. The nature of the geophysical

problem under consideration required extensive modification of

MILNE1.

In the change-of-terrain problem the solution must begin very

close to the surface. The subroutine, in order to establish starting

values, must take three steps closer to the surface than where the

lower boundary condition is imposed. Since the equations are unde-

fined on the surface, very small vertical increments must be used

initially. However, the retention of such small steps as the solution

recedes from the surface is both wasteful and unnecessary to retain

reasonably accuracy: the step size may be periodically increased as

the solution progresses in z. Most routines, like the original

MILNE1, make a total restart when the step size is changed, discard-

ing all information except the current value of the function and its

derivative. This is quite inefficient since the seventh order routine



predicts ahead based on the function and its first and second derivatives

at the previous seven steps. In solving the lead problem, it was

decided that the step size would double every 16 steps up to some

maximum number of doublings. In order to utilize previous informa-

tion, the solution and its derivatives were retained at the previous 14

points at all times. When the step size was doubled, every other

retained value would become one of the seven previous values so far as

the new step size was concerned. The transition by this method was

extremely smooth.

It should be specifically pointed out that the subroutine spends

most of its time solving the simultaneous initial value problems (6-9)

and (6-10). Only at the very end does it compute s by (6-13) and

form the solution to (6-6) subject to (6-7) and (6-8) by linear combina-

tion. Computations must be completed over the entire interval (a, b)

before any part of the two-point solution may be examined.

The linear combination (6-1Z) may be difficult to form in

practice on a computer because of loss of significant digits. As the

z-coordinate increases, the solutions to (6-9) and (6-10) diverge

rapidly. Since the solution to the two-point problem is finite, tempera-

ture for instance, (6-12) eventually becomes the difference of two

very large numbers. Hence, although it may be perfectly feasible to

form s by (6-13), the combination (6-12) will become impossible at

large z due to loss of significance.
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A restart procedure has been developed to prevent the loss of

significant digits in the formation of the two-point solution. As an

example suppose that the upper boundary condition requires a given

functional value at the top of the IBL. The boundary condition (6-8) is

specialized by taking b0 1 and b1 0; that is, the solution is

required to have value ! at z b. The solutions to (6-9) and

(6-10) are computed over the entire interval (a,b) and the first

point c at which

> 10 (6-14)

is noted. The tolerance here is chosen based on the quantities being

solved--temperature, stress and velocity- -all of order l0. If the

proper initial conditions could be guessed exactly, y1(b) would

equal 3, so the condition (6-14) signals that y1 has begun to

diverge. After computations are completed on (a, b), s is calcu-

lated from (6-13) and the solution is formed by (6-12) up to the point

c indicated by (6-14). Since y and are of order 1O3, y1(c)

and sy2(c) are of order The combination (6-12) at c then

represents the subtraction of two numbers of order lU4 to get a

number of order It is clear that the formation of the two-point

solution cannot proceed much beyond c without loss of accuracy,

since the initial value solutions are rapidly diverging. Instead the

solution is restarted by adopting y(c) and y(c) as the initial
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values in (6-9) and a0 a1 1 in (6-10); computations are then

made over the interval (c, b). This procedure is repeated until the

two-point solution may be formed over the entire interval (a, b)

without loss of significance. In practice, only two restarts were

required in any of the problems dealt with here.

6. 3 Imposition of the Upper Boundary Condition

The imposition of the upper boundary condition (6-8) is restricted

to taking either b0 or b1 to be zero. Either the function or its

derivative is forced to a certain value.

Temperature: At the top of the IBL, the conditions B

and 0 should hold simultaneously. There are three possible

ways to enforce (6.-8).

b0 1, b1 0, 3
0A

(6-15)

b0 0, b1 = 1, 3 = 0 (6-16)

b01, b11,
0A

(6-17)

Scheme (6-15) would insure that 0(b) = 0A' whereas scheme (6-16)

would insure (b) = 0. Scheme (6-17) would enforce neither of

these conditions exactly. Because is used to calculate the

vertical heat flux, it is highly desirable to use scheme (6-16). Other-

wise it will be very difficult to bring the heat flux profiles to zero even
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at great height, and it is clear why this is so. Since Rh increases

with height, even a so small as to be physically mea.ningless will

produce a substantial heat flux by the simple calculation H = Kh

Unlike scheme (6-15), scheme (6-16) will allow 0(b) to differ from

0A' but by taking b large enough the difference may be reduced to

any desired level. In the case of stress and velocity it is not nearly

as important how (6-8) is enforced.

Stress: In the case of stress, the derivative was forced to zero

at the top of the IBL.

b0 0, b1 = 1, 3 = 0 (6-18)

Velocity At the top of the IBL, the wind profile should join

with the original logarithmic profile.

b0 1, b 0, ln(bIz) (6-19)

Criteria for Increasing b: For each profile, both the function

and its derivative should return to their ambient values at the top of

the IBL. However, only one of these conditions is forced mathemati-

cally, while the other may be nearly stratified if b is large enough.

As the IBL grows in the downwind direction, b is increased when

either of the following criteria are violated.
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0(b)-O
A < 0.0007 (6-20)

0B0A

T(b)-(U)
< 0.006 (6-21)

(u
2

In the full lead simulation it was usually (6-21) which was responsible

for increasing the range of vertical integration.

Water Vapor: The flux of water vapor should be zero at the top

of the IBL.

b0 0, b1 = 1, p = 0 (6-22)

Condensate: The flux of condensate should be zero at the top

of the IBL.

b0 = 0, b1 = 1, p = 0 (6-23)

6.4 Imposition of the Lower Boundary Condition

In its full form, the lower boundary condition (6-7) asserts a

linear relation between the function and its derivative. The condition

is satisfied by choosing the proper initial conditions to the problems

(6-9) and (6-10). Whenever a 0, the constants c0 and c1 are

required to satisfy (6-11), and these constants could be chosen at

random. However, it should be recognized that the equation in (6-9)

is the same as (6-6); it is, therefore, desirable that y1(a) and yj(a)
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be estimates of y(a) and y'(a). In this way y1(z) will not diverge

as rapidly and fewer restarts will be necessary. The best available

estimates, to be denoted with subscript e, are the results for y(a)

and y1(a) on the previous calculation, either at the upwind step or

on the previous cycle at the current fetch. In practice only one of

y1(a) and y(a) is estimated since (6-7) gives a relation between

the two. The height a, at which the lower condition is applied, is

the lowest extent of the turbulent boundary layer, either the top of the

molecular sublayer or the roughness length.

Temperature: It is in applying the lower boundary condition on

temperature that the generality of (6-7) is best appreciated. The

lower condition asserts that the turbulent heat flux at a must equal

the molecular heat flux through the molecular sublayer, and this

translates into a linear relation between 0(a) and 0'(a).

KO(a) (m+l)DKhO'(a) t<OB (6-24)

where m = (/ukD) ln(z ID) and m 0 for z < D. The con-
0 0

stants c0 and c1 need not be formally computed since (6-24)

forces a relation between the estimated temperature and its derivative.



y1(a)

y(a) = K(O 9B)/h(mfle (6-25)
y2(a) = DKh(m+l)

y(a) K

Stress: The stress on the surface is related to the velocity

gradient; specifically it is the root of the stress conservation equation

(4-3). If this root is taken for y1(a), then y2(a) must be zero so

that (6-12) will give the proper value for T(a). So then a0 1,

a1 = 0, c1 = -1 and a is the root of (4-3).

y1(a) = a

y(a) (3T/8Z)
(6-26)

y2(a) = 0

y(a) = 1

Velocity: At the bottom of the turbulent layer, the velocity is

assumed to be constant, a necessary condition if applied at the rough-

ness length. No restriction is placed on the velocity gradient. The

constants involved are a0 1, a1 = 0, C1 = -1 and a. U(a).

y1(a) = a

y(a) (aU/az) e (6-27)
y2(a) 0

y(a) 1
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Water Vapor: The condition on vapor is analogous to that for

heat, asserting an equality between molecular and turbulent fluxes at

the top of a molecular sublayer.

4ig(a) (m+l)DK q'(a) (6-28)

where m = (4i/ukDa ) ln(z ID) and m 0 for < D.

y1(a) =

y(a) = i(q_q)/DK(m+l)
(6-29)

y2(a) = DK(m+l)

y(a)

Condensatet There is no flux of condensate at the surface.

y1(a) = ce

y(a) = 0
(6-30)

y2(a) = 1

y(a) 0

6. 5 The Formulation of Stress Dissipation

It was assumed that the time rate of change of dissipation (E)

would be proportional to the difference between total production (F)

and dissipation and inversely proportional to the local turbulent time

scale (t'). Then, if E = and P = P0 at t 0,
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P0 - (P0-E0) exp(-A.Lt/t') (6-31)

is used to predict ahead one step in fetëh (t sx/U). If it is

proposed that 90% of the current net production (P-) will be

eradicated in t', then the constant of proportionality will be ln(1O).

Total production, the sum of mechanical and buoyancy production, is

computed on each step, and the average net production is substituted

in the right side of (6-4).

1

S
(P-E)dt A.t [1-exp(-A.t/t')] (6-32)



7. A DISCUSSION OF THE SECOND MOMENT EQUATIONS

7. 1 The Desirability of the Heat Flux Equation

Recently there has been interest in solving the complete set of

first and second moment equations (Lumley and KhjehNouri, 1973;

Rao et al., 1974; Mellor, 1973), and this method deserves considera-

tion in the Arctic lead problem. Use of the second moment equations

would allow partial avoidance of the eddy diffusivity assumption; the

equations of second moments contain third moments, fluxes of second

moments, which must be approximated in terms of second moments.

There is involved here what Lumley terms an "article of faith," that

the approximation of third moments in the second moment equations

will be acceptable, just as the approximation of second moments in the

mean equations has proved acceptable for many purposes. It may also

be hoped that by removing the approximation to the third moments the

prediction of mean quantities will be more accurate. It would be

overly ambitious at this point to adopt a large set of moment equations,

even in two dimensions. More in tune with the basic philosophy of this

study would be the consideration of a simple set of moment equations,

preferably those which would remove the central objections to the eddy

diffusivity model. It should be recalled that a moment equation has

already been employed in this model, the -uw equation.
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A central objection to the eddy diffusivity model, discussed in

the first six chapters, is that the assumed forms for K and Km h

may not hold in the lead situation. While empirical expressions are

well known for conditions of horizontal homogeneity, their use in the

transition region of the IBL may not be justified. It would therefore

be prudent to adopt the Ow equation; the heat flux would then be com-

puted directly from a conservation equation, providing a basic

alternative to the eddy diffusivity approach. A set of equations might2include those for Ow, 0 and 0.

Mellor (1973) has adopted a set of seven moment equations to

study the constant flux layer of the atmosphere and was successful in

predicting empirically confirmed expressions for h and

This work will be used as a starting point and referred to extensively.

Mellor presents equations for Ow and

- (wwO)
+ + I.

(7 1)

= -(;) - z;I- 2-- (7-2)

In Equation (7-1), the pressure correlation term serves as a sink or

dissipation term, erasing Ow by transferring fluctuations into the

other components. Mellor sets
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}= (7-3)

where q (u2+v2+w2)h/2 and 2
kA2z. Equation (7-2) contains

a molecular dissipation term which Mellor sets as

2K = 9. ;. (7-4)
3Xk aXk A2

where A2 = kB2z. Mellor sets the values of A2 and B2 based

on various observed relations between moments in the constant flux

layer under near neutral conditions. Mellor in fact restricts his

model to the horizontally homogeneous constant flux layer, and so

(7-i) and (7-2) reduce to

+ -
g = 0 (7-5)

az T

--=0 (7-6)
az A

It is a reasonable belief that whatever moment equation is considered

it should reduce to some readily recognizable, observationally derived

relation under conditions of horizontal homogeneity and small z/L.

Thus it was seen that the second moment equation for stress reduced

to the expression for non-dimensional wind shear. Likewise it will be

shown here that the equation for ew reduces to the expression for
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the non-dimensional temperature gradient. In a sense then the stress

and heat flux equations are principal equations in duplicating the

observed relations of fluxes to mean gradients in the constant flux

layer; the other moment equations serve to perturb these principal

equations at large z IL

The following computations utilize approximations which hold

for small zIL.
2= C1u

q C2u,,

ae= Uukz ;;

IJnder (7-7), (7-6) becomes

2
2 BZcthk 282

0 = ()z (----)
C

(7-7)

(7-8)

Then, substituting (7-8) into (7-5) and using (7-7), the Ow

equation transforms to an expression for the non-dimensional tern-

perature gradient.

C B
2 2 (79)

3A2C1 L ahCZCl

The values of the groups of constants in (7-9) may be assigned from

Businger's data (1971).
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C2/3A2C1 = 0.74 (7-10)

BZ/ahCZCl = 3 (7-11)

It would be reasonable to take C1 1.1 and ah 1.35, whence

(7-li) implies B2/C2 4.45. In (7-8) the coefficient becomes 0.97,

and so the temperature variance equation states the familiar relation-

ship (Lumley and Panofsky, 1964)

2 80 2
0 z (-) (7-12)

From (7-10), C2/A2 2.45, The individual values for C2, A2 and

B2 could be introduced, but that is unnecessary since the above

ratios must be maintained. There is a tautology expressed here. A

model, using the Ow equation as the only second moment equation,

will reproduce Businger's h j z/L remains small; the model

will behave in this manner precisely because the reduced moment

equation is the empirical expression for the non-dimensional tempera-

ture gradient. Mellor showed something more significant, that

Businger's
h would be well approximated over a wide range of

z/L by taking a larger set of moment equations.

7.2A Simple Test Case

For a test case, the simplest possible set of equations is chosen,

those for Ow and 0. This model will be similar to the passive
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contaminant model studied in Chapter 3 except QLh will seek its own

value in the transition region of the IBL. The buoyancy prodiiction

term is excluded from the heat flux equation, since heat is treated as

a passive contaminant. Subject to the previous discussion and using

an eddy diffusion term for the third moment in (7-1), the set is

0.815u Ow80w 8 80w 280 *
U (K) - 1.lu (7-13)8x Oz 8z * kz

where

up.! =---(K -) (7-14)
8x 8z h8z

K 0w/ (7-15)h 8z

Before undertaking the solution it is well to consider what is to

be gained by using the above set, which is similar to the set used in

the roughness change problem, Section 4. 2, and behaves in a similar

manner. Looking at the heat flux equation (7-13) when the surface

discontinuity is encountered, there will be an abrupt change in the

temperature gradient giving rise to a production in heat flux. Pro-

duction results in an increase in Ow over a period of time. There-

fore, Ow will tend to lag behind and Kh given by (7-15)

will tend to be smaller than assumed in the eddy diffusivity model.

Thus,
h may be expected to be less than its equilibrium value.

Since an equilibrium layer may be assumed at the surface, it is proper
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to force ah 1. 35 the re Furthermore, there is a distinct

numerical problem in computing (7-15) near the top of the IBL where

the expression becomes indeterminarit. The atmosphere at the top of

the IBL is in equilibrium so that ah is forced to 1.35 there also.

In addition, the Bw equation will assure that ah will return to

1. 35 at intermediate levels as the surface equilibrium layer grows.

Therefore, because of constraints which are both logical and neces-

sary, heat flux predictions of this model will differ little from the

passive contaminant model explored in Chapter 3, when using

ah = 1.35.

The model was run under the conditions of the Badgley lead

experiment. The surface heat flux at ZO meters of fetch was within

one percent of that predicted by the passive contaminant, eddy

diffusivity model. Values of üh in the transition region of the IBL

dropped as low as 0. 7 near the upwind edge of the lead.

In view of the numerical experimentation in Chapter 3, it is not

surprising that alteration of the turbulent equations in the model makes

little difference in the predicted heat flux. The solution for heat flux

is strongly determined by the lower boundary condition on temperature.

No matter how the turbulent transport is formulated, heat must always

be diffused through the molecular layer on the surface.
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8. WINDLESS CONVECTION

8. 1 An Equation for the Heat Flux

It is apparent that the model is inadequate for predicting heat

transfer as the mean wind tends to zero, since the heat flux scales

with u. Under windless conditions over a heated surface, there will

be a significant upward heat transfer due to buoyant plumes. The

model may be thought of as holding when turbulence is forced by a

near-surface shear. As u approaches zero, the buoyancy forces

assume a greater relative importance. The transition between forced

and free convection would seem difficult to describe with the eddy

diffusivity approach. However, it is well to look at the limiting case

of windless convection; the heat transfer in such a case would set a

lower bound on the predicted heat flux as u goes to zero. A

criterion for model applicability may be defined.

An equation for the upward sensible heat flux over a smooth

heated surface may be formed by combining two assumptions set forth

by previous authors: (1) There is a molecular sublayer on the surface

with thickness dependent on g/T0, H and K (Townsend, 1959).

(2) The temperature gradient in the turbulent zone is dependent on

g/T0, H and z (Priestly, 1959). In this study the temperature

dependent constants will correspond to the lead situation.
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A fundamental feature of this investigation will be inclusion of a

molecular sublayer at the surface. As in the model, the assumption

of a molecular sublayer is necessary for prediction of heat flux and

tends to minimize the variations in the predictions as undetermined

constants are chosen over a range indicated by experimental data.

Under assumption (1) the thickness of the molecular sublayer is

given by

D = B(KT0/gH) (81)

where B is a constant. Data of Townsend (1959) clearly show this

formulation holds for three different heat fluxes. From Townsend's

data, this author concludes that B is about 2 and certainly lies in

the range 1. 5 to 2. 5. This layer is so thin that laboratory measure-

ments of its thickness should be applicable to the atmosphere. The

data of Townsend show that at least 1/3 of the total temperature

decrease occurs across the molecular sublayer, typically having a

thickness of only 0. 2 cm. As with the model, the assumption of a

molecular sublayer makes a tremendous difference in the temperature

sensed by the turbulence at the lower boundary.

Assumption (2) leads to the familiar temperature gradient

e xp r e s sto n.

-C(g/T )_l/3H2/3_4/3 (8-2)
az 0
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where C is constant. The corresponding transfer coefficient may

be written as

where 4/3 and

Kh = Az' (8-3)

A = C(gH/T0)u/3 (8-4)

The form of Kh will be slightly altered to provide consistency with

the idea of a molecular sublayer. Within the sublayer, viscous forces

are assumed to preclude all turbulent motion; above D there will be

a blending of molecular and turbulent transfer.

Kh = K + A(z-D)' (8-5)

It is the purpose of this chapter to predict heat flux using the transfer

coefficient (8-5) and a flux-equality lower boundary condition.

The expression for the temperature gradient

= -H/(K+A(z-D)) (8-6)
8z

may be integrated from D to h, where h is a height at which

reference temperature
0h is taken. Using the expression for the

molecular heat flux

H = K(BB_OD)/D (8-7)

(8-6) yields
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LO - DH/K Hdz (8-8)
'D K+A(Z-D)

where
0B 0h

Equation (8-8) is an equation in H which may be solved by

Newton's iterative method. The solutions are dependent on setting

the values of the parameters C, B, 0, h and n. Basic values of

these parameters will be chosen since a base solution is needed in

order to judge the relative effects of changing one value while holding

the others the same.

The value of B has already been discussed, n is dictated

by the dimensional argument and h may be chosen as any conveinent

measurement height. Based on data, Priestly (1959) found C = 1.07

in (8-2). On the other hand, Dyer (1965) found a much smaller

C = 0. 83. Deardorff and Willis (1967) make a theoretical estimate of

C 1.22 for parallel plate convection at very high Rayleigh number.

There is some controversy about the value of n, equivalent to

questioning the dimensional reasoning leading to (8-2). Experimental

evidence does not clearly support the existence of temperature gradi-

ents with a -4/3 power dependence on height. However, it seems that

atmospheric measurements in the absence of wind are lacking; instead

reliance must be placed on small scale laboratory measurements or

atmospheric measurements taken in the presence of considerable wind

shear. Townsend (1959), using an open-topped box heated from below,
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found a best fit of the temperature profiles indicated n 2, with a

possible range from 1.3 to 2. 5. Deardorff and Willis (1967) make

horizontally averaged temperature measurements in a convection

chamber and could not find a single value of n which would suffice

over any significant height interval. However, the data suggested that

a n 4/3 regime may develop near the lower boundary as the

Rayleigh number increases. The failure of Townsend to find such a

regime, since in the open box much higher Rayleigh numbers could be

achieved, was attributed to use of a single temperature probe near the

center of the box. In order to determine if n = 4/3 under windless

conditions in the atmosphere, Deardorff and Willis proposed an open

box field experirnent, but such an experiment has apparently never

been carried out. To further add complexity to the choice of n,

atmospheric measurements taken in the presence of wind shear mdi-

cate n 3/2 (Dyer, 1965; Businger et al., 1971) over a broad range

of z/L. Dyer, however, found that n = 4/3 was acceptable for

z/L in the limited range -.02 to -0. 6.

Considering the above discussion, basic values of the parameters

in (8-8) will be taken as
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C 1.07 (0.83, 1.22)

B 2.0 (1.5,2.5)

25.5°C (5, 45) (8-9)

h 1000 cm (200,6000)

n = 4/3 (4/3,2,0)

Values in parentheses indicate the range over which each parameter

will be varied in order to assess the impact on the solution. The basic

O was chosen as that from the Badgley lead experiment; therefore

the results may be compared to dimensional results of the model.

The solution of (8-8) with the basic parameter values will give a heat

flux prediction for the Badgley lead if the wind were to go to zero.

Of course in the windless case the lead is considered to be an infinite

plane, and the effects of air advecting from the sides and rising over

the lead are not considered. An analogous procedure for the predic-

tion of latent heat transfer under windless conditions may be easily

formulated.

8. 2 Heat Flux Predictions

Solutions of (8-8) subject to (8-9) are presented graphically in

Figures 8.1-8,5. Each parameter of (8-9) is varied while holding all

others at their basic values.

Figure 8. 1 shows that variation of C from 0, 83 to 1. 22 results
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results in a 20 percent decrease in the predicted flux. C' plays a

role similar to
0h

in the model as is seen in (8-4).

The value of B, which determines the thickness of the

molecular sublayer, also has a significant influence on the predicted

flux. As B goes from 1.5 to 2.5 in Figure 8.2, the flux decreases

by 21 percent.

If the assumptions concerning molecular sublayer thickness and

temperature gradient are correct, the heat flux will be found in

Figure 8.3 for a range of .O. The flux prediction is dependent on

experimental determination of the constants C and B. The dashed

lines in Figure 8. 3 indicate solutions 1sing pairs of constants which

maximize (C 0.83, B 1.5) and minimize (C 1. 22, B 2.5)

the predicted flux.

It may be noted that if C is known, then measurement of the

temperature gradient will give the heat flux by (8-2).

H c3/2g/T0)hJ2()3/2z2 (8-10)

However, the estimation of heat flux by (8-10) would be inconvenient at

best. Measurement of temperature gradient would have to be made

over open water; it would be just as well to measure Ow directly.

Under the method described in this Chapter, a single air temperature

measurement made over the ice surrounding a large open lead would
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suffice to predict the heat flux under windless conditions. Such a

procedure is supported by Figure 8. 4 which shows the minor influence

of h on the solution. Above a few meters height, the temperature

would be at a nearly constant, ambient value.

Choosing a value of n other than 4/3 is incoñsistênt with the

assumption that the temperature gradient depends on g/T0, H and

z. However, other values of n have been mentioned, and Figure

8. 2 shows the influence of n on the predicted heat flux.

8. 3 A Criterion for Model Applicability

Since the heat flux predicted by the model will go to zero with

u, there must be a minimum U) below which the model fails to

accurately predict the flux under a given heating intensity. In the

Badgley lead experiment, u 16 cm/sec and the model predicts

a heat flux of about 26 mw/cm2 at a 20 meter fetch assuming heat is a

passive contaminant. If u* drops over such a lead, the flux will

drop proportionately, and at u) = 5.5 cm/sec the heat flux pre-

dicted by the model will equal that predicted for the windless case,

9. 2 mw/cm2. Further decrease in U) would render the model

inapplicable, since the flux predicted for windless conditions is a

minimum flux for the lead. If buoyancy effects were included in the

Badgley simulation, the minimum u)¼ for model applicability would

tend to be even less.
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One way of looking at the transition from free to forced

convection is to concentrate on the molecular sublayer. It has been

demonstrated that the thickness of the sublayer is an important factor

in determining the heat flux, and two formulations for the thickness

have been introduced depending on relevant scaling parameters.

Starting with a windless state, (8-1) will give the molecular sublayer

thickness. On the other hand, (A-lZ) will give the thickness in the

presence of wind shear. As u, rises from zero, the thickness from

(A-12) will decrease. Setting the ratio of (A-12) to (8-1) equal to one

and rearranging terms,

D/L = B4k(K/v)3/(7. 1) 0.048 (8-11)

where L is the Monin-.Obukhov length. D/L may be viewed as a

stability parameter. For D/L larger than the critical value indi-

cated by (8-11), the numerical model should not be applied. For a

lead situation with H in the broad numerical range 1 to 25, the

transition value of u, will lie in the range 2.. 4 to 5. 4 cm/sec.
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Figure 8 3. Predicted heat flux as a function of the temperature
difference between the surface and 10 meters. Dashed
lines give solutions using extreme values of the
constants B and C. Windless convection.
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Figure 8. 5. Predicted heat flux as a function of n. Windless
convection.
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9. SUMMARY AND CONCLUSIONS

A two-dimensional, eddy diffusivity model has been developed

to simulate the Arctic lead situation, idealized as neutrally stratified

flow encountering an abrupt increase in surface temperature and vapor

pressure. An important feature of the model is expressed in the lower

boundary conditions. Heat and water vapor must be transferred by

molecular means through a thin, surface sublayer. The lower bound-

ary condition, designated Condition 1, enforces equality of molecular

and turbulent fluxes at the top of the molecci].ar sublayer. The thick-

ness of the sublayer is assumed to scale with v/u*. Another lower

boundary condition, designated Condition 2, asserts equality between

the roughness parameters for heat, vapor and momentum, and is

evaluated because of its use by previous authors.

The appropriateness of Condition 1 as opposed to Condition 2 is

verified in several ways. First, profiles of temperature in a geo-

physical experiment and both temperature and vapor concentration in a

wind tunnel experiment seem to confirm the existence of a molecular

sublayer. Second, the use of Condition 2, z0 ZH leads to a model

whose temperature profiles behave in a manner inconsistent with the

concept of a molecular sublayer. Increased turbulent transfer effi-

ciency results in higher heat flux predictions but not reduced near-

surface temperatures as must be expected if the surface transfer is
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molecular. Third, data from a wide variety of sources indicate that

z0 and ZH are not only unequal but also independent on slightly rough

surfaces. This should be expected since ZH would scale with

v/U* while is independent of u, at least for flows over a

rigid, rough surface.

The effective thickness of the molecular sublayer lies in the

range 6 v/u to 16 v/u, based on available data. As a basic

value, the sublayer thickness, D, was taken as 11 V /u for both

heat and water vapor. Increasing D from 11 vlu) to 16

would decrease the heat flux prediction by about 12% when ah = 1.

Similarly, decreasing D from 11 v/u, to 6 v/U would

increase the heat flux prediction by about 10%. From available data,

a suitable constant value of for the lead situation lies between 1

and 1.4. Increasing cth from 1 to 1.4 would increase the heat flux

by about 18%. Use of a constant ah is not strictly correct, since

there is a stability dependence. However, use of an empirical expres-

sion for ah dependent on Ri, alters the heat flux prediction less

than 2% for the Badgley lead conditions, although larger differences

may be expected for lower wind speeds. Within expected ranges over

water, has a negligible effect on heat flux predictions. The

slope of IBL is about 1 /Z0 at a fetch of twenty meters.

Because of the close anology between heat and vapor transfer,

both in terms of the lower boundary conditions and the similar transfer
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coefficients, much of the work done specifically for heat may be used

to draw conclusions about vapor (e. g. , the effect of basic model

parameters, a, D and z0, on the non-dimensional flux predic-

tions).

The latent heat flux over a lead will usually be significant. It is

possible for the latent flux to exceed the sensible flux if is

less than 10° C. For = 25°C, the latent flux is about 30%

of the sensible flux and is proportionately smaller as the ambient

temperature decreases, Condensation will likely occur when

exceeds a critical value of about 15° C. The actual condensation zone

will be quite shallow, growing with a slope of 1/300, versus 1/20 for

the IBL. Condensate may be visible throughout the IBL due to turbu-

lent diffusion. Condensation is visually impressive but has little

influence on the surface vapor flux.

Changes in stress, induced over the lead by thermal production,

may have an influence on heat flux magnitude. Predicted stress pro-

files are characterized by a maximum at an intermediate level, con-

sistent with the expected overturning of air within the IBL. The

model predicts that heat flux would increase by approximately 10% if

stress changes are considered, an increase larger than that suggested

by wind tunnel data (Bau On Young et al., 1973). Data are needed to

indicate stress changes over a lead. However, for prediction of sur-

face heat flux, it may be acceptable to treat heat as a passive
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contaminant and incorporate the buoyancy influences into and D.

The use of additional second moment equations and specifically

the Ow equation seems of little advantage, at least in small scale

leads where z/L remains small. Surface heat flux predictions are

overwhelmingly determined by the lower boundary condition on tem-

perature proposed in this dissertation. Use of the Ow equation will

not significantly alter the surface heat flux, although there will be

some alteration of the profiles higher in the IBL. Near the upwind

edge of the lead, such a model predicts substantially reduced values of

cib at intermediate levels in the IBL. If such dramatic behavior of

ah were observationally confirmed, the inclusion of a Ow equation

would be warranted.

The numerical model is not meant to be applicable for low wind

speeds since the predicted heat flux goes to zero with the friction

velocity. Assuming a free convection temperature profile and a

molecular layer thickness dependent on K, g/T0 and H leads to a

prediction of sensible heat flux in the absence of wind. This flux is

the minimum possible flux over the lead and is approximated by

O.224O + O,OO515(0)2 mw/cm2, where is the temperature

difference between the water and the air at 10 meters height. At very

low wind speeds, the flux prediction of the model will be less than that

for windless convection. In such a case, the model must be deemed

inapplicable.
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Within the suggested range for model parameters the non-

dimensional heat flux at a fetch of 80, 000 V/u (7 meters for

u = 16 cm/sec) lies between 0. 050 and 0. 078, convertible by

1.3 u(BeA) to mw/cm2. The non-dimensional vapor flux lies in

the lower half of the same range, convertible by 3. x 10 to

mw/cm . The fluxes at this particular fetch are about 15% hLgher

than fluxes at a fetch three times as long. The ranges of flux

predictions reflect maximum uncertainties in the values of basic

model parameters. The predictive capability of the model must

ultimately rest on empirically establishing values of D, ah ae and

z0 which hold over the Arctic lead.
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APPENDIX A

The purpose of this appendix is to present and compare four

different lower boundary conditions on temperature, two of which have

appeared in the main body of the thesis. Condition I is the primary

condition used in the dissertation and represents one simple way of

including molecular transfer near the surface. On the other hand,

Condition Z assumes no explicit molecular transfer. Conditions 3 and

4 represent alternative methods of implementing molecular transfer at

the surface. Each lower boundary condition will be cast in the form

(6-7), and the expression for will be given. The model will be

run under the Badgley experiment conditions, treating heat as a pas-

sive contaminant with ah = 1.35.

Condition 1. This condition results in a two-layered model with

an abrupt change from molecular to turbulent transfer. There will be

a discontinuity in the temperature gradient at the top of the molecular

sublayer. The eddy transfer coefficient is

Kh = ahukz (A-i)

The temperature roughness parameter is related to ah and D

= D exp(ahkv/K) (A-2)

The lower boundary condition applied at D is
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00 [1+
D

ln(z0/D)J (A-3)

From flat plate momentum data an estimate of D for this formula-

tion is D 11.

Condition 2. This condition does not provide for molecula.r

transfer near the surface. The eddy transfer coefficient is (A-l). The

roughness parameters for momentum and temperature are equal, and

the surface temperature is found at z0.

ZHZO (A-4)

00 0B
(A5)

Only when z0 is small enough to be found on Figure 3.7 will this

condition be consistent with the concept of a molecular layer.

Condition 3. There is a blending of molecular and turbulent

transfer starting at the surface; there is no sublayer having only

molecular transfer. The eddy transfer coefficient is (Garratt and

Hicks, 1973)

from which

= K + cthu,kz (A-6)

ZH = K/a.hkV (A.-7)

The lower boundary condition is applied at z0.
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au,k ln(Kh/K) (A-8)

Condition 4. There is a molecular sublayer of thickness D,

above which there is a blending of molecular and turbulent transfer.

This condition is an improvement on Condition i providing the

molecular sublayer with a continuous temperature gradient. The eddy

transfer coefficient is

Kh = K + uhu(zD) (A-9)

from which

K
ZH hvk

) exp(cLhDkv/K)

The lower boundary condition applied at z0 D is

KhD
[1+

Dahuk (Kh/K)

(A-ic)

(A-li)

Flat plate momentum data would indicate D is about 7. 1 for this

formulation, that is

D = 7. 1 v/U* (A-1Z)

The predicted heat fluxes, resulting from these boundary conditions in

a simulation of the Badgley experiment, are found in Table A. 1.
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Table A. 1. Heat flux predictions.

Heat Flux at 7 Meters Fetch
Condition (mw/cm2)

1 28.
2 49.7
3 40.0
4 28.7

It appears that there is little difference in the flux predictions

when using Condition 1 or 4. As discussed in Sections 3.4 and 3.6,

there seem to be reasons for rejecting Conditions 2 and 3, and the

analysis o wind tunnel data in Appendix B does not support their use.

Conditions 2 and 3 have been included in this appendix because o

mention by other authors (Taylor, 1970; Garratt and Hicks, 1973).

Use of these conditions would obviously result in significantly higher

flux predictions.
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APPENDIX B

Bau On Young et al. (1973) give wind tunnel data which describe

flows encountering abrupt increases in surface temperature, both over

a flat plate and a free water surface. In this appendix, the data will

be analyzed with the intent of determining the most reasonable lower

boundary condition for the model (Appendix A). However, the data

is not geophysical and not ideal for this purpose. The constant stress

layer is very shallow in the wind tunnel; not all data points will lie in

the layer, a situation which makes it difficult to apply conclusions to

the model.

The data supplied by Bau On Young consists of profiles of

temperature, vapor, velocity, heat flux, stress and vapor flux. The

cases include flows over a flat plate (FP) and over water surfaces with

free stream velocities of about 15 fps (V15) and 24 fps (V24). Meas-

urement Stations 2 and 3 were located at fetches of 30 and 40 feet

respectively.

Based on the lowest 7 to 10 profile points, the rQughness

parameters for velocity, temperature and vapor are estimated in two

ways.

Eddy Diffusivity Method (ED). The temperature gradient is

computed by

= ujcz (B-l)h-
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au
ew

a Dz

h ae
(B-2)

uw

and the gradients in (B-2) are found by a least square fit. The

logarithmic profile having the gradient given by (B-i) and passing

through the mean of the lower data points is extrapolated downward to

find the roughness parameter. Vapor and velocity data are treated in

an analogous manner. This method seeks compatibility with the

model formulation.

Least Square Method (LSQ). The lower profile points are

subjected to a least square fit, and the resulting curve is extrapolated

to find the roughness parameter. This method is direct and would

probably suffice if the data points were all in a constant flux layer.

ED serves as a useful comparison to LSQ.

Results of the computations are given in Table B. 1. The

molecular layer thickness is computed assuming lower boundary

Condition 1. Condition 2 is refuted by the free surface cases; there

seems to be no basis for the general assumption that Z0 = ZH.

Condition 3 seems to be refuted by all the ED calculations and most

of the LSQ calculations, excepting perhaps V 15-2 and V24-2 for

temperature. Condition 4, as discussed in Appendix A, is merely a

nicely formed Condition 1 and so will apply if Condition 1 applies.
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Condition 1 is supported to some degree. For FP cases, the

molecular sublayer is larger than is assumed in Chapter 3; D is

about 16. The vapor data also supports Condition 1 with ID averag-

ing about 10. However, there is a problem with the free surface

temperature cases. Using ED, D seems to shrink to about 6,

whereas, using LSQ, consistency with Condition 1 is marginal or

nonexistent (indicated by *). Also surprising are the large values of

ah in the free surface cases. One might suspect that increased sur-

face roughness results in an erosion of the molecular sublayer, but

this does not explain why the sublayer for vapor remains substantial.

Perhaps the temperature profiles are distorted by radiation divergence

or latent heat release.

In conclusion, Condition 1 (and by refinement Condition 4)

represents the lower boundary condition better than conditions 2 or 3.

Average values from ED and LSQ computations at FP-3, V 15-3 and

V24-3 were used to derive the points b, c and d in Figure 3.7.



Table B. 1. Results of analysis of wind tunnel data

Case Velocity
ED LSQ

Temnerature
ED LSQ

Vapor
ED LSQ

FP-2 .166 .059 0.84 .332 16, 130 21.

FP-3 .182 .266 LOl .155 16, .183 15.

V15-2 .385 1.87 2.00 . 199 6.0 1. 12 * 1. 27 137 15 630 8.4

V15-3 .585 1.84 201 .144 6.7 .578 2.7 1.06 .422 13. 1.34 5.4
V24-2 2.73 6.35 1. 81 .. 454 4.4 1.50 * 1.63 .067 13. .236 9.2
V24-3 3.32 4.58 1.69 519 4.5 .795 1.5 1.34 .448 9.3 .. 687 7.2

Lit




