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Abstract 12 

Since nucleic acids were first extracted directly from the environment and 13 

sequenced, metagenomics has grown to one of the most data-rich and pervasive 14 

techniques for understanding the taxonomic and functional diversity of microbial 15 

communities. In the last decade, cheaper sequencing has democratized the 16 

application of metagenomics and generated billions of reads, revealing 17 

staggering microbial diversity and functional complexity. However, cheaper 18 

sequencing has come at the cost of reduced sequence length, resulting in poor 19 

gene annotation and overestimates of bacterial richness and abundance. Recent 20 

improvements in sequencing technology are beginning to provide reads of 21 

sufficient length for accurate annotation and assembly of whole operons and 22 

beyond, that will once again enable experimental testing of gene function and re-23 

capture the early successes of metagenomic investigations. 24 

 25 

Diversity in sharp focus 26 

The revelation of the ‘Great Plate-Count Anomaly’ by Staley and Konopka in 27 

1985 [1] highlighted that contemporary understanding of microbial metabolism 28 

was highly skewed towards a small fraction of readily culturable bacteria. To 29 

address this issue, direct extraction and cloning of environmental DNA began to 30 

unravel novel phylogenetic [2,3] and functional [4] diversity. In 1998, the term 31 

‘metagenomics’ was coined [5] and this exciting new field hinted at the scale of 32 



genetic variability within natural microbial populations [6] and associated phage 33 

[7]. In 2000, Béjà et al. [8] cloned 130-kb environmental DNA fragments from 34 

seawater into BAC libraries and found bacteriorhodopsin, a mechanism for ATP 35 

generation from light. This type of photochemistry previously had been know to 36 

occur only in hypersaline ponds; its discovery in the oceans is perhaps one of the 37 

most heralded successes of metagenomics [9]. Four years later, two landmark 38 

studies demonstrated the power of metagenomics to explore environmental 39 

microbiology: Venter et al. exposed the magnitude of microbial diversity in the 40 

surface water of Sargasso Sea, identifying 148 novel phylotypes and 1.2 million 41 

novel genes in a single study [10]; Tyson et al. demonstrated that when diversity 42 

was low, metagenomics could be used to reconstruct genomes of uncultured 43 

bacteria to reveal complete metabolic pathways, providing insight into their 44 

nutritional requirements and biogeochemical functions [11]. Encouraged by the 45 

success of their previous exploration of marine microbial diversity, Venter 46 

expanded their previous study on a global scale. In 2007, the first results of the 47 

Global Ocean Survey (GOS) were published [12], revealing ~390 new species 48 

and  ~6 million predicted protein sequences in ~4000 protein clusters of which 49 

42.6% had no known homology [13]. The unprecedented volumes of data 50 

generated by this project catalyzed the advancement of the bioinformatic 51 

techniques required to assemble, analyze and contextualize novel genes, phyla 52 

and pathways. Subsequent and ongoing voyages ensure that the GOS project 53 

remains to this day the largest metagenomic survey undertaken. 54 

An era of open-access science 55 

Early adopters of metagenomics had the foresight to understand that the 56 

datasets from a single metagenomic investigation were too large for 57 

comprehensive analysis by a single research group and opened up datasets for 58 

public access, often prior to initial publication. This in turn fuelled the 59 

development of third-party tools for data management and analysis (e.g. MG-60 

RAST [14], CAMERA [15], IMG-ER [16]) as well as standards for collection of 61 

metadata to assist in downstream analysis [17]. At the current time (February 62 

2012), MG-RAST currently holds 111 publically available metagenomic projects, 63 



comprising 7,444 datasets, 459 million sequences and 8.4  1010 base pairs. 64 

Public availability of metagenomic datasets has enabled a broad range of 65 

bioinformatic investigations into novel clades, genetic diversity and microbial pan-66 

genomes [18-22]. Fragment recruitment of metagenomic fragments to full 67 

genome sequences from related isolates has highlighted the prevalence of 68 

‘hypervariable regions’ (HVRs) across multiple strains and species, where the 69 

genomic content of the sequenced isolate is not representative of the population 70 

as a whole [12,20,23] (Grote et al., in submission). Comparative metagenomic 71 

studies have shed light on community adaptation to a local environment, 72 

particularly in nutrient cycling (e.g. [24-28]), with new algorithms to deal with the 73 

statistical challenges of large numbers of observations with minimal or no 74 

replication [29-31] (Beszteri et al., in submission.). Whereas the first culture-75 

independent investigations into microbial diversity were performed on 38 16S 76 

rRNA clones [2], amplification of DNA with barcoded primers [32] to allow 77 

sequencing of multiple samples in a single run, coupled with massively reduced 78 

sequencing costs enabled investigators to identify tens of thousands of unique 79 

sequences [33] in a single study, providing an unprecedented insight into 80 

microbial diversity. Large-scale projects such as the Earth Microbiome Project 81 

(http://www.earthmicrobiome.org/) and Tara Oceans Expedition [34] continue to 82 

explore environmental microbial diversity with rich metadata to better model and 83 

understand microbial ecology at the systems level. Similar programs to map the 84 

human microbiome are also ongoing [35,36], making metagenomics one of the 85 

most data-rich, fastest-growing and exhaustively reviewed scientific fields [9]. 86 

 87 

Data rich, information-poor: The cost of metagenomic democratization 88 

Until 2006, metagenomics had required the cloning of environmental DNA into 89 

vectors and their subsequent Sanger sequencing and fragment assembly.  With 90 

costs of Sanger sequencing approaching ~$500 per Mb [37], large scale 91 

metagenomics projects were limited to those with significant financial resources. 92 

Use of replicated experimental samples was extremely limited, preventing 93 

statistically rigorous analysis of biological variation and correlation of taxonomic 94 

http://www.earthmicrobiome.org/


abundance with nutrient metadata [38]. The pairing of metagenomics with an 95 

emergent pyrosequencing technology [39] marked the beginning of a sequencing 96 

revolution. In rapid succession 454 (Roche), Illumina, SOLiD (Life Technologies) 97 

and Pacific Biosciences drove the cost of sequencing down to < $0.10 per Mb 98 

(Fig. 1) (albeit with no similar decrease in the cost of data storage and 99 

computation [40]), democratizing metagenomic analysis, with a concomitant 100 

explosion of studies across a wide range of environments to investigate the 101 

diversity and functional capacity of all domains of life (e.g. Eukarya: [41,42]; 102 

Archaea: [4,43]; Bacteria [21,33,36,44,45]) and their associated viral 103 

communities [46-49], even from as bizarre a locale as the windshield splatter 104 

from a single road trip [50]. However, second generation sequencers generated 105 

reads ranging from ~35-500 bp depending on the technology used  – far shorter 106 

than the 130 kb fragment used to identify the 747 bp gene encoding 107 

proteorhodopsin by Béjà et al., or even the length of Sanger sequences used in 108 

the GOS study (~1000 bp). Furthermore, each advance in sequencing 109 

technology introduced its own biases, which, coupled with non-standardized 110 

metadata collection, made it difficult to compare the results of one investigation to 111 

previous datasets. Despite the reduction in sequencing costs, use of replicated 112 

samples was still poor [38]. In 16S rRNA diversity studies, the reduced sequence 113 

length of pyrosequencing prevented the use of full-length sequences; relying 114 

instead on shorter hypervariable regions (V1 through V8) sequenced both 115 

separately and in combination. Species richness of samples was significantly 116 

biased by primer choice, with V6 and V1+V2 overestimating richness while V3, 117 

V7 and V7+V8 underestimated richness [51]. Issues of over-estimation of the 118 

‘rare’ biosphere from sequencing error [52-54] and PCR chimeras [55] required 119 

correction by post-sequencing analysis with tools such as AmpliconNoise [56]. 120 

Bias introduced during sample preparation, such as variation in DNA extraction 121 

efficiencies of different taxa [57] and poor representation of low G+C taxa [58,59] 122 

required fine-tuning of experimental design and greater use of controls. 123 

 124 



In shotgun metagenomic studies, annotation of genes is improved by inclusion of 125 

identifying features such as promotors, riboswitches, co-operonic genes and 126 

signature protein domains. The probability of capturing such features on the 127 

same fragment is proportional to the length of the fragment. Separation of genes 128 

from their distinguishing features is significant in Sanger sequences (~1000 bp) 129 

compared to BAC sequences (~130 kbp). With the even shorter lengths of 130 

pyrosequencing, the issue is exacerbated. Furthermore, increased sequencing 131 

errors of ~1-3% (depending on sequencing technology) frequently introduced 132 

frameshift mutations into reads [60]. Consequently, the number of identifiable 133 

homologs on shorter reads was 20-30% lower than for Sanger reads from a 134 

bacterial metagenome and 70% lower for viral metagenomic samples [61]. As 135 

early as 2008, Wommack et al. concluded that despite the reduced cost per 136 

basepair of pyrosequencing, the cost per unit of information was comparable with 137 

Sanger sequencing [61]. Whilst the continued reduction of sequencing costs has 138 

tilted the cost-benefit balance firmly in favor of next-generation sequencing, the 139 

issues of annotating short fragments remain [48,62]. It is no coincidence that the 140 

ubiquitous contextualization of the ecological significance of novel, 141 

experimentally derived microbial function overwhelmingly choose the GOS and 142 

longer read datasets for their analyses [63-66]. Furthermore, the rate of discovery 143 

of putative protein sequence has dwarfed the rate at which protein structure and 144 

function can be characterized, and has made manual curation of functional genes 145 

unfeasible (Fig. 1). Of the 20.6 million protein sequences in the current (2012_03) 146 

release of the UniProt database, only 2.8% have had their existence confirmed 147 

either at the protein or the transcript level 148 

(http://www.ebi.ac.uk/uniprot/TrEMBLstats/). Instead, automated annotation via 149 

homology transfer from similar sequences with known function was favored. 150 

However, homology and sequence similarity are not synonymous. As the number 151 

of automated annotations of increasingly diverse putative proteins continues to 152 

increase exponentially, transfer of homology has resulted in ‘homology creep’ to 153 

non-homologous sequences [67]. Automated annotation can be drastically 154 

improved via incorporation of a measure of evolutionary distance 155 
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(phylogenomics) but requires near-full length protein sequences [68]. Only very 156 

recently has sequencing technology improved sufficiently to approach such 157 

lengths (~700-1100 bp) [69], whilst maintaining sufficient coverage to allow 158 

shotgun metagenomics to achieve its full potential. 159 

 160 

Despite dramatic increases in sequencing efficiency (Fig. 1), inadequate 161 

coverage, which translates into “under sampling”, remains a major issue in 162 

metagenomics.  Under sampling compromises some of the favorite experimental 163 

design strategies of ecologists, who often seek to understand how functional 164 

aspects of microbial communities vary along clines, such as gradients in latitude, 165 

temperature, or productivity.  Under sampling can be ameliorated by binning data 166 

at courser resolution, for example, by COG instead of by species. However, such 167 

a shift in strategy elicits a significant cost - the loss of genome context, which is 168 

often crucial for interpreting function. 169 

Recapturing lost information: assembly and SAGs 170 

To overcome the effects of short reads on accurate annotation, assembly of 171 

fragments into longer contigs has been attempted. Whilst numerous assembly 172 

programs have successfully reconstructed genomes from clonal organisms [70], 173 

successful assembly of contigs from metagenomic data is more limited. Problems 174 

with metagenomic assembly arise from poor community coverage [71], significant 175 

genomic variance in natural populations [12,20] and a high risk of chimeric 176 

sequence generation [62,72,73]. Furthermore, repetitive reads present a 177 

dichotomy for metagenome assembly [74]. During the assembly of a clonal 178 

genome, repetitive reads are problematic during construction of de Brujin graphs 179 

and are therefore removed from analysis [75,76]. Conversely, in a metagenome, 180 

repetitive reads are likely to come from higher coverage of dominant organisms 181 

and should therefore be assembled together. To tackle this issue, new ‘digital 182 

normalization’ algorithms to remove redundant reads and improve assembly are 183 

now emerging [77]. The likelihood of meaningful assembly is directly related to 184 

the complexity of the sampled community and the genetic variability of its 185 

constituents. In relatively simple systems, a combination of deep sequencing with 186 



short reads combined with longer reads for fragment recruitment and robust 187 

chimera checking are yielding some successes in assembling both microbial 188 

[11,62,78-80] and viral [81] genomes. Even with long reads, assemblies of 189 

metagenomes from complex communities (>400 taxa) are problematic. However, 190 

the longer reads have an inherent advantage of capturing full gene information 191 

for more accurate annotation [62]. The emergence of new metagenome 192 

assembly tools such as MetaORFA [82], Genovo [83], MetaVelvet [84], Meta-193 

IDBA [85] and SEAStAR [86] may improve the utility of short sequences in 194 

metagenomes from complex communities. 195 

 196 

To circumvent assembly problems most metagenomic studies rely heavily on 197 

complete or draft genomes to identify fragmentary sequences and interpret 198 

natural variation in an organismal context. Many online tools, e.g. MG-RAST, use 199 

this strategy, and have limited power to resolve metagenomic data originating 200 

from uncharted sectors of microbial diversity.  Advances in culturing technology 201 

have made more genomes from relevant organisms available, but the uncultured 202 

part of microbial diversity remains substantial.  To bridge this gap, researchers 203 

are increasingly turning to single cell genome amplification. Individual cells are 204 

isolated either by micromanipulation or by fluorescent-activated cell sorting 205 

(FACS) flow cytometry before lysis and multiple displacement amplification 206 

(MDA) of DNA to concentrations suitable for sequencing [87]. DNA can then be 207 

deeply sequenced with short-read, high throughput sequencing and readily 208 

assembled into large contigs, often assisted by scaffolding using longer Sanger 209 

reads [88,89]. Single-cell genomics is a significant advance that is providing draft 210 

genomes from organisms, many of them important, that have so far evaded 211 

cultivation. This technique was recently used to sequence the genome of SAR86, 212 

an important, highly abundant, but as-yet uncultured marine aerobic 213 

chemoheterotroph [90]. With ever-decreasing sequencing costs and rapid FACS 214 

cytometry cell isolation, it is not difficult to imagine that high-throughput 215 

metagenomics of important community representatives, and/or populations within 216 

a community from single-cell amplified genomes is imminent. Such an approach 217 



will avoid issues of chimeric assemblies (other than contaminants) and will 218 

enable functional annotation with intact synteny. Amplification-free, single-219 

molecule DNA sequencing technologies such as those implemented in the 220 

MinION™ and GridION™ (Oxford Nanopore) and PacBio RS (Pacific 221 

Biosciences) will further reduce the cost, simplify assembly and improve the 222 

accuracy of single-cell metagenomics, perhaps even removing the need for cell 223 

isolation entirely. Accurate assembly of genomes from single cells and/or reads 224 

long enough to contain complete operons will have two major advantages. Firstly, 225 

complete genes will enable fine-scale intra and inter-specific phylogenomic 226 

analyses, improving our understanding of community structure and how bacterial 227 

diversity is derived and maintained via periodic selection [91] and viral predation 228 

[23,92,93]. Secondly, accurate annotation of genes will dramatically improve the 229 

capacity of systems biologists to model community connectivity and thus the 230 

effects of perturbations on microbial biogeochemical processes [94].  231 

The continued importance of culturing 232 

Accurate annotation may provide insight into the metabolic potential of an 233 

organism and its community. However, it is often difficult to predict the ecological 234 

significance of an annotated gene without first considering its function in the 235 

broad context of metabolism. In some cases, this can be achieved by 236 

reconstructing metabolic pathways and testing predictions by experimentation 237 

with axenic cultures. The demonstration that SAR11 bacteria are methylovores 238 

was an example of this strategy [64].  In other cases, particularly those in which a 239 

gene is functioning in non-canonical pathways that are not represented in KEGG 240 

of other databases, the only choice may be exploratory experiments with cells in 241 

culture. SAR11 proteorhodopsin provides an apt example. Whilst the abundance 242 

and biochemistry of proteorhodopsin as an ATP-generating proton pump had 243 

previously been described from metagenomic data, exposure to light did not 244 

significantly improve the growth of SAR11 in axenic cultures, as would have been 245 

predicted from the annotated function. A decade after proteorhodopsin was first 246 

reported in metagenomic datasets, Steindler et al. showed that it provides an 247 

important source of ATP under conditions of carbon starvation, with cells grown 248 



in the dark forced to consume endogenous reserves of carbon for survival [95]. 249 

None of this surprises the average genome scientist, who by now, accustomed to 250 

the principles of systems biology, understands that selection is acting to shape 251 

the output from genes functioning in a concerted way. 252 

 253 

The ‘post-Beagle’ era of metagenomics 254 

There is little doubt that metagenomics has revolutionized our perspective of 255 

microbial taxonomic and functional diversity, and the scale of the generation of 256 

testable hypotheses from patterns observed through metagenomic studies has 257 

led to favorable comparisons with Darwin’s Beagle voyage [96]. However, like 258 

The Origin of Species, the power of observational science lies not in the data 259 

collection, but in the analysis and experimentation. After his four-year voyage on 260 

the Beagle, Darwin’s magnum opus resulted from two decades of experimental 261 

evidence to test his hypotheses on common ancestry, convergent evolution and 262 

descent with modification [97]. Similarly, the discovery of proteorhodopsin by 263 

Béjà et al. in marine metagenomic datasets was more potent for its confirmation 264 

through in vitro cloning and purification from complete gene sequences on 130-265 

kb fragments [8]. Although early metagenomic investigations with 266 

pyrosequencing provided more data, the increased error rates in sequencing, 267 

assembly and annotation would have made the success story of 268 

bacteriorhodopsin less likely. Darwin’s lack of training as an ornithologist resulted 269 

in erroneous classification of some Galápagos finches as blackbirds and required 270 

careful curation by John Gould before the true extent of adaptive selection was 271 

apparent [97,98]. Analogously, genomic fragments annotated via transfer of 272 

homology from similar sequences with known function suffer from a similar issue. 273 

Greater efforts in novel protein curation are required for accurate predictions of 274 

taxonomic and functional diversity to better elucidate their roles in 275 

biogeochemical cycling. It is worth remembering, however, that metagenomics is 276 

still in its infancy and that the difficulties of short read lengths and fragmented 277 

genes are likely to be transient. Improvements to sequencing biochemistry and 278 

new methodologies are now increasing read lengths to a critical point where 279 



near-complete genes can be captured on a single read whilst maintaining depth 280 

of coverage, significantly improving annotation even when assembly into full 281 

genomes is difficult. Lessons have been learned for replicated experimental 282 

design to allow for robust statistical analysis and standards for metadata 283 

collection will improve comparisons between datasets [38,99]. Broad, shallow, 284 

replicated sequencing across large numbers of samples, followed by targeted 285 

deep sequencing and single-cell genomics will allow investigators to define a 286 

hypothesis; identify samples most likely to provide insight and then identify 287 

metabolic potential within single genomes and the community as a whole [38]. 288 

Confirmation of predicted biochemistry in axenic and community cultures of 289 

important taxa [100] will improve our ability to more accurately predict, 290 

contextualize and, importantly, test novel function and its role within bacterial 291 

populations and their wider communities, and will continue to drive the 292 

metagenomic revolution in microbial ecology. 293 
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Figure 1 - Cost of DNA sequencing and its impact on genomics and 
metagenomics. Y-axis 1 (black): The cost per Mb of DNA sequencing on a log 
scale (data from http://www.genome.gov/sequencingcosts/). Y-axis 2 (red): The 
total number of sequences in the UniProt (http://www.uniprot.org/) database for 
automatically annotated (solid, TrEMBL database) and manually annotated 
(dashed, SwissProt database) proteins (data courtesy of Predrag Radivojac). Y-
axis 3 (blue): The total number of metagenomics publications in PubMed 
(http://www.ncbi.nlm.nih.gov/pubmed/). The search term "metagenomics"[MeSH 
Terms] OR "metagenomics" was used to retrieve publication records in XML-
format and binned by month and year according to the 'DateCreated' element. 

 


