
AN ABSTRACT OF THE THESIS OF

Bruce A. Peterson for the degree of Doctor of

Philosophy in Statistics presented on

December 15, 1986 .

Title: Resource Limited Competition of Two Species:

A Dynamic Model of a Perturbed Neutrally Stable System

Abstract Approved:
Redacted for privacy

. Scott Overton

An hierarchically structured resource flow competition model

for two species is developed. The model is shown to be

intrinsically neutrally stable with a dynamical behavior

derived from perturbation responses. The model properties

are contrasted with those of a conventionally interpreted

Lotka-Volterra competition model.

A simulation developed from the model is compared with the

experimental results of Gause's 1932 competition experiment.

The simulation reproduces the dynamical behavior of the

experimental population and provides additional insight into

potential alternative behaviors not obtained from the

conventional Lotka-Volterra approach.

The resource flow competition model offers an alternative

viewpoint in understanding the behavior of competing

species. The model development methodology has the advantage

that parameters are tied to physical processes at a known

hierarchical resolution and the dynamics of the perturbed

neutrally stable system offer a rich repertoire of behavior.

A model is developed in which the focus is on the extrinsic

rather than in intrinsic aspects of system behavior.

Resource Limited Competition of Two Species:
A Dynamic Model of a Perturbed Neutrally Stable System

By

Bruce Peterson

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Completed December 15, 1986

Commencement June 1987

APPROVED:

Redacted for privacy
Professor of Statistics in charge of major

Redacted for privacy

Head of department of Catistics

Redacted for privacy

Dean o Grar ate S

Thesis presented on December 15,1986

Prepared by Bruce Peterson

Table of Contents

Section

1. Introduction 1

2. Competition and Ecosystem Models 8

3. A Resource Competition Model 16

4. Perturbation Behavior 27

5. Perturbing the Competition System,
a Predation model 38

6. Behavior of Competition model with
Predation type Perturbation 43

7. Resource Perturbation Behavior 54

8. Population Transformation Behavior 62

9. Gause's Competition Experiments 79

10. Summary and Discussion 87

Bibliography 91

Appendix Simulation model source code 95

List of Figures

Figure Page

1. State Space of Two Species Competition 20

2. Perturbation Notation 30

3. Perturbation Recovery Approximation 31

4. Predation Model of Perturbation 42

5. Distributions with C = 0.0,
R ratio 1.2:0.8 47

6. Distributions with C = 0.8,
R ratio 1.2:0.8 48

7. Distributions with C = 0.0,
R ratio 1.1:0.9 49

8. Distributions with C = 0.8,
R ratio 1.1:0.9 50

9. Effect of Resource Perturbation 61

10. Population Model Initial Distribution 65

11. Population Model Distribution at T=60 66

12. Population statistics for C=0.5 69

13. Population statistics for C=1.0 72

14. Effect of Density Dependence 74

15. Long Term Behavior 76

16. Simulation of Gauss experiment 1 85

17. Simulation of Gauss experiment 2 86

Resource Limited Competition of Two Species:
A Dynamic Model of a Perturbed Neutrally Stable System

Section I
Introduction

Three themes are intertwined in the following development.

A tool, hierarchical systems theory, is applied to a

concept, resource flows as a primary ecological process, to

explore a basic ecological process, species competition.

Each of these will be discussed briefly in the introduction

before the full details of model are developed.

Energy flow as a primary ecological process was

hypothesized by Odum (1976) in terms of the maximum power

principle. According to this principle, systems will tend

to maximize the energy flow through their domain when

energy is in surplus, and will maximize their efficiency

when the surplus is no longer available.

The hypothesis provides an organizational principle for a

holistic perspective on the behavior of complex systems,

providing an expected behavior for systems at different

levels of organization and a basis for organizational

structure. Hypothesized systems, especially at the supra-

organismal level, sometimes lack otherwise obvious

behaviors. The principle provides an immediate set of

hypotheses which can be used to explore the nature of an

ecological system.

The exploration the organizational behavior of an

hypothetical system following this principle requires the

explicit inclusion of energy and resource flows. Such a

model will provide testable hypotheses more readily than

models in which energy or resource flows are included

implicitly.

One aspect of the principle, the maximization of energy

flow through a system, immediately suggests the class of

model which would be advantageous. The attempt by several

systems, at the same level of organization, to maximize

energy flow suggests behavior analogous to competition for

a limited resource. Maximization of an energy flow into a

system is advantageous simply because energy used by a

system is not available for use by the system's

competitors.

Models of competitive behavior have been central to much of

ecological theory. Competition models have been used in

discussing aspects of ecological systems ranging from

community structure (Whittaker,1975), trophic structure

(Pimm, 1982), and evolutionary paths (Pianka,1974). Pianka

summarized the focus on competition models in stating

"Natural selection and competition are inevitable

outgrowths of reproduction in a finite environment."

That a concept and its associated models are applicable to

such a wide range of biological systems and behaviors is

also an indication that the model elements may have

differing interpretations. A language that allows models of

complex systems to be developed with a minimum of confusion

is required.

Such a language is expressed in the theory of hierarchical

systems. The basic elements of the theory consist of three

concepts: levels of organization, statistical closure, and

near decomposability.

Multiple levels of organization in models of complex

systems stem from the recognition that complex systems have

behavior occurring simultaneously at several time

resolutions (Simon, 1973). Models simulate this by

consisting of modules for each class of characteristic

times. Lower levels are defined as consisting of subsystems

with shorter characteristic times while subsystems with

longer characteristic times represent higher levels.

One outcome of the division into levels is that subsystems

which are at different levels will interact differently

than subsystems which are at the same level (Simon,ibid.).

Lower level systems will interact with higher level systems

through their aggregate behavior. Higher level systems will

act on systems at a lower level by parametric coupling.

That is, the parameters of the lower level will be functions

of the higher level behavior. Pattee (1973) described this

property as statistical closure, considered a necessary

element for hierarchical control systems.

Near decomposability, the last element from the

hierarchical theory, summarizes the principle that

interactions between subsystems will be fewer and weaker

than the interactions within subsystems. Simon (ibid.),

observes that near-decomposability of subsystems

contributes to the robustness of the whole system through

the damping of the propagation of disruptions caused by

failures of any one subsystem.

The concepts used in the development of the resource

competition model are developed in the following sections.

The role of competition in ecological theory is discussed

in the second section. The competition of species for

resources is a central concept in ecological theory, based

primarily on a development by Lotka (1925) and Volterra

(1926) as a differential equation model. This model has

provided the basis for a large number of ecosystem models.

The third section explores the structural elements of a

Lotka-Volterra competition model. The form of this model

is simplified by transformation into resource normalized

units which explicitly model competition for a single

resource flow.

The equilibrium dynamics of the resource competition model

is simple. However the behavior is rich when the system is

stochastically perturbed. Since the time scales of dynamics

at different levels are necessarily slower for higher

levels and faster for lower levels than the characteristic

time of the target level, such a coupling may be modeled as

a series of perturbations to the target level. Section 4

explores analytically the behavior of the competition model

with a simple perturbation.

A model is developed for the perturbations in terms of

predation in section 5. This model differs in important

respects from classical predator-prey models. The resource

competition model explicitly considers the 'predation'

events to be infrequent compared to the characteristic

times of the competing populations. In contrast, the usual

predator-prey or community model considers the

characteristic times of all species, predators and prey, to

be similar.

The predation model generates perturbations in the state

variables of the target level model. Section 6 investigates

the behavior of the target model when the predation

perturbations range from density independent to density

dependent. Resource perturbations model are discussed in

section 7.

Section 8 extends the model to populations of the

competitive systems. The integration of system behavior

produces the next hierarchical level and allows the

distribution of competition systems states to be explored.

Section 9 compares the theoretical results obtained from

the model to Gause's classic experimental results using the

parameters estimated by Gause (1934).

Section 10 summarizes the investigation. The general

properties of the model and crucial aspects are discussed

and reviewed.

Section 2

Competition and Ecosystem Models

The concept of competition for limited resources has played

a central role in the development of ecological theory

since Darwin (1859). Recent literature includes discussions

of aspects of ecological systems ranging from community

structure (Whittaker, 1975), trophic structure (Pimm,1982),

evolutionary paths (Pianka, 1974) and natural selection

(Fisher, 1930) which rely on the concept of competition as

the core of the patterns developed.

Lotka (1925) and Volterra (1926) provided the differential

equations that are the starting point of many competition

models. This model of two species competition can be

expressed as:

(1) kx= rxNx(1-Nx/Kx 8Ny /Kx)

ky. ryNy(1-Ny/Ky y6Nx/Ky)

where

rx is the per capita growth rate for species X,
at low values of Nx, the intrinsic
growth rate

ry is the per capita growth rate for species Y,
at low values of Ny, the intrinsic
growth rate

Kx is the carrying capacity for species X
with no competition

K is the carrying capacity for species Y
with no competition

B is the number of species X equivalent to
an individual of species Y

y is the number of species Y equivalent to
an individual of species X

These equations contain a number of implicit assumptions

about the populations being modeled.

Species populations are assumed to increase exponentially

until limited by intraspecific or interspecific

competition. The nature of the competition is not specified

in the model but there are many ways in which two species

can compete. Schoener (1983), for example, lists seven

mechanisms of competition:

Consumptive (or resource) competition in which one

individual by consuming a resource denies it to all

other individuals.

Preemptive competition in which a unit of resource is

"occupied" by an individual denying the resource to

others

Overgrowth, in which one or more individuals grow over

or upon another and either damage it or deny it access

to a required resource

10

Chemical competition in which an individual releases
chemicals into the environment which inhibit or harm
competing individuals

Territorial competition in which an individual defends
a unit of space by aggressive behavior against
competitors.

Encounter competition, in which interactions between
mobile organisms result in harm to one or more of
them.

These mechanisms can be summarized in two categories:

resource or exploitative competition, and interference

competition. A species engaged in resource competition

denies resources to a competitor by first use. A species

engaged in interference competition denies resources to a

competitor without using the resources. The first of

Schoener's mechanisms is clearly resource competition. The

second has elements of both resource competition and

interference competition, but its effect is resource

competition even though the mechanism is interference. The

rest are interference competition.

Further assumptions are implicit in the differential

equation models:

the population members are nearly identical; no
differences due to age, sex, size, etc.

11

the population growth rates respond
instantaneously to changes in resources or
competition.

the mechanism of competition is unspecified and
proportional to total population density.

The characteristic time of the model, though unspecified,

must be sufficient for the other assumptions to be

approximately correct. Often this implies that more complex

systems i.e. the higher the hierarchical level that is

being modeled, have the longer characteristic times.

The unspecified mechanisms of competition are expressed

through the parameters beta and gamma. These parameters

limit the maximum population numbers to a value of K;

resources are not explicitly modeled.

Field studies, purporting to identify competition effects,

and therefore indirectly the model parameters, have had a

variety of interpretations and success rates. For example,

Connell (1983) argues from a review of 72 field studies

published from 1972 through 1982 that interspecific

competition was demonstrated in only about half of the

multispecies systems studied. On the other hand Schoener

12

(1983) surveyed 164 field studies published through 1982

and concluded that 90% of the experimental attempts to

detect interspecific competition did so.

The differences in interpretation may stem in part from the

different models of competition used. Any attempt to

measure an effect is dependent on the model of how the

effect will be expressed. Since much of competition theory

has been built on a particular model of competitive

interaction, some of the disagreements about experimental

results may be the result of differing interpretations of

this model.

Variants of the competition model have been developed to

accentuate one or another aspect of the species

interaction. A common approach is to regard the model as

but the first few terms of a series approximation to a more

complex model. This mathematical approach has been used

since the work by Lotka (1925) to create more generalized

models of competition.

For example a model used by Tilman (1982) and a similar

model by MacArthur (1972) are such models. The model has

13

been expanded to include terms that explicitly characterize

resources with a general form of:

(2) Ni = Ni(fi(111...Rk) mi)

Rj = gj(Rj)-Eni.1 Nifi(111...Rk)hij(R1...Rk)

where there are i=1...n species with
population density Ni

and j=1...k resources with availability Rj

the mi are the per capita mortality rates for
species i

the gj describe the rate of resource production

the fi describe the net per capita reproductive rate
depending on resource availability

the hij describe the amount of resource j needed for
each new individual of species i

Resources are treated as state variables in this model. The

characteristic time of the resource dynamics is

commensurate with the characteristic times of the

populations. In contrast recall that in the model of

equation 1, resources appear implicitly as parameters;

implying that the characteristic time of resource dynamics

is long compared to that of population dynamics. The

implicit assumptions of both types of model are otherwise

similar. That is, populations are assumed to

14

instantaneously respond to any change in resource

availability, each member of the population is

indistinguishable from any other, and all members interact

only through the use of resources.

The implicit resource model assumes that the resources are

available as a "flow" only. Those resources not used by the

populations do not accumulate and resources depleted at one

time do not affect availability at a later time. The

implicit resource model puts resource dynamics on a

different, higher, level than the population dynamics. In

contrast the state variable model (model 2) assumes that

resources and populations are at the same hierarchical

level; the characteristic times of populations and

resources are sufficiently close that the joint dynamics

are of interest.

As a result, the two models of competition for resources

are fundamentally different. In particular, two species

competing for a resource flow will not experience a time

lag in resource availability. A quantity of resource

relinquished by one population is immediately available to

15

its competitors; there is no lag while resources recover

from a depressed level. Some authors have recognized this:

for example Smith (1952) early discussed the importance of

resource flows while Odum (1976) has developed a suite of

resource flow models and a modeling language to describe

them.

The state variable type model is often implicitly or even

explicitly invoked when the parametric model is analyzed.

That is, the resource is often conceived of and discussed

as a spectrum or gradient of resources (e.g. seed sizes) at

the same hierarchical level. This is the case in the

analyses by MacArthur, Pianka, May (previously cited) and

Diamond (1975).

16

Section 3

A Resource Competition Model

An implicit resource model can be developed which, in

contrast to the mathematical expansion approach, recognizes

that the parameters of the model are the result of higher

level constraints. As such, the model can be reformulated

to make explicit the competition for resources as a

constraint from a higher level of organization.

A benefit of reformulating the model in terms of resources

is that the biological meaning of the parameters is made

clearer and the values available to certain parameters are

constrained. This aids in the comprehension of the modeled

system and in the identification of the limiting factors as

promoted by Smith (1952).

The reformulation of equation 1 to a resource basis begins

by recalling that at equilibrium the solution to this set

of differential equations is:

(3) Nx* = (Kx -BKy)/(1-y0

Ny* = (Ky -YKx)/(1-Y0

The solution is in terms of the population densities and

17

carrying capacities. The equations (1) can be reformulated

to make the parameters resource related by the

transformation:

(4)

let Kx = R/Ox

Ky = R/Oy

and

= dy0y/Ox

Y = 6x0x/Oy

where

and

Ox is the per capita resource use
by species X

0 is the per capita resource use
by species Y

d is the resource preemption factor of
species Y on species X

dx is the resource preemption factor of
species X on species Y

Note: the preemption factor is the ratio
of resources a species denies its
competitor compared to the relative
per capita resource usage of the two
species

then

Nx = rxNx(R OxNx -6yOyNy)/R

18

Ny = ryNy(R - OyNy -6x0xNx)/R

and the equilibrium solution is:

Nx* = R(1-dy)/ ox(1-dx6y)

Ny
*

= R(1-6x)/ 01,(1-6x&y)

The two pairs of equations, the differential form and the

equilibrium solution form, define a phase space and

isoclines in that phase space. Figure 1 illustrates the

phase space created with the population density of one

species on the ordinate and the population density of the

other on the abscissa. The isocline consists of the locus

of points in the phase space where the time derivative of

the population densities of each species is zero.

When the preemption factors (delta) are not one, an

isocline is defined for each differential equation. The

intersection of these isoclines is a node in the phase

space. The classical analysis of this node (see Rosen,

1970) shows that the node is stable for both delta's less

than one and asymptotically unstable for both delta's

greater than one.

When the delta's are identically one, the equilibrium

19

solutions obtained in equations 4 are indeterminate.

Rather than a unique equilibrium point in the phase space,

there exists a locus of equilibrium solutions on a line.

This equilibrium line is illustrated in figure 1.

This formulation of the model of equation 1 has all the

parameters of the model in common resource terms. The

biological meaning of the each term of the reformulated

model is now clearer since the intra and inter species

interactions are in terms of the per capita resource usage

and a resource preemption factor.

The resource used by both species is represented by one

term, R. This is consistent with the "law of the minimum ".

That is, at any given time, only one resource will be the

limiting resource. The specific resource which is limiting

may shift from time to time and the effect on the dynamics

of the system will depend on the nature of the shift.

20

Figure 1

State Space of Two Species Competition Model

Coincident isoclines when ix dg 1

Figure 1: Phase Space of Two Species Competion Model

The isoclines for the two species are coincident when the

Sx and 6, are both 1. Representation of

each species in "resource equivalent units", Nx1=00x

and Ny'=OyNy, leads to a simplified form.

This results in a figure as above with x = = 1.

21

If a second resource becomes limiting for the same two

species, then this is equivalent to a new isocline sweeping

through the phase plane. When this new isocline passes

through the current system state, it will pick up the

equilibrium state and carry the state on the new limiting

isocline.

The absolute population numbers may change but the

population numbers may be renormalized. The renormalization

is accomplished by absorbing the efficiency parameters,

phi, into the population numbers to create new variable

measured in resource demand equivalents. Since the

efficiency parameters only affect the slope of the

isocline, this transformation does not change the dynamics

of the system and produces an isocline which can be

analysed with a slope of minus one.

Model 4 can be renormalized by incorporating the

parameters phi into the state variables so that the

population values, Nx and Ny are expressed in terms

of resource demand equivalents rather than numbers of

individuals. This renormalization is expressed in the

following form in the discussion that follows.

22

(5) Nx = rxNx(R Nx Ny)/R

ky = ryNy(R Nx Ny)/R

N
*
x, N

*
y are not uniquely defined

If a second resource becomes limiting for one species, but

is not limiting for the second, then competition with

either species may occur with a third, new, species. In

this case the new equilibrium value for the original

species will be unrelated to the old equilibrium value,

even if renormalized. Thus the reaction of the competitive

system to a change in resource composition depends on the

community structure in which it is embedded.

The parameters of interaction, delta, include all

interactions through resource competition. The following

model will explore the interaction by assuming that species

are competing for two different resources with some overlap

and then examining what occurs when the overlap becomes

complete; i.e. the species are competing for one resource.

This will provide an explicit definition of the parameters

delta in terms of resources.

23

Suppose that each species has separate resources available

so that the model is:

(6) NX = rxNx(1 (Nx/Rx) -(61,Ny/Rx)

Ny = ryNyo. (Ny/Ry) -(6XNX/Ry)

let R be the total resources available and Rc be resources

for which both species compete, then

R = Rx + Ry Rc

Now the d's can be defined as:

6x = the proportion of Rx available
to species Y

= Rc/Rx

6y = the proportion of Rv available
to species X

= Rc/Ry

Note that if Rc = 0 then there is no competition

and 6x = 6y = 0.

If Rc>0 but Rc < Rx and Rc< Ry then

each species has resources unavailable to the other;

then 6x > 0 and 6y > 0 but both are

less than 1. Then the equilibrium populations

Nx* = (Rx-6yRy)/ (1-6x6y)

Ny* = (Ry-6xRx)/ (1-6x6y)

are stable. Only if Rc<R and Rc= Rx or Rc=Ry

24

does one species exclude the other; each species

persists if it has resources unavailable to the other.

The last case explores the model of interest in this

investigation. In this case Rc=Rx=Ry=R, both species

are competing for the same resource, and this is the

condition considered here as resource competition.

There is no unique equilibrium in this case as 6x=Sy=1.

The population system is neutrally stable.

Thus, the interaction parameters of a resource competition

model are 1.0 and this produces a dynamical system which is

neutrally stable. That is, any perturbation of the system

will tend to change the system state permanently.

Ordinarily this would be regarded as a structurally

unstable system; the structural instability results from

the precise equality of the parameters needed to maintain

neutral stability in the phase space. However in

competition for one resource, the interaction parameters

are 1 by definition.

The fact that a neutrally stable system is ordinarily

considered structurally unstable and therefore presumably a

25

special uninteresting case is reflected in much of the

literature discussing the competition relations. Generally

the neutrally stable case is not examined in any detail.

For example Slobodkin (1961) and Pianka (1974) who both

develop the competition system dynamics in terms very

similar to those used here, leave out the neutrally stable

case altogether. This case, however, appears in the

present development as the most interesting of all for

describing the behavior of the resource limited competitive

system.

Further the neutral stability of the two-species, one-

resource model is convenient for examining hierarchical

interactions. Interactions with higher levels will take

place through the parameters of the model. There are three

types of these parameters: the growth rates, the resource

efficiencies, and total resource.

The growth rate parameters (rx and ry) of the

model are modified by the density dependent terms to yield

the growth rates. A change in these parameters is

structurally similar to the changes already occurring from

the density dependent term and does not produce any new

26

behavior. However it does change the relative behavior of

the species and the partition of the phase plane.

The resource efficiency parameters set the scale of the

populations. Any change in these is equivalent to a

renormalization; to changing the measure of population

size.

A change in the total resource is the result of dynamics at

a different hierarchical level. The effect of changes in

resources, will be investigated in a subsequent section.

The population numbers, being the state variables of the

model, are the result of the integrated behavior of lower

level dynamics. This integrated behavior is smooth as long

as the lower level dynamics are continuous. Should the

lower level dynamics become discontinuous, the

discontinuity would be reflected as a perturbation in the

population numbers. This can generate new behavior which

will be discussed in the next section.

27

Section 4

Perturbation Behavior

Model 5 developed in the previous sections has state

variable dynamics at the population level which exhibit

neutral stability. These state variables are the result of

the integrated behavior of an unspecified lower level

dynamics. A discontinuity in the lower level dynamics will

be modeled as a perturbation to the target population level

dynamics. The behavior of this system can differ markedly

when perturbed in different ways. This section will develop

an analytical approach to a simple type of perturbation.

Consider a model of perturbation in which the system state

is moved from equilibrium on the isocline to a point on a

semicircle centered on the original state. In this model

the size of the perturbation in numbers of resource

equivalent units will be constant, but the proportion of

membership change for each species will be a random

variable. Biologically, this type of perturbation will

arise if the competing species experience perturbations

(population losses or gains) independent of population

size.

28

Although this density independent type of perturbation is

simple, it can generate complex behavior in the neutrally

stable two species resource competition system. In

contrast, an asymptotically stable or unstable system has

dynamics which dominate small perturbations of this type.

However in a neutrally stable system, any movement of the

system state upon recovery from a perturbation will be

retained until the next perturbation. Thus if the

perturbation is random then the change in state of the

system will also be random with the distribution of the

state change determined by the system dynamics and the

distribution of the perturbations.

The distribution of the change in system state after random

perturbation can be examined analytically for the simple

perturbation presented above. Figure 2 presents the

notation which will be used here. Angles used are in

reference to the line parallel to the horizontal axis and

intersecting the isocline at the original equilibrium state

of the system.

29

The size of the perturbation is held constant in this

analysis. The perturbation can then be treated as a vector

where the angle that the vector makes with the reference

line is theta. Theta is a random variable.

After perturbation, the system is in a new, non-equilibrium

state. The system dynamics will return the system to

equilibrium along a trajectory which depends the parameters

of the dynamical relations. For small perturbations, this

trajectory can be approximated by a line tangent to the

trajectory at the perturbed system state. Figure 3 presents

the accuracy of this approximation over a range of theta.

For perturbations of one percent of population size, the

approximation is reasonably good; the maximum error is also

about one percent. The expected error depends on the

position of the pre-perturbation state on the isocline as

well as the parameter rx and ry. Since the error is

systematic, there can be patterns in the behavior generated

by this error.

Figure Two

Perturbation Notation

return

trajectory

perturbed state

30

I angle of return trajectory

El perturbation angle

Nx

Figure 2: Notation used for perturbation of neutrally

stable system. Note that perturbation size is

exagerated.

31

Figure 3

Perturbation Recovery Approximation

0
Error of linear approximation
at populations of X and Y 36

r ratio 1,11

76

1.62

1.33.

1.17

0.94

0.72.

0.49

0.27

0.04

.0.19.

0,41

.0.64

.0.86
Angle in Degrees111 1-1-1417 1111111 I

0 00 0.19 0.37 0.56 0,75 0.33 1.12 1.31 1.49 1.68 1.87 2.05 2.24 2.42 2.61 2.80 2,98 3.17 3.36 10
2

32

In figure 2, T is the angle of the tangent to the

return trajectory and the isocline. The efficiency

coefficients, 0 were incorporated into the population

numbers in section 3 so that the N's now refer to

resource equivalent population units. In this notation the

angle of the isocline with the abscissa is then a constant

of value a. Psi is then given by:

(7) ! = arctan(rxNx + ryNy)/(rxNx ryNy))

The angle of the perturbation vector with respect to the

abscissa is given by theta. For this development, theta is

taken to be a random variable while the length of the

perturbation vector, Z, is taken to be constant. Theta is

additionally assumed to be drawn from a Uniform(°,)

distribution.

Given that theta is then drawn from a uniform distribution

with a range from 0 to n, the task is to find the

distribution of d, where d is the signed distance from the

original system state on the isocline to the final

resultant state on the isocline after perturbation. The

33

signed distance and the distribution of the distance is

given by:

(8) d = z sin(! + 0)/ sin T

The cumulative frequency distribution is :

F(d) = foe d0/7

where 0' = arcsin(d sin 'F /z) T.

This must be integrated piecewise over the four

regions of d (where two of these overlap).

For z < d <= z /sin'F (z out to z /sin 'F):

F(d)=0'/7

For z /sin'F >=d >= z (back in from z /sin'F to z):

F(d)= et/7 + (7-2T)/27

For 0 <= d <=z (from z to 0):

F(d)= 0/n + (7-2T)/n

For -z<= d <=0 : (from 0 to -z):

F(d)= 0 /7 + (7-T)/7

Clearly, since T is a function of the system state, the

distance distribution will also depend the initial system

state.

The probability density function defined by the distance

34

distribution derived in equation 8 has a mode near one

tail. This is the result of the system dynamics and the

fact that the extreme in the distance moved does not occur

at the extreme of theta. This results in two perturbed

states, arrived at by different values of theta,leading to

the same final state. The probability density associated

with the distances of these final states is therefore

greater than final states arrived at by a unique value of

theta.

One consequence of this model of perturbation, with a

uniformly distributed theta, is that the perturbed system

is unstable. This is the result of the mode in the tail of

the distance probability density which makes the expected

value of distance moved nonzero. This is easily seen from

equations 8 by noting that the region of enhanced

probability density depends on psi. Psi in turn is a

function of the ratio of population sizes which maximizes

the region of enhanced probability density near the axis.

Thus the closer system is to one axis (one species

domination) after perturbation, the more likely it is to

move even closer on the next perturbation.

35

A second consequence of the model is a partition of the

phase space. For any point on the isocline, but one, there

is a single perturbed state that return directly to the

point, and the expectation of return is either toward one

axis or the other. But for one point on the isocline, the

expectation of return is to the original state, and this

point partitions the isocline into two regions. Populations

beginning in one part will tend under perturbation to drift

toward one species and populations in the other part will

drift towards the other species.

One outcome of the partition is to make higher intrinsic

growth rates (r) selectively advantageous. Since a uniform

perturbation of constant size can be considered as

selecting a point at random on the circumference of the

semi-circle centered on the original, pre-perturbation

state, the perturbation is selectively neutral. The return

trajectory which would return the system to the original

state intersects this semi-circle, creating two unequal

sections. The point of intersection is a function of the

relative growth rates (a product of population and

36

intrinsic growth rate) at that point on the isocline.

The probability of a perturbation moving the system state

into either section is proportional to the size (along the

circumference) of that section. At each population ratio

(point on isocline) the population with the larger

intrinsic growth rate will have a larger chance of having

the advantage than expected from population ratios. That

is, random drift is toward the axis nearest the larger

section, tending to favor the species with the higher than

proportional growth rate.

This type of perturbation induces constraints in the lower

level dynamics. For example to produce a decline in one

population balanced by a growth in the other, on a time

scale such that this can be regarded as a perturbation,

would seem to require rather special dynamics. A more

general perturbation structure is needed.

A new perturbation structure can be postulated which will

generate more plausible perturbations. First the range of

theta can be constrained so as to only decrease species

numbers; second the generating function for the

37

perturbation can be modified to account for density

dependence. These modifications will be made in the next

section. A simulation model will also be developed to

explore the behavior of the system.

38

Section 5

Perturbing the Competition System, a Predation Model

Under some conditions, the perturbation treatment developed

in the previous section effectively tied a population

decrease of one species to a population increase of the

other species. This section will develop a model, based on

predation, which leads to a more plausible type of

perturbation. Note, that although predators may be placed

at a higher hierarchical level than the prey, based on

predator population dynamics, the effects of predation in a

competition model can be at a lower hierarchical level.

For example a grazer species may have population dynamics

which are long compared to the grazed species yet the

predation (grazing) sufficiently sudden and infrequent so

as to be modeled as a perturbation.

The model developed here will span a range of interactions

from full density dependence to full density independence.

Although the model is developed in terms of predation it

may be applied to population losses due to any cause at

this resolution.

39

The predation model is developed by considering two

extremes. In density independent predation, the expected

loss to a given species is independent of the population of

that species. One mechanism is to consider species

populations as clustered, such as might occur when fish

school.

If both populations are clustered so that both have equal

numbers of clusters, then population size differences would

show up only in the size of the clusters. Then if the

predators behave such that they forage until a cluster is

discovered, and become satiated before a cluster is

depleted, the expected loss for each species is related to

the ratio of the number of clusters and not the population

sizes.

A model that can be used for situations in which the

populations are not clustered, or the predator is not

satiated after consuming one cluster, can be developed as

follows. Assume a predator has a requirement for a specific

number of prey, the predator is indifferent as to which

species the prey consist, and the predator will search for

and consume clusters until it is satiated.

40

Then the prey are assumed to be clustered, with the number

of clusters the same for both species. The cluster size for

each species is proportional to the species populations.

If the cluster size of either of the species is smaller

than the number of prey needed to satiate the predator,

then the predator will seek an additional cluster.

When the cluster size is larger than the satiation number,

then the expected numbers lost to predation will be the

same for both species regardless of the population sizes.

This is density independent predation. If the cluster size

is less than the satiation number, then the numbers lost to

predation will be a function to population sizes. In the

limit, where the cluster size is one individual, the losses

to predation are fully density dependent.

Figure 4 illustrates the results of a model simulating

this effect. The proportions of losses for different

degrees of clustering can be closely approximated with the

following relation:

41

(9) The proportion of losses sustained by species i is

= (0.5)(1.0-Ci) Ni/(Nx+Ny)/Ci

Where Ci is a "clustering" coefficient in the range [0,1].

1,0

0,6

0,4

0,2

0,0

42

Figure 4

Predation Model of Perturbation

1
1

0 2 4 6 8 10 12 14 16 18 20 22

+ SIMULATED 4-ESTIMATED

Figure 4: Predation model simulation results compared with

approximation.

Simulation model with species X cluster size of 3 and
species Y with a cluster size of 13. The ordinate is the
proportion of the total predation loss taken from species
Y. The abcissa is the total predation loss. When the total
loass is less than minimum cluster size, both species
contribute 50% of loss. When predation loss is larger than
the largest cluster, both species lose in proportion to
population.

43

Section 6

Behavior of Competition Model
with Predation Type Perturbations

This section explores the behavior of the two species/one

resource competition model when perturbed by the predation

model created in the last section. Since the model is

analytically intractable, a simulation is used to generate

the behavior. The system dynamics are those of equation 5.

The model examines behavior near equilibrium and the

equilibrium dynamics of the system are used. Perturbations

are assumed rare compared to the characteristic time of the

system. When this is the case the relations developed in

section 2 for the distance moved on the isocline after a

perturbation can be used rather than the system dynamics

directly. This distance was given by equation 8.

The effects of density dependence are included in the

simulation model using the relations developed in section

5 to modify the perturbation angle. The perturbation to

the population is applied in three steps.

44

First an angle, theta, is chosen from a uniform

distribution with an appropriate range. In this model the

range spanned is n/2 radians and covers the third

quadrant. The angle is used to project the unit

perturbation vector onto each species axis. This projection

is the density independent change in each population due to

the perturbation.

Second, the density dependent factor of equation 9 is

used to modify this change in each population as a function

of its fraction of the total population. These changes are

the final perturbation changes to the populations.

Finally an effective perturbation angle is calculated from

the arctangent of the ratio of the perturbations. This

effective angle is used when the distribution of the

perturbation angles is accumulated. The entire process has

the effect of filtering the original uniform distribution

of angles into an empirical distribution which reflects the

influence of density dependence.

The full details of the simulation model are presented in

45

appendix A. In brief, however, the model operates as

follows. A file of parameters is first read to initialize

the model. This file contains values for the type of

perturbation, the growth rates for the two species, the

initial equilibrium populations, the total resources

available, and the density dependence of each species.

Multiple sets of these parameters can be loaded

simultaneously, as well as several other options discussed

later.

The algorithm followed is:

perturb each population set,

calculate the state upon recovery,

accumulate the effective perturbation angle and
distance moved on the isocline for the summary
frequency distribution,

redistribute the population sets to the initial
state.

This is repeated for as many iterations as are specified.

The frequency statistics output from this model, are used

by a second graphics program which formats and displays the

distributions.

Figures 5 through 8 display the results of several

simulation runs. Each figure is similar except for changes

46

in the density dependence or clustering parameters and the

ratios of the growth rates.

Each figure contains a representation of the isocline of

equilibrium values of the two populations. The population

numbers of species X are represented on the abscissa while

those of species Y are represented on the ordinate. Since

both populations have been renormalized, the isocline is

the hypotenuse of an isosceles triangle.

47

Figure 5

Distributions with C= 0.0 R ratio 1.2:0.8

Distribution of theta perturbations

*cluster" growth

paraNeter rate

Species E Q.V 1.2
Species V: 8.8 8.8

Distribution of distances wooed on isocline

Nx

48

Figure 6

Distributions with C= 1.0 R ratio 1.2:0.8

Distribution of theta perturbations

*clusters growth
parameter rate

Spectes R: I.@ 1.2
Species Y: 1.6 8.8

hstriiation of distances moved on isocline

Nx

Nu

49

Figure 7

Distributions with C= 0.0 R ratio 1.1:0.9

Nx

50

Figure 8

Distributions with C= 1.0 R ratio 1.1:0,

Distribution of theta Perturbations

Species
Species

'Cluster' growth
parameter rate

X: 1.8 1.1
Y: 1.8 8.9

Distribution of distances moved an isocline

Nx
LLJ

51

Along the isocline are eight histograms. The four above the

isocline represent the distributions of the perturbation

angles at four population ratios:

(20,80),(40,60),(60,40),and (80,20). This arrangement

allows the perception of the influence of population state

on the distribution of perturbations.

The four histograms below the isocline represent the

distributions of distances moved on the isocline in

recovering from the perturbation. The pair of histograms at

each population ratio may be thought of as input and output

distributions of the neutrally stable competition system.

Note that each histogram spans the range of values

experienced by the variables over all population ratios.

Thus the perturbation angle always covers its span, while

the distance moved does not. The distance moved span

reflects the result of system dynamics which, for some

population ratios, can result in distances moved on the

isocline being greater than the perturbation magnitude.

The center of the perturbation angle span represents an

orthogonal perturbation. The center of the distance moved

52

span represents a zero movement. From this it can be seen

that for some population ratios, the expected movement upon

perturbation recovery is toward the closest axis, in spite

of extreme skewing of the distribution toward the equal

ratio point on the isocline.

Figure 5 illustrates the behavior of the system when the

ratio of the growth rates is 1.2:0.8 and there is no

density dependence. In this case the distribution of

perturbation angles is uniform. The distribution of

distances moved is skewed toward the nearest axis for the

(20,80), (60,40), and (80,20) population ratios. At

(40,60), which is the ratio for which the return trajectory

is orthogonal to the isocline, the distribution of recovery

distances is bimodal and the expected distance moved is 0.

Figure 6 illustrates the behavior of the system with the

same growth rate ratios but density dependence parameters

of 1.0, corresponding to full density dependence. Note that

the distributions of effective perturbation angles have

become skewed. The skew of the distribution of distance

moved on recovery, as seen in figure 5, has been reversed by

the density dependence.

53

Figures 7 and 8 show the results for similar runs with the

growth rate ratio of 11:9 rather than 3:2. The difference

in distribution skewness between the no density dependence

case and the density dependence case is the same. In fact

the distribution shapes are much the same. However the

range and location of the distribution of d is shifted.

In summary the shape of the distribution of d is determined

by the density dependency parameters, while the location is

determined by the ratio of the growth rates.

54

Section 7

Resource Perturbation Behavior

The previous sections explored the reaction of the system

to a perturbation in the state variables of the system.

This section will examine the behavior under perturbation

in the resource parameter.

A perturbation to resources can occur at either of two

levels. A higher hierarchical level perturbation occurs

slowly compared to the population dynamics. A perturbation

at a lower hierarchical level occurs quickly compared to

population dynamics. In either case the notion of

perturbation is maintained to connote an infrequent event

such that the population is at equilibrium before each

event and will reach a new equilibrium following that

event.

Higher level resource perturbations, occurring with

dynamics slower than the population, are tracked by the

system. In the renormalized version of model 7 such

changes of the resource value do not show in the phase

space presentation. The renormalization compensates for

changes in the scale of resources.

55

However a second type of perturbation can occur at the

higher level time scale. This is a change in the limiting

resource for which competition is occurring. There are

several variants of this type of change.

The first case is when a new resource becomes limiting for

the same two competing species. When this occurs the new

limiting resource has a virtual isocline which sweeps

through the phase space as the availability of the new

critical resource declines relative to the old. When the

virtual isocline intersects the original isocline it will

pick up the system state and become the new isocline of the

limiting resource. The appearance of the phase space of

the renormalized model will not change when this is

completed. There is a transition stage that will not be

treated here.

A second case occurs when a new resource becomes limiting

for one species but not the other. This can change the

basic nature of the interaction. In one variant of this

case, the phase space could be defined as in model 5

where one species competes for all of both resources while

56

the other competes for some of one and all of the other

resource. As was discussed in section 3 this leads to

exclusion of the species which does not have a resource

"refuge".

A second variant of this case occurs when the new resource

creates a "refuge" for both species. In this case the model

is that of model 5 and has an asymptotically stable

equilibrium point in the phase space. The behavior of this

system is as discussed in classical competition theory and

is not the subject of this inquiry.

A third case occurs when a new resource become limiting for

a new competitor. In this case, one of the two species is

competing with a different species for a new resource. This

would create a new system at a new state in a new phase

space, and a new realization of the model dynamics. There

is not necessarily any relationship between the new and old

realizations, and the competition relation between the two

species analysed would no longer exist.

The other major type of resource perturbation is at a lower

hierarchical level. A perturbation which occurs at a lower

57

hierarchical level is not tracked by the population

dynamics. Rather the change in resource availability leaves

the system state at a point in the phase space removed from

the new renormalized isocline. The system will then re-

equilibrate to the isocline in its own characteristic time.

Because none of the species parameters are changed, but

rather only R, the relative effect of this perturbation is

tho change the state variable orthogonally, either

positively or negatively. Then the equilibrium will follow

the specific species dynamics.

Although the effects of this type of perturbation can be

handled analytically, the simulation model can be used to

visualize the systems' response to this type of

perturbation.

The simulation of a resource perturbation is the same as

fixing the angle of the perturbation vector to two fixed

values, orthogonal to the original isocline. Then the

perturbation vector length is taken as a random variable

from a uniform distribution.

58

The effect of this type of resource perturbation is to move

the populations to a new state which is either above the

equilibrium isocline or below it. In the first case, under

reduction in the resource, both populations exceed the

carrying capacity and recover by reducing the population

numbers. The reduction takes place as the state follows a

trajectory back to the new equilibrium.

If the perturbation increases the resource availability,

this is precisely analogous to a population reduction. The

populations both increase as the system state follows a

trajectory back to the isocline.

For identical perturbations which raise or lower the

resource availability, the respective return trajectories

are near mirror images of each other.

Figure 9 illustrates the behavior of the system with

this type of perturbation. The layout of the figure is the

same as described in section 6. The perturbations took

place at population ratios of (20,80), (40,60), (60,40) and

59

(80,20). Density dependency as this has no meaning for a

resource perturbation model and so is not modeled. The

frequency histograms for theta are not plotted, as these

consisted of but two values: (7/4, 57/4). The

distributions of distances moved after recovery are

displayed beneath the isocline.

The range of the distribution is a function of the distance

of the perturbation origin from the point on the isocline

where the trajectories intersect orthogonally. This can be

seen most clearly in the case where the growth ratios are

(1.2:0.8). The orthogonality point in this case is at

(40,60) which is one of the states examined. Note that at

this state the range of the recovery distances is minimal

(actually singular). As the states further from this point

are sampled, the range of the distribution increases. In

contrast when the growth rates are in the ratio of

(1.1:0.9), the orthogonal point is at (45,55) not (40,60).

The range of the distributions of distances moved at the

sampled state (40,60) is now larger.

The median and expected values of the distribution of

60

distances moved in recovering from a resource perturbation

is zero using the approximation of equation 8 used in

the model. However, by examining figure 3 which shows the

error of this approximation at one point on the isocline,

one can see that perturbations above the isocline (resource

decreases) always overestimate the distance moved upon

recovery while perturbations below the isocline always

underestimate the distance moved on the isocline upon

recovery. The net effect of these biases is to cause the

system to appear neutrally stable when it is actually

unstable.

61

Figure 9

Effect of Resource Perturbation

A

growth
rate

Species x: 1.1
Spews 1.9

B

Distribution of theta Perturbations

Distribution of distances moved on isocline

Mx

62

Section 8

Population Transformation Behavior

The resource flow competition model thus far has been

examined statically. The model has been perturbed at

selected points in the phase space and the resultant

distribution of changes in state mapped. In order to

investigate more dynamic aspects of the model, an

hierarchical transition is needed.

This transition involves aggregating the behavior of

populations of similar system realizations and modeling the

aggregate behavior. The structural level of the new model

then becomes the population of system realizations rather

than populations of competing species.

The simulation model will accommodate the change in focus

from one level of organization to the next. Additional

parameters are used from the file of simulation parameters

when this change is made. These are a specification of the

hierarchical level, the number of replications to use of

each parameter set, the standard deviations for the

population growth rates, and the standard deviations for

63

the density dependence parameters.

The algorithm for setting up the simulation is modified

slightly when this type of run is specified. For each set

of parameters loaded, the specified number of replicates of

the set is generated. When the standard deviations of

parameter values are nonzero, each parameter (growth and

density dependence) is drawn from a Normal distribution

with the specified mean and standard deviation. This

generates a population of replicate systems which are

similar, but not identical.

Multiple sets of populations of replicate systems can be

simulated in each run. The number of systems which can be

replicated per run is limited only by available computer

memory.

The algorithm followed for this model level is:

perturb each population set over all replicates

calculate the state upon recovery

accumulate the system states for each parameter
set group for the summary frequency distributions.

leave each population set at the recovery state.

64

This is repeated for as many iterations as are specified.

The graphics module uses the output statistics to generate

and display the distributions.

Figure 10 illustrates the output from this process. Five

frequency distributions are shown here. The uppermost

diagram shows the initial distribution of the population of

the first species. Since at equilibrium the resources are

normalized to 100 and the total species number is constant,

no information is lost by presenting the distribution of

just one of the species. Initially all the replicates of

the competition system have the same population of 20.

65

Figure 10

Population Model Initial Distribution

population density
2939 t =

189.99

1 growth rates
1.85 t

180

PoP

8.89

ensi y pen ence
1.80 t

1.59

Pop 2 growth rates
8.96 t =

pop ensi y pen ence
1.06 t

8.89

1.59

66

Figure 11

Population Model Distribution at T=60

population density

f"

15.35 t = 68

pop 1 growth rates
1.05 t = 69

pop dependence
1.01 t : 68

1.58

pop 2 growth rates
8.96 t = 68

8.08 1.89

LIM

IN

pop 2 density depe1ndenc
.08 t

Lel

67

Below the population distributions in the preceding figures

are the distributions for the growth rates for each

population and the distributions for the density dependent

parameter for each population. These will not change with

time. For this run of the model the growth rate ratios were

1.05:0.96. The density dependence parameter was 1.0 for

each population. This is reflected in the modes of the

distributions. In each case the numerical value of the

distribution mode is shown in the top center of the diagram

and the potential span of the parameter is shown on the

left and right edges.

Figure 11 displays the same system after 60 generations.

Note that the population distribution has changed in

location. The mode has shifted from 20 to 15. The

dispersion of the population distribution has increased as

the mode has shifted. In contrast, the distributions of

the parameters have stayed constant.

A more compact display of the dynamics of the system

distributions is shown in figure 12. The first figure

traces the change in mode of four sets of replicates. Each

68

set is originally at the one of the four populations

examined in the static case, 20,40,60 and 80 and is

identified by one of four symbols. For this simulation the

growth rate ratio was 1.2:0.8. and the density dependence

parameter value was 0.5 for both

populations.

69

Figure 12a

Population Mode for C=0.5 R ratio 1.2:0.8

80

60

a

-11Tri
10 20 30 40 SO 60 10 80 90 100

GENERATION

11D

Figure 12b

Standard Deviation for C=0.5, R ratio 1.2:0.8

6

5.

4.

3.

2.

0

0 10 20 30 40 50 60 70

GENERATION

80 90.100 110

70

Three of the four modes have trajectories which lead to

dominance by one species. Only the replicate originating at

40 has a relatively constant mode for a substantial number

of generations. This point (40,60) on the isocline is the

point where the return trajectories are orthogonal for the

growth rate ratios used.

The changes in standard deviations of the distributions for

each of these curves is shown in figure 12b. The symbols

correspond between the two figures. As one might expect,

the replicates in which one species excludes the other have

a drop in the variation as the exclusion becomes complete.

On the other hand, the replicate originating at a

population of 40, has a variation which continues to

increase. In this case, even though the mode is not

changing, a larger number of population ratios will be

found in the replicates as the number of generations

increases.

The effect of the density dependence parameter on the model

can be seen in figure 13. This figure represents model runs

identical to the one represented in figure 12 except

the density dependence parameter is increased from 0.5 to

71

1.0. In this case the movement towards dominance by one

species or the other is slowed.

72

Figure 13a

Population Mode for C:=1.0, R ratio 1.2:0.8

100

80

60

40

a 111111-II-II
0 10 20 30 40 SO 60 70 80 90 100 110

GENERATION

Figure 13b

Standard Deviation for C:=1.0, R ratio 1.2:0.8

ST

4

11111 1111 I

10 20 30 40 SO 60 70 80 % 100 110

GENERATION

73

In figure 13b note that the variation increases for

more of the replicates than occurred with lower density

dependence. This is a result of fewer of the replicates

becoming dominated by one species. However the maximum

standard deviation achieved by the replicate starting at

population 40 is less than in figure 12. This is an effect

of the lessened dispersion caused by the variation in

growth rate ratios.

Figure 14 illustrates the effect of perturbation density

dependence by looking at two extremes. The simulation

starts from just one population in this case and uses a

growth rate ratio of 1.05:0.95 to lessen the impact of the

growth rate differential. Two values of density dependence,

0.0 and 1.0 are used.

Here, even with the smaller growth rate ratios, the

populations with density independent perturbations rapidly

are dominated by one species. The density dependent

perturbations are a stabilizing factor for the mode.

74

Figure 14a

Effect of Density Dependence on Mode

II11111III
10 20 30 40 50 60 70 BO 90 100 110

C= C=
4-0 4-1

GENERATION

Figure 14b

Effect of Density Dependence on Dispersion

3.

2..

2..

L.

0.
I

0 io 410 60 70 ao so a
GENERATION

C= C=
-4-0 4-1

R RATIO IS 1.05:0.95

75

Note for the density dependent replicate, the trajectory in

figure 14 can be contrasted with the trajectory with

similar origin in figure 13. These have the same model

parameters except for the difference in growth rate ratios.

The populations in figure 13 are nearly constant while

those of figure 14 are drifting toward dominance by species

Y. Even though in figure 13 the initial population is close

to the axis of species Y, the disparity in growth rates

enables species X to maintain itself against exclusion.

Figure 14 again illustrates the increase in dispersion

before exclusion. Note also the slower increase in

dispersion of the replicates with the lower growth rate

ratios as compared to those of figure 12b.

It appears that density dependent perturbations are a

stabilizing factor in the dynamics of the model. It is not

clear, however, whether a system with density dependent

perturbations has a region of stability. To investigate

this, a model run was set up with a 10% difference in

growth rates, a ratio of 1.05:0.95, and density dependence

parameter of 1.0. This was run for 1000 generations and the

results shown in figure 15.

76

Figure 15

Long Term Behavior

0
t lit I l t

0 100 200 300 400 500 600 700 BOO 900 1000 1100

GENERATION

r ratio 1.05:0.95, density dependence 1.0

77

The orthogonal trajectory state for these parameters is

(47.5,52.5). The initial state for the run was chosen as

both populations equal to 50.

The population of species one increased slowly for 300

generations after which it moved relatively quickly to

dominance by generation 500. The standard deviation of the

distribution, plotted in the lower curve, increased

steadily until generation 900 after which the last of the

straggler replicates began to approach dominance by species

one.

It appears then that even starting a system near an

expected equilibrium state, and with small disruptive

forces, the eventual outcome is competitive exclusion.

This is in agreement with the results of classical

competition theory, but based on a different aspect of the

Lotka-Volterra model.

However, since the model system is stochastic, some

replicate competition systems will continue to have both

species present even after most replicates have become

dominated by one species or the other.

78

The next section will compare the simulation model to the

results obtained by the classic experiments of Gauss.

79

Section 9

Gause's Competition Experiments

Gause (1934) performed some of the original competition

experiments. Many of the experimental conditions used by

Gause matched the assumptions of the model developed here.

Parameter estimates from Gause's experiments were used to

compare the population dynamics of the simulation model

with the experimental dynamics found by Gause.

Gause performed several competition experiments which

investigated different mechanisms of competition, resource

as well as interference. Gause's resource competition

experiments were done with two species of paramecium,

Paramecium caudatum and Paramecium aurelia, feeding

on one species of bacteria, Bacillus pyocyaneus.

The quantity of bacteria were fixed by changing the growth

media daily and adding a fixed number of bacteria.

Gause grew several replicates of each paramecium species in

isolation, starting each culture with two individuals. From

the measurements made on these cultures he was able to

calculate the growth rate and maximum equilibrium

80

populations for each species. Since the size of the two

species is very different, Gause translated population

counts into species volumes. A P. aurelia is 0.39 of a

P. caudatum in terms of volume. The values of the

parameters were given in his table XI in chapter V as:

logistic Maximal
growth Volume
rates

P. aurelia 1.1244 105

P. caudatum 0.7944 64

The logistic growth rates are for volume per day in Gause's

buffered 'half-loop' bacteria concentration. The 'half-

loop' refers to the method of dilution of bacterial

concentrations.

In analyzing a mixture of these populations, Gause realized

that another conversion in terms of resource demand per

unit volume was needed. The ratio can be taken directly

from the table of equilibrium populations. At equilibrium

each P. aurelia has the resource usage of 0.61

P. caudatum.

81

Gause started each culture in the competition experiment

with a fixed number of bacteria as food, and two each of

each species of paramecium. Both populations were allowed

to grow freely, with a constant food supply until the

populations were food limited (about 8 days after the

culture was started). The two populations were counted

every day starting on the second day. After day 8, when the

species began to be resource limited, Gause removed 10% of

each species population volume daily. This allowed both

species to regain the equilibrium by growth from the

perturbed level.

There are several differences between Gause's experiment and

the simulation model. Foremost is the initial system

state. Gause started his cultures with equal numbers of

both species far below equilibrium. The model only deals

with populations already at equilibrium. It was necessary

to start the simulation at day 8 of Gause's data, when the

species first approached equilibrium.

A second difference is the size and type of the

perturbation. The simulation model, as discussed

previously, was developed using a 1% perturbation. Gause

82

used a 10% density independent perturbation to his culture

populations. This factor was easily changed in the model.

The 10% perturbation was still within the linear range for

approximating the perturbation recovery state.

The type of perturbation used is also different between

Gause's experiment and the simulation model. Since he was

able to count the populations, his perturbation was always

exactly a 10% reduction to each species' population. In the

simulation model a 10% perturbation to the total population

is apportioned randomly to each species' population. For a

density independent perturbation, the model does this

apportioning without regard to the existing population

numbers.

A third difference is a matter of scaling. Gause developed

his model in terms of P. caudatum equivalents. At the

end of his competition experiment the average number of

P. aurelia was 350 to an average of 20 P. caudatum.

In P. caudatum equivalents the total population was

(350*0.39*0.61) + 20 or 103. Since the simulations were

always done in terms of 100 total population members, an

addition factor of (100/103) or 0.971 is needed to rescale

83

the populations to values comparable to those used in

previous simulations.

Figure 17 shows the results of a simulation run using the

parameters as estimated by Gause for his experiments. The

only parameters used directly in the model are the growth

rates of 1.12 for P. aurelia and 0.794 for P. caudatum.

In the figure, the populations shown from the Gause data

are adjusted as discussed above (P. aurelia population

count * 0.39 * 0.61 * 0.971).

The simulation was started on day 8 of the Gause experiment

with populations of 51 for P. aurelia and 49 for

P. caudatum. The Gause data are the mean of 3 cultures. The

simulated data are the mean of 200 replicates. The mean of

the simulated replicates is plotted in Figure 16 along with

curves of the 20th and 80th percentiles.

The actual data from the Gause experiment tends to lie

above the 80th percentile for the first 7 to 8 days of the

simulation. During the last few days of the experiment, the

model tends to estimate values for P. aurelia close to

the experimental data.

84

A better fit to the experimental data can be obtained if it

is noted that the experimental data has a large fluctuation

during the two days after the simulation is begun. If the

simulation is started with the mean of the two experimental

values of day 0 and day 1, 60, then the simulation matches

the experimental data much more closely. This is shown in

figure 17.

85

Figure 16
Simulation of Gauss Experiment

version 1

Gause Experiment
Compared vie eimilation

0 1111-11111111 III111 11111
-8 -5 4 -3 -2 -1 0 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15 18 17

DAY

Gause Data + Simulated Z.'. Eightieth Percentile 0 '%ientieth Percentile

0

4'I

86

Figure 17
Simulation of Gauss Experiment

version 2

Gause Experiment
Compered pith eimilatioa

0 111111T1111-1-1111ITTI-4
-6 -6 4 -3 -2 -1 0 I 2 3 4 5 6 7 6 9 10 II 12 13 14 15 le 17

KY

Gaulle Data 1- Simulated L Eightieth Percentile d lemtieth Percentile

87

Section 10

Summary and Discussion

The goal of this research was to explore the usefulness of

an resource equivalence approach to ecological models. This

was approached in the context of hierarchical systems

concepts which provided the framework for model

development.

The Lotka-Volterra competition model was used as a starting

point for the investigation. After reformulation into a

resource usage form in a manner similar to that of Smith

(1952), it was possible to develop a resource competition

model. The resource competition model was found to have

neutrally stable population dynamics for two species

competing for one resource. Thus the asymptotically stable

and unstable nodes seen in the classic treatment of the

Lotka-Volterra model are unavailable in the two species one

resource flow competition model.

Because the behavior of the neutrally stable model has been

largely unexamined, several classes of perturbations were

used to explore system dynamics. A static analysis

produced distributions of the resultant states after

88

perturbations with a known distribution. A dynamical

analysis tracked the changes in system statistics over time

with state dependent perturbations.

Perturbations to the resource could conceptually take place

at either a higher or lower hierarchical level. Lower level

perturbations which generated distributions of system

recovery were visualized with the simulation model. This

type of perturbation to resources preserved the location of

the distribution of post-perturbation system states.

However the dispersion of the distribution was increased.

Resource perturbation allowed the dominance of one species

in the two species system, when an exact rather than an

approximate recovery distribution was used.

Perturbations in the model were developed as a submodel

simulating predation. This submodel created a span of

perturbation types from density independent to density

dependent. All population perturbations lead to one species

dominating. Which species tended to dominate was the result

of both the initial species ratios and the ratios of

intrinsic growth rates. Density dependent perturbations

retarded the rate at which dominance occurred and increased

89

the uncertainty in the outcome.

The simulation model results were compared with

experimental data developed by Gause. Gause's experimental

conditions were very similar to those assumed by the

simulation model. Estimating the parameters from Gause's

work, the simulation model generated population states and

rates of change in those states in agreement to those

reported.

As a result of the simulation, several behaviors not

observed in Gause's experiment are predicted. For example,

Gause always found that P. aurelia excluded

P. caudatum in his cultures. However, he started all

cultures with the same numbers of both species. The model

predicts that if he had started the cultures with 50% more

P. caudatum than P. aurelia, the P. caudatum

would have won the competition. The model also predicts

that if Gause had perturbed the populations either by

smaller amounts, say 5%, or by a density dependent

technique, the exclusion would have take place much more

slowly.

Other experiments, such as Park's (1948,'52,'62,'64)

90

experiments with Tribolium, describe systems which do not

meet the model assumptions. In Park's experiments the

Tribolium engage in a high degree of interference

competition.

A major result of this work is that resource flow

competition systems are modeled successfully as neutrally

stable dynamical systems. Rather than being uninteresting,

as generally treated in the literature, these are here seen

as far more interesting than the classical stable and

unstable modes that are generally islands of relief from

competition or clearcut competitive advantage.

The perturbation dynamics of the neutrally stable system

give a theoretical understanding of the competitive system

in terms of biological quantities and good predictive

power. This model of resource competition has advantages

over the classical treatment of the Lotka-Volterra model.

In particular the model elements are clearly defined in

terms of basic biological values and additional behaviors

are available from the model, such as drift rates, which

are not available in the classical model.

91

Bibliography

Connell, Joseph H. (1983) On the Prevalence and
Relative Importance of Interspecific
Competition. Evidence from Field Experiments.
American Naturalist. Vol 122 No. 5 pp 661-696

Darwin, Charles (1859) The Origin of Species. John
Murray. London

Diamond, Jared M.(1975)in Ecology and Evolution of
Communities; Cody, Martin L. and Diamond,
Jared M. Eds. pp 342-443 Belknap Press,
Cambridge, Mass.

Fisher,Ronald A. (1930,1958) The Genetical Theory
of Natural Selection. Dover, N.Y.

Frank, Peter W. (1957) CoActions in Laboratory
Populations of two Species of Daphnia.
Ecology Vol 38 No. 3 pp 510-519

Gause, G.F. (1934,1971) The Struggle for
Existence, Dover Publications, New York, New
York

Klir, George J. (1969) An Approach to General
Systems Theory Van Nostrand Reinhold, New
York, N.Y.

Levins, Richard (1968) Evolution in Changing
Environments, Princeton University Press,
Princeton, N.J.

Lotka, A.J. (1925,1956) Elements of Physical
Biology. Dover Publications, New York.

Neyman, J., Thomas Park, and Elizabeth L. Scott.
(1956) Struggle for Existence. The Tribolium
model: Biological and Statistical Aspects.
In: Proceedings of the Third Berkeley

92

Symposium on Mathematical Statistics and
Probability. Berkely: University of
California Press

MacArthur, Robert H. (1972) Geographical Ecology
Harper and Row, New York, New York

May, Robert M. (1973) Stability and Complexity in
Model Ecosystems. Princeton University Press,
Princeton, N.J.

May, Robert M. (1976) Models for Two Interacting
Populations in Theoretical Ecology,
Principles and Applications. Robert M. May
ed. Sinauer Associates, Sunderland, Mass. pp
78-104

Odum,Howard T. and Elisabeth C. Odum, (1976).
Energy Basis for Man and Nature. McGraw Hill,
New York.

Overton, W. Scott. (1977) A Strategy of Model
Construction, in Ecosystem Modeling in Theory
and Practice. Charles A.S. Hall and John W.
Day Jr. Eds. John Wiley and Sons. New York.

Park, Thomas. (1948) Experimental Studies of
Interspecies Competition I. Ecological
Monographs Vol 18 no. 2 pp 266-307

Park, Thomas. (1954) Experimental Studies of
Interspecies Competition II. Physiological
Zoology July, Vol. 27 No. 3 pp 177-239

Park, Thomas. (1962) Beetles, Competition, and
Populations. Science Vol. 138 No. 3548 pp
1369-1375

Park, Thomas; P.H. Leslie, David B. Mertz. (1964)
Genetic Strains and Competition in
Populations of Tribolium. Physiological
Zoology, April Vol. 37 No. 2 pp 97-161

93

Pattee, Howard H. (1973) Hierarchy Theory: The
Challenge of Complex Systems; George
Braziller. New York, New York

Pianka Eric R. (1974) Evolutionary Ecology, Harper
and Row. N.Y.,N.Y.

Pimm Stuart L. (1982) Food Webs. Chapman and Hall,
N.Y. N.Y.

Rosen, Robert (1970) Dynamical Systems Theory in
Biology, Vol I. John Wiley and Sons, New
York.

Schoener, Thomas W. (1983) Field Experiments on
Interspecific Competition. American
Naturalist Vol 122 No. 2 pp 240-285

Simon, Herbert A. (1973) The Organization of
Complex Systems in Hierarchy Theory, Howard
Pattee ed. Brazziler, N.Y. pp 1-29

Slobodkin, L.B. (1961) Growth and Regulation of
Animal Populations Holt, Rinehart and
Winston, New York, New York

Smith, Fredrick E. (1952) Experimental Methods in
Population Dynamics: a Critique. Ecology,
33:441-50.

Smith, Fredrick E. (1954) Quantitative Aspects of
Population Growth, in Dynamics of Growth
Processes. E. Boell ed. Princeton University
Press.

Smith, J. Maynard. (1964) Models in Ecology,
Cambridge University Press. Cambridge, UK

Tilman, David (1982) Resource Competition and
Community Structure Princeton University
Press, Princeton, N.J.

94

Volterra, V. (1926) Variazione e fluttuazini del
numero d'individui in specie animali
Conviventi. Mem. Accad. Nazionale Lincei (ser
2) 2,31-113

Whittaker, Robert H. (1975) Communities and
Ecosystems. MacMillan Pub. New York.

APPENDIX

Appendix

Simulation Model Source Code

{$g2048,p2048}
PROGRAM thesisx;
{.he main modeling program
{.pw96}
{$i c: \software \typedef.sys}

$ u+}

$ r+}
{$v-}

95

{ allow cntrl-C to kill
program

{ check indices at run time }
{ do not check string length

in procedure calls

{ main thesis modeling program--
{ will model behavior of 2 species pure
competition system
{ will also model global activity of population of
demes

I/O STRUCTURE====

Input-- used to set parameters for a run

{ name
}

1

1 1

max)

2 file name

{ 3 # iterations,
#demes, #dupes, selection freq }
1 4 simulation type,
perturbation type, select type
{ following set repeated for each deme type
1 5 ratel,rate2,sd

7,77, PRM ASCII

record # contents

run name 35 char

ratel,sd rate2
{ 6

sd resource }
{ 7

}

popl,pop2,Resource,

C1,C2, sd cl, sd c2

1 Interchange used to pass run results to
plotting and

96

output formating routines

{ two type of interchange format-- distribution,
and state }
{

}

distribution format
}

name - ???????? DST binary
}

format record title:string[80]

values:array[0..maxvec] of
real

}

state format
}

name ???????? STT binary

format record run name

file name

iterations,
#demes, #dupes, }

simulation type,
perturbation type, select type}

followed by record(s)
g-rates,
{ (written as varient
p-sdevs,cvals, }

record)

{ output format -- ascii

{

files

#iteration,#deme,

g-sdevs,pops,

resources

20X60 histograms and other tables

to screen , other programs create plot

{ $ i thesisx.inc}

CONST todeg = 57.29578;

97

eps = 0.25;

pturb_size = 10.0;

smallreal = le-200;
bigten = 10;
maxvec = maxplotglb;

TYPE
vector = ARRAY[l..maxvec] OF Real;
title = STRING[80];

shortstr = STRING[12];
medstr = STRING[40];

demepnt = ^demerec;

demerec = RECORD
last, next : demepnt;
CASE Boolean OF
True : (demeno, iterno : Integer;
ratel, rate2, rsdevl, rsdev2,
popl, pop2, theta, dist, psi, oldpop2,
cvall, cval2, resource, sdev_resource,
sdcvall, sdcval2 : Real);

False : (run_name : medstr;
file name shortstr;
maxiter, maxdeme, dupesper_deme :
Integer;
stype, ptype, seltype : Char;
seifreq, listfreq : Integer);

END;

freqpnt = ^freqtype;
freqtype = RECORD

last, next : freqpnt;
xmin, xstep : Real;
maxgen : Integer;
xtitle : title;
sfreq : vector;

END;

CONST maxreps = 1000;

98

VAR init deme, cur deme, tmp_deme : demepnt;
start fTeq, cur fTeq, inp_freq, sys_init, sys_final :

freqpTt;
options : demerec;
prmname STRING[12);
paramfile, outfile : Text;
distfile : FILE OF freqtype;
statefile : FILE OF demerec;
iter, tmpint, badcount : Integer;
ranvar : Real;
nonrandom : Boolean;

FUNCTION topower(x, pwr : Real) : Real;

VAR i : Integer;
tmpx : Real;
invert : Boolean;

BEGIN

IF x <= 0.0 THEN
BEGIN
GoToXY(2, 23); Write(

Exit;
END;

Error: you tried to raise a negative number to a pow

IF pwr < 0 THEN
BEGIN
pwr := -1.0*pwr;
invert := True;

END
ELSE invert := False;

IF pwr < smallreal THEN
BEGIN
topower := 1.0;
Exit;

99

END;

IF pwr = 1.0 THEN
BEGIN

IF invert THEN
topower := 1.0/x

ELSE
topower := x;

Exit;
END;

IF (Trunc(pwr) = pwr) AND (pwr > 1.0) THEN

BEGIN
tmpx := x;
FOR i := 1 TO (Trunc(pwr)-1) DO
tmpx := tmpx*tmpx;

{ if
integer

don't do
logs

IF invert THEN
BEGIN

if abs(tmpx)<smallreal then begin write('x is
',x:15:5,' pwr ',pwr:15:5,' tmpx ',tmpx);readln;
topower:=1e307; exit; end;
topower := 1.0/tmpx
END
ELSE
topower := tmpx;

Exit;
END;

IF pwr > 33.0 THEN
BEGIN
GoToXY(2, 23);
WriteLn(
' --- Error: you are raising ', x:8:2, ' to the ',
pwr:8:2,
' power ');
topower := 1.0e307;
Exit;

END;

100

tmpx := Ln(x);
tmpx := pwr*tmpx;
tmpx := Exp(tmpx);

IF invert THEN
tmpx := l/tmpx;

topower := tmpx;

END;

FUNCTION asin(x : Real) : Real;
BEGIN

IF x > 1.0 THEN Exit;
IF x < -1.0 THEN Exit;

IF x = -1.0 THEN
BEGIN
asin := -1.5707963;
Exit;

END;
IF x = 1.0 THEN
BEGIN
asin := 1.5707963;
Exit;

END;

asin := ArcTan(x/Sqrt(1-Sqr(x)));

END;

FUNCTION normran(u : Real; sigma : Real) : Real;
[function generates a random variable from a
normal distribution with mean u and standard
deviation sigma }

VAR ul, u2, v, tmp : Real;
BEGIN

IF sigma < 0.0 THEN sigma := -1.0*sigma;

IF sigma < smallreal THEN
normran := u

101

ELSE
BEGIN
REPEAT
ul := Random;
u2 := Random;
ul := 2*u1-1; u2 := 2*u2-1;
v := (ul *ul) +(u2 *u2);
UNTIL v <= 1.0;
v := u2*Sqrt((-2.0*Ln(v))/v);

normran := u +(sigma *v);

END;

END;

FUNCTION distpnt(x0, yO, xl, yl : Real) : Real;
VAR difl, dif2 : Real;

BEGIN
difl := xl-x0;
dif2 := yl-y0;
distpnt := Sqrt(Sqr(dif1)+Sqr(dif2));

END;

FUNCTION isocline(xpop, ypop : Real; VAR ademe :

demepnt) : Real;

Returns value of one population on isocline given
other }

BEGIN

IF ypop = 0.0 THEN
BEGIN
WITH ademe^ DO
isocline := resource-xpop;

Exit;
END;

IF xpop = 0.0 THEN
BEGIN

102

WITH ademe^ DO
isocline := resource-ypop;
Exit;

END;

END;

FUNCTION ISODIST(x0, y0 : Real; VAR ademe : demepnt)
: Real;
(function determines distance of point from
isocline }

CONST sqtwo = 1.414213562;

VAR m, b : Real;
BEGIN
WITH ademe^ DO
BEGIN
isodist := (x0+y0-resource)/sqtwo;

END;

END;

PROCEDURE parsefile(VAR name : shortstr; ext :

shortstr);

VAR i, j : Integer;

BEGIN
I := Pos('.',
IF i > 8 THEN
Delete(name,
i := 0;

END;
IF i > 0 THEN
Delete(name,
i := 0;

END;

name);
BEGIN
9, (Length(name) -8));

BEGIN
(Length(name)-i+1));

IF Length(name) < 2 THEN BEGIN
WriteLn(' Error-- filename too short '); Halt;

END;

103

name := Concat(name, 1.', ext);

END;

PROCEDURE extend(VAR ademe : demepnt);

extends linked list of demes; pointer returned
pointing to last
{ item on list }

BEGIN
IF ademe = NIL THEN
BEGIN
New(ademe);
ademe^.next := NIL;
ademe^.1ast := NIL;

END
ELSE
BEGIN
WHILE ademe^.next <> NIL DO
ademe := ademe^.next;

New(ademeA.next);
ademeA.next^.next := NIL;
ademeA.next^.1ast := ademe;
ademe := ademe^.next;

END;
END;

PROCEDURE movedeme(VAR ademe, bdeme : demepnt);

{ procedure will move contents of record in ademe
to bdeme while
{ preserving list structure

VAR tmplast, tmpnext : demepnt;

BEGIN

tmplast := bdemeA.last;
tmpnext := bdeme^.next;

bdeme^ := ademe^;

bdeme^.1ast := tmplast;
bdemeA.next := tmpnext;

END;

extend

104

PROCEDURE quickdisp(x, y, v, vmin, vmax : Real; ind :
Integer);

CONST smax = 80;
VAR i, j, k : Integer;
scale : Real;

BEGIN
ind := ind MOD 2;
scale := smax/(vmax-vmin);
GoToXY(1, (5+(ind*6)));
WriteLn(x:15:2, y:15:2);
WriteLn;

k := Round((v-vmin)*scale);
IF k > smax THEN k := smax;
GoToXY(1, (7+(ind*6)));
FOR i := 1 TO (k-1) DO
Write('-');

Write('+');
FOR i := (k+1) TO smax DO
Write('-');

GoToXY(1, (8 +(ind *6)));
Write(vmin:8:0);
GoToXY(35, (8+(ind*6)));
Write(v:10:2);
GoToXY((smax-10), (8+(ind*6)));
Write(vmax:8:0);

END;

PROCEDURE initial; { INITIALIZES GLOBAL
VARIABLES

VAR
tmpstr : medstr;

j, thisdeme, thisiter, lastdeme, :repcount :

Integer;
done : Boolean;

PROCEDURE zerofreq(VAR thisfreq freqpnt);
VAR i : Integer;

105

BEGIN
WITH thisfreq^ DO
BEGIN
xmin := 0.0; xstep := 0.0;
maxgen := 0; xtitle := ";
FOR i := 1 TO maxvec DO sfreq[i] := 0.0;

END;

END;

BEGIN

parsefile(prmname, 'prm');
Assign(paramfile, prmname);
Reset(paramfile);

fassign(outfile,Idebug.txt'); rewrite(outfile);}

badcount := 0;

WITH options DO
BEGIN
next := NIL; last
ReadLn(paramfile,
ReadLn(paramfile,
ReadLn(paramfile,
, selfreq,
listfreq);
ReadLn(paramfile,

:= NIL;
run name);
file_name);
maxiter, maxdeme, dupes_per_deme

tmpstr);

stype := ptype := I V

WHILE (Length(tmpstr) > 0)
Delete(tmpstr, 1, 1);
stype := UpCase(tmpstr[1])
WHILE (Length(tmpstr) > 0)
Delete(tmpstr, 1, 1);
ptype := UpCase(tmpstr[1))

WHILE (Length(tmpstr) > 0) AND
Delete(tmpstr, 1, 1);
seltype := UpCase(tmpstr[1

AND (tmpstr[1] = ") DO

; Delete(tmpstr, 1, 1);
AND (tmpstr[1] = ' ') DO

; Delete(tmpstr, 1, 1);
(tmpstr[1] = ") DO

));

WriteLn(' Options for this run ');

106

WriteLn(run_name);
WriteLn(filename);
WriteLn(maxiter:10, maxdeme:10, dupes_per_deme:10,
selfreq:10, listfreq:10);
WriteLn(stype:2, ptype:2, seltype:2);

END; { of with options }

now set up demes

init deme := NIL;
thisdeme := 1; thisiter := 1;

WHILE (NOT EoF(paramfile)) AND (thisdeme <= options.
maxdeme) DO
BEGIN
extend(init_deme);

WITH init_deme^ DO
BEGIN

demeno := thisdeme; iterno := thisiter;
ReadLn(paramfile, ratel, rate2, rsdevl, rsdev2);
ReadLn(paramfile, popl, pop2, resource,
sdev_resource);
theta := 0.0; psi := 0.0; dist := 0.0; oldpop2
:= pop2;
ReadLn(paramfile, cvall, cval2, sdcvall, sdcval2)

WriteLn(' reading deme number ', demeno:5, iterno
:5);

WriteLn(rate1:10:3, rate2:10:3, rsdev1:10:3,
rsdev2:10:3);
WriteLn(pop1:10:3, pop2:10:3, resource:10:3,
sdev resource:10:3
);

WriteLn(cvall:10:3, cval2:10:3, sdcvall:10:3,
sdcval2:10:3);

END; { with block }

107

IF options.dupes_per_deme > 1 THEN
BEGIN
cur deme := init deme;
FORi := 2 TO opt ions.dupes_per_deme DO
BEGIN
extend(init deme); { returns pointer at new

record }

movedeme(initdemeA.last, initdeme); f move
contents

WITH init_deme^ DO
BEGIN
repcount := 0;
REPEAT
ratel := normran(cur deme^.ratel, cur deme^.
rsdevl);

UNTIL ratel > 0.0;
REPEAT
rate2 := normran(cur_deme^.rate2, cur_deme^.
rsdev2);

UNTIL rate2 > 0.0;
repcount := 0;
REPEAT
cvall := normran(cur_demeA.cvall, cur_demei`.
sdcvall);
repcount := Succ(repcount);
IF repcount > maxreps THEN
BEGIN
cvall := cur deme^.cvall;
{gotoxy(1,21T;write(' cvall reps ',
repcount:5);}

END;
UNTIL (cvall >= 0.0) AND (cvall <= 1.0);
repcount := 0;
REPEAT
cval2 := normran(cur deme^.cval2, cur deme^.
sdcval2);
repcount := Succ(repcount);
IF repcount > maxreps THEN
BEGIN
cva12 := cur deme^.cval2;
{gotoxy(1,21T;write(' cval2 reps ',
repcount:5);}

108

END;

UNTIL (cval2 >= 0.0) AND (cval2 <= 1.0);
REPEAT
resource := normran(cur_deme^.resource,
cur_deme^.
sdev_resource);

UNTIL resource > 0.0;
END;

END;

END;

thisdeme := thisdeme+1;

END;

WHILE init_deme^.1ast <> NIL DO
init deme := init deme^.1ast;

cur_deme := NIL;
done := False;

[while loop}

IF options.stype = 'B' THEN
BEGIN
{ now copy initial deme list over to active deme
list }
REPEAT
extend(curdeme);
movedeme(init deme, cur deme);

IF init_deme^.next <> NIL THEN
init deme := init demeA.next

ELSE
done := True;

UNTIL done;

WHILE (init deme^.1ast <> NIL) AND (cur deme^.1ast
<> NIL) DO
BEGIN
init deme := init demeA.last;

109

cur deme := cur deme^.1ast;
END;

END;

IF options.stype IN I'S', 'P') THEN
cur deme := init deme; just one copy of deme

list, both cur deme
{ and init deme point to top of it

f set statistics summaries if type b(ehavior)

lastdeme := initdemeA.demeno;
start freq := NIL; cur_freq := NIL;
inp_aeq := NIL;

IF options.stype = 'B' THEN
BEGIN
done := False;

New(start freq);
WITH start_freq^ DO
BEGIN
last := NIL;
next := NIL;

END;
zerofreq(start_freq);

New(inp_freq);
WITH inp_freq^ DO
BEGIN
last := NIL;
next := NIL;

END;
zerofreq(inp_freq);
REPEAT

IF init_demeA.next <> NIL THEN
init deme := init deme^.next

ELSE
done := True;

IF init_deme^.demeno <> lastdeme THEN
BEGIN

110

extend list of frequencies for each deme
type }
New(startfreqA.next);
start freqA.nextA.last := start freq;
start freq := start freqA.next;
startfreqA.next := NIL;_
zerofreq(start_freq);
New(inp_frecr.next);
inp_freqA.nextA.last := inp_freq;
inp_freq := inp_freqA.next;
inp_freqA.next := NIL;
zerofreq(inp_freq);

lastdeme := init demeA.demeno;
END;

UNTIL done;

END;

IF options.stype IN i'S', 'P'1 THEN

BEGIN
New(start_freq);
curfreq := start_freq;
WITH start_frecr DO
BEGIN
last := NIL;
next := NIL;

END;
zerofreq(start_freq);

New(inp_freq);

WITH inp_freqA DO

BEGIN
last := NIL;
next := NIL;

END;
zerofreq(inp_freq);

option is of type b}

setup three
distributions I

{ CREATED only to avoid
having to test for

head pointer being nil
also

FOR j := 1 TO (options.maxdeme) DO
FOR i := 1 TO 5 DO make 5*maxdeme total

111

distributions
BEGIN
New(start_freqA.next);
start_freqA.next^.1ast := start_freq;
start_freq := start_freq^.next;
start_freqA.next := NIL;
zerofreq(start freq);

END;

startfrecr.last^.next := NIL;
Dispose(start_freq); f dump extra

start_freq := cur_freq; { reset to top of list }
sys_init := cur_freq;

END;

Close(paramfile);

tmpstr := options.file_name;

parsefile(tmpstr, 'STT');

Assign(statefile, tmpstr);
Rewrite(statefile);

parsefile(tmpstr, 'DST');

Assign(distfile, tmpstr);

Rewrite(distfile);

{ of option 's',Ip'

END; { initialize procedure I

PROCEDURE showstate;

VAR i, j, k : Integer;
done : Boolean;

BEGIN
{ dump to file

Write(statefile, options);

WHILE cur_deme^.1ast <> NIL DO cur_deme := cur_deme^.
last;

112

done := False;

REPEAT

Write(statefile, cur deme^);
IF cur deme^.next <>NIL THEN
cur dime := cur deme.next
ELSE
done := True;

UNTIL done;

WHILE cur deme^.1ast <> NIL DO cur deme := cur deme.
last;

{ write options to screen

WITH options DO
BEGIN

WriteLn(' option for ', run name);
WriteLn(' base file name is ', file_name);
WriteLn(' max iterations ', maxiter:5,
' for ', maxdeme:4, ' demes of ', dupes_per_deme:4

' copies each I);
Write(' state type is ', stype:2,
' perturbation type is ', ptype:2
);

CASE ptype OF
'R' WriteLn(' resource perturbation ');
'F' : WriteLn(' full 360 theta perturbation ');
'B' WriteLn(' below isocline perturbation ');
'T' : WriteLn(

' population decrease only perturbation ');
END;
CASE seltype OF
'P' : WriteLn(' maximize population 1 ');
'B' WriteLn(

' maximize balanced population ratios ');
'C' : WriteLn(' maximize popl density dependence

'

);

'R' : WriteLn(' maximize popl growth rates ');
END;

WriteLn(

);

END;

done := False;
WriteLn;

113

(* comment out display of state in thesisx

repeat with cur_deme^ do begin

writeln(' deme number ',demeno:5,' iteration ',
iterno:5); writeln('growth rates and s.d.s
rate1:10:3,rate2:10:3,rsdev1:10:3,rsdev2:10:3);
writeln(' current populations ',pop1:10:3,
pop2:10:3); writeln(' return angle ',
(todeg*psi):10:3,' perturb angle ',
(todeg*theta):10:3,' distance moved ',dist:10:3);
writeln(' cluster paramters ',cvall:10:3,cval2:10:3,
' resources ',resource:10:3,sdev_resource:10:3);

writeln; end; { with block }

if curdemeA.next<>nil then cur_deme:=cur_deme^.next
else done:=true; until done;

end comment out of state display *)

WHILE cur deme^.1ast <> NIL DO cur deme := cur deme^.
last;

END; showstate

PROCEDURE perturb;

{ perturb all demes

VAR i, j, k, count : Integer;

114

done : Boolean;
deltapl, deltap2, sign, totpop, cfacl, cfac2 : Real;

BEGIN
make sure at top of list

WHILE cur_deme^.1ast <> NIL DO cur deme := cur_deme^.
last;

done := False;

count := 0;

REPEAT

CASE options.ptype OF

'R' : BEGIN { perturbations of r

IF Random < 0.5 THEN sign := -1.0
ELSE sign := 1.0;
WITH cur_deme^ DO
BEGIN

resource :

sign;
IF sign >
theta :=

ELSE
theta :=

= resource+pturb size*Random*

0.0 THEN
Pi/4.0

1.25*Pi;

note that in this case perturbation
size is not
pturb_size but rather isodist(popl,

pop2,curdeme)

END;

END;

'F' : BEGIN

WITH cur_deme^ DO
BEGIN
IF nonrandom THEN

{ Full 360 theta
perturbations

115

theta := 2*Pi*ranvar
ELSE
theta := 2*Pi*Random;

totpop := popl+pop2;
cfacl := topower(0.5, (1-cvall))*topower((
popl/totpop)
, cvall);
cfac2 := topower(0.5, (1-cval2))*topower((
pop2/totpop)
, cval2);
deltapl := cfacl*pturb_size*Cos(theta);
deltap2 := cfac2*pturb_size*Sin(theta);

IF deltapl <> 0.0 THEN
BEGIN
theta := ArcTan(deltap2/deltapl);
IF (deltap2 >= 0) AND (deltapl < 0) THEN
theta := theta+Pi
ELSE IF (deltap2 < 0) AND (deltapl > 0)
THEN
theta := theta+(2*Pi)
ELSE IF (deltap2 < 0) AND (deltapl < 0)
THEN
theta := theta+Pi;

END
ELSE
theta := 3*Pi/2.0;

oldpop2 := pop2;
popl := popl+deltapl;
pop2 := pop2+deltap2;

END;

END;

'B' : BEGIN { theta below isocline }

WITH cur_deme^ DO
BEGIN
IF nonrandom THEN
theta := Pi*ranvar+(3*Pi/4)

ELSE
theta := Pi*Random+(3*Pi/4);

116

totpop := popl+pop2;
cfacl := topower(0.5, (1-cvall))*topower((
popl/totpop)
, cyan);
cfac2 := topower(0.5, (1-cval2))*topower((
pop2/totpop)

cval2);
deltapl := cfacl*pturbsize*Cos(theta);
deltap2 := cfac2*pturbsize*Sin(theta);

IF deltapl <> 0.0 THEN
theta := ArcTan(deltap2/deltapl)
ELSE
theta := Pi/2.0;

theta := theta+Pi;

oldpop2 := pop2;
popl := pop1+(deltapl);
pop2 := pop2+(deltap2);

END;

END;

'T' : BEGIN { third quadrant theta
perturbations

WITH cur_deme^ DO
BEGIN
IF nonrandom THEN
theta := (Pi*ranvar/2.0)+Pi

ELSE
theta := (Pi*Random/2.0)+Pi;

totpop ;= popl+pop2;
IF totpop < 1.0 THEN
BEGIN
WriteLn; WriteLn(' overflow in totpop
pop1:12, ", pop2:12, ", totpop:15);

117

ReadLn;
END;
cfacl := topower(0.5, (1-cvall))*topower((
popl/totpop)

cvall);
cfac2 := topower(0.5, (1-cval2))*topower((
pop2/totpop)
, cval2);

deltapl := cfacl*pturb_size*Cos(theta);
deltapl := cfac2*pturb size*Sin(theta);

writeln(' cfac 1&2 ',cfac1:6:3,
cfac2:6:3,' delta x & y ',deltapl :6:3,
deltap2:6:3);

write(' orginal theta ',
(theta*todeg):6:3); }

IF deltapl <> 0.0 THEN
theta := ArcTan(deltap2/deltapl)

ELSE
theta := Pi/2.0;

theta := theta+Pi;

writeln(' new theta ',
(theta*todeg):7:3,' new pops ',popl:6:2,
pop2:6:2);}

oldpop2 := pop2;
popl := popl+deltapl;
pop2 := pop2+deltap2;

END;

END;

ELSE BEGIN
Write(' ERROR--- invalid perturbation type ');
Halt;

END;

118

END; case block

count := count+1;
GoToXY(1, 1); Write(count:5);

IF curdeme^.next <> NIL THEN
cur deme := cur deme^.next
ELSE
done := True;

UNTIL done;

END; perturb

PROCEDURE restore;
procedure will restore perturbed systems to

isocline
CONST ceta = 0.785398164; { 45 degrees or pi/4}
sqtwo = 1.414213562;

VAR done, dodist : Boolean;
zpturb : Real;

BEGIN

WHILE cur deme^.1ast <> NIL DO cur_deme := curdeme^.
last;

done := False;

REPEAT

IF options.ptype = 'R' THEN
zpturb := isodist(cur_deme^.popl, curdeme^.pop2,

cur deme)
ELSE
zpturb := pturb_size;

WITH cur_deme^ DO
BEGIN

119

psi := Abs(ArcTan((rate2 *pop2) /(ratel *popl)));
iterno := iterno+1;

dist := zpturb*Sin(psi-theta)/Sin(ceta+psi);
IF (theta >= psi) AND (theta < (Pi+psi)) THEN
dist := -1.0*Abs(dist);
IF ((theta >= (Pi+psi)) AND (theta < (2*Pi))) OR
((theta >= 0) AND (theta < psi)) THEN
dist := Abs(dist);

WRITELN(outfile, ' distance ',dist:10:3,
(todeg*theta):10:3,' zpturb ',zpturb:8:3);

pop2 := (-dist/sqtwo)+oldpop2;
IF pop2 <= 1.0 THEN pop2 := 1.0;
IF pop2 >= resource THEN pop2 := resource-1.0;
popl := resource-pop2;

END; (with block

IF cur_deme^.next <> NIL THEN
cur_deme := cur_deme^.next

ELSE
done := True;

UNTIL done;

WHILE cur deme^.1ast <> NIL DO cur deme := cur deme^.
last;

END;

(procedures to accumulate statistics of input and
output

PROCEDURE accumdist;
[procedure will accumulate system states into
distributions
CONST ceta = 0.785398164; { 45 degrees or pi/41

120

VAR i, j : Integer;
xtmp, vecrange : Real;
done, same : Boolean;

BEGIN
WHILE cur deme^.1ast <> NIL DO cur deme := cur deme^.
last;

WHILE start freq^.1ast <> NIL DO start freq :=
start free.last;

cur _freq := start freq;

done := False;
vecrange := maxvec+1.0;

**

writeln(lst,' start
accumdist '); writeln(lst);
writeln(lst,' list of demes and max distances ');
repeat with cur_deme^ do writeln(lst,' deme number ',
demeno:3,' xmin ',cur_freq^.xmin:10:3, ' dist ',
dist:10:3,' theta ',(todeg*theta):10:3,' psi ',
(todeg*psi):10:3); if cur_deme^.next<>nil then
cur deme:=cur deme^.next else done:=true;

if cur_frecr.next<>nil then cur_freq:=cur_freq^.next
else done:=true;

until done; done:=false; while cur_deme^.1ast<>nil
do cur_deme:=cur_deme^.1ast; while
start_freq^.1ast<>nil do
start freq:=start freq^.1ast; cur freq:=start freq;

REPEAT
same := True;
{ see if first pass)

REPEAT

WITH cur_f req^ DO
BEGIN
IF xstep = 0.0 THEN

121

BEGIN
xmin := -1.0*Abs(pturb size/Sin(ceta+cur deme^.
psi));
xstep := 2.0*Abs(xmin)/(vecrange);
maxgen := maxvec;

END;

I := Round(((cur_deme^.dist-cur_freq^.xmin)/
(2.0*Abs(cur_freq^.xmin)))*maxvec)+1;
IF (I > 0) AND (I <= maxvec) THEN
sfreci(ii := sfreci(i]+1.0

ELSE
BEGIN
WriteLn; CirEol;

ClrEol;
{write(' press return to continue ');readln;}

Halt;
badcount := badcount+I;

END;

IF cur deme^.next <> NIL THEN
BEGIN
cur deme := cur deme^.next;
END

ELSE
same := False;
IF cur demeA.demeno <> cur demeA.last^.demeno
THEN
same := False;

END; with block

UNTIL (NOT same);

IF cur freq^.next <> NIL THEN
BEGIN
cur freq := cur freq^.next;

END
ELSE
done := True;

122

UNTIL done;

WHILE cur demeA.last <> NIL DO cur deme := cur deme^.
last;

cur freq := start freq;

END; { procedure accumstats

PROCEDURE accuminp;
{ procedure will accumulate system states into
distributions
CONST ceta = 0.785398164; { 45 degrees or pi /4}

VAR i, j : Integer;
xtmp, vecrange : Real;
done, same : Boolean;

BEGIN
WHILE cur_deme^.1ast <> NIL DO cur_deme := cur_deme^.
last;

WHILE inp_freq^.1ast <> NIL DO inp_freq := inp_freq^.
last;

done := False;
vecrange := maxvec +l.0;

REPEAT
same := True;
{ see if first pass }

REPEAT
WITH inp_freq^ DO
BEGIN
IF xstep = 0.0 THEN
BEGIN

CASE options.ptype OF
'R' : Exit;
'F' : BEGIN

xmin := 0.0;
xstep := 2.0*Pi/(vecrange);
xstep := xstep*todeg;

END;
'B' : BEGIN

xmin := 2.35619449*todeg;

123

xstep := Pi/(vecrange);
xstep := xstep*todeg;

END;
'T' : BEGIN

xmin := Pi*todeg;
xstep := Pi/(2.0*(vecrange));
xstep := xstep*todeg;

END;
END;
maxgen := maxvec;
END;

[of case statement

{ if first pass

I := Round((((todeg*cur_deme^.theta)-xmin)/(
vecrange*xstep))*(
maxvec));

{ writeln(' xmin xstep ',xstep:6:2,
' vecrange vecrange:6:2); writeln(' theta ',
(cur_deme^.theta*todeg):6:2,1 i '

divisor ', ((vecrange*xstep)):8:2,' numerator ',
((todeg*cur_deme^.theta)-xmin):8:2);

IF (i > 0) AND (i <= maxvec) THEN
sfreq[i] := sfreq[i]+1.0

ELSE
BEGIN
GoToXY(1, 25);
Write(' Theta range error ', (todeg*cur_deme^.
theta):8:3, i
:5,
' xmin xmin:8:2, xstep xstep:8:2);

END;

IF cur_deme^.next <> NIL THEN
cur deme := cur deme^.next

ELSE
same := False;
IF cur_ <> cur deme^.1ast^.demeno
THEN
same := False;

END; [with block

124

UNTIL (NOT same);

IF inp_freq^.next <> NIL THEN
inp_freq := inp_freq^.next

ELSE
done := True;

UNTIL done;

WHILE cur deme^.1ast <> NIL DO cur deme := cur deme^.
last;

WHILE inp_freq^.1ast <> NIL DO inp_freq := inp_freq^.
last;

END; { procedure accuminp

PROCEDURE showdist;
{ procedure will write out distribution files to
intermediate
{ format and display distributions on terminal }

VAR done : Boolean;
number : shortstr;
count : Integer;

BEGIN
ClrScr;
Rewrite(distfile);

WHILE startfrecr.last <> NIL DO start_freq :=
start_freq^.1ast;

cur freq := start freq;
WHILE inp_freq^.1ist <> NIL DO inp_freq := inp_freq^.
last;

done := False;
number :4= ";

count := 1;

REPEAT

WITH inp_freq^ DO
BEGIN
Str(count, number);

125

xtitle := Concat('theta for ', number,
"'th deme');
display(con,xmin,xstep,maxgen,sfreq,xtitle);

END;

Write(distfile, inp_freq^);

writeln; needed because display
ends with a write

WITH cur_freq^ DO
BEGIN
Str(count, number);
xtitle ;= Concat('distance for ', number,
"'th deme');

display(con,xmin,xstep,maxgen,sfreq,
xtitle);

END;

Write(distfile, cur_freq^);

writeln; needed because display ends with a
write }

IF cur freq^.next <> NIL THEN
BEGIN
cur freq := cur freq^.next;
count := count+I;

END
ELSE
done := True;
IF inp_freq^.next <> NIL THEN
inp_freq := inp_freqA.next

ELSE
done := True;

UNTIL done;

cur freq := start freq;
WHILE inp_freq^.1iSt <> NIL DO inp_freq := inp_freq^.
last;

END;

126

PROCEDURE accumovr(first : Boolean);
{ procedure to accumulate distributions of
populations, rates, and density dependencies for
'S' and 'P' type models

VAR i, j : Integer;
done : Boolean;
rlfreq, r2freq, plfreq, clfreq, c2freq : freqpnt;
minr, rstep, vecrange : Real;

PROCEDURE copyfreq(VAR afreq, bfreq freqpnt);
VAR tlast, tnext : freqpnt;
BEGIN
IF (bfreq = NIL) OR (afreq = NIL) THEN
BEGIN
WriteLn(' overflowed freq pointer list ');
Halt;

END;

tlast := bfreq^.1ast;
tnext := bfreqA.next;
bfreq^ := afreq^;
bfreq^.next := tnext;
bfreq^.1ast := tlast;

END;

PROCEDURE init_accum;
VAR i, j, k : Integer;
tmpfreq : freqpnt;
strval : shortstr;

BEGIN

{ make sure deme list at top
WHILE cur deme^.1ast <> NIL DO cur deme := cur deme^
.last;

WHILE start freq^.1ast <> NIL DO start freq :=
start freqx.last;

cur freq := start freq;

FOR i := 1 TO 5 DO
BEGIN
CASE i OF

1 : plfreq := start_freq;
2 : rlfreq := start_freq;
3 : r2freq := start_freq;
4 : Clfreq := start_freq;
5 : c2freq := start freq;

END;
start_freq

END;
:= start frecr.next;

127

start freq := cur freq;

{ use first deme as base --- others were
duplicated from it
vecrange := 1.0/(maxvec+1);

WITH cur_deme^ DO
BEGIN

Str(demeno:3, strval);

plfreq^.xmin := 0;
plfreq^.xstep := resource*vecrange;
plfreq^.xtitle := Concat(' population density ',
strval);
plfreq^.maxgen := maxvec;

rlfreq^.xmin := 0.0;
rlfreq^.xstep := 1.5*vecrange;
IF rlfreq^.xmin < 0.0 THEN rlfreq^.xmin := 0.0;
rlfreq^.xtitle := Concat(' pop 1 growth rates '

strval);
rlfreq^.maxgen := maxvec;

r2freq^.xmin := 0.0;
r2frecr.xstep := 1.5*vecrange;
IF r2freq^.xmin < 0.0 THEN r2freq^.xmin := 0.0;
r2freq^.xtitle := Concat(' pop 2 growth rates
strval);

r2freq^.maxgen := maxvec;

clfreq^.xmin := 0.0;
clfreq^.xstep := vecrange;
clfreq^.xtitle := Concat(
' pop 1 density dependence ', strval);
clfreq^.maxgen := maxvec;

128

c2freq^.xmin := 0.0;
c2freq^.xstep := vecrange;
c2freq^.xtitle := Concat(
pop 2 density dependence ', strval);

c2frecr.maxgen := maxvec;

END;

I now make maxdeme copies of this)

FOR i := 1 TO ((options.maxdeme)-1) DO
BEGIN
k := (1+1) MOD options.maxdeme;
IF k = 0 THEN k := options.maxdeme;
Str(k:3, strval);

with cur deme

tmpfreq := plfreq;
plfreq := plfreq^.nextA.next^.next^.nextA.next;
copyfreq(tmpfreq, plfreq);
plfreq^.xtitle := Concat(' population density ',
strval);

tmpfreq := rlfreq;
rlfreq := rlfreq^.next^.next^.nextA.next^.next;
copyfreq(tmpfreq, rlfreq);
rlfreq^.xtitle := Concat(' pop 1 growth rates
strval);

tmpfreq := r2freq;
r2freq := r2freq^.next^.next^.next^.next^.next;
copyfreq(tmpfreq, r2freq);
r2freq^.xtitle := Concat(' pop 2 growth rates ',
strval);

tmpfreq := clfreq;
clfreq := clfreq^.next^.next^.next^.next^.next;
copyfreq(tmpfreq, clfreq);
clfreq^.xtitle := Concat(
' pop 1 density dependence ', strval);

tmpfreq := c2freq;
c2freq := c2freq^.next^.next^.nextA.next^.next;
copyfreq(tmpfreq, c2freq);
c2freq^.xtitle := Concat(

129

' pop 2 density dependence ', strval);

END;
f having initialized list, set

FOR i := 1 TO 5
BEGIN
CASE i OF
1 : plfreq :=
2 : rlfreq :=
3 : r2freq :=
4 : Clfreq :=
5 : c2freq :=

END;
start_freq :=

END;

DO

start freq;
start freq;
start freq;
start freq;
start freq;

back at begining

start freq^alext;

start freq := cur freq;

END;

BEGIN

tmp_deme := cur_deme;
done := False;

IF first THEN init accum
ELSE
BEGIN

FOR i := 1 TO 5 DO
BEGIN
CASE i OF
1 : plfreq := sys_final;
2 : rlfreq := sys_final;
3 : r2freq := sys_final;
4 : Clfreq := sys_final;
5 : c2freq := sys_final;

END;
sys_final := sys_final^.next;

END;

END;

init accum}

130

FOR j := 1 TO options.maxdeme DO
BEGIN
FOR i := 1 TO options.dupes_per_deme DO
BEGIN

WITH cur_deme^ DO
BEGIN

i ;= Trunc(((popl-plfreq^.xmin)/plfreq^.xstep)4.
0.5);

IF (i >= 1) AND (i <= maxvec) THEN
plfreqA.sfreq[i] := plfreq^.sfreq[17+1.0
ELSE
WriteLn(' error in plfreq, i is ', 1:5);

i := Trunc(((ratel-rlfreq^.xmin)/rlfreq^.xstep)
+0.5);
IF (1 >= 1) AND (i <= maxvec) THEN
rlfreq^.sfredi] := rlfreq^.sfreq[1]+1.0

ELSE
WriteLn(' error in rlfreq, i is ', 1:5);

i := Trunc(((rate2-r2freq^.xmin)/r2freq^.xstep)
+0.5);
IF (1 >= 1) AND (1 <= maxvec) THEN
r2freqA.sfreq[1] := r2freq^.sfreq[1]+1.0

ELSE
WriteLn(' error in r2freq, i is ', 1:5);

i := Trunc(((cvall-clfreq^.xmin)/clfreq^.xstep)
);

IF i < 1 THEN i := 1;
IF i > maxvec THEN i := maxvec;
clfreqA.sfreq[i] := clfreq^.sfreq[i]+1.0;

i := Trunc(((cva12-c2freq^.xmin)/c2freq^.xstep));
IF i< 1 THEN i := 1;
IF i > maxvec THEN i := maxvec;
c2freqA.sfreq[i] := c2freqA.sfreq[1]+1.0;

END;

IF cur_deme^.next <> NIL THEN
cur deme := cur deme^.next;

f with cur deme

END;
{ for loop of dupe_per_deme

133.

{ now do next deme and its duplicates

plfreq := plfrecr.next^.nextA.next^.next^.next;
rlfreq := rlfreq^.nextA.next^.next^.next^.next;
rlfreq := r2freq^.next^.nextA.next^.nextA.next;
clfreq := clfreqA.next^enext^.next^.next^.next;
clfreq := c2freq^.nextA.next^.next^.next^.next;

END; f for loop of maxdeme

sys_final := start_freq;

cur deme := tmp_deme

END; { accumovr

PROCEDURE showovr(first : Boolean);

VAR i, j : Integer;
done : Boolean;

BEGIN

WHILE start_frecr.last <> NIL DO start freq :=
start_freq^.1ast;

ClrScr;
IF first THEN Rewrite(distfile);

done := False;

cur freq := start freq;

REPEAT

{ with start_freq^ do display(con,xmin,xstep,
maxvec,sfreq,xtitle); writeln;

Write(distfile, start_freq^);
FOR i := 1 TO maxvec DO start_freq^.sfreq[i] := 0.0;

IF startfrecr.next <> NIL THEN
start freq := start_freq^.next

ELSE

132

done := True;

UNTIL done;

start freq := cur freq;

END;

FUNCTION criterion(VAR thisdeme : demepnt) : Real;
BEGIN
WITH thisdeme^ DO
BEGIN
CASE options.seltype OF
'P' : criterion := popl;
'B' : BEGIN

IF (popl > 0.0) AND (pop2 > 0.0) THEN
BEGIN
IF popl <> pop2 THEN
criterion := 1/Abs(popl-pop2)

ELSE
criterion := 1e200;

END
ELSE
criterion := 0.0;

END;

'C' : criterion := cvall;
'R' : criterion := ratel;

END;
END;

END;

PROCEDURE findbigest(elimcount : Integer);
[orders linked list of demes so that 'bigten'

largest items
I are at head of list }

VAR pass, current, large : demepnt;
lvalue : Real;
donea, doneb : Boolean;
count : Integer;

PROCEDURE swapnt(VAR a, b : demepnt);
VAR t : demepnt;

133

BEGIN
t = a;
a := b;
b := t;

END;

PROCEDURE swaptwo(VAR a, b : demepnt);

BEGIN

IF a^.1ast <> NIL THEN swapnt(a^.1ast^.next, b^glast
".next)
ELSE bA.last^.next := a;
swapnt(a^.1ast, b^.1ast);
IF b^.next <> NIL THEN swapnt(a^.next^.1ast, b^.next
^.1ast)
ELSE e.next^.1ast ;= b;
swapnt(e.next, b^.next);

END;

BEGIN

WHILE cur deme^.1ast <> NIL DO cur deme := cur deme^.
last;

pass := cur_deme;
current := cur_deme;
large := cur deme;
lvalue := criterion(cur_deme);
donea := False;
doneb := False;
count := 1;

REPEAT

current := pass;
lvalue := criterion(pass);
large := pass;
doneb := False;

IF current <> NIL THEN
BEGIN

134

REPEAT

IF criterion(current) > ivalue THEN
BEGIN
large := current;
ivalue := criterion(large);

END;

IF current^.next <> NIL THEN
current := current^.next
ELSE
doneb ;= True;

UNTIL doneb;

IF large <> pass THEN swaptwo(pass, large);

pass := large;

END; [current not nil }

count := count+1;

IF pass^.next <> NIL THEN
pass := pass^.next
ELSE
donea := True;

UNTIL (donea OR (count > elimcount));

WHILE cur deme^.1ast <> NIL DO cur deme := cur deme^.1ast;

END;

PROCEDURE eliminate;
(procedure will eliminate some population in a
type C model 1

VAR i, j, count : Integer;
last : demepnt;

135

pivot : Real;

BEGIN
WHILE cur deme^.1ast <> NIL DO cur deme := cur deme^.
last;

CASE options.stype OF
'B', 'P' : BEGIN

GoToXY(1, 2);
Write('no elimination ');

END;
'S' : IF (iter MOD options.selfreq) = 0 THEN

BEGIN
count := 0;
pivot := bigtenPoptions.dupes_per deme);
IF (pivot <= 0.0) OR (pivot > 1.0) THEN
BEGIN
WriteLn(
' too few dupes for this value of bigten '

);

Halt;
END;

last := cur_deme;
WHILE last^.next <> NIL DO
BEGIN
IF Random <= pivot THEN
BEGIN randomly eliminate 0% of

demes
count := count +l;
lastA.popl := 0.0; lastA.pop2 := 0.0;

END;
last := last^.next;

END; { last now points at last
element }

findbigest(count); t partially order list
END;

END;

END;

PROCEDURE redistribute;
{ procedure will redistribute deme populations in a

136

type C model
VAR done : Boolean;
repcount : Integer;
gone, top : demepnt;

BEGIN
WHILE cur deme".last <> NIL DO cur deme := cur deme".
last;

WHILE init deme".last <> NIL DO init deme :=
init deme7.1ast;

gone := cur deme;
done := Falie;

CASE options.stype OF
'B' : BEGIN [restore each deme to

initial condition
REPEAT
cur deme".popl := init deme".popl;
cur_deme".pop2 := initdeme".pop2;
curdeme".resource := initdeme".resource;
IF cur deme".next <> NIL THEN
BEGIN
cur deme := cur deme".next;
init deme := init deme".next;

END
ELSE
done := True;

UNTIL done;
END;

'S' : IF (iter MOD options.selfreq) = -0 THEN
BEGIN { elimate procedure put

largest 'bigten' items at
head }

{ of list after zero
Now replace these }
t with largest
top := gone;
done := False;

ing 'bigten' items

REPEAT
(with gone^ do quickdisp(popl,pop2, popl,
0.0, 100.0, 0);}

IF (gone^.popl <= smallreal) AND (gone^.
pop2 <= smallreal

137

) THEN
BEGIN
movedeme(top, gone);
WITH gone^ DO
BEGIN
{quickdisp(popl, pop2,pop1,0.0,100.0,
1);}
REPEAT
ratel := normran(gone^.ratel, gone^.
rsdevl);

UNTIL ratel > 0.0;
REPEAT
rate2 := normran(gone".rate2, gone^.
rsdev2);

UNTIL rate2 > 0.0;
repcount := 0;
REPEAT
cvall := normran(gone^.cvall, gone^.
sdcvall);
repcount := Succ(repcount);
IF repcount > maxreps THEN
cvall := gone^.cvall;

UNTIL (cvall >= 0.0) AND (cvall <= 1.0)

repcount := 0;
REPEAT
cval2 := normran(gone^.cval2, gone^.
sdcval2);
repcount := Succ(repcount);
IF repcount > maxreps THEN
cval2 := gone".cval2;

UNTIL (cval2 >= 0.0) AND (cval2 <= 1.0);
REPEAT
resource := normran(gone".resource,
gone^.
sdev_resource);

UNTIL resource > 0.0;
END;

top := top^.next;
END;

IF gone^.next <> NIL THEN
gone := gone^.next
ELSE
done := True;

138

UNTIL done;
END; { case 's' }

END; I case statements }

WHILE cur demeA.last <> NIL DO cur deme := cur deme'.
last;

WHILE init deme^.1ast <> NIL DO init deme :=
init_deme7.1ast;

END;

BEGIN t main program

REPEAT
Write(' Enter base name for parameter file ');
ReadLn(prmname);
Write(' enter 1 if sequence 0 if random ');
ReadLn(tmpint);
UNTIL tmpint IN [0, 13;
Randomize;
IF tmpint = 1 THEN nonrandom := True
ELSE
BEGIN
nonrandom := False;
Randomize;

END;
ClrScr;
initial;
ClrScr;

CASE options.stype OF
'S', 'P' : BEGIN

accumovr(True);
showovr(True);

END;
END;

139

FOR iter := 1 TO options.maxiter DO
BEGIN

IF nonrandom THEN
BEGIN
ranvar := iter/options.maxiter; [random

replacement
variable }

GoToXY(10, 3); WriteLn(' ranvar is ', ranvar:10:5)

END;

perturb;
restore;

CASE options.stype OF
'B' : BEGIN

accuminp;
accumdist;

END;
'S', 'P' IF ((iter) MOD options.listfreq) = 0

THEN
BEGIN
accumovr(False);
showovr(False);

END;
END;

eliminate;
redistribute;
GoToXY(10, 1);
WriteLn(' memory left ', MemAvail:6, ' iteration '

iter:5);

END;

showstate;

CASE options.stype OF
'B' : BEGIN

showdist;
END;

'S', 'P' : BEGIN
accumovr(False);

140

showovr(False);
END;

END;

Close(distfile);
Close(statefile);
iclose(outfile);}
WriteLn(' all done ', MemAvail:5);

END.

141

{$g2048}
PROGRAM THSXPLT;

{.pw98}
{.d+}

These are routines from the Turbo Graphix
Toolbox, Borland Intl }
{$i c:\software\typedef.sys}
{$1 c:\software\graphix.sys}
{$i c:\software\kernel.sys}
{$1 c:\software\windows.sys}
{$1 c:\software\hatch.hgh}
1$1 c: \software \histogrm.hgh}
{$1 c:\software\axis.hgh}
{$i c:\software\hardcpy.hgh}
{$i c: \software \polygon.hgh}
{.d-}

{ $ u+}
$ r+}

{ program will read in .STT and .DST files created
by THESISX and create
{ the histogram and beta distribution estimates on a
text file for printing}
{ $i thesisx.inc}

CONST todeg = 57.29578;
eps = 0.25;
pturb_size = 10.0;
smallreal = le-200;
bigten = 10;
maxvec = maxplotglb;

TYPE
vector = ARRAY[1..maxvec] OF Real;
title = STRING[80];

shortstr = STRING[12];
medstr = STRING[40];

demepnt = ^demerec;

142

demerec = RECORD
last, next : demepnt;
CASE Boolean OF
True : (demeno, iterno : Integer;
ratel, rate2, rsdevl, rsdev2,
popl, pop2, theta, dist, psi, oldpop2,
cvall, cval2, resource, sdev_resource,
sdcvall, sdcval2 : Real);

False : (run_name : medstr;
file name : shortstr;
maxiter, maxdeme, dupes_per_deme :
Integer;
stype, ptype, seltype : Char;
selfreq, listfreq : Integer);

END;

freqpnt = ^freqtype;
freqtype = RECORD

last, next : freqpnt;
xmin, xstep : Real;
maxgen : Integer;
xtitle : title;
sfreq : vector;

END;

VAR init_deme, cur deme, tmp_deme : demepnt;
start_freq, cur_freq, inp_freq : freqpnt;
options : demerec;
prmname medstr;
outfile : Text;
distfile : FILE OF freqtype;
statefile : FILE OF demerec;
iter, i, j, emode : Integer;
screenminx, screenminy, screenmaxx, screenmaxy,
printcount : Integer;
axislabel : title;
apoly plotarray;
betafuncvalue : Real;
doblowup, isfirst, dohard, isoki, dobeta : Boolean;
anschr : Char;

PROCEDURE betaest(VAR one, two : Real; start, stop :
Integer; VAR xfreq :vector); FORWARD;

143

FUNCTION topower(x, pwr : Real) : Real;

VAR i : Integer;
tmpx : Real;
invert : Boolean;

BEGIN
IF x <= 0.0 THEN
BEGIN
GoToXY(2, 23); Write(

Error: you tried to raise a negative number
to a power ----');

Exit;
END;

IF pwr < 0 THEN
BEGIN
pwr := -1.0*pwr;
invert := True;

END
ELSE invert := False;

IF pwr < smallreal THEN
BEGIN
topower := 1.0;
Exit;

END;

IF pwr = 1.0 THEN
BEGIN
topower := x;
Exit;

END;

IF pwr > 133.0 THEN
BEGIN
GoToXY(2, 23);
WriteLn(' --- Error: you are raising x:8:2, ' to the '

pwr:8:2,' power ');

144

topower := 1.0e300;
Exit;

END;

tmpx := Ln(x);
tmpx := pwr*tmpx;

tmpx := Exp(tmpx);

IF invert THEN
tmpx := 1 /tmpx;

topower := tmpx;

END;

FUNCTION gammafunc(x : Real) : Real;
BEGIN
IF (x > -smallreal) AND (x < smallreal) THEN
gammafunc := 1.6e+308; { maximum real }

IF x > 4.0 THEN
gammafunc := (x-1)*gammafunc(x-1);
IF x < 3.0 THEN
gammafunc := gammafunc(x +l) /(x);
IF (x >= 3.0) AND (x <= 4.0) THEN
gammafunc := topower(x, x)*Exp(-x)*Sqrt(2*Pi/x)*
(1.0+(1.0/(12.0*x))+(1.0/(288.0*Sqr(x)))-
(139.0/(51840.0*Sqr(x)*x))-
(571.0/(2488320.0*Sqr(x)*Sqr(x))));

END; {gammafunc}

FUNCTION exporan(scale : Real) : Real;

VAR ul : Real;

BEGIN
IF scale <= 0.0 THEN
scale := -1.0*scale;

145

REPEAT
ul := Random;
UNTIL ul > 0.0;

exporan := -scale*Ln(u1);

END;

FUNCTION gammapdf(x, shape, scale : Real) : Real;
BEGIN

shape := Abs(shape);
scale := Abs(scale);

IF x <= 0 THEN
gammapdf := 0.0
ELSE
gammapdf := (topower(scale, (-shape))*topower(x,
shape -l. 0))*

Exp(-x/scale)/gammafunc(shape));

END;

FUNCTION betafunc(zl, z2 : Real) : Real;

BEGIN
{

tmpl:=gammafunc(z1);tmp2:=gammafunc(z2);tmp3:=gammafu
nc(zl +z2); tmp4:=tmpl*tmp2/tmp3; betafunc:=tmp4;
writeln(lst,' in betafunc zl,z2 are ',z1:12:3,
z2:12:3); writeln(lst,' gamma zl,z2,zl +z2
tmp1:12;3,",tmp2:12:3, ",tmp3:12:3,' result ',
tmp4:12:3);

writeln(lst);

betafunc := gammafunc(z1)*gammafunc(z2)/gammafunc(z1+
z2);

END;

FUNCTION betapdf(x, pone, ptwo : Real) : Real;
BEGIN
pone := Abs(pone);
ptwo := Abs(ptwo);

146

IF (x <= 0.0) OR (x >= 1.0) THEN betapdf := 0.0
ELSE
betapdf := topower(x, (pone-1))*topower((1-x), (ptwo
-1))/
betafuncvalue;

END;

FUNCTION beta(one, two : Real) : Real;

{ returns beta distributed random number between 0
and 1 }

VAR i, j, k Integer;
altone, altwo, tmpl, tmp2 : Real;

FUNCTION gamma(shape, scale : Real) : Real;

VAR xvar, yvar, xtmp, b, e, ul, u2, branch : Real;
vvar, zvar, wear, a, q, theta, d : Real;

tryagain : Boolean;

BEGIN

IF shape <= 0.0 THEN BEGIN
GoToXY(2, 23); Write(

Error: you tried to
'a negative shape
Exit;

END;

IF shape = 1.0 THEN

____I) calculate a gamma with

147

BEGIN
xtmp := exporan(1.0);
gamma := scale*xtmp;
Exit;

END;

tryagain := True;

IF shape < 1.0 THEN
BEGIN
e := Exp(1);
b := (shape+e)/e;

WHILE tryagain DO

BEGIN

REPEAT
ul := Random
UNTIL ul > 0.0;

branch := b*ul;
f writeln(' Branch ',branch:10:3,' b ',b:10:3,
ul u1:10:3);}

IF branch > 1.0 THEN
BEGIN

yvar := -Ln((b-branch)/shape);

I write(' branch ',branch:10:3,' yvar '

yvar:10:3);}

REPEAT
u2 := Random
UNTIL u2 > 0.0;

IF u2 <= topower(yvar, (shape-1)) THEN
BEGIN

tryagain := False;
gamma := scale*yvar;
Exit;

END;

148

END
ELSE
BEGIN
yvar ;= topower(branch, (1/shape));

{ write(' branch ',branch:10:3,' yvar '

yvar:10:3);}

REPEAT
u2 := Random
UNTIL u2 > 0.0;

IF u2 <= Exp(-yvar) THEN
BEGIN
tryagain := False;
gamma := scale*yvar;
Exit;

END;

branch>1.0

END; { branch <1.0 }

END; while loop }

END { shape<1 branch }

ELSE

BEGIN

tryagain := True;

a := 1.0/Sqrt(2*shape-1.0);
b := shape-1.3862944;
q := shape+(1.0/a);
theta := 4.5;
d := 2.5040774;

WHILE tryagain DO
BEGIN

REPEAT
ul := Random;

UNTIL ul > 0.0;

{ shape>1}

In 4.0 }

{ 1 + In theta }

149

REPEAT
u2 := Random;

UNTIL u2 > 0.0;

vvar := ann(u1/(1-u1));
yvar := shape*Exp(vvar);
zvar := ul*ul*u2;
wear := b+(q*vvar)-yvar;

IF (wvar+d-(theta*zvar)) >= 0.0 THEN
BEGIN
tryagain := False;
gamma := scale*yvar;
Exit;

END;

IF wear >= Ln(zvar) THEN
BEGIN
tryagain := False;
gamma := scale*yvar;
Exit;

END;
END; (while loop

END; [shape>1 branch

END; f gamma function }

BEGIN

IF (one <= 0.0) OR (two <= 0.0) THEN
BEGIN
WriteLn(

' Error you attempted to generate a beta random
value with bad parameters');

Exit;
END;

IF (one = 1.0) AND (two = 1.0) THEN
BEGIN

150

beta := Random;
Exit;

END;

IF (one = 1.0) THEN
BEGIN
beta := 1.0-topower(Random, (1/two));
Exit;

END;

IF (two = 1.0) THEN
BEGIN
beta := topower(Random, (1/one));
Exit;

END;

tmpl := gamma(one, 1);
tmp2 := gamma(two, 1);

beta := tmpl/(tmpl+tmp2);

END;

PROCEDURE display(thiswindow : Integer; scale, xoff,
yoff, xmin, xstep :
Real;

maxgen : Integer; x : vector; xtitle : title);

This procedure will take a vector (defined
globally as an a array of real of length maxvec.
Both maxvec and vector must be globally defined.

const maxdisp=20.0; { uses 20 lines for histogram,
bottom 3 lines

for x axis, x axis labels, and title

151

VAR maxval, xmaxwidth, ymaxheight, newxmin, newymin,
newxmax, newymax,
pone, ptwo : Real;

j, k, tmperror, factor, hatchdens, fcount, start,
stop : Integer;
apit, apoly : plotarray;
hatch : Boolean;
ch : Char;

{ procedure will display vectors up to maxvec
elements long, if vector is}
{ half or less of that length, the procedure will
widen number of columns}
{ of histogram to make a more pleasing display

PROCEDURE blowup;

BEGIN
copyscreen;
ClearScreen;

definewindow(1, 0, 0, xmaxglb, ymaxglb);
defineworld(2, xmin, Round(1.2*maxval), ((xstep*
maxgen)+xmin), 0);
{ backwards for histograms?}
selectworld(2);
selectwindow(1);

setheaderon;
setheadertobottom;

defineheader(1,
' expanded view of empirical histogram ');

drawborder;
drawhistogram(aplt, maxgen, hatch, hatchdens);
defineworld(2, 0, Round(1.2*maxval), 1.0, 0);
selectworld(2);
IF dobeta THEN
BEGIN
selectwindow(1);
setlinestyle(1);
drawborder;

152

drawpolygon(apoly, 1, -maxgen, 0, 2, 0);
setlinestyle(0);

END;
Delay(3000);

selectscreen(2);
copyscreen;
selectscreen(1);

END; {blowup}

BEGIN

maxval := -9.9e20;

FOR i := 1 TO maxgen DO
IF x[i] > maxval THEN
maxval := x[i];

IF (maxval > -1.0e-20) AND (maxval < 1.0e-20) THEN
Exit;

writeln(' maxval is ',maxval:10:3,' maxgen is ',
maxgen:6); 1

{copyscreen; leavegraphic;}

FOR i := 1 TO maxgen DO
BEGIN
aplt[i, := 0.0;
aplt[i, 2] := x[i];
{ write(x{i}:9:2); if (i mod 8)=0 then writeln;}

END;

xmaxwidth := screenmaxx-screenminx+1;
ymaxheight := screenmaxy-screenminy+1;

definewindow(1, Trunc(xoff*xmaxwidth+1), Trunc(yoff*
ymaxheight),
Trunc((scale+xoff)*xmaxwidth), Trunc((scale+yoff)*
ymaxheight));

153

tmperror := geterrorcode;
IF tmperror >= 0 THEN
BEGIN
copyscreen;
leavegraphic;
WriteLn(' geterrorcode returned ', tmperror:4,
geterrorcode:4);
WriteLn(
' call to definewindow used following parameters '

);

WriteLn(1:5, Trunc(xoff*xmaxwidth+1):5, Trunc(yoff*
ymaxheight):5,
Trunc((scale+xoff)*xmaxwidth):5, Trunc((scale+yoff)
*ymaxheight):5);
WriteLn(' xoff was ', xoff:8:2, ' y off is ', yoff:
8:2, ' scale ',
scale:8:2);
WriteLn('screen vars are (xmax ymax xmin ymin)
screenmaxx:10, ", screenmaxy:10, ", screenminx:
10,

', screenminy:10);
Write(' press return to continue'); ReadLn;
entergraphic;
selectscreen(2);
copyscreen;
selectscreen(1);

END;

{defineheader(1,xtitle);}

defineworld(2, xmin, Round(1.2*maxval), ((xstep*
maxgen)+xmin), 0);

backwards for histograms?}
tmperror := geterrorcode;
IF tmperror >= 0 THEN
BEGIN
copyscreen;
leavegraphic;
WriteLn(' geterrorcode returned ', tmperror:4,
geterrorcode);
WriteLn(
' call to defineworld used following parameters 1)

154

WriteLn(thiswindow:5, xmin:10:2, Round(1.2*maxval):
8,
((xstep*maxgen)+xmin):10:2, 0:5);

Write(' press return to continue'); ReadLn;
entergraphic;
selectscreen(2);
copyscreen;
selectscreen(1);

END;

selectworld(2);

selectwindow(1);

drawborder;

drawaxis(-5,5,0,0,0,0,0,0,false);}

k := 1;
IF Trunc((scale+yoff)*ymaxheight-k) >= Trunc((scale+
yoff)*ymaxheight)
THEN k := 2;

definewindow(1, Trunc(xoff*xmaxwidth+1), Trunc(yoff*
ymaxheight),
Trunc((scale+xoff)*xmaxwidth), Trunc(((scale+yoff)*
ymaxheight) -k));

tmperror := geterrorcode;
IF tmperror >= 0 THEN
BEGIN
copyscreen;
leavegraphic;
WriteLn(' geterrorcode returned ', tmperror:4,
geterrorcode:4);
WriteLn(
' call to definewindow used following parameters '

);

WriteLn(1:5, Trunc(xoff*xmaxwidth+1):5, Trunc(yoff*
ymaxheight):5,
Trunc((scale+xoff)*xmaxwidth):5, Trunc((scale+yoff)
*ymaxheight):5);

155

WriteLn(' xoff was ', xoff:8:2, ' y off is ', yoff:
8:2, ' scale ',
scale:8:2);
WriteLn('screen vars are (xmax ymax xmin ymin)
screenmaxx:10, ", screenmaxy:10, ", screenminx:
10,
' , screenminy:10);
Write(' press return to continue'); ReadLn;
entergraphic;
selectscreen(2);
copyscreen;
selectscreen(1);

END;

defineworld(2, xmin, Round(1.2*maxval), ((xstep*
maxgen)+xmin), 0);

backwards for histograms ?}
selectworld(2);
selectwindow(1);

hatchdens := 7;
hatch := False;

drawhistogram(aplt, maxgen, hatch, hatchdens);

start := 1; stop := 1;
FOR i := 1 TO maxvec DO
BEGIN
IF (x[i] < 1.0) AND (stop = 1) THEN start := i;
IF x[i] > 0.0 THEN stop := i;

END;

IF dobeta THEN
BEGIN
betaest(pone, ptwo, start, stop, x);

betafuncvalue := betafunc(pone, ptwo);

fcount := 0;
FOR i := 1 TO maxgen DO
BEGIN

156

apoly[i, 1) := i/(maxgen+1);
IF (i < start) OR (i > stop) THEN
apoly[i, 2] := 0.0

ELSE
BEGIN
fcount := fcount+Round(aplt[i, 2]);
apoly[i, 2) := betapdf(apoly[i, 1), pone, ptwo)

[apoly[i,1]:=apoly[i,1]-apoly[start,1];}
END;

END;

FOR i := start TO stop DO
BEGIN
apoly[i, 2] := apoly[i, 2]*fcount/(stop-start+1);

END;
(* copyscreen; leavegraphic; clrscr; writeln('beta
parameters are: ',pone:10:3,ptwo:10:3,' count ',
fcount:5); for i:=1 to maxgen do begin if (i mod
5)=0 then writeln; write(i:4,apoly[i,1]:5:1,
apoly[i,2]:5:2); end; readln; entergraphic;
selectscreen(2); copyscreen; selectscreen(1); *)

defineworld(2, 0, Round(1.2*maxval), 1, 0);
selectworld(2);
setlinestyle(1);
selectwindow(1);
drawpolygon(apoly, 1, -maxgen, 0, 2, 0);
setlinestyle(0);

END;

IF doblowup THEN
BEGIN
Delay(1000);
blowup;

END;

END;

FUNCTION pullreal(VAR line : title) : Real;
VAR atmp : STRING[20];

{ dobeta

157

ILOC, error : Integer;
xrslt : Real;

BEGIN

WHILE (NOT(line[1] IN ['0', '1', '2', '3', '4', '5',
'6', '7', '8', '9'

.1.1

V_V, I.,]))

AND (Length(line) > 0) DO Delete(line, 1, 1);

IF Length(line) = 0 THEN
BEGIN
pullreal := 0.0;
Exit;

END;

iloc := Pos(", line);
IF (iloc > 0) AND (Length(line) > 0) THEN
BEGIN
atmp := Copy(line, 1, (iloc-1));
Delete(line, 1, iloc);

END
ELSE
BEGIN
atmp := line;
line := ";

END;

IF Length(atmp) > 0 THEN
Val(atmp, xrslt, error);
IF error = 0 THEN pullreal := xrslt
ELSE
BEGIN
pullreal := 0.0;
WriteLn(' Error no number found in string:
line);

END;

END;

158

CONST
maxtable = 122;

VAR
Betable : ARRAY[l..maxtable, 1..4] OF Real;
initbeta : Boolean;

PROCEDURE betaest; { forward declared }
(procedure betaest(var one,two:real; start,
stop:integer; var xfreq:vector); forward;}

procedure estimates beta distribution parameters
given a frequency distribution which is frequency
of values between 0.0 and 1.0}
{ uses global variable betable which is table of
estimates }

VAR i, j, k, lowpos, highpos : Integer;

table : Text;

gl, g2, step, smalll, sma112, largel, large2 : Real;
altone, altwo, altgl, altg2, valsl, vals2, valbl,
valb2 : Real;
COUNT, last, span : Real;
backflag : Boolean;

FUNCTION arcextrap(lowl, low2, highl, high2, midi :

Real) : Real;
{ this function will extrapolate between two table
point with }
{ an arctangent extrapolation }

VAR ratio, tmpl, tmp2 : Real;

BEGIN
ratio := (midl-lowl)/(highl-lowl);
IF ratio = 0.0 THEN
BEGIN
arcextrap := low2;
Exit;

END;

159

IF ratio = 1.0 THEN
BEGIN
arcextrap := high2;
Exit;

END;

tmp2 := ArcTan(low2);
tmpl := tmp2+(ratio*(ArcTan(high2)-tmp2));
arcextrap := Sin(tmpl)/Cos(tmpl);

END;

BEGIN

IF NOT initbeta THEN
BEGIN
{writeln;writeln(' reading table ');1

INITBETA := True;

Assign(table, 'BETAPRM.dat');
Reset(table);
FOR i := 1 TO maxtable DO
BEGIN
ReadLn(table, betable[i, 1], betable[i, 2],
betable[i, 3],
betable[i, 4));

writeln(lst,i:4,betable[i,1]:10:4,
betable[i, 2]:10:4, betable[i,3]:10:4, betable[i,
4] :10:4);}

END;
Close(table);

END;

gl := 0.0;
g2 := 0.0;
COUNT := 0.0;
altgl := 0.0;
altg2 := 0.0;

span := (stop-start+1.0);

FOR i := start TO stop DO

160

BEGIN
step := ((i-start)+0.5)/span;
count := count +xfreq[i);
gl := gl+(Ln(step)*xfreq[i]);
g2 := g2+(Ln(1.0-step)*xfreq[i]);

{ writeln(' value t,step:8:4,' gl ',g1:8:3,' freq
',xfreq[i]:4:0, g2 ',g2:8:3);}

END;

{ write(' sum gl,g2 ',g1:8:3,g2:8:3);}

IF count > 0.0 THEN
BEGIN
gl := gl/count;
g2 := g2/count;

END
ELSE
BEGIN
ClrScr;
WriteLn(' bad array passed betaest terminated I);
Halt;

END;
gi := Exp(gl);
g2 := Exp(g2);

[writeln;writeln(' final gl ',g1:10:3,' final g2
g2:10:3);}

{ now find these in betable

backflag := False;

IF gl <= g2 THEN
BEGIN
altgl := gl;
altg2 := g2;
backflag := False;

END
ELSE
BEGIN
altgl := g2;
altg2 := gi;

161

backflag := True;
END;

IF altgl < betable[1, 1] THEN altgl := betable[1, 1];
IF altg2 < betable[1, 2] THEN altg2 := betable[1, 2];
IF altgl > betable[maxtable, 1] THEN altgl := betable
[maxtable, 1];

lowpos := Trunc(100.0*altgl) DIV 5;

smalll := lowpos/20;
largel := smalll +0.05;

IF smalll < 0.05 THEN
BEGIN
smalll := 0.01;
largel := 0.05;

END;

{ first table entry, not 0}

IF smalll > 0.45 THEN smalll := 0.49; [largest gl
value)

IF largel > 0.45 THEN largel := 0.49;

i := 1;

{ writeln(' smalll ',sma111:10:3,' largel
large1:10:3);}

writeln(' altgl 1,altg1:10:3,1 altg2
altg2:10:3);

WHILE (betable[i, 1] < small') AND (i < maxtable) DO
i := i+1;

last := betable[i, 1];

{ write(' i table values 1); for k:=1 to 4
do write(betable[i,k]:8:3); writeln(' last ',
last:8:3);

162

WHILE ((betable[i, 2] < altg2) AND (betable[i, 1] =
last)
AND (i < maxtable)) DO i := 1+1;

{ write(' i ',i:3,' table values '); for k:=1 to 4
do write(betable[i,k]:8:3); writeln(' last ',
last:8:3);}

IF betable[i, 1] <> last THEN
BEGIN

I := 1-1;
altg2 := betable[i, 2];

writeln(' BACKING UP '); write(' 1-1 ',(i-1):3,
' table values '); for k:=1 to 4 do
write(betable[(i-1),k]:8:3); writeln; write('
1:3,' table values '); for k:=1 to 4 do
write(betable[i,k]:8:3); writeln(' last ',
last:8:3);}

END;

IF i > 1 THEN
BEGIN
j := 1-1;

IF (betable[i, 1] = betable[j, 1]) THEN
BEGIN
valsl := arcextrap(betable[j, 2], betable[j, 3],
betable[i, 2],
betable[i, 3], altg2);
vals2 := arcextrap(betable[j, 2], betable[j, 4],
betable[i, 2],
betable[i, 4], altg2);

END
ELSE
BEGIN
valsl := betable[i, 3];
vals2 := betable[i, 4];

END;
END
ELSE
BEGIN
valsl := betable[i, 3];
vals2 := betable[i, 4];

END;

163

{ writeln(' valsl 1,vals1:10:3,1 vals2
vals2:10:3);

WHILE (betable[i, 1] < largel) AND (i < maxtable) DO
i := 1+1;

last := betable[i, 1];

{write(' i ',i:3,' table values '); for k:=1 to 4
do write(betable[i,k]:8:3); writeln;}

WHILE (betable[i, 2] < altg2) AND (betable[i, 1] =
last)
AND (i < maxtable) DO i := 1+1;

{ write(' i ',i:3,' table values '); for k:=1 to 4
do write(betable[i,k]:8:3); writeln(' last ',
last:8:3);

IF betable[1, 1] <> last THEN
BEGIN

i := 1-1;
altg2 := betable[1, 2];

writeln(' BACKING UP 1); write(' 1-1 ',
(i-1):3,' table values '); for k:=1 to 4 do
write(betable[(1-1),k]:8:3); writeln; write(' i

i:3,' table values '); for k:=1 to 4 do
write(betable[i,k]:8:3); writeln(' last ',
last:8:3);

END;

IF i > 1 THEN
BEGIN
j = i-l;

IF (betable[i, 1] = betable[j, 1]) THEN

164

BEGIN
valbl := arcextrap(betable[j, 2], betable[j, 3],
betable[i, 2],
betable[i, 3], altg2);
valb2 := arcextrap(betable[j, 2], betable[j, 4],
betable[i, 2],
betable[i, 4], altg2);
END

ELSE
BEGIN
valbi := betable[i, 3];
valb2 := betable[i, 4];

END;
END

ELSE
BEGIN
valbl := betable[i, 3];
valb2 := betable[i, 4];

END;

(writeln(' valbi ',valb1:10:3,' valb2
valb2:10:3);

altone := arcextrap(smalll, valsl, largel, valbi,
altgl);
altwo := arcextrap(smalll, vals2, largel, valb2,
altgl);

IF backflag THEN
BEGIN
one := altwo;
two := altone;

END
ELSE
BEGIN
one := altone;
two := altwo;

END;

END;

165

PROCEDURE parsefile(VAR name : medstr; ext : shortstr)

VAR i, j : Integer;

BEGIN
i := Pos('.', name);
IF i > 0 THEN BEGIN
Delete(name, i, (Length(name)-i+1));
i = 0;

END;

IF Length(name) < 2 THEN BEGIN
WriteLn(' Error-- filename too short '); Halt;

END;

name := Concat(name, ext);
END;

PROCEDURE extend(VAR ademe : demepnt);

{ extends linked list of demes; pointer returned
pointing to last }
{ item on list

BEGIN
IF ademe = NIL THEN
BEGIN
New(ademe);
ademe^.next := NIL;
ademe^.1ast := NIL;

END
ELSE
BEGIN
WHILE ademe^.next <> NIL DO
ademe := ademe^.next;

New(ademe^.next);
ademe^.flext^.next := NIL;
ademe^.next^.1ast := ademe;
ademe := ademe^.next;

END;
END;

PROCEDURE extenf(VAR afreq : freqpnt);

{ extend

166

{ extends linked list of freqs; pointer returned
pointing to last }

item on list }

BEGIN
IF afreq = NIL THEN
BEGIN
New(afreq);
afrecr.next := NIL;
afreq^.1ast := NIL;
END

ELSE
BEGIN
WHILE afreqA.next <> NIL DO
afreq := afreq^.next;

New(afreq^.next);
afreq^.next^.next := NIL;
afreqA.next^.1ast := afreq;
afreq := afrecr.next;

END;
END; f extenf

PROCEDURE movedeme(VAR ademe, bdeme : demepnt);

{ procedure will move contents of record in ademe
to bdeme while }
{ preserving list structure }

VAR tmplast, tmpnext : demepnt;

BEGIN

tmplast := bdeme^.1ast;
tmpnext := bdeme^.next;

bdeme^ := ademe^;

bdeme^.1ast := tmplast;
bdeme^.next := tmpnext;

END;

PROCEDURE loadfreq;
VAR i, j, k, count : Integer;
fmpnext, fmplast freqpnt;
tmpfreq : freqtype;

167

BEGIN
count := 0;
IF cur_freq <> NIL THEN
BEGIN
WHILE cur freqA.next <> NIL DO
cur freq := cur freqA.next;

WHILE cur freq^.-1-ast <> NIL DO
BEGIN
cur_freq := cur_freq^.1ast;
Dispose(cur freq^.next);
cur freq^.nixt := NIL;
END;
Dispose(cur_freq);
cur freq := NIL;
END;

WHILE (count < (5*options.maxdeme)) AND (NOT EoF(
distfile)) DO
BEGIN
extenf(curfreq);
Read(distfile, tmpfreq);
count := count+1;

[WITH tmpfreq DO BEGIN WriteLn(' for ', count, '

distribution xmin,xstep is ', xmin:10:3,
xstep:10:3); WriteLn(' maxgen maxgen, '

xtitle); FOR i := 1 TO maxvec DO BEGIN
Write(sfreq[i]:5:0); IF ((i MOD 15) = 0) AND (i >
0) THEN WriteLn; END; WriteLn; IF tmpfreq.maxgen =
0 THEN tmpfreq.maxgen := maxvec;

END;
WITH tmpfreq}

fmpnext := cur_freq^.next;
fmplast := cur_freq^.1ast;
cur freq^ := tmpfreq;
cur freq^.next := fmpnext;
cur freq^.1ast := fmplast;

END;

168

WHILE cur_freq^.1ast <> NIL DO cur_freq := cur_freq .
last;

END;

PROCEDURE initialize;

VAR dmpnext, dmplast : demepnt;
fmpnext, fmplast : freqpnt;
tmpdeme : demerec;
tmpfreq : freqtype;
count, i : Integer;

BEGIN

parsefile(prmname, 'stt');
Assign(statefile, prmname);
WriteLn(' opening state file ', prmname);
{$i -}

Reset(statefile);
IF IOResult <> 0 THEN
BEGIN
WriteLn(' io error in ', prmname);
Halt;

END;

($i+}
cur deme := NIL;
Read(statefile, options);
WITH options DO

BEGIN
WriteLn(' found options for ', run_name, '

file name);
WriteLn(' maxiter maxiter, ' maxdeme maxdeme
, ' dupes 1,dupes_per_deme, ' types ', stype,

ptype);
WriteLn(' list frequency ', listfreq);

END;
IF options.stype IN ['B', ibt] THEN

dobeta := True
ELSE
dobeta := False;

count := 0;
WHILE NOT EoF(statefile) DO

BEGIN
extend(cur_deme);

169

Read(statefile, tmpdeme);
dmpnext := cur_deme^.next;

dmplast := cur_deme^.1ast;
cur deme^ := tmpdeme;
curdeme^.next := dmpnext;
cur deme^.1ast := dmplast;
count := count +l;

END;

WriteLn(' found ', count:5, ' demes in ', prmname);

WHILE cur deme^.1ast <> NIL DO cur deme := cur deme^.
last;

parsefile(prmname, 'dst');
WriteLn(' opening distribution file prmname);
Assign(distfile, prmname);
{Si -}

Reset(distfile);
IF IOResult <> 0 THEN
BEGIN
WriteLn(' io error in ', prmname);
Halt;

END;

{Si+}

cur_freq := NIL;

WriteLn(' reading ', FileSize(distfile):
' distributions ');

loadfreq;

Close(statefile);

parsefile(prmname, 'hst');
Assign(outfile, prmname);
Rewrite(outfile);

screenminx := 1;

170

screenminy := 0;
screenmaxx := xmaxglb;
screenmaxy := ymaxglb-9;

END; {initialize}

Procedure writevert(aline:medstr);
writevert(aline : medstr);
VAR i, maxlen, topline : Integer;
BEGIN
maxlen := 25-WhereY;
IF Length(aline) <= maxlen THEN
maxlen := Length(aline);

FOR i := 1 TO maxlen DO
WriteLn(aline[i]);

END;

PROCEDURE new_page;

BEGIN
IF NOT isfirst THEN
BEGIN
IF dohard THEN
BEGIN
IF isoki THEN
hardoki(False) { print hardcopy on okidata

193}
ELSE
hardcopy(False, emode);

printcount := printcount+1;
IF (printcount MOD 2) = 0 THEN Write(Lst, Chr(12)
);

END;
END

ELSE
isfirst := False;

ClearScreen;
defineworld(2, 0.0, 0.0, 100.0, 100.0);

definewindow(1, screenminx, screenminy, screenmaxx,

171

screenmaxy);

setwindowmodeon;

setheaderoff;
setheadertobottom;
defineheader(1,
' Input theta, output recovered distributions ');

selectworld(2);
selectwindow(1);
drawborder;
setlinestyle(0);
drawline(0.0, 100.0, 100.0, 0.0);
axislabel := 'population of species 2';
i := (25-Length(axislabel)) DIV 2;
IF i < 1 THEN i ;= 1;
GoToXY(1, i);
writevert(axislabel);
axislabel := 'population of species 1';
i ;= (80-Length(axislabel)) DIV 2;
IF i< 1 THEN i := 1;
GoToXY(i, 25);
Write(axislabel);
GoToXY(3, 22);
Write('Distribution of distances moved on isocline');
GoToXY(40, 3);
Write('Distribution of theta perturbations');
GoToXY(3, 16); Write(' "cluster" growth ');
GoToXY(3, 17); Write(' parameter rate ');
GoToXY(3, 18); Write('Species 1:', cur deme^.cvall:4:
1

', cur deme^.rate1:4:1);
GoToXY(3, 19);Write('Species 2:', cur_deme^.cval2:4:

, cur deme^.rate2:4:1);

END; new_page

PROCEDURE plotits;
f plot frequency distributions of p and s type

VAR
betal, beta2, smin, smax, avgval, sumsqs, estsd,
fcount, xst2, psize

172

Real;
firstzero, lastzero, fnumber, i, j, plotcount,
maxfreq : Integer;
locmax, printcount, timecount : Integer;
done, iszero : Boolean;
xoff, yoff, xmaxval, xmostcom : Real;
strval, timelabel, tmpval : shortstr;
centlabel : medstr;

BEGIN

WHILE cur_frecr.last <> NIL DO cur_freq := cur_freq^.
last;

WHILE cur deme^.1ast <> NIL DO cur deme := cur deme^._
last;

plotcount := 0;
printcount := 0;
ClearScreen;
timecount := 0;

REPEAT { through all sets }
done := False;

REPEAT { all distributions in set }

iszero := False;
j := (timecount*options.listfreq);
Str(j:7, tmpval);

timelabel := Concat(' t =', tmpval);

{ write(' now at ',curdeme^.demeno:5,");}

CASE(plotcount MOD 5) OF
0 : BEGIN

xoff := 0.0; yoff := 0.0; psize := 1.0;
END;

1 : BEGIN
xoff := 0.0; yoff := 0.0; psize := 0.5;

END;
2 : BEGIN

173

xoff := 0.5; yoff := 0.0; psize := 0.5;
END;

3 : BEGIN
xoff := 0.0; yoff := 0.5; psize := 0.5;

END;
4 : BEGIN

xoff := 0.5; yoff := 0.5; psize := 0.5;
END;

END;

WITH cur_freq^ DO
BEGIN

{ first check for zero frequency array }

firstzero := 1;
WHILE (sfreq[firstzero] = 0.0) AND (firstzero <
maxgen)
DO firstzero := firstzero+1;
lastzero := maxgen;
WHILE (sfreq[lastzero] = 0.0) AND (lastzero > 1)
DO lastzero := lastzero-1;
IF lastzero < firstzero THEN iszero := True;

IF NOT iszero THEN
BEGIN
maxfreq := 0;
FOR i := 1 TO maxgen DO
IF (Round(sfreq[i]) > maxfreq) THEN
BEGIN
maxfreq := Round(sfreq[i]);
locmax := i;

END;

SMIN := xmin+(firstzero*xstep);
SMAX := xmin+(lastzero*xstep);
xmaxval := xmin+(xstep*(maxgen+1));
xmostcom := xmin+(xstep*(locmax+0.5));

{ betaest(betal, beta2, firstzero, lastzero,

174

sfreq);

{ now plot distribution }

display(cur_deme^.demeno, psize, xoff, yoff,
xmin, xstep,
maxgen, sfreq, xtitle);
GoToXY((Trunc((xoff*80)+1)), (Trunc((yoff*24)+1
)));
Write(xtitle);,
GoToXY((Trunc((xoff*80)+1)), (Trunc((yoff*24)+(
psize*20))))

Str(xmin:6:2, strval);
Write(strval);
GoToXY((Trunc((xoff*80)+(psize*68))), (Trunc((
yoff*24)+(
psize*20))));
Str(xmaxval:6:2, strval);
Write(strval);
GoToXY((Trunc((xoff*80)+(psize*34))), (Trunc((
yoff*24)+2)))

Str(xmostcom:6:2, strval);
centlabel := Concat(strval, timelabel);
Write(centlabel);

END; [not iszero}

I := 1; avgval := 0.0; fcount := 0.0; sumsqs :=
0.0;
xst2 := (xstep/2.0)+xmin;

WHILE i < maxgen DO
BEGIN
avgval := avgval+(sfreq[i]*((i*xstep)+xst2));
sumsgs := sumsgs+(sfreg[i]*(Sgr((i*xstep)+xst2)
));
fcount := fcount+sfreq[i];
i := i+1;

END;

{ writeln(' sum values ',avgval:10:3 ' sum of
squares ', sumsqs:10:3);}
IF fcount > 0 THEN

175

avgval := avgval/fcount
ELSE
avgval := 0.0;

IF fcount > 1 THEN
BEGIN
estsd := fcount*Sqr(avgval);
estsd := sumsqs-estsd;
estsd := Sqrt(estsd/(fcount-1));

END
ELSE
estsd := 0.0;

writeln(' average value ',avgval:10:3,'
standard deviation ', estsd:10:3);}

END; { with cur freq}

WriteLn(outfile, ' Mean value ', avgval:10:3,
' standard deviation ',
estsd:10:3);
WriteLn(outfile, ' model type ', options.stype:2,
' perturb type ',
options.ptype:2);

WriteLn(outfile);

IF ((plotcount MOD 5) = 0) OR ((plotcount MOD 5) =
4) THEN

IF NOT dohard THEN
BEGIN
GoToXY(35, 25); Write('Press return to continue'
);

ReadLn;
ClearScreen;
END

ELSE
BEGIN
IF isoki THEN
hardoki(False) { print hardcopy on okidata

193}
ELSE
hardcopy(False, emode);
printcount := printcount+1;

176

IF (printcount MOD 2) = 0 THEN Write(Lst, Chr(12
));

ClearScreen;
END;

plotcount := plotcount+1;

IF cur_freq^.next <> NIL THEN
cur_freq := cur_freq^.next

ELSE
done := True;

UNTIL done;

loadfreq;

timecount := timecount+1;

UNTIL EoF(distfile);

IF NOT dohard THEN
BEGIN
GoToXY(35, 25);
Write(' Press return to continue '); ReadLn;

END;

END; plotits procedure

PROCEDURE plotitB;

VAR
betal, beta2, smin, smax, avgtheta, avgdist, fcount,
xst2 : Real;
firstzero, lastzero, fnumber, i, j, curwindow :
Integer;
done : Boolean;

177

BEGIN

WHILE cur_freq^.1ast <> NIL DO cur_freq := cur_freq^.
last;

WHILE cur deme^.1ast <> NIL DO cur deme := cur deme^.
last;

done := False;

REPEAT

write(' now at ',cur deme^.demeno:5,");}

curwindow := ((cur_deme^.demeno-1) MOD 4);

IF (curwindow = 0) AND (NOT dohard) AND (NOT isfirst
) THEN
BEGIN
GoToXY(35, 25);
Write(' Press return to continue '); ReadLn;

END;

IF curwindow = 0 THEN new_page;

IF options.ptype <> 'R' THEN
BEGIN
WITH cur_freq^ DO
BEGIN

[first calculate beta values }

firstzero := 1;
WHILE (sfreq[firstzero] = 0.0) AND (firstzero <
maxgen)
DO firstzero := firstzero +l;

lastzero := maxgen;

WHILE (sfreq[lastzero] = 0.0) AND (lastzero > 0)
DO lastzero := lastzero-1;

IF lastzero < firstzero THEN

178

BEGIN
WriteLn('Error -- Zero frequency array read ')

Halt;
END;

SMIN := xmin+(firstzero*xstep);
SMAX := xmin+(lastzero*xstep);

betaest(betal, beta2, firstzero, lastzero, sfreq
);

{ now plot theta }

display(curwindow, 0.19, ((curwindow+1)/5), ((
curwindow)/5),
xmin, xstep, maxgen, sfreq, xtitle);

display(thiswindow:integer;scale,xoff,yoff,
xmin,xstep:real;
maxgen:integer;x:vector;xtitle:title);}

I := 1; avgtheta := 0.0; fcount := 0.0;
xst2 := (xstep/2.0)+xmin;

WHILE i < maxgen DO
BEGIN
avgtheta := avgtheta+(sfreq[ii*((i*xstep)+xst2
));
fcount := fcount+sfreq[i];
i := i+1;

END;
avgtheta := avgtheta/fcount;

[write(' average theta ',avgtheta:10:3); }

END; { with cur freci}

WITH cur_deme^ DO
BEGIN
WriteLn(outfile, ' STATISTICS FOR DEME NUMBER '

179

, demeno:5);
WriteLn(outfile, ' first population ':30,
' Mean theta ',
avgtheta
:10:3);
WriteLn(outfile, ' c ', cvall:5:1, ' r

ratel:5:1,' final population ',popl :5:l,
' model type ', options.stype:2,
perturb type ',

options.ptype:2);
WriteLn(outfile, ' second population 1);
WriteLn(outfile, ' c cval2:5:1, ' r '

rate2:5:1,
' final population ',
pop2:5:1, ' first beta ', betal:6:3,
' second beta 1,
beta2:6:3);

WriteLn(outfile);

END;

END;

f now do distance distribution

IF cur_freq^.next <> NIL THEN
cur_freq := cur_freqA.next

ELSE
done := True;

IF NOT done THEN
BEGIN

WITH cur_freq^ DO
BEGIN

I first calculate beta values

{ with cur_deme block }

f if option.ptype<>'r'

firstzero := 1;
WHILE (sfreq[firstzerol = 0.0) AND (firstzero <
maxgen)
DO firstzero := firstzero+1;

lastzero := maxgen;

180

WHILE (sfreq[lastzero] = 0.0) AND (lastzero > 0)

DO lastzero := lastzero-1;

IF lastzero < firstzero THEN
BEGIN
WriteLn('Error -- Zero frequency array read ')

Halt;
END;

SMIN := xmin+(firstzero*xstep);
SMAX := xmin+(lastzero*xstep);

betaest(betal, beta2, firstzero, lastzero, sfreq
);

f now plot theta }

display(curwindow, 0.19, ((curwindow)/5), ((
curwindow+1)/5),
xmin, xstep, maxgen, sfreq, xtitle);

I := 1; avgdist := 0.0; fcount := 0.0;
xst2 := (xstep/2.0)+xmin;

WHILE i < maxgen DO
BEGIN
avgdist := avgdist+(sfreq[i]*((i*xstep)+xst2))

fcount := fcount+sfreq[i];
i := i+1;

END;
avgdist := avgdist/fcount;

writeln(' average distance ',avgdist:10:3);}

END; [with cur freq}

WITH cur_deme^ DO
BEGIN
WriteLn(outfile, ' STATISTICS FOR DEME NUMBER '

, demeno:5);

181

WriteLn(outfile, ' first population ':30,
' mean distance ',
avgdist:10:3);
WriteLn(outfile, ' c cvall:5:1, ' r '

rate1:5:1,' final population ',
pop1:5:1, ' model type ', options.stype:2,
' perturb type ',
options.ptype:2);
WriteLn(outfile, ' second population ');
WriteLn(outfile, ' c - cval2:5:1, ' r - '

rate2:5:1,
' final population ',
pop2:5:1, ' first beta ', betal:6:3,
' second beta ',
beta2:6:3);

WriteLn(outfile);
END;

END;

IF curfrecr.next <> NIL THEN
cur freq := cur freq^.next
ELSE
done := True;

IF cur_deme^.next <> NIL THEN
cur deme := cur deme^.next

ELSE
done := True;

UNTIL done;

{ with cur deme block }

{ not done yet }

IF NOT dohard THEN
BEGIN
GoToXY(35, 25);
Write(' Press return to continue '); ReadLn;

END;

END; plotitb procedure

PROCEDURE dumpworld;
BEGIN

182

copyscreen;
leavegraphic;

WriteLn(' window mode is ', windowmode);
WriteLn(' Global world parameters xl, yl, x2, y2 ');
WriteLn(x1w1dglb:10:2, ylwldglb:10:2, x2w1dglb:10:2,
y2w1dglb:10:2);
WriteLn(
' Global translation paramters Axgib,Bxglb,Ayglb,Byglb');
WriteLn(Axglb:10:2, Bxglb:10:2, Ayglb:10:2, Byglb:10:2);
WriteLn(' Global parameters xl,yl,x2,y2 ');
WriteLn(xlglb:10, ylglb:10, x2g1b:10, y2g1b:10);
WriteLn(' contents of world 2 ');
WITH world[2] DO
WriteLn(x1:10:2, y1:10:2, x2:10:2, y2:10:2);

Write(' press return to continue '); ReadLn;

entergraphic;
selectscreen(2);
copyscreen;
selectscreen(1);

END;

BEGIN [main program]

initgraphic;
leavegraphic;
setbreakoff;

ClrScr;

Write(' enter base name of data files ');
ReadLn(prmname);
WriteLn(
' Do you want expanded view of each histogram? ');
Write(' Enter Y if you do or any other key if not ');
ReadLn(anschr);
WriteLn;
IF anschr IN ['yt, 'Y'] THEN
doblowup := True

ELSE
doblowup := False;

183

WriteLn(' Do you want a printout of each plot? ');
Write(' Enter Y if you do or any other key if not ');
ReadLn(anschr);
WriteLn;
IF anschr IN ['y', 'Y'] THEN
BEGIN
dohard := True;
WriteLn(

' Do you have an Okidata 193 or an Epson (IBM)
compatible printer?');

REPEAT
Write(' Enter 0 if Okidata or E if Epson '); ReadLn
(anschr);
WriteLn;
UNTIL anschr IN ['0', 'o', 'E', 'e'];

IF anschr IN ['0', 'ot] THEN isoki := True
ELSE BEGIN
isoki := False;
Write(' Enter H for half size print '); ReadLn(
anschr);
WriteLn;
IF anschr IN ['H', 'h'] THEN
emode := 1

ELSE
emode := 0;

END;
END
ELSE
dohard := False;

isfirst := True;
printcount := 0;

initialize;
writeln(' memory left ',memavail);}

entergraphic;
t newpage;1

CASE options.stype OF
'B' plotitb;
'S', 'P' : plotits;

END;
IF dohard THEN
BEGIN

184

IF isoki THEN
hardoki(False)

ELSE
hardcopy(False, emode);

Write(Lst, Chr(12));
END;

leavegraphic;
Close(distfile);
Close(outfile);

END.

