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ABSTRACT  

Little is known about the strategies end-user programmers 

use in debugging their programs, and even less is known 

about gender differences that may exist in these strategies. 

Without this type of information, end-user programming 

systems cannot know the ―target‖ at which to aim, if they 

are to support male and female end-user programmers’ 

debugging.  In this paper, we present a study investigating 

this issue. We asked a group of end-user programmers to 

debug spreadsheets and to describe the strategies they 
used to carry out this task.  Using quantitative and qualita-

tive methods, we analyzed the strategies reported, consi-

dered whether the strategies could be confirmed by obser-

vations of participants’ behaviors, and looked for relation-

ships among participants’ strategy choices, gender, and 

debugging success. Our results indicate that males and 

females debug in quite different ways, that there are con-

siderable opportunities for improving support for end-user 

debugging strategies for both genders, and that the types 

of features commonly found to aid debugging may be 

especially deficient in supporting strategies the females 
prefer to use in debugging.  
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INTRODUCTION   

Are there gender differences in the ways male and female 

end-user programmers go about their problem-solving?  

Since we first posed this question three years ago [3], we 

have been working to understand gender differences that 

arise in a particularly problem-solving intensive form of 

work, namely end-user programming.  We have discov-

ered gender differences in willingness to approach and to 

eventually adopt new features [4], differences in attitudes 

toward software features [6], and differences in playful 
tinkering with features [5]. Other results of gender differ-

ences in software-based tasks are also beginning to 

emerge in the literature [7, 9, 14, 23, 28]. 

However, the gender differences reported so far do not 

consider the question of strategy. Strategy refers to a rea-

soned plan or method for achieving a specific goal. If 

there are differences in the strategies male and female 

end-user programmers would like to follow in their soft-

ware-based problem solving, and if their preferred prob-

lem-solving strategies are not well supported by the end-

user programming environments available to them, this 
could lead to loss of productivity by the gender affected. 

Without taking relevant gender differences into account in 

the design of environments used by end-user program-

mers, obstacles can be introduced into the software that 

could impact the success of half the population the soft-

ware is intended to support. 

This paper reports the results of an experiment we con-

ducted to investigate the strategies used by male and fe-

male end-user programmers in the course of debugging 

spreadsheets.  We designed the experiment to capture data 

suitable for quantitative analysis, and to some extent, qua-

litative analysis as well. We collected participants’ own 
reports of their strategies, and analyzed our data to obtain 

corroborating evidence through observed behavior pat-

terns that might substantiate the participants’ self-reported 

patterns.  Most important, we compared the strategies 

used by males and females and evaluated the relationship 

of these strategy choices to males’ and females’ debug-

ging success.  Thus, our overall research question was: 
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Are there gender differences in the strategies used by 
male and female end-user programmers for debugging 

their spreadsheets? 

BACKGROUND AND RELATED WORK  

Although there are no previous reports of research into 

gender differences in debugging strategies, there have 

been many reports of strategy differences in other do-

mains, such as psychology and education (e.g., [12]). 

However, these differences have not been investigated in 

the realm of programming environments, which provide 

specialized tools that guide, support, and potentially in-

fluence strategy. 

There has, however, been significant research into novice 

and expert programmers in various programming-related 

tasks. Novice programmers are related to end-user pro-
grammers, but not quite the same. We use the term ―no-

vice programmers‖ to describe people who aspire to be-

come professional programmers, but are just beginning 

their training. We contrast this with end-user program-

mers, who do not usually aspire to become professional 

programmers. 

Research shows that novice and expert problem solvers 

approach problems using different strategies. Novices 

typically approach a problem using a depth-first approach, 

pursuing the solution of a single sub-problem to its end, 

then sequentially move on to solve the next sub-problem 

[11]. Expert problem solvers use a breadth-first approach, 
iteratively developing solutions to sub-problems while 

keeping the solutions of the sub-problems at the same 

level of detail [11]. The advantage of the breadth-first 

approach is that the problem solver gains of a wider view 

of the evolving solution. Novice problem solvers reduce 

their cognitive load by isolating sub-problems, although at 

the disadvantage of possibly discovering crucial interac-

tions late in the solution. It is reasonable to expect that 

end-user programmers might adopt strategies similar to 

novice programmers’. 

The strategy differences discussed above are also reflect-
ed in the area of program debugging. Success in debug-

ging is strongly related to program comprehension. Un-

like novices, expert programmers attempt to gain a high-

level of understanding of the program before they begin 

to debug [15, 19, 25]. They also use a different strategy to 

read a program than do novices [15, 19]. In the imperative 

programming paradigm, experts read a program in the 

order in which it is executed, which provides a hierarchic-

al understanding of the program at many levels. Novices, 

by contrast, read the program sequentially like reading a 

book, leading to a less coherent understanding of parts of 

a program and their possible relevancy to the bugs.   

Some of our own previous work provides preliminary 

information on strategies adopted by end users in debug-

ging of spreadsheets. In a study of fault localization [22], 

users adopted two kinds of strategies when they noticed 

an incorrect value in the spreadsheet. The ad hoc strategy 
consisted of examining cell formulas randomly. The da-

taflow strategy consisted of following the dependencies 

back from the cell with the incorrect value through cell 

references until they found the fault. The results showed 

that the dataflow strategy was more successful than the ad 

hoc strategy overall, and this was particularly true in a 

group that received visual fault localization feedback.  

None of the above studies has investigated differences in 

strategy between males and females. However, in other 

preliminary work we used data mining on transcripts of 

male and female participants in a previous study of end-

user spreadsheet debugging to identify patterns of feature 
usage by males and females [13]. Interesting insights 

emerged from the data mining. First, we discovered that 

patterns of feature usage by males successful in debug-

ging were similar to female who were not successful in 

debugging, suggesting that male and females’ optimum 

strategies may be different. Second, unsuccessful males 

used a much higher number of patterns involving the da-

taflow arrows feature than successful males, suggesting 

that unsuccessful males may have relied entirely on ar-

rows in their testing decisions, while ignoring the current 

state of program execution.  

In summary, the above literature points out ways that 

strategies lead to success in programming problems. This 

paper extends this work by investigating some of the 

strategies discussed above, as well as other end-user de-

bugging strategies, with the addition of gender as a factor.  

EXPERIMENT  

Participants and Procedures  

There were 61 participants: 37 females and 24 males. The 

participants were undergraduates from a variety of ma-

jors. They had prior experience using spreadsheets, but 

very limited programming experience. A pre-experiment 

questionnaire, based on Compeau and Higgins’ validated 

scale [10] contained 10 self-efficacy questions specific to 

end-user debugging tasks.  

A 25-minute hands-on tutorial was presented to familiar-

ize participants with the spreadsheet features. Subsequent-

ly, participants carried out two experimental tasks. Partic-

ipants’ actions and the system’s feedback were captured 

in electronic transcripts, along with their final spread-

sheets.  

A final post-session questionnaire included questions as-

sessing participants’ comprehension of and attitudes to-
ward the features they had used. The post-session ques-

tionnaire also contained an open-ended question that 

asked the participants what they perceived their own 

strategies to be for finding and fixing errors. 

Environment and Software Features  

The environment used in the study is a research spread-

sheet environment that includes explicit support for test-
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ing and debugging by end-user programmers in the form 

of WYSIWYT (―What You See Is What You Test‖). 

WYSIWYT is a collection of testing and debugging fea-

tures for end-user programmers [8]. We chose to use our 

research spreadsheet system because its extensive set of 

debugging features provides participants more choice of 

testing and debugging features than Excel. Our environ-

ment also included a logging capability, which provided 
the ability to collect the extensive activity data necessary 

for analysis of activity patterns that relate to different 

strategies. The spreadsheets had an Excel-like appearance, 

since participants were familiar with Excel.    

With WYSIWYT, at any time, the user might notice that 

some cell’s value is correct, at which point he or she can 

check it off. Borders of untested cells are red (light gray 

in this paper), partially tested cells are a shade of purple 

(intermediate shades of gray), and fully tested cells are 

blue (black). The optional dataflow arrows (seen in Figure 

1) are also colored to reflect testedness of specific rela-
tionships between cells and sub-expressions. For example, 

if a user checks off the MinQ2Q3 cell in Figure 1, the 

system updates all affected cell border colors that fed into 

the answer of MinQ2Q3, the color of any visible dataflow 

arrows, and a ―tested %‖ progress bar at the top of the 

spreadsheet (not shown), all reflecting the new testedness.  

Instead of noticing that a value is correct, the user might 

notice that it is wrong, and can ―X it out‖ (cell 

Course_Avg in Figure 1) instead of checking it off. Be-

hind the scenes, X-marks trigger fault likelihood calcula-

tions, which cause cells suspected of containing faults to 

be highlighted in shades along a yellow-orange conti-

nuum (shades of gray in this paper), with darker orange 

shades given to cells with increased fault likelihood [8]. 

In addition, the arrow tabs in the bottom of each cell are 

used to open the cell’s formula. Once a formula is made 

visible (as in the lower right of Figure 1), it stays visible 

until the user comes back to close it. This device allowed 

participants to have multiple formulas open simultaneous-

ly, increasing the viability of debugging strategies based 

on code inspection, if a participant was so inclined. These 

and all features in the environment were supported with 

tooltips (top center of Figure 1). 

Tutorial  

To avoid suggesting strategies to our participants, the 

tutorial was taught simply as a ―tour of features.‖ The 

tutorial covered features available in the spreadsheet envi-
ronment, without any problem-solving scenario that might 

suggest how to build a strategy using the feature.  

The tutorial covered six features: Tool tips, Checkmarks, 

X-Marks, Arrows, Formula Edits, and Help Me Test. Par-

 

Figure 1. The Gradebook spreadsheet used in our experiment. The user notices an incorrect value in Course_Avg—the value is 

obviously too high—and places an X-mark in the cell. As a result of this X and the checkmark in MinMdtrm1Mdtrm2, eight cells 

are highlighted as being possible sources of the incorrect value, with some deemed more likely than others.  
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ticipants also received a one-page quick-reference style 
handout with all the features, to help them stay oriented in 

the tutorial and to refer to later in the experiment. In the 

tutorial, the participants got explanations of the features 

and hands-on practice. At the end of the tutorial, they 

were given time to further explore the features by work-

ing on a practice spreadsheet debugging task. 

Tasks 

Participants tested two spreadsheets, Gradebook (Figure 

1) and Payroll. Other than the layout, the spreadsheets 

were and the seeded faults were the same as those of [4], 

with a few adjustments to accommodate the changes in 

layout.  The spreadsheets were derived from real end-user 

spreadsheets written in Excel, and were seeded with faults 
we harvested from end users. There were a total of 11 

faults representative of the fault categories in Panko’s 

classification system [21], six in Gradebook and five in 

Payroll. The layouts were done in an Excel-like manner. 

We designed the layout so as to avoid potential confounds 

among different sequences participants might follow. For 

example, Western reading order was distinguishable from 

description order, various dataflow orders were distin-

guishable, and so on. 

The participants were given the spreadsheet, a hardcopy 

description of the spreadsheet (Figure 2), and two hardco-

py examples of the spreadsheet with correct values. The 
time limits for the debugging tasks were 22 minutes for 

Gradebook and 35 minutes for Payroll. The time con-
straints were meant to simulate time constraints frequent-

ly encountered in real world computing tasks and to pre-

vent experimental confounds, such as participants spend-

ing too much time on the first task or not enough time on 

the second task, participants leaving early, etc. The tasks 

were counterbalanced. Also, the order in which the hard-

copy handouts were collated for the participants was ran-

dom across tasks, in order to avoid any systematic influ-

ences on participants’ strategy choices. The participants 

were told that a spreadsheet had been updated and that, 

―Your task is to test the updated spreadsheet and if you 

find any errors, fix them.‖ 

RESULTS  

We begin with the end: who had the most success debug-
ging? We used an edit to a faulty formula as a surrogate 

for bugs found (even if the edit was not correct), and we 

used changing the formula correctly as our measure of 

bugs fixed. As Table 1 shows, the males outperformed the 

females. Males tended to have more success than females 

in finding bugs  (F[1,59]=3.39, p<.071) and were signifi-

cantly more successful in carrying forward those ―finds‖ 

to actually fixing the bugs (F[1,59]=12.20, p<.001).  

This result corroborates those of another study in which 

male end-user programmers significantly outperformed 

the females in some aspect of debugging [4].  To investi-
gate how this result may have related to strategy choices, 

we first turn to the participants themselves to understand 

the debugging strategies they were pursuing.   

For the purposes of investigating strategies and how well 

they appeared to be working for our participants, we cate-

gorized the participants as ―successful‖ or ―unsuccessful‖, 

depending on whether they fixed the median number of 

bugs (5.5).  In this manner, we can compare strategies 

used by successful females with those of the successful 

males.   Of the 37 female participants, 14 were catego-

rized as successful and 23 as unsuccessful, and of the 
males, 16 were successful and 8 were not.  

What strategy did participants say they were using?  

The concept of strategy includes the notion of mental 

planning with intent.  Since it is not possible to observe 

mental planning and intent directly, we first collected 

what participants said their strategies were (on the post-

session questionnaires), and second for indications in their 

observable actions that might provide evidence bearing 

   

Midterms 

There are 

three 
midterms, one 
for each 
textbook 
chapter. 
The first 

midterm has 
50 possible 
points; 
however, it 
must be 
adjusted to a 

―0-100‖ 
percentage 
scale.  The 
third midterm 
score is 
curved; 

students 
receive a two-
point bonus if 
their score is 
not zero.   
 

Quizzes   
There are five 
quizzes in all, 
with scores 
out of a 100 
points 

possible. 

DESCRIPTION FOR GRADEBOOK SPREADSHEET PROBLEM 

A teacher has updated a spreadsheet program that computes the course grade for his students. So far, he has only 
entered formulas for Sally. Once he is sure that those formulas are correct, he will also complete the rows for his 

other students.  
Your task is to help him by testing the updated spreadsheet and if you find any errors, fix them. 

Unit 

Averages 

For each 
textbook 
chapter (eg: 
Organisms 
and Cells), 
the scores 

(out of 100) 
of the quizzes 
and midterms 
are combined 
to get a score. 
Midterms are 

weighted to 
give them 
twice as much 
value as the 
quizzes. 

Final Exam 

There are 146 

possible points.  
It must be 
adjusted to a 
―0-100‖ 
percentage 

scale. 

Quiz Avg  

The average 
of the highest 
four quiz 
scores after 
the lower of  

quiz 2 and 
quiz 3 scores 
is dropped. 
 

Midterm 

Avg 

The lower of 
the first two 
midterm 
percentages is 
dropped.  The 
average 

midterm score 
is then the 
average of the 
third midterm 
and the higher 
of the first 

two midterm 
scores. 
 
Exam Avg 
The average 
of the 

midterm 
average and 
the final exam 
score. 
 

Course Totals 
Quizzes are worth 40% of a student’s grade. Midterms 
are worth 40% of a student’s grade. The final 
contributes 20%. A student’s course grade is 

determined by their course average, in accordance with 
the following scale:    
            90 and up: A 
           80 - 89     : B 
           70 – 79    : C 
            60 - 69     : D 

           Below 60 : F 

 

 
Course Totals 
Quizzes are worth 40% of a student’s grade. Midterms are 

worth 40% of a student’s grade. The final contributes 20%. A 

student’s course grade is determined by their course average, 

in accordance with the following scale:    

              90 and up: A 
           80 - 89     : B 

           70 – 79    : C 

            60 - 69     : D 

           Below 60 : F 

  
Figure 2: The description handout added call-outs explaining 

groups of cells on the spreadsheet.  (Miniaturized for space 

reasons, with one of the callouts blown up for readability.) 

Category Bugs 

Found 

Bugs 

Fixed 

Males (n=24) 8.45 

(2.19) 

6.71 

(2.46) 

Females 

(n=37) 

7.14 

(2.92) 

4.25 

(2.83) 

Table 1. Mean (SD) number of bugs found/fixed. 
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out their reported strategies. 

We derived an initial set of codes from the participants’ 

responses. The codes focused on mentions of strategy per 

se, and on mentions of particular artifacts as being impor-

tant to their strategy. Two coders independently coded 

subsets of the participants’ responses and compared them, 

developing the codes further and iterating until an accept-

able level of agreement was achieved. At the point the 

agreement rate achieved 84%, demonstrating a reasonably 

robust set of codes, a single coder coded all remaining 

responses.  

The strategies fell into five major categories (Table 2), 
with an three additional fine-grained strategic concepts.   

Testing.  Many participants described their strategy in 

terms of testing, or said that a testing-oriented artifact 

(feature or example values handout) was important to 

their strategy.  

Code Inspection. Testing and Code Inspection are com-

plementary techniques, and our end-user participants 

used both of them. Code inspection was defined for 

our purposes as looking at formulas to judge them. 

Specifications. Related to code inspection is the idea of 

specifications. Some of our participants reported 
guiding their efforts by the specifications,  (provided 

by the description handouts in our study).    

Dataflow group. Describing any sequence related to da-

taflow was classified as dataflow, as well as those 

who said they used arrows to guide them, since ar-

rows are dataflow-based. This was a popular category 

among the successful males 

Spatial. A third sequence was spatial, following the layout 

of the spreadsheet, such as in Western reading order. 

Interestingly the successful males and unsuccessful 

females were the ones reporting this strategy. 

In addition, three lower-level descriptions of strategies 

were identified: Those who described a ―things to do‖ 

oriented strategy to guide their efforts (5 participants) and 
those who described working in a very incremental fa-

shion (3 participants).  Since the number of responses was 

small, we will not discuss these lower-level strategies 

further. 

The raw numbers and percentages of the maximum scores 

give slightly different views of the data, but both emphas-

ize successful males’ reliance on dataflow. This is in di-

rect contrast to the successful females, none of whom 

mentioned any dataflow strategy or artifact at all in a 

positive manner. As we will discuss later, the successful 

males’ strategies differed significantly from the successful 
females’ strategies in other ways as well. 

Strategies and observable behavior patterns: Exam-
ples  

If participants used the strategies they indicated, there 

should be some indication in their data through their be-
havior patterns.  For example, a participant who said their 

strategy was testing might have achieved high ―tested-

ness‖ scores in the environment, might have used check-

marks and/or X-marks reasonably often, or, even if he or 

she did not rely much on the environment’s testing fea-

tures, might have edited cell values reasonably often to try 

out different test cases.   

In this section, we report qualitatively observations of 

several interesting participant behavior patterns, to dem-

onstrate concretely how they can contribute credibility to 

the participants’ stated strategies.   

We made the observations by re-playing their log files 

through the system, which allowed us to relive their work 

multiple times, observing every action they made and 

seeing the same results and feedback as they saw. As our 

way of observing their progression through cells, we de-

fined a ―visit‖ to a cell as any physical touch by the user 

to a cell, such as checking off its value, opening its for-

mula, and so on.  

First, consider the strategy of following the description.  

A female participant described her strategy as  ―going for 
the information given on the handouts and making sure 

each formula fit that description, looking at the resulting 

numbers and making sure they all made sense, if not I'd 

go back to the formulas…‖  

She behaved in a way that clearly demonstrated her adhe-

rence to this strategy. For example, in the Gradebook 

problem, she began by visiting the cells described by the 

first call-out in the printed description (recall Figure 2), as 

per Western reading order of the description, left to right 

and top to bottom.  After several minutes of visiting cells 

in this area, she then moved to the two cells that calculate 
the ―Final Exam‖ score, which are explained together on 

the description’s second call-out.  About 8 minutes into 

the task, she moved to the cells described by the third 

call-out of the description, namely the midterm exams 

 

 Testing 

(9) 

Code 

Inspec-

tion 
(3) 

Specifica-

tion  

Follower 
(2) 

Data–

flow 

(4) 

Spatial 

(1) 

SM 

(n=16) 

2.06 

(23%) 

1 

(33%) 

1 

(50%) 

2 

(50%) 

0.06 

(6%) 

SF 
(n=14) 

2.36 
(26%) 

1.29 
(43%) 

1.57 
(79%) 

0 
(0%) 

0.07 
(7%) 

UM 
(n=8) 

2.5 
(28%) 

1.13 
(38%) 

0.75 
(38%) 

0 
(0%) 

0 
(0%) 

UF 

(n=23) 

1.91 

(21%) 

0.83 

(28%) 

1 

(50%) 

1.5 

(38%) 

0.09 

(9%) 

Table 2.  The headings show code categories and their maxi-

mum score.  Scores count the number of concepts or artifacts 

mentioned related to that category. The cells show the mean 

score and percentage of the maximum score for successful 

males/females and unsuccessful males/females. 
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call-out. This call-out describes cells that come after the 
next ones in Western reading order in the spreadsheet 

itself, which shows adherence to the description’s order 

rather than to the order of the spatial layout of the spread-

sheet.  Five minutes later she moved on to the section of 

the spreadsheet described by the next call-out in the de-

scription, the ―Test Averages‖ section.  Her first visit was 

to the middle cell in that group, ―Quiz Average‖—which 

is the first cell mentioned in the description’s call-out.   

There are six call-outs in the description, and she ulti-

mately visited cells in five out of those six in the order 

listed on the description. Thus, her reported strategy was 
clearly demonstrated by her behavior patterns for the 

spreadsheet.  

Many of the males described strategies relating to dataf-

low. For example, successful male wrote about being 

guided by the flow of data/information: ―[I started] with 

the handouts to determine what the spreadsheet is used for 

and how it's supposed to work. Starting in the upper-left 

region of the spreadsheet try to follow the flow of infor-

mation to eventually determine if the spreadsheet is func-

tioning correctly.‖  In a way highly consistent with this 

self-described strategy, his actions showed initial explora-
tion, followed by focuses on cells as grouped by dataflow 

chains. 

For example, in Payroll, he began with a combination of 

ad hoc code inspection and testing, looking at a few cell’s 

formulas and putting in several of the example handout’s 

values. About 5 minutes into the task he turned on dataf-

low arrows, and immediately followed one of the arrows 

back (dataflow upstream).  He frequently used arrows, 

and each time he followed them along the dataflow path, 

generally finding out what cells affected the cell he was 

interested in, moving ―upstream‖ to those cells.  He used 
arrows a total of 8 times in Payroll.  He tended to stay 

within the flow of one dataflow chain at a time.  When he 

left a dataflow chain, he reliably would then switch his 

focus to the new dataflow chain, one chain at a time. 

As his self-described strategy mentioned, he ―follow[ed] 

the flow of information,‖ which was clearly evident in his 

use of arrows to guide him on this strategy. In contrast to 

the female, after some early exploration, this male let the 

dataflow guide his movement around the spreadsheet, 

rather than the description.     

The evidence from these three particular participants’ logs 
of their behavior matches closely with their self-reported 

strategies. From this jumping off point as insight into the 

strategies they reported following, we follow up on spe-

cific strategies with statistical evidence supporting these. 

Statistical signs of strategy differences 

The results thus far suggest gender differences in strate-

gies that participants talk about and, based on qualitative 

investigation of logs, their descriptions of strategies are 

observable in their behavior.  The next step in understand-

ing the gender differences in strategies and behavior is to 

look for these differences quantitatively in the logs.   

Specifically, we looked for evidence of dataflow beha-

viors by the males compared to the females, and looked 

for code inspection by the females compared to the males.   

Dataflow: males’ vs. females’  behaviors  

In the dataflow strategy individuals debug by considering 
cells that are related through cell references. These related 

cells form a dataflow chain, where the beginning of the 

chain is an input cell (e.g., a value such as Sally’s Quiz 2 

in Figure 1) and the end of the chain is a desired output 

(e.g., Sally’s course grade in Figure 1). The cells between 

the input and output are related because ―upstream‖ cells 

are referenced in the formulas of cells farther down the 

chain. 

There are two kinds of dataflow strategies, depth-first and 

breadth-first. In the depth-first approach the individual 

debugging a spreadsheet stays in the same chain, i.e., vi-

siting cells that are all related to each other through cell 
references. The individual may visit a cell in any order 

and as many times as desired as long as they stay in the 

same chain. By contrast, in the breadth-first approach the 

individual stays at the same level of dataflow, visiting 

cells from different chains that are at that same level as 

often as they want, before moving on to the next level.  

Several of the features available in the environment sup-

port depth-first dataflow traversal through the spread-

sheet. Arrows, for example, are one of these features; they 

provide feedback about the relationships of cells further 

along the dataflow chain. When the user turns on the ar-
rows for a given cell he or she immediately sees which 

cells are related through cell references. In a similar man-

ner, X-marks provide feedback on cells earlier in the da-

taflow chain. When the user places an X-mark, the cell 

interiors of upstream cells in the dataflow chain are co-

lored to show the likelihood of bugs in these related cells. 

Both features may guide users into depth first dataflow 

within their testing and debugging process.  

To investigate whether participants followed a depth first 

dataflow we assigned each participant a depth first score, 

representing how often they moved between cells in a 

 

 

Figure 3: Total bugs fixed predicted by frequency of dataf-

low, between  genders. Darker color-male, lighter-female 
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dataflow chain. When a participant moved from one cell 
to another in the dataflow chain they received a point. 

These points accumulated until they exited that dataflow 

chain.  We also considered a count of the instances a par-

ticipant entered into a depth first chain.     

During the first task the males followed depth first dataf-

low significantly more than the females, as measured both 

through the average chain length of the depth first dataf-

low (males: 3.27(0.73) females: 2.89(0.67); ANOVA: 

F(1,59)=4.56, p<0.037), and more often entered into a 

depth-first search strategy (males: 84.29(71.82), females: 

64.27(40.92); ANOVA F(1,59)=4.39, p<0.04).  

For the males, their use of the depth first search strategy 

(measured through depth first dataflow score, which com-

bined their average chain length with the maximum chain 

length) is statistically tied to their arrow usage over both 

experimental tasks (linear regression: F(1,22)=20.68, 

p<0.0002, 0.077 R =0.48).  For the females, however, 
their arrow usages is not related to their usage of the 

depth first search strategy (linear regression: 

F(1,35)=3.74, p<0.59, 0.024 R =0.008). In other 
words, arrows helped to guide the males into a depth first 

search strategy, but when the females used arrows there 

was no relationship to their overall depth first search 

strategy.   

Furthermore, males’ use of depth first dataflow was sig-
nificantly predictive of task success. The number of in-

stances depth first dataflow predicted how many bugs 

they eventually fixed (linear regression: F(1,22)=2.28, 

p<0.04, 0.0085 R =0.18).  For females the same rela-
tionship does not hold, in fact the relationship suggests a 

slightly negative effect on bugs fixed when using a depth 

first search dataflow strategy (linear regression: 

F(1,35)=2.82, p<0.27, 0.006 R =0.035). Both of 
these regression relationships are pictured in Figure 3. 

In fact, this corroborates the successful males’ discussion 

of strategies, they had significantly higher discussion of 

strategies related to dataflow than everyone else (success-

ful males 0.25 (.82), successful females 0 (0), unsuccess-

ful males 0 (0), and unsuccessful females 0.043 (.84); 
ANOVA F[3,57]=3.04 p<.036). 

Code inspection: males’ vs. females’ behaviors 

Do females do more code inspection?  We  have men-

tioned in our code analysis that females consider their 

strategies to include code inspection more often than the 

males.  However, directly measuring code inspection is 

difficult; in the process of looking for errors one must 

look at formulas (inspect the code).  We opted to look for 

indications of ―non-code inspection,‖ investigating how 

often input cells were edited.  Editing input cells offers an 

indication of checking specific different test cases for 

formulas. We suspected that participants engaged more 

with code inspection would do less testing with different 

input values, and those deciding to test their formulas 
with multiple values (recall the males did significantly 

more overall testing of their spreadsheets) were not rely-

ing solely on code inspection.  Males edited input cells 

significantly more often than the females (F[1,59]=7.61, 

p<0.0077; Males: 48.7 (27.93); Females: 31.6(13.62))  

What worked for males, what worked for females?  

In this section we present a mixture of qualitative and 

quantitative evidence about the strategies that led to suc-

cess and failure by males and females. 

The selectivity hypothesis [18] proposes that the genders 

differ in their strategies for information processing. It 

predicts that males’ information processing is characte-

rized by striving for efficiency. Therefore, males have a 
propensity to use simple heuristics in information 

processing (e.g., single cues that are readily available) in 

order to reduce cognitive load. They deviate from the 

heuristic strategy only if they are forced to do more ela-

borative processing because of the needs of a complex 

task. This kind of simplifying processing strategy has also 

been called an ―as-needed‖ strategy [17] because the user 

avoids broad comprehension by only processing informa-

tion as needed for the situation at hand. By contrast to 

males, females tend to maximize the comprehensiveness 

of their information processing, looking for multiple, sub-

tle cues, paying attention to detail, and making elaborative 
inferences. The hypothesis predicts that females are likely 

to employ detailed, elaborative information processing 

strategies in both simple and complex decision tasks.  

Empirical research by O’Donnell and Johnson [20] sup-

ports the selectivity hypothesis. Their study, based on 

simple and complex auditing tasks, found that there were 

interactions between the task complexity and gender.  In 

particular, for the simple task females took longer and 

processed more cues than the males did (since the males 

used a heuristic approach).  However, on the more com-

plex, analytical task the males adopted comprehensive 
processing similar to that of the females on the simple 

task.  

To understand the success of males’ strategies we com-

pared the unsuccessful males to the successful males. Our 

question was whether the unsuccessful males used heuris-

tic, as-needed strategies while the successful males used 

comprehensive strategies. From different sources of in-

formation it appears that the answer is yes. 

First, in the Gradebook spreadsheet, successful males did 

more visits to cells (i.e., using checkmarks, X-marks, ar-

rows, formula edits, and posting formulas) than unsuc-
cessful males, although the differences were not often 

significant.  An example of low visits by unsuccessful 

males is cell L9, which was visited significantly less often 

by unsuccessful males than the successful males (this cell 
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is interesting b/c it falls right after a cell "similar" to it in 
what it need to calculate - but has a different kind of bug).  

Second, in the Gradebook spreadsheet unsuccessful males 

spend their time editing non-buggy formulas significantly 

more than did successful males (successful males’ mean 

3.38 (2.4); unsuccessful males’ mean 5.88 (2.1), ANOVA 

F[1,22]=6.40 p<.02). Successful males, on the other hand, 

spent their time editing buggy formulas significantly more 

than did unsuccessful males (successful males’ mean 8.5 

(4.0); unsuccessful males’ mean 4.0 (2.2), ANOVA 

F[1,22]=8.55 p<.008).  Although all the males appeared 

to be trying to use a dataflow strategy, the layout of the 
Gradebook was such that users would not get to the buggy 

cells before encountering many other cells. It appears that 

the unsuccessful males began to edit cells prematurely 

without having a grasp of the whole spreadsheet. This is 

consistent with the heuristic, as-needed strategy. The suc-

cessful males’ strategy was comprehensive processing. 

In the payroll spreadsheet it was observed that the suc-

cessful males visited two cells significantly more often 

than the unsuccessful males, cells G13 and H13 (Cell 

G13: successful males’ mean 8.56 (5.32), unsuccessful 

males’ mean 3.25 (2.05), ANOVA F[1,22]=7.30, p<.013; 
  Cell H13:  successful males’ mean 13.56 (10.98), unsuc-

cessful males’ mean 4.13 (2.4),  ANOVA F[1,22]=5.65 

p<.027). Cells G13 and H13 should impact a cell down 

the dataflow chain, but that cell’s formula had a bug, 

which confused G13 with another cell with a similar 

name. It is not obvious to spot the bug unless one under-

stands what the two cells H13 and G13 are supposed to be 

doing in the spreadsheet.  Once again, the unsuccessful 

males’ failure to process the cells and relationships com-

prehensively inhibited their ability to recognize a bug. 

Overall in the Payroll spreadsheet, there were few signifi-
cant differences in visiting cells by the successful males 

and the unsuccessful males. This could suggest that for 

Payroll, a more complex spreadsheet than Gradebook, all 

males realized that they needed to make the effort of 

comprehensive processing to actually make progress on 

the task.   

While the males differed in their visits to cells, indicating 

comprehensive processing, the females, and what contri-

buted to their success was a more subtle.  

Unlike the males, statistical evidence for visiting cells, 

and other types of measures vary little between the suc-
cessful and unsuccessful females.  For this reason we 

turned back to their self-reported strategies, where we did 

discover differences.  For example, successful females 

discussed strategies related to code inspection grouping 

nearly significantly more often than the unsuccessful fe-

males (successful females: 1.3, unsuccessful females: .83; 

ANOVA F[1,35]=3.98, p<.054).  While the unsuccessful 

females discussed strategies relating to border colors 

more often (successful females: 0, unsuccessful females: 

0.22; ANOVA: F[1,35]=3.7, p<.063).   

How do these self-reported differences in strategies play 
out in their behaviors?  In order to investigate this we 

have to consider how this focus on testing might play out 

in actual behaviors.  Testing is about trying out different 

values.  However, the successful females did not try out 

more values according to the raw counts of number of 

value edited (successful females: 59.4; unsuccessful fe-

males 66.3; ANOVA F[1,35] = 0.37 p<.55).   

Put into perspective with the unsuccessful females’ re-

ported strategies, this is not surprising.  The unsuccessful 

females are also driven to change input values, although 

for a different purpose, by the border colors, rather than 
for the purpose of checking different values.  In other 

words, input values must be changed in order for border 

color to change; a cell’s purple border (indicating a par-

tially tested cell) will not turn blue without changing input 

value. The unsuccessful females change input cells to get 

their cells blue, successful females change input formulas 

to ―test‖ their formulas.  

Since their different intentions play out similarly in the 

logs of their actions, this indicates missing features within 

our own environment.  If these two different strategies the 

females suggest wanting to employ were supported within 
the environment (for example, with greater support for 

code inspection), then we could expect to see differences 

in the behaviors.  However, the females had to make do 

with the features provided in the environment in attempt-

ing to achieve their goals.  They adapted their own beha-

viors to the features available within the environment.  

Therefore, despite two different overall strategies, the 

differences in behavior are nearly indistinguishable.     

DISCUSSION  

A recurring theme in our results was that females’ strate-

gies and behaviors were mismatched with the features 

provided within the environment. Bu contrast, the males’ 

preference for depth-first dataflow strategies were well 

supported, and tied to their success. The females adopted 
(or attempted to adopt) several strategies unsupported by 

the features, at times perhaps leading to unsuccessful de-

bugging. 

In past research [4] we found gender differences in self-

efficacy1, and its relation to acceptance of new and unfa-

miliar features (in particular the X-marks).  Females were 

less willing to try out a feature they had not been explicit-

ly taught, and stated that they believed it would take them 

too long to learn, but in fact their actual understanding did 

not differ from the males’ [4]. Based on our results from 

this study we provide a new interpretation of that result: 
perhaps the females’ perception of learning cost was in-

fluenced not by the time to learn, but by attempting to 

                                                        

1 Consistent with [Beckwith et al. 2005], in the this study 

males had significantly higher incoming self-efficacy.    



Technical Report CS07-60-01 Oregon State University February 26, 2007 
 

integrate the X-mark feature effectively into their prob-
lem-solving strategy.   

Programming tools designed for end-user programmers 

engaged in debugging do not support the type of problem-

solving the females in our study attempted to do, but do 

provide support for the males’ preferred problem-solving 

styles of depth-first dataflow.  For example, Excel pro-

vides dataflow arrows, and an ―evaluate formula‖ feature, 

both providing depth-first dataflow information. This is 

also true of the features provided in other end-user pro-

gramming environments, including the ―Why Line‖ [16], 

UCheck [2], and others [1, 26]. 

From these insights we propose several suggestions to the 
designers of end-user programming environments at-

tempting to support end-user debugging. First, since 

males’ strategies were supported by the existing types of 

dataflow (depth-first) features, these features should con-

tinue to be well supported in the future. Second, features 

which encourage comprehensive processing (an observed 

behavior adopted by successful males, and a behavior the 

literature [18] suggests is done regularly by females) will 

provide benefits to both genders. Third, features designed 

to support code inspection will provide greater support to 

females’ preferences for problem-solving strategies.  Fi-
nally, features that support dataflow beyond depth-first, 

such as breadth-first search, will not relegate females to 

using feature mismatched to their problem-solving prefe-

rences.     

CONCLUSION  

This paper has reported on strategies used by end-user 

programmers when debugging.  Our results contained a 

number of surprises, including the following: 

Males and females: There were significant gender differ-

ences in the strategies males and females were using. 

Further, the debugging strategies that worked well for 

the males were not the same ones that worked well 

for the females.  

Dataflow strategies: A long-time emphasis of debugging 
tools for programming environments, and nearly the 

only type of debugging tool for end-user program-

ming environments, has been dataflow depth-first.  

However, our results indicate that while that was a 

useful strategy for the males, females infrequently 

use this strategy.  

Testing and code inspection: Testing was a valued strate-

gy by both genders. However, code inspection (alone 

or in combination with testing) was a strategy pre-

ferred mainly by the successful females.  

Other strategies: In addition, participants reported strate-

gies that are almost entirely unsupported in end-user 
programming environments, including code inspec-

tion, ability to incrementally check against specifica-

tions, comprehensive overviewing, and support for 
things-to-consider. 

These results show that end-user programming environ-

ments have several opportunities for improving their sup-

port for end-user programmers’ debugging strategies.  

They also strongly suggest that, until support for a greater 

variety of debugging strategies is added, female end-user 

programmers especially will face barriers impeding their 

debugging efforts. 

ACKNOWLEDGMENTS 

We are grateful to Carlos Jensen, Mary Beth Rosson, and 

Martin Erwig for feedback and ideas. We also thank the 

participants of our study. This work was supported in part 

by Microsoft Research, by NSF grant CNS-0420533, and 

by the EUSES Consortium via NSF grants ITR-0325273 
and CCR-0324844. We especially thank Saturday Acad-

emy’s Apprenticeships in Science and Engineering Pro-

gram for the support of our interns. 

[1] Abraham, R. and Erwig, M. 
Goal-directed debugging of spreadsheets, Visual Languages 
and Human-Centric Computing,  IEEE  (2005), 37-44. 

[2] Abraham, R. and Erwig, M., 
UCheck: A spreadsheet unit checker for end users, J. Visual 
Languages and Computing, 
(2006, to appear). 

[3] Beckwith, L. and Burnett M. Gender: An important factor in 
end-user programming environments? In Proc. Visual Lan-
guages and Human-Centric Computing, IEEE (2004), 107-
114. 

[4] Beckwith, L. Burnett, M., Wiedenbeck, S., Cook, C., Sorte, 
S., and Hastings, M. Effectiveness of end-user debugging 
software features: Are there gender issues? In Proc. CHI 
2005, ACM Press (2005), 869-878. 

[5] Beckwith, L. Kissinger, C., Burnett, M., Wiedenbeck, S., 
Lawrance, J., Blackwell, A., and Cook, C. Tinkering and 
gender in end-user programmers’ debugging, In Proc. CHI 
2006, ACM Press (2006), 231-240.. 

[6] Beckwith, L. Burnett, M., Wiedenbeck, S., and Grigoreanu, 
V. Gender HCI:  What about the software? Computer (2006), 
to appear October. 

[7] Bruckman, A., Jensen, C., and DeBonte, A. Gender and pro-
gramming achievement in a CSCL Environment, CSCL 
2002, Boulder, CO, January 2002. 

[8] Burnett, M., Cook, C. and Rothermel G. End-user software 
engineering. Comm. of the ACM 47, 9 (2004), 53-58. 

[9] Busch, T. Gender differences in self-efficacy and attitudes 

toward computers. Journal of Educational Computing Re-
search 12, (1995), 147-158. 

[10] Compeau, D. and Higgins, C. Computer self-efficacy: De-
velopment of a measure and initial test. MIS Quarterly 19, 2 
(1995), 189-211.  

[11] Cross, N. Expertise in design: An overview. Design Studies 
25, 5 (2004), 427-441.  

[12] Gallagher A., De Lisi R., Holst P., McGillicuddy-De Lisi 

A., Morely M., Cahalan C.  Gender differences in advanced 
mathematical problem solving, Journal of Experimental 
Child Psychology 75, 3 (2000), 165-190. 



Technical Report CS07-60-01 Oregon State University February 26, 2007 
 

[13] Grigoreanu, V., Beckwith, L., Fern, X., Yang, S., Komired-
dy, C., Narayanan, V., Cook, C., and Burnett, M. Gender dif-
ferences in end-user debugging, revistited: What the miners 
found.  In Proc. Visual Languages and Human-Centric Com-
puting, IEEE (2006), 19-26. 

[14] Hartzell, K. How self-efficacy and gender issues affect 
software adoption and use. Comm. of the ACM 46, 9 (2003), 
167-171. 

[15] Jeffries, R. A comparison of the debugging behavior of 
expert and novice programmers. Paper presented at the meet-
ing of the American Educational Research Association, 1982. 

[16] Ko, A.J. and Myers, B.A. Designing the Whyline: A de-
bugging interface for asking questions about program fail-
ures. In Proc. CHI 2004, ACM Press (2004), 151–158. 

[17] Littman, D. C., Pinto, J., Letovsky, S., and Soloway, E. 
Mental models and software maintenance. In E. Soloway and 

S. Iyengar (Eds), Empirical Studies of Programmers. Nor-
wood, NJ, Ablex, 1986, 80-98. 

[18] Meyers-Levy, J. Gender differences in information 
processing: A selectivity interpretation. In P. Cafferata & A. 
Tybout, (Eds) Cognitive and Affective Responses to Advertis-
ing. Lexington, Ma, Lexington Books, 1989. 

[19] Nanja, N. and Cook, C.R. An analysis of the on-line debug-
ging process. In G. M. Olson, S. Sheppard, and E. Soloway 
(Eds.), Empirical Studies of Programmers: Second Work-

shop. Ablex, Norwood, NJ, 1987.  
[20] O’Donnell, E. and Johnson, E. N. The Effects of Auditor 

Gender and Task Complexity on Information Processing Ef-
ficiency. International Journal of Auditing 5 (2001), 91-105. 

[21] Panko, R. What we know about spreadsheet errors. Jour-
nal of End User Computing 10, 2 (1998), 15-21. 

[22] Prabhakararao, S., Cook, C., Ruthruff, J., Creswick, E., 
Main, M., Durham, M., and Burnett, M. Strategies and beha-
viors of end-user programmers with interactive fault localiza-
tion. In Proc. Visual Languages and Human-Centric Compu-
ting, IEEE (2004), 15-22. 

[23] Rode, J., Toye, E., and Blackwell, A. The fuzzy felt ethno-

graphy – understanding the programming patterns of domes-
tic appliances. In Proc. of the 2nd International Conference 
on Appliance Design, (2004), 10-22. 

[24] Ruthruff, J., Phalgune, A., Beckwith, L., Burnett, M. and 
Cook, C. Rewarding ‘good’ behavior: End-user debugging 
and rewards. In Proc. Visual Languages and Human-Centric 
Computing, IEEE (2004), 115-122. 

[25] Vessey, I. Expertise in debugging computer programs: A 

process analysis. International Journal of Man-Machine Stu-
dies 23 (1985), 459-494. 

[26] Wagner, E.J. and Lieberman, H. Supporting user hypothes-
es in problem diagnosis on the web and elsewhere. In Proc. 
of the International Conference on Intelligent User Interfac-
es, ACM Press (2004), 30–37. 

[27] Whitworth, J.E., Price, B.A. and Randall, C.H. Factors 
that affect college of business student opinion of teaching and 
learning. Journal of Education for Business 77, 5 (2002), 

282-289. 
[28] Zeldin, A. and Pajares. F. Against the odds: Self-efficacy 

beliefs of women in mathematical, scientific, and technologi-
cal careers. American Educational Research Journal 37 
(2000), 215-246. 

 


