Employment Effects of Volatility in Global Fisheries Production

Andrew M. Scheld
Department of Fisheries Science
Virginia Institute of Marine Science

- US \$130 billion in trade
- 60 million employed
- Assure livelihoods for 10-12% of world population

FAO 2014

What affects fishing sector employment?

- History, culture, geography
- Economic development, supply chain, alternative employment, demand
- Species abundance and availability

Biological diversity found to stabilize ecological communities, leading to enhanced provision of ecosystem services

Are similar patterns seen in human systems?

Product diversity and inter-annual variability negatively correlated

Product diversity and employment positively correlated

What are the effects of volatility in production on fishing sector employment?

Production Volatility:

"Assets" → commercially produced species groups

"Returns" → annual production from assets

"Volatility" → standard deviation of returns

$$V_{it} = \sqrt{w^T \Sigma_{it} w}$$

- Composition of production has changed somewhat over the last 60 years (demersal \(\psi \); aquaculture \(\psi \))
- Diversity increased recently (Pacific/Asia fisheries ↑)

Datasets

- ILO fishing sector employment
- FAO production by country and year
- Other country-specific datasets

Expected returns and volatility for a country's production "portfolio" were calculated based on production in the previous three years

Covariate	Estimate
Intercept	-11.47*** (1.08)
Coastline	0.19**
Latitude	-0.39*** (0.08)
Rural Pop.	0.55*** (0.10)
UNHDI (2000)	-3.38*** (0.86)
Capture	0.38*** (0.09)
Aquaculture	0.15* (0.07)
Volatility	-0.18** (0.06)
$N = 394$ $R^2 = 0.8649$ *** p<0.001; ** p<0.01; * p<0.05	

Empirical Model

- Log-log specification →
 parameter estimates are %
 effects on employment
- Standard errors adjusted for country and year clustering:

$$V(\hat{\beta}) = (XX)^{-1} X' \Sigma X (XX)^{-1}$$

Fishing has been found to increase variability in population recruitment

Many stocks are thought to be influenced by climatic and environmental factors

Conclusions

- Volatility appears to have a negative effect on fishing sector employment → Why?
 - Uncertainty, risky to invest
 - Large integrated firms better able to manage risk
- Policies/management which stabilize production?

Thanks!

scheld@vims.edu

