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SOME CONTRIBUTIONS TO ASYMMETRIC ERROR CONTROL

CODES

1. INTRODUCTION

1.1. Preliminaries and Foundations

Communication systems are designed to send information or messages from

a specific source to one or more destinations. A typical communication system

can be represented as shown in Figure 1.1. The main parts of the system are

the transmitter, the channel, and the receiver. The transmitter converts the data

source to a suitable format to be sent through the channel. The channel is the

transmission media between the source and the destination. The channel might

be a digital channel, a telephone line, optical fiber cables, etc. In most cases, the

channel is noisy, and so the transmitted word may be corrupted. In this case,

after receiving this corrupted word, the receiver tries to recover the original word.

In the following paragraphs, we describe the components of Figure 1.1.

The input (data source) of the system is a source which provides a stream

of information. This stream of information might be a sequence of images such

as X-rays or pictures, or a sequence of symbols such as letters from the English

language, a set binary symbols from a computer file, a waveform such as a voice

signal from a microphone, etc. There may be a lot of redundancy in the source

symbols. Thus, the source encoder compresses this data stream, meaning that
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the data stream is represented with as few bits as possible without destroying its

information content.

The channel encoder adds some appropriate redundant bits (called the

check bits) to the compressed data and then sends it through the channel. At the

receiver, these check bits are used to recover the original data word at the receiver

by the channel decoder. Finally, the source decoder recovers the original source

data by decompressing the data obtained from the channel decoder, it maps the

resulting sequence of bits back to its original form by using the inverse 'mapping'

of the source encoder.

As mentioned earlier, the channel is noisy and so the transmitted word

may be corrupted - some bits may be lost or changed during the transmission. In

1948, Shannon published his famous paper "A Mathematical Theory of Commu-

nication" [45]. In this paper, he introduced the channel coding theory in which

he showed that channel noise does not prevent error-free communication, i.e. he

proved that information can be sent reliably over a channel at all rates (measured

in bits per seconds) up to the channel capacity (also measured in bits per seconds).

In other words, he proved that the channel capacity is the upper bound on the

number bits that can be sent per unit time with almost zero bit error probability.

Shannon's work provided only the theoretical model for the information capacity

of the channel without discussing how to achieve this capacity. After this paper

was published, researchers started working on designing codes which could achieve

the capacity of the channel. These techniques are known as error control coding.

The errors that can occur because of noise are many and varied but can be

classified into three main types, symmetric, asymmetric, and unidirectional errors.

In symmetric errors, both of 1 0 and 0 -+ 1 errors can occur simultaneously in a

data word, and this can be modeled using the Binary Symmetric Channel (BSC) as
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FIGURE Li. Typical Communication System.

FIGURE 1.2. BSC Channel.

shown in Figure 1.2. Errors in many practical systems such as telecommunication

systems, etc, can be described using the BSC model.

In asymmetric errors, only one type of errors, either 1 + 0 or 0 + 1, can

occur in a data word and the other type does not occur in any data word. In

this case, the decoder knows a priori the type of error. This type of error can

be modeled using the Z or . channel as shown in Figure 1.3. Errors in some

practical systems can be characterized using this model. For example, in optical

systems, the photons may decay or fade but no photos can be generated upon

transmissions. In these systems, the presence of photos is represented by 1 and

the absence by 0. Thus, the error characteristic of these systems can be modeled

by the Z-channel.
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FIGURE 1.3. Z-Channel and Z-Channel.

In unidirectional errors, both of 1 - 0 and 0 -* 1 errors can occur but can

not occur simultaneously in a data word. In this case, the decoder does not know

a priori by which type of error can occur. The errors in some digital devices such

as data transmission systems, shift-register and magnetic-recording mass memory,

ROM and RAM memories, and interconnection networks can be modeled using

unidirectional errors. For example, in a shift register memory, a stuck-at-i (or a

stuck-at-0), at the output of a register results in an all 1 (or all 0) output.

There are two major error control techniques used in practice Forward

Errors Control (FEC) which uses error correcting codes and Automatic-Repeat-

Request (ARQ) which uses error detecting codes. Many times a combination of

these two methods known as hybrid ARQ protocol, which uses error correcting

and error detecting codes simultaneously, are also used. These methods are briefly

explained in the next few sections.

1.2. Forward Error Control (FEC)

In these schemes, the transmitter encodes the information word into an

error correcting code word and sends it to the receiver. If the receiver detects
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errors in the received word, it attempts to determine the exact location of these

errors, and then attempts to correct them using the parity bits. The amount of

the added parity bits is expressed in terms of the code rate (R). The code rate

of transmission is the ratio between the number of data symbols transmitted per

code word to the total number of symbols transmitted per code word [52].

FEC schemes have bounded time delay equal to the processing time for

encoding/decoding and have a constant throughput equal to the code rate re-

gardless of the channel conditions. These schemes are suitable for those types of

communications that require getting the message correct in the first transmission.

On the other hand, if the receiver fails to determine the exact locations of

errors, then the received data will be incorrectly decoded and the user (or data

sink) will receive erroneous data [33]. We can summarize the main disadvantages

of using FEC techniques as [52, 29, 2, 33]:

(1) Hard to achieve high system reliability.

(2) FEC requires more coding processes than ARQ to achieve the same reliability.

(3) The decoding process is hard to implement and expensive.

Some of the widely used symmetric error correcting codes are Hamming codes [24],

linear block codes [52, 40], Hadamard codes [4, 52], cyclic codes [41-43], BCH

codes [14, 13], Reed-Solomon codes [44], and convolution codes [19, 53]. Some

codes and implementation methods for asymmetric error correction are given in

[47, 46, 9, 8, 1, 18, 36, 35].

L



1.3. ARQ Protocol

As we mentioned in the previous section, the data transmission takes place

in only one direction when using FEC techniques, i.e. from the transmitter to

the receiver. However, in ARQ techniques, data transmission is done in both

directions. Further, FEC uses error correcting codes, whereas ARQ uses error

detecting codes. The error correction codes mentioned in the previous paragraph

can also be used for error detection. The codes given in [6, 5, 25, 31, 26, 37, 38,

40, 48, 28, 32, 51, 27, 23] are examples of t-unidirectional detecting codes. The

transmitter starts sending the codewords and sets a timer for each one it transmits.

If the received word is error free, and is correctly received by the receiver, then it

will be delivered to the user or stored in a buffer. At the same time, a positive

acknowledgment (ACK) is transmitted by the receiver through a return channel

to notify the transmitter that the word has been successfully received. On the

other hand, if the receiver detects one or more errors in the received word, it

sends a negative acknowledgment (NAK) to the transmitter via a return channel

requesting it to resend the word. The system continues this retransmission until

the received word is correctly received, i.e. received without errors. This scheme

is simple to implement and provides highly reliable data transmission.

In 1964, Benice and Frey [2] classified ARQ protocols into three main types:

stop-and-wait ARQ, go-back-N ARQ, and selective-repeat ARQ. These types of

protocols differ in the following [52]:

(1) Number of words that the transmitter can send without receiving acknowl-

edgments from the receiver for the previous transmitted words.

(2) The buffering availability at the transmitter and the receiver.

Also, the performance of protocol is studied based on [33]:
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(1) Reliability (Accepted packet Error Rate). This is the ratio of the number

of accepted words that contain one or more bit/symbol errors to the total

number of accepted words by the receiver.

(2) Throughput for the system: the average number of encoded data words ac-

cepted by the receiver in the time it takes the transmitter to send a single

k-bit data packet.

In the following paragraphs, we briefly discuss these three protocols [52, 29, 34,

2].

1.3.1. Stop and Wait

This is the simplest of the ARQ protocols. After transmitting the code

word, the transmitter will wait for an acknowledgment. If the transmitter receives

ACK, it then sends the next code word. If either the timeout times expires without

receiving an acknowledgment, or the transmitter receives NAK, the transmitter

retransmits the same code word again. This procedure continues until ACK is

received. So, buffering is not necessary at both the receiver and the transmitter.

The main disadvantage of using this scheme is that the transmitter is idle while

waiting for the acknowledgment resulting in a low throughput performance. Stop-

and-wait is useful in some computer applications such as interprocessor transfer

in multiprocessing systems, where the round trip delay is extremely low. Figure

1.4 explains this protocol.



Transmitter

Transmissioi

Receiver

Retransmission Retransmission

Error Error

FIGURE 1.4. Stop-and-Wait Protocol.

1.3.2. Go-back-N ARQ protocol

If there is some buffering available in the transmitter side and not neces-

sary at the receiver end, go-back-n ARQ protocol can be used. In this protocol,

the transmitter sends the code words in a continuous stream without waiting for

an acknowledgment from the receiver. If the receiver detects an error in a received

word, it requests a retransmission for this word by sending NAK to the transmit-

ter. At this point, all subsequent incoming words are ignored until the transmitter

retransmits the requested word and the receiver receives it. Therefore, buffering

is not necessary at the receiver. When the transmitter resends a word, it also re-

sends all subsequent words (which were ignored at the receiver after detecting the

first erroneous word). This makes buffering necessary at the transmitter. Figure

1.5 explains this protocol.

1.3.3. Selective-Repeat ARQ protocol

If some buffering is available at both the transmitter and the receiver,

Selective-Repeat ARQ protocol can be used and implemented. In this protocol,

the transmitter sends the words in a continuous stream without waiting for ac-



Transmitter 1I2I3F4I
\\ \

Transmission

Receiver ji 2

Error

Transmitter

Retransmission (G-back-7)

FIGURE 1.5. Go-Back-N Protocol.

Transmission

Receiver

Retransmission Retransmission

Error Error

FIGURE 1.6. Selective Repeat Protocol.

knowledgment from the receiver. If the receiver detects an error in one of the

received words, it requests a retransmission for this word by sending NAK to the

transmitter. At this point, the transmitter resends the required word and then

resumes transmitting the new code words. So, buffering is necessary at both sides.

Figure 1.6 explains this protocol.

1.4. Hybrid ARQ protocol

In ARQ, as explained earlier, if the receiver detects one or more errors in

the received word, it asks the transmitter to retransmit the same word again, and

this procedure is repeated until the word is correctly received. This scheme is
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simple to implement and provides high reliability but it has some disadvantages

such as [52, 29, 2, 33]:

(1) It has a variable delay time.

(2) It is harder to implement when the round-trip delay increases.

(3) The throughput of the system will rapidly decrease when the channel error

rate increases

To overcome the drawbacks of both of FEC and ARQ schemes, a combination

of both schemes, called hybrid ARQ protocols, have been developed. There are

two types of hybrid-ARQ protocols type-I hybrid ARQ and type-Il hybrid ARQ,

which are described below.

1.4.1. Type-I Hybrid ARQ protocol

In this type of protocol, parity bits are included for both error correction

and error detection. (Note that a code is capable of correcting t-errors and detect-

ing d (d> t) errors if and only if the minimum distance of the code is t + d + 1.)

If the receiver detects an error in the received word, and the number of errors is

within the error correcting capability of the designed code, then the errors will be

corrected and ACK will be sent to the transmitter requesting a transmission of

the next word. On the other hand, if the word is received with detectable but un-

correctable errors, then the receiver discards the erroneous word and sends NAK

requesting a retransmission of the same word. This process continues until the

word is successfully accepted or the maximum retransmission number has been

reached [34, 52].
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1.4.2. Type-Il Hybrid ARQ protocol

The main way that the type-TI hybrid ARQ protocol differs is that, it

sends additional parity check digits for error correction to the receiver only if they

are needed. The words that could not be successfully decoded at the receiver

are saved. When the transmitter receives a request for a retransmission, it sends

additional parity bits to the receiver. The receiver appends these additional parity

bits to the saved (corrupted) words and attempts to correct the errors. This

process is repeated until the word is successfully decoded. [33, 52, 34].

1.5. Diversity Combining for the Z-Channel

In the case of the Z-channel, the throughput of the ARQ system can be

improved using a simple diversity combining technique without adding much to

the hardware. The main idea is briefly explained below assuming that the system

uses a t-AED code [30].

At the receiving end, the received word is combined with the previously

combined word. This word combination is done by a bit-by-bit logic OR opera-

tion as shown in Figure 1.7. When the combined word is still in error, a NAK

is sent to the transmitter requesting it to resend the same word. However, if the

combined word is error free, the word is accepted and ACK is sent to the trans-

mitter requesting it to send the next codeword. As an example, assume that the

codeword X = (0100111010101) is transmitted over the Z-channel and is received

as (0100010010001), i.e. it suffers from three bit errors. Assume that the code

can detect up to 3 errors. Now, the receiver requests the transmitter to resend the

word and in each of the consecutive steps, the received word is bit-by-bit OR-ed

with the previously stored word. Assuming that the sequence of the first three
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Transmitter

FIGURE 1.7. Packet reusing scheme for the Z-channel.

X
]

Zr

0 0000000000000

1 0100010010001 O10O010O10O1

2 0100101010001 0100111010001

0100101000101 0100111010101

TABLE 1.1. A sequence of transmissions for the codeword X = 0100111010101

over the Z-channel using diversity combining technique.

retransmissions yield the words given in Table 1.1, the codeword X is recovered

after these three retransmissions. In this table, Zr = Zr_i V Xr is the combined

word at each step r.
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1.6. Outline of the Dissertation

Since all the work in this thesis are for the asymmetric errors, we first

study the capacity of the asymmetric channel. To the best of our knowledge,

these result is not known till now. Bose and Lin [11] have designed systematic

codes for detecting asymmetric errors. These codes can detect up to 2, 3, and 6

errors using 2, 3, and 4 check bits, respectively. On the other hand, two different

methods are proposed for the cases of check bits r > 5. The codes designed

based on Method 1 can detect up to 2r2 + r 2 errors and based on Method 2

up to 5 x 2" + r 4 errors where r > 5. Table 1.2 shows the error-detecting

capabilities of the Bose-Lin codes designed by both Method 1 and Method 2. In

some applications, it may be important to apply the Bose-Lin to a larger block of

data to reduce the number of times the check needs to be performed, at the risk of

exceeding the maximum detected capabilities. In one recent example, a Bose-Lin

code has been used in conjunction with a linear-feedback shift register (LSFR)

multiple-input signature register (MISR) in order to decrease the probability of

undetected faults. Hence, studying the performance of Bose-Lin codes when the

errors are beyond the maximum designed error detection capabilities is worth.

Although there are some codes designed before to detect unidirectional

errors over Zm, m > 2, we design a new code but with few number of check bits.

In ARQ protocols, as mentioned before, it is important to improve the

performance of the system by reducing the number of retransmissions needed to

receive a correct code. In our work, we study the performance of some codes

over a discrete memoryless m-ary asymmetric Z-channels, m 2, by deriving an

expression for the number (or the expected number) of retransmissions needed to

receive a code correctly. First, we derive the expected number of retransmissions
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for pure ARQ protocols. Then, we do the same for type-I hybrid ARQ protocols,

and apply the derived expression to obtain the throughput of some special cases

of the m-ary asymmetric channels.

Finally, we design a new diversity combining scheme to reduce the number

of retransmissions. In this scheme, the correcting and detecting process are used

based only on the combined word not on the received word. Due to the charac-

teristics of the asymmetric errors and the way our scheme works, the number of

errors in the combined word will be less than or equal to the number of errors in

the previous one. Hence, the number of retransmissions needed to received a code

is decreased. Later we give a numerical comparison between the performance of

type-I hybrid ARQ and ARQ with diversity combining protocols.

The thesis is organized as follows. In Chapter 2, the capacity of the asym-

metric channels is derived. Further, the capacity of the binary symmetric channel

(BSC) and the Z-channel can be obtained as special cases of this formula.

In Chapter 3, some analysis of extended error detecting capabilities of

Bose-Lin codes are described.

In Chapter 4, a new class of a systematic t-unidirectional error detecting

codes over Zm, m 2 is designed. The codes can detect 2 errors using r = 2 check

bits and up to m2 + r 2 errors using r > 2 check bits. Some upper bound on

the maximum number of detectable errors when using r check bits are described.

In Chapter 5, we analyze the throughput of the following ARQ schemes

over the m-ary Z-Channel, m 2:

(1) ARQ protocols using t-Asymmetric Error Detecting (t-AED) codes.

(2) ARQ protocols using All Asymmetric Error Detecting (AAED) codes.
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r Number of Errors Detected
Methodl Method2

5 11 11

6 20 22

7 37 43

8 70 84

9 135 165

10 264 326

11 521 647

12 1034 1288

TABLE 1.2. Maximum number of errors detected by Bose-Lin codes using

Method 1 and Method 2.

(3) Type-I hybrid ARQ protocols using t-Asymmetric Error Correcting and All

Asymmetric Error Detecting (t-AEC/AAED) codes.

(4) ARQ Protocols with diversity combining using t-Asymmetric Error Correct-

ing and All Asymmetric Error Detecting (t-AEC/AAED) codes.

Conclusions and future works are given in Chapter 6.
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2. CAPACITY OF THE ASYMMETRIC CHANNEL

2.1. Introduction

Asymmetric channel, as given in Figure 2.1, is the channel with {O, 1} as

input and output alphabets, and Pi and P2 as the probabilities of 0 -+ 1 and 1 -+ 0

bit errors, respectively. In many practical systems, such as optical fibers and disks,

semiconductor memories, etc., the errors can be modeled using the asymmetric

channel. In this chapter, the capacity of asymmetric channel is analyzed.

This chapter is organized as follows: fundamentals and definitions of asym-

metric channel, and capacity are briefly given in Section 2.2. Analysis and achiev-

ing the capacity of asymmetric channel are described in Section 2.3.

2.2. Definitions and Fundamentals

In this section, we will briefly give some definitions from information theory.

For a channel with input alphabet S and output alphabet Sy, let p(yjIXj) be the

probability that the output from a channel is yi given that the input to the channel

is x2. Then, we can represent the channel by a (ISv I x lSxI) transition probability

matrix, M, such that M = [m]=[p(yIx3)], where i =0,1,2, 1, and j =

0,1,2, . 1, i.e.

P(YoIXo) p(yixo)

M
p(yolxi) p(yIxi)

p(yoJx1s1) p(y1Ix!sl)

p(y,iIx0)

p(y1s,1xi)

p(yisilxisi)
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x Ip1 y

'p2

FIGURE 2.1. Asymmetric Channel.

A channel is said to be a symmetric channel if the rows of the transi-

tion probability matrix, M, are permutations of each other, and the columns are

permutations of each other. For example, the binary symmetric channel (BSC)

shown in Figure 1.2, in which p is the probability of the error, has the following

transition probability matrix:

M
(Po10 = 1P p(lIO) p

k..
P(°Ii)= p(ljl)=lp

Entropy is a measure of the uncertainty in a random variable. It is the

number of bits on the average required to describe the random variable. The

entropy of a random variable X with a probability mass function p(x) is defined

as:

H(X) = >p(x)log2p(x).

The conditional entropy, H(XIY), is the entropy of a random variable

X given another random variable Y. The mutual information, I(X, Y), is the

measure of the amount of information that one random variable Y contains about

another random variable X. The mutual information for the two variables X, and



FIGURE 2.2. Erasure Channel.

Y is defined as:

I p(x,y) ]
I(X,Y) = H(X) H(XIY) = p(x,y)log2

Lp(x)p(y)]
x,y

The channel capacity, C, of a discrete memoryless channel with input X and

output Y is defined as the maximum mutual information, i.e.

= maxl(X,Y),
p(x)

where the maximum is taken over all possible input distributions p(x).

For example, the information capacity of a binary symmetric channel

(BSC), in which p is the probability of the error, is C(p,p) = 1 h(p) bits [15],

where h : [0, 1] -+ R is the entropy function

h(x) = [xlog2x+ (1 x)log2(1 x)].

Also, the information capacity of a binary erasure channel shown in Figure

2.2 is C = 1 a bits [15], where a is the probability of occurrence of an erasure.

A third example is that the capacity of Z-channel [49], in which the input and

the output alphabets are {0,1}, and the probability of the crossover 1 -4 0 errors

is p, and the probability of the crossover 0 -* 1 errors is 0 as shown in shown in

Figure 1.3, is

h(p) h(p)
Cz(p)

2h(p)/(1-p) + 1 [2h(P)/(1_P) + 1](1 )
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Definition 1 An (M1, n) code for the channel (Sx,p(y(x), Sr), where M1 is the

number of codewords with length ii, consists of the following:

(1) An index set {1,2,...,M1}.

(2) An encoding function X : {1, 2, , M1} -* S, yielding codewords

XTh(1), X(2),. , X(M1).

(3) A decoding function

which is a deterministic rule which assigns a guess to each possible received

vector.

Definition 2 (Probability of error): Let X = Pr(g(Y') iIx = X(i)) be the

conditional probability of error given that index i was sent.

Definition 3 The maximal probability of error )*.('') for an (M1, n) code is

defined as:

A(n) = maxE{l2M}X

Definition 4 The rate, R, of an (M1, n) code is R = log2Mi/n bits per trans-

mission, i.e. R is the ratio between the length of a source message and the length

of an encoded message.

A rate R is said to be achievable if there exists a sequence of (2fh?, n) codes such

that the maximal probability of error -* 0 as n - oo [15]. The next theorem is

the fundamental result in information theory which specifies the maximum number

of codewords that we can define and maintain completely distinguishable outputs.

In this theorem, Shannon proved that the information can be sent reliably over a

channel at all rates up to the channel capacity [15, 45].
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Theorem 2.2.1 (The Channel Coding Theorem) All rates below capacity C are

achievable. That is, for every e > 0 and rate R < C, there exists a sequence

of (2nh, n) codes with maximum probability of error )) -+ 0. Conversely, any

sequence of (2', n) codes with (n) 0 must have R < C.

2.3. The Capacity of the Asymmetric Channel

In this section, we find the capacity of asymmetric channel shown in Figure

2.1. Let Pi (P2) be the probability that a 1 (0) is received when 0 (1) is transmitted.

Let p(yx) be the probability that the output from a channel is y given that the

input to the channel is x. Then, the following transition probability matrix, M,

defines the asymmetric channel:

i.e.

(p(OfO)

P(lO)M=
p(OIi) p(1I1))

P1M=(1P1
P2 'P2

Let X E {0, 1} be a random variable with p(X = 0) = 1 q, and p(X 1) = q.

Suppose that X is fed as input to the asymmetric channel, and Y is the output

with the following probabilities:

p(Y=0)= (1-q)(1-pi)+qp2, and

p(Y = 1) = (1 q)pi +q(1 -p2).

Define I(X, Y) as the mutual information between the two random variables X

and Y, i.e. I(X, Y) = H(Y) H(YX) as given in Figure 2.3. Thus, the capacity



H(X,Y)

H 11(Y)

FIGURE 2.3. Mutual Information.

of the channel is defined as:

= max I(X, Y) = max [H(Y) H(YJX)].
qE[O,1] qE[O,1}

Let h: [0, 1] -+ R be the entropy function as defined before,

h(x) = [xlog2x+(1 x)log2(1

then, the entropy of Y is

1
H(Y) = [(1 q)pi + q(1 P2)] log2

[(1 q)pi + q(1 P2)1

1

=h[(1 -q)pi +q(1 P2)].

For the entropy function of Y given X, we have

H(YIX) = p(x)H(YIx)

= p(X = 0)H(YIX =0) + p(X = 1)H(YIX =1)

= (1 q)H(YJX = 0) + q H(YIX = 1),

where
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1
H(YiX = 0) = p(Y = OiX = 0) log2

p(Y OiX = 0)

1
+ p(Y = lix = 0) log2

p(Y = liX = 0)

=(lp1)Iog2
1

+p11og21=h(pi),
P1

and similarly,

Hence,

1
H(YIX = 1) = p(Y = OiX = 1) log2

p(Y = 0X = 1)
1

+p(Y = lX 1)log2(
= = 1)

1 1
=p2.log2 +(1 p2)Iog2 = h(p2).

P2 'P2

H(Y1X) = (1 q)h(p1) + q h(p2).

22

= I(X, Y) = H(Y) H(YIX) = h[(1 q)p + q(1 P2)1 (1 q)h(pi) qh(p2)

= h{pi +q(l P1 P2)] (1 q)h(p1) qh(p2).

Consider the above function as a function of q e [0, 1], ,P2'
as:

f12(q) = h[pi + q(1 P1 P2)1 (1 q)h(p1) q h(p2).

For all Pi ,P2 E [0, 1], f1 ,Pz (q) is continuous for all q E [0, 1J, and derivable for all

q e (0, 1). Thus,

f1,2(q) = (1 Pi P2) h' [P1 + q(l P1 p2)J + h(p1) h(p2)

Since h'(x) log2 [(1 x)/x], then we have,

41,P2(1) = log2
[pi + q(l Pi P2)]

(lP1 p2)+h(pi)h(p2).
Pi +q(1 p1 p2)

Now, let f1,2(q) = 0. Thus, we will have

1 [q(l P1 -P2) +pi] >
h(p2) h(pi)

log2
q(lplp2)+pl 1P1P2
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1 Ih(p2)-h(p1)}
1 > 21 1p1p2q(1pip2)+p1

1
=. q(1 Pi P2) + P1 f; h(p2)_h(pl)1+1

2 [ 1P1P2

=q<[
1

P1] /[1 Pi p21 = qmax(pl,p2).
21 1-P1-P2

= cp1,p2 = maxqE[o,i]I(X, Y)

h ((1 qma)pi + qmax(1 p2)) (1 qmax)h(pi) qmaxh(p2)

= h(qma(1 Pi P2) +pi) (1 qmaz)h(pi) max h(p2)

= h (qmax(1 Pi P2) + P1) umax (h(p2) h(pi)) h(p1)

1- h (h(p) h(p ))/(1 ) + 1

1 1 Ih(p2) h(pi)1
[2(h(p2)_h(pi))/(1pi_p2) + 1

PiJ
L

(1 Pi P2)]
h(pi).

To conclude this section, we give three special cases:

Case 1:

When both of Pi and P2 are small, we will have

h () [h(p2) h(pi)J h(pi)

Case 2:

When Pi = P2 p, we will have
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Binary Symmetric Channel 1p1 T
z-Channel

ip2

Asymmetric Channel

FIGURE 2.4. BSC, Asymmetric and Z channels.

/ 1 '\ / 1 \/ 1 "
= = h

(2° + 1) (2° + 1 1 2p)
[h(p) h(p)] h(p)

h(p)=lh(p).

This is the same as the capacity of a binary asymmetric channel with bit error

probability p.

Case 3:

When Pi = 0 and P2 = p, we will have

F 1
1

[2

1 1

2 1-0-p + j 1-0-p + 1 1
Li o

[h(p) h(0)} h(0).h(p)-h(0)
= h

L

h(p)-h(0)
I

h h(p)

2h(p)/(1p) + 1 [2h(P)/(1_P) + 11(1

This is the same as the capacity of a Z-channel with bit error probability p.

Figure 2.4 shows the BSC, Asymmetric and Z-Channels.
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3. SOME ERROR DETECTING PROPERTIES OF BOSE-LIN
CODES

3.1. Introduction

The error characteristic of some VLSI systems is unidirectional or asym-

metric [5]. In the asymmetric case, all errors are of only one type, say 1 -* 0,

whereas in the unidirectional case, all errors within a word can be of the same type,

but they can be 1 -* 0 type in one word and 0 -* 1 type in another word. From the

error detecting point of view, these cases are equivalent, meaning that a code ca-

pable of detecting t-asymmetric errors is also capable of detecting t-unidirectional

errors. Optimal all unidirectional error detecting codes, both systematic and non

systematic, are given in [21, 3]. Optimal non-systematic t-asymmetric error de-

tecting codes are given in [7]. Systematic codes, where check bits are separated

from information bits, capable of detecting t-unidirectional errors regardless of

data word length are given by Bose and Lin in [11].

Unidirectional and asymmetric errors are typical of stuck faults in VLSI

circuits. These conditions can also be approximated by channels such as some

fiber optic links with very asymmetrical error transition probability. Let tmax be

the maximum number of errors a Bose-Lin code is designed to detect. Typical

applications for Bose-Lin codes to date (e.g., [22]) have been ones in which the

results are checked often enough that no more than tmax errors will occur in the

code word.

In this chapter, the error detecting capabilities of Bose-Lin codes beyond

these tinax-errors are analyzed [20]. An example application where a Bose-Lin

code could encounter such large number of errors is if it were used to detect faults

in blocks of data transferred over a bus with a data path stuck fault. If the



bus is narrower than the block length, multiple bits can be affected by the bus

fault. In other applications, it may be beneficial to apply the Bose-Lin to a larger

block of data (or to data passing through more processing) in order to reduce the

number of times the check needs to be performed, at the risk of exceeding tmax.

In one recent example involving a complex system-on-chip, a Bose-Lin code has

been used in conjunction with a linear-feedback shift register (LSFR) multiple-

input signature register (MISR) in order to decrease the probability of undetected

faults.

The chapter is organized as follows: Bose-Lin code constructions are briefly

given in Section 3.2. Some analysis of Bose-Line codes capable of detecting more

than the tmax errors is described in Section 3.3.

3.2. Bose-Lin Codes

The Bose-Lin codes can detect up to 2,3 and 6 errors using 2,3, and 4 check

bits, respectively. For all check bits r > 5, two methods are used. Using r check

bits, the codes designed based on Method 1 can detect up to 22 + r 2 errors and

based on Method 2 up to 5 x 2" + r 4 errors. In this chapter, some analysis

of the codes for detecting more than these maximum designed error detection

capabilities are given. Before describing the main results, some definitions and

notations, which are useful in studying the error detecting capabilities of these

codes, are given.

Let X = (x1, x2, . , x) and Y = (yi, Y2, ,
y,) be any two n-tuples over

GF(2). Let N(X, Y) denote the number of 1 -3k 0 crossovers from X to Y. For

example, if X 1011 andY = 0101, then N(X,Y) = 2 and N(Y,X) = 1. In
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general N(X, Y) N(Y, X). From this definition, we can express the Hamming

distance between X and Y as D(X, Y) = N(X, Y) + N(Y, X).

Two words X and Y are called unordered if N(X, Y) > 1 and N(Y, X) 1.

For example if X = 11011, Y = 10001, and Z = 00111, then X covers Y, which is

represented by Y <X, whereas X and Z are unordered. Further Z X indicates

that X does not cover Z.

The following theorem describes the unidirectional error-detecting capabil-

ity of block codes [11].

Theorem 3.2.1 A code C is capable of detecting t-unidirectional errors if and

only if for all X, Y E C, either X and Y are unordered or D(Y, X) t + 1.

In the next few paragraphs, we briefly describe the Bose-Lin codes. We

assume that k > 2'; otherwise, we could use Berger codes to detect all errors. The

design technique of these codes are described in the following three cases.

3.2.1. Double and Triple Error-Detecting Codes

Double and triple error-detecting codes require 2, and 3 check bits, re-

spectively. In this case, the check symbol CS for each code word is generated as

follows. Count the number of 0's, k0, in the information part and take this modulo

2, i.e. CS k0 (mod 4) for the double error detecting codes, and CS k0 (mod

8) for the triple error-detecting codes.

3.2.2. Error-Detecting Codes with 4 Check Bits

In this case, the check symbol CS for each code word is generated as

follows. Count the number of 0's, k0, in the information part taken modulo 8,



convert the result to a binary number, and finally add 4, which in binary is 0100,

i.e. CS k0 (mod 8)+4, where k0 mod 8, and 4 are 4-bit binary numbers. In

other words, the Most Significant Bit (MSB) of the check bit is the complement

of the second MSB. This can detect up to 6 errors.

3.2.3. Error-Detecting Codes with more than four check bits

3.2.3.1. Method 1

Divide the check bits into two parts. The first part contains the first two

bits of the check part. The two most significant bits can take 01 and 10 only. The

other part contains the remaining r 2 check bits which take all 2r_2 possible

binary (r 2) tuples. So, the number of check symbols will be 2 x 2._2 = 2r_1.

The least (r 1) check bits are obtained by taking k0 mod (2_1) in binary.

The MSB of the check bits is then obtained by complementing the second MSB

of the check. For example, when r = 5 there will be 25_i = 16 check symbols

where the repetitive check symbol sequence for the information symbols will be

10111, 10110, 10101, 10100, 10011, 10010, 10001,10000, 01111, 01110, 01101,

01100, 01011, 01010, 01001, 01000. These codes are capable of detecting up to

2I_2 + r 2 errors.

3.2.3.2. Method 2

Divide the check bits into two parts. The first part contains the first four

bits of the check part which always take any one of the 2-out-of-4 vectors namely,

0011, 0101, 0110, 1001, 1010, or 1100. The other part contains the remaining r-4



check bits which take any one among the 2' possible binary (r 4) values. So,

the number of check symbols will be 6 x

To generate the check symbols, first count the number of 0's in the infor-

mation part of the code word taken mod 6 x 2' and then express it in (r 1)- bit

binary, i.e. the intermediate check symbol for the received word will be CS' =

(mod (6 x 2r_4)) where k0 is the number of 0's in the information part. The 3

most significant bits for Cs' can be {000, 001, 010, 011, 100, 101}. Next, define a

1 1 mapping, f, from these symbols to 2-out-of-4-words to get the check. These

codes are capable of detecting 5 >< 2r-4 + r 2 errors.

Notice that when r = 5, both methods detect up to 11 errors. But, when

r> 5, codes designed by Method 2 are superior since 5x2r_4+r_4> 2r_2+r_2.

3.3. Error detecting properties

The following notation is used in this Section:

k: number of information bits,

k0: number of zeros in the information part of the code word,

k: number of zeros in the information part of the received word,

number of check bits,

n: = k + r, length of the code,

Xh: check value of the code word,

check value of the received word,

E: number of errors in the received word,

e: number of errors in the check part,

E e: number of errors in the information part,
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In this section, first we describe the error detecting capabilities of codes

using 2 (and 3) check bits, when the number of errors are more than 2 (and 3)

respectively. Then, some rules to check whether a given number of errors greater

than 2'_2 + r 2 (or 5 x 2r_4 + r 4) can be detected or not using Method 1 (or

Method 2) are given. The analysis is done under the assumption of 0 * 1 errors.

They are also valid for 1 + 0 errors.

For the codes with r = 2 or 3 check bits, using k = k0 (B e), the

syndrome, 5, can be defined as:

S (Xh k)( mod 2?) [Xch (k0 (E e))] mod 2?)

[E e (xh xCh)](mod2).

If S = 0, then the decoder declares that there is no error in the codeword. On the

other hand, if S 0 then there must be some errors in the received word. Error

detecting capabilities of these codes with r = 2 and 3 can be analyzed using this

expression for S.

Theorem 3.3.1 The two check bits code detects B errors if E 1 (mod 4) or

B 2 (mod 4).

Proof: Let S [(E e) (xh xCh)] (mod 4). If B = 4j + 1, j N, then the

values for (E e) and (xC,, xCh) are as follows:

(i) e=0= Ee=4j+1 and (xchxh)=O.

(ii) e=1 = Ee=4j and (xchx'Ch)=1 or-2

(iii) e = 2 B e = 4j 1 and (xe,, XCh) _3.

In all these cases S 0 (mod 4).

Similarly, when E = 4j + 2, the possible values are:
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(i)

(ii) e 1 = E e 4j + 1 and (xh xCh) = 1 or 2.

(iii) e=2= Ee=4j and (xChx'h)= 3

Thus, S 0 (mod 4) in all these cases.

On the other hand, when E = 4j + 3 and e = 1, there exist values E e = 4j + 2

and (xh xCh) = 2. For these values S = 0. Similarly, when E = 4j, j 1

with e = 0, S 0 (mod 4). In these two cases, errors are not detectable.

Theorem 3.3.2 The code with 3 check bits detects E errors if E 1,2,3, and 6

(mod 8).

Proof: Since E 1, 2, 3 errors can be detected using r = 3 check bits [11], then

we have

Ve 0, 1, 2,3, [(E e) (xh XCh)J mod 8 0,

where Xch and Xch are the check values of the code word and the received word

respectively, and E e, and e are respectively the number of errors in the received

information and check parts. Thus,

Vj>1, [(Ee)(xChx)+8j} mod8 0.

= Vj > 1, [(E + 8j e) (xh xCh)} mod 8 0.

= V j > 1, and V E = 1, 2, 3 errors, E + 8j can be detected using 3 check bits.

For E = 8j + 6, the following possibilities can occur:

(i)
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(iii) e = 2 = E e = 8j + 4 and (xC,, xCh) = 3, 5, or 6.

(iv) e=3=' Ee=8j+3and(xChx)=-7.

In all these cases, S 0 (mod 8).

On the other hand,

(i) When E = 8j+4, there exists e = 2 such that Ee = 8j+2 and (xChxh)

6. In this case S 0 (mod 8).

(ii) When E = 8j+5, there exists e = 1 such that Ee = 8j+4 and (xChx'h) =

4. In this case S 0 (mod 8).

(iii) When E = 8j + 7, there exists e = 1 such that E e = 8j + 6 and

(xc,, Xh) = 2. Again S 0 (mod 8).

(iv) With E = 8j, j> 1 and e = 0, in this case S 0 (mod 8).

In all these cases, the errors are not detectable.

Theorem 3.3.3 The code with 4 check bits detects E errors if E 1,2,374,5 and

6 (mod 8).

Proof: Since E 1, 2, 3, 4, 5 and 6 errors can be detected using r = 4 check bits

[11], then we have,

V e = 0,1,2,3,4, and E = 1,2,3,4,5, [(E e) (xe,, x,,)] mod 8 0

Vj 1, [(E e) (xe,, xe,,) + 8j] mod 8 0.

V j 1, [(E+8je) (x,,x,,)} mod8 0.

V j 1, and V E = 1, 2,3,4, 5, and 6 errors, E + 8j errors can be detected

using 4 check bits.
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On the other hand, when E = 8j +7, there exist values E e = 8j +5 and

j 1 with (xh xCh) = 3. For these values, S = 0. Similarly, when E = 8j,

j 1 with e = 0, S 0 (mod 8). In these two cases, errors are not detectable.

For codes designed by Method 1, if there is an error in the first two bits of

the check, then the decoder immediately detects this error. Thus, in the following

analysis, it is assumed that there is no error in the two MSB of the check. For

similar reason, in the analysis, it is assumed that there is no error in any of the

four MSB of the check for the codes designed by Method 2.

Definition 5 Let L,. be the designed maximum number of errors detected by Bose-

Lin code when using r check symbols. Then for Method 1: Lr 2r-2 + r 2, and

for Method 2: Lr = 5 x 2' + r 4

For codes designed by Method 1, the syndrome, can be defined as:

S (xh k) (mod 2r_1) (ko (E e))] (mod T'')

[(E e) (xh Xh)]( mod 2r_1).

Similarly, for Method 2, the syndrome is defined as:

S [(E e) (xC,, Xh)]( mod (6 x 2')).

Lemma 1 (i) For Method 1, 21j errors can't be detected using r check bits for

some e errors in the check part, e = 1,2,3,,r 2 andj 1.

(ii) For Method 2, 6 x 24j errors can't be detected using r check bits for some e

errors in the check part, e = 1,2,3, .,r 4 andj 1.

Proof:

(i) Vr > 4, when e = 1, Xch Xch can be equal to 1. Thus

S [(E e) (xh Xh)] (mod (2r_1)) [(2r_lj 1) (-1)} (mod (2')) 0.
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= 2"1j errors can't be detected using r check bits, j 1.

(ii) The proof is similar to the previous one except mod (6 x 2r_4) needs to be

used instead of mod (2r_1

Lemma 2 (i) For Method 1, E + 2"'j errors can be detected using r check bits

if E errors can be detected using r check bits, j 1.

(ii) For Method 2, E can be detected using r check bits if E + 6 x 2'4j can be

detected using r check bits, j > 1.

Proof:

(i) E can be detected using r check bits if

Ve = 1,2,,r 2, [(E e) (xh xCh)I mod (2r_1) 0.

4Ve = 1,2,.,r-2, [(Ee) (xh _Xh)+2r_1j] mod (21) 0,

j = 1,2,3...

Ve 2, [((E+2r_lj) e) (xh xCh)} mod (2r_1) 0,

:1= 1,2,3,.

E + 2"'j can be detected using r check bits, j 1.

(ii) The proof is similar to the previous one except mod (6 x 2') needs to be

used instead of mod (2r_1

Lemma 3 (i) For Method 1, not all 2'1j 1 errors can be detected using r check

bits with e errors in the check part, e = 1,2,3, ,r 2, andj 1.

(ii) For Method 2, not all 6 x 2'4j 1 errors can be detected using r check bits

with e errors in the check part, e = 1,2,3,,r 4, andj>1.
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Proof:

(i) Vr 1, when e = 2, Xch Xch can be equal to 3. Then,

S [(E e) (xh xCh)] (mod (2r_1))

1) 2) (-3)] (mod (2'')) 0.

Thus, some 2''j 1 errors can't be detected using r check bits, j 1.

(ii) The proof is similar to the previous one except mod (6 x 2') needs to be

used instead of mod (2'').

Theorem 3.3.4 For Method 1, let E' be the number of errors in the codeword

and let E E'(mod (27._i)). Then E' can be detected using r check bits if E

satisfies one of the following conditions:

(1) 1 <E<Lr=2'2+r-2.

(2) For anyE in the range L7. = 2r_2+r_2 <E <Br = Lr_i+2'2(r5) =

27._2 + 2- + 2, E (Lr Lr_i) = E (2'- + 1) errors can be detected

using r 1 check bits.

(3) For any E in the range Br = 2._2 + 2- + 2 < E < 2'', E errors can be

detected using r 1 check bits.

Proof:

Case (1): Already proved in [11].

Case (2): Assume that E1 = E (L,. L7._1) errors can be detected using r 1

check bits. Then Ve1 = 0, 1, 2, 3, , r 3,

[(E1 e1) (Ych yCh)lmod(2 ) 0, (3.1)

where Ych, and y1, are the check values of the code word and the received word

respectively. Further, E1 e1, and e1 are respectively the number of errors in the

received information and check parts.
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Now, suppose that E errors can't be detected using r check bits. Then

there exists at least one value of

e= 1,2,,r-2suchthat [(Ee)(xChxh)} mod (2_1)

Since E = E1 + (Lr Lr_i) = E1 + + 1, we will have

[(B1 e) (xh XCh) + (2 + 1)] mod 2._1 0.

= [(Er e) [(xh xCh) - (2r_3 + 1)]] mod (2r_1) 0.

Since B1 <E < Br <21, we will have

[(E1 e + 1) [(xCh xCh) - 2r_3]] mod (2r_2) 0.

[(Er e + 1) [(xe,,
XCh) - 2r_3] - 2r_2]mod(2r_2) 0.

= [(B1 e + 1) [(xh XCh) + 2r_3}] mod (2r_2) 0.

When e = e1 + 1, there exists at least one value of e = 1, 2, 3, , r 2 such that

(xC,, XCh) + 2' is equal to (Ych Yh) and in this case we will have

[(B1 ei) (Ych Yh)l mod (2._2) 0.

= E errors can't be detected using r 1 check bits which is a contradiction to

the original assumption.

Hence, E can be detected using r check bits and so, E' can be detected using r

check bits by applying Lemma (2).

Case (3): Assume that E can be detected using r 1 check bits. Then Ve1 =

0,l,2,3,.,r-3,

[(E ei) (Ych yh)]mod(2'2) 0 (3.2)

where Ych, and Ych are the check values of the code word and the received word

respectively. Further, E e1, and e1 are respectively the number of errors in the
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received information and check parts.

By using r check bits, there are (7;2) different values for each(xh Xh), e =

1, 2, 3,. , r 2. The first (T;3) values of (xh xCh), (i.e. with the (r 3)rd

check bit not in error), are the same values as the corresponding (Ych Yh) using

r 1 check bits. Then, for all of these values, using E 2I1, we obtain

[(E e) (xCh xCh)]mocl(2 ) 0, 1 (xh xCh) 2r_3 (3.3)

The remainin° (r-3' values of (xh Xh) are equal to _(2r_3 + A) where

A = zero when e = 1, or

A summation of any e 1 distinct numbers from {20, 21, 22, .. . r-3, 2r_2},

e=2,3,4,,r-2.

Now, for these values, we want to prove that:

[(E e) (xch xCh)]mod(2 ) 0 . (3.4)

Assume that M = (E e) (xCh xCh). Since 2?'_l > E> Br, we will have

2r_1 > M> (Br e) (xh xCh).

=M> [23+(r_3)+2r_2_(r_5)]_e_(xch_xh)].

M> [2r_3 + (r 3) + 2r_2 (r 5)] e + (2" + A)].

Since 2r_1 > E M, we get

M mod (2r_1) > (2r_2 + 2 + 2._2 e + A) mod (2._1)

= M mod (2._1) (2'' + 2 e + A) mod (2r_1).

M mod (2"')> (2e+A), e = 2.
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When e 1, the value of A can be 3 <A < 2', and so Ve >1,2 e+A >0.

Thus, Ve, M mod (2r-1) 0.

=' [(E e) (xh xCh)Imod(2 ) 0. (3.5)

This implies that E errors can be detected using r check bits. Applying Lemma

(2), we get E' errors can be detected using r check bits..

Table 3.1 lists the errors that can be detected using two, three, and four check

bits, and with r > 5 check bits using Method 1.

Example 1 Let us check whether E = 110 errors can be detected or not using

Method 1 with r = 8 check bits. Since r = 8, we have B8 = 98 and L8 = 70.

Thus, we need to apply Rule (3) to check whether 110 errors can be detected using

7 check bits. Now, we can apply Lemma (2) to check this. Since 110 6 mod

26, we need to verify whether 6 errors can be detected using 7 check bits. In this

case, B7 = 50 and L7 = 37. Since 37 = L7 < 46 < B7 = 50, we need to apply

Rule (2), i.e. need to check whether 46 (2 + 1) = 29 errors can be detected

using 6 check bits. Since 29 B6 = 14, we need to apply Rule (3), i.e. need to

check whether 29 errors can be detected using 5 check bits.

Now, apply Lemma (2) again, i.e. need to check whether 29 mod 2 13

errors can be detected using 5 check bits. Since 11 = L5 < 13 < B5 = 26, we

need to apply Rule (2), i.e. need to check 13 - (22 + 1) = 8 errors can be detected

using check bits. Applying Lemma (1), we know that 8 errors can't be detected

'using 4 check bits for some errors. This implies that some E = 110 errors can't

be detected using 8 check bits.
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Theorem 3.3.5 For Method 2, let E' be the number of errors in the code word

and let E = E'(mod(6 x 2')). Then E' can be detected using r check bits if E

satisfies one of the following conditions:

(1) 1<E<Lr=5x2T_4+(r_4).

(2) ForanyEintherangeL=5x2r_4-j-(r_4)<E<B=L_16x2r_5_

(r 7) = 11 x 2r_5 + 2, E (L,. Lr_i) = E (5 x 2' + 1) errors can be

detected using r 1 check bits.

(3) For any E in the range Br = 11 x 2' + 2 < E < 6 x E can be detected

using r 1 check bits.

Proof:

Case (1): Already proved in [11].

Case (2): Assume that E1 = B (Lr Lr_i) can be detected using r 1 check

bits. Then Ve1 =O,1,2,3,,r-5,

[(B1 ei) (Ych yCh)]mod(2 ) 0 (3.6)

where Ych, and Ych are the check parts in the code word and the received word

respectively. Further, B1 e1, and e1 are respectively the number of errors in the

received information and check parts.

Now, suppose that E errors can't be detected using r check bits. Then there exists

at least one value of e = 0, 1, 2, . ,r 4 such that

[(E e) (xCh rh)I mod (6 x 2') 0.

Since E = E1 + (Lr Lr_i), we will have

[(B1 e) (xe,, Xh) + (5 x 2r_5 + 1)] mod (6 x 2') 0.
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= [(E1 (ei + 1)) [(xC,, xCh) (5 x 2r_5 + 1)]] mod (6 x 0.

= [(Er ei) [(xC,, xCh) 5 x 2r_5] 6 x 2'} mod (6 x 2") 0.

='. [(E1 ei) xCh) + 2'-J] mod (6 < 0.

When e = e1 + 1, there exists at least one value of e = 1, 2, 3, , r 4 such that

(xC,, XCh) + 6 x 2'- = (Ych Yh).

and in this case we will have

[(E1 e) (Ych YCh)] mod (6 x 2r-5)

E can't be detected using r 1 check bits which is a contradiction to the

original assumption.

Hence, E can be detected using r check bits and so, can be detected using r

check bits.

Case (3): Assume that E can be detected using r 1 check bits. Then Ve1 =

0,l,2,3,,r-5,

[(E 61) (Ych yh)Jmod [6 x 2r_5] 0. (3.7)

where Ych, and Yh are the check parts in the code word and the received word

respectively. Further, E e1, and 61 are respectively the number of errors in the

received information and check parts.

By using r check bits, there are (7;4) different values for each

(xCh XCh), e = 1, 2,3, . , r 4.

The first (;5) values of (xh xCh) (i.e. with the (r 5)th check bit not in error),

are the same values as the corresponding (Ych Yh) using r 1 check symbols.

Then, for all of these values, using E < 6 x
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[(E e) (xe,, xCh)]mod(6 X 2') 0. (3.8)

The remaining () values of (xe,, xCh) are equal to (2' + A) where

A = zero when e = 1, or

A = summation of any e 1 distinct numbers from {20, 21,22, . 2r-5, 2r_4},

e=2,3,4,,r-4.

Now, for these values, we want to prove that:

Assume that

{(E e) (xCh xCh)]mod(6 x 2r_4) 0. (3.9)

M = (E e) (xe,, Xh) <6 x

Since E Br, then we will have M (Br e) (xh x'h)

= M> [5 x 2 + (r 5) +6 2r_5 (r 7)] e (xh xh)].

= M> [5 x 2r_5 + (r 5) +6 x 2r_5 (r 7)] e + (2r_5 + A)].

Mmod(6 >< 2') (6 x 2r_4 + 2 e + A) mod(6 x

= Mmod(6 x 2r_4)> (2 e + A), e = 1,2,3, , r 4.

Whene=1,A=O=2e+A=10.
When e 1, thevaluesofAcanbe3 < A<23, and so2e+A>0.
Thus, M mod (6 x 2r4) 0.

Ve, [(E e) (xCh xh)]mod[6 x 2r_4] 0. (3.10)

This implies that E errors can be detected using r check bits. Applying Lemma

(2), we get E' errors can be detected using r check bits..

Table 3.2 lists the errors that can be detected using Method 2.
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Example 2 Let us check whether E = 330 errors can be detected or not using

Method 2 with r = 10 check bits. Since r = 10, then we have B10 = 354 and L10 =

326. Thus we need to apply Rule (2) to check whether 330(5x25+1) = 169 errors

can be detected using 9 check bits. In this case, since 165 = L9 < 169 < B9 = 178,

we need to apply Rule (2), i.e. need to check whether 169 (5 x 2 + 1) = 88

errors can be detected using 8 check bits. Since 84 = L8 <88 < Bg = 90, we need

to apply Rule (2), i.e. need to check whether 88 (5 x 2 + 1) = 47 errors can be

detected using 7 check bits.

Since 46 = B7 < 47 < 6 x 2 = 48, we need to apply Rule (3), i.e. need to

check whether 47 errors can be detected using 6 check bits. Now, apply Lemma (2)

to check this. Since 47 23 mod 6 x 22, we need to verify whether 23 errors can

be detected using 6 check bits. Applying Lemma (3), we know that all 23 errors

can't be detected using 5 check bits for some errors. This implies that some 330

errors can't be detected using 10 check bits.
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r=2 r=3 ]r=4 r=5 r=6 r=7 r=8
1 1 1 1 1 1

2=L2 2 2 2 2 2 2

3=L3 .

5 6

6 6=L4 11=L5 20=L6 37=L7 70=L8____
9 14=B5 23 40 73____

.4.
10 9 ____ 26=B643 76

11 10 17 27 44 77

14 11 18 30 47 80

12 ____ 50=B7 83

.4.
13 33 51 84

14 25 34 52 85

26 55 88______

I.
27 58 91

30 50 59 92

______ 51 62 95

.4.
52 98=B8
55 65 99

58 66 100

59 101

62 104

98 107

.4.
99 108

100 111

101 114

104 115

107 116

108 119

111 122

114 123

116 126

119 ______

122 129

TABLE 3.1. The errors that can be detected using 2,3, and 4 check bits, and with

r > 5 check bits using Method 1.
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r=5 ]Jr=6 r-7 r=8 r=9 r=1O

1 1 1 1 1 1

2 2 2 2 2 2

11 = L5 22 = L6 43 = L7 84 = L8 165 = L9 326 = L10

_____ _____ 46 = B7 87 168 329

13 25 90 = B8 171 332

14 26 49 91 172 333

50 94 175 336

178=B9 339

23 46 90 97 179 340

______ ______ 91 98 180 341

-1- 94 183 344

186 347

178 187 348

179 190 351

180 ______ 354 = B10

183 193 355

186 194 356

187 357

190 360

354 363

4. 355 364

356 367

357 370

363 371

364 372

367 375

370 378

371 379

372 382

375 ______

378 385

379 386

TABLE 3.2. The errors that can be detected using Method 2.
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4. SYSTEMATIC T-UNIDIRECTIONAL ERROR DETECTING
CODES IN ZM

4.1. Introduction

Errors correcting/detecting codes are used in providing protection against

transient, intermittent, and permanent faults [5]. The errors that can occur be-

cause of the noise are many and varied. However, they can be classified into three

main types, symmetric, asymmetric, and unidirectional errors.

Let X = (x_, Xn_2, , x0) be a transmitted word through a noisy

channel, and Y = (I/ni, Yn-2, , I/o) be the received word, where the symbols

xi's and I/j'S are over Zm. Define the error value E = (en_i, e_2, , eo) =

(I/n-i Xn_i, l/n-2 Xn_2, , Yo x0) and (I/i x)'s are over the integers. Based

on the error value, E, the error types can be classified as asymmetric, unidirec-

tional or symmetric. In the case of asymmetric type, at all time, the e2's have

values less than or equal to 0 (or at all time, the values of ei's are greater than or

equal to 0). In the case of unidirectional errors, again all the error values can be

positive or all the error values can be negative within a word but this condition

is not known a priori, i.e. when transmitting, the error values for one word can

all be positive and for another word they can all be negative. Finally, in the

case of symmetric errors, within a word the error values can be both positive and

negative. If E = 0 then there is no error in the transmitted word. Further, the

number of non-zero values in E gives the number of errors.

Given two words X and Y over Z, define N(X, Y) as the number of

positions at which x > yj for i = 0, 1, 2, . . , n 1. For example, if X = (4321)

and Y = (1312), then N(X, Y) = 2, and N(Y, X) = 1. Note that the Hamming

distance between X and Y is DH(X, Y) = N(X, Y) + N(Y, X). For X and Y, if
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N(X, Y) > 1 and N(Y, X) 1, then they are called unordered words. On the

other hand, if N(X, Y) = 0, then it is said that Y covers X. For example, (4321)

covers (2221).

A chain of length M over Zm is defined as the sequence of M words such

that successive words differ in one position by 1. For example, <0001, 0002, 0003,

0013, 0023, 0033, 0133, 0233, 0333> is a chain of length 9 over Z.

Theorem 4.1.1 A code C is capable of detecting all unidirectional errors if and

only if the code satisfies the following condition:

VX, Y E C, N(X, Y) 1 and N(Y, X) > 1.

In the case of binary, i.e. m = 2, by Sperner's theorem [17], the [n/2j-out-

of-n code is the optimal all unidirectional error detecting (AUED) code, i.e. this

code gives the maximum number of unordered codewords for a given n. Further,

the Berger-Freiman code [21, 3], is the optimal AUED systematic code. In a

systematic code, the information digits are separated from the check digits.

For m > 3, as shown in [17], the set of n digits words S, such that for

each X = (x_, Xn2, , x0) e S, x = [(in 1)n/2] gives the maximum

number of unordered codewords. For example, when m = 5 and n = 3, the

unordered codewords are { (420),(411), (402), (330), (321), (312), (303), (240),

(231), (222), (213), (204), (141), (132), (123), (114), (042), (033), (024)}, and

there are 19 of them. The theorem given in [17] says that we can not have more

than 19 codewords when m = 5 and n = 3.

Further, Bose and Pradhan in [12] have given optimal systematic AUED

codes over Zm. For a given k-digit information word X = (Xkl, Xk_2, ,

where Xi'S E Zm, the check value is given by V = >ii0'((m 1) xi).

The r- digit check is obtained by representing v in radix-in form, where r =
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[logm((m 1)k + 1)]. For example, when X = (3420) is the given k = 4 infor-

mation digits over Z5, the check value is (4 3) + (4 4) + (4 2) + (4 0) = 7

and the check is 12. As it is shown in [12], this is optimal systematic AUED code

over Zm.

In this chapter, systematic t-UED codes are described. It is assumed that

the number of check digits r, satisfies the condition r < [logm((m 1)k + 1)1,

where k is the number of information digits [10]; otherwise, one could use the

AUED code given by Bose-Pradhan in [12]. In the case of binary, optimal non-

systematic t unidirectional codes are given in [7] and systematic codes in [11].

4.2. Code Construction

The following theorem is proved in [7, 11] for binary. However, for corn-

pleteness, the proof is given here and it is similarly to the one given in [7, 11].

Theorem 4.2.1 A code C is capable of detecting t-unidirectional errors if and

only if C satisfies the following condition:

VX, Y E C, either X and Y are unordered, or DH(X, Y) t + 1.

Proof: Consider any two codewords X Xn_2, , x0), and Y =

(Yn-i, Yn-2, Yo) in C. If they are unordered, then there exists x, yj, x3, and y3

such that x > y, and y, > x3 where 0 <i, <n 1. Suppose X is transmitted

word, and let the received word be X' = (x,_1, x_2,. . . , x) where = x+e for

allp=0,1,2,n-1.Ife>Oforallp=o,1,2,...n-1,thenX'differsfromY

in the i-th position because x > y2. Similarly, if e < 0 for all p = 0, 1, n 1

then X' differs from Y in the j-th position because y, > x3. Further, if they

are ordered pair and DH(X, Y) > t + 1, then X can not become Y due to t or



less unidirectional errors. Thus, if the code satisfies the conditions given by the

theorem, it can detect up to t unidirectional errors.

Conversely, for X, Y e C, if they are ordered pair and DH(X, Y) = b t,

then X can become Y due to b errors and so the code can not detect t unidirec-

tional errors..

From error detecting point of view, there is no difference between asym-

metric and unidirectional errors as described in the following theorem.

Theorem 4.2.2 A code C is capable of detecting t-asymmetric errors if the code

satisfies the following condition:

VX, Y E C, either X and Y are unordered or Djq(X, Y) t + 1

Now, we describe the code design scheme. As it was mentioned earlier, it

is assumed that the number of information digits, k > (mr 1)/(m 1).

(a) Code Design with r = 2 check bits:

Let (ak_lak_2 . . a0) be the given information word over Zm, and let b

>i' ((m 1) a2)) mod m2. Then, the check digits are the representation of b

in radix-rn system. This code is capable of detecting two errors.

Example 3 Let (44. . . 4230) be the given information word over Z5, then we will

haveb((4-4)+(4-4)-j-...(4_4)-j-(4_2)+(4_3)+(4_O)) mod25=7.

Hence, the check is 12.

The error detecting capability of the code can be shown as follows.

Let XC = (Xk_lXk_2 . xocico) be the transmitted word and X'C' =

(x_1, x_2. . x'0c'1c'0) be the received word. Further, let E = (eklek_2. eoe'1e'0)

Let
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C" 1 x) mod m2. If C" C' 0 mod m2, then the decoder

declares that there is no error. We can consider the following three cases:

(1) Errors only in the information part:

In thiscase C" = J01(m-1x) = m-1x+e) (C+E+E2)

mod m2, where E1 and E2 are the error values and 0 < E1, E2 <m [When

there is oniy one error, then E2=0 ], then C" C' = (E1 + E2) 0 mod

rn2 Thus, these errors can be detected.

(2) Errors only in the check part:

There may be one digit in error or both the digits may be in error. In any

case C" = C and C' = C v where 1 <v <m2 1. Thus, C" C' 0

mod in2

(3) Errors in both the information and check parts:

Now, C" = C + E1, and C' = C E2, where 1 E1 m 1 and

0E2<m(m-1). Thus, C"C'=E1+E20modm2.

(b) Code Design with r 3 check bits:

The proposed code can detect up to rnr_2 + r 2 errors using r check

digits. Let X = (Xk_1, Xk_2, , x) be the given information word and let v

(>i(m 1 x2)) mod mT_l. Represent v in radix-rn system and let it be

V = (Cr_2, Cr_3, , co). Thus, the check is given by (in 1 Cr_2)Cr_2Cr_3 C0.

Example 4 Let rn 5 and r = 4, snppose that the given information word is

X (44...442411). So, v

(4 4) + (4 1) + (4 1)] mod [53] 8 mod 53 8 in radix-5 system is 013 and

hence, the check is 4013.
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Now, we can analyze the error detecting capabilities of these codes. Note

that the first two digits of the check can be {(0, rni), (1, m-2)(2, m-3).. (m-

i, 0)} and these are unordered. The remaining (r-2)-check digits can take all pos-

sible rn"2 values. Now, consider a k-digit maximal chain, starting from (000. . .0)

and ending with (m 1, m 1, m i). For example, when m = 4 and k = 5,

<(00000) (00001.) (00002) (00003) (00013) (0023) (00033) (00133) (00233) (00333)

(001333) (02333) (03333) (13333) (23333) (33333)> is a complete chain. This

chain can be divided into k + i classes, with the first word which has all 0's in the

zero-th class, the word (i i)m + 1 through (i i)m + m 1 in the i-th class,

i = 1, 2, . k. Thus, each class contains (rn 1) words, except the zero-th class

which has oniy one element. The Hamming distance between a word in the i-th

class and another word in the j-th class is at least Ii iI. The Hamming distance

between any two words within a class is 1. After appending the check symbols, if

two words are within j position apart in this chain where I j mr_i, then the

codewords are unordered. Further, if a codeword X covers another codeword Y

in this chain, then

r-2
DH(X,Y)>(m-1)m1 +r_2+1=mr_2+r_1.

Thus, the code is capable of detecting rnr_2 + r 2 errors.

A lower bound on the number of check bits required for detecting a given

number of errors is given below.

Theorem 4.2.3 A systematic code capable of detecting

lmr_mL] _m11+2I
rni j+r,

requires at least (r + 1) check digits.
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Proof: Let us prove the following upper bound for a m-ary t-UED with r check

digits and k information digits.

Imr_mL] mI' +21t>[ rni j+r.

For all X = (Xk_1, Xk_2, , xo) E Z,, let W(X) = x2 be the weight

of X, where the sum is over the integers. For example, if m = 4 and k = 6 then

W(013021) = 7. Consider the set C = {X0, X1,. , XK} c Z,, K = (m 1)k, of

information words, where for i 1,

X = OOO d(m 1)(m 1).. . (m 1) = Oc_e1_ld (m 1)e2 E

k-e2-1

with d2 = (ii) mod (m-1)+1 E Zm{O}, and e = [(i 1)/(m 1)], and for

i=O,X0=OOOOEZ. Forexample,ifrn=4andk=6thenK3X6l8
and consider the following code words C as:



Xo = 000000,

X1 = 000001,

X2 = 000002,

X3 = 000003,

X4 = 000013,

X5 = 000023,

X6 = 000033,

X7 = 000133,

X8 = 000233,

= 000333,

X10 = 001333,

Xii = 002333,

X12 = 003333,

X13 = 013333,

X14 = 023333,

X15 = 033333,

X16 = 133333,

X17 = 233333,

x18 = 333333.

52

Note that C is a maximal chain such that for all i, j = 0, 1, 2, K, i <

j''XcX3, and W(X2)=i.

Note that there always exists X, X3 E C such that i < j and C2 c C3.

This is because we assume that the number of possible weights for an information

word in Z is K + 1 = (in 1)k + 1 > inr (otherwise the m-ary AUED code

design in [12] can be used).
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Hence, let X, X3 C be two different sequences such that j i is the

smallest value for which i <j (= X2 c X3) and C2 c C,. Since X2C2 C X,C,

from Theorem 3.1 we must have

t+i>DH(XJCj,XiCi)=WH(X,x)+WH(CC)< WH(XX)+r,

(4.1)

where WH(X) denotes the Hamming weight of a word X E Z. The following

relation holds

rj-i 1WH(X,X2)< +1, (4.2)

In fact, if i,j 1 then

and

li-i Iii (rni) Lrn ii + [(ii) mod (rni)] = (m 1)e + (d 1),

I j-1j-1= (rni) [ii +[(j-1)mod(mi)]--(rn-1)e,+(d,-1)

.jj= (rni)(e,e)-i-(d,d2).ji d,d,=(ee1)+rni rni

The last inequality follows because d,, d E Zm {O} = [(d, d2)/(rn 1)1 0.

From the appropriate construction of C, it follows (e, e2) + 1 WH(X,

X2) and so (4.2) is valid for i > 1. If i = 0 it can be easily checked that

WH(X)<[_j 1

I(rni)I'
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and so (4.2) is valid for all i> 0. Hence, from (4.1) and (4.2)

t
li-il +r= 1(jii)+11 +r. (4.3)Imil rni

At this point, note that if 1 is an index such that i < I <j then C1 is unordered

with C; otherwise j i would not be the smallest value for which i < j and

C, c C3. For the same reason, if 1 and p are two indices such that i <1 <p <j

then C1 C,. Hence,the quality I{i+ 1,i +2,,j 1}I = j i 1 can be

upper bounded by the number, u(C) of different sequences C E Zr,, which are

unordered with C. Hence from (4.3), we have

r(c) + 1 1 [maxcezr(u(C) + 11]+rrni rni 1+r.

Let O = OLi (rn 1) R1 E Zm' be the word containing [r/2j 0's followed

by [r/2j (rn 1)'s. Now,

max u(C) = u(C) = (rn7'2 1) (rnIni/'2l 1) = rnr - rnlr/2j - rnln/21 + 1.
CEZ

Hence, the theorem follows..

Note 1 Borden in [7] considers a slightly different error model, when a symbol

changes from a to b, b > a, the number of errors is b a. For example, suppose the

transmitted and received words are (3421) and (1211) respectively. Then, under

this model, the number of asymmetric errors is 2 + 2 + 1 = 5, and the proposed

code can detect 2(rn 1) errors using 2 check digits and (rn - 1)(mr_2 + r 2)

errors using r > 3 check bits.
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5. TYPE-I HYBRID ARQ AND ARQ WITH DIVERSITY
COMBINING OVER THE M-ARY ASYMMETRIC CHANNEL,

M>2

5.1. Introduction

Forward Error Control (FEC) and Automatic-Repeat-Request (ARQ) are

the two main techniques used in data transmission systems for controlling trans-

mission errors. In FEC, the system uses error correcting codes. In this case, the

data transmission is done in only one direction, i.e. from the transmitter to the

receiver. If the receiver detects errors in the received word, it attempts to correct

them. But, if the receiver fails to correct these errors, erroneous data will be

delivered to the destination.

On the other hand, in ARQ, error detecting codes are used. If the receiver

detects errors in the received word, it sends a negative acknowledgment (NAK)

to the transmitter requesting it to resend the data. This process continues until

the received word is correctly received. As mentioned in Chapter 1, stop-and-

wait ARQ, go-back-N ARQ, and selective-repeat ARQ are the three main types

of ARQ protocols.

FEC is widely used in communication systems where it is required get-

ting the message correct in the first transmission. Although FEC schemes have

bounded time delay equal to the processing time for encoding/decoding data,

and have a constant throughput equal to the code rate regardless of the chan-

nel conditions, it is hard to achieve high system reliability. Also, the destination

might receive the data incorrectly if the receiver fails to correct the errors. On

the other hand, ARQ scheme is simple to implement and provides highly reliable

data transmission; however, it also suffers from some drawbacks such as variable
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delay time, it is harder to implement when the round-trip delay increases, etc.

Thus, the throughput of the channel will rapidly decrease when the channel error

rate increases.

To improve the performance of a system, a combination of both FEC and

ARQ techniques can be used. These techniques are known as hybrid ARQ tech-

niques. The hybrid ARQ uses error correcting and error detecting (say t error

correcting and d (d > t) error detecting) codes. At the receiver, if the number

of errors in the received word is less than or equal to t errors, then the errors

are corrected and a positive acknowledgment (ACK) is sent to the transmitter

requesting it to send the next word. However, if the number of errors is greater

than the error correcting capability but within the error detecting capability of

the code (i.e. more than t but less than or equal to d) errors, the receiver sends

the transmitter NAK requesting it to resend the word. This is called a type-I

hybrid ARQ protocol.

To reduce the number of retransmissions and hence improve the through-

put of the system for the Z-channel, another technique called diversity packet

combining can be used as explained in Chapter 1 [30]. In these schemes, the num-

ber of retransmissions needed to receive the correct word is decreased by saving

the corrupted word and combining it later with the subsequent received word.

This process continues until the combined word is successfully accepted or the

maximum number of the retransmissions has been exhausted.

As explained in Chapter 1, for the binary case, the diversity combining is

done by using a bit-by-bit logical OR operation. In the case of the m-ary asym-

metric Z channel, instead of using bit-by-bit OR operation of the received and the

previous stored bits, we can use a digit-by-digit MAX operation of the received

and the previously stored word in our new scheme. This operation guarantees us
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that the number of errors at each step is always less than or equal to the number

of errors in the previous saved word.

In this chapter, we analyze the throughput of both ARQ and type-I hybrid

ARQ protocols by deriving an expression for the number of transmission (or the

expected number of retransmissions) needed to receive the correct code. Also, we

introduce our new scheme for ARQ protocols with diversity combining and then

analyze the throughput of the proposed scheme and compare it with the type-I

hybrid ARQ protocols [50]. All the analyses are over a discrete memoryless m-ary

asymmetric Z-channel, m > 2. We assume that the general model for the m-ary

asymmetric Z-channel is as depicted in Figure 5.1. As shown in this model, for

all p,,, E [0, 1], i, j = 0, 1,. . ,m 1, the transition probabilities of such a channel

satisfy:

0 ifx<y,
1 ifx=y=0,

P(yjx) = for all X,YEZZm.
1 Px,j if x = yE m {0},

Px, ifx>y,

In all the schemes, it is assumed that selective-repeat-ARQ (SR-ARQ) is used.

Hence, the throughput efficiency is given by

k 1

n R(C)'
(5.1)

where C c is the code used, and R(C) is the number of retransmissions needed

to accept all codewords correctly. To use Equation (5.1) to analyze the throughput

of the system, we have to find an expression for R(C) (or derive an expression for

the average number of retransmissions needed to accept all codewords correctly,

IE {R(t) (C)]).



This chapter is organized as follows. In Section 5.2, we analyze the through-

put of ARQ protocols using:

(1) t-Asymmetric Error Detecting (t-AED) codes.

(2) All Asymmetric Error Detecting (AAED) codes.

over the m-ary Z-channel, m > 2. In Section 5.3, we analyze the throughput

of type-I hybrid ARQ protocols using t-Asymmetric Error Correcting and All

Asymmetric Error Detecting (t-AEC/AAED) codes over the m-ary Z-channel,

m> 2. In Section 5.4, we introduce our proposal for ARQ protocols with diversity

combining and then do the same analysis as in Section 5.3 but with our diversity

combining scheme.

5.2. Analysis of ARQ Protocols using t-AED and AAED Codes over the
m-ary Z-Channel, m 2.

Let X = (x1, x2, x) e C c 7Z be the transmitted codeword over

the general m-ary asymmetric Z-channel shown in Figure 5.1. Upon receiving

the word Y, if the receiver detects an error in the received word, it discards

the erroneous word and sends NAK to the sender requesting it to resend X.

This process continues until the word is successfully accepted or the maximum

retransmission number has been reached. This is the main idea of the ARQ

protocols. In the following, we analyze the throughput of the ARQ protocols

using t-AED and AAED codes over the m-ary Z-channel, m 2.

Some known t-AED codes are the the non-systematic Borden's codes [7j or

the systematic codes given in Chapter 4. Further, AAED codes are the systematic

codes given by Bose and Pradhan in [12] and the optimal non-systematic codes

given by de Bruijn in [17].
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1

2

rni

1

1

rni
FIGURE 5.1. The general rn-ary Z-asymmetric channel.

5.2.1. Analysis of ARQ Protocols using t-AED Codes over the
m-ary Z-Channel, rn 2

Let C be a t-Asymmetric Error Detecting (t-AED) codes. Let X

(x1, X2" x) E C c be the transmitted codeword. The codeword will be

accepted if there is no error in the received word, Y, or detected if the number

of errors, e, is < t. On the other hand, if e > t, then the error may or may

not be detected. Let P(X) be the probability of receiving a correct codeword,

Pd(X) be the probability of detecting errors, and P(X) be the probability of

undetected errors where P(X) + Pd(X) + P(X) = 1. In this case, the number

of retransmissions needed to receive the word X correctly is:

R(t)(X) = lx(iPd(X))+2xPd(X)x(1Pd(X))+3xPd(x)2x(1Pd(X))-i--...

iPd(X) 1 1

(1 Pd(X))2 1 Pd(X) P(X) + P(X)
(5.2)

The complete analysis over Z channel is given in [39].
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5.2.2. Analysis of ARQ Protocols using AAED Codes over the
rn-ary Z-Channel, m 2

Assume that C is All Asymmetric Error Detecting (AAED) codes. Let

X = (x1, x2,. x) E C c 7L be the transmitted codeword. In this case, either

the received word is accepted with probability P(X) or the error will be detected

with probability Pd(X) where P(X) + Pd(X) = 1. In this case, the number of

retransmissions, R(X), needed to receive X correctly is

R(X) = 1 x P(X) + 2 x (1 P(X))P(X) + 3 x (1 P(X))2P(X) +

= t (1 P(X))t1P(X)

= P(X)t(1 P(X))1
P(X) 1

[1 (1 P(X))J2 P(X)

In the rest of this section, we assume that the codewords are transmitted over the

m-ary Z-Channel, in 2, with error model as shown in Figure 5.2. This model

is the same one that we used in Chapter 4. As shown in this model, for p E [0, 1],

the transition probabilities of such a channel satisfy:

0 ifx<y,
1 ifx=y=0,

forallx,yEm.P(y(x)
fx = {0},1xp I
if x > y,p

Further, given Xe 7Z, let

w(X) = (wo(X), wi(X), . . . , Wm_i(X))
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FIGURE 5.2. rn-ary asymmetric Z-channel where every error is equally likely.

be the weight of X, where

wa(X){j1,2,...,ii: xj=a}

indicates the number of occurrences of the symbol a E ZZm in the word X. For

example, if rn = 5 then

w(X = 1302043014) = (3, 2, 1, 2, 2).

Now, we want to find P(X). Since the channel is a discrete memoryless

channel (DMC) we have

P(X) = P(X is received correctly)

[i]o(X)
[1

]tLJl(X)
[1

2}w2(x)
.. [1 (in - 1)p}Wm_i(

rn-i

II[1 i jw(X)

i=i

Also, we have
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P(X is received in error ) = 1 P(X) = 1 P(X is received correctly)
rni

= 1 P(X) = I [I [1 i ]toi(X)

If we assume that each symbol is equally likely in a codeword, then JE [R(X)] can

be calculated as follows. Define R(X) as the expected number of retransmissions

needed to receive X correctly. Define R2(X) = R(X) as the expected number

of retransmissions needed to receive x correctly where 1 i n. Thus, we

have R = R(X) = max1<< R2. Let P(RZ = j) be the probability that the

expected number of retransmissions needed to receive x2 correctly is equal to j

wherel<i<nandl<j<oo. Thus,

In general,

rni

P(Ri 1) = P(R1 = lixi = x) P(xi = x)

rni

rni

P(R = 2) = P(R1 = 2Ixi = x) P(x = x)

rni

= = 21x1 =x)

rni

=--->(xp)[1_xp].

rni

P(R = r) = I V(xp)T_i (1 xp)
x=O

rni rni
1= (xp) -

x=O x=O

Special Case (in = 2):

I if>1,
P(R=r)= 2

ifi-=1.
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R=max{Ri,R2,,Rm},
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and

[R(X)1>rP(R=r).

From the above expression, to find IE [R(X)], we have to find an expression for

P(R = r) where

P(R=r)=P(R<r)P(R<-1).

From the definition of R, we have

P(R < = P(R1 <7 and R2 <r and and R <r) = fl P(R <r),

and

P(R <r) = >P(Rj =a) E (1 P) pa_i +
a=1 a=i

1 (1 1 (ip) ipT=+ P)_i+
2 (lp)a=1

_! iPT_1 PT2 22

(2_pT) n

2 2

[ic]n [1ç]m
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=IE[R(X)J_r [i_i]_ [içJ= S1S2. (5.3)

Now, we will find expressions for S1 and S2.

00 00

S1 = r(1 = (-1)r 1- -
r=1 r=1 12 j

fl

(n\

ir]k
= (_i) r{(_1)n+

k) Li
(_i)n}

r=1

00 00 fl 1r1k
=

(_1)r(_1)n+(_1yyj (:) L]
(_1)nk}

r=1 r=1 kzrl

00 n (

f

00

r=1 k=1

n-k
k )=r+(_1){()(_i) 2k(1_pk)21

r=1 kzl

On the other hand,

00 r-1 00 /pT_1
2r=1

00

{( 1)'
/\ IpT_ k= (-1)r

+ k) [ 2
(_i)}

r=1

00 00 In / fpri\k
= (_1)y(_1)n + (-1)r

J ( ()
(_i))]

r=1 r=1 Lk=1 \

00 n 00 /r_l\1]
= + (_i)n [() (_1)nk
T1 k=1

00

= T+ (-1) L]r=1 k=1
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= T (_i)n () (1)nk
[2k(1 pk)2]

k=1

Substituting the expression of S1 and S2 in Equation (5.3), it follows:

1JE[R(X)1 = +r+(i)' () (-1)'' [2k(1')2]
r=1 k=1

- (-1) I (;) (1) [2k (1 pk)2]
r=1 k=1

1 n k1
k_1

1=+(_i)n()(_i) L1_pk2I
k=1

11 n-k+1+(_i) (_i 2k(l_pk)

fl

(n\
(i)k

k=1
k)2k(1_p

Assume that the codewords are equally likely transmitted, the average number of

retransmissions for the code C is:

IE [R(C)} = JE [R(X)]
x ec

(n\
(_i)"

1

XEC L k=1
k) 2k(i _pk)j

5.3. Analysis of Type-I Hybrid ARQ Protocols using t-AEC/AAED
Codes over the m-ary Z-Channel, m 2.

Assume that the type-I hybrid ARQ communication system shown in Fig-

ure 5.3 is used. Also, assume that the used code, C, is a t-Asymmetric Error

Correcting and All Asymmetric Error Detecting (t-AEC/AAED) codes.
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FIGURE 5.3. ARQ system.

After transmitting the codeword X C c 7L, if the receiver declares no

error in the received word Y, then the receiver sends the transmitter ACK request-

ing it to transmit the next codeword. If the receiver detects an error in Y and the

number of errors, e, is within the error correcting capability of the designed code,

i.e e < t, then the errors will be corrected and the receiver sends the transmitter

ACK requesting it to send the next codeword. On the other hand, if e > t, then

the receiver discards Y, and sends NAK to the transmitter requesting it to resend

X. This process is continued until the received word is successfully accepted. In

this section, we compute the average number of retransmissions needed to receive

a given codeword X correctly. The transmission and retransmission procedure for

the type-I hybrid ARQ scheme is given in Figure 5.4.

Let Pa(X) E [0, 1] and Pr(X) E [0, 1] be respectively the probabilities of

accepting and rejecting the received word Y, where P(X) + Pr(X) = 1. Also, let

R(t)(X) : l + IN {0} be the random variable:

R(t) (X) number of retransmission needed by the receiver

to accept the received word Y.

In this simple case, the average number of retransmissions is

W [Rt(x)] [Pr(X)11Pa(X) = Pa(X)

Pa(X) 1
(5.4)

[1 Pr(X)]2 Pa(X)
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FIGURE 5.4. The proposed transmission and retransmission procedure for type-I

hybrid ARQ scheme.

This is because,

def 1 °°-j-1 1f(x) 1 = f(x) - (1 x)2

Hence, in order to calculate the average number of retransmissions, we need to

find an expression for Pa(X). Since a t-AEC/AAED codes is used, a transmitted

word X is accepted if the number of errors occurred during the transmission is

less than or equal to t. Hence,

P(X) P(Y contains exactly r errorslX). (5.5)

Also, in this case, we assume that the channel of the system shown in Figure 5.3

is a DMC. Let



def
(x) = P(y xix) = P(aix), for all XEZZm, (5.6)

aElZm {z}

be the probability that the symbol x is received in error, and hence

1 ö(x) =P(y=xix) =P(xix), for all XEZZm,

is the probability that the symbol x is received correctly. Since the channel is

DMC we have

P(y1y2.. .ymixix2 . . .x) = P(y1ix), for all X,Ye

Note that, the above formula implies that for all X, Ye 7Z,

P( Y1Y2. . Yi-i = x1x2 . ;. x_ , x and Yi+1Yi+2 . . = x+ix+2 . . . x IX)

= P(yi .. . Yi-i x1 . .
. x_i xi . . . xi)P(y xi lxi)

x P(y+1 . . . = x . .
. xix+i . . . x).

Further, given Xe 7Z, let

w(X) (w0(X), wi(X), . . . ,

be the weight of X, where

w(X) = I{i = 1,2,.. .,n: x3 = a}

indicates the number of occurrences of the symbol a C ZZm in the word X. For

example, if m = 5 then

w(X = 1302043014) = (3, 2, 1, 2, 2).

Let us find an expression for P(Y contains exactly 'r errorsiX). Note that, since

the channel is a DMC, we have



P(Y contains exactly T errorsjX)

rni

=
[I P(Y contains exactly Ta errors in the a's of xix),

To,T1,...,Tm_1: a=O
TO+T1+...+Tm_jT

('r+rni\where the sum is over the rni j different compositions of the number T. Again,

since the channel is a DMC, for all a E 7Zm,

Hence,

P(Y contains exactly Ta errors in the a's of XIX)

(wa(x))
[8(a)]T0[1 - 8(a)]0(T0

Ta

(Wa(X)1 6(a)}" 1 6(a) 1
Ta

1 [1-8(a)]

rni

[f P(Y contains exactly Ta errors in the a's of XIX)

rni

H (wa(x))[r
1 6(a) lTa

a=O \ Ta [1-8(a)]

rni rni
[1 - 6(a)]1)a(X) H

(Wa(X)) 1 6(a)
1

Ta

a=O a=O
Ta L1 6(a)j

and

P(Y contains exactly T errorsiX)
rni rni

= fl[' 6(a)}v pj
(wa(x)) __

6(a) ]Ta

To,T1,. .,rm_1: a=G Ta L1 6(a)
a=O

TO+T1+...+Tm_1T

So, from the above relation and (5.5), if X is a transmitted word of weight

w(X) = (wo(X),wi(X),. . .,Wrn_i(X)),

then
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rnirni

{

t

Tal
Pa(X) lEE [1 H (Wa(X))

[

5(a)

a=O r=O ro,r1,. . . ,r_i: a=O Ta 1 8(a)

TO+T1+...+Tm_1=T

(5.7)

Relation (5.7) holds true for any t-Asymmetric Error Correcting/All Asymmetric

Error Detecting ARQ system used with any discrete memoryless m-ary asymmet-

nc Z-channel.

Note 2 If 8(0) = 0 as in the case of the m-ary Z-channel (5(0) = 0 0 is always

received error-free) then the symbol 0 "disappears" from relation (5.7). And so,

for any m-ary Z-channel,

rni

Pa(X) = [1 5(a)]""

rni

H (wa(x))
F 8(a) 1

T1+T2+...+Tm_1 T }
a=i

Ta [1-8(a]

(5.8)

Similarly, the same thing holds true if ai, a2, . . . , a1 E ZZrn are received error-free.

In the following we assume 8(0) = 0.

Note 3 The function

f(x)1X =x(1+x+x2+...)=xx1,

is increasing with x E [0, 1) and such that f(0) = 0 and f(1) = +oo. Now, if

Ci, 2 E IR+ are two positive constants such that

for all aEm,

then from (5.8),

8(a) 0 =$ Ci 8(a) <c2,



71

(____
rni

{

t rni

}

P0(X)< fl(1-8(a))''
[j

(Wa(X)) C

/
a=1 TO T1,T2,. ,Tm_1 a=i Ta \1 C21

T1+T2+...+Tm_1=T

/ \Ta rnirni

}

= [J(1_(a))
\1_C2) H

(Wa(X))

a1 r=O T1,T2,. ,rm_i: a=i
Ta

T1+T2+...+Tm_1T

/ \Ta
I C2 \= fl(i - 8(a))w0

(w(X)\ai r=O T ) 1_c2)

where w(X) = wH(X) = wi(X)+w2(X)+. .+Wm_i(X) is the Hammingweight

of X. The above relations follows because obviously

(w(X) (wi(X)+W2(X)+...+wrn1(X)
T ) Ti+T2+...+Trni

rni
=

,

11(Wa(X))

T1T2 Tml a 1
a

T1+T2+...+Tm_1T

The analogous lower bound can be obtained similarly, and so

\T
(l_c2)(x) (w(X) Ci

T (1 1)
<fl(1

(w(X) i c1 \

a=i r=O T ) iC1)

f

<Pa(X) fl(i -
(w(x)

i C2

a1 r=O
T ) 1_c2)

/

<(1 - c1)(x)
(w(X)\\ I c2

T ) 1_c2) (5.9)

Further, should Ci = 8(a) = c2 = 6, for all aEZZrn {O} then

Pa(X) = (1 8)W(X) (w(X) 8
T

r=O
T ) 1_6) (5.10)

The above relation can be also written as
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Pa(X) = (w(X))'
8)W(X)_T (5.11)

r=O r

In order to evaluate the average number of retransmissions, it might be

useful to approximate Pa(X) as follows. Let

and

f(8, w, t)
(w)

6T(1 (5.12)
r=O

fi(8,w,t) (w) 6)WT (5.13)
r=t+1

(W
)6t+1(i 8)W_t1

+ (
w )6t+2(l - 8)W_t_2 + + (w

t+1 t+2 w)

Note that, from the definitions of f(6, w, t) and fi(6, w, t), Pa(X) 1(8, W, t) =

1 fi(8,w,t) with w = w(X). It is clear that

( : ) 8t+1(1 8)W_(t_1) f(8, w,

On the other hand,

W /'wt-1'
fi(5, w, t) = 6t+1 I (+) 1

I 'w--1\ I

J )
(1

+ 6t+1 I (t2)
1

(w (t+ 1))81(1 - 8)w_t_2L1j 1

Ht I

+ .. + (:) 1 (w t

w-t11 J w (t + 1))
8w-t-1

w-t---1 ri
= 8t+1 i+i+r) I

/w t
I (w_t_1

-
r=O L' r 1J

But
(w\ 1w

(w-t-1\ (t+1+r'
k r I t--i I



and so,

w-t---1 r 'w\ I

fi(5,w,t) 5t+1
>

I
t+i) (w t l)6T(l

L

Iw+i+r' i
r=O +i j

\

T

w-t-i (w_.t_1)]

( 3 t+i+1j 8(1 6)W_t_1_T

r=O t+1

w-t-1
<1 (w t l)6T(1 - 6)w_t_1T
\t+i)

rrO

Iw
+
)6+ (1 6)]W_t_i / w

t+i)

Hence,

73

(w
)st+i(i _8)w_(t+i) <fi(öwt) 1 f(8,w,t) < ( w

(5.14)t+i t+i)
From (5.14) and (5.4), it follows:

1 1 1
<[R()(x)] 1 fi(8,w,t) 1 (w \8t+1'1 - ( '6t+1(l - 8)w_(t+1)\t+1)

(5.15)

and if (1 8)W_(t+1) 1 then

1IE [R(t)(X)] =
1 (1)6t+i

In the general case, relation (5.4) and (5.8) imply that the average number

of retransmissions of a transmitted codeword depends only on its vector weight,

w = (too, to1,.. . , Wrn_i). Hence,

IE [R(t)(x)] = RHYb(w)

rn-it

=1/

1

[1 8(a)}w0 fi (Wa) [ 6(a)

]

T

J J

a-i Tj,T2 ..... Tm_i: a=1 Ta 1-8(a)
T1+T2+...+Tm_1T
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FIGURE 5.5. The binary Z-channel.
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where 6(a) is the probability that symbol a E 7Zm {O} is received in error. Now,

the average number of retransmissions for the given code, C, of length n can be ob-

tained by taking the average of IE [R(t)(X)] over all codewords. Assume that the

codewords are equally likely transmitted, the average number of retransmissions

for the code C is

1
IE [R(t)(x)J = A(w),IE [R(t)(C)]

TT XEC wE7Z

where A = {X eC: w(X) = w}I defines the weight distribution of the code.

In the rest of this section, we calculate the expected number of the retrans-

missions, IE [R(t)(X)], for different rn-ary Z-channels, in 2.

5.3.1. Analysis of the throughput of Type-I Hybrid ARQ protocol
over the binary asymmetric channel (Z-channel)

In this case, the channel model is shown in Figure 5.5. From (5.6), 8(0) = 0

and 6(1) = [0, 1]. Hence from (5.8),

Pa(X) = (1 c) (w(Xr
(

(w(X)
'U )
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FIGURE 5.6. The rn-ary Z-channel where every symbol error is equally likely.

and from (5.4)

1
JE [R(t)(x)]

IL0
(w(X))r(l

Example 5 If c = 0.01, t = 2 and w = w(X) = 100, then JE [R(2)(X)] =

1.086216480. When we use the bound in (5.15), 1.064961780 IE [R(2)(X)} =

1.086216480 < 1.192890373. On the other hand, if = 0.001, then 1.000146766

lIE [R(2)(x)] = 1.000150399 < 1.000161726.
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5.3.2. Analysis of the throughput of Type-I Hybrid ARQ protocol
over the m-ary asymmetric 2-channel where every symbol
error is equally likely

Here the channel model is as depicted in Figure 5.6. For all e e [0, 1J the

transition probabilities of such a channel satisfy:

I

Difx<y,
1 ifx=y=0,

forallx,yEm.P(yx) =
1c ifx YEm {0},
c/x ifx>y,

So, in this case, from (5.6), 8(x) = c for all X E 7.Zm {0} and 8(0) = 0. Again,

from (5.11),

Pa(X) (1 )w(X) (w(X)\)

T=o
/ (1i=(w-/ r=O

'T

and from (5.4)

1
JIE [R(t) (Jo] =

1r=Q
(w(X))r(l

This is similar to the previous binary case.

Hence,

n
1

n l-w [R(t)(c)] = Aw)y(w) = Z_s t (w)T(1
w=O

withAwl{XEC: w(X)=w}I,forallw=0,1,2,...,n.
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FIGURE 5.7. The m-ary Z-channel which takes into account the error magnitude.

5.3.3. Analysis of the throughput of Type-I Hybrid ARQ proto-
col over the rn-ary Z-channel which takes into account the
error magnitude

In this case, the channel model is as depicted in Figure 5.7. For all E [0, 1]

the transition probabilities of such a channel satisfy:

0 ifx<y,
1 ifx=y=0,

P(ylx) = for all X,YEZZm,1(+2+...+)jfyEm_{0},
x_Y ifx>y,

where ce [0, 1]. Hence, from (5.6),

8(x) _,for all XEZZm {0}.
1-f 1f

From (5.11), and the above approximation,the following approximation holds:

w(X) t

Pa(X) (i
11)

(w(X)

r=O \ T
(12)T
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FIGURE 5.8. The in-ary Z-channel where every error type is equally likely=e.

Hence, this case is approximately equivalent to the previous case. Note that

analogous simple upper and lower bounds can be obtained from c(1 _m)/(l ) <

(x) /(1 e), for all XEZZm {O}, and relation (5.9).

are:

5.3.4. Analysis of the throughput of Type-I Hybrid ARQ protocol
over the m-ary asymmetric Z-channel where every error
type is equally likely

In this case, the transition probabilities of the channel shown in Figure 5.8

0 ifx<y,
1 ifx=y=0,

P(ylx) = for all X,YEZZm,1x ifx=yEm{0},

if x>y,

where c E [0, 1]. And so, from (5.6), (x) = xc, for all x E ZZm {0}. From (5.9)

and since c1 = c < 5(x) < (m 1)c = c2, it is possible to obtain the following



bounds:
/ '1

(1 (m 1))W(X) :: (w(Xi\ ' C)i_)
<[J(1af)w0(u'

T

a=1 T ) (_) <Pa(X)

<fl(i -
(w(x)) (

(m 1) \T

a=1 T0 1 (m 1)e)

(1 1)W(X)

(w(x)) (
(m i)c \T

T 1(m-1)e)
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5.4. Analysis of ARQ Protocols with Diversity Combining using t-
AEC/AAED Codes over m-ary asymmetric Z-channel, in 2

Assume that C is a t-Asymmetric Error Correcting and All Asymmetric

Error Detecting (t-AEC/AAED) codes. Assume that the codeword X E C ç zz

is transmitted over the ln-ary asymmetric Z-channel, in > 2. In the case of

diversity combining, at each step r, the receiver combines the received word, Y,

with the previous saved word, Z,-_1, to form a new word, Z, as follows:

rEandr>1.

At the receiver, if there is no error in the combined word Z, then Z will be

accepted and ACK will be sent to the transmitter requesting it to send the next

codeword. If the receiver detects an error in the combined word Z- and the

number of errors, e is within the error correcting capability of the designed code,

i.e e < t, then the error(s) will be corrected and the receiver sends the transmitter

ACK requesting it to send the next codeword. On the other hand, if e > t

then the receiver saves the erroneous combined word, Z, and sends NAK to
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FIGURE 5.9. Packet reusing scheme

the transmitter requesting it to resend X. In this case, the word Z is saved to

combine later with the following received word, Y+i, to form a new word Z,-+1.

This process continues until the combined word is successfully accepted. This

scheme is shown in Figure 5.9 where the combining consists of a digit-by-digit

MAX operation. In other words, the MAX operation is done on the digit-by-digit

of the saved one Zr_i, and the corresponding received word Yr, for all r 1. The

transmission and retransmission procedure for this diversity combining scheme is

illustrated in Figure 5.10.

In this section, again we compute the number of retransmissions required

to accept the code C correctly using this diversity combining scheme.

Let

8(x) = P(y xlx) = P(alx), Vx E TLm
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(to send the next codeword)
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Combine the received word with the
saved word

Errors detected in the combined
word?

No I I Yes

ef I e>t

Correct Errors I I Failed to Correct

Save the combined word
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FIGURE 5.10. The proposed transmission and retransmission procedure for the

diversity combining scheme.

be the probability that the symbol x is received in error, and

1 = = xlx) = P(xx), Vx E 7Lm

be the probability that the symbol x is received correctly. Also, assume that the

channel model shown in Figure 5.6 is used, so that

8(x) = constant 8 E ZZm {0} and 6(0) = 0 . (5.16)

Under this assumption, the 0's of the transmitted codeword X E C are always

received correctly and hence only the x2's 0 influence the average retransmission

time of a word X E C. Now, let R2(X) : * ,Af {0} be the random variable

defined as:

= R2(X) = number of retransmissions needed to receive



the i-th non-zero component of X correctly,

for all i = 1, 2,. , w where w = wH(X) is the Hamming weight of X.

From the above definition, it follows that the number of retransmissions

needed to receive X correctly (i.e. the number of errors in Z,- is < t) with a

t-AEC/AAED system is the random variable

R(t)(X) = Rt = (t + 1)-th largest element in the set {R1, R2, , RWH(x)}.

The following example shows how this scheme works.

Example 6 Let X = (0122104130) e C C 7Z° be the transmitted word over

an m-ary Z-channel and assume the code can detect all errors. Suppose that

= (0012102110) is the first received word. Table 5.1 shows how the original word

can be recovered using diversity combining scheme. However, if t-AEC/AAED

codes is used, then the original word can be recovered after R(t) (X) ret ransmissions

where R(t)(X)= t+l-th largest element in the set {R1, R2, . . , R7}, i.e. the number

of retransmissions required to recover the word is t + lth largest element in the set

(2,3, 1, 1,4, 1, 2). For example, if1-AEC/AAED codes is used, then the error will

be recovered after R(1)(X) = 3nd largest element in the set (2,3, 1, 1,4, 1,2), i.e.

after 3 retransmissions. Also, when 2-AEC/AAED codes is used, the errors will

be recovered after R2 (X) = 2 retransmissions. Also, R° (X) = 4, R3 (X) 2,

etc.

In the rest of this section, we find an analytical expression for the aver-

age number of retransmissions needed to receive a transmitted word X correctly,

IE [R(t)(x)].

Note that, since the channel is assumed to be a DMC, for the given X,

the R2's are independent. Also, since 5(x) = = constant, for all x E ZZm



Li Zr

0000000000

1 0012102110 0012102110

2 0100003030 0112103130

3 0120102210 0122103130

4 0011104020 0122104130

TABLE 5.1. A sequence of transmissions example.

{0}, the Rj's are equally distributed as it will be shown below. So, the Rj's are

independent and equally distributed. Hence, from the theory of order statistics

[16], the cumulative distribution function (cdf) of R(t) in this case is

(WH\
FR(t)('r) = P(R(t) rX) :ii: ( h )

[Ffr)]t0z [1 - F(r)]', (5.17)
h=O

where

P(t+lthlargestelement r)=P(a1lbut 1 r)+.+P(allbutti-)

and F(T) = FR(T) = P(R2 <rIX) is the cdf of the .R's. Let us now find out an

expression for F(i-) = P(Rj = iIX). From Equation (5.16) we have

P(R = jIX) = P(R = j the i-th non zero component of X)

Hence,

where

(5.18)

Now, we compute the average number of retransmissions (JE [R(t)(X)]),

IE [R(t)(X)] = T P(R(T) = rIX).

From (5.17) and (5.18), we have



P(R(t) = 'rIX) = P(R(t) <rEX) iX)

Hence,

= () {[F(r)}[1 - [F(r F(r

t

= () {(i - oT_h 8rh (1
r-1)W-h 5(r-1)h}

h=O

? (') 1)krk rh

to-h
- h) (_i)k 6(r-1)k 6(r_1)h}

kO

to-h (wh\=
(h k )

(_i)k {ä(h+k)T -
k=O

(w(w\ W
(w)(w)

ko) k\o)
(-1)'[l - 1] +

0 k
(-1)' {k(r_1) 8k(r)}

i to-h

+
(w) h) (1)k+1 {ö(h+k)(1-_) 5(h+k)(r)

}
hr1 krO

(1)k+1() {k(r-1) -
k=1

to-h,

+ (1)k+1 ()
(w h) {ö(h+k)(T_l) 8(h+k)r}

h=1 k=O

00 w

= P(R(t) = 'r(X)
l)k+1(w) {k(r_1) kr}



where

and

t tv-h 'wh 00

h1 k=O h) k )
{(h+k)(r_1) (h+k)r}

/ r=1

=:S1+s2 (5.19)

Si (_1)k+1
(:) 5(6, k), (5.20)

tv-h

S2 (_1)k+1
(w)

j

h)
S(8, h + k), (5.21)

h=1 k=O

S(6,k) (6k(r_1) 6kT) V k = 1,2,

(6k)T(y+1)y (ök)T

=l+(6k)T

=l+6(ak)T=l+l6ok (5.22)

Hence, from (5.20), S1 can be derived as follows;

Si (_l)k+1(h3) (i
+ 1

k6k)

U, U, / 8k \
=

(:)
x 1 + (_1)1

() 1 k)
k=1 k=1

U,

k+lW / 8k \
=

k)
(_1)k+i () (-1) + (-1)

(k) 1 6k)
k=O

6k(ll)W+l+(l)k+1(0)
U_5kJ



Hence,

S1 = l+(_l)k+1()
(1 k) (5.23)

An approximation for the above expression can be obtained if w is a constant as

follows:

w\ 5 1w 2

1)u+1
(w 11Y

S1=1+1)15_2)182+...+(_ w)1_6w

6
1 +w1 8+0(82)

Now, consider S2.

t w-h 6h+k \S(l)k+l(w)(1l) (i+ l_Sh+k)
h=1 k=O

/ 8h+k \(w) (w + (1)1 (w) (w h)

hzl k=O h1 k=O

Assume that t <w 1, it follows:

And so,

(:
(w h) (1)1 =

- :; (;)
:

(w: (1)k

h=lk=O /

= () (-1 + l)w_h
= o.

t tv-h / 8h+k \
S2 = (_i)1

()
(w

- 8h+k)
h=1 k=O

t tv-h "wh' / 6h+k \= _(_1)k()
k ) 1_6h+k)

(5.24)

h=1 k=O

Again, an approximation for the above expression can be obtained if w is a con-

stant as follows:



)W_t( w fwt'\ 8'S2=w185+w(w-1)+...+(-1 w_t)w_t)1_Sw
is+0(82

Substituting the expression of (5.23) and (5.24) in (5.19), the average retransmis-

sion time for a given word X to be received correctly is given by

iJ [R()(x)] = 1+ (l)k+1 ()
5k

1_5k

f
5h+k- (i)k()

(w
ii- 5h+k J

(5.25)
h=1 k=O

Note 4 From (5.22), the sum 8(8, k) can also be expressed as

S(S,k) >(Sk) (5.26)

and so, it is possible to derive another analytic expression for JE [R(t) (X)] as

follows:

From (5.20) and (5.26),

+00

S1 (_i)1 () 8(8, k) (_i)1 (tv)

k=1

+00W +001W
= - (5r)k

()
(5r)k () (Sr)]

r=O k=1 / r=O Lk=O

=[1(1-8T]=1+[i(15].
Whereas, from (5.21), (5.26) and the non-restrictive assumption t < w,

t W-'r

82 =(_l)1( /W _\
r=lk=O k

)S(8r+k)



t w-T +00

= (_1)k (w\

r=1 k=O ri
(w r) (öT+k)r

+00 t lwI-"
k

)(_ör)k
r=O r=1 " k=O

+00 t
= () (r)r(1_r)wT

r=O r=1

+00 t

=-i:: () (Sr)T(1_5r)T
r=1 r=1

Hence,

[R(t)(x)] =s1+s2=i+ [l_(l_o (r)r(1Sr)W_T]

+ool
=1+ Ii_(Ti_Tj

r=1 L r=O
\rj

1+ [1 f(ö, w, t)} + [1 f (a2 w, t)] + [1 f (, w, t)] + . .. (5.27)

where f(ö, w, t) is the function given in (5.12). Further from (5.27) and the upper

bound in (5.14) it follows that:

+00

[R(t)(x)] = 1+[1 f(6r,w,t)] i+ (:) (8t+1)r

/ w \= 1 +
+ i) 1 - at+1

From (5.27) and the lower bound in (5.14) it follows:

W [R(t)(X)] = 1+ [1 (8 w, t)}

+00 / w
1 + t\t + ) (ar)t+l (1 8r)w_(t+1)



+00

=+(
\t :1) (1

6)v_t_1 (8r)t+1

ot+1

=1+ (w (l_)W_t_1
+lj

From the previous two inequalities, we obtain

w) t+1 (w) t+1

1+
+ . ct+l

(1
6)W_t_1

<J [R(t)(x)] < 1 + (5.28)t+1 l6+

Hence, when (1 6)tu(t+1)
1,

/ w
IE [R(t)(x)] i +

( + 1 5t+1
(5.29)

Note that expression (5.27) can be used to compute the exact value of IE [R(t)(X)}

in a very efficient manner, especially when w is very large. In this way we cal-

culated the values in Table 5.2. Further, expression (5.27) truncated to a certain

value of r gives generally a better approximation for IE [R(t) (X)] than the one

given in (5.29), as shown Example 7.

The expression in (5.27) implies that the average number of retransmis-

sions required to receive the word X correctly depends only on its Hamming weight

w = wH(X). For a code C used in the system, the average number of retransmis-

sions can be obtained by taking the average over all codewords. We also assume

that all codewords are equally likely transmitted. Hence, the average number of

retransmissions for the code C is

IE [R(t)(c)] = IE [R(t)(x)]

xEc

= A x ARQ(8' WH),

wE7z;
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with A,L, = {XEC: w(X) = w}J, for all wE7Z', being the weight distribution

of the code C.

The above equation is valid under the same assumption, 5(0) = 0 and 5(a)

= constant = 5, for all a E ZZm {0}.

Table 5.2 shows the average number of retransmissions using a type-I hy-

brid ARQ and diversity combining using t-AEC/AAED codes over the m-ary

asymmetric Z-channel where every symbol error is equally likely.

Example 7' Assume that every symbol error is equally likely, then 5(0) = 0 and

5(x) = for all XEZZm {0}. So, from (5.25) and (5.27), the average number of

retransmissions needed to receive the codeword X correctly is

+ool I

[R(t)(x)] = RDCARQ(w) = 1+ Ii-
()

(1
r=1 L r=O

= 1 + [1 f(,w,t) + 1 I (2,w,t) + 1 f (3,w,t)] +...

If C = 0.01, w = w(X) = 100 and 2-AEG/AAED codes is used, i.e. t = 2, then

the average number of retransmissions needed to receive the transmitted word X

correctly is:

IE [R")(x)] (2)
(100)1DC

= 1 + fi(c = 0.01,w = 100,t = 2) + fi( = 0.012,w = 100,t = 2)

+ fi( = 0.013,w = 100,t = 2) + .. = 1.079373362.

On the other hand, if we use the bound given in (5.28), we obtain

1.060999226 < IE [R(t2)(x)] < 1.1617001.
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Ry,(w) w) b(W) w) RHb(w) w)

0.1 0.01 0.001

0 719380.7160 2.858090371 3.619887649 1.736596677 1.136625792 1.120331087

1 47258.58719 2.374110939 1.578717521 1.366655067 1.007532535 1.007476228

2 6224.745005 2.137628681 1.159390832 1.137478423 1.000311003 1.000310906

3 1232.137544 2.039483749 1.041976746 1.040285685 1.000009662 1.000009662

4 325.5382409 2.006534669 1.009699440 1.009606265 1.000000238 1.000000238

5 107.5263361 1.992620862 1.001924612 1.001920915 1.000000004 1.000000004

6 42.57759872 1.976842982 1.000329682 1.000329505 1 1

7 19.62371020 1.949090571 1.000049345 1.000049343 1 1

8 10,29575810 1.902879204 1.000006540 1.000006540 1 1

9 6.041371480 1.834475419 1.000000776 1.000000776 1 1

10 3.906820493 1.744037443 1.000000083 1.000000083 1 1

11 2.749091331 1.636243484 1.000000008 1.000000008 1 1

12 2.081021117 1.519466685 1.000000001 1.000000001 1 1

13 1.676974460 1.403688044 1.000000000 1.000000000 1 1

14 1.424535886 1.298016991 1.000000000 1.000000000 1 1

15 1.263876864 1.208783691 1 1 1 1

16 1.161116970 1.138760346 1 1 1 1

io- io 106

0 1.012882918 1.012720340 1.001280825 1.001279200 1.000128008 1.000127992

1 1.000080606 1.000080600 1.000000812 1.000000812 1.000000008 1.000000008

2 1.000000338 1.000000338 1.000000000 1.000000000 1 1

1.000000001 1.000000001 1 1 1 1

4 1 1 1 1 1 1

10_8 10

ofi 1.000012800 1.000012799 1.000001280 1.000001280 1.000000128 1.000000128

1
fi

1.000000000 1.0000000 1 1 1 1

1 1 1 1 1 1

iO0 10_li 10-12

0 1.000000012 1.000000012 i.00000000i[i.00000000i 1 1

1 1 1 1 1

TABLE 5.2. Average number of retransmissions for a word X with weight w = 128

using type-I hybrid ARQ, b(W), and diversity combining scheme,



6. CONCLUSION AND FUTURE WORK

In this thesis, some new results on error control techniques for the asym-

metric channel are given. Specifically, new results are given on:

* The capacity of the asymmetric channel.

* Analysis of the extended error detecting capabilities of Bose-Lin codes.

* t-unidirectional error detecting codes over Zm, m 2.

* Type-I hybrid ARQ using t-AEC/AAED codes over the m-ary Z-channel, m

2.

* Diversity combining scheme using t-AEC/AAED codes over the m-ary Z-

channel, in > 2.

More specifically, in Chapter 2, an expression for the capacity of the binary asym-

metric channel is derived. Using this expression, the capacities of the binary

asymmetric channel (BSC) and the Z channel can be obtained as special cases.

In Chapter 3, some analysis of Bose-Lin codes, for error detecting capabil-

ities beyond the maximum designed error detection, are given. It is shown that

the codes can detect errors beyond the designed maximum error detection capa-

bilities of the codes. When the error characteristic of a channel is asymmetric or

unidirectional, these codes can be successfully applied. Such conditions can occur

in applications where Bose-Lin codes are applied to relatively large blocks of data

or circuitry where the number of errors in the code word can occasionally exceed

the maximum that the code is designed to detect.

A new class of a systematic t-unidirectional error detecting codes over Zm

is designed in Chapter 4. It is shown that the constructed codes can detect up to



2 errors when using 2 check bits. Also, it is shown that the constructed codes can

detect up to mr_2 + r 2 using r 3 check bits. When m 2, these codes are

equivalent to the Method 1 of Bose-Lin codes [11]. By using r check digits, an

upper bound on the maximum number of detectable errors is given. This bound

is a generalization of the bound given in [23], which is for m = 2.

In chapter 5, the throughput of the pure ARQ protocols using different

codes over the m-ary Z channel, m 2, is derived. We derive the throughput of

the system by computing the number (or the expected number) of retransmissions

needed to receive all codewords correctly. We analyze the throughput first for

ARQ protocols. Then we consider type-I hybrid ARQ protocols, which use t-

Asymmetric Error Detecting (t-AED) codes and also using All Asymmetric Error

Detecting (AAED) codes. We also explain a simple diversity combining scheme

for general m-ary Z-channel, and again derive the throughput efficiency of these

schemes. From these results, it can be seen that the type-I hybrid ARQ protocol

is inferior to the diversity combining scheme, especially when is large and/or t

is small. On the other hand, when e is small and/or t is large, their performance

is essentially the same.

6.1. Further Research

The capacity of the binary asymmetric channel is derived in this thesis.

One of the future research problems is to design asymmetric codes with rate

close to the capacity of the asymmetric channel. Another problem in this area is

to derive the capacity of the various m-ary Z asymmetric channels described in

Chapter 5.
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it is known that the binary Bose-Lin codes are optimal when the number

of check bits, r, is 2,3, and 4. It is not clear whether the codes are optimal for

r > 5 and this is an open problem. in addition, the optimality of the proposed

t-asymmetric error detecting with m 2 needs further investigation. We have not

investigated the error detecting capabilities of the proposed t-ary error detecting

codes for the number of errors beyond the designed maximum value. This problem

is worth studying.

Most of the ARQ protocols designed here are for asymmetric channels. In

future, we would like to investigate similar techniques for unidirectional errors.

In fact, a simple diversity combining scheme similar to the one proposed here for

asymmetric errors can be also designed for unidirectional errors. This scheme

can correct up to j -unidirectional errors using t-unidirectional error detecting

(t-UED) codes as we briefly mentioned.

The diversity schemes now consists of bit-by-bit OR operation for the 1 -+ 0

errors and bit-by-bit AND operation for 0 -+ 1 errors. When t-UED code is

used and the number of errors is less than or equal to [j, the receiver can find

out whether 1 -p 0 errors or 0 -+ 1 errors have occurred in the received word.

For example, assume that a system uses Borden's-4-error detecting code with

length n = 20 , i.e. the codeword weights are 0, 5, 10, 15, and 20. Suppose,

the receiver receives a word with weight 12. Then, it is clear that the original

word must have weight 10 and the errors are of 0 - 1 type. On the other

hand, if the receiver receives a word with weight S then again the original word

must have weight 10; however, in this case, the errors must be of 1 -* 0 type.

This is because it is assumed at most 2 unidirectional errors can occur in the

codewords. Thus, performing bit-by-bit OR operation for 1 -* 0 errors and bit-by-

bit AND operation for 0 -* 1 errors, the receiver can obtain the original word. For
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general m-ary codes, these operations must be digit-by-digit MAX and MIN. The

throughput analysis for this method for different m-ary (m 2) codes requires

further investigation.
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