

AN ABSTRACT OF THE THESIS OF

Benjamin Fields for the degree of Master of Science in Industrial Engineering presented

on November 20, 2018.

Title: A Text-based Simulation Framework for the Automated Simulation and Analysis of

Manufacturing Assembly Systems

Abstract approved: __

 J. David Porter

The rapid advancement of manufacturing has led to the creation of a myriad of technologies

that facilitate the analysis and simulation of manufacturing processes. These technologies

have become a pivotal component in maintaining and improving processes in today’s

complex manufacturing environments. Discrete Event Simulation (DES) is one such

technology that has seen widespread use in the analysis of manufacturing assembly

systems. However, despite its widespread use, organizations recognize that most of the

commercially available DES software packages used to develop and maintain simulation

models are costly and require significant levels of expertise, time, and resources.

This research introduces a new text-based simulation framework titled the

Automated Simulation Analysis Engine (ASAE) that aims to reduce the steep learning

curve typically experienced by users when creating, running, and analyzing a simulation

model. Two testing approaches were used to validate the correctness and usability of the

proposed test-based simulation framework. The results of these tests suggest that the ASAE

simulation framework has the potential of reducing the skills, time, and resources required

when conducting a simulation-based study.

©Copyright by Benjamin Fields

November 20, 2018

All Rights Reserved

A Text-based Simulation Framework for the Automated Simulation and Analysis of

Manufacturing Assembly Systems

by

Benjamin Fields

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Presented November 20, 2018

Commencement June 2019

Master of Science thesis of Benjamin Fields presented on November 20, 2018.

APPROVED:

Major Professor, representing Industrial Engineering

Minor Professor, representing Computer Science

Head of the School of Mechanical, Industrial, and Manufacturing Engineering

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon State

University libraries. My signature below authorizes release of my thesis to any reader upon

request.

Benjamin Fields, Author

ACKNOWLEDGEMENTS

While it may have seemed impossible at times, I am elated to be able to write today

reflecting on this experience and the incredible journey I have taken along the way. It is no

short feat that certainty would not have been possible without the endless love and support

from my family, loved ones, close friends, and professors here at Oregon State. I would

first like to express my appreciation and thanks for all the support I have received from my

advisor Dr. J. David Porter. Without his guidance I would not be where I am today. I would

also like to thank my family who have been there by my side every step of the way. I cannot

express in words the gratitude that I have for having a dad to show me the door into the

world of engineering, a mom to bring me back to reality when nothing seems to make

sense, and the brothers to learn from each and every day. I am extremely grateful for all

the professors that have helped me along the way and the friends I have made here at

Oregon State. I will forever cherish my time here and look forward to the next chapter of

my life as an OSU alum.

TABLE OF CONTENTS

Page

1 INTRODUCTION ...1

1.1 RESEARCH MOTIVATION ... 2

1.2 RESEARCH OBJECTIVE .. 3

1.3 RESEARCH CONTRIBUTIONS .. 3

2 LITERATURE REVIEW ..4

2.1 PROCESS IMPROVEMENT IN MANUFACTURING .. 4

2.2 DISCRETE EVENT SIMULATION SOFTWARE IN MANUFACTURING 6

2.3 DATA DRIVEN ANALYTICS AND SIMULATION ... 10

2.4 LITERATURE REVIEW SUMMARY .. 13

3 RESEARCH METHODOLOGY ..15

3.1 DEFINING AND MODELING MANUFACTURING ASSEMBLY SYSTEMS 18

3.1.1 Define Basic Types of Manufacturing Assembly Systems.................... 18

3.1.2 Develop Conceptual Models for Basic Types of Manufacturing

Assembly Systems in Arena .. 22

3.1.2.1 Modeling the Simple Linear MAS in Arena 25

3.1.2.2 Modeling a MAS with Parallel Workstations and Finite Buffer

Resources in Arena ... 26

3.1.2.3 Modeling a MAS with Parallel Workstations, Finite Buffer

Resources, and Probabilistic Branching in Arena 30

TABLE OF CONTENTS

Page

3.2 DATA CAPTURE AND AUTOMATED ANALYSIS OF MANUFACTURING ASSEMBLY

SYSTEMS ... 32

3.2.1 Define Type and Format of Event Data ... 32

3.2.2 Capture Event Data .. 34

3.2.3 Define Algorithm Logic to Discover the Characteristics of a

Manufacturing Assembly System .. 37

3.2.3.1 Unique Processes ... 37

3.2.3.2 State Transitions ... 38

3.2.3.3 Terminal States ... 39

3.2.3.4 Jobs Completed and Throughput ... 40

3.2.3.5 Buffer Identification and Maximum Utilized Capacity 41

3.2.3.6 Process Performance ... 43

3.3 DESIGN AND IMPLEMENTATION OF THE TEXT-BASED SIMULATION FRAMEWORK

.. 44

3.3.1 Design of the Automated Simulation Analysis Engine Text-Based

Simulation Framework... 45

3.3.2 Definition of the Text-based Modeling Approach 47

3.3.2.1 Web Interface to Create a Text-File for a Model 52

3.3.3 Implementation of the Simulation Engine of the ASAE Text-Based

Simulation Framework... 55

3.3.3.1 Class Structure ... 55

TABLE OF CONTENTS

Page

3.3.3.2 Simulation Class ... 59

3.3.3.3 Process Class ... 59

3.3.3.4 Buffer Class .. 60

3.3.3.5 Event Class ... 61

3.3.3.6 DataCrawler Class ... 64

3.3.3.7 Running a Simulation with the ASAE Text-Based Framework 65

3.3.3.8 Capturing Performance Data from the Simulation 67

3.3.3.9 Analysis Report ... 69

3.4 TESTING AND VALIDATION OF ASAE TEXT-BASED SIMULATION FRAMEWORK . 72

3.4.1 Study to Validate Correctness .. 72

3.4.2 User Study .. 74

3.4.2.1 Objective ... 75

3.4.2.2 Questionnaire Design ... 75

3.4.2.3 Recruitment of Participants .. 78

3.4.2.4 User Participation and Interaction .. 78

4 RESULTS AND DISCUSSION ..80

4.1 RESULTS OF VALIDATING THE CORRECTNESS OF THE ASAE TEXT-BASED

SIMULATION FRAMEWORK.. 80

4.1.1 Simulation Runtimes Results ... 81

4.1.1.1 MAS Type I ... 81

4.1.1.2 MAS Type II .. 83

TABLE OF CONTENTS

Page

4.1.1.3 MAS Type III .. 85

4.1.2 Manually Mapped MAS Results .. 88

4.2 QUESTIONNAIRE RESULTS FROM THE USER STUDY .. 92

4.2.1 Experience.. 92

4.2.2 Modeling .. 94

4.2.3 Running a Simulation .. 97

4.2.4 GUI-based versus Text-based Modeling ... 100

4.2.5 Parallel Processes and Finite Buffers ... 105

4.2.6 Understanding the MAS .. 110

4.2.7 Value of Results ... 114

4.2.8 Compare Simulation Platforms .. 121

4.2.9 Preference .. 127

4.2.10 Synthesis of Questionnaire Results .. 129

5 CONCLUSIONS AND OPPORTUNITIES FOR FUTURE WORK130

5.1 CONCLUSIONS ... 130

5.2 OPPORTUNITIES FOR FUTURE WORK ... 133

6 BIBLIOGRAPHY ..135

7 APPENDICES ..140

APPENDIX A ..141

APPENDIX B ..144

TABLE OF CONTENTS

Page

APPENDIX C ..150

APPENDIX D ..152

APPENDIX E ..153

APPENDIX F ..154

APPENDIX G ..155

APPENDIX H ..156

APPENDIX I ...162

APPENDIX J ...181

APPENDIX K ..189

APPENDIX L ..197

APPENDIX M ...200

LIST OF FIGURES

Figure Page

Figure 3.1. Proposed Research Methodology. .. 15

Figure 3.2. Example of a MAS Type I.. 19

Figure 3.3. Example of a MAS Type II. ... 19

Figure 3.4. Example of MAS Type III. ... 21

Figure 3.5. Simulation Model of a MAS Type I in Arena. ... 26

Figure 3.6. Simulation Model of a MAS Type II in Arena... 29

Figure 3.7. Simulation Model of a MAS Type III in Arena. .. 31

Figure 3.8. Example VBA Code for a Custom VBA Module in Arena. 36

Figure 3.9. Steps to Calculate Maximum Utilized Buffer Capacity. 42

Figure 3.10. Main Components of the Auto Simulation Analysis Engine. 46

Figure 3.11. Example of a Text File used in the ASAE Simulation Framework. 48

Figure 3.12. Auto Simulation Analysis Model Creator Online Interface. 54

Figure 3.13. UML Class Diagram of the Simulation Engine. .. 57

Figure 3.14. Format of a UML Class Block. .. 58

Figure 3.15. Control Logic for Processing and Scheduling Events. 62

Figure 3.16. Steps for running a Simulation in the ASAE Text-Based Simulation

Framework. ... 66

Figure 3.17. Example Data Entries for One Complete Job. .. 69

Figure 3.18. Example Results File. ... 71

Figure 4.1. Scatter Plot of Simulation Runtimes for the MAS Type I.............................. 82

Figure 4.2. Box and Whisker Plot of Simulation Runtimes for MAS Type I................... 82

Figure 4.3. Scatter Plot of Simulation Runtimes for the MAS Type II. 84

Figure 4.4. Box and Whisker Plot of Simulation Runtimes for MAS Type II. 84

Figure 4.5. Scatter Plot of Simulation Runtimes for the MAS Type III. 86

Figure 4.6. Box and Whisker Plot of Simulation Runtimes for MAS Type III. 87

Figure 4.7. Manually Mapped Simulation of 20 Jobs in a MAS Type II. 91

Figure 4.8. Overall Responses of User Study Participants on GUI-based vs Text-based

Modeling. .. 104

Figure 4.9. Overall Responses of User Study Participants on Parallel Processes and Finite

Buffers... 109

Figure 4.10. Overall Responses of User Study Participants on Understanding the MAS.

... 113

Figure 4.11. Overall Responses of User Study Participants on Value of Results. 120

Figure 4.12. Six-point Scale for Eighth Block of User Study Questionnaire. 122

Figure 4.13. Distribution of Responses for Statement 1. .. 123

Figure 4.14. Distribution of Responses for Statement 2. .. 123

Figure 4.15. Distribution of Responses for Statement 3. .. 124

Figure 4.16. Distribution of Responses for Statement 4. .. 124

Figure 4.17. Distribution of Responses for Statement 5. .. 125

Figure 4.18. Distribution of Responses for Statement 6. .. 126

Figure 4.19. Distribution of Responses for Statement 7. .. 126

Figure 4.20. Preference of User Study Participants. ... 127

Figure 4.21. DES Approach Preference by User Ability Category 128

LIST OF TABLES

Table Page

Table 3-1. Components Available in Arena to Build Simulation Models. 23

Table 3-2. Modules Available in Arena to Build Simulation Models. 24

Table 3-3. Example Event Data Extracted from a Simulation in Arena. 34

Table 3-4. Example of a Transition State Matrix. .. 38

Table 3-5. Example of a TSM with PID C Representing a Terminal State. 40

Table 3-6. Statistical Distributions used by the ASAE Text-Based Simulation Framework

to Describe Process Times .. 50

Table 3-7. Classes of the Simulation Engine .. 55

Table 3-8. Types of Events in the ASAE Text-Based Simulation Framework. 61

Table 3-9. Number of Jobs Simulated per MAS Type. .. 73

Table 3-10. Question Blocks of the User Study Questionnaire. 77

Table 4-1. Statistics of the Simulation Runtimes for the MAS Type I. 83

Table 4-2. Statistics of the Simulation Runtimes for the MAS Type II. 85

Table 4-3. Statistics of the Simulation Runtimes for the MAS Type III. 87

Table 4-4. Predicted vs Actual Simulation Characteristics. ... 90

Table 4-5. Simulation Runtime in ASAE and Arena. ... 90

Table 4-6. Overall Simulation Proficiency of User Study Participants. 93

Table 4-7. Block 2 Statements of the User Study Questionnaire. 94

Table 4-8. Overall Responses of User Study Participants on Modeling........................... 96

Table 4-9. Block 3 Statements of the User Study Questionnaire. 97

Table 4-10. Overall Responses of User Study Participants on Running a Simulation. 99

Table 4-11. Block 4 Statements of the User Study Questionnaire. 100

Table 4-12. Overall Responses of User Study Participants on GUI-based vs Text-based

Modeling. .. 103

Table 4-13. Block 5 Statements of the User Study Questionnaire. 105

Table 4-14. Overall Responses of User Study Participants on Parallel Processes and Finite

Buffers... 108

Table 4-15. Block 6 Statements of the User Study Questionnaire. 110

Table 4-16. Overall Responses of User Study Participants on Understanding the MAS.

... 112

Table 4-17. Block 7 Statements of the User Study Questionnaire. 115

Table 4-18. Overall Responses of User Study Participants on Value of Results for the Arena

DES Software.. 118

Table 4-19. Overall Responses of User Study Participants on Value of Results for the

ASAE Text-Based Simulation Framework. .. 119

Table 4-20. Block 8 Statements of the User Study Questionnaire. 121

Table 7-0-1. Validation Testing Simulation RunTimes. ... 197

 1

1 INTRODUCTION

Today’s manufacturing environments are constantly evolving as companies and

researchers find new and innovative ways to create products. These constant

changes have, in turn, created very competitive global markets which require highly

complex manufacturing engineering and production management decisions.

Technology has become a pivotal component in maintaining and improving

processes in today’s complex manufacturing environments. Programmatic

techniques that incorporate computer programming technologies alongside

integrated information systems are being used in manufacturing to accomplish tasks

such as data processing and process simulation (Heavey & Robin, 2014).

In particular, discrete event simulation (DES) is one technology-based

approach that has seen widespread use in industry to improve manufacturing

processes. DES is defined as a broad collection of methods and applications to

mimic the behavior of real systems with events occurring at distinct points in time

(Kelton, Sadowski, and Zupick, 2010). However, despite its widespread use,

organizations recognize that most of the commercially available DES software

packages used to develop and maintain simulation models are costly and require

significant levels of expertise, time, and resources (Hughes, Scott, & Ridgway,

2013).

The complexity of DES software packages has motivated interest in

automated data-driven approaches that can reduce the amount of time and resources

 2

needed to create and conduct simulations. Automated data-driven approaches

streamline the analysis of a system by leveraging the information inherently

contained within data. Process mining is one such data-driven technology that aims

to discover, monitor, and improve processes by extracting knowledge from data

contained in information systems (Aguirre, Parra, & Alvarado, 2013).

Researchers are beginning to recognize the benefits of merging simulation

technologies and automated data-driven approaches to gain better and faster insight

into processes. By combining DES approaches and data-driven technologies, the

cost and complexity of simulation-based projects can potentially be reduced. The

combination of these technologies can also be applied to complex manufacturing

assembly systems that often involve a mix of dynamic resources and processes.

1.1 RESEARCH MOTIVATION

The modeling and analysis of a manufacturing assembly system (MAS) enabled by

a DES software package is a valuable exercise to gain a better understanding of

current process behavior and to identify opportunities for improvement. This is

especially critical in the early stages of a simulation project when trying to develop

accurate representations of a MAS. Unfortunately, the acquisition and licensing

costs of DES software packages, the level of expertise they require, and the time

and resources needed to maintain MAS models are significant barriers for their

widespread use, particularly for small and medium size enterprises (Byrne, Liston,

Geraghty, & Young, 2012).

 3

Therefore, there is a growing need for low-cost, efficient, and adaptive DES

technologies (Mourtzis, Doukas, & Bernidaki, 2014). In particular, recent research

has focused on improving the current use of simulation technologies by automating

the simulation and analysis steps, which in turn saves valuable time and resources

that can be further utilized in more value-added activities (Bergmann &

Strassburger, 2010).

1.2 RESEARCH OBJECTIVE

The main objective of this research was to develop an automated, text-based

simulation framework for modeling, running, and analyzing MASs. The proposed

automated, text-based simulation framework aims to minimize the steep learning

curve typically experienced by users when initially creating, running, and analyzing

a simulation model with most of today’s commercially available simulation

software packages.

1.3 RESEARCH CONTRIBUTIONS

The main contribution of this research was an automated, text-based simulation

framework referred to as the Automated Simulation Analysis Engine (ASAE). The

proposed ASAE text-based simulation framework includes the following features:

• A text-based modeling approach,

• Automated data collection, and

• Automated simulation and analysis of a MAS.

 4

2 LITERATURE REVIEW

The main objective of this research was to develop a data-driven methodology to

expedite the modeling, simulation, and analysis of manufacturing assembly

systems by automating a large portion of the tasks normally required. With this

objective in mind, a thorough literature review was conducted on several areas

including process improvement in manufacturing, discrete event simulation

software in manufacturing, and the intersection of data-driven analytical

technologies with simulation. The relevant findings of the literature review are

synthesized in this chapter.

 The remainder of this chapter is organized as follows. Section 2.1 covers

process improvement in manufacturing. Section 2.2 discusses the challenges with

discrete event simulation software in manufacturing. Section 2.3 shows how data-

driven technologies can be used to facilitate the analysis of simulation models.

Finally, Section 2.4 summarizes the main findings of the literature review and

clearly identifies the research gaps that this research attempts to fill.

2.1 PROCESS IMPROVEMENT IN MANUFACTURING

Manufacturing today involves the cohesion of multiple workstations into a

systematic workflow to produce jobs for an increasingly growing global market.

This has, in turn, created a highly competitive market with complex manufacturing

engineering and production management decisions (Heavey & Robin, 2014). In

 5

response to these challenges, researchers are beginning to adopt analytics-based

approaches to keep up with continuous improvement, which have shown that

favorable outcomes can be achieved with little investment.

One interesting trend is the combination of computer programming and data

mining techniques. Recent research indicates that these integrative approaches to

drive process improvement can help in improving the performance of

manufacturing assembly systems and in reducing costs. Ham and Park (2014)

proposed a framework to effectively balance manned assembly lines with an

integrated video module written in the C++ programming language. Video recorded

on the manned assembly line was reviewed to quickly and easily extract and

transfer useful process information. The video review step was followed by the

analysis of motion in the workstation, operation cycles, and workers’ involvement

within the workstation. The proposed framework was implemented and validated

in a Korean assembly line for LED televisions. Similarly, Zheng et al. (2014)

developed an integrated analytics system to improve the analysis and performance

of a plasma display panel (PDP) manufacturing system. The integrated analytics

system, referred to as PDP-Miner, is an example of a data-driven tool aimed at

alleviating the burden of having engineering personnel spend large amounts of time

and resources working through large data sets to create solutions to production

problems. A case study at ChangHong COC, a large PDP manufacturer in China,

showed that the implementation of PDP-Miner increased production levels by

10,000 units per month (i.e., a 3% increase in yield) which demonstrates that data-

 6

driven process improvement techniques can save time while also improving the

production system.

Researchers have also noted the need to develop specific methodologies that

facilitate the implementation of strategies that incorporate technology into the

redesign process. Intelligent redesign tools that build on current models, leverage a

deeper understanding of the underlying process, and apply reproducible, objective

transformations that can translate into time and labor savings. Aguirre, Parra, and

Alvarado (2013) proposed a framework to successfully integrate process mining

and simulation tools to drive process improvement. In the proposed framework,

process mining complements simulation tools by extracting the parameters of an

underlying model, which is then used to test alternative process designs. This

approach to simulation provides a cost-effective method to test and validate new

processes. The authors noted that the involvement of existing workforce is critical

to correctly interpret activities and the data collected by the process mining systems,

and that there is a need for better visualizations of simulation models.

2.2 DISCRETE EVENT SIMULATION SOFTWARE IN MANUFACTURING

Discrete event simulation (DES) is defined as a broad collection of methods and

applications to mimic the behavior of real systems with events occurring at distinct

points in time (Kelton, Sadowski, and Zupick, 2010). DES has been widely used in

manufacturing for many years but, despite its widespread use, organizations

recognize that most of the commercially available DES software packages used to

 7

develop and maintain simulation models are costly and require significant levels of

expertise, time, and resources (Hughes, Scott, & Ridgway, 2013). Although the

licensing cost of DES software packages is a significant barrier, their complexity

(i.e., the required steep learning curve) is often a challenge when incorporating the

use of these modelling tools in industry projects, particularly in small to medium

size enterprises (SMEs). Therefore, only a select group of individuals is really in a

position to use DES software packages, thus minimizing the potential benefits that

could be realized across the organization (Byrne, Liston, Geraghty, & Young,

2012).

A number of open source projects have appeared recently whose objective

is to make DES software more accessible and to provide an easier method for

creating simulation models. Rossetti (2008) describes an open source, object-

oriented framework for creating simulation models within the Java programming

language named the Java Simulation Library (JSL). The JSL contains four main

packages (i.e., Utilities, Calendar, Modeling, and Observers) that facilitate the

execution and creation of simulation models using an object-oriented approach that

utilizes pre-built class objects that implement the functionality of simulation events

and models. Byrne, Liston, Geraghty, & Young (2012) presented two case studies

that evaluated the use of open source DES software in manufacturing systems. The

first case study focused on a predictive capacity planner while the second case study

focused on the performance of a semi-conductor manufacturing system. The

authors noted the need for more holistic approaches to simulation

 8

awareness/understanding, model build effort/time, and integration with existing

systems as an area for future research. Heavey et al. (2014) proposed an open-

source, cloud-enabled DES platform called DREAM to streamline the use of DES

software packages. The DREAM platform consists of a simulation engine, a

knowledge extraction tool, and a custom web-based graphical user interface (GUI).

The platform was built using the Python programming language, and a Python

library called ManPy was used to provide common simulation constructs within the

Python environment. Two pilot case studies are used to elaborate on the

extensibility of the tools in support of an industrial engineer in the context of

scheduling and tool support. Future work will focus on incorporating new modeling

elements and additional pilot case studies in different domains.

 The complexity of DES software packages has also motivated interest in

automated data-driven approaches that can reduce the amount of time and resources

needed to create and conduct simulations. There are many challenges in developing

an automated approach to simulation modeling, including incomplete data,

dynamic/complex behavior (in the context of buffer and control strategies), and

cyclic structures. Hybrid approaches, otherwise referred to as semi-automated

approaches, have been proposed to address these challenges. Hybrid approaches

help to reduce the time and expertise needed to develop complex simulation models

by combining artificial intelligence with parametric methods that focus on the

parameters of preexisting models, as well as structural approaches that focus on the

structure of the model (Bergmann & Strassburger, 2010). Barlas, Dagkakis, &

 9

Heavey (2015) introduced an automated knowledge extraction (KE) tool to gather

data for a simulation model. The KE tool is an open source application created with

different Python libraries (e.g., RPy2) to create an interface to the open source

statistical software R within a Python environment. A case study was completed in

a medical device fabrication facility to validate the KE tool. Results showed that

there is an opportunity for savings on the total project time in the range of 10 to

40% due to the input data process. Future work plans to focus on expanding the

simulation objects available and the creation of a GUI to provide a simpler solution.

In a separate research study, Haraszko and Nemeth (2015) developed configurators

(i.e., predefined templates addressing certain “species” of manufacturing systems)

for the rapid creation of DES models for several types of manufacturing systems.

A GUI was provided to guide a user through defining important characteristics of

the system. Once the important process characteristics are defined, the DES model

is automatically created and used for further optimization and improvement, which

significantly accelerates the systematic design of manufacturing systems. The

authors emphasized that there is a need for more affordable, easy-to-use modelling

tools to support the rapid design of manufacturing systems.

 Text-based approaches that create abstractions of manufacturing systems as

a prelude to building simulation models help to isolate the user from the details of

the simulation package. Gronniger, Krahn, Rumpe, Schindler & Volkel (2007)

explained the many benefits that can be realized by users and developers when

adopting text-based modeling methods. In particular, the authors described how

 10

complex software systems (such as GUI-based simulation software packages) force

users to focus on complex graphical representations that distract them from the core

tasks at hand and limit the amount of information that can be represented on a single

screen interface. In contrast, text-based approaches allow for high content density

that permit a larger amount of information to be seen on a single interface, help

users focus on core modeling tasks, and enable faster speed of creation. As a result,

users are no longer concerned with the unique interfaces of a software system but,

instead, focus on the structure of the model thus increasing the value of the

modeling exercises. Similarly, Hughes, Scott, & Ridgway (2013) developed a DES

module to support SMEs on automatically creating process flow DES models. This

research demonstrated the feasibility of automatically generating a DES model

based on input data from an online capture tool. Once the data have been captured

from the input interface, a text-based representation of the model is created based

on the user provided information and then transferred to the DES software system

for execution, thereby reducing both the time to develop models manually from

scratch and the required expertise.

2.3 DATA DRIVEN ANALYTICS AND SIMULATION

Data driven techniques incorporate concepts from data mining, process modeling,

and analysis with the objective to discover, monitor, and improve processes by

extracting knowledge from information systems (Aguirre, Parra, & Alvarado,

2013). The data are available as files composed of records of actions/steps that

 11

occur within a process (referred to as event logs) and are typically used to enable

the discovery of multiple perspectives about a process such as control-flow,

performance, and resource information (Rozinat, Mans, Song, & W.M.P. van der

Aalst, 2009).

 Simulation models are often created manually using data collected via

documentation, interviews, and close observation of the real-world process. This

manual approach is time consuming and prone to errors due to the results being

based on a subjective human understanding of the system. Researchers are

beginning to recognize the benefits of merging simulation technologies and data-

driven analytics (such as process mining) to gain better and faster insight into

processes. For example, Rozinat et al. (2009) developed an approach to merge DES

software and process mining with the objective of automating the simulation

modeling process. Their approach was validated using two case studies in the

Netherlands where the ProM process mining framework was used to discover

multiple perspectives of an underlying process model such as control flow, data,

performance, and resources. The process model discovered was then integrated into

a comprehensive Colored Petri Net (CPN) simulation model that can be used for

analysis. A control-flow discovery algorithm known as the alpha algorithm was

used to create a process model automatically reflecting the causal relations among

the activities captured in the event log. The automated support of redesign (i.e.,

suggesting process improvements based on log analysis and simulation

 12

alternatives) as well as the use of simulation for real-time decision-making was

noted as an area for future work.

Ahn, Dunston, Kandil, and Martinez (2015) conducted a study whose

objective was to produce a DES model to abstract a process in a large earth moving

operation using a refined version of the alpha algorithm. The main input was

sensor-based time series data collected from construction equipment. The study

focused on automatically generating the structure of a simulation model to reduce

the large amounts of time required to produce an accurate model, and the

dependence on expert knowledge and data pre-processing. Future work is planned

for creating more practical algorithms related to process discovery and the creation

of automated data-driven simulation models.

 While many systems are very precise and controlled, manufacturing is

rarely so controlled. Rozinat et al. (2009) investigated the applicability of data-

driven analytics (i.e., process mining) in unstructured manufacturing processes at

ASML, the world’s leading manufacturer of chip-making equipment, to quickly

identify bottlenecks and to develop ideas for improvement. This research study is

unique in that case studies on process mining are typically based on structured

administrative processes with correct a priori knowledge of the system. The ProM

process mining framework was again used to perform process mining, as there are

many pre-made plug-ins available for use. This study demonstrates that process

mining techniques can yield concrete solutions for process improvement in

complex environments such as the wafer scanner qualification phase of ASML.

 13

More specifically, the results of testing one example machine showed that by

filtering out problematic data and using process mining techniques, three of four

testing phases that led to high amounts of idle time in the wafer scanner

qualification phase could be identified. The authors noted that future research is

needed to develop process mining techniques suitable for analyzing less structured

processes.

2.4 LITERATURE REVIEW SUMMARY

Three clear research gaps have been identified through the review of the literature.

The primary research gap calls for practical methodologies that aid in gaining a

faster understanding of the behavior of manufacturing assembly systems and the

rapid development of simulation models that relate to such systems. A second

research gap calls for the development of data-driven methodologies for the

modeling of manufacturing assembly systems of different complexities that contain

dynamic resources such as finite capacity buffers, complex routing logic, and noise.

Finally, the third research gap indicates that there is a need for simple, unified

systems that can apply advanced analytical techniques without requiring significant

domain expertise. If successfully developed, the aforementioned methodologies

have the potential to automate the discovery of simulation models and their

performance characteristics (e.g., reveal the correlation between buffer resources

and overall throughput). However, the literature reviewed shows that these research

areas are just beginning to be addressed.

 14

 Therefore, the objective of this research is to develop a methodology to

automate the process of creating, simulating, and analyzing a manufacturing

assembly system. The proposed methodology will address the need for simplified

systems that can handle dynamic behavior and complex characteristics of

manufacturing assembly systems such as finite capacity buffers and parallel

workstations. To accomplish the research objective, knowledge from a variety of

disciplines, including traditional process improvement, simulation, and process

mining will be combined into one simple integrated solution. It is anticipated that

by automating the simulation and analysis steps, a large portion of the project

timeline can be bypassed to enable a user to focus more rapidly on value-added

analysis tasks.

 15

3 RESEARCH METHODOLOGY

This chapter introduces the proposed methodology to automate the modeling,

simulation, and analysis of manufacturing assembly systems. The main phases of

the proposed methodology are depicted in Figure 3.1.

Figure 3.1. Proposed Research Methodology.

•Define Basic Types of Manufacturing Assembly
Systems

•Develop Conceptual Models for Basic Types of
Manufacturing Assembly Systems in Arena

Defining and Modeling

Manufacturing

Assembly Systems

•Define Type and Format of Event Data

•Capture Event Data

•Define Algorithm Logic to Discover the
Characteristics of a Manufacturing Assembly
System

Data Capture and

Automated Analysis of

Manufacturing

Assembly Systems

•Design the Text-Based Simulation Framework
known as the Automated Simulation Analysis
Engine (ASAE)

•Define Text-based Modeling Approach

•Implement the ASAE framework using the C++
Programming Language

Design and

Implementation of

Text-Based Simulation

Framework

•Design and Conduct Study to Validate the ASAE

•Design and Conduct User Study

Testing and Validation of
ASAE

Text-Based Simulation

Framework

 16

As depicted by Figure 3.1, the first phase of the methodology focused on

the definition and modeling of several basic types of manufacturing assembly

systems (MASs). The main objective when defining the basic types of MASs was

to capture the essential features found in discrete manufacturing environments (e.g.,

product flow options, parallel processing, finite buffers, etc.). These basic types of

MASs were then modeled and implemented using the discrete event simulation

(DES) software Arena to better understand how data could be captured when events

occurred during the simulated operation of these systems.

In the second phase of the methodology, the format of event data was

defined as well as the required methods to extract event data from the simulated

MASs to create an event log. The data in the event log were then used to discover

process characteristics of the MASs such as process flow, throughput, buffer

capacity, transition times, and process times since these process characteristics are

not easily understood by simply building a model, but typically require specialized

analysis to help understand the performance of the MAS. Algorithms were created

that utilized the data in the event log to understand each of these process

characteristics programmatically without the aid of a subject matter expert.

Phase three of the methodology focused on the design and implementation

of a new simulation framework, which includes a text-based modeling approach

that enables the automated simulation and analysis of MASs. The new simulation

framework, called the Automated Simulation Analysis Engine (ASAE), was

written in the C++ programming language. Finally, phase four of the methodology

 17

focused on the design and execution of a validation study and a user study to assess

the correctness and usability of the ASAE text-based simulation framework.

 The rest of this chapter is organized as follows. Section 3.1 describes the

steps taken to define the conceptual components of a MAS and how these elements

are used within the modeling process. Section 3.2 explains the approach used to

capture event data and how these data are used to automate analyses. Section 3.3

describes the process followed to design and implement the ASAE text-based

simulation framework. Finally, Section 3.4 describes the approach to test and

validate the correctness and usability of the ASAE text-based simulation

framework.

 18

3.1 DEFINING AND MODELING MANUFACTURING ASSEMBLY SYSTEMS

The manufacturing sector is very competitive and encompasses a wide variety of

activities including production management decisions and complex manufacturing

engineering (Heavey & Robin, 2014). Similarly, the modeling and simulation of

MASs is a complicated and time-consuming task that requires extensive expert

knowledge that is critical in facilitating a better understand of the key

characteristics of such systems (e.g., product flows, processing times, process

dependencies, etc.) (Ahn, Dunston, Kandil, & Martinez, 2015). Fortunately, there

are many methods and software solutions that can be used to model and understand

MASs.

Given the large variety of MASs that could be modeled, this research

limited its scope to three basic types to use as a basis to develop a new simulation

approach and to keep the breadth of the research to a manageable size.

3.1.1 Define Basic Types of Manufacturing Assembly Systems

Three basic types of MASs were defined in this research to identify, understand,

and test different modeling approaches. The three basic types of MASs are:

1. MAS Type I. A simple linear MAS.

2. MAS Type II. A MAS with parallel workstations and finite buffer

resources.

3. MAS Type III. A MAS with parallel workstations, finite buffer

resources, and probabilistic branching.

 19

An example of a MAS Type I is depicted in Figure 3.2. This type of MAS

is considered simple because it is composed of the most basic constructs of a

process model (i.e., sequential processes with transitions).

Figure 3.2. Example of a MAS Type I.

An example of a MAS Type II is depicted in Figure 3.3. This basic type of

MAS was used to explore the process characteristics introduced into when jobs

(i.e., entities in the context of DES), are processed in parallel, merged, and possibly

stored temporarily in finite capacity buffers.

Figure 3.3. Example of a MAS Type II.

Figure 3.4 depicts an example of a MAS Type III which incorporates

parallel workstations, finite buffer resources, and probabilistic branching (e.g.,

Process 1 Process 2 Process 3

Process 1

Process 2

Process 3

Buffer 1

Buffer 2

 20

rework and/or defects). The MAS Type III was constructed to represent more

realistic systems. The modeling knowledge developed in constructing the previous

(and simpler) models in Arena facilitated the understanding of more complex

MASs that closely resemble reality.

The following section describes the details of modeling the three basic types

of MASs using Arena.

 21

Figure 3.4. Example of MAS Type III.

Process 1

Process 2

Process 3

Process 4

Process 5

Process 6

Process 7

Buffer 1

Buffer 2

Buffer 3

Buffer 4

Buffer 5

50%

50%

22

3.1.2 Develop Conceptual Models for Basic Types of Manufacturing

Assembly Systems in Arena

This research leveraged the capabilities of Arena, a DES simulation software that

is widely used in industry and educational settings, to understand the process of

modeling the three basic types of MASs introduced in Section 3.1.1. One of the key

features of Arena is its graphical user interface (GUI), which facilitates the

definition and creation of simulation models. Through this GUI, a variety of

predefined components and/or modules can be dragged into Arena’s simulation

panel to fulfill the typical functions found in a MAS.

 Most commercially available DES simulation software packages use the

concept of an entity to represent a job moving through a MAS (Kelton, Sadowski,

and Zupick, 2010). Other components available in Arena that are used to represent

additional constructs of a MAS include resource, process, and variable. Table 3-1

explains in more detail the purpose of these components.

23

Table 3-1. Components Available in Arena to Build Simulation Models.

Component Type Description

Entity Represents an individual instance of a job.

Resource User defined element that can be used to define

workers, buffers, materials, etc.

Process Represents a specific step within a simulation model.

Variable Defined values that can be tracked and updated to

reflect characteristics of a process.

Arena also provides a variety of modules to control the simulation of a

model. The modules available within Arena that were used to create the simulation

models of the three types of MASs are listed and described in Table 3-2. Arena

offers additional modules that can be used to model many types of systems, but not

all the modules were relevant for the purposes of this research.

24

Table 3-2. Modules Available in Arena to Build Simulation Models.

Component Type Description

Create Used to create entities and to define inter-arrival times

and the number of entities per arrival. Represents an entry

point into a DES model.

Assign Used to assign a value to a pre-defined variable at a

certain location in the DES model when an entity arrives

to the module.

Seize Used to seize a defined resource within the DES model.

Delay Used to represent a time-oriented event. When an entity

hits a delay module, the entity waits a defined period of

time before moving forward through the DES model.

Process Used to group Seize, Delay, and Release modules into a

single module. The Process module seizes a defined

resource, delays it for a defined period of time, and

releases the resource for further use.

Hold Used to hold an entity until a defined condition is met.

Decide Used to define branches within the DES model based on

pre-defined probabilities or percentages.

Release Used to release a defined resource when triggered by the

arrival of an entity.

VBA Used to develop custom modules that execute user-

defined code that is triggered by the arrival of an entity.

Match Used to match a defined number of entities before

releasing them further into the DES model.

Batch Used to merge multiple entities into a single entity.

Dispose Used to remove entities from the DES model.

Depending on the basic type of MAS to be modeled, a user must select the

appropriate combination of components and modules available in Arena and

connect them to represent a real-world MAS as closely as possible.

25

3.1.2.1 Modeling the Simple Linear MAS in Arena

The simulation model of a conceptual simple linear MAS (i.e., MAS Type I) can

be built in Arena by linking several Process modules in a sequence. Alternatively,

a MAS Type I can be built by using a set of Seize, Delay, and Release modules

linked together in a sequence. Once the MAS Type I is built using one of these

options (or a combination of the two), entities (i.e., jobs) will enter the MAS

through a single Create module and will exit the system through a single Dispose

module. Prior to running the simulation, the Seize and Release modules must be

configured to utilize available resources that have been defined within Arena.

 In this research, the MAS Type I was composed of three processes, each

with separate Seize, Delay, and Release modules. The complete Arena simulation

model of the MAS Type I is depicted in Figure 3.5. Separate Seize, Delay, and

Release modules were used to provide clarity in each step of the modeling process,

to allow for the addition of custom logic, and to facilitate the recording of event

data at distinct points in the simulation model. The separate modules facilitate a

finer level of control when specific resources are seized and when event data are

recorded into comma-separated value (CSV) files.

As Figure 3.5 shows, the Arena simulation model of the MAS Type I begins

with a Create module that defines the entry point into the MAS. The Create module

is followed by three sequential process steps, each represented by a combination of

26

Seize, Delay, and Release modules. The Arena simulation model is completed with

a single Dispose module to serve as an exit from the MAS.

Figure 3.5. Simulation Model of a MAS Type I in Arena.

3.1.2.2 Modeling a MAS with Parallel Workstations and Finite Buffer Resources

in Arena

The addition of parallel workstations and finite buffer resources rapidly increases

the complexity of creating a simulation model in Arena. Therefore, a MAS Type II

was created in Arena to understand the main modeling challenges, and to learn how

to overcome these challenges in future DES software. It is important to note that

Arena does not have a pre-defined module that can be used to represent finite buffer

resources in a MAS. Therefore, custom logic must be developed to add this

behavior to a simulation model.

27

There are many approaches to model a finite buffer resource in Arena. In

this research, finite buffer resources were defined with a set capacity (i.e., an

available number of buffer slots). A buffer slot in the finite buffer resource is seized

when an entity exits a process and released when the entity enters the next process.

If a finite buffer resource has no capacity left, then an entity will have to wait until

a buffer slot is available.

The logic to implement this specific modeling approach must be interleaved

with the process resources so that as an entity flows through the MAS, the finite

buffer resource is controlled correctly when processes begin and finish,

respectively. More specifically, a process cannot be made available (i.e., released

in Arena) until an available buffer slot in the finite buffer resource can be seized,

which means that an entity has moved out of the process module and into a buffer

slot. Making the logic required to represent a finite buffer resource “transparent” to

a user is one characteristic this research aims to simplify.

Figure 3.6 depicts the Arena simulation model of a MAS Type II. The model

starts with two Create modules that are used to initiate the two branches of the

MAS. On each branch, the Create modules are followed by a sequence of Seize,

Delay, and Release modules. Since a MAS Type II contains finite buffer resources,

the modules labeled “Release worker 0” and “Release worker 1” take place

immediately after their corresponding buffer modules are seized (i.e., “Seize Buffer

0” and “Seize Buffer 1”) and not directly after the Delay modules (i.e., “Delay 0”

and “Delay 1”). Similarly, the resources labeled “Seize Buffer 0” and “Seize Buffer

28

1” are not released until the next worker resource is able to be seized (i.e., module

labeled “Seize worker 2”). Before the next worker is seized, the individual entities

coming from the two branches must be merged into a single entity. The merging of

entities is accomplished through the Match and Batch modules labeled “Assembly

Match” and “Batch 1”, respectively. The Match module ensures that there is a

matching pair of entities and the Batch module takes the two entities and merges

them into a single entity. Once merged into a single entity, the next worker can be

seized, and the buffer resources released, which is represented with the modules

labeled “Seize worker 2” and “Release Buffers 0 and 1”, respectively. This pattern

of seizing a buffer resource and later releasing it simulates the use of finite buffer

resources within the Arena DES software. The entities exit the MAS via a single

Dispose module.

29

Figure 3.6. Simulation Model of a MAS Type II in Arena.

30

3.1.2.3 Modeling a MAS with Parallel Workstations, Finite Buffer Resources, and

Probabilistic Branching in Arena

Since the approach to model parallel workstations that merge into another

workstation and finite buffer resources in Arena has already been discussed in

Section 3.1.2.2, the focus of this section will be on describing how to model

probabilistic branching. This modeling feature is used in Arena to incorporate the

randomness and inconsistences of real MASs.

The module Decide is used in Arena to branch a process based on a set of

user-defined probabilities. For example, a MAS may have two processing branches

each taken 50% of the time. In this case, the Decide module would be connected to

two paths with conditional probabilities set to 0.5, respectively. Processing errors,

which are often represented as a probabilistic branch, are common in real MASs

and are important characteristics to capture in a simulation model. The ability to

model probabilistic branching was one particular characteristic this research

wanted to incorporate into the proposed ASAE text-based simulation framework.

 Figure 3.7 depicts the complete Arena model of a MAS Type III. While the

details of the modules cannot be read, Figure 3.7 is used to show general structure

and complexity. There is a single Decide module in this Arena simulation model

(see the rhomboidal icon at the end of the first processing branch), which represents

the inclusion of rework into the DES model.

31

Figure 3.7. Simulation Model of a MAS Type III in Arena.

32

3.2 DATA CAPTURE AND AUTOMATED ANALYSIS OF MANUFACTURING

ASSEMBLY SYSTEMS

The Arena simulation models of the three basic types of MASs were used to

explore:

• How to extract data from the simulation model of a basic type of MAS,

• How to define the format of these data to enable effective analysis, and

• How to leverage these data programmatically to automate the analysis

of a basic type of a MAS.

Each of these focus points were explored within the context of Arena and

were used to build an initial understanding of how to handle event data in a DES

software package. Collecting formatted event data from a simulation model enables

the programmatic analysis of MASs without the need of a simulation subject matter

expert (SME).

3.2.1 Define Type and Format of Event Data

When executing the simulation of a MAS using DES software, specific event data

are often collected to gain insight into its performance. Examples of these event

data may include start time, end time, and the number of jobs processed, to name a

few. Furthermore, the event data should be collected in a specific format to enable

certain types of analyses.

When selecting the format of event data to be captured, it is important that

the details chosen are not too high-level as to not capture the intricacies of the MAS

33

but, instead, be organized and recorded at a level that enables individual jobs to be

identified at each process step. To enable this, event data such as the “start time”

and “end times” for each process are recorded with an associated “job ID” and

“process ID” to provide a distinguishable record that can be linked to a particular

job instance at a certain process within a simulation model.

It is also crucial that there is a method for identifying process flow

information within the simulation. In this research, process flow information was

discovered through the field “process ID”, which is recorded for every start event.

The field “process ID” for start events is a composite ID that combines the

identification numbers of the previous process (listed first) followed by the current

process. For example, if Process A is the first in a MAS followed by Process B,

then the start records associated with Process A would be identified by “A”,

because there are no jobs before it. However, the start events for Process B would

be identified with the composite ID “AB” to indicate that the job moved from

process A to process B. Recording process flow in this manner allows for an

instance of a job to be tracked through the MAS and provides insight into process

flow. The process ID format just described is illustrated in the column labeled

“ProcessID Enter” in Table 3-3, which also shows additional columns that track the

job instance, start and finish times, and resource information. The event data

enables the analysis of process flow, throughput, and buffer capacity.

34

Table 3-3. Example Event Data Extracted from a Simulation in Arena.

JobID

Enter

ProcessID

Enter
StartTime Resource

JobID

Exit

ProcessID

Exit
EndTime

1 A 0 Worker 1 1 A 0.506561

2 A 0.506561 Worker 1 2 A 1.177419

3 A 1.177419 Worker 1 3 A 1.712956

1 AB 0.506561 Worker 2 1 B 1.735751

4 A 1.712956 Worker 1 4 A 2.400493

5 A 2.400493 Worker 1 5 A 2.876961

2 AB 1.735751 Worker 2 2 B 3.199425

6 A 2.876961 Worker 1 6 A 3.495455

7 A 3.495455 Worker 1 7 A 4.093871

3 AB 3.199425 Worker 2 3 B 4.429114

8 A 4.093871 Worker 1 8 A 4.595768

9 A 4.595768 Worker 1 9 A 5.155075

4 AB 4.429114 Worker 2 4 B 5.679988

10 A 5.155075 Worker 1 10 A 5.771469

3.2.2 Capture Event Data

To record and extract event data while a basic type of MAS was simulated, custom

code was written in Arena’s Visual Basic for Applications (VBA) programming

language and integrated into the simulation model via the VBA module. The

custom VBA code was written to automate the process of collecting event data (i.e.,

start times, end times, process ID, and job ID) and to write these data into a

Microsoft® (MS) Excel spreadsheet for use in analysis.

The custom VBA code added to Arena can be setup to run at various points

within the simulation (e.g., when the simulation starts, when the simulation ends,

or at the arrival of an entity to a module). For the purposes of this research, the

35

VBA code used to extract event data from the simulation of a MAS was executed

when an entity entered the VBA module.

Figure 3.8 illustrates an example of the VBA code written for a function

(i.e., VBA_Block_3_Fire()) that is used in Arena to collect event data for each

entity that enters a VBA module. At the beginning of the function, a few variables

are first defined to store values from Arena’s Application Programming Interface

(API). The simulation is then queried to obtain the values to be stored in these

variables. Next, variable values are stored in an MS Excel worksheet. Finally, the

row number is incremented for the next event.

The VBA code structure shown in Figure 3.8 was repeated at various

locations in an Arena simulation model to extract event data at each process step.

The complete listing of VBA code integrated into the Arena simulation model of

each basic type of MAS is included in Appendices A, B and C.

36

 ‘Function to record event data when an entity enters the VBA module

Private Sub VBA_Block_3_Fire()

 ‘Define Variables

Dim jid As Long

Dim simTime As Double, startTime As Double

‘Assign variables values from Arena’s Application Programming

Interface (API)

startTime = oSiman.EntityAttribute(oSiman.ActiveEntity,

startTimeindex3)

simTime = oSiman.RunCurrentTime

jid = oSiman.EntityAttribute(oSiman.ActiveEntity, jobIDAttindx)

‘Place values into excel worksheet

With oWorksheet

 .Cells(nNextRow, 1).value = jid & "C"

 .Cells(nNextRow, 2).value = "Process 3"

 .Cells(nNextRow, 3).value = startTime

 .Cells(nNextRow, 4).value = simTime

 .Cells(nNextRow, 5).value = "Worker 3"

End With

‘Increment to the next row in the excel worksheet

nNextRow = nNextRow + 1

End Sub

Figure 3.8. Example VBA Code for a Custom VBA Module in Arena.

37

3.2.3 Define Algorithm Logic to Discover the Characteristics of a

Manufacturing Assembly System

The analysis of a MAS can be challenging if insufficient event data are captured

during the simulation. However, as described in Section 3.2.1, when event data is

recorded with distinct job IDs, process IDs, and start times, characteristics of the

MAS such as process flow, process times, and transition times can be discovered.

Discovering process characteristics would not be possible if DES software

packages just simulated the model of a system and terminated. Instead, DES

software packages simulate and track the performance characteristics of a system

to provide insight into a model.

In this research, the event data extracted from the Arena simulation models

of the different types of MASs were used to drive the development of algorithms

to help understand process characteristics programmatically including process

flow, throughput, transition frequencies, transition times, utilized buffer capacity,

and process performance.

3.2.3.1 Unique Processes

One of the main uses of event data collected from the MASs simulated in Arena

was to distinguish individual processes within a MAS. The identification of

individual processes was accomplished by iterating though each event record for a

finishing process ID (i.e., “JobID Exit” in the MS Excel sheet) and constructing a

38

set of process IDs. After iterating through every entry of the event log, all the unique

processes within the MAS are known.

3.2.3.2 State Transitions

The use of event data to better understand how jobs flow through a MAS can be

challenging. This research addressed this challenge through the use of a transition

state matrix (TSM). In the context of a MAS, a TSM represents the connections

that exist between unique processes. Once the initial TSM of a MAS is constructed,

valid transitions (i.e., paths that entities may take from one process to another) can

be identified. In addition, once the TSM is populated with frequency information,

analyses can be performed to understand process flow. Table 3-4 shows an example

of how a TSM can be used to represent process flow.

Table 3-4. Example of a Transition State Matrix.

PID A B C

A A to A A to B A to C

B B to A B to B B to C

C C to A C to B C to C

 Programmatically, a TSM is created in the C++ programming language

using a two-dimensional array of size M by M, where M represents the number of

unique processes and each index represents a transition. The counts for each process

39

transition (i.e., represented with an index in the two-dimensional array) are

determined by iterating through the event data in the TSM.

The TSM can also be used to understand flow through a system via the

dependency information contained within the process ID (i.e., see the columns

labeled “A”, “B”, and “C” in Table 3-4).

3.2.3.3 Terminal States

The simulation model of a MAS contains both entry points (i.e., points at which

entities enter the MAS) and exit points (i.e., points at which entities leave the

MAS). When determining the throughput of a MAS, it is necessary to know how

many exits a MAS has. In the context of a TSM, the exit of a MAS is referred to as

a terminal state, which means that an entity is terminated when it reaches that

position. Once a TSM has been constructed, the identification of all terminal states

is a trivial task since a terminal state will have zero connections.

Terminal states are represented as rows that contain zero transitions in a

TSM, as illustrated by the row for PID C in the TSM shown in Table 3-5. When

each row with zero transitions is identified, each exit from a system (i.e., terminal

state) is known and the throughput characteristics can be further understood.

40

Table 3-5. Example of a TSM with PID C Representing a Terminal State.

PID A B C

A 0 100 0

B 0 0 100

C 0 0 0

3.2.3.4 Jobs Completed and Throughput

The jobs completed per time unit, also known as throughput, is an important metric

that helps in understanding how well a MAS is performing. To determine the

throughput of a MAS, all terminal states (i.e., process flow information) must be

known ahead of time to understand when entities are exiting the MAS. Once the

terminal states are known (i.e., rows of a TSM with zero transitions), the event data

can be processed to determine how many jobs are completed at each terminal state.

The throughput can be described for each individual terminal state or for

the entire MAS by providing the following two metrics:

1. The count of all jobs exiting the MAS at a position or from the entire

MAS, and

2. The time per job based on the simulation time.

The metric “time per job” is calculated by dividing the total simulation time

by the number of jobs completed. Calculating the “time per job” for a terminal state

or for the entire MAS involves the same calculation.

41

3.2.3.5 Buffer Identification and Maximum Utilized Capacity

Understanding how dynamic resources (i.e., finite buffers) are being utilized within

a MAS can be challenging. Therefore, a performance metric to reflect the maximum

capacity utilized by a given buffer resource at a valid transition was calculated.

Figure 3.9 depicts the process to calculate this performance metric, which consists

of the following steps:

1. Find Valid Transitions. Collect and organize all valid job IDs from the

upstream process that will be passed to the downstream process. This

collection can be seen as set T in Step 1 of Figure 3.9. This step is

required since probabilistic branching is possible at any transition, and

only the jobs that are valid for a given transition should be used.

2. Find Finite Buffer. Determine if a buffer is present by using a “sliding

window” approach. In the “sliding window” approach, the window is

the gap between sequential jobs. Three sequential job instances within

a connection (i.e., Jobs 1, 3, and 4 in Figure 3.9) are extracted from the

data obtained in Step 1 to check if a job (i.e., Job 3) is in the window. If

a job is in fact stuck between two running processes, this situation

indicates the presence of a buffer.

3. Find Maximum Finite Buffer Capacity. The maximum utilized

capacity of the finite buffer is then calculated by expanding and

shrinking the “sliding window” as jobs start and finish. As shown in

42

Step 2 of Figure 3.9, if the downstream process is working on job ID 1

and the upstream process is working on job ID 4, then Job 3 is in the

buffer. As seen in Step 3, if the upstream process finishes two more job

and starts Job 8, then Jobs 3, 4, and 7 are all in the buffer (i.e., the

“sliding window” is expanded). Similarly, if the downstream process

finishes Job 1, then one job has exited the buffer thus shrinking the

“sliding window”. This logic continues for all event data and, each time

a new maximum capacity is discovered, the value is updated. In the end,

the value of the maximum capacity of a buffer is returned and recorded

for that transition.

Figure 3.9. Steps to Calculate Maximum Utilized Buffer Capacity.

2. Find the Finite Buffer

3. Find Maximum Capacity of the Finite Buffer

8 7 14 3

1. Find Valid Transitions

T = {1,3,4,7,8,9,12}

4 3 1

Job

Process

#

Legend

43

3.2.3.6 Process Performance

The process time is important when trying to understand characteristics such as

throughput or when trying to identify the presence of bottlenecks. To provide

insight into the performance of a process, the average process time is provided. This

metric is determined by finding the start and finish record for a job instance at a

given process and comparing the difference in simulation time. This is then

repeated for each start and finish record and summed into a total process time.

When each process time has been aggregated, the total is then divided by the

number of jobs completed at that process to provide the average process time.

44

3.3 DESIGN AND IMPLEMENTATION OF THE TEXT-BASED SIMULATION

FRAMEWORK

The knowledge gained after modeling, simulating, and analyzing the basic types of

MASs in Arena was applied to the design of a new text-based simulation framework

known as the Auto Simulation Analysis Engine (ASAE). The ASAE text-based

simulation framework seeks to simplify the process of defining, building, and

executing the simulation of a MAS and is comprised of the following three primary

components (also depicted in Figure 3.10):

1. A text-based modeling approach,

2. A simulation engine, and

3. Automated analysis of process characteristics.

The ASAE text-based simulation framework allows a user to abstract a

MAS process into simple components that can be passed to the simulation engine.

The simulation engine can execute and analyze a simulation with just a text-based

description of the MAS provided by the user, thus simplifying the simulation task

and reducing the amount of experience needed to understand the simulation. The

automated analysis allows the user to quickly acquire an understanding of the

process characteristics without having to sort through process data manually thus

saving time and resources.

45

3.3.1 Design of the Automated Simulation Analysis Engine Text-Based

Simulation Framework

Simulation software packages are complex systems composed of many different

elements including time, events, entities, resources, processes, and buffers, to name

a few. When combined, these elements mimic the behavior of a real-world MAS.

The process of building a simulation model requires a great deal of time, as

well as a deep understanding of not only simulation concepts but also the simulation

software being used. In the case of the Arena simulation software, the user must

understand how to create a simulation model using its GUI-based interface and how

to define each module. Upon creating an initial simulation model, the specific

parameters of the simulation run must be defined. Once the simulation run

parameters have been defined and set, the simulation model can be executed. After

the simulation ends, a base set of performance metrics based on entities, queues,

and resources is presented. Each one of the steps just described requires knowledge

of the Arena simulation software as well as simulation concepts.

The main objective in designing the ASAE text-based simulation

framework was to eliminate the steep learning curve experienced by users when

creating, running, and analyzing a simulation model with most of today’s

commercially available simulation software packages. The ASAE text-based

simulation framework accomplishes this goal by simplifying the number of steps

required to complete a simulation study.

46

In the ASAE text-based simulation framework, a simple text-based model

file describing the structure of the MAS is passed to a simulation engine. The

simulation engine then constructs a model of the MAS, executes the simulation,

collects process data, and performs the initial analysis. The simulation engine

component of the ASAE text-based simulation framework was created with the

C++ programming language, and can be executed on any platform capable of

running C++ programs. The simplified approach used by the ASAE text-based

simulation framework completes the core simulation tasks, which include model

construction, model execution, data collection, and analysis, as depicted in Figure

3.10.

Figure 3.10. Main Components of the Auto Simulation Analysis Engine.

Text-Based Model

File

Auto Simulation

Analysis Engine

Process

Characteristics

Construct

Simulation

Execute Simulation

Perform Initial

Analysis

Record Event Data

Auto Simulation Analysis Engine

47

The creation of a proper interface to describe the structure of the MAS was

one significant challenge faced in the design of the ASAE text-based simulation

framework. Arena uses a GUI but, in the case of the ASAE simulation framework,

a text-based approach was used instead. The text-based interface allowed for the

core details of the MAS to be defined in one location and in a simple, easily

understood format.

3.3.2 Definition of the Text-based Modeling Approach

In the ASAE text-based simulation framework, a text file is used by the user to

describe what the simulation engine should construct and simulate. The text file

must contain data about the simulation model including process characteristics,

process flows, finite buffer characteristics, and the terminating condition (i.e., the

number of jobs simulated). The text file is the only component of the simulation

the user needs to understand. By separating the model definition task from the core

simulation system task, the user does not have to be concerned with the intricacies

of constructing and executing a simulation, or even the collection and analysis of

data. An example of a complete text file for a MAS with three processes and two

finite buffers is depicted in Figure 3.11. The line numbers shown in Figure 3.11 are

not part of the actual text file used in the ASAE text-based simulation framework,

but are included here to facilitate the explanation.

48

1: <MODEL>

2: <100>

3: <3>

4: <PROCESS 1>

5: <T:3:4:5>

6: <0>

7: <1,03(1.00)05>

8: <0>

9: </PROCESS 1>

10:

11: <PROCESS 2>

12: <T:5:6:7>

13: <0>

14: <1,03(1.00)05>

15: <0>

16: </PROCESS 2>

17:

18: <PROCESS 3>

19: <T:2:3:5>

20: <2>

21: <0>

22: <2,(01,0),(02,0)>

23: </PROCESS 3>

24: </MODEL>

Figure 3.11. Example of a Text File used in the ASAE Simulation

Framework.

Process 1

Process 2

Process 3

Buffer 1

Buffer 2

49

Each process characteristic must be entered in the text file in a concise and

organized format similar to that of the hypertext markup language (HTML) or the

extended markup language (XML). As shown in Figure 3.11, the entire simulation

model is contained within a model tag with the format <MODEL> </ MODEL >.

The simulation model tag contains the number of jobs to simulate (line 2), the

number of process steps (line 3), and a process block for each process (lines 4, 11,

and 18).

Similarly, each process block is contained within a numbered process tag

with the format <PROCESS #> </ PROCESS #>. The process tag contains four

parameters:

1. Process Time.

2. Process Type.

3. Downstream Connections.

4. Upstream Connections.

The first line in the <PROCESS #> block (lines 5, 12, and 19) describes the

statistical distribution (and its corresponding parameters) that most closely

characterizes the process time. The ASAE text-based simulation framework allows

a user to employ four different statistical distributions to characterize process times.

Table 3-6 list these statistical distributions and shows the format that must be

followed to define them in the text file.

50

Table 3-6. Statistical Distributions used by the ASAE Text-Based Simulation

Framework to Describe Process Times

Statistical Distribution Text File Format

Triangular T:Low:Avg:Upper

Normal N:Average:stdDev

Uniform U:Lower:Upper

Constant C:Value

The next line within the process block defines the position type (lines 6, 13,

and 20). The position type parameter is used to describe (1) the position of the

process (relative to other processes in the MAS), and (2) whether there are jobs

before or after the process. The ASAE text-based simulation framework will treat

jobs at processes differently depending on whether the job is at the beginning,

middle, or end. Three options can be entered in the text file to indicate whether a

process is at the beginning (i.e., 0), in the middle with upstream and downstream

connections (i.e., 1), or at the end indicating a terminal position (i.e., 2).

The third line within the process block (lines 7, 14, and 21) describes the

downstream connections of a process, which tells the ASAE text-based simulation

framework how to handle jobs after they are completed (i.e., describes where to

place the job when completed and what buffer the job will be placed in). The third

line in the process block is also used to describe the probability of taking a given

downstream process connection. In many simulation models, probabilities are used

to control how jobs are passed through the system when there is more than one

51

branch that can be taken at a point in the MAS. Every process is also associated

with a buffer with a certain capacity. This format is illustrated in line 7, where

PROCESS 1 has only one downstream connection going to process 3. Since there

is only one possible connection, the probability is expressed as 1.00 (i.e., 100%).

The associated buffer (i.e., Buffer 1) has a capacity of 5. This information is entered

into the text file as 1,03(1.00)05. Another example for a process that has two

downstream connections to processes 3 and 4 with a 50% probability for each

branch, and buffer capacities of 5 and 5, respectively, is entered into the text file as

2,03(0.50)05,04(0.50)05. In the case that a process has no downstream connections

(i.e., a terminal position), the third line of the process block is filled with a <0>, as

is the case with PROCESS 3 in the example depicted in Figure 3.11.

 Finally, line four within the process block (lines 8, 15, and 22) indicates the

upstream connections of a process. The values of the parameters specified in this

line of the text file tell the ASAE text-based simulation framework where a received

job is coming from. More specifically, the parameter values define from which

process and from which buffer to pull the next job when it is completed at a process.

In the example text file depicted in Figure 3.11, line 8 and line 11 show a <0>

because PROCESS 1 and PROCESS 2 do not have an upstream process. However,

PROCESS 3 (see line 22) has both PROCESS 1 and PROCESS 2 as upstream

connections. PROCESS 1 and PROCESS 2 both have independent buffers to store

their completed jobs, and thus when PROCESS 3 is ready to start a job, one job

must be pulled from PROCESS 1’s buffer and one job must be pulled from

52

PROCESS 2’s buffer. Since both PROCESS 1 and PROCESS 2 only have one

buffer, the line in the text file will indicate to pull from the first available buffer

identified with an index of 0. The line to represent this process logic is then entered

in the text file as 2,(01,0),(02,0).

3.3.2.1 Web Interface to Create a Text-File for a Model

The details for creating the text file used by the ASAE simulation framework can

be difficult to remember. Therefore, a web-based tool was developed to aid the user

in the creation of the text file needed to simulate a model.

The web-based interface, depicted in Figure 3.12, was implemented using

HTML, JavaScript, cascading style sheets (CSS), and the React framework. The

web-based interface provides a structured template for the data entry process and is

composed of four main panels:

• Model Definition

• Process

• Format

• Model File

The Model Definition panel (see Figure 3.12, label 1) allows the user to

initialize the structure of a simulation model via two input fields: “Number of Jobs”

and “Number of Processes”. The value entered in the input field “Number of Jobs”

defines how many jobs will be simulated in the model, whereas the value entered

53

in the field “Number of Processes” specifies how many process steps must be

defined by the user.

After values for the number of jobs and the number of processes are entered,

the user must press the “DEFINE” button to enable the Process Panel (see Figure

3.12, label 2). The Process panel is used to define the parameters of each process

found within a MAS, including “Process Time”, “Position Type”,

“DownStreamConnections”, and “UpstreamConnections”. After defining the

parameters for each process block, the “ADD” button must be pressed to update the

model file.

The Format panel (see Figure 3.12, label 3) displays examples of how each

process parameter must be formatted when entered in the Process panel. Finally,

the Model File panel (see Figure 3.12, label 4) displays the model file being created

and allows the user to edit the information already entered, if needed.

54

Figure 3.12. Auto Simulation Analysis Model Creator Online Interface.

1

2

3
4

55

3.3.3 Implementation of the Simulation Engine of the ASAE Text-Based

Simulation Framework

The simulation engine of the ASAE text-based simulation framework was

implemented using the C++ object-oriented programming language. The

simulation engine is composed of five primary classes, as shown in Table 3-7.

Table 3-7. Classes of the Simulation Engine

Class Name Description

Simulation Main controller of the simulation. Used to create and run a

simulation model. Contains the logic for constructing and

executing the simulation model, and for recording event data.

Process Used to define a single process within the simulation model.

Contains parameters for all process characteristics.

Event Used to describe the characteristics of each event in the

simulation.

Buffer Used to take events from a process and store them in a buffer.

DataCrawler Data analysis class that processes all collected event data to

provide the initial analysis.

3.3.3.1 Class Structure

Each of the five classes of the simulation engine of the ASAE text-based simulation

framework provide specific functionality when running the simulation model of a

MAS. Figure 3.13 depicts a Unified Modeling Language (UML) class diagram of

the simulation engine. The UML class diagram shows the relationships between the

56

classes, as well as a more detailed description of the data elements and functions

included in each class.

57

Figure 3.13. UML Class Diagram of the Simulation Engine.

1

2

5

3

4
+ Public

- Private

58

Each class in the UML class diagram is represented as a block. Each block

is divided into three sections, as depicted in Figure 3.14. The top section displays

the name of the class. The second section is used to list the variables that are

members of the class. Finally, the third section lists the functions of the class. To

the left of each variable and function listed within a class block, a “+” or a “-” is

used to indicate whether the variable or function is public or private to the class.

Figure 3.14. Format of a UML Class Block.

 The following sections provide more details about the specific functionality

provided by each of the five classes that comprise the simulation engine of the

ASAE text-based simulation framework.

59

3.3.3.2 Simulation Class

Within the ASAE text-based simulation framework, the Simulation class is the

main driver of the simulation as it contains all the time and scheduling information

used to process the correct events in the proper order.

The Simulation class implements a priority queue data structure in which

events are ordered based on their priority (i.e., the time the event is scheduled to

take place). Events are continually processed and pulled from the priority queue in

chronological order. The simulation time is controlled by the processing and

scheduling of events in the priority queue. In the case of wait events (i.e., a process

is blocked or starved), the simulation waits for a predefined time step of .001 time

units until an entity is ready to be processed or space is available in a buffer. The

Simulation class also contains the definition of each process within the MAS.

3.3.3.3 Process Class

The Process class is used to capture the unique characteristics of each process

within the MAS, including process time, position type, upstream dependencies,

downstream dependencies, and associated buffers.

As explained in Section 3.3.2, the ASAE text-based simulation framework

is capable of simulating process times using the normal distribution, the uniform

distribution, the triangular distribution, or a constant time. The position type

parameter indicates whether a process is at the front, middle, or end of the line. The

parameters for the upstream and downstream dependencies tell the system what

60

jobs come before and after a specific process. Each process is also always

associated with buffers that will collect jobs when finished with processing.

3.3.3.4 Buffer Class

The Buffer class is used to represent the characteristics of a buffer between process

steps. The characteristics of a buffer include a queue with a finite capacity to allow

for jobs (i.e., events within the ASAE text-based simulation framework) to be

stored. A buffer in the ASAE text-based simulation framework can be thought of

as a first-in, first-out (FIFO) container with a certain amount of space.

In the context of C++, there is a data structure called a queue that represents

a FIFO construct to store data objects. As a process finishes a job, this job is then

placed in the queue. A downstream process can then pull that job from the buffer

when it is ready to continue processing. The capacity of the buffer is also set in the

Buffer class to describe how many jobs can be stored in the buffer.

In the ASAE text-based simulation framework, a buffer reports its own state

to the rest of the simulation system. When called, a buffer can indicate that it is full,

empty, or has space. The state of a buffer controls how the rest of the simulation

will schedule events.

61

3.3.3.5 Event Class

Events are what drive the entire simulation. The Event class is used to represent a

specific event that takes place within a process at a distinct time. There are six

different types of events that can occur in a simulation, as shown in Table 3-8.

Table 3-8. Types of Events in the ASAE Text-Based Simulation Framework.

Event Type Description

Start Used to represent the beginning of processing.

Finish Used to represent the completion of processing.

Push Used to represent the placement of a job into an

output buffer.

Pull Used to represent the extraction of a job from an

input buffer.

Wait to Push Used to indicate that the simulation must wait

before placing another job in the output buffer.

Wait to Pull Used to indicate that the simulation must wait

before extracting another job from the input

buffer.

Each type of event listed in Table 3-8 has a specific consequence (i.e.,

schedules another event and places it into the event queue) based on the event type

and the state of dependencies. The event processing logic followed in the ASAE

text-based simulation framework is depicted in Figure 3.15.

62

Figure 3.15. Control Logic for Processing and Scheduling Events.

Initialize
Simulation

Start Event

Finish Event

Complete all
Jobs?

No

Terminal
Position?

Front
Position?

Pull Event

Input Buffer
Empty?

End Simulation

Yes

Yes

No Yes Wait to Pull
Event

Push Event

Output
Buffer Full?

Yes Wait to Push
Event

No

Yes

No

No

63

In the ASAE text-based simulation framework, a “Start” event is scheduled

to indicate that a process has begun. When a “Start” event is processed, a processing

time is generated from a statistical distribution and added to the current simulation

time to provide the scheduling time for a corresponding “Finish” event. The

“Finish” event represents an entirely new event used to indicate the end of

processing at a given process.

When processing a “Finish” event, a corresponding “Push” event is

scheduled at the exact time of the “Finish” event. A “Push” event represents the

placement of a job into a buffer. A “Push” event can schedule either a “Pull” event

or a “Wait to Push” event based on the state of the process’s buffer. If the buffer

that the event is supposed to be placed in is not full, then the event can be placed in

the queue and a “Pull” event is scheduled. If the buffer is full, then a “Wait to Push”

event is scheduled, and a standard simulation time increment of .001 time units is

added to the time of the “Push” event. The “Wait to Push” event will then enter a

cycle of incrementing the scheduled time by the simulation’s time interval until the

buffer has space available. When the buffer has space, the “Wait to Push” event

will then schedule a “Pull” event for the process to continue processing.

The “Pull” event represents the process of pulling the next job from the

input buffer. When a “Pull” event is processed, the input buffer will be checked to

indicate if a job is available. If a job is available, then it can be pulled from the

queue and a “Start” event is scheduled. If a job is not available, then the process

must wait to pull a job with a “Wait to Pull” event. The “Wait to Pull” event is

64

similar to the “Wait to Push” event in that the “Wait to Pull” event also enters into

a cycle of incrementing the scheduled time until the input buffer has a job that can

be pulled into the starved process.

When an event is at the front of the line and when an event is at the end of

the line the standard processing model changes slightly. If the event is at the front

of the line (i.e., there is no input buffer), a “Start” event is immediately scheduled

from a “Push” event. If the event is at the end of the line (i.e., there is no output

buffer) the “Pull” event is immediately scheduled from a “Finish” event.

3.3.3.6 DataCrawler Class

The DataCrawler class encompasses all the algorithmic analysis described in

Section 3.2.3 within a single C++ class. The attributes in this C++ class are

extracted from the “starts.txt” and “finish.txt” files, which are included in Appendix

J and Appendix K respectively. The “starts.txt” and “finish.txt” text files are read

into the program and converted into vectors (i.e., a C++ array data structure that

contains additional functionality to easily manage items) containing the details of

each start object and finish object. The start and finish objects are C++ structures

that store data for easy access and processing. The DataCrawler C++ class then

follows the sequence of data analysis steps described in Section 3.2.3. When each

data analysis step is completed, the results are recorded in a results file and

presented to the user.

65

3.3.3.7 Running a Simulation with the ASAE Text-Based Framework

Figure 3.16 depicts the steps required to execute a simulation using the ASAE text-

based simulation framework. The first step is to read in and parse the model file

provided by the user. More specifically, the model file is parsed to identify (1) the

characteristics of each process within the simulation, and (2) the number of jobs to

simulate, as specified by the user. The model description that results from parsing

the model file is then used in the second step to construct the simulation model. The

construction of the simulation model involves defining each process instance and

connecting the processes together based on the model file provided by the user.

Once the simulation model is constructed, the next step is to initialize it with

“Start” events (i.e., jobs). A “Start” event is scheduled for every position at the front

of the line (i.e., an entry point into the process), which begins the event processing

loop seen in Figure 3.15. Once the simulation is initialized, the simulation model

can be executed, and events are pulled from the event queue. During event

processing, “Start” events and “Finish” events are collected for use in analysis.

Once the simulation has completed the required number of jobs, the simulation

terminates.

At the completion of the simulation, start information and finish

information for all complete jobs is stored in two files named “starts.txt” and

“finish.txt”, which are then used to initialize the DataCrawler class. Each of the

recorded start records and finish records are read into the DataCrawler class for use

66

in processing. The DataCrawler class then uses these data to determine performance

characteristics of the MAS being simulated. Each performance characteristic

calculated by the DataCrawler class is written into a report, which is presented to

the user before the program closes.

Figure 3.16. Steps for running a Simulation in the ASAE Text-Based

Simulation Framework.

Start Program

Parse
Model File

Construct
Simulation

Initialize
Simulation

Execute
Simulation

Execute
DataCrawler

Generate
Results Report

End Program

67

3.3.3.8 Capturing Performance Data from the Simulation

The DataCrawler class enables the collection of simulation performance data from

“Start” and “Finish” events in a specific format. “Start” and “Finish” events are

tracked during the simulation because they are fundamental in determining when

jobs enter and exit either a single process steps or a series of linked process steps.

Once the start and end of a process (or a group of processes) has been identified,

the transfer times and buffer characteristics associated with these resources can be

determined.

Each data point recorded from the simulation of a MAS must contain

specific identifiers to allow the DataCrawler class to understand with which process

the data point is associated. These identifiers include the job ID, the simulation time

associated with the job ID, the dependencies associated with this job, and the

number of jobs in the system. The dependency information must be included to

understand process flow. For example, if a process has two upstream dependencies,

then the collected data point must reflect that both of those dependencies were

included in that particular process. It should be noted that a job for a particular

process is represented by the combination of one “Pull” event, one “Start” event,

one “Finish” event, one “Push” event, and, potentially, many “Wait to Pull/Push”

events. The set of events will contain the same job instance number for a given job

at a process.

68

The ASAE text-based simulation framework records event data in the

“start.txt” and “finish.txt” data files using the following format:

[Job ID], Current Simulation Time, Number of Jobs in System

The format of the field [Job ID] is crucial to track process flow and must

comply with the following format:

[Job_Instance:Process_ID-(Dependencies)]

Figure 3.17 depicts an example of how the strings shown above would be

formatted for a MAS Type II. A complete example of the “start.txt” and “finish.txt”

text files are included in Appendix J and Appendix K respectively. It is important

to note that if a specific job does not contain dependencies, then the (Dependencies)

field is populated with an “x”, as illustrated in Figure 3.17 for the strings of Process

1 and Process 2.

69

Figure 3.17. Example Data Entries for One Complete Job.

3.3.3.9 Analysis Report

The ASAE text-based simulation framework produces a final report that is

presented to the user once the simulation of a MAS is completed. An example of

this report is depicted in Figure 3.18.

The top of the final report file lists the simulation time, the number of start

and finish records that were used in the data analysis, and the total simulation

runtime. It is important to note that all the time-based metrics included in the final

report are expressed in general time units. The final report also includes information

about the throughput for each terminal state and the total overall throughput of the

MAS, as well as the maximum (max) number of components in the system (i.e.,

work-in-process).

Process 1

Process 2

Process 3

Buffer 1

Buffer 2

Data Point for Job 1, Process 1→ [1:1-(x)],0.000000,1

Data Point for Job 1, Process 2→ [1:2-(x)],0.000000,2

Data Point for Job 1, Process 3→ [1:3-([1:1-(x)][1:2-(x)])],5.644773,4

70

The lower portion of the results file focuses on the TSM and its

representation in terms of frequencies, transition times, and maximum utilized

buffer capacity. The report file finishes with an overview of each processing time.

71

Figure 3.18. Example Results File.

72

3.4 TESTING AND VALIDATION OF ASAE TEXT-BASED SIMULATION

FRAMEWORK

Several tests were conducted to ensure that the design and implementation of the

ASAE text-based simulation framework were done properly and correctly. A set of

tests focused on assessing the correctness of the ASAE text-based simulation

framework. In addition, a user study was conducted to collect unbiased data about

the usefulness and practicality of the ASAE text-based simulation framework.

3.4.1 Study to Validate Correctness

The ASAE text-based simulation framework uses a complex logic system that

enforces how random events (i.e., based on statistical simulations) are processed

and scheduled in a simulation model. To validate the correctness of the ASAE text-

based simulation framework (i.e., its ability to accurately process events and

simulate a MAS), all three types of MASs were modeled and simulated using both

Arena and the ASAE text-based simulation framework.

To keep the simulation run times reasonable in the study to validate the

correctness of the ASAE text-based simulation framework, a different number of

jobs were simulated for each type of MAS as shown by Table 3-9.

73

Table 3-9. Number of Jobs Simulated per MAS Type.

MAS Type Jobs Simulated

I 100

II 50

III 20

The simulation model of each type of MAS was replicated 100 times in both

Arena and the ASAE text-based simulation framework. A slightly modified version

of the ASAE text-based simulation framework was created to include a log system

that would record the simulation runtime in a CSV file when the simulation

finished. This version of the ASAE text-based simulation framework was then

integrated into a test script written in the Python programming language that

executed the simulation of each MAS type 100 times, thus producing 100

simulation runtimes. In Arena, the simulation model of each MAS type was set to

run for 100 replications and VBA code was used to write the simulation time into

an MS Excel spreadsheet after each replication was complete.

The runtimes obtained from each of the three types of MASs using Arena

and the ASAE text-based simulation framework were then used to produce scatter

plots and box-and-whisker plots. Furthermore, F-tests were conducted to test the

hypothesis that variances of the runtimes collected with the ASAE text-based

simulation framework and Arena were equal.

74

 A second test to validate the correctness of the ASAE text-based simulation

framework involved mapping a MAS Type II manually using 20 jobs with constant

times. In this test, the behavior of the MAS Type II was analyzed in one-minute

increments to extract the number of jobs in buffers and the number of start and

finish events. The finish time of the simulation was also recorded. The results

obtained from manually mapping the behavior of the MAS Type II were then

compared against the results obtained from simulating 20 jobs with constant times

through the same type of MAS using both the ASAE text-based simulation

framework and Arena. Finally, 100 jobs with constant times were then simulated

within the ASAE text-based simulation framework and Arena to provide further

support in validating the control logic of the ASAE text-based simulation

framework.

3.4.2 User Study

While the correctness of the ASAE text-based simulation framework is important,

it is also critical to understand the usability and the potential value that the ASAE

text-based simulation framework brings to the end user. As stated before, the main

objective of the ASAE text-based simulation framework is to simplify and

streamline the simulation process, thus making it easier for a user with any level of

experience to quickly create simulation models and understand the characteristics

of a MAS. While it is hypothesized that the ASAE text-based simulation framework

meets this objective, this claim had to be tested and confirmed.

75

3.4.2.1 Objective

While usability was tested throughout the development of the ASAE text-based

simulation framework, the testing was not done with unbiased users. Therefore, the

objective of the user study was to collect feedback from unbiased users about the

usability and potential value of the ASAE text-based simulation framework. The

user study was helpful in identifying how the ASAE text-based simulation

framework may improve the simulation workflow, and what opportunities exist to

improve the performance of this new tool.

In the user study, unbiased subjects were exposed to a simulation exercise

that utilized the well-known, GUI-based Arena simulation software as well as the

ASAE text-based simulation framework. Upon completing the simulation exercise,

a questionnaire was administered to the study participants to collect their feedback

on different aspects of the simulation process. The user study conducted in this

research was reviewed and approved by the Institutional Review Board (IRB). The

approval notice received by the IRB is included in Appendix G.

3.4.2.2 Questionnaire Design

The questionnaire that helped to assess the usability and potential value of the

ASAE text-based simulation framework was organized into nine blocks. These

blocks are detailed in Table 3-10. To prevent bias toward the ASAE text-based

simulation framework or toward Arena, each question in a block has an equivalent

76

counter question. Qualtrics was used as the platform to implement and administer

the user study questionnaire.

77

Table 3-10. Question Blocks of the User Study Questionnaire.

Block Focus Description

Experience The questions in this block tried to assess the level of

experience a user had using simulation and related

technologies.

Modeling The questions in this block focused on the process of

modeling a MAS with the ASAE text-based simulation

framework and the Arena DES software and how the two

different approaches compared in terms of time and

usability.

Running a Simulation The questions in this block tried to assess the impact each

software system has on the time it takes to run a

simulation model using the ASAE text-based simulation

framework and the Arena simulation software.

GUI-based vs Text-based The questions in this block tried to assess a user’s

experience when modeling with a GUI-based system vs a

text-based system to understand the strengths and

weaknesses of each approach.

Parallel Processes and Finite

Buffers

The questions in this block tried to assess the ability of

the ASAE text-based simulation framework and the

Arena DES software to effectively model parallel

workstations and finite capacity buffers.

Understanding the MAS The questions in this block are used to assess how well

the ASAE text-based simulation framework and the

Arena DES software allow a user to understand

characteristics of a MAS.

Value of Results The questions in this block tried to assess the value of the

results provided by the ASAE text-based simulation

framework and the Arena DES software. More

specifically, does each software system allow a user to

understand certain critical performance characteristics of

a MAS.

Compare Simulation

Platforms

The questions in this block tried to assess the elements of

a simulation exercise in terms of how well certain points

align with either ASAE or Arena.

Preference The questions in this block tried to assess generally how

many users prefer each software system.

78

3.4.2.3 Recruitment of Participants

The target population to recruit participants for the user study included both

undergraduate and graduate students at Oregon State University (OSU), regardless

of age, with at least some exposure to simulation technologies. In particular,

students with prior experience with Arena were encouraged to participate.

 Different methods were used to recruit participants for the user study,

including an email message posted to listservs (see Appendix E) and flyers posted

at different locations at OSU (see Appendix F). In the end, 31 students participated

and completed the user study.

3.4.2.4 User Participation and Interaction

The user study participants were involved in the four-step study protocol described

in Appendix H.

As a first step, the user study participants were introduced to the ASAE text-

based simulation framework and to Arena to gain a basic understanding of the

components of each system and to learn how to create simulation models

successfully. In step 2, the study participants completed a short exercise using the

ASAE text-based simulation framework which involved creating a model of a MAS

Type II and simulating 100 jobs. In step 3, the study participants created a model

of the same MAS Type II, but with Arena and also simulated 100 jobs.

The last step of the user study protocol involved administering the

questionnaire described in Section 3.4.2.2 to the participants where they were asked

79

to provide input on their experience using the ASAE text-based simulation

framework and Arena.

80

4 RESULTS AND DISCUSSION

This chapter presents and discusses the results of the tests conducted in this research

to validate that the design and implementation of the ASAE text-based simulation

framework were done properly and correctly.

Section 4.1 presents and discusses the results of the quantitative validation

of the correctness of the ASAE text-based simulation framework based on data

collected from simulations of all three types of MASs using both Arena and the

ASAE text-based simulation framework.

Section 4.2 then presents and discusses the results of the qualitative

assessment conducted through a user study, which allowed the collection of

unbiased data about the usefulness and practicality of the ASAE text-based

simulation framework.

4.1 RESULTS OF VALIDATING THE CORRECTNESS OF THE ASAE TEXT-BASED

SIMULATION FRAMEWORK

The proper execution of a DES simulation is largely dependent on the accuracy

with which random numbers from known statistical distributions are generated.

Therefore, testing was completed to measure the degree of randomness of the

simulation engine of the ASAE text-based simulation framework.

81

4.1.1 Simulation Runtimes Results

The simulation runtime for each of the 100 replications of each type of MAS

collected with both Arena and the ASAE text-based simulation framework was

recorded in a CSV file. Scatter plots and box-and-whisker plots of these simulation

runtimes were created in MS Excel to assess their randomness. In addition, statistics

were calculated across the 100 replications for each type of MAS and used in an F-

test to test the hypothesis that the variances of the runtimes produced by the ASAE

text-based simulation framework and Arena were equal. The complete set of raw

data for each test is included in Appendix L. The results obtained for each MAS

type are presented and discussed in the next sections.

4.1.1.1 MAS Type I

Figure 4.1 depicts the scatter plot of the simulation runtime of each of the 100

replications for a MAS Type I obtained with the ASAE text-based simulation

framework and Arena. The results obtained with the ASAE text-based simulation

framework are represented with blue circles, whereas the results obtained with

Arena are represented with red triangles. As shown in Table 3-9, 100 jobs were

simulated for each replication of a MAS Type I.

The simulation runtimes generated by the simulation engine of the ASAE

text-based simulation framework plotted in Figure 4.1 appear random and do not

exhibit any concerning trends. Figure 4.2 shows a box-and-whisker plot of the data,

which further shows the similarity of the two data sets.

82

Figure 4.1. Scatter Plot of Simulation Runtimes for the MAS Type I.

Figure 4.2. Box and Whisker Plot of Simulation Runtimes for MAS Type I.

The values for the average, standard deviation, and the variance calculated

from the 100 simulation runtimes obtained for the MAS Type I with both Arena

and the ASAE text-based simulation framework are shown in Table 4-1.

304

306

308

310

312

314

316

318

320

322

324

0 20 40 60 80 100

Ti
m

e
 U

n
it

s

Test Run Number

ASAE

Arena

83

Table 4-1. Statistics of the Simulation Runtimes for the MAS Type I.

 Average Standard Deviation Variance

ASAE 313.11 3.14 9.84

Arena 313.05 3.81 14.55

 An F-test was conducted in Minitab to test the hypothesis that the variances

of the runtimes produced by the ASAE text-based simulation framework and Arena

for the MAS Type I were equal (Ho: 
ASAE = 

Arena) versus not being equal (Ha:


ASAE ≠ 

Arena). The p-value obtained from the F-test was 0.053, which indicates

that the null hypothesis (i.e., 
ASAE = 

Arena) cannot be rejected at a significance

level of  = 0.05.

4.1.1.2 MAS Type II

Figure 4.3 depicts the scatter plot of the simulation runtime of each of the 100

replications for a MAS Type II obtained with the ASAE text-based simulation

framework and Arena. The results obtained with the ASAE text-based simulation

framework are represented with blue circles, whereas the results obtained with

Arena are represented with red triangles. As shown in Table 3-9, 50 jobs were

simulated for each replication of a MAS Type II.

The simulation runtimes generated by the simulation engine of the ASAE

text-based simulation framework plotted in Figure 4.3 appear random and do not

84

exhibit any concerning trends. Figure 4.4 shows a box-and-whisker plot of the data,

which further shows the similarity of the two data sets.

Figure 4.3. Scatter Plot of Simulation Runtimes for the MAS Type II.

Figure 4.4. Box and Whisker Plot of Simulation Runtimes for MAS Type II.

294
296
298
300
302
304
306
308
310
312
314
316

0 20 40 60 80 100

Ti
m

e
 U

n
it

s

Test Run Number

ASAE

Arena

85

The values for the average, standard deviation, and the variance calculated

from the 100 simulation runtimes obtained for the MAS Type II with both Arena

and the ASAE text-based simulation framework are shown in Table 4-2.

Table 4-2. Statistics of the Simulation Runtimes for the MAS Type II.

 Average Standard Deviation Variance

ASAE 303.76 2.76 7.63

Arena 303.74 3.21 10.31

An F-test was conducted in Minitab to test the hypothesis that the variances

of the runtimes produced by the ASAE text-based simulation framework and Arena

for the MAS Type II were equal (Ho: 
ASAE = 

Arena) versus not being equal (Ha:


ASAE ≠ 

Arena). The p-value obtained from the F-test was 0.136, which indicates

that the null hypothesis (i.e., 
ASAE = 

Arena) cannot be rejected at a significance

level of  = 0.05.

4.1.1.3 MAS Type III

Figure 4.5 depicts the scatter plot of the simulation runtime of each of the 100

replications for a MAS Type III obtained with the ASAE text-based simulation

framework and Arena. The results obtained with the ASAE text-based simulation

framework are represented with blue circles, whereas the results obtained with

86

Arena are represented with red triangles. As shown in Table 3-9, 20 jobs were

simulated for each replication of a MAS Type III.

The simulation runtimes generated by the simulation engine of the ASAE

text-based simulation framework plotted in Figure 4.5 appear random and do not

exhibit any concerning trends. Figure 4.6 shows a box-and-whisker plot of the data,

which further shows the similarity of the two data sets.

Figure 4.5. Scatter Plot of Simulation Runtimes for the MAS Type III.

68

70

72

74

76

78

80

82

84

0 20 40 60 80 100

Ti
m

e
 U

n
it

s

Test Run Number

ASAE

Arena

87

Figure 4.6. Box and Whisker Plot of Simulation Runtimes for MAS Type III.

The values for the average, standard deviation, and the variance calculated

from the 100 simulation runtimes obtained for the MAS Type II with both Arena

and the ASAE text-based simulation framework are shown in Table 4-3.

Table 4-3. Statistics of the Simulation Runtimes for the MAS Type III.

 Average Standard Deviation Variance

ASAE 74.76 1.97 3.90

Arena 74.81 1.97 3.88

An F-test was conducted in Minitab to test the hypothesis that the variances

of the runtimes produced by the ASAE text-based simulation framework and Arena

88

for the MAS Type III were equal (Ho: 
ASAE = 

Arena) versus not being equal (Ha:


ASAE ≠ 

Arena). The p-value obtained from the F-test was 0.979, which indicates

that the null hypothesis (i.e., ASAE = Arena) cannot be rejected at a significance

level of  = 0.05.

4.1.2 Manually Mapped MAS Results

The simulation engine of the ASAE text-based simulation framework utilizes a

complex set of rules to dictate how events are scheduled and processed based on

various dependencies and times. The objective of this phase of the testing was to

validate the correctness of the control logic implemented by the ASAE simulation

engine to ensure that events were being scheduled and processed correctly. In

performing this testing, it was not practical to simulate a large MAS due to the

process complexities involved. Therefore, the validation was performed by

manually mapping 20 jobs with constant time for a MAS Type II consisting of three

processes (i.e., Process 0, Process 1, and Process 2) and two finite buffers (i.e.,

Buffer 0 and Buffer 1). The results obtained from manually mapping the MAS Type

II were then compared to the results obtained from simulating the exact same MAS

Type II using the ASAE text-based simulation framework.

Figure 4.7 depicts the results of manually mapping the MAS Type II. Each

job is tracked through the system using a specific color. The main advantage of

manually mapping the execution of the MAS Type II is that every event and state

89

of the system is known before simulating the same MAS Type II using the ASAE

text-based simulation framework to verify the behavior of the simulation.

By manually mapping the MAS, several characteristics of the simulation

can be calculated precisely including the simulation runtime, maximum utilized

buffer capacity, and the number of start/finish events. For example, the time scale

at the top of Figure 4.7 shows that the total runtime for this specific MAS Type II

was 62 time units. The maximum utilized buffer capacity can be calculated by

observing how many jobs are in the buffers, as reflected in the Buffer 0 and Buffer

1 rows. In this example, each buffer has a capacity of three. Therefore, three slots

have been labeled “B” (i.e., back), “M” (i.e., middle), and “F” (i.e., front) in Figure

4.7. The start events are calculated by counting the total number of job blocks

within each process row that start within the running simulation time (i.e., any block

that is visible within the available 62 time units available). Similarly, the finish

events are calculated by counting the total number of job blocks that actually finish

within the simulation time (i.e., 62 time units).

Table 4-4 summarizes the results of manually mapping the MAS Type II

and also presents the results of simulating the same system with the ASAE text-

based simulation framework. These results confirm that the ASAE simulation

engine is processing and scheduling events correctly since the values of the

simulation parameters are identical in both cases.

90

Table 4-4. Predicted vs Actual Simulation Characteristics.

Simulation Parameters
Manual

Mapping

ASAE

Simulation

Runtime (Time Units) 62 62

Max Utilized Capacity of Buffer 0 (Count) 0 0

Max Utilized Capacity of Buffer 1 (Count) 3 3

Number of Start Events (Count) 65 65

Number of Finish Events (Count) 64 64

Table 4-5 shows the results of simulating 20 jobs and 100 jobs with the

ASAE text-based simulation framework and Arena. The time to complete the

simulation of the 20 and 100 jobs in a MAS Type II were identical for both DES

systems.

Table 4-5. Simulation Runtime in ASAE and Arena.

 Time Units

 ASAE Arena

Time to Complete 20 Jobs 62 62

Time to Complete 100 Jobs 302 302

91

Figure 4.7. Manually Mapped Simulation of 20 Jobs in a MAS Type II.

Time Units 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

Process 0

B

M

F

Process 1

B 7 8 8 9 9 9 10 10 10 11 11 11 12 12 12 13 13 13 14 14 14 15 15 15 16 16 16 17 17 17 18 18 18 19 19 19 20 20 20 21 21 21 22 22 22 23 23

M 4 5 5 6 6 6 7 7 7 8 8 8 9 9 9 10 10 10 11 11 11 12 12 12 13 13 13 14 14 14 15 15 15 16 16 16 17 17 17 18 18 18 19 19 19 20 20 20 21 21 21 22 22

F 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 10 10 10 11 11 11 12 12 12 13 13 13 14 14 14 15 15 15 16 16 16 17 17 17 18 18 18 19 19 19 20 20 20 21 21

Completed 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

5 6 20

1 2 3 4 5 6 7

13 14 15 16 17 187 8 9 10 11 121 2 3 4

14 15 16 17 18 198 9 10 11 12 13

Buffer 0

Buffer 1

16 17 18 19 207 8 9 10 11 12 13 14 15
Process 2

7 8 9 10 111 2 3 4 5 6

1 2 3 4 5 6

18 19 20

DONE

12 13 14 15 16 17

21

20 21 22 23 24

19

92

4.2 QUESTIONNAIRE RESULTS FROM THE USER STUDY

This section presents and discusses the results of the questionnaire conducted as

part of the user study. As explained in Section 3.4.2.2, the questionnaire was

administered to the user study participants after they had completed the pre-study

training exercises on Arena and the ASAE text-based simulation framework. The

main objective of the questionnaire was to gather data from a general population of

users (with at least some exposure to simulation technologies) about the usability

and value of the ASAE text-based simulation framework.

Table 3-10 shows the nine blocks that composed the questionnaire. Except

from block one and block nine, every other block in the questionnaire was

composed of a set of statements that the user study participants were asked to rate

using a six-point Likert scale (i.e., strongly agree, agree, somewhat agree,

somewhat disagree, disagree, and strongly disagree).

The following sections present and discuss the results of each block of the

questionnaire.

4.2.1 Experience

A total of 31 participants responded to the questionnaire administered as part of the

user study. In the first block of the questionnaire, the user study participants were

asked to rate their ability to develop simulation models after they had completed

the pre-study training exercises on Arena and the ASAE text-based simulation

93

framework. The responses received for this question block are shown in Table 4-6,

and indicate that the majority of the participants (22 out of 31) rated their ability to

develop simulation models as either “Good” (13 out of 31) or “Average” (9 out of

31). The remaining nine respondents rated their ability level as either “Excellent”

(7 out of 31) or “Poor” (2 out of 31).

Table 4-6. Overall Simulation Proficiency of User Study Participants.

 Responses

Proficiency Level Count %

Excellent 7 22.58%

Good 13 41.94%

Average 9 29.03%

Poor 2 6.45%

Total 31 100.00%

The counts per proficiency level shown in Table 4-6 demonstrate that the

user study participants recruited in this research stated a diverse range of abilities

in developing simulation models after they had completed the pre-study training

exercises on Arena and the ASAE text-based simulation framework. Of particular

interest are the nearly 71% (i.e., 22 out of 31) of user study participants which rated

their ability to develop simulation models as either “Good” or “Average” because

their feedback was considered very valuable when assessing how well the ASAE

94

text-based simulation framework is able to accomplish the main objective of this

research, i.e., simplifying the complexity of simulation software solutions to allow

for workers with an average understanding of simulation technologies to effectively

employ these techniques.

4.2.2 Modeling

As Table 4-7 shows, the second block of the questionnaire was comprised of three

statements that focused on assessing the impact that the ASAE text-based

simulation framework and Arena have on the time needed by the user study

participants to construct a model of a MAS.

Table 4-7. Block 2 Statements of the User Study Questionnaire.

Statement # Statement

1 Constructing a model of a manufacturing assembly

system took less time with ASAE than with Arena.

2 ASAE reduced the time needed to construct a model of a

manufacturing assembly system when compared to

Arena.

3 ASAE has no impact on the time needed to construct a

model of a manufacturing assembly system.

Table 4-8 shows the responses received for the statements in this block of

the user study questionnaire. The responses received for statements 1 and 2 were

consistent in that 100% of the user study participants agreed in both cases with the

premise that the ASAE text-based simulation framework saves time when

95

constructing the model of a MAS when compared to Arena. As stated before, the

ability to save time and reduce the project timeline was one primary objective of

the ASAE text-based simulation framework. The responses to statement 3 also

suggest that the majority of user study participants (i.e., 27 out of 31, or 87.10%)

agreed in that the ASAE text-based simulation framework has an impact on the

time needed to construct a model of a MAS.

96

Table 4-8. Overall Responses of User Study Participants on Modeling.

 Statement 1

Responses

Statement 2

Responses

Statement 3

Responses

Likert Scale Point Count % Count % Count %

Strongly Agree 23 74.19% 22 70.97% 0 0.00%

Agree 7 22.58% 8 25.81% 4 12.90%

Somewhat agree 1 3.23% 1 3.23% 0 0.00%

Somewhat disagree 0 0.00% 0 0.00% 3 9.68%

Disagree 0 0.00% 0 0.00% 13 41.94%

Strongly disagree 0 0.00% 0 0.00% 11 35.48%

97

4.2.3 Running a Simulation

As shown in Table 4-9, the third block of the questionnaire was comprised of three

statements that focused on assessing the impact that the ASAE text-based

simulation framework and Arena have on the time it takes to simulate the model of

a MAS.

Table 4-9. Block 3 Statements of the User Study Questionnaire.

Statement # Statement

1 Simulating a manufacturing assembly system took less

time with Arena than with ASAE.

2 When compared to Arena, ASAE reduced the time

needed to simulate a manufacturing assembly system.

3 When compared to Arena, ASAE has no impact on the

time needed to simulate a manufacturing assembly

system.

Table 4-10 shows the responses received for the statements in this block of

the user study questionnaire. The responses received for statement 1 clearly show

that the majority of the user study participants (i.e., 27 out of 31, or 87.10%)

disagreed with the statement that simulating the model of a MAS took less time

with Arena than with the ASAE text-based simulation framework. Similarly, the

responses received for statement 2 show that the majority of the user study

participants (i.e., 28 out of 31, or 90.32%) agreed with the statement that the ASAE

text-based simulation framework reduced the time needed to simulate the model of

98

a MAS. Finally, the responses for question 3 show that 87.10% (i.e., 27 out of 31)

of the user study participants disagreed at some level (i.e., Strongly disagree”,

“Disagree”, or “Somewhat disagree”) in that ASAE text-based simulation

framework (when compared to Arena) has no impact on the time needed to simulate

a MAS. These results collectively suggest that the ASAE text-based simulation

framework may in fact reduce the time needed to run the simulation of a MAS.

99

Table 4-10. Overall Responses of User Study Participants on Running a Simulation.

 Statement 1

Responses

Statement 2

Responses

Statement 3

Responses

Likert Scale Point Count % Count % Count %

Strongly Agree 3 9.68% 19 61.29% 1 3.23%

Agree 1 3.23% 6 19.35% 1 3.23%

Somewhat agree 0 0.00% 3 9.68% 2 6.45%

Somewhat disagree 3 9.68% 1 3.23% 6 19.35%

Disagree 12 38.71% 2 6.45% 11 35.48%

Strongly disagree 12 38.71% 0 0.00% 10 32.26%

100

4.2.4 GUI-based versus Text-based Modeling

As shown in Table 4-11, the fourth block of the questionnaire was comprised of six

statements that focused on assessing the ease or difficulty experienced by the user

study participants when constructing and simulating a MAS using a GUI-based

system (i.e., Arena) versus a text-based system (i.e., ASAE text-based simulation

framework). Statements 1, 2 and 3 focused on the ease of use of the ASAE text-

based simulation framework and Arena, whereas statements 4 and 5 focused on

capturing the preference of the participant between the two simulation software

options used to construct and simulate a MAS.

Table 4-11. Block 4 Statements of the User Study Questionnaire.

Statement # Statement

1 Using Arena’s GUI to construct and simulate a manufacturing

assembly system is easier than using ASAE’s text-based interface.

2 Using ASAE’s text-based interface to construct and simulate a

manufacturing assembly system is easier than using Arena’s GUI.

3 Using ASAE’s text-based interface to construct and simulate a

manufacturing assembly system is more difficult than using

Arena’s GUI.

4 I would rather construct and simulate a manufacturing assembly

system using Arena’s GUI instead of ASAE’s text-based interface.

5 I would rather construct and simulate a manufacturing assembly

system using ASAE’s text-based interface instead of Arena’s GUI.

6 Both Arena’s GUI and ASAE’s text-based interface are equivalent

when constructing and simulating a manufacturing assembly

system.

101

Table 4-12 shows the responses received for the statements in this block of

the user study questionnaire. Figure 4.8 depicts the same results in a graphical

format to aid in their interpretation.

The responses received for statement 1 and statement 2 appear to be

contradictory. While the user participants were divided about how they rated their

experience in using Arena’s GUI-based approach to construct and simulate a MAS

(i.e., statement 1), they rated their experience more favorably when completing the

same tasks using the ASAE text-based simulation framework (i.e., statement 2), as

evidenced by the 64.52% (i.e., 20 out of 31) of the user participants who chose

either “Strongly agree”, “Agree”, or “Somewhat agree”. The responses received for

statement 3 seem to also validate those observed for statement 2, since 22 out of 31

participants (i.e., 70.96%) chose either “Strongly disagree”, “Disagree”, or

“Somewhat disagree” when asked whether using the ASAE text-based interface to

construct and simulate a MAS was more difficult than using Arena’s GUI-based

approach. In conclusion, the responses received for statement 1, statement 2, and

statement 3 suggest that the user participants more often thought the ASAE text-

based simulation framework was easier to use than the GUI provided by Arena.

The responses received for statement 4 and statement 5 proved to be

difficult to interpret. In both cases, the opinions of the user study participants about

whether they would prefer to use Arena’s GUI or ASAE text-based simulation

102

framework when constructing and simulating a MAS were inconclusive. When

responding to statement 4, 43.33% of the user study participants agreed on some

level and 56.67% disagreed on some level. Similarly, 58.06% of the user study

participants agreed on some level and 41.94% disagreed on some level when

responding to statement 5. It is important to note that one participant did not provide

a response for statement 4, bringing the total number of responses for this statement

to 30.

Finally, statement 6 was an unbiased statement to assess if the user study

participants believed the two modeling approaches to be equivalent. In this case,

the user study participants were very clear in that the majority disagreed on some

level (i.e., 74.19%) with the premise that Arena’s GUI and ASAE’s text-based

interface are equivalent when constructing and simulating a MAS.

103

Table 4-12. Overall Responses of User Study Participants on GUI-based vs Text-based Modeling.

 Statement 1

Responses

Statement 2

Responses

Statement 3

Responses

Statement 4

Responses

Statement 5

Responses

Statement 6

Responses

Likert Scale Point Count % Count % Count % Count % Count % Count %

Strongly Agree 1 3.23% 5 16.13% 1 3.23% 3 10.00% 5 16.13% 2 6.45%

Agree 4 12.90% 7 22.58% 4 12.90% 1 3.33% 7 22.58% 3 9.68%

Somewhat agree 8 25.81% 8 25.81% 4 12.90% 9 30.0% 6 19.35% 3 9.68%

Somewhat disagree 9 29.03% 9 29.03% 9 29.03% 8 26.66% 9 29.03% 8 25.81%

Disagree 6 19.35% 1 3.23% 7 22.58% 3 10.00% 2 6.45% 8 25.81%

Strongly disagree 3 9.68% 1 3.23% 6 19.35% 6 20.00% 2 6.45% 7 22.58%

104

Figure 4.8. Overall Responses of User Study Participants on GUI-based vs Text-based Modeling.

0

5

10

15

20

25

30

S #1 S #2 S #3 S #4 S #5 S #6

Strongly agree Agree Somewhat agree Somewhat disagree Disagree Strongly disagree

105

4.2.5 Parallel Processes and Finite Buffers

As shown in Table 4-13, the fifth block of the questionnaire was comprised of six

statements that focused on assessing the ability of the ASAE text-based simulation

framework and Arena to model parallel processes and finite capacity buffers

effectively. Statements 1, 2, and 3 focused on capturing the opinions of the user

study participants about modeling parallel processes. Statements 4, 5, and 6 focused

on capturing the opinions of the user study participants about modeling finite

capacity buffers.

Table 4-13. Block 5 Statements of the User Study Questionnaire.

Statement # Statement

1 Modeling parallel workstations with ASAE was difficult.

2 Modeling parallel workstations with Arena was easy.

3 Compared to Arena, it was more difficult to model parallel

workstations with ASAE.

4 Modeling finite capacity buffers with ASAE was difficult.

5 Modeling finite capacity buffers with Arena was easy.

6 Compared to Arena, it was more difficult to model finite

capacity buffers with ASAE.

Table 4-11 shows the responses received for the statements in this block of

the user study questionnaire. Figure 4.9 depicts the same results in a graphical

format to aid in their interpretation.

106

 The responses received for statement 1 clearly show that the user study

participants felt that modeling parallel workstation with the ASAE text-based

interface was not difficult, as evidenced by the 81% (i.e., 25 out of 31) of

respondents that disagreed with this statement on some level (i.e., “Strongly

disagree”, “Somewhat disagree” or “Disagree”). Comparatively, 64.52% of the

user study participants agreed on some level (i.e., “Strongly agree”, “Somewhat

agree”, or “Agree”) with statement 2 (i.e., modeling parallel workstation with

Arena was easy). When asked if it was harder to model parallel workstations with

the ASAE text-based simulation framework when compared to Arena, 74.19% (i.e.,

23 out of 31) of the user study participants disagreed on some level. Considering

the responses received for statements 1, 2, and 3 collectively, it seems that the user

study participants favored the ASAE text-based simulation framework when

modeling parallel workstations.

The responses received for statements 4 and 5 are interesting in that the task

of modeling finite capacity buffers proved similarly difficult with the ASAE text-

based simulation framework and Arena, as evidenced by the percentage of user

study participants that agreed on some level with statement 4 (i.e., 12 out of 31, or

38.71%) and disagreed on some level with statement 5 (i.e., 11 out of 31, or

35.48%). However, when responding to statement 6, 21 out of 31 (i.e., 67.74%) of

the user study participants disagreed on some level (i.e., “Strongly disagree”,

“Somewhat disagree” or “Disagree”) with the premise that modeling finite capacity

buffers was more difficult with the ASAE text-based simulation framework than

107

with Arena. Considering the responses received for statements 4, 5, and 6

collectively, there was no agreement among user study participants about which

simulation software approach was easier when modeling finite capacity buffers.

108

Table 4-14. Overall Responses of User Study Participants on Parallel Processes and Finite Buffers.

Statement 1

Responses

Statement 2

Responses

Statement 3

Responses

Statement 4

Responses

Statement 5

Responses

Statement 6

Responses

Likert Scale Point Count % Count % Count % Count % Count % Count %

Strongly Agree 0 0.00% 2 6.45% 1 3.23% 1 3.23% 2 6.45% 0 0.00%

Agree 2 6.45% 12 38.71% 2 6.45% 2 6.45% 11 34.48% 4 12.90%

Somewhat agree 4 12.90% 6 19.35% 5 16.13% 9 29.03% 7 22.58% 6 19.35%

Somewhat disagree 6 19.35% 4 12.90% 10 32.26% 3 9.68% 2 6.45% 4 12.90%

Disagree 15 48.93% 6 19.35% 9 29.03% 9 29.03% 7 22.58% 10 32.26%

Strongly disagree 4 12.90% 1 3.23% 4 12.90% 7 22.58% 2 6.45% 7 22.58%

109

Figure 4.9. Overall Responses of User Study Participants on Parallel Processes and Finite Buffers.

0

5

10

15

20

25

30

S #1 S #2 S #3 S #4 S #5 S #6

Strongly agree Agree Somewhat agree Somewhat disagree Disagree Strongly disagree

110

4.2.6 Understanding the MAS

As shown in Table 4-15, the sixth block of the questionnaire was comprised of six

statements. Statements 1 and 2 focused on capturing the opinions of the user study

participants about understanding process flow in a MAS. Statements 3 and 4

focused on capturing the opinions of the user study participants about

understanding the process characteristics of a MAS. Finally, statements 5 and 6

focused on capturing the opinions of the user study participants about gaining an

initial understanding of a MAS.

Table 4-15. Block 6 Statements of the User Study Questionnaire.

Statement # Statement

1 Using Arena's GUI modules allowed me to understand

process flow.

2 Using ASAE's text-based approach allowed me to understand

process flow.

3 Using Arena's GUI modules allowed me to understand the

characteristics of each process.

4 Using ASAE's text-based approach allowed me to understand

the characteristics of each process.

5 Using Arena's GUI modules allowed me to get a better initial

understanding of the system.

6 Using ASAE's text-based approach allowed me to get a better

initial understanding of the system.

111

Table 4-13 shows the responses received for the statements in this block of

the user study questionnaire. Figure 4.10 depicts the same results in a graphical

format to aid in their interpretation.

The responses received for statements 1, 3, and 5, which asked user study

participants to rate their experience using Arena’s GUI-based interface to gain an

initial understand of a MAS; understanding process flow in a MAS; and

understanding the characteristics of each process in a MAS, were significantly more

positive than those for statements 2, 4, and 6, which asked the user study

participants to rate their experience when accomplishing the same tasks using the

ASAE text-based simulation framework.

 Taken collectively, the responses received in this block of the questionnaire

clearly show that the user study participants agreed in that Arena’s GUI-based

interface allows for a better understanding of the general characteristics of a MAS.

Additionally, these responses reveal an opportunity for extending the capabilities

of the ASAE text-based simulation framework by adding a GUI in the future.

112

Table 4-16. Overall Responses of User Study Participants on Understanding the MAS.

Statement 1

Responses

Statement 2

Responses

Statement 3

Responses

Statement 4

Responses

Statement 5

Responses

Statement 6

Responses

Likert Scale Point Count % Count % Count % Count % Count % Count %

Strongly Agree 13 41.94% 2 6.45% 10 32.26% 5 16.13% 13 41.94% 3 9.68%

Agree 14 45.16% 1 3.23% 13 41.94% 8 25.81% 12 38.71% 1 3.23%

Somewhat agree 3 9.68% 8 25.81% 5 16.13% 6 19.35% 5 16.15% 10 32.26%

Somewhat disagree 1 3.23% 12 38.71% 3 9.68% 7 22.58% 1 3.23% 10 32.26%

Disagree 0 0.00% 5 16.13% 0 0.00% 3 9.68% 0 0.00% 4 12.90%

Strongly disagree 0 0.00% 3 9.68% 0 0.00% 2 6.45% 0 0.00% 3 9.68%

113

Figure 4.10. Overall Responses of User Study Participants on Understanding the MAS.

0

5

10

15

20

25

30

S #1 S #2 S #3 S #4 S #5 S #6

Strongly agree Agree Somewhat agree Somewhat disagree Disagree Strongly disagree

114

4.2.7 Value of Results

As shown in Table 4-17, the seventh block of the questionnaire was comprised of

ten statements that focused on assessing the value of the results provided by the

ASAE text-based simulation framework and Arena. More specifically, the

statements in this block of the questionnaire were written to capture the opinion of

the user study participants about whether or not each simulation software approach

allowed them to better understand critical performance characteristics of a MAS,

including process flow (i.e., statements 1 and 2), bottlenecks (i.e., statements 3 and

4), throughput (i.e., statements 5 and 6), process times (i.e., statements 7 and 8),

and the overall MAS (i.e., statements 9 and 10).

115

Table 4-17. Block 7 Statements of the User Study Questionnaire.

Statement # Statement

1 I was able to understand process flow using the Arena

results.

2 I was able to understand process flow using the ASAE

results.

3 I was able to identify potential bottlenecks using the Arena

results.

4 I was able to identify potential bottlenecks using the ASAE

results.

5 I was able to understand the throughput of the system with

the Arena results.

6 I was able to understand the throughput of the system with

the ASAE results.

7 I was able to understand process times with the results

provided by Arena.

8 I was able to understand process times with the results

provided by ASAE.

9 The results provided by Arena allow me to better understand

the manufacturing assembly system.

10 The results provided by ASAE allow me to better understand

the manufacturing assembly system.

Table 4-18 shows the responses received for statements 1, 3, 5, 7, and 9,

which correspond to Arena. Table 4-19 shows the responses received for statements

2, 4, 6, 8, and 10, which correspond to the ASAE text-based simulation framework.

Figure 4.11 depicts the results for all ten statements in a graphical format to aid in

their interpretation.

The responses received for statements 1 and 2 showed a similar pattern. For

statement 1, 87.10% (i.e., 27 out of 31) of the study participants agreed on some

116

level (i.e., “Strongly agree”, “Somewhat agree”, or “Agree”) that they were able to

understand process flow using Arena. For statement 2, 74.19% (i.e., 23 out of 31)

of the study participants agreed on some level that they were able to understand

process flow using the ASAE text-based simulation framework.

The responses received for statements 3 and 4 were also similar. For

statement 3, 90.32% (i.e., 28 out of 31) of the study participants agreed on some

level (i.e., “Strongly agree”, “Somewhat agree”, or “Agree”) that they were able to

identify potential bottlenecks using Arena. For statement 4, 77.42% (i.e., 24 out of

31) of the study participants agreed on some level that they were able to identify

potential bottlenecks using the ASAE text-based simulation framework.

The responses received for statements 5 and 6 were also similar. For

statement 5, 93.55% (i.e., 29 out of 31) of the study participants agreed on some

level (i.e., “Strongly agree”, “Somewhat agree”, or “Agree”) that they were able to

understand throughput using Arena. For statement 6, 87.10% (i.e., 27 out of 31) of

the study participants agreed on some level that they were able to understand

throughput using the ASAE text-based simulation framework.

The responses received for statements 7 and 8 were not only similar, but

also the highest (i.e., percentage-wise) in this block of the questionnaire. For

statement 7, 93.55% (i.e., 29 out of 31) of the study participants agreed on some

level (i.e., “Strongly agree”, “Somewhat agree”, or “Agree”) that they were able to

understand process times using Arena. For statement 8, 90.32% (i.e., 28 out of 31)

117

of the study participants agreed on some level that they were able to understand

process times using the ASAE text-based simulation framework.

The responses received for statements 9 and 10 were also similar. For

statement 9, 87.10% (i.e., 27 out of 31) of the study participants agreed on some

level (i.e., “Strongly agree”, “Somewhat agree”, or “Agree”) that Arena allowed

them to better understand the MAS. For statement 10, 83.87% (i.e., 26 out of 31)

of the study participants agreed on some level that the ASAE text-based simulation

framework allowed them to better understand the MAS.

Taken collectively, the responses received in this block of the questionnaire

clearly show that the user study participants agreed in that the results produced by

both Arena and the ASAE text-based simulation framework are useful in better

understanding critical performance characteristics of a MAS. It is important to note,

however, that the user study participants rated the results produced by Arena more

positively than those produced by the ASAE text-based simulation framework.

118

Table 4-18. Overall Responses of User Study Participants on Value of Results for the Arena DES Software.

Statement 1

Responses

Statement 3

Responses

Statement 5

Responses

Statement 7

Responses

Statement 9

Responses

Likert Scale Point Count % Count % Count % Count % Count %

Strongly Agree 11 35.48% 7 22.58% 7 22.58% 9 29.03% 10 32.26%

Agree 10 32.26% 15 48.39% 16 51.61% 15 48.39% 11 35.48%

Somewhat agree 6 19.35% 6 19.35% 6 19.35% 5 16.13% 6 19.35%

Somewhat disagree 2 6.45% 2 6.45% 2 6.45% 1 3.23% 2 6.45%

Disagree 2 6.45% 0 0.00% 0 0.00% 1 3.23% 1 3.23%

Strongly disagree 0 0.00% 1 3.23% 0 0.00% 0 0.00% 1 3.23%

119

Table 4-19. Overall Responses of User Study Participants on Value of Results for the ASAE Text-Based Simulation

Framework.

Statement 2

Responses

Statement 4

Responses

Statement 6

Responses

Statement 8

Responses

Statement 10

Responses

Likert Scale Point Count % Count % Count % Count % Count %

Strongly Agree 9 29.03% 6 19.35% 9 29.03% 11 35.48% 12 38.71%

Agree 11 35.48% 10 32.26% 13 41.94% 12 38.71% 11 35.48%

Somewhat agree 3 9.68% 8 25.81% 5 16.13% 5 16.13% 3 9.68%

Somewhat disagree 4 12.90% 3 9.68% 3 9.68% 2 6.45% 5 16.13%

Disagree 2 6.45% 3 9.68% 0 0.00% 0 0.00% 0 0.00%

Strongly disagree 2 6.45% 1 3.23% 1 3.23% 1 3.23% 0 0.00%

120

Figure 4.11. Overall Responses of User Study Participants on Value of Results.

0

5

10

15

20

25

30

S #1 S #2 S #3 S #4 S #5 S #6 S #7 S #8 S #9 S #10

Strongly agree Agree Somewhat agree Somewhat disagree Disagree Strongly disagree

121

4.2.8 Compare Simulation Platforms

As shown in Table 4-20, the eighth block of the questionnaire was comprised of

seven statements that directly compared the ASAE text-based simulation

framework against Arena on aspects such as the time needed to create and simulate

a MAS, the ability to model parallel workstations, and the ability to model finite

buffers, among others.

Table 4-20. Block 8 Statements of the User Study Questionnaire.

Statement # Statement

1 Saves more time in creating and simulating a manufacturing

assembly system.

2 Increases the time needed to create and simulate a

manufacturing assembly system.

3 Facilitates the modeling of finite capacity buffers.

4 Facilitates the modeling of parallel workstations.

5 The modeling approach is easy to use.

6 The modeling approach is difficult to understand.

7 The data generated by the modeling approach provides more

insight into the performance of the manufacturing assembly

system.

The user study participants were asked to reflect their opinion about each of

the seven statements using the six-point scale depicted in Figure 4.12. The closer a

rating was to one of the DES approaches, the more a user study participant was in

agreement with the statement relative to the specific DES approach, i.e., a far-left

122

selection means the statement completely relates to the ASAE text-based

simulation framework, whereas a far-right selection means the statement

completely relates to the Arena DES software

Figure 4.12. Six-point Scale for Eighth Block of User Study Questionnaire.

The next seven figures depict the distribution of responses received from

the user study participants. Figure 4.13 shows that the user study participants

perceived the ASAE text-based simulation framework as being more time efficient

than Arena when creating and simulating a MAS (i.e., statement 1). The responses

received for statement 2, depicted in Figure 4.14, are in alignment with those

observed in statement 1.

Figure 4.15 shows that the user study participants perceived both simulation

software approaches as similar when modeling finite capacity buffers (i.e.,

statement 3). However, the responses received for statement 4 depicted in Figure

4.16 suggest a preference for Arena when modeling parallel workstations.

1

(1)

2

(2)

3

(3)

4

(4)

5

(5)

6

(6)

ASAE o o o o o o Arena

123

Figure 4.13. Distribution of Responses for Statement 1.

Figure 4.14. Distribution of Responses for Statement 2.

47% 47%

7%
0% 0% 0%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ASAE | | | | | | Arena

Saves more time in creating and simulating a manufacturing
assembly system.

3% 0% 3%

16%

42%
35%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ASAE | | | | | | Arena

Increases the time needed to create and simulate a
manufacturing assembly system.

124

Figure 4.15. Distribution of Responses for Statement 3.

Figure 4.16. Distribution of Responses for Statement 4.

13%
16%

29%

19%

10%
13%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ASAE | | | | | | Arena

Facilitates the modeling of finite capacity buffers.

6% 10%

19%

35%

19%

10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ASAE | | | | | | Arena

Facilitates the modeling of parallel workstations.

125

Figure 4.17 shows a distribution of responses that support the premise that

the ASAE text-based simulation framework is easier to use than Arena when

modeling a MAS. In Figure 4.18, almost 70% of the responses provided by the user

study participants concentrate in the middle of the rating scale, which suggest that

neither simulation software approach was perceived as more difficult to understand

than the other.

Finally, the responses depicted in Figure 4.19 show an almost uniform

distribution which suggests that the results provided by the ASAE text-based

simulation framework and Arena were perceived by the user study participants as

equivalent when providing insight into the performance of a MAS.

Figure 4.17. Distribution of Responses for Statement 5.

39%

6%

32%

10%
3%

10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ASAE | | | | | | Arena

The modeling approach is easy to use.

126

Figure 4.18. Distribution of Responses for Statement 6.

Figure 4.19. Distribution of Responses for Statement 7.

3%

13%

39%

29%

13%

3%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ASAE | | | | | | Arena

The modeling approach is difficult to understand.

10%

19% 19%

32%

13%
6%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ASAE | | | | | | Arena

The data generated by the modeling approach provides more
insight into the performance of the manufacturing assembly

system.

127

4.2.9 Preference

In the last block of the questionnaire, the user study participants were asked to select

the modeling approach they would rather use to create and simulate a MAS. As

Figure 4.20 illustrates, 67.74% (i.e., 21 out of 31) of the user study participants

chose the ASAE text-based simulation framework over Arena.

Figure 4.20. Preference of User Study Participants.

As described in Section 4.2.1, the user study participants were asked in the

first block of the questionnaire to rate their ability to develop simulation models as

either “Excellent”, “Good”, “Average”, or “Poor” after they had completed the pre-

study training exercises using both simulation software approaches. To

complement the responses received for the participant’s preference depicted in

21

10

0

5

10

15

20

25

30

Overall

ASAE Arena

128

Figure 4.20, a filtering function was applied to the questionnaire results stored in

Qualtrics to determine which simulation software approach had been selected by

the user study participants in each of the four categories of ability. The results of

applying this filter are depicted in Figure 4.21.

Figure 4.21. DES Approach Preference by User Ability Category

The responses in Figure 4.21 show that in every ability category other than

“Poor”, the ASAE text-based simulation framework was preferred over Arena.

These responses suggest that the user study participants prefer the ASAE text-based

simulation framework over Arena.

5

8
7

1
2

5

2
1

0

5

10

15

20

25

30

Excellent Good Average Poor

ASAE Arena

129

4.2.10 Synthesis of Questionnaire Results

The results of the questionnaire offer strong evidence that the modeling capabilities

and user preference are important factors to determine the value and usability of the

ASAE text-based simulation framework. However, the results when building and

simulating a MAS with a GUI-based versus a text-based approach or with regards

to the ability to understand a MAS indicate that there is no perceived difference

between the ASAE text-based simulation framework and Arena. With study

participants possessing varying skills and skill levels, it is inferred that users with

any amount of experience in simulation technologies can utilize the capabilities

offered by the ASAE text-based simulation framework under simple simulation

environments.

In summary, the results of the questionnaire indicate that the ASAE text-

based simulation framework provides value for users needing to incorporate a

simulation modeling process, but it is unclear whether the ASAE text-based

simulation framework provides a comprehensive understanding of a MAS.

130

5 CONCLUSIONS AND OPPORTUNITIES FOR FUTURE

WORK

This chapter presents the conclusions and opportunities for future work of this

research project. The conclusions are presented in Section 5.1, whereas Section 5.2

outlines the opportunities for future work.

5.1 CONCLUSIONS

The acquisition and licensing costs, the level of expertise required, and the time and

resources needed to maintain models of manufacturing assembly systems (MASs)

are significant barriers for the widespread use of discrete event simulation (DES)

software packages. Therefore, the objective of this research was to develop a

methodology to automate the process of creating, simulating, and analyzing a MAS.

The main contribution of this research was the development of an automated, text-

based simulation framework referred to as the Automated Simulation Analysis

Engine (ASAE). The proposed ASAE text-based simulation framework includes

the following features:

• A text-based modeling approach,

• Automated data collection, and

• Automated simulation and analysis of a MAS.

 Several tests were conducted to ensure that the design and implementation

of the ASAE text-based simulation framework were done properly and correctly.

131

First, the degree of randomness of the simulation engine of the ASAE text-based

simulation framework was compared to that of Arena, a widely used DES software

package. The results of this test showed that the two simulation systems performed

as expected, and confirmed the randomness of the simulation engine of the ASAE

text-based simulation framework.

In a second test, 20 jobs with constant time were mapped manually for a

MAS Type II consisting of three processes and two finite buffers. The results of the

manual mapping process were identical to those obtained by simulating 20 jobs

with constant time for the same MAS Type II with the ASAE text-based simulation

framework and Arena, which validated the complex set of rules applied by the

ASAE text-based simulation engine to dictate how events are scheduled and

processed based on various dependencies and times. An additional test was

conducted in which 100 jobs with constant time were simulated with the ASAE

text-based simulation framework and Arena to further validate the logic employed

by the simulation engine of the ASAE text-based simulation framework.

Finally, a user study was designed and conducted to collect feedback from

unbiased users (with at least some exposure to simulation technologies) about the

usability and potential value and of the ASAE text-based simulation framework.

As part of the user study, 31 subjects were administered a questionnaire after they

had completed a set of pre-study training exercises on the Arena DES software and

the ASAE text-based simulation framework. The results of the user study suggest

that the ASAE text-based simulation framework has significant potential in saving

132

time and reducing the project timeline of simulation-based projects involved in the

simulation of MASs with finite buffer resources and parallel processes.

The ASAE text-based simulation framework was developed as open source

software and runs in many different platforms. Through a web-based model

creation interface, the ASAE text-based simulation framework automates the data

collection and data analysis processes to facilitate the quick characterization of a

MAS with parallel workstations and finite buffer resources. The main benefits of

the ASAE text-based simulation framework are as follows:

• It may reduce the time needed to execute simulation tasks of MASs with

finite buffer resources and parallel processes.

• It may reduce the budget needed to start and finish simulation-based

projects that focus on MASs with finite buffer resources and parallel

processes.

• It may reduce the amount of simulation expertise required to employ a

simulation-based framework when considering MASs with finite buffer

resources and parallel workstations.

• Finally, it may facilitate the quick modeling and iteration of simulation

models.

While the ASAE text-based simulation framework has proven to be

effective in several areas, the feedback received from the user study also revealed

some limitations, including:

133

• Using the ASAE text-based simulation framework makes it more

difficult to gain an understanding of a MAS through modeling alone.

• The ASAE text-based simulation framework lacks a dynamic visual

interface to indicate what is taking place during the execution of a

simulation.

• The current design has limitations in the type of MAS constructs that

can be modeled correctly.

• ASAE text-based simulation framework does not account for resources

and resource utilization.

• The current design of the ASAE text-based simulation framework does

not allow processes to share buffers.

5.2 OPPORTUNITIES FOR FUTURE WORK

Based on the work presented and the feedback received through the user study,

there are several opportunities for future work that can extend this body of research,

including:

• The creation of dynamic visual extensions for simulation approaches

based on simplified text descriptions.

• The addition of simplified Graphical User Interface (GUI) interfaces

that eliminate the requirement for expertise in simulation technologies.

• The incorporation of complex resources into the text-based model

definition.

134

• The development of a front-end GUI to bring the ASAE text-based

simulation framework off the command line.

135

6 BIBLIOGRAPHY

Aalst, W. V. (2016). Process Mining Data Science in Action. Berlin: Springer

Berlin.

Aalst, W. V., Weijters, T., & Maruster, L. (2004). Workflow mining: discovering

process models from event logs. IEEE Transactions on Knowledge and

Data Engineering, 16(9), 1128-1142.

Aguirre, S., Parra, C., & Alvarado, J. (2013). Combination of Process Mining and

Simulation Techniques for Business Process Redesign: A Methodological

Approach. Lecture Notes in Business Information Processing Data-Driven

Process Discovery and Analysis, 24-43.

Ahn, S., Dunston, P. S., Kandil, A., & Martinez, J. C. (2015). Process Mining

Technique for Automated Simulation Model Generation Using Activity

Log Data. Computing in Civil Engineering 2015.

Alaskari, O., Ahmad, M. M., & Cuenca, R. P. (2014). Critical success factors for

Lean tools and ERP systems implementation in manufacturing SMEs.

International Journal of Lean Enterprise Research, 1(2), 183.

Alhuraish, I., Robledo, C., & Kobi, A. (2016). Assessment of Lean Manufacturing

and Six Sigma operation with Decision Making Based on the Analytic

Hierarchy Process. IFAC-PapersOnLine, 49(12), 59-64.

136

Aziz, A., Jarrahi, F., & Abdul-Kader, W. (2010). Modeling and Performance

Evaluation of a Series-parallel Flow Line System with Finite Buffers.

INFOR: Information Systems and Operational Research, 48(2), 103-120.

Barlas, P., Heavey, C., & Dagkakis, G. (2015). An Open Source Tool For

Automated Input Data In Simulation. Internation Journal of Simulation

Modeling.

Bergmann, S., & Strassburger, S. (2010). Challenges for the Automatic Generation

of Simulation Models for Production Systems.

Byrne, N., Liston, P., Geraghty, J., & Young, P. (2012). The Potential Role of Open

Source Discrete Event Simulation Software in the Manufacturing Sector.

Fournier-Viger, P., Nkambou, R., & Tseng, V. S. (2011). RuleGrowth. Proceedings

of the 2011 ACM Symposium on Applied Computing - SAC 11.

Gronniger, H., Krahn, H., Rumpe, B., Schindler, M., & Volkel, S. (2007). Text-

based Modeling.

Ham, W. K., & Park, S. C. (2014). A framework for the continuous performance

improvement of manned assembly lines. International Journal of Production

Research,52(18), 5432-5450.

Haraszko, C., Nemeth, I., & Baldwin, J. (2013). DES Configurators for Rapid

Prototyping of Manufacturing systems. International conference on

Innovative Technologies.

Heavey, C., & Robin, S. (2014). Development of an Open-Source Discrete Event

Simulation Cloud Enabled Platform.

137

Hughes, R., Scott, R., & Ridgway, K. (2013). Automatic simulation model

generation for supporting facility planning in SMEs.

Kelton, W. D., Sadowski, R. P., & Zupick, N. B. (2010). Simulation with Arena.

New York, NY: McGraw-Hill Education.

Köksal, G., Batmaz, I., & Testik, M. C. (2011). A review of data mining

applications for quality improvement in manufacturing industry. Expert

Systems with Applications, 38(10), 13448-13467.

Lee, Y. T., Riddick, F. H., & Johansson, B. I. (2011). Core Manufacturing

Simulation Data - a manufacturing simulation integration standard:

overview and case studies. International Journal Of Computer Integrated

Manufacturing, 24(8), 689-709.

Li, L., Chang, Q., Ni, J., Xiao, G., & Biller, S. (2007). Bottleneck Detection of

Manufacturing Systems Using Data Driven Method. 2007 IEEE

International Symposium on Assembly and Manufacturing.

Mourtzis, Doukas, & Bernidaki. (2014). Simulation in Manufacturing: Review and

Challenges. Procedia CIRP., 213-229.

Netjes, M., Vanderfeesten, I., & Reijers, H. A. (2006). “Intelligent” Tools for

Workflow Process Redesign: A Research Agenda. Business Process

Management Workshops Lecture Notes in Computer Science, 444-453.

Pillai, V. M., & Chandrasekharan, M. (2008). An absorbing Markov chain model

for production systems with rework and scrapping. Computers & Industrial

Engineering, 55(3), 695-706.

138

Rossetti, M.D. (2008). Java Simulation Library (JSL): an open-source object-

oriented library for discrete-event simulation in Java. IJSPM, 4, 69-87.

Rozinat, A., Jong, I. D., Gunther, C., & Aalst, W. V. (2009). Process Mining

Applied to the Test Process of Wafer Scanners in ASML. IEEE

Transactions on Systems, Man, and Cybernetics, Part C (Applications and

Reviews),39(4), 474-479.

Rozinat, A., Mans, R. S., Song, M., & W. M. P. Van Der Aalst. (2007). Discovering

colored Petri nets from event logs. International Journal on Software Tools

for Technology Transfer, 10(1), 57-74.

Rozinat, A., Mans, R., Song, M., & Aalst, W. V. (2009). Discovering simulation

models. Information Systems,34(3), 305-327.

Senanayake, C. D., & Subramaniam, V. (2011). Analysis of a two-stage, flexible

production system with unreliable machines, finite buffers and non-

negligible setups. Flexible Services and Manufacturing Journal, 25(3), 414-

442.

Van Der Aalst, W. (2012). Process mining: Overview and opportunities. ACM

Transactions on Management Information Systems (TMIS), 3(2), 7.

Wang, J., Wong, R. K., Ding, J., Guo, Q., & Wen, L. (2013). Efficient Selection of

Process Mining Algorithms. IEEE Transactions on Services Computing,

6(4), 484-496.

139

Wedel, M., Hacht, M. V., Hieber, R., Metternich, J., & Abele, E. (2015). Real-time

Bottleneck Detection and Prediction to Prioritize Fault Repair in Interlinked

Production Lines. Procedia CIRP, 37, 140-145.

Ylipaa, T., & Bolmsjo, G. (2005). Reducing bottle-necks in a manufacturing system

with automatic data collection and discrete event simulation. Journal of

Manufacturing Technology Management.

Zheng, Li, Liang Tang, Tao Li, Bing Duan, Ming Lei, Pengnian Wang, Chunqiu

Zeng, Lei Li, Yexi Jiang, Wei Xue, Jingxuan Li, Chao Shen, Wubai Zhou,

and Hongtai Li (2014). "Applying data mining techniques to address critical

process optimization needs in advanced manufacturing." Proceedings of the

20th ACM SIGKDD international conference on Knowledge discovery and

data mining - KDD '14 (2014): n. pag. Web.

140

7 APPENDICES

141

APPENDIX A

Arena VBA Code for MAS with Parallel Workstations and Finite Buffers

Option Explicit

Dim oSiman As Arena.SIMAN, jobIDAttindx As Long, startTimeindex1 As

Long, startTimeindex2 As Long, startTimeindex3 As Long

Dim nNextRow As Long

Dim oExcelApp As Excel.Application, oWorkbook As Excel.Workbook,

oWorksheet As Excel.Worksheet

Private Sub ModelLogic_RunBeginSimulation()

nNextRow = 2

Set oSiman = ThisDocument.Model.SIMAN

jobIDAttindx = oSiman.SymbolNumber("jobID")

startTimeindex1 = oSiman.SymbolNumber("Process1Enter")

startTimeindex2 = oSiman.SymbolNumber("Process2Enter")

startTimeindex3 = oSiman.SymbolNumber("Process3Enter")

Set oExcelApp = CreateObject("Excel.Application")

oExcelApp.Visible = True

oExcelApp.SheetsInNewWorkbook = 1

Set oWorkbook = oExcelApp.Workbooks.Add

Set oWorksheet = oWorkbook.ActiveSheet

With oWorksheet

 .Name = "Event Log"

 .Cells(1, 1).value = "JobID"

 .Cells(1, 2).value = "ProcessID"

 .Cells(1, 3).value = "StartTime"

 .Cells(1, 4).value = "EndTime"

 .Cells(1, 5).value = "Resource"

 End With

End Sub

Private Sub VBA_Block_1_Fire()

Dim jid As Long

Dim simTime As Double, startTime As Double

142

startTime = oSiman.EntityAttribute(oSiman.ActiveEntity, startTimeindex1)

simTime = oSiman.RunCurrentTime

jid = oSiman.EntityAttribute(oSiman.ActiveEntity, jobIDAttindx)

With oWorksheet

 .Cells(nNextRow, 1).value = jid & "A"

 .Cells(nNextRow, 2).value = "Process 1"

 .Cells(nNextRow, 3).value = startTime

 .Cells(nNextRow, 4).value = simTime

 .Cells(nNextRow, 5).value = "Worker 1"

End With

nNextRow = nNextRow + 1

End Sub

Private Sub VBA_Block_2_Fire()

Dim jid As Long

Dim simTime As Double, startTime As Double

startTime = oSiman.EntityAttribute(oSiman.ActiveEntity, startTimeindex2)

simTime = oSiman.RunCurrentTime

jid = oSiman.EntityAttribute(oSiman.ActiveEntity, jobIDAttindx)

With oWorksheet

 .Cells(nNextRow, 1).value = jid & "B"

 .Cells(nNextRow, 2).value = "Process 2"

 .Cells(nNextRow, 3).value = startTime

 .Cells(nNextRow, 4).value = simTime

 .Cells(nNextRow, 5).value = "Worker 2"

End With

nNextRow = nNextRow + 1

End Sub

Private Sub VBA_Block_3_Fire()

Dim jid As Long

Dim simTime As Double, startTime As Double

startTime = oSiman.EntityAttribute(oSiman.ActiveEntity, startTimeindex3)

simTime = oSiman.RunCurrentTime

jid = oSiman.EntityAttribute(oSiman.ActiveEntity, jobIDAttindx)

143

With oWorksheet

 .Cells(nNextRow, 1).value = jid & "C"

 .Cells(nNextRow, 2).value = "Process 3"

 .Cells(nNextRow, 3).value = startTime

 .Cells(nNextRow, 4).value = simTime

 .Cells(nNextRow, 5).value = "Worker 3"

End With

nNextRow = nNextRow + 1

End Sub

144

APPENDIX B

Arena VBA Code for Complex MAS

Option Explicit

Dim oSiman As Arena.SIMAN, jobIDAttindx As Long, startTimeindex1 As

Long, startTimeindex2 As Long, startTimeindex3 As Long, startTimeindex4 As

Long, startTimeindex5 As Long, startTimeindex6 As Long,

reworkStartTimeIndex As Long

Dim reworkFlagIndex As Long

Dim nNextRow As Long

Dim nNextRowOut As Long

Dim oExcelApp As Excel.Application, oWorkbook As Excel.Workbook,

oWorksheet As Excel.Worksheet

Private Sub ModelLogic_RunBeginSimulation()

nNextRow = 2

nNextRowOut = 2

Set oSiman = ThisDocument.Model.SIMAN

jobIDAttindx = oSiman.SymbolNumber("jobID")

startTimeindex1 = oSiman.SymbolNumber("Process1Enter")

startTimeindex2 = oSiman.SymbolNumber("Process2Enter")

startTimeindex3 = oSiman.SymbolNumber("Process3Enter")

startTimeindex4 = oSiman.SymbolNumber("Process4Enter")

startTimeindex5 = oSiman.SymbolNumber("Process5Enter")

startTimeindex6 = oSiman.SymbolNumber("Process6Enter")

reworkStartTimeIndex = oSiman.SymbolNumber("ReworkEnter")

reworkFlagIndex = oSiman.SymbolNumber("reworkDone")

Set oExcelApp = CreateObject("Excel.Application")

oExcelApp.Visible = True

oExcelApp.SheetsInNewWorkbook = 1

Set oWorkbook = oExcelApp.Workbooks.Add

Set oWorksheet = oWorkbook.ActiveSheet

With oWorksheet

 .Name = "Event Log"

 .Cells(1, 1).value = "JobIDEnter"

145

 .Cells(1, 2).value = "ProcessID_Enter"

 .Cells(1, 3).value = "StartTime"

 .Cells(1, 4).value = "Resource"

 .Cells(1, 6).value = "JobIDExit"

 .Cells(1, 7).value = "ProcessID_Exit"

 .Cells(1, 8).value = "EndTime"

 End With

End Sub

Private Sub VBA_Block_1_Fire()

Dim jid As Long

Dim simTime As Double, startTime As Double

startTime = oSiman.EntityAttribute(oSiman.ActiveEntity, startTimeindex1)

simTime = oSiman.RunCurrentTime

jid = oSiman.EntityAttribute(oSiman.ActiveEntity, jobIDAttindx)

With oWorksheet

 .Cells(nNextRow, 1).value = jid

 .Cells(nNextRow, 2).value = "A"

 .Cells(nNextRow, 3).value = startTime

 .Cells(nNextRow, 4).value = "Worker 1"

 .Cells(nNextRow, 6).value = jid

 .Cells(nNextRow, 7).value = "A"

 .Cells(nNextRow, 8).value = simTime

End With

nNextRow = nNextRow + 1

End Sub

Private Sub VBA_Block_2_Fire()

Dim jid As Long

Dim simTime As Double, startTime As Double

startTime = oSiman.EntityAttribute(oSiman.ActiveEntity, startTimeindex2)

simTime = oSiman.RunCurrentTime

jid = oSiman.EntityAttribute(oSiman.ActiveEntity, jobIDAttindx)

With oWorksheet

146

 .Cells(nNextRow, 1).value = jid

 .Cells(nNextRow, 2).value = "B"

 .Cells(nNextRow, 3).value = startTime

 .Cells(nNextRow, 4).value = "Worker 2"

 .Cells(nNextRow, 6).value = jid

 .Cells(nNextRow, 7).value = "B"

 .Cells(nNextRow, 8).value = simTime

End With

nNextRow = nNextRow + 1

End Sub

Private Sub VBA_Block_3_Fire()

Dim jid As Long

Dim simTime As Double, startTime As Double

startTime = oSiman.EntityAttribute(oSiman.ActiveEntity, startTimeindex3)

simTime = oSiman.RunCurrentTime

jid = oSiman.EntityAttribute(oSiman.ActiveEntity, jobIDAttindx)

With oWorksheet

 .Cells(nNextRow, 1).value = jid

 .Cells(nNextRow, 2).value = "AC"

 .Cells(nNextRow, 3).value = startTime

 .Cells(nNextRow, 4).value = "Worker 3"

 .Cells(nNextRow, 6).value = jid

 .Cells(nNextRow, 7).value = "C"

 .Cells(nNextRow, 8).value = simTime

End With

nNextRow = nNextRow + 1

With oWorksheet

 .Cells(nNextRow, 1).value = jid

 .Cells(nNextRow, 2).value = "BC"

 .Cells(nNextRow, 3).value = startTime

 .Cells(nNextRow, 4).value = "Worker 3"

 .Cells(nNextRow, 6).value = "x"

 .Cells(nNextRow, 7).value = "x"

 .Cells(nNextRow, 8).value = "x"

End With

147

nNextRow = nNextRow + 1

With oWorksheet

 .Cells(nNextRow, 1).value = jid

 .Cells(nNextRow, 2).value = "DC"

 .Cells(nNextRow, 3).value = startTime

 .Cells(nNextRow, 4).value = "Worker 3"

 .Cells(nNextRow, 6).value = "x"

 .Cells(nNextRow, 7).value = "x"

 .Cells(nNextRow, 8).value = "x"

End With

nNextRow = nNextRow + 1

End Sub

Private Sub VBA_Block_4_Fire()

Dim jid As Long

Dim simTime As Double, startTime As Double

startTime = oSiman.EntityAttribute(oSiman.ActiveEntity, startTimeindex4)

simTime = oSiman.RunCurrentTime

jid = oSiman.EntityAttribute(oSiman.ActiveEntity, jobIDAttindx)

With oWorksheet

 .Cells(nNextRow, 1).value = jid

 .Cells(nNextRow, 2).value = "D"

 .Cells(nNextRow, 3).value = startTime

 .Cells(nNextRow, 4).value = "Worker 4"

 .Cells(nNextRow, 6).value = jid

 .Cells(nNextRow, 7).value = "D"

 .Cells(nNextRow, 8).value = simTime

End With

nNextRow = nNextRow + 1

End Sub

Private Sub VBA_Block_5_Fire()

Dim jid As Long

Dim simTime As Double, startTime As Double

148

startTime = oSiman.EntityAttribute(oSiman.ActiveEntity, startTimeindex5)

simTime = oSiman.RunCurrentTime

jid = oSiman.EntityAttribute(oSiman.ActiveEntity, jobIDAttindx)

With oWorksheet

 .Cells(nNextRow, 1).value = jid

 .Cells(nNextRow, 2).value = "E"

 .Cells(nNextRow, 3).value = startTime

 .Cells(nNextRow, 4).value = "Worker 5"

 .Cells(nNextRow, 6).value = jid

 .Cells(nNextRow, 7).value = "E"

 .Cells(nNextRow, 8).value = simTime

End With

nNextRow = nNextRow + 1

End Sub

Private Sub VBA_Block_6_Fire()

Dim jid As Long

Dim simTime As Double, startTime As Double

startTime = oSiman.EntityAttribute(oSiman.ActiveEntity, startTimeindex6)

simTime = oSiman.RunCurrentTime

jid = oSiman.EntityAttribute(oSiman.ActiveEntity, jobIDAttindx)

With oWorksheet

 .Cells(nNextRow, 1).value = jid

 .Cells(nNextRow, 2).value = "CF"

 .Cells(nNextRow, 3).value = startTime

 .Cells(nNextRow, 4).value = "Worker 6"

 .Cells(nNextRow, 6).value = jid

 .Cells(nNextRow, 7).value = "F"

 .Cells(nNextRow, 8).value = simTime

End With

nNextRow = nNextRow + 1

With oWorksheet

 .Cells(nNextRow, 1).value = jid

 .Cells(nNextRow, 2).value = "EF"

 .Cells(nNextRow, 3).value = startTime

149

 .Cells(nNextRow, 4).value = "Worker 6"

 .Cells(nNextRow, 6).value = "x"

 .Cells(nNextRow, 7).value = "x"

 .Cells(nNextRow, 8).value = "x"

End With

nNextRow = nNextRow + 1

End Sub

Private Sub VBA_Block_7_Fire()

Dim jid As Long

Dim simTime As Double, startTime As Double

startTime = oSiman.EntityAttribute(oSiman.ActiveEntity, reworkStartTimeIndex)

simTime = oSiman.RunCurrentTime

jid = oSiman.EntityAttribute(oSiman.ActiveEntity, jobIDAttindx)

With oWorksheet

 .Cells(nNextRow, 1).value = jid

 .Cells(nNextRow, 2).value = "AR"

 .Cells(nNextRow, 3).value = startTime

 .Cells(nNextRow, 4).value = "Rework 1"

 .Cells(nNextRow, 6).value = jid

 .Cells(nNextRow, 7).value = "R"

 .Cells(nNextRow, 8).value = simTime

End With

nNextRow = nNextRow + 1

End Sub

150

APPENDIX C

Arena VBA Code for Simple Linear MAS

Option Explicit

Dim oSiman As Arena.SIMAN, jobIDAttindx As Long, startTimeindex1 As

Long, startTimeindex2 As Long, startTimeindex3 As Long

Dim nNextRow As Long

Dim oExcelApp As Excel.Application, oWorkbook As Excel.Workbook,

oWorksheet As Excel.Worksheet

Private Sub ModelLogic_RunBeginSimulation()

nNextRow = 2

Set oSiman = ThisDocument.Model.SIMAN

jobIDAttindx = oSiman.SymbolNumber("jobID")

startTimeindex1 = oSiman.SymbolNumber("Process1Enter")

startTimeindex2 = oSiman.SymbolNumber("Process2Enter")

startTimeindex3 = oSiman.SymbolNumber("Process3Enter")

Set oExcelApp = CreateObject("Excel.Application")

oExcelApp.Visible = True

oExcelApp.SheetsInNewWorkbook = 1

Set oWorkbook = oExcelApp.Workbooks.Add

Set oWorksheet = oWorkbook.ActiveSheet

With oWorksheet

 .Name = "Event Log"

 .Cells(1, 1).value = "JobID"

 .Cells(1, 2).value = "ProcessID"

 .Cells(1, 3).value = "StartTime"

 .Cells(1, 4).value = "EndTime"

 .Cells(1, 5).value = "Resource"

 End With

End Sub

Private Sub VBA_Block_1_Fire()

Dim jid As Long

Dim simTime As Double, startTime As Double

151

startTime = oSiman.EntityAttribute(oSiman.ActiveEntity, startTimeindex1)

simTime = oSiman.RunCurrentTime

jid = oSiman.EntityAttribute(oSiman.ActiveEntity, jobIDAttindx)

With oWorksheet

 .Cells(nNextRow, 1).value = jid & "A"

 .Cells(nNextRow, 2).value = "Process 1"

 .Cells(nNextRow, 3).value = startTime

 .Cells(nNextRow, 4).value = simTime

 .Cells(nNextRow, 5).value = "Worker 1"

End With

nNextRow = nNextRow + 1

End Sub

Private Sub VBA_Block_3_Fire()

Dim jid As Long

Dim simTime As Double, startTime As Double

startTime = oSiman.EntityAttribute(oSiman.ActiveEntity, startTimeindex3)

simTime = oSiman.RunCurrentTime

jid = oSiman.EntityAttribute(oSiman.ActiveEntity, jobIDAttindx)

With oWorksheet

 .Cells(nNextRow, 1).value = jid & "C"

 .Cells(nNextRow, 2).value = "Process 3"

 .Cells(nNextRow, 3).value = startTime

 .Cells(nNextRow, 4).value = simTime

 .Cells(nNextRow, 5).value = "Worker 3"

End With

nNextRow = nNextRow + 1

End Sub

152

APPENDIX D

Consent Form

Usability Study of a New Text-
based Simulation Modeling

Approach Consent Form

Welcome to the research study! We are interested in understanding the
advantages of using a new text-based discrete event simulation (DES) modeling
approach called Automated Simulation Analysis Engine (ASAE) to create and
simulate manufacturing assembly systems. As a study participant, you will be
presented with information relevant to the use of ASAE and Arena and then will
complete two modeling exercises followed by an online questionnaire to collect

usability data. The data collected within this study will be used and published in

support of the student researcher’s M.S. thesis. All study data will be kept
confidential.

The study should take approximately one hour to complete, and you will receive
$10.00 in cash for your participation. Your participation in this research is

voluntary. Your decision to take part or not take part in this study will not affect
your grades, your relationship with your professors, or standing in the
University.

You have the right to withdraw at any point during the study, for any reason, and
without any prejudice. If you would like to contact the study’s Principal
Investigator to discuss this research, please e-

mail David.Porter@oregonstate.edu. If you have questions about your rights or
welfare as a participant, please contact the Oregon State University Human
Research Protection Program (HRPP) office, at (541) 737-8008 or by email

at IRB@oregonstate.edu.

By agreeing to participate in the study, you acknowledge that your participation is
voluntary, you are 18 years of age, and that you are aware that you may choose
to terminate your participation in the study at any time and for any reason.

o I consent, begin the study

o I do not consent, I do not wish to participate

Date: _______________________

mailto:David.Porter@oregonstate.edu
mailto:IRB@oregonstate.edu

153

APPENDIX E

Recruitment Email

Hello,

You are receiving this email because we are seeking participants in a research

study titled “Usability study of a new text-based simulation modeling approach”.

As the title implies, this study focuses on assessing the usability of a new simulation

modeling approach in the context of manufacturing assembly systems. An

interested participant will be expected to complete the following tasks:

1. A modeling exercise using traditional simulation software (i.e., Arena),

2. A modeling exercise with a new simulation software called Automated

Simulation Analysis Engine (ASAE) software.

3. A user experience questionnaire relative to the modeling exercises completed in

steps 1 and 2.

Completing the above tasks will take approximately 60 minutes. A basic understanding

of simulation concepts and the Arena simulation software is desired. Participation in

this study will be compensated with $10.00 in cash.

This research is led by principal investigator Dr. J. David Porter and student researcher

Benjamin Fields. For further information or questions about this study, please

contact Dr. Porter by calling (541) 737-2446 or by email

at david.porter@oregonstate.edu.

If you would like to participate in this research study, please connect via email to setup

an individual study session. Thank you,

Dr. J. David Porter

david.porter@oregonstate.edu

Benjamin Fields

fieldsbe@oregonstate.edu

mailto:david.porter@oregonstate.edu
mailto:david.porter@oregonstate.edu
mailto:fieldsbe@oregonstate.edu

154

APPENDIX F

Recruitment Flyer

155

APPENDIX G

IRB Approval Notice

156

APPENDIX H

Study Protocol

Usability study of a new text-based simulation modeling

approach
I. Introduction:

a. Introduce model in Arena

b. Introduce model in ASAE

c. Study Description

II. Module 1:

Description: The user will construct a simulation of the assembly

system depicted below with the Arena simulation software package.

III. Module 2:

Description: The user will construct a simulation of the assembly

system depicted below with the Automated Simulation Analysis

Engine (ASAE) simulation software.

IV. Module 3:

Description: Complete simulation modeling user experience

questionnaire

Assembly System to be Modeled

Number of Jobs: 100

Expected Simulation Runtime is approximately 603 time units

157

Module 1: Arena

Model the Assembly System using the following steps in Arena

1. Define resources

• Worker 0: 1

• Worker 1: 1

• Worker 2: 1

• Buffer 0: 5

• Buffer 1: 5

2. Drag in Create modules

• One for Process 0 branch

• One for Process 1 branch

3. Define Create modules

• Entities per arrival 1

• For process 0 branch time between arrivals Expo 1 minute

• For process 1 branch time between arrivals Expo 2 minutes

• Time units minutes

• Max Arrivals 100

• First arrival at time 0

4. Drag in Seize modules for Processes 0 and 1

• Process 0 – Seize resource worker 0

• Process 1 – seize resource worker 1

5. Insert Delay module for Processes 0 and 1

6. Define the time for Processes 0 and 1

• Time units minutes

7. Drag in Seize module for buffers

• Seize resource buffer 0

• Seize resource buffer 1

8. Drag in Release modules for Processes 0 and 1

• Release resource worker 0

• Release resource worker 1

158

9. Drag in Match module and connect Process 0 branch and Process 1 branch

10. Drag in Batch module and set size to 2

11. Drag in Seize module for Process 2

• Seize resource worker 2

12. Drag in Release module

• Release one of resource buffer 0

• Release one of resource buffer 1

13. Drag in and define Delay module for Process 2

14. Drag in Release module for Process 2

• Release resource worker 2

15. Drag in Dispose module

16. Open Run parameters

17. Set all time units to minutes

18. Run

19. Review results to gain insight into process

159

Module 2: Automated Simulation Analysis Engine

1. Model the Assembly System using the following steps

2. Navigate to the site found at this link http://35.196.62.92/

3. Enter the number of jobs to simulate : 100

4. Enter the number of Processes: 3

5. Press Define

6. Define the Characteristics of each process in the Process Panel

7. Define Process 0

a. Process Time

i. Note the format of a triangular Distribution Process Time

T:low:avg:max

ii. Triangular with min:3 avg:4 and max:5

iii. Enter as T:3:4:5

b. Position Type

i. Enter 0

c. Downstream Connections

i. Used to indicate the number of possible paths a job can go

ii. Format is number,PID(percentage)buffer_capacity,...

(X,XX(X.XX)XX,...)

iii. Enter as 1,02(1.00)05

d. Upstream Connections

i. No upstream connections

ii. Enter 0

8. Press ADD

9. Define Process 1

a. Process Time

i. Note the format of a triangular Distribution Process Time

T:low:avg:max

ii. Triangular with min:5 avg:6 and max:7

iii. Enter as T:5:6:7

b. Position Type

i. Enter 0

c. Downstream Connections

i. Used to indicate the number of possible paths a job can go

http://35.196.62.92/

160

ii. Format is number,PID(percentage)buffer_capacity,...

(X,XX(X.XX)XX,...)

iii. Enter as 1,02(1.00)05

d. Upstream Connections

i. No upstream connections

ii. Enter 0

10. Press ADD

11. Define Process 2

a. Process Time

i. Note the format of a triangular Distribution Process Time

T:low:avg:max

ii. Triangular with min:2 avg:3 and max:5

iii. Enter as T:2:3:5

b. Position Type

i. Enter 2

c. Downstream Connections

i. No downstream Connections

ii. Enter 0

d. Upstream Connections

i. Used to indicate the number of incoming paths

ii. Format is Number,(PID,Buffer_Index),...

X,(XX,X),...

iii. Enter as 2,(00,0),(01,0)

12. Press ADD

13. Press DOWNLOAD

14. Provide the name you would like to use

15. Execute ASAE with Model file

a. Cmd to type in terminal ./ASAE path/to/your/model/file.txt

b. Drag the model file into the terminal

16. Review results and think about the characteristics of the system

161

Module 3

Please complete the simulation modeling user experience questionnaire available

via the following link:

http://oregonstate.qualtrics.com/jfe/form/SV_8ctZ1jYTexVkPcN

http://oregonstate.qualtrics.com/jfe/form/SV_8ctZ1jYTexVkPcN

162

APPENDIX I

Questionaire

Simulation Modeling
Questionnaire

Thank you for participating in this study and taking the time to complete this

questionnaire.

Purpose: The purpose of this questionnaire is to reflect on the previously

completed modeling exercises and to provide feedback based on your

experience when modeling with Arena and the Automated Simulation Analysis

Engine (ASAE). The questions will focus on the interface used to model a

process (i.e., text-based and Graphical User Interface (GUI) modules), the ease

of use, and the information that can be obtained after completing the modeling

exercise with both Arena and ASAE.

Data Collection: The data collected within this study will be used and published

in support of a M.S. thesis, but no personally identifiable information will be

collected or shared.

Benefit: Your well thought out responses will help to better understand how new

modeling approaches can be used and how text-based simulation technologies

can save engineers valuable time and resources, so please take your time and

answer the questionnaire to the best of your ability.

Although it is preferable that you answer all the questions included in the

questionnaire, please feel free to skip any questions you wish. Your participation

in this research is voluntary and your decision to take part or not take part in this

study will not affect your grades, your relationship with your professors, or your

standing in the University. Finally, you have the right to withdraw at any point

during the study, for any reason, and without any prejudice.

Start of Block: Rate Skill block

163

Q1 After going through the pre-study training exercises on Arena and Automated

Simulation Analysis Engine (ASAE), I rate my ability to develop discrete event

simulation (DES) models as:

o Excellent (1)

o Good (2)

o Average (3)

o Poor (4)

Q2 DES-based modeling approaches have different levels of complexity, which

affect the time required to construct a model of a manufacturing assembly

164

system. Please select the option that best reflects your experience when

constructing a model of a manufacturing assembly system with Arena and ASAE.

Strongl
y agree

(1)

Agre
e (2)

Somewha
t agree

(3)

Somewha
t disagree

(4)

Disagre
e (5)

Strongl
y

disagre
e (6)

Constructing
a model of a
manufacturin
g assembly
system took

less time with
ASAE than
with Arena

(1)

o o o o o o

ASAE
reduced the
time needed
to construct a

model of a
manufacturin
g assembly

system when
compared to

Arena (3)

o o o o o o

ASAE has no
impact on the
time needed
to construct a

model of a
manufacturin
g assembly
system (5)

o o o o o o

165

Q3 DES-based modeling approaches simulate manufacturing assembly systems

faster than others. Please select the option that best reflects your experience

simulating a manufacturing assembly system with Arena and ASAE.

Strongl
y agree

(1)

Agre
e (2)

Somewha
t agree

(3)

Somewha
t disagree

(4)

Disagre
e (5)

Strongl
y

disagre
e (6)

Simulating a
manufacturin
g assembly
system took

less time with
Arena than
with ASAE

(2)

o o o o o o

When
compared to
Arena, ASAE
reduced the
time needed
to simulate a
manufacturin
g assembly
system (3)

o o o o o o

When
compared to
Arena, ASAE

has no
impact on the
time needed
to simulate a
manufacturin
g assembly
system (5)

o o o o o o

166

Q4 Graphical user interfaces (GUI) are used within Arena to construct and

simulate a manufacturing assembly system, whereas ASAE uses a text-based

interface for the same purpose. Please select the option that best reflects your

opinion about using a GUI and a text-based interface to construct and simulate a

manufacturing assembly system.

167

Strongl
y agree

(1)

Agre
e (2)

Somewha
t agree

(3)

Somewha
t disagree

(4)

Disagre
e (5)

Strongl
y

disagre
e (6)

Using
Arena’s GUI
to construct
and simulate

a
manufacturin
g assembly
system is

easier than
using ASAE’s

text-based
interface (1)

o o o o o o

Using
ASAE’s text-

based
interface to

construct and
simulate a

manufacturin
g assembly
system is

easier than
using Arena’s

GUI (2)

o o o o o o

Using
ASAE’s text-

based
interface to

construct and
simulate a

manufacturin
g assembly
system is

more difficult
than using

Arena’s GUI
(3)

o o o o o o

168

I would rather
construct and

simulate a
manufacturin
g assembly

system using
Arena’s GUI
instead of

ASAE’s text-
based

interface (4)

o o o o o o

I would rather
construct and

simulate a
manufacturin
g assembly

system using
ASAE’s text-

based
interface
instead of

Arena’s GUI
(5)

o o o o o o

Both Arena’s
GUI and

ASAE’s text-
based

interface are
equivalent

when
constructing

and
simulating a
manufacturin
g assembly
system (6)

o o o o o o

End of Block: Modeling Block

Start of Block: Block 6

169

Q4 Two common features of manufacturing assembly systems are parallel

workstations and finite capacity buffers. Please rate your experience when

modeling parallel workstations and finite capacity buffers with Arena and ASAE.

170

Strongl
y agree

(1)

Agre
e (2)

Somewha
t agree (3)

Somewha
t disagree

(4)

Disagre
e (5)

Strongly
disagre

e (6)

Modeling
parallel

workstation
s with

ASAE was
difficult (1)

o o o o o o

Modeling
parallel

workstation
s with

Arena was
easy (2)

o o o o o o

Compared
to Arena, it
was more
difficult to

model
parallel

workstation
s with

ASAE (3)

o o o o o o

Modeling
finite

capacity
buffers with
ASAE was
difficult (4)

o o o o o o

Modeling
finite

capacity
buffers with
Arena was
easy (5)

o o o o o o

171

Compared
to Arena, it
was more
difficult to

model finite
capacity

buffers with
ASAE (6)

o o o o o o

Q7 Arena uses a GUI and ASAE uses a text-based interface. Please select the

option that best reflects your opinion about how well you understood the

172

characteristics of a manufacturing assembly system when modeling it with a GUI

as opposed to a text-based interface.as opposed to a text-based interface.

173

Strongly
agree (1)

Agree
(2)

Somewhat
agree (3)

Somewhat
disagree (4)

Disagree
(5)

Strongly
disagree

(6)

Using
Arena’s GUI

modules
allowed me

to
understand
process flow

(1)

o o o o o o

Using
ASAE’s text-

based
approach

allowed me
to

understand
process flow

(2)

o o o o o o

Using
Arena’s GUI

modules
allowed me

to
understand

the
characteristic

s of each
process (3)

o o o o o o

Using
ASAE’s text-

based
approach

allowed me
to

understand
the

characteristic
s of each

process (4)

o o o o o o

174

Using
Arena’s GUI

modules
allowed me

to get a
better initial

understandin
g of the

system (5)

o o o o o o

Using
ASAE’s text-

based
approach

allowed me
to get a

better initial
understandin

g of the
system (6)

o o o o o o

Q17 DES-based modeling approaches generate useful results that help in

gaining a better understanding of the performance of a manufacturing assembly

175

system. Please select the option that reflects your opinion about the value of the

results generated by Arena and ASAE.

176

Strongly
agree

(1)

Agree
(2)

Somewhat
agree (3)

Somewhat
disagree

(4)

Disagree
(5)

Strongly
disagree

(6)

I was able to
understand
process flow

using the
Arena results.

(1)

o o o o o o

I was able to
understand
process flow

using the
ASAE results.

(2)

o o o o o o

I was able to
identify

potential
bottlenecks
using the

Arena results.
(3)

o o o o o o

I was able to
identify

potential
bottlenecks
using the

ASAE results.
(4)

o o o o o o

I was able to
understand

the
throughput of
the system

with the
Arena results

(5)

o o o o o o

177

I was able to
understand

the
throughput of
the system

with the
ASAE results

(6)

o o o o o o

I was able to
understand

process times
with the
results

provided by
Arena (7)

o o o o o o

I was able to
understand

process times
with the
results

provided by
ASAE (8)

o o o o o o

The results
provided by
Arena allow
me to better
understand

the
manufacturing

assembly
system (9)

o o o o o o

The results
provided by
ASAE allow
me to better
understand

the
manufacturing

assembly
system (10)

o o o o o o

End of Block: Block 7

178

Start of Block: Compare Block

Q10 For each statement in this section, please select how the modeling

approach enabled by either Arena or ASAE relates to the statement. The closer a

number is to a specific modeling approach, the stronger the connection is

between that statement and the modeling approach.

Q9 Saves more time in creating and simulating a manufacturing assembly

system.

1

(1)
2

(2)
3

(3)
4

(4)
5

(5)
6

(6)

ASAE o o o o o o Arena

Q11 Increases the time needed to create and simulate a manufacturing

assembly system.

1

(1)
2

(2)
3

(3)
4

(4)
5

(5)
6

(6)

ASAE o o o o o o Arena

Q12 Facilitates the modeling of finite capacity buffers.

1

(1)
2

(2)
3

(3)
4

(4)
5

(5)
6

(6)

ASAE o o o o o o Arena

179

Q13 Facilitates the modeling of parallel workstations.

1

(1)
2

(2)
3

(3)
4

(4)
5

(5)
6

(6)

ASAE o o o o o o Arena

Q14 The modeling approach is easy to use.

1

(1)
2

(2)
3

(3)
4

(4)
5

(5)
6

(6)

ASAE o o o o o o Arena

Q15 The modeling approach is difficult to understand.

1

(1)
2

(2)
3

(3)
4

(4)
5

(5)
6

(6)

ASAE o o o o o o Arena

Q17 The data generated by the modeling approach provides more insight into

the performance of the manufacturing assembly system.

1

(1)
2

(2)
3

(3)
4

(4)
5

(5)
6

(6)

ASAE o o o o o o Arena

180

Q8 Based on your user experience, which modeling approach would you rather

use to create and simulate a manufacturing assembly system?

o ASAE (1)

o Arena (2)

181

APPENDIX J

Example of Start.txt file created by ASAE simulation engine

JobID Start,StartTime,Resource,JobsInSystem

[1:0-(x)],0.000000,1

[1:1-(x)],0.000000,2

[2:0-(x)],3.616230,3

[2:1-(x)],5.518668,4

[1:2-([1:0-(x)][1:1-(x)])],5.518783,4

[3:0-(x)],7.817717,5

[4:0-(x)],11.462727,4

[3:1-(x)],11.797397,5

[2:2-([2:0-(x)][2:1-(x)])],11.797658,5

[5:0-(x)],15.045105,6

[4:1-(x)],17.384474,5

[3:2-([3:0-(x)][3:1-(x)])],17.385027,5

[6:0-(x)],19.402149,6

[5:1-(x)],22.703205,5

[4:2-([4:0-(x)][4:1-(x)])],22.704079,5

[7:0-(x)],22.868164,6

[8:0-(x)],26.514030,7

[6:1-(x)],29.526850,6

[5:2-([5:0-(x)][5:1-(x)])],29.526886,6

[9:0-(x)],30.473555,7

[10:0-(x)],35.161819,6

[7:1-(x)],36.437546,7

[6:2-([6:0-(x)][6:1-(x)])],36.438168,7

[11:0-(x)],39.017387,8

[8:1-(x)],42.269699,7

[7:2-([7:0-(x)][7:1-(x)])],42.270237,7

[12:0-(x)],42.413597,8

[13:0-(x)],46.532181,7

[9:1-(x)],47.898106,8

[8:2-([8:0-(x)][8:1-(x)])],47.899040,8

[14:0-(x)],50.387115,9

[10:1-(x)],53.603619,8

[9:2-([9:0-(x)][9:1-(x)])],53.604435,8

[15:0-(x)],54.031441,9

[11:1-(x)],59.886330,8

[10:2-([10:0-(x)][10:1-(x)])],59.887295,8

[16:0-(x)],59.887985,9

182

[12:1-(x)],66.180092,8

[11:2-([11:0-(x)][11:1-(x)])],66.180611,8

[17:0-(x)],66.181084,9

[13:1-(x)],71.670044,8

[12:2-([12:0-(x)][12:1-(x)])],71.670731,8

[18:0-(x)],71.671135,9

[14:1-(x)],77.547501,8

[13:2-([13:0-(x)][13:1-(x)])],77.548218,8

[19:0-(x)],77.548790,9

[15:1-(x)],83.454872,8

[14:2-([14:0-(x)][14:1-(x)])],83.455254,8

[20:0-(x)],83.455841,9

[16:1-(x)],89.288864,8

[15:2-([15:0-(x)][15:1-(x)])],89.288986,8

[21:0-(x)],89.289879,9

[17:1-(x)],95.878166,8

[16:2-([16:0-(x)][16:1-(x)])],95.878845,8

[22:0-(x)],95.878860,9

[18:1-(x)],101.772667,8

[17:2-([17:0-(x)][17:1-(x)])],101.773399,8

[23:0-(x)],101.773659,9

[19:1-(x)],107.295792,8

[18:2-([18:0-(x)][18:1-(x)])],107.296646,8

[24:0-(x)],107.296967,9

[20:1-(x)],113.034775,8

[19:2-([19:0-(x)][19:1-(x)])],113.034805,8

[25:0-(x)],113.035454,9

[21:1-(x)],118.967079,8

[20:2-([20:0-(x)][20:1-(x)])],118.967323,8

[26:0-(x)],118.967422,9

[22:1-(x)],125.450386,8

[21:2-([21:0-(x)][21:1-(x)])],125.450531,8

[27:0-(x)],125.451073,9

[23:1-(x)],131.410324,8

[22:2-([22:0-(x)][22:1-(x)])],131.410919,8

[28:0-(x)],131.411240,9

[24:1-(x)],137.803421,8

[23:2-([23:0-(x)][23:1-(x)])],137.804352,8

[29:0-(x)],137.804413,9

[25:1-(x)],143.574615,8

[24:2-([24:0-(x)][24:1-(x)])],143.575272,8

[30:0-(x)],143.575378,9

[26:1-(x)],148.808990,8

183

[25:2-([25:0-(x)][25:1-(x)])],148.809891,8

[31:0-(x)],148.809921,9

[27:1-(x)],153.981659,8

[26:2-([26:0-(x)][26:1-(x)])],153.982330,8

[32:0-(x)],153.982407,9

[28:1-(x)],160.270020,8

[27:2-([27:0-(x)][27:1-(x)])],160.270859,8

[33:0-(x)],160.271454,9

[29:1-(x)],165.996857,8

[28:2-([28:0-(x)][28:1-(x)])],165.997818,8

[34:0-(x)],165.998520,9

[30:1-(x)],172.113586,8

[29:2-([29:0-(x)][29:1-(x)])],172.114410,8

[35:0-(x)],172.114502,9

[31:1-(x)],178.396713,8

[30:2-([30:0-(x)][30:1-(x)])],178.397324,8

[36:0-(x)],178.397949,9

[32:1-(x)],184.407379,8

[31:2-([31:0-(x)][31:1-(x)])],184.407425,8

[37:0-(x)],184.407761,9

[33:1-(x)],189.877884,8

[32:2-([32:0-(x)][32:1-(x)])],189.878815,8

[38:0-(x)],189.879791,9

[34:1-(x)],196.268860,8

[33:2-([33:0-(x)][33:1-(x)])],196.268906,8

[39:0-(x)],196.269165,9

[35:1-(x)],201.989410,8

[34:2-([34:0-(x)][34:1-(x)])],201.989456,8

[40:0-(x)],201.989990,9

[36:1-(x)],208.088531,8

[35:2-([35:0-(x)][35:1-(x)])],208.088699,8

[41:0-(x)],208.089203,9

[37:1-(x)],213.932007,8

[36:2-([36:0-(x)][36:1-(x)])],213.932037,8

[42:0-(x)],213.932709,9

[38:1-(x)],219.473267,8

[37:2-([37:0-(x)][37:1-(x)])],219.474167,8

[43:0-(x)],219.475006,9

[39:1-(x)],225.918808,8

[38:2-([38:0-(x)][38:1-(x)])],225.919601,8

[44:0-(x)],225.920013,9

[40:1-(x)],232.152252,8

[39:2-([39:0-(x)][39:1-(x)])],232.152893,8

184

[45:0-(x)],232.152985,9

[41:1-(x)],237.979507,8

[40:2-([40:0-(x)][40:1-(x)])],237.979568,8

[46:0-(x)],237.979828,9

[42:1-(x)],244.608871,8

[41:2-([41:0-(x)][41:1-(x)])],244.608948,8

[47:0-(x)],244.609573,9

[43:1-(x)],251.152237,8

[42:2-([42:0-(x)][42:1-(x)])],251.152939,8

[48:0-(x)],251.153534,9

[44:1-(x)],256.370148,8

[43:2-([43:0-(x)][43:1-(x)])],256.370300,8

[49:0-(x)],256.371063,9

[45:1-(x)],262.818665,8

[44:2-([44:0-(x)][44:1-(x)])],262.819397,8

[50:0-(x)],262.820099,9

[46:1-(x)],268.675323,8

[45:2-([45:0-(x)][45:1-(x)])],268.675629,8

[51:0-(x)],268.675964,9

[47:1-(x)],273.760620,8

[46:2-([46:0-(x)][46:1-(x)])],273.760651,8

[52:0-(x)],273.761108,9

[48:1-(x)],280.304199,8

[47:2-([47:0-(x)][47:1-(x)])],280.304260,8

[53:0-(x)],280.305206,9

[49:1-(x)],286.249146,8

[48:2-([48:0-(x)][48:1-(x)])],286.250000,8

[54:0-(x)],286.250549,9

[50:1-(x)],292.696228,8

[49:2-([49:0-(x)][49:1-(x)])],292.696960,8

[55:0-(x)],292.697815,9

[51:1-(x)],298.745880,8

[50:2-([50:0-(x)][50:1-(x)])],298.746704,8

[56:0-(x)],298.746796,9

[52:1-(x)],305.018738,8

[51:2-([51:0-(x)][51:1-(x)])],305.019501,8

[57:0-(x)],305.020294,9

[53:1-(x)],311.880951,8

[52:2-([52:0-(x)][52:1-(x)])],311.881042,8

[58:0-(x)],311.881805,9

[54:1-(x)],318.546417,8

[53:2-([53:0-(x)][53:1-(x)])],318.546631,8

[59:0-(x)],318.547363,9

185

[55:1-(x)],324.075165,8

[54:2-([54:0-(x)][54:1-(x)])],324.075470,8

[60:0-(x)],324.075500,9

[56:1-(x)],330.809875,8

[55:2-([55:0-(x)][55:1-(x)])],330.810150,8

[61:0-(x)],330.810272,9

[57:1-(x)],337.314575,8

[56:2-([56:0-(x)][56:1-(x)])],337.314911,8

[62:0-(x)],337.315430,9

[58:1-(x)],343.223083,8

[57:2-([57:0-(x)][57:1-(x)])],343.224060,8

[63:0-(x)],343.224365,9

[59:1-(x)],348.941925,8

[58:2-([58:0-(x)][58:1-(x)])],348.942841,8

[64:0-(x)],348.943176,9

[60:1-(x)],355.122070,8

[59:2-([59:0-(x)][59:1-(x)])],355.122253,8

[65:0-(x)],355.122314,9

[61:1-(x)],361.706787,8

[60:2-([60:0-(x)][60:1-(x)])],361.707031,8

[66:0-(x)],361.707123,9

[62:1-(x)],367.720947,8

[61:2-([61:0-(x)][61:1-(x)])],367.721039,8

[67:0-(x)],367.721649,9

[63:1-(x)],373.870850,8

[62:2-([62:0-(x)][62:1-(x)])],373.871063,8

[68:0-(x)],373.871429,9

[64:1-(x)],379.427246,8

[63:2-([63:0-(x)][63:1-(x)])],379.427734,8

[69:0-(x)],379.428375,9

[65:1-(x)],385.117981,8

[64:2-([64:0-(x)][64:1-(x)])],385.118134,8

[70:0-(x)],385.119049,9

[66:1-(x)],390.780609,8

[65:2-([65:0-(x)][65:1-(x)])],390.781189,8

[71:0-(x)],390.781525,9

[67:1-(x)],397.339203,8

[66:2-([66:0-(x)][66:1-(x)])],397.339294,8

[72:0-(x)],397.339752,9

[68:1-(x)],403.421600,8

[67:2-([67:0-(x)][67:1-(x)])],403.422058,8

[73:0-(x)],403.422821,9

[69:1-(x)],408.902985,8

186

[68:2-([68:0-(x)][68:1-(x)])],408.903137,8

[74:0-(x)],408.903259,9

[70:1-(x)],414.924500,8

[69:2-([69:0-(x)][69:1-(x)])],414.925049,8

[75:0-(x)],414.925415,9

[71:1-(x)],421.118256,8

[70:2-([70:0-(x)][70:1-(x)])],421.118530,8

[76:0-(x)],421.119232,9

[72:1-(x)],427.101166,8

[71:2-([71:0-(x)][71:1-(x)])],427.101379,8

[77:0-(x)],427.101746,9

[73:1-(x)],433.107513,8

[72:2-([72:0-(x)][72:1-(x)])],433.107788,8

[78:0-(x)],433.107880,9

[74:1-(x)],439.568542,8

[73:2-([73:0-(x)][73:1-(x)])],439.568939,8

[79:0-(x)],439.569916,9

[75:1-(x)],445.540558,8

[74:2-([74:0-(x)][74:1-(x)])],445.540802,8

[80:0-(x)],445.541016,9

[76:1-(x)],451.721344,8

[75:2-([75:0-(x)][75:1-(x)])],451.721588,8

[81:0-(x)],451.721802,9

[77:1-(x)],457.781708,8

[76:2-([76:0-(x)][76:1-(x)])],457.781738,8

[82:0-(x)],457.782379,9

[78:1-(x)],464.545929,8

[77:2-([77:0-(x)][77:1-(x)])],464.546600,8

[83:0-(x)],464.547546,9

[79:1-(x)],470.863220,8

[78:2-([78:0-(x)][78:1-(x)])],470.864166,8

[84:0-(x)],470.864777,9

[80:1-(x)],476.427917,8

[79:2-([79:0-(x)][79:1-(x)])],476.428864,8

[85:0-(x)],476.429108,9

[81:1-(x)],482.226379,8

[80:2-([80:0-(x)][80:1-(x)])],482.227234,8

[86:0-(x)],482.227600,9

[82:1-(x)],488.489410,8

[81:2-([81:0-(x)][81:1-(x)])],488.489563,8

[87:0-(x)],488.489868,9

[83:1-(x)],494.277527,8

[82:2-([82:0-(x)][82:1-(x)])],494.277771,8

187

[88:0-(x)],494.277832,9

[84:1-(x)],499.980133,8

[83:2-([83:0-(x)][83:1-(x)])],499.980804,8

[89:0-(x)],499.981598,9

[85:1-(x)],506.960724,8

[84:2-([84:0-(x)][84:1-(x)])],506.961548,8

[90:0-(x)],506.962036,9

[86:1-(x)],512.848206,8

[85:2-([85:0-(x)][85:1-(x)])],512.848999,8

[91:0-(x)],512.849487,9

[87:1-(x)],519.240662,8

[86:2-([86:0-(x)][86:1-(x)])],519.241638,8

[92:0-(x)],519.241821,9

[88:1-(x)],524.380554,8

[87:2-([87:0-(x)][87:1-(x)])],524.381042,8

[93:0-(x)],524.381165,9

[89:1-(x)],529.832153,8

[88:2-([88:0-(x)][88:1-(x)])],529.832336,8

[94:0-(x)],529.833008,9

[90:1-(x)],535.463013,8

[89:2-([89:0-(x)][89:1-(x)])],535.463379,8

[95:0-(x)],535.463440,9

[91:1-(x)],541.695801,8

[90:2-([90:0-(x)][90:1-(x)])],541.696716,8

[96:0-(x)],541.696777,9

[92:1-(x)],547.317627,8

[91:2-([91:0-(x)][91:1-(x)])],547.318604,8

[97:0-(x)],547.318726,9

[93:1-(x)],553.848022,8

[92:2-([92:0-(x)][92:1-(x)])],553.848511,8

[98:0-(x)],553.848633,9

[94:1-(x)],560.126892,8

[93:2-([93:0-(x)][93:1-(x)])],560.127258,8

[99:0-(x)],560.127319,9

[95:1-(x)],566.660889,8

[94:2-([94:0-(x)][94:1-(x)])],566.661316,8

[100:0-(x)],566.662109,9

[96:1-(x)],573.005127,8

[95:2-([95:0-(x)][95:1-(x)])],573.006042,8

[101:0-(x)],573.006470,9

[97:1-(x)],579.006714,8

[96:2-([96:0-(x)][96:1-(x)])],579.007019,8

[102:0-(x)],579.007874,9

188

[98:1-(x)],585.816223,8

[97:2-([97:0-(x)][97:1-(x)])],585.816345,8

[103:0-(x)],585.816895,9

[99:1-(x)],591.849487,8

[98:2-([98:0-(x)][98:1-(x)])],591.850098,8

[104:0-(x)],591.850708,9

[100:1-(x)],597.328430,8

[99:2-([99:0-(x)][99:1-(x)])],597.329285,8

[105:0-(x)],597.330017,9

[101:1-(x)],603.438416,8

[100:2-([100:0-(x)][100:1-(x)])],603.438477,8

[106:0-(x)],603.438904,9

189

APPENDIX K

Example of Finish.txt file created by ASAE simulation engine

JobID END,ExitTime,JobsInSystem

[1:0-(x)],3.616230,2

[1:1-(x)],5.518668,3

[2:0-(x)],7.817717,4

[1:2-([1:0-(x)][1:1-(x)])],8.338260,3

[3:0-(x)],11.462727,3

[2:1-(x)],11.797397,4

[4:0-(x)],15.045105,5

[2:2-([2:0-(x)][2:1-(x)])],15.393543,4

[3:1-(x)],17.384474,4

[5:0-(x)],19.402149,5

[3:2-([3:0-(x)][3:1-(x)])],21.446770,4

[4:1-(x)],22.703205,4

[6:0-(x)],22.868164,5

[7:0-(x)],26.514030,6

[4:2-([4:0-(x)][4:1-(x)])],26.666458,5

[5:1-(x)],29.526850,5

[8:0-(x)],30.473555,6

[5:2-([5:0-(x)][5:1-(x)])],34.263363,5

[9:0-(x)],35.161819,5

[6:1-(x)],36.437546,6

[10:0-(x)],39.017387,7

[6:2-([6:0-(x)][6:1-(x)])],39.291874,6

[7:1-(x)],42.269699,6

[11:0-(x)],42.413597,7

[7:2-([7:0-(x)][7:1-(x)])],46.036064,6

[12:0-(x)],46.532181,6

[8:1-(x)],47.898106,7

[13:0-(x)],50.387115,8

[8:2-([8:0-(x)][8:1-(x)])],52.227192,7

[9:1-(x)],53.603619,7

[14:0-(x)],54.031441,8

[9:2-([9:0-(x)][9:1-(x)])],57.249744,7

[15:0-(x)],58.221901,7

[10:1-(x)],59.886330,7

[10:2-([10:0-(x)][10:1-(x)])],63.765938,7

[16:0-(x)],63.767406,7

[11:1-(x)],66.180092,7

190

[11:2-([11:0-(x)][11:1-(x)])],69.147118,7

[17:0-(x)],69.977066,7

[12:1-(x)],71.670044,7

[12:2-([12:0-(x)][12:1-(x)])],74.371964,7

[18:0-(x)],76.087593,7

[13:1-(x)],77.547501,7

[13:2-([13:0-(x)][13:1-(x)])],81.677231,7

[19:0-(x)],82.224518,7

[14:1-(x)],83.454872,7

[14:2-([14:0-(x)][14:1-(x)])],85.778915,7

[20:0-(x)],87.975601,7

[15:1-(x)],89.288864,7

[21:0-(x)],93.059410,9

[15:2-([15:0-(x)][15:1-(x)])],93.128357,7

[16:1-(x)],95.878166,7

[22:0-(x)],99.403961,9

[16:2-([16:0-(x)][16:1-(x)])],100.239243,7

[17:1-(x)],101.772667,7

[23:0-(x)],105.554924,9

[17:2-([17:0-(x)][17:1-(x)])],105.792473,7

[18:1-(x)],107.295792,7

[18:2-([18:0-(x)][18:1-(x)])],109.991478,7

[24:0-(x)],111.613235,7

[19:1-(x)],113.034775,7

[19:2-([19:0-(x)][19:1-(x)])],115.967972,7

[25:0-(x)],117.079460,7

[20:1-(x)],118.967079,7

[20:2-([20:0-(x)][20:1-(x)])],122.719032,7

[26:0-(x)],122.735565,7

[21:1-(x)],125.450386,7

[21:2-([21:0-(x)][21:1-(x)])],129.472290,7

[27:0-(x)],129.851273,7

[22:1-(x)],131.410324,7

[22:2-([22:0-(x)][22:1-(x)])],135.631073,7

[28:0-(x)],136.067200,7

[23:1-(x)],137.803421,7

[23:2-([23:0-(x)][23:1-(x)])],142.245926,7

[29:0-(x)],142.771729,7

[24:1-(x)],143.574615,7

[30:0-(x)],146.836044,9

[24:2-([24:0-(x)][24:1-(x)])],147.527878,7

[25:1-(x)],148.808990,7

[25:2-([25:0-(x)][25:1-(x)])],152.626801,7

191

[31:0-(x)],152.768875,7

[26:1-(x)],153.981659,7

[26:2-([26:0-(x)][26:1-(x)])],156.802475,7

[32:0-(x)],157.775909,7

[27:1-(x)],160.270020,7

[27:2-([27:0-(x)][27:1-(x)])],163.959488,7

[33:0-(x)],164.399277,7

[28:1-(x)],165.996857,7

[28:2-([28:0-(x)][28:1-(x)])],170.301666,7

[34:0-(x)],170.722717,7

[29:1-(x)],172.113586,7

[29:2-([29:0-(x)][29:1-(x)])],175.841354,7

[35:0-(x)],176.033325,7

[30:1-(x)],178.396713,7

[36:0-(x)],182.528549,9

[30:2-([30:0-(x)][30:1-(x)])],182.591660,7

[31:1-(x)],184.407379,7

[31:2-([31:0-(x)][31:1-(x)])],187.382263,7

[37:0-(x)],187.556458,7

[32:1-(x)],189.877884,7

[32:2-([32:0-(x)][32:1-(x)])],192.178146,7

[38:0-(x)],194.542023,7

[33:1-(x)],196.268860,7

[39:0-(x)],200.553894,9

[33:2-([33:0-(x)][33:1-(x)])],200.894760,7

[34:1-(x)],201.989410,7

[40:0-(x)],205.226074,9

[34:2-([34:0-(x)][34:1-(x)])],206.253799,7

[35:1-(x)],208.088531,7

[41:0-(x)],211.721161,9

[35:2-([35:0-(x)][35:1-(x)])],212.078003,7

[36:1-(x)],213.932007,7

[42:0-(x)],217.533356,9

[36:2-([36:0-(x)][36:1-(x)])],218.563766,7

[37:1-(x)],219.473267,7

[43:0-(x)],223.118317,9

[37:2-([37:0-(x)][37:1-(x)])],223.269974,7

[38:1-(x)],225.918808,7

[44:0-(x)],229.522491,9

[38:2-([38:0-(x)][38:1-(x)])],230.557678,7

[39:1-(x)],232.152252,7

[39:2-([39:0-(x)][39:1-(x)])],234.317825,7

[45:0-(x)],236.044220,7

192

[40:1-(x)],237.979507,7

[40:2-([40:0-(x)][40:1-(x)])],241.857605,7

[46:0-(x)],242.393997,7

[41:1-(x)],244.608871,7

[47:0-(x)],248.419312,9

[41:2-([41:0-(x)][41:1-(x)])],248.722855,7

[42:1-(x)],251.152237,7

[48:0-(x)],255.296524,9

[42:2-([42:0-(x)][42:1-(x)])],255.952377,7

[43:1-(x)],256.370148,7

[43:2-([43:0-(x)][43:1-(x)])],259.288574,7

[49:0-(x)],259.788788,7

[44:1-(x)],262.818665,7

[44:2-([44:0-(x)][44:1-(x)])],265.653381,7

[50:0-(x)],266.919617,7

[45:1-(x)],268.675323,7

[45:2-([45:0-(x)][45:1-(x)])],271.317474,7

[51:0-(x)],273.284760,7

[46:1-(x)],273.760620,7

[46:2-([46:0-(x)][46:1-(x)])],277.378693,7

[52:0-(x)],277.893250,7

[47:1-(x)],280.304199,7

[53:0-(x)],284.431763,9

[47:2-([47:0-(x)][47:1-(x)])],284.637665,7

[48:1-(x)],286.249146,7

[54:0-(x)],290.390594,9

[48:2-([48:0-(x)][48:1-(x)])],290.723083,7

[49:1-(x)],292.696228,7

[55:0-(x)],296.428497,9

[49:2-([49:0-(x)][49:1-(x)])],296.439484,7

[50:1-(x)],298.745880,7

[50:2-([50:0-(x)][50:1-(x)])],302.911682,7

[56:0-(x)],302.951752,7

[51:1-(x)],305.018738,7

[57:0-(x)],308.485931,9

[51:2-([51:0-(x)][51:1-(x)])],308.782257,7

[52:1-(x)],311.880951,7

[58:0-(x)],315.414337,9

[52:2-([52:0-(x)][52:1-(x)])],315.756012,7

[53:1-(x)],318.546417,7

[59:0-(x)],322.287933,9

[53:2-([53:0-(x)][53:1-(x)])],322.339264,7

[54:1-(x)],324.075165,7

193

[54:2-([54:0-(x)][54:1-(x)])],328.040680,7

[60:0-(x)],328.675262,7

[55:1-(x)],330.809875,7

[55:2-([55:0-(x)][55:1-(x)])],334.496094,7

[61:0-(x)],334.567108,7

[56:1-(x)],337.314575,7

[62:0-(x)],341.297821,9

[56:2-([56:0-(x)][56:1-(x)])],342.009521,7

[57:1-(x)],343.223083,7

[57:2-([57:0-(x)][57:1-(x)])],346.876312,7

[63:0-(x)],347.330841,7

[58:1-(x)],348.941925,7

[58:2-([58:0-(x)][58:1-(x)])],352.581390,7

[64:0-(x)],353.465668,7

[59:1-(x)],355.122070,7

[65:0-(x)],359.180359,9

[59:2-([59:0-(x)][59:1-(x)])],359.267883,7

[60:1-(x)],361.706787,7

[66:0-(x)],365.826324,9

[60:2-([60:0-(x)][60:1-(x)])],366.387665,7

[61:1-(x)],367.720947,7

[61:2-([61:0-(x)][61:1-(x)])],372.178162,7

[67:0-(x)],372.286285,7

[62:1-(x)],373.870850,7

[62:2-([62:0-(x)][62:1-(x)])],377.681458,7

[68:0-(x)],378.075867,7

[63:1-(x)],379.427246,7

[63:2-([63:0-(x)][63:1-(x)])],383.169434,7

[69:0-(x)],383.789703,7

[64:1-(x)],385.117981,7

[70:0-(x)],388.589111,9

[64:2-([64:0-(x)][64:1-(x)])],389.157776,7

[65:1-(x)],390.780609,7

[71:0-(x)],394.055664,9

[65:2-([65:0-(x)][65:1-(x)])],394.837708,7

[66:1-(x)],397.339203,7

[72:0-(x)],400.703705,9

[66:2-([66:0-(x)][66:1-(x)])],401.111816,7

[67:1-(x)],403.421600,7

[67:2-([67:0-(x)][67:1-(x)])],407.128662,7

[73:0-(x)],408.184204,7

[68:1-(x)],408.902985,7

[68:2-([68:0-(x)][68:1-(x)])],411.874603,7

194

[74:0-(x)],412.390594,7

[69:1-(x)],414.924500,7

[69:2-([69:0-(x)][69:1-(x)])],418.575653,7

[75:0-(x)],419.567322,7

[70:1-(x)],421.118256,7

[70:2-([70:0-(x)][70:1-(x)])],425.066071,7

[76:0-(x)],425.196350,7

[71:1-(x)],427.101166,7

[71:2-([71:0-(x)][71:1-(x)])],431.357483,7

[77:0-(x)],431.453247,7

[72:1-(x)],433.107513,7

[72:2-([72:0-(x)][72:1-(x)])],437.399689,7

[78:0-(x)],437.587982,7

[73:1-(x)],439.568542,7

[73:2-([73:0-(x)][73:1-(x)])],444.121826,7

[79:0-(x)],444.387909,7

[74:1-(x)],445.540558,7

[80:0-(x)],449.006714,9

[74:2-([74:0-(x)][74:1-(x)])],449.241150,7

[75:1-(x)],451.721344,7

[81:0-(x)],454.820557,9

[75:2-([75:0-(x)][75:1-(x)])],455.534943,7

[76:1-(x)],457.781708,7

[82:0-(x)],461.547455,9

[76:2-([76:0-(x)][76:1-(x)])],462.005737,7

[77:1-(x)],464.545929,7

[77:2-([77:0-(x)][77:1-(x)])],466.984894,7

[83:0-(x)],468.234283,7

[78:1-(x)],470.863220,7

[84:0-(x)],474.641541,9

[78:2-([78:0-(x)][78:1-(x)])],475.209290,7

[79:1-(x)],476.427917,7

[85:0-(x)],479.938507,9

[79:2-([79:0-(x)][79:1-(x)])],480.164734,7

[80:1-(x)],482.226379,7

[80:2-([80:0-(x)][80:1-(x)])],484.530731,7

[86:0-(x)],485.507904,7

[81:1-(x)],488.489410,7

[81:2-([81:0-(x)][81:1-(x)])],492.441864,7

[87:0-(x)],492.632263,7

[82:1-(x)],494.277527,7

[82:2-([82:0-(x)][82:1-(x)])],497.976715,7

[88:0-(x)],498.427673,7

195

[83:1-(x)],499.980133,7

[89:0-(x)],503.897491,9

[83:2-([83:0-(x)][83:1-(x)])],504.272644,7

[84:1-(x)],506.960724,7

[90:0-(x)],510.719849,9

[84:2-([84:0-(x)][84:1-(x)])],511.481750,7

[85:1-(x)],512.848206,7

[85:2-([85:0-(x)][85:1-(x)])],515.157654,7

[91:0-(x)],517.081665,7

[86:1-(x)],519.240662,7

[86:2-([86:0-(x)][86:1-(x)])],522.915222,7

[92:0-(x)],523.553040,7

[87:1-(x)],524.380554,7

[93:0-(x)],528.267578,9

[87:2-([87:0-(x)][87:1-(x)])],528.558899,7

[88:1-(x)],529.832153,7

[88:2-([88:0-(x)][88:1-(x)])],533.554199,7

[94:0-(x)],534.481995,7

[89:1-(x)],535.463013,7

[95:0-(x)],539.300293,9

[89:2-([89:0-(x)][89:1-(x)])],539.576599,7

[90:1-(x)],541.695801,7

[90:2-([90:0-(x)][90:1-(x)])],545.478760,7

[96:0-(x)],545.718140,7

[91:1-(x)],547.317627,7

[91:2-([91:0-(x)][91:1-(x)])],549.613159,7

[97:0-(x)],552.171875,7

[92:1-(x)],553.848022,7

[92:2-([92:0-(x)][92:1-(x)])],557.945618,7

[98:0-(x)],558.210327,7

[93:1-(x)],560.126892,7

[93:2-([93:0-(x)][93:1-(x)])],563.038269,7

[99:0-(x)],564.085938,7

[94:1-(x)],566.660889,7

[94:2-([94:0-(x)][94:1-(x)])],569.230652,7

[100:0-(x)],570.150024,7

[95:1-(x)],573.005127,7

[95:2-([95:0-(x)][95:1-(x)])],576.729675,7

[101:0-(x)],577.069397,7

[96:1-(x)],579.006714,7

[96:2-([96:0-(x)][96:1-(x)])],581.586853,7

[102:0-(x)],583.060059,7

[97:1-(x)],585.816223,7

196

[97:2-([97:0-(x)][97:1-(x)])],589.605957,7

[103:0-(x)],590.060669,7

[98:1-(x)],591.849487,7

[98:2-([98:0-(x)][98:1-(x)])],595.687683,7

[104:0-(x)],596.068298,7

[99:1-(x)],597.328430,7

[99:2-([99:0-(x)][99:1-(x)])],599.429688,7

[105:0-(x)],601.298279,7

[100:1-(x)],603.438416,7

[106:0-(x)],607.638855,9

[100:2-([100:0-(x)][100:1-(x)])],608.241516,7

197

APPENDIX L

Table 7-0-1. Validation Testing Simulation RunTimes.

MAS I MAS II MAS III

ASAE ARENA ASAE ARENA ASAE ARENA

312.579 315.804 304.952 304.18243 76.063 78.0595308

310.808 307.1639 301.26 307.245933 72.3679 76.7772477

312.874 315.8822 302.122 303.972975 73.7778 73.0953167

316.767 308.4117 305.925 304.596521 74.7071 78.8517371

314.227 310.7508 302.115 301.101406 74.403 73.2975925

313.344 307.0328 307.119 296.932721 73.1467 74.2853861

310.486 321.3813 303.732 306.84121 71.5561 76.2168015

312.369 310.8278 303.525 305.216856 74.629 75.6955142

311.05 314.4221 306.252 306.858818 75.3185 74.6217654

319.363 311.401 303.604 299.771587 73.0715 73.6028666

314.144 309.0963 308.538 304.151481 73.2496 75.69827

311.063 306.5036 305.989 304.815043 78.2903 76.4046019

314.023 311.8146 305.373 304.302262 75.7487 72.5881573

309.219 309.4241 306.408 307.59949 76.185 72.9803179

318.114 315.2398 304.979 306.098181 77.4499 75.0780898

318.914 314.2706 305.662 309.167806 72.3065 74.7978683

310.62 313.1828 306.448 303.126401 75.284 74.4119546

311.491 311.0907 302.632 302.003291 71.5092 79.9296554

313.593 313.1226 308.946 301.778218 73.7644 79.5608387

310.835 317.1965 303.405 297.740678 77.0385 74.2090786

317.563 313.2943 303.155 300.283716 74.5895 74.6427786

312.352 314.1194 304.024 305.162731 75.1935 79.5495275

310.438 310.1546 303.274 304.907468 75.1812 75.7994471

313.808 320.6581 305.738 305.304864 73.3728 75.9552784

313.324 305.3604 299.142 304.509008 76.2416 74.5615554

310.424 316.1447 306.066 303.207317 75.5897 73.2451216

311.968 309.3242 305.919 304.35925 76.7161 74.0182644

310.918 311.1759 308.819 298.529315 73.0823 73.0233466

310.413 317.6459 303.729 305.321305 72.3587 73.6094198

314.299 312.8097 304.152 297.291621 74.2565 76.9014888

198

314.015 311.4339 303.786 302.642353 73.8125 73.3847426

312.801 313.03 301.056 303.711248 76.2733 73.9238099

316.522 314.1213 303.324 307.558042 75.6447 73.9910993

310.575 309.9571 299.027 305.028064 71.9926 74.372536

311.26 315.1636 303.547 307.148748 71.3991 74.7667985

318.83 311.5781 306.001 301.397654 71.0814 74.5656937

314.248 316.1225 299.689 305.53517 75.9572 75.5603867

311.261 314.3065 302.614 304.367817 77.0012 70.0326021

312.969 307.281 305.481 301.505511 80.8566 72.7960568

314.729 313.8586 305.291 304.974861 76.1632 74.5544515

311.355 316.59 305.822 303.837815 74.0256 73.6804608

314.526 313.0955 307.653 300.342575 74.8286 75.285487

314.628 316.0004 300.875 301.868721 76.3056 73.2853839

309.97 311.0332 304.275 296.946182 75.3302 72.7326829

307.757 317.8728 303.921 301.616675 74.4542 72.2811364

313.351 313.2557 307.076 304.670164 74.4847 75.0609331

309.339 306.6591 302.151 301.415686 74.7667 76.1179902

311.878 312.9729 302.543 306.06585 76.609 76.0400748

314.531 315.6137 306.186 300.424427 72.2462 75.8714128

317.09 315.3124 301.454 302.486566 74.0043 74.3782542

313.629 309.9932 304.256 302.46205 74.0571 80.8909164

313.469 309.6521 308.173 304.124358 75.2402 73.8715772

316.368 314.3356 301.676 307.280533 75.9193 75.600761

311.777 311.4126 301.046 302.969125 75.1546 74.233101

309.777 308.7243 305.281 305.814367 74.9848 74.6070971

307.537 318.6329 304.757 309.83924 82.7475 72.0685527

317.374 315.4139 304.522 297.375985 74.1325 74.1779895

315.044 311.9877 303.655 298.183859 73.7326 72.9616713

315.442 305.5867 307.483 305.229738 72.6471 74.909775

317.576 320.8456 301.061 304.456291 76.4039 78.7662794

310.815 322.4258 301.393 299.94325 75.5435 78.4951485

314.112 315.934 301.572 300.150087 74.7371 73.843173

311.054 317.6597 308.49 306.028454 75.2945 75.3697694

310.899 314.0575 302.488 309.922713 73.2074 76.0873127

312.114 311.6158 299.261 304.530572 79.5659 74.2195447

313.71 315.3321 300.743 313.579933 73.9036 77.643758

199

312.026 315.6062 301.391 306.066501 72.5137 74.2117307

317.382 316.2448 296.692 305.84127 73.9926 77.1841787

305.782 311.2028 303.478 304.215314 76.5866 72.8546418

309.001 308.4612 300.382 300.614999 75.3679 70.7815889

309.136 313.9571 308.99 302.841878 74.8051 72.5641186

316.945 310.5779 298.721 302.074243 75.9102 74.5599559

309.454 310.9707 300.687 301.694671 74.0643 73.62881

312.325 312.7774 303.196 303.325393 74.091 73.5230259

321.192 317.6355 301.699 304.355137 74.4714 72.1835384

313.449 316.297 307.124 300.481443 73.9272 72.1610573

312.891 311.3797 298.857 304.957861 76.4382 73.1360622

314.709 308.9386 306.337 305.733653 74.0561 74.5320388

308.675 308.0665 301.557 306.175909 71.969 73.9044841

317.646 311.6184 303.294 300.006966 72.9937 75.2911048

317.196 316.6289 304.357 310.408723 75.3557 72.2430799

312.998 313.6369 305.665 300.24802 72.047 72.782903

310.341 312.2826 299.76 305.830734 73.864 72.9007847

308.754 307.523 302.068 305.274157 74.8001 75.0063092

314.731 315.4822 303.733 307.770898 77.4965 77.0415212

315.374 318.1452 301.051 304.810165 73.5124 72.7606034

321.327 307.9578 299.055 299.007618 75.3078 75.6303939

309.394 307.9228 306.935 308.226313 73.1263 78.072002

314.446 312.897 300.727 303.096354 75.3133 75.8148716

312.989 310.3005 299.449 306.631212 70.2361 75.6579871

310.49 316.2807 304.745 304.136981 72.9047 74.7593438

316.3 322.9567 307.322 307.601469 75.7594 75.1982056

311.709 317.2682 308.133 303.215084 74.4727 76.3075345

316.983 308.1194 303.56 309.973416 76.0954 76.9642466

315.881 312.0737 308.531 299.536904 76.3195 75.1078483

317.049 312.8969 305.453 301.923165 72.4522 72.5415884

310.095 317.9141 305.771 303.391619 71.803 76.0768853

314.567 313.5734 302.849 299.942124 74.5679 73.8619865

309.061 316.0722 300.139 300.635714 76.3387 74.5511649

307.094 307.4427 303.167 301.970345 72.3786 75.7956088

200

APPENDIX M

ASAE Source Code

//

// main.cpp

// ASAE (Automated Simulation Analysis Engine)

//

// Created by Benjamin G Fields on 4/2/18.

// Copyright © 2018 Benjamin G Fields. All rights reserved.

//

// Description: Simulation framework that creates a simulation from a text based

definition.

// the program parses the file and creates the model. The simulation is then run

producing

// an event log of the trial run.

#include <iostream>

#include "Simulation.hpp"

#include "DataCrawler.hpp"

#include <fstream>

#include <stdexcept>

#include <cctype>

enum log{

 NO_VERBOSE,

 VERBOSE

};

//***

//Function prototypes

int indexOfClosingBracket(std::string line);

std::vector<processInfo> getModelDefinition(int* numJobs,std::string);

void printModelDef(std::vector<processInfo> model);

//***

//Description: Main entry point in the program

201

int main(int argc, const char * argv[]) {

 std::string fileName;

 if(argc>1){

 std::cout<<"Provided Model Name: "<<argv[1]<<"\n";

 fileName = argv[1];

 }

 else{

 std::cout<<"Using default model name of model.txt\n";

 fileName = "./model.txt";

 }

 //try block to encapsulate the simulation logic

 try {

 int numJobs;

 std::vector<processInfo> modelDef =

getModelDefinition(&numJobs,fileName);

 printModelDef(modelDef);

 Simulation mySim;

 mySim.constructModel(modelDef);

 mySim.printModel();

 mySim.init();

 std::cout<<"Running Simulation with "<<numJobs<<" Jobs\n";

 mySim.run(numJobs,NO_VERBOSE);

 } catch (const std::runtime_error& e) {

 std::cout<<"\nERROR in Simulation\n";

 std::cerr << e.what() << std::endl;

 return EXIT_FAILURE;

 }

 //try block to encapsulate the dataCrawler logic

 try{

 //create a dataCrawler

 DataCrawler myCrawler("starts.txt","Finish.txt");

 myCrawler.run();

 }catch (const std::runtime_error& e) {

 std::cout<<"\nERROR in data Crawler!\n";

 std::cerr << e.what() << std::endl;

 return EXIT_FAILURE;

 }

202

 return EXIT_SUCCESS;

}

//Description:parse the text file containing the model definition

std::vector<processInfo> getModelDefinition(int* numJobs,std::string

fileName){

 std::vector<processInfo> model;

 std::fstream myFile;

 myFile.open(fileName.c_str());

 if(!myFile.is_open()){

 throw std::runtime_error("ERROR: failed to open file!");

 }

 std::cout<<"Model file found.\n";

 std::string line;

 std::getline(myFile,line);

 std::getline(myFile,line);

 int close = indexOfClosingBracket(line);

 std::string val = line.substr(1,close);

 *numJobs = atoi(val.c_str());

 std::getline(myFile,line);

 close = indexOfClosingBracket(line);

 val = line.substr(1,close);

 int numProcesses = atoi(val.c_str());

 std::cout<<"Number of processes is "<<numProcesses<<std::endl;

 for(int i = 0;i<numProcesses;++i){

 processInfo info;

 std::string pTime;

 std::getline(myFile, pTime);

 std::getline(myFile, pTime);

 int ending = indexOfClosingBracket(pTime);

 info.processTime = pTime.substr(1,ending);

 std::string posType;

 std::getline(myFile, posType);

 ending = indexOfClosingBracket(posType);

 info.processPos = atoi(posType.substr(1,ending).c_str());

 std::string downStream;

 std::getline(myFile, downStream);

203

 ending = indexOfClosingBracket(downStream);

 info.downStream = downStream.substr(1,ending);

 std::string upStream;

 std::getline(myFile, upStream);

 ending = indexOfClosingBracket(upStream);

 info.upStream = upStream.substr(1,ending);

 model.push_back(info);

 std::getline(myFile, pTime);

 std::getline(myFile, pTime);

 }

 myFile.close();

 return model;

}

//Description:utility function used when parsing the model file to find the end of

the line

int indexOfClosingBracket(std::string line){

 int ending = 1;

 int length = 0;

 while(ending < line.length()){

 if(line[ending] == '>'){

 break;

 }

 length++;

 ending++;

 }

 return length;

}

//Description:prints the model that is to be created from model file

void printModelDef(std::vector<processInfo> model){

 for (int i = 0; i<model.size(); ++i) {

 std::cout<<"Process: "<<i<<"\n";

 std::cout<<"\tProcessTime: "<<model[i].processTime<<"\n";

 std::cout<<"\tPosition: "<<model[i].processPos<<"\n";

 std::cout<<"\tDownstream connections: "<<model[i].downStream<<"\n";

 std::cout<<"\tUpstream connections: "<<model[i].upStream<<"\n";

 }

204

}

//

// Buffer.hpp

// ASAE

//

// Created by Benjamin G Fields on 4/2/18.

// Copyright © 2018 Benjamin G Fields. All rights reserved.

//

// Description: defines the class structure for the buffer object

#ifndef Buffer_hpp

#define Buffer_hpp

#include <stdio.h>

#include <queue>

#include "Event.hpp"

enum BufferState{

 FULL,

 EMPTY,

 SPACE_LEFT,

 CAN_PULL

};

//Description: class that represents the process buffer within the system

class Buffer{

private:

 std::queue<Event> queue;

public:

 int capacity;

 Event GetNext();

 void placeInBuffer(Event E);

 int getState();

 int getNumInQueue();

};

205

#endif /* Buffer_hpp */

//

// Buffer.cpp

// ASAE

//

// Created by Benjamin G Fields on 4/2/18.

// Copyright © 2018 Benjamin G Fields. All rights reserved.

//

// Description: defines the implementatin of the buffer object

#include "Buffer.hpp"

//Description:return the state of the buffer by saying if it is full,empty or still has

space

int Buffer::getState(){

 if (queue.size() == capacity) {

 return FULL;

 }

 else if(queue.size()== 0){

 return EMPTY;

 }

 else{

 return SPACE_LEFT;

 }

}

int Buffer::getNumInQueue(){

 return (int)queue.size();

}

//Description:return the next event in the queue

Event Buffer::GetNext(){

 Event E = queue.front();

 queue.pop();

 return E;

}

206

//Description: put the event in the buffer queue

void Buffer::placeInBuffer(Event E){

 queue.push(E);

}

//

// Event.hpp

// ASAE

//

// Created by Benjamin G Fields on 4/2/18.

// Copyright © 2018 Benjamin G Fields. All rights reserved.

//

// Description: describes the structure of the event entity

#ifndef Event_hpp

#define Event_hpp

#include <stdio.h>

#include <iostream>

enum EventType{

 PULL_BUFFER,

 PUSH_BUFFER,

 START,

 FINISH

};

typedef struct{

 int triggerEventType;

 int NextProcess;

 int eventType;

 std::string jobID;

 float nextTime;

 int previousBuffer;

 int timeAtProcess;

}nextEventInfo;

207

//Description: class used to contain information important for processing an event

in the system

class Event{

private:

 int processID;

 int timesAtCurrentState;

 std::string jobID;

 int eventType;

 float processTime;

public:

 int previousBuffer;

 Event(int pID, std::string jID,int eventType,float PTime,int

numAtCurrentState,int previousBuffer = -1);

 float getProcessTime();

 int getProcessID();

 std::string getJobID();

 void printEvent();

 int getEventType();

 int getTimesAtCurrentState();

};

//Description: utility class used to compare the simtime for events when placing

into the priority queue

class Compare {

public:

 bool operator()(Event &a, Event &b)

 {

 if (a.getProcessTime() > b.getProcessTime())

 {

 return true;

 }

 else

 {

 return false;

 }

 }

};

208

#endif /* Event_hpp */

//

// Event.cpp

// ASAE

//

// Created by Benjamin G Fields on 4/2/18.

// Copyright © 2018 Benjamin G Fields. All rights reserved.

//

// Description: defines how the create an event and get the needed information

#include "Event.hpp"

//Description:constructor for an event to be processed in simulation

Event::Event(int pID, std::string jID,int eventType,float pTime,int

numAtCurrentState,int pBuffer){

 this->processID = pID;

 this->jobID = jID;

 this->eventType = eventType;

 this->processTime = pTime;

 this->previousBuffer = pBuffer;

 this->timesAtCurrentState = numAtCurrentState;

}

//Description:get the type of event (PUSH,PULL,START, FINISH)

int Event::getEventType(){

 return eventType;

}

//Description: get the simtime that the event was scheduled with

float Event::getProcessTime(){

 return processTime;

}

//Description: get the job id assiciated with the current event

std::string Event::getJobID(){

 return jobID;

}

209

//Description:get the process id associated with the current event

int Event::getProcessID(){

 return processID;

}

//Description: Helper to get the times at the same state

int Event::getTimesAtCurrentState(){

 return timesAtCurrentState;

}

//Description:utility function to print the details of the event to the console for

debug

void Event::printEvent(){

 std::cout<<"********Printing Event*********\n";

 std::cout<<"PID: "<<processID<<"\n";

 std::cout<<"JOB_ID: "<<jobID<<"\n";

 std::cout<<"PREVIOUS_BUFFER: "<<previousBuffer<<"\n";

 if (eventType == PUSH_BUFFER) {

 std::cout<<"EventType: PUSH_BUFFER \n";

 }

 if (eventType == PULL_BUFFER) {

 std::cout<<"EventType: PULL_BUFFER \n";

 }

 if (eventType == START) {

 std::cout<<"EventType: START \n";

 }

 if (eventType == FINISH) {

 std::cout<<"EventType: FINISH \n";

 }

 std::cout<<"Process Time: "<<processTime<<"\n";

}

//

// Process.hpp

// ASAE

//

// Created by Benjamin G Fields on 4/2/18.

// Copyright © 2018 Benjamin G Fields. All rights reserved.

210

//

// Description: defines the structure of the process object

#ifndef Process_hpp

#define Process_hpp

#include <stdio.h>

#include <iostream>

#include "Buffer.hpp"

#include <string>

#include <cmath>

#include <random>

#include <algorithm>

typedef struct{

 std::string processTime;

 int processPos;

 std::string downStream;

 std::string upStream;

}processInfo;

typedef struct{

 int processID;

 float percentage;

 int capacity;

}downStreamConnection;

typedef struct{

 int processID;

 int bufferIndex;

}upStreamConnection;

typedef struct{

 float percent;

 int index;

}selectionChance;

enum Dist{

211

 TRIANGULAR,

 NORMAL,

 UNIFORM,

 CONSTANT

};

enum ProcessType{

 FRONT,

 MIDDLE,

 TERMINAL

};

//Description: class that stores info pertaining to a process in the system

class Process{

private:

 int jobNum;

 int processID;

 int distType;//defines how the times are generated

 int processType;//where the process is in the line

 float average;

 float minimum;

 float upper;

 float constant;

 std::default_random_engine generator;

 std::normal_distribution<float> distribution;

 std::uniform_real_distribution<float> U_distribution;

 float uniformLower;

 float uniformUpper;

 float normalAverage;

 float normalStdDev;

public:

 Process(){

 jobNum = 1;

 }

 std::vector<Buffer> process_Buffers;

 std::vector<downStreamConnection> downStreamDependencies;

 std::vector<upStreamConnection> upStreamDependencies;

 int getNumUpStreamDependencies();

212

 int getNumDownStreamDependencies();

 void setProcessID(int id);

 int getProcessType();

 int getBufferIndexToPush();

 void setProcessType(int type);

 void setDistType(int type);

 void setProcessParameters(std::string);

 float getProcessingTimeFromDist();

 void setBufferCapacity(int val,int ind);

 void setUpstreamDependencies(std::string);

 void setDownstreamDependencies(std::string);

 void printProcessInfo();

 void placeEventInBuffer(Event E,int ind);

 Event getEventFromBuffer(int ind);

 int BufferState(int i);

 void printNumInBuffers();

 std::string getJobNum();

 void AddOneJob();

};

#endif /* Process_hpp */

//

// Process.cpp

// ASAE

//

// Created by Benjamin G Fields on 4/2/18.

// Copyright © 2018 Benjamin G Fields. All rights reserved.

//

// Description: Implementation of the process object

#include "Process.hpp"

//Description:defines what type of distribution a process adheres to

(triangular,normal, uniform)

void Process::setDistType(int type){

 this->distType = type;

}

213

//Description: standard function to set the process ID

void Process::setProcessID(int id){

 this->processID = id;

}

//Description: standard function to return the type of process indicating where in

the line it is

int Process::getProcessType(){

 return this->processType;

}

//Description:prints the parameters of the current process

void Process::printProcessInfo(){

 std::cout<<"\tProcess ID: "<<this->processID<<"\n";

 if(this->distType == TRIANGULAR)std::cout<<"\tDist Type:

TRIANGULAR\n";

 else if(this->distType == NORMAL)std::cout<<"\tDist Type: NORMAL\n";

 else if(this->distType == CONSTANT)std::cout<<"\tDist Type:

CONSTANT\n";

 if(this->processType == FRONT)std::cout<<"\tPos Type: FRONT\n";

 else if(this->processType == TERMINAL)std::cout<<"\tPos Type:

TERMINAL\n";

 else std::cout<<"\tPos Type: MIDDLE\n";

 std::cout<<"\tUpstream Dependencies: "<<this-

>upStreamDependencies.size()<<"\n";

 for(int i = 0;i<this->upStreamDependencies.size();++i){

 std::cout<<"\t\tProcessID: "<<upStreamDependencies[i].processID<<"\n";

 std::cout<<"\t\tBufferIndex: "<<upStreamDependencies[i].bufferIndex<<"\n";

 }

 std::cout<<"\tDownStream Dependencies: "<<this-

>downStreamDependencies.size()<<"\n";

 for(int i = 0;i<this->downStreamDependencies.size();++i){

 std::cout<<"\t\tProcessID: "<<downStreamDependencies[i].processID<<"\n";

 std::cout<<"\t\tPercentage: "<<downStreamDependencies[i].percentage<<"\n";

 std::cout<<"\t\tBuffer Capacity:

"<<downStreamDependencies[i].capacity<<"\n";

214

 }

}

//Description:create the dependencies that will be upstream from a process.

limited to 0-9

void Process::setUpstreamDependencies(std::string line){

 int num = std::atoi(line.substr(0,1).c_str());

 int start = 3;

 for(int i = 0;i<num;i++){

 //create each dependency

 upStreamConnection conn;

 conn.processID = std::atoi(line.substr(start,2).c_str());

 conn.bufferIndex = std::atoi(line.substr(start+3,1).c_str());

 upStreamDependencies.push_back(conn);

 start = start + 7;

 }

}

void Process::printNumInBuffers(){

 std::cout<<"Process ID "<<processID<<"\n";

 for(int i = 0;i<process_Buffers.size();++i){

 std::cout<<"Buffer Index "<<i<<" has

"<<process_Buffers[i].getNumInQueue()<<" in queue \n";

 }

}

//Description:create the downstream dependencies to control flow. limited to 0-9

void Process::setDownstreamDependencies(std::string line){

 int num = std::atoi(line.substr(0,1).c_str());

 int start = 2;

 float total = 0.0;

 for(int i = 0;i<num;i++){

 //create each dependency

 downStreamConnection conn;

 conn.processID = std::atoi(line.substr(start,2).c_str());

 conn.percentage = std::atof(line.substr(start+3,4).c_str());

215

 total = total + conn.percentage;

 conn.capacity = std::atoi(line.substr(start+8,2).c_str());

 if(conn.capacity<1||conn.capacity>99){

 throw std::runtime_error("\nBUFFER CAPACITY ERROR: Cannot have a

capacity less than 1 or greater than 99!\n");

 }

 downStreamDependencies.push_back(conn);

 Buffer buff;

 buff.capacity = conn.capacity;

 process_Buffers.push_back(buff);

 start = start +11;

 }

 if(abs(total-1.00) > 0.0001 && num != 0){

 throw std::runtime_error("\nDOWNSTREAM CONNECTION ERROR:

Downstream branching percentages must equal 1.00\n");

 }

}

//Description:return a random time for a triangular dist

float getTrianglarDistribution(float a, float b, float c)

{

 float randnum = (float)rand() / (float)RAND_MAX;

 float fc = (c - a) / (b - a);

 float val;

 if (randnum < fc && fc > 0.0)

 {

 val = a + sqrt(randnum*(b - a) / (c - a));

 }

 else

 {

 val = b - sqrt((1.0 - randnum)*(b - a) / (c - a));

 }

 return val;

}

//Description:bassed on the type of distribution get a random time

216

float Process::getProcessingTimeFromDist(){

 if (distType == TRIANGULAR) {

 return getTrianglarDistribution(minimum, upper, average);

 }

 else if(distType == NORMAL){

 return distribution(generator);

 }

 else if(distType == UNIFORM){

 return U_distribution(generator);

 }

 else if(distType == CONSTANT){

 return this->constant;

 }

 return 0.0;

}

//Description:set the type of process to indicate position in line

void Process::setProcessType(int type){

 this->processType = type;

}

//Description:standard setter for buffer capacity

void Process::setBufferCapacity(int val,int ind){

 this->process_Buffers[ind].capacity = val;

}

struct greater_than_key

{

 inline bool operator() (const selectionChance& struct1, const selectionChance&

struct2)

 {

 return (struct1.percent > struct2.percent);

 }

};

int Process::getBufferIndexToPush(){

 int numdep = (int)downStreamDependencies.size();

217

 std::vector<selectionChance> options;

 for(int i = 0;i<numdep;i++){

 selectionChance option;

 option.percent = downStreamDependencies[i].percentage;

 option.index = i;

 options.push_back(option);

 }

 std::sort(options.begin(), options.end(),greater_than_key());

 int ans = 0;

 int v2 = (rand() % 101);

 float percentR = (float)(v2)/100.0;

 float totalPercentage = 0.0;

 for(int i = 0;i<numdep;i++){

 totalPercentage = totalPercentage+options[i].percent;

 if(i == 0 && percentR <= totalPercentage){

 //select first

 ans = i;

 break;

 }

 else if(i == numdep-1){

 ans = i;

 break;

 }

 else{

 if(percentR<=totalPercentage){

 ans = i;

 break;

 }

 }

 }

 //std::cout<<"Selected index "<<ans<<" with probability of

"<<options[ans].percent<<"\n";

 return ans;

}

//Description: returns index of the process buffer downstream to place into

int Process::getNumDownStreamDependencies(){

 return (int)downStreamDependencies.size();

218

}

//Description: returns the amount of buffers feeding a process

int Process::getNumUpStreamDependencies(){

 return (int)upStreamDependencies.size();

}

//Description: takes an event and places in the process buffer

void Process::placeEventInBuffer(Event E,int ind){

 process_Buffers[ind].placeInBuffer(E);

}

//Description: takes an event fromt he process buffer

Event Process::getEventFromBuffer(int ind){

 return process_Buffers[ind].GetNext();

}

//Description: add one to the jobs complete parameter

void Process::AddOneJob(){

 jobNum++;

}

//Description: get the job number for the process

std::string Process::getJobNum(){

 return std::to_string(jobNum);

}

//Description: return the state of the process buffer (full,empty, space left)

int Process::BufferState(int i){

 return process_Buffers[i].getState();

}

//Description: set the timing parameters for distribution

void Process::setProcessParameters(std::string info){

 if (this->distType == TRIANGULAR) {

 //setParameters in process for triangular

 info.append(">");

 int done = 0;

219

 int index = 3;

 int front = 2;

 int num = 1;

 int length = 1;

 while(!done){

 if(info[index]=='>'){

 done =1;

 std::string max = info.substr(front,length);

 upper = atof(max.c_str());

 continue;

 }

 if(info[index]==':'){

 if(num ==1){

 std::string min = info.substr(front,length);

 minimum = atof(min.c_str());

 num++;

 length = 0;

 front = index+1;

 index++;

 }

 else if(num ==2){

 std::string avg = info.substr(front,length);

 average = atof(avg.c_str());

 num++;

 length = 0;

 front = index+1;

 index++;

 }

 }

 else{

 length++;

 index++;

 }

 }

 }

 else if(this->distType==NORMAL){

 //set for normal

 info.append(">");

220

 int done = 0;

 int index = 3;

 int front = 2;

 int num = 1;

 int length = 1;

 while(!done){

 if(info[index]=='>'){

 done =1;

 std::string std = info.substr(front,length);

 normalStdDev = atof(std.c_str());

 continue;

 }

 if(info[index]==':'){

 if(num == 1){

 std::string avg = info.substr(front,length);

 normalAverage = std::atof(avg.c_str());

 num++;

 length = 0;

 front = index+1;

 index++;

 }

 }

 else{

 length++;

 index++;

 }

 }

 std::normal_distribution<float>

mydistribution(normalAverage,normalStdDev);

 distribution = mydistribution;

 }

 else if(this->distType==CONSTANT){

 //set for constant

 //setParameters in process for constant

 info.append(">");

 this->constant = std::atof(info.substr(2,info.length()-2).c_str());

 }

 else if(this->distType==UNIFORM){

221

 //set for Uniform

 info.append(">");

 int done = 0;

 int index = 3;

 int front = 2;

 int num = 1;

 int length = 1;

 while(!done){

 if(info[index]=='>'){

 done =1;

 std::string std = info.substr(front,length);

 uniformUpper = atof(std.c_str());

 continue;

 }

 if(info[index]==':'){

 if(num == 1){

 std::string avg = info.substr(front,length);

 uniformLower = std::atof(avg.c_str());

 num++;

 length = 0;

 front = index+1;

 index++;

 }

 }

 else{

 length++;

 index++;

 }

 }

 std::uniform_real_distribution<float>

myUdistribution(uniformLower,uniformUpper);

 U_distribution = myUdistribution;

 }

}

//

222

// Simulation.hpp

// ASAE

//

// Created by Benjamin G Fields on 4/2/18.

// Copyright © 2018 Benjamin G Fields. All rights reserved.

//

// Description: defines the use and structure of the simulation class

#ifndef Simulation_hpp

#define Simulation_hpp

#include <stdio.h>

#include <queue>

#include <vector>

#include <algorithm>

#include "Event.hpp"

#include "Process.hpp"

#include <iostream>

#include <fstream>

#include <iomanip>

#include <unordered_set>

#include <sstream>

#include <ctime>

//Description: main class that runs the simulation

class Simulation{

private:

 int debug;

 std::ofstream fileTimes;

 std::fstream startFile;

 std::fstream finishFile;

 std::fstream resultsFile;

 int finished;

 int jobsComplete;

 int jobsInSystem;

223

 int createJobID;

 float simTime;

 float timeStep;

 std::priority_queue <Event, std::vector<Event>, Compare> eventQueue;

 Process* simProcesses;

 int numProcesses;

public:

 int startRecordRow;

 int FinishRecordRow;

 Simulation();

 ~Simulation();

 int constructModel(std::vector<processInfo> &processes);

 int getFeedBufferState(Process P);

 void run(int numJobs, int verbose);

 void init();

 void printModel();

 void processNextEvent();

 nextEventInfo processCurrentEvent(Event current, int Process);

 void checkIfFinished(int);

 int getNumComponents(int);

 int getNumberOfEnterPoints(int processID);

};

#endif /* Simulation_hpp */

//

// Simulation.cpp

// ASAE

//

// Created by Benjamin G Fields on 4/2/18.

// Copyright © 2018 Benjamin G Fields. All rights reserved.

//

// Description: implementation of the simulation class

#include "Simulation.hpp"

224

//Description:constructor to create the simulation object

Simulation::Simulation(){

 simTime = 0.0;

 startFile.open("starts.txt", std::ios::out);

 finishFile.open("Finish.txt", std::ios::out);

 resultsFile.open("Results.txt",std::ios::out);

 if(!startFile.is_open()||!finishFile.is_open()){

 throw std::runtime_error("ERROR: Could not open Start and Finish log

files!");

 }

 jobsComplete = 0;

 jobsInSystem = 0;

 finished = 0;

 createJobID = 1;

 startRecordRow = 1;

 FinishRecordRow = 1;

 timeStep = 0.001;

 startFile<<"JobID Start,StartTime,Resource,JobsInSystem\n";

 finishFile<<"JobID END,ExitTime,JobsInSystem\n";

 srand((int)time(NULL));

}

//Description:destructor to save and close excel workbook

Simulation::~Simulation(){

 startFile.close();

 finishFile.close();

 std::cout<<"Terminating simulation\n";

}

//Description:takes the process info from the model file and creates the simulation

structure

int Simulation::constructModel(std::vector<processInfo> &processes){

 std::cout<<"Constructing the simulation model\n";

 numProcesses = (int)processes.size();

 simProcesses = new Process[numProcesses];

 for (int i = 0; i<numProcesses; ++i) {

 if(processes[i].processTime[0] == 'T'){

 if(this->debug)std::cout<<"Process "<<i<< " is Triangular \n";

225

 simProcesses[i].setDistType(TRIANGULAR);

 }

 else if(processes[i].processTime[0] == 'N'){

 if(this->debug)std::cout<<"Process "<<i<< " is Normal \n";

 simProcesses[i].setDistType(NORMAL);

 }

 else if(processes[i].processTime[0] == 'C'){

 if(this->debug)std::cout<<"Process "<<i<< " is Constant \n";

 simProcesses[i].setDistType(CONSTANT);

 }

 else if(processes[i].processTime[0] == 'U'){

 if(this->debug)std::cout<<"Process "<<i<< " is Uniform \n";

 simProcesses[i].setDistType(UNIFORM);

 }

 simProcesses[i].setProcessParameters(processes[i].processTime);

 simProcesses[i].setProcessType(processes[i].processPos);

 simProcesses[i].setUpstreamDependencies(processes[i].upStream);

 simProcesses[i].setDownstreamDependencies(processes[i].downStream);

 simProcesses[i].setProcessID(i);

 }

 return 0;

}

//Description:initializes the simulation with start jobs and begins each process to

wait for a job to arrive

void Simulation::init(){

 for (int i = 0; i< numProcesses; ++i) {

 if (simProcesses[i].getProcessType() == FRONT) {

 std::string id = "[" + simProcesses[i].getJobNum();

 id.append(":");

 id.append(std::to_string(i));

 id.append("-(x)]");

 Event E(i,id,START,simTime,0);

 eventQueue.push(E);

 }

 else{

 //schedule pull to start cycle

 Event E(i,"-1",PULL_BUFFER,simTime,0);

226

 eventQueue.push(E);

 }

 }

}

//Description:gets the state of the upstream buffers that feed a process

int Simulation::getFeedBufferState(Process proc){

 //check for pull

 if (proc.getNumUpStreamDependencies()==0) {

 return -1;

 }

 int state = EMPTY;

 for (int i = 0; i<proc.getNumUpStreamDependencies(); ++i) {

 int pos = proc.upStreamDependencies[i].processID;

 int buffIndex = proc.upStreamDependencies[i].bufferIndex;

 int buffState = simProcesses[pos].BufferState(buffIndex);

 if (buffState == EMPTY) {

 state = EMPTY;

 break;

 }

 else{

 state = CAN_PULL;

 continue;

 }

 }

 return state;

}

//Description: recursive helper function to determine how many components are

leaving system

int Simulation::getNumberOfEnterPoints(int processID){

 if(simProcesses[processID].getProcessType()==FRONT){

 return 1;

 }

 int num = 0;

 for(int i = 0;i<simProcesses[processID].getNumUpStreamDependencies();++i){

 int parent = simProcesses[processID].upStreamDependencies[i].processID;

 num = num + getNumberOfEnterPoints(parent);

227

 }

 return num;

}

//Description: return the number of components the part is composed of

int Simulation::getNumComponents(int current){

 //need to determine how many components are in the current job

 return getNumberOfEnterPoints(current);

}

//Description:process the event and then create the info for the next event to be

scheduled

nextEventInfo Simulation::processCurrentEvent(Event currentEvent, int

currentProcess){

 if(this->debug) std::cout<<"Process Type:

"<<simProcesses[currentProcess].getProcessType()<<std::endl;

 if(this->debug) currentEvent.printEvent();

 nextEventInfo info;

 std::string pid = std::to_string(currentProcess);

 std::string jid = currentEvent.getJobID();

 std::string resource = "worker "+pid;

 int FeedBufferState = getFeedBufferState(simProcesses[currentProcess]);

 if (this->debug) {

 if (FeedBufferState == EMPTY) {

 std::cout<<"FeedBufferState: EMPTY\n";

 }

 if (FeedBufferState == FULL) {

 std::cout<<"FeedBufferState: FULL\n";

 }

 if (FeedBufferState == CAN_PULL) {

 std::cout<<"FeedBufferState: CAN_PULL\n";

 }

 if (FeedBufferState == -1) {

 std::cout<<"FeedBufferState: NO BUFFER\n";

 }

 }

 //std::cout<<"\n\nBuffer check\n";

228

 //simProcesses[currentProcess].printNumInBuffers();

 //select the buffer to place into if need to push

 int BuffertoPush;

 if(currentEvent.previousBuffer != -1)

 {

 BuffertoPush = currentEvent.previousBuffer;

 }

 else{

 if(simProcesses[currentProcess].getNumDownStreamDependencies()<2){

 BuffertoPush = 0;

 currentEvent.previousBuffer = 0;

 }

 else{

 BuffertoPush = simProcesses[currentProcess].getBufferIndexToPush();

 currentEvent.previousBuffer = BuffertoPush;

 }

 }

 int currentBufferState;

 if(simProcesses[currentProcess].getNumDownStreamDependencies()==0){

 currentBufferState = -1;

 }

 else{

 //std::cout<<"trying to push into buffer "<<BuffertoPush<<"\n";

 currentBufferState = simProcesses[currentProcess].BufferState(BuffertoPush);

 }

 if(this->debug){

 if (currentBufferState == EMPTY) {

 std::cout<<"pushBufferState: EMPTY\n";

 }

 if (currentBufferState == FULL) {

 std::cout<<"pushBufferState: FULL\n";

 }

 if (currentBufferState == SPACE_LEFT) {

 std::cout<<"pushBufferState: SPACE_LEFT\n";

 }

229

 if (currentBufferState == -1) {

 std::cout<<"pushBufferState: NO BUFFER\n";

 }

 }

 if (currentEvent.getEventType() == PULL_BUFFER) {

 //try to pull

 //if there is a job then pull

 if (FeedBufferState == CAN_PULL) {

 //pull job from each buffer upstream and create new start with compound id

 std::string cid = "(";

 for (int i =0;

i<simProcesses[currentProcess].getNumUpStreamDependencies(); ++i) {

 int depend =

simProcesses[currentProcess].upStreamDependencies[i].processID;

 int buff =

simProcesses[currentProcess].upStreamDependencies[i].bufferIndex;

 Event E = simProcesses[depend].getEventFromBuffer(buff);

 cid.append(E.getJobID());

 }

 cid.append(")");

 std::string id = "[" + simProcesses[currentProcess].getJobNum();

 id.append(":");

 id.append(std::to_string(currentProcess));

 id.append("-");

 id.append(cid);

 id.append("]");

 info.eventType = START;

 info.jobID = id;

 info.NextProcess = currentProcess;

 info.nextTime = simTime;

 info.triggerEventType = PULL_BUFFER;

 info.previousBuffer = -1;

 info.timeAtProcess = 0;

 }

 else{

230

 //if no jobs then schedule another pull

 info.eventType = PULL_BUFFER;

 info.jobID = currentEvent.getJobID();

 info.NextProcess = currentProcess;

 info.triggerEventType = PULL_BUFFER;

 info.nextTime = simTime + timeStep;

 info.previousBuffer = -1;

 info.timeAtProcess = currentEvent.getTimesAtCurrentState()+1;

 if(info.timeAtProcess>1000000){

 std::string message = "DEADLOCK WARNING: Stuck at process

"+std::to_string(currentProcess)+" trying to pull!";

 throw std::runtime_error(message);

 }

 }

 }

 else if(currentEvent.getEventType() == PUSH_BUFFER){

 //try to push into buffer or wait if full

 //check if full

 if (currentBufferState != FULL) {

 //if not full then place into buffer and schedule pull unless at beginning you

schedule a start

 //push on buffer

 currentEvent.previousBuffer = -1;

simProcesses[currentProcess].placeEventInBuffer(currentEvent,BuffertoPush);

 if (simProcesses[currentProcess].getProcessType()==FRONT) {

 //schedule a start

 info.eventType = START;

 info.NextProcess = currentProcess;

 info.nextTime = simTime;

 std::string id = "[" + simProcesses[currentProcess].getJobNum();

 id.append(":");

 id.append(std::to_string(currentProcess));

 id.append("-(x)]");

 info.jobID = id;

 info.triggerEventType = PUSH_BUFFER;

231

 info.previousBuffer = -1;

 info.timeAtProcess = 0;

 }

 else{

 //schedule a pull

 info.eventType = PULL_BUFFER;

 info.NextProcess = currentProcess;

 info.nextTime = simTime;

 info.jobID = "-1";

 info.triggerEventType = PUSH_BUFFER;

 info.previousBuffer = -1;

 info.timeAtProcess = 0;

 }

 }

 else{

 //if full then schedule another push

 info.eventType = PUSH_BUFFER;

 info.jobID = jid;

 info.NextProcess = currentProcess;

 info.nextTime = simTime+timeStep;

 info.triggerEventType = PUSH_BUFFER;

 info.previousBuffer = BuffertoPush;

 info.timeAtProcess = currentEvent.getTimesAtCurrentState()+1;

 if(info.timeAtProcess>1000000){

 std::string message = "DEADLOCK WARNING: Stuck at process

"+std::to_string(currentProcess)+" trying to push!";

 throw std::runtime_error(message);

 }

 }

 }

 else if(currentEvent.getEventType() == START){

 if(simProcesses[currentProcess].getProcessType()==FRONT){

 jobsInSystem++;

 }

 //schedule finish event

 startFile<<jid.c_str()<<","

 <<std::to_string(currentEvent.getProcessTime()).c_str()<<","

 <<std::to_string(jobsInSystem).c_str()<<"\n";

232

 startRecordRow++;

 info.eventType = FINISH;

 info.jobID = currentEvent.getJobID();

 info.NextProcess = currentProcess;

 info.nextTime =

simTime+simProcesses[currentProcess].getProcessingTimeFromDist();

 info.triggerEventType = START;

 info.previousBuffer = -1;

 info.timeAtProcess = 0;

 }

 else if(currentEvent.getEventType() == FINISH){

 //try to push onto buffer or wait or nothing if terminal

 finishFile<<jid.c_str()<<","

 <<std::to_string(currentEvent.getProcessTime()).c_str()<<",";

 simProcesses[currentProcess].AddOneJob();

 if (simProcesses[currentProcess].getProcessType()==TERMINAL) {

 int numComponents = getNumComponents(currentProcess);

 //std::cout<<"Count of entrys is "<<numComponents<<"\n";

 jobsInSystem = jobsInSystem-numComponents;

 jobsComplete++;

 std::cout<<"\tJobs Complete: "<<jobsComplete<<"\n";

 std::cout<<"\tJobs in System: "<<jobsInSystem<<"\n";

 //check if at end of line if so then just assign -1 and return

 //schedule a pull

 info.eventType = PULL_BUFFER;

 info.jobID = "-1";

 info.NextProcess = currentProcess;

 info.nextTime = simTime;

 info.triggerEventType = FINISH;

 info.previousBuffer = -1;

 info.timeAtProcess = 0;

 }

 else{

 //if not terminal need to try to schedule push

 info.eventType = PUSH_BUFFER;

233

 info.jobID = jid;

 info.NextProcess = currentProcess;

 info.nextTime = simTime;

 info.triggerEventType = FINISH;

 info.previousBuffer = BuffertoPush;

 info.timeAtProcess = 0;

 }

 //write how many jobs are in the system

 finishFile<<std::to_string(jobsInSystem).c_str()<<"\n";

 FinishRecordRow++;

 }

 //return -1 -1 if no event is to be scheduled

 return info;

}

//Description:function that takes the next job in the queue and processes the event

void Simulation::processNextEvent(){

 if(this->debug) std::cout<<"\n**********PROCESSING

EVENT***********\n";

 int size = (int)eventQueue.size();

 if(this->debug) std::cout<<"Queue Size is "<<size<<"\n";

 if(this->debug) std::cout<<"Jobs in system: "<<jobsInSystem<<std::endl;

 if(this->debug) std::cout<<"Jobs complete: "<<jobsComplete<<std::endl;

 Event currentEvent = eventQueue.top();

 eventQueue.pop();

 int currentProcess = currentEvent.getProcessID();

 simTime = currentEvent.getProcessTime();

 nextEventInfo next = processCurrentEvent(currentEvent,currentProcess);

 if (next.NextProcess != -1) {

 Event

next_E(next.NextProcess,next.jobID,next.eventType,next.nextTime,next.timeAtP

rocess,next.previousBuffer);

 eventQueue.push(next_E);

 }

}

234

//Description:utility function to print out the simulation model as created in the

simulation

void Simulation::printModel(){

 std::cout<<"Printing Model \n";

 for (int i = 0; i<numProcesses; ++i) {

 std::cout<<"Process "<<i<<"\n";

 simProcesses[i].printProcessInfo();

 }

}

//Description:checks to see if the simulation has reached the terminated conditions

void Simulation::checkIfFinished(int num){

 if (jobsComplete == num) {

 //fileTimes.open ("test.csv", std::ofstream::out | std::ofstream::app);

 //fileTimes<<simTime<<"\n";

 finished = 1;

 //fileTimes.close();

 std::cout<<"\n****************DONE*****************\n";

 std::cout<<"Simulation has reached finished state\n";

 }

 if (jobsComplete > num) {

 throw std::runtime_error("ERROR: Exceeded the number of jobs complete!");

 }

}

//Description:launch the simulaiton for a certain number of jobs

void Simulation::run(int numJobs, int verbose){

 this->debug = verbose;

 std::cout<<"\nBeginning Simulation with "<<numJobs<<" Jobs\n";

 while(!finished){

 processNextEvent();

 checkIfFinished(numJobs);

 }

 return;

}

//

// DataCrawler.hpp

235

// DataExtractor

//

// Created by Benjamin G Fields on 5/15/18.

// Copyright © 2018 Benjamin G Fields. All rights reserved.

//

#ifndef DataCrawler_hpp

#define DataCrawler_hpp

#include <iostream>

#include <fstream>

#include <string>

#include <vector>

#include <stdexcept>

#include <unordered_set>

#include <sstream>

#include <chrono>

#include <iomanip>

#include <algorithm>

typedef struct{

 std::string jobID;

 float time;

 int jobsInSystem;

 std::vector<std::string> connections;

}Start;

typedef struct{

 std::string jobID;

 float time;

 int jobsInSystem;

}Finish;

typedef struct{

 float startTime;

 int Pid;

}startInfo;

236

typedef struct {

 int sum;

 float totaltime;

}processData;

class DataCrawler{

private:

 std::ifstream myStartFile;

 std::ifstream myFinishFile;

 std::ofstream resultsFile;

 std::vector<Start> myStarts;

 std::vector<Finish> myFinishs;

public:

 DataCrawler(std::string startFileName, std::string finishFileName);

 ~DataCrawler();

 std::vector<Start> readInStartsFile();

 std::vector<Finish> readInFinishFile();

 int getClosingBracket(int pos, std::string ID);

 int posOfNextBracket(std::string line, int start);

 int getPosOfColon(std::string line);

 int getPosOfDash(std::string line, int start);

 std::string getDependancy(std::string line);

 std::vector<std::string> getUpConnections(std::string line);

 int numJobsComplete(std::vector<Finish> &myFin,int pid);

 int getNumProcesses(std::vector<Finish> &myFin);

 void printTransitionStateMatrix(int** mat, int size);

 void printTransitionTimeMatrix(float** mat, int size);

 int getProcessID(std::string line);

 std::vector<int> getPIDS(std::string line);

 void countTransitions(int **mat, int size, std::vector<Finish> &myfin);

 startInfo getStart(std::string id,std::vector<Start> &myStart);

 void getTransitionTimes(float** mat, int size, std::vector<Finish> &myFin,

std::vector<Start> &myStart);

 void averageTransitionTimes(float** mat, int size,int** matFreq);

 int getMaxJobsInSystem(std::vector<Finish> &myFin);

 void getUtilizedBufferCapacity(int** bufMat,int** freqMat,int size);

 void getCapacityForPos(int** buffMat,int source, int destination);

 int getJobNum(std::string line);

237

 std::unordered_set<int> getNumberOfTerminalStates(int**freqMat,int size);

 std::vector<int> getProperStartConnections(int downstream,int upstream);

 void getAverageProcessTimes(float*mytimes, int size);

 float findStartTime(std::string id);

 processData countNumberOfTimesPIDFinishes(int id);

 void run();

};

#endif /* DataCrawler_hpp */

//

// DataCrawler.cpp

// DataExtractor

//

// Created by Benjamin G Fields on 5/15/18.

// Copyright © 2018 Benjamin G Fields. All rights reserved.

//

#include "DataCrawler.hpp"

//Description: Constructor to open and read files

DataCrawler::DataCrawler(std::string startFileName, std::string finishFileName){

 myStartFile.open(startFileName.c_str());

 if(!myStartFile.is_open()){

 std::cout<<"ERROR: Unable to open start event log\n";

 throw std::runtime_error("ERROR: failed to open starts.txt file!");

 }

 std::cout<<"Successfully opened start file\n";

 myFinishFile.open(finishFileName.c_str());

 if(!myFinishFile.is_open()){

 std::cout<<"ERROR: Unable to open finish event log\n";

 throw std::runtime_error("ERROR: failed to open finish.txt file!");

 }

 std::cout<<"Successfully opened finish file\n";

 resultsFile.open("Results.txt");

 if(!resultsFile.is_open()){

 std::cout<<"ERROR: Unable to open Results.txt\n";

 throw std::runtime_error("ERROR: failed to open Results.txt file!");

 }

238

 std::cout<<"Reading in Files\n";

 myStarts = readInStartsFile();

 myFinishs = readInFinishFile();

 if(myStarts.data() == NULL || myFinishs.data() == NULL){

 throw std::runtime_error("ERROR: Failed to create stored starts and

finishes!");

 }

 std::cout<<"Successfully read in start and finish files\n";

}

//Description:Destructor to close and present files

DataCrawler::~DataCrawler(){

 std::cout<<"Shutting down crawler\n";

 //clean up and present results

 myStartFile.close();

 myFinishFile.close();

 resultsFile.close();

 system("open -a TextEdit Results.txt");

}

//Description: Main runner to extract all process information from event data

void DataCrawler::run(){

 std::cout<<"\n\n*********Starting DataCrawler**********\n";

 std::cout<<"Number of Starts: "<<myStarts.size()<<"\n";

 std::cout<<"Number of Finishes: "<<myFinishs.size()<<"\n";

 auto now = std::chrono::system_clock::now();

 std::time_t time = std::chrono::system_clock::to_time_t(now);

 resultsFile<<"Results for "<<std::ctime(&time)<<"\n";

 std::cout<<"Results for "<<std::ctime(&time)<<"\n";

 resultsFile<<"Number of Start Records: "<<myStarts.size()<<"\n";

 resultsFile<<"Number of Finish Records: "<<myFinishs.size()<<"\n\n";

 float endTime = myFinishs.back().time;

 std::cout<<"Simulation runtime: "<<endTime<<"\n";

 resultsFile<<"Simulation runtime: "<<endTime<<"\n";

239

 int numProcesses = getNumProcesses(myFinishs);

 //create the transition state matrix

 int** transitionStateMatrix = new int*[numProcesses];

 for(int i =0;i<numProcesses;++i){

 transitionStateMatrix[i] = new int[numProcesses];

 for(int j = 0; j<numProcesses;++j){

 transitionStateMatrix[i][j] = 0;

 }

 }

 //find count of transitions

 countTransitions(transitionStateMatrix, numProcesses,myFinishs);

 std::unordered_set<int> numberOfTerminalStates =

getNumberOfTerminalStates(transitionStateMatrix,numProcesses);

 std::cout<<"\nThere are/is "<<numberOfTerminalStates.size()<<" Terminal

State(s)\n";

 resultsFile<<"\nThere are/is "<<numberOfTerminalStates.size()<<" Terminal

State(s)\n";

 int totalComplete = 0;

 for (auto itr = numberOfTerminalStates.begin(); itr !=

numberOfTerminalStates.end(); ++itr) {

 int numExit =numJobsComplete(myFinishs,*itr);

 totalComplete = totalComplete+numExit;

 std::cout<<"-Number of Jobs Exiting via PID "<<*itr<<": "<<numExit<<"\n";

 resultsFile<<"-Number of Jobs Exiting via PID "<<*itr<<":

"<<numExit<<"\n";

 std::cout<<"-Average time to produce one job:

"<<endTime/(float)numExit<<"\n\n";

 resultsFile<<"-Average time to produce one job:

"<<endTime/(float)numExit<<"\n\n";

 }

 std::cout<<"Total Complete Jobs: "<<totalComplete<<"\n";

 resultsFile<<"Total Complete Jobs: "<<totalComplete<<"\n";

 std::cout<<"Overall average time per job:

"<<endTime/(float)totalComplete<<"\n";

 resultsFile<<"Overall average time per job:

"<<endTime/(float)totalComplete<<"\n";

 int maxJIS = getMaxJobsInSystem(myFinishs);

240

 std::cout<<"Max Number of Components in System: "<<maxJIS<<"\n";

 resultsFile<<"\nMax Number of Components in System: "<<maxJIS<<"\n";

 std::cout<<"There are "<<numProcesses<<" processes\n";

 resultsFile<<"Number of Processes: "<<numProcesses<<"\n";

 //create the transition time matrix

 float** transitionTimeMatrix = new float*[numProcesses];

 for(int i =0;i<numProcesses;++i){

 transitionTimeMatrix[i] = new float[numProcesses];

 for(int j = 0; j<numProcesses;++j){

 transitionTimeMatrix[i][j] = 0.0;

 }

 }

 std::cout<<"Transition State Matrix\n";

 resultsFile<<"\nTransition State Matrix\n";

 //printTransitionStateMatrix(transitionStateMatrix, numProcesses);

 printTransitionStateMatrix(transitionStateMatrix, numProcesses);

 getTransitionTimes(transitionTimeMatrix, numProcesses, myFinishs, myStarts);

 std::cout<<"Transition Times summed\n";

 resultsFile<<"\nTotal Transition Times Matrix\n";

 printTransitionTimeMatrix(transitionTimeMatrix, numProcesses);

 averageTransitionTimes(transitionTimeMatrix, numProcesses,

transitionStateMatrix);

 std::cout<<"Average Transition Times averaged\n";

 resultsFile<<"\nAverage Transition Times Matrix\n";

 printTransitionTimeMatrix(transitionTimeMatrix, numProcesses);

 //create the buffer capacity matrix

 int** bufferCap = new int*[numProcesses];

 for(int i =0;i<numProcesses;++i){

 bufferCap[i] = new int[numProcesses];

 for(int j = 0; j<numProcesses;++j){

 bufferCap[i][j] = 0;

241

 }

 }

 getUtilizedBufferCapacity(bufferCap,transitionStateMatrix,numProcesses);

 std::cout<<"\nMax Utilized Buffer Capacity Matrix\n";

 resultsFile<<"\nMax Utilized Buffer Capacity Matrix\n";

 printTransitionStateMatrix(bufferCap, numProcesses);

 //create average process time array

 float* procTimes = new float[numProcesses];

 for(int i = 0;i<numProcesses;++i){

 procTimes[i]=0.0;

 }

 getAverageProcessTimes(procTimes, numProcesses);

 std::cout<<"\nAverage Process Times\n";

 resultsFile<<"\nAverage Process Times\n";

 for(int i = 0;i<numProcesses;++i){

 std::cout<<std::fixed<<std::setw(8)<<i<<" ";

 resultsFile<<std::fixed<<std::setw(8)<<i<<" ";

 }

 std::cout<<"\n";

 resultsFile<<"\n";

 for(int i = 0;i<numProcesses;++i){

 std::cout<<std::fixed<<std::setw(8)<<procTimes[i]<<"|";

 resultsFile<<std::fixed<<std::setw(8)<<procTimes[i]<<"|";

 }

 std::cout<<"\n";

 resultsFile<<"\n";

}

float DataCrawler::findStartTime(std::string id){

 for(int i=1;i<(int)myStarts.size();++i){

 if(myStarts[i].jobID.compare(id)==0){

 return myStarts[i].time;

 }

 }

 return 0.0;

}

242

processData DataCrawler::countNumberOfTimesPIDFinishes(int id){

 processData ans;

 ans.totaltime = 0.0;

 ans.sum = 0;

 for(int i = 1;i<(int)myFinishs.size();++i){

 std::string jid = myFinishs[i].jobID;

 if(getProcessID(jid)==id){

 float start = findStartTime(jid);

 //std::cout<<"JID "<<jid<<"starttime "<<start<<"\n";

 float duration = myFinishs[i].time - start;

 //std::cout<<"Duration of process "<<id<<" using jid "<<jid<<" is

"<<duration<<"\n";

 ans.totaltime+= duration;

 ans.sum++;

 }

 }

 return ans;

}

void DataCrawler::getAverageProcessTimes(float*mytimes, int size){

 for(int i = 0;i<size;++i){

 processData info = countNumberOfTimesPIDFinishes(i);

 mytimes[i] = info.totaltime/(float)info.sum;

 }

}

//Description: Helper function used to parse a jobID and get the job number

int DataCrawler::getJobNum(std::string line){

 int ans;

 int posOfColon = getPosOfColon(line);

 int length = posOfColon -1;

 ans = std::atoi(line.substr(1,length).c_str());

 return ans;

}

//Description: Helper function to retreive the list of proper jobNumbers related to

a downstream node connection

243

std::vector<int> DataCrawler::getProperStartConnections(int downstream,int

upstream){

 std::vector<int> ans;

 for(int i=1;i<(int)myFinishs.size();++i){

 if(getProcessID(myFinishs[i].jobID)==downstream){

 //std::cout<<"Found process id "<<downstream<<" in jobid

"<<myFinishs[i].jobID<<"\n";

 std::vector<std::string> depend = getUpConnections(myFinishs[i].jobID);

 for(int j = 0;j<depend.size();++j){

 //std::cout<<depend[j]<<"\n";

 if(depend[j]=="x"){

 continue;

 }

 int pid = getProcessID(depend[j]);

 if(pid == upstream){

 int jobNum = getJobNum(depend[j]);

 ans.push_back(jobNum);

 }

 }

 }

 }

 return ans;

}

//Description: Return how many exits to the system there are

std::unordered_set<int> DataCrawler::getNumberOfTerminalStates(int**

freqMat, int size){

 std::unordered_set<int> ans;

 for(int i = 0;i<size;++i){

 int sum = 0;

 for(int j = 0;j<size;++j){

 sum += freqMat[i][j];

 }

 if(sum==0){

 ans.insert(i);

 }

 }

 return ans;

244

}

//Description: For the position check what was the max capacity used for the

buffer

void DataCrawler::getCapacityForPos(int** buffMat,int upstream, int

downstream){

 // the source represents the finishs and the destination if the start

 //start with gap to see if there is a utilized buffer

 std::vector<int> properStartConnections =

getProperStartConnections(downstream, upstream);

 int startNum = 3;

 int bufferFound = 0;

 int finishNum = 1;

 int done = 0;

 int inBuffer = 0;

 int max = 0;

 int lastCheckedStartIndex = 0;

 int lastCheckedFinishIndex = 0;

 float startTime=0.0;

 float finishTime=0.0;

 while(!done){

 //start cheking for buffer case

 //find the relevent startjob with if of [startNum:destination-...

 int found1 = 1;

 for(int i = lastCheckedStartIndex;i<myStarts.size();++i){

 //if found then set found1 to 0 and break

 int jobNum = getJobNum(myStarts[i].jobID);

 int pid = getProcessID(myStarts[i].jobID);

 if(jobNum == properStartConnections[startNum-1] && pid == upstream){

 found1 = 0;

 lastCheckedStartIndex = i;

 startTime = myStarts[i].time;

 }

 if(found1==0)break;

 }

 int found2 = 1;

 for(int i = lastCheckedFinishIndex;i<myFinishs.size();++i){

 //if found then set found2 to 0 and break

245

 int jobNum = getJobNum(myFinishs[i].jobID);

 int pid = getProcessID(myFinishs[i].jobID);

 if(jobNum == finishNum && pid == downstream){

 found2 = 0;

 lastCheckedFinishIndex = i;

 finishTime = myFinishs[i].time;

 }

 if(found2==0)break;

 }

 if(found1==1||found2==1){

 done = 1;

 continue;

 }

 //use the times to check if there is a gap

 if(startTime < finishTime){

 //there is a buffer

 //need to add one

 inBuffer = inBuffer+1;

 if(inBuffer>max){

 max = inBuffer;

 }

 startNum++;

 bufferFound=1;

 continue;

 }

 else if(startTime >= finishTime && (startNum-finishNum)>2){

 inBuffer = inBuffer-1;

 finishNum++;

 continue;

 }

 else if(startTime >= finishTime && (startNum-finishNum)==2){

 startNum++;

 finishNum++;

 continue;

 }

 }

 //set the max seen

 buffMat[upstream][downstream] = max;

246

}

//Description: look through data to see what capacity of buffers was used

void DataCrawler::getUtilizedBufferCapacity(int** bufMat,int** freqMat,int

size){

 //for every position with a valid transition check if there is a utilized buffer

 for(int i = 0;i<size;++i){

 for(int j = 0;j<size;++j){

 //check everyposition valid transition

 if(freqMat[i][j]){

 //valid transition and need to check

 int upstream = i;

 int dowstream = j;

 getCapacityForPos(bufMat, upstream, dowstream);

 }

 }

 }

}

//Description: Helper function to get the closing bracket of an initial opening

bracket

int DataCrawler::getClosingBracket(int pos, std::string ID){

 int ans = -1;

 int ignore = 0;

 for(int i = pos;i<ID.length();++i){

 if(ID.substr(i,1)=="]" && ignore==0){

 ans = i;

 break;

 }

 else if(ID.substr(i,1)=="]" && ignore>0){

 ignore--;

 }

 else if(ID.substr(i,1)=="["){

 ignore++;

 }

 }

 return ans;

}

247

//Description: helper function used to find the next '[' character from a given

position

int DataCrawler::posOfNextBracket(std::string line, int start){

 int ans = -1;

 for(int i = start;i<(int)line.length();++i){

 if(line[i] == '['){

 ans = i;

 break;

 }

 }

 return ans;

}

//Description: find the position of the first ':' in the string

int DataCrawler::getPosOfColon(std::string line){

 int pos = -1;

 for(int i = 1;i<line.length();++i){

 if(line[i] == ':'){

 pos = i;

 break;

 }

 }

 return pos;

}

//Description: get the position of the first '-' in the string

int DataCrawler::getPosOfDash(std::string line, int start){

 int pos = -1;

 for(int i = start;i<line.length();++i){

 if(line[i] == '-'){

 pos = i;

 break;

 }

 }

 return pos;

}

248

//Description: extract the dependency string from the job id string

std::string DataCrawler::getDependancy(std::string line){

 std::string ans;

 int start = getPosOfColon(line);

 int end = getPosOfDash(line, start);

 int begin = end+2;

 int length = (int)line.length()-2-begin;

 ans = line.substr(begin,length);

 return ans;

}

//Description: get all dependencies within dependency string

std::vector<std::string> DataCrawler::getUpConnections(std::string line){

 std::vector<std::string> depend;

 std::string dependStr = getDependancy(line);

 if(dependStr=="x"){

 depend.push_back("x");

 return depend;

 }

 int index = 0;

 while(index != dependStr.length()-1){

 index = posOfNextBracket(dependStr, index);

 int closingPos = getClosingBracket(index+1, dependStr);

 std::string val = dependStr.substr(index,closingPos-index+1);

 depend.push_back(val);

 index = closingPos;

 }

 return depend;

}

//Description: read in the start events into memory for storage

std::vector<Start> DataCrawler::readInStartsFile(){

 std::vector<Start> readStarts;

 std::string line;

 int lineNum = 0;

 while(std::getline(myStartFile,line)){

 Start aStart;

 std::stringstream ss(line);

249

 std::string token;

 std::getline(ss,token, ',');

 aStart.jobID = token;

 if(lineNum != 0){

 aStart.connections = getUpConnections(token);

 }

 std::getline(ss,token, ',');

 aStart.time = std::atof(token.c_str());

 std::getline(ss,token, ',');

 aStart.jobsInSystem = std::atoi(token.c_str());

 readStarts.push_back(aStart);

 lineNum++;

 }

 return readStarts;

}

//Description: read in finish events into memory for storage and use

std::vector<Finish> DataCrawler::readInFinishFile(){

 std::vector<Finish> readFinish;

 std::string line;

 int lineNum = 0;

 while(std::getline(myFinishFile,line)){

 Finish aFinish;

 std::stringstream ss(line);

 std::string token;

 std::getline(ss,token, ',');

 aFinish.jobID = token;

 std::getline(ss,token, ',');

 aFinish.time = std::atof(token.c_str());

 std::getline(ss,token, ',');

 aFinish.jobsInSystem = std::atoi(token.c_str());

 readFinish.push_back(aFinish);

 lineNum++;

 }

 return readFinish;

}

//Description: return the number of jobs completed in simulation run from data

250

int DataCrawler::numJobsComplete(std::vector<Finish> &myFin,int pid){

 int max=0;

 for(int i=0;i<(int)myFin.size();++i){

 int Checkpid = getProcessID(myFin[i].jobID);

 if(Checkpid==pid){

 int num = getJobNum(myFin[i].jobID);

 if(num>max){

 max=num;

 }

 }

 }

 return max;

}

//Description: Return the number of unique processes in the system

int DataCrawler::getNumProcesses(std::vector<Finish> &myFin){

 std::unordered_set<int> myPIDs;

 for(int i = 1;i<(int)myFin.size();++i){

 std::string line = myFin[i].jobID;

 int start = getPosOfColon(line);

 int end = getPosOfDash(line, start);

 int length = end - start -1;

 int pid = std::atoi(line.substr(start+1,length).c_str());

 myPIDs.insert(pid);

 }

 return (int)myPIDs.size();

}

//Description:Print the transition frequency matrix to results and console

void DataCrawler::printTransitionStateMatrix(int** mat, int size){

 std::cout<<std::setw(3)<<"PID ";

 resultsFile<<std::setw(3)<<"PID ";

 for(int i = 0;i<size;++i){

 std::cout<<std::setw(3)<<i<<" ";

 resultsFile<<std::setw(3)<<i<<" ";

 }

 std::cout<<"\n";

 resultsFile<<"\n";

251

 for(int i = 0;i<size;++i){

 std::cout<<std::setw(3)<<i<<"|";

 resultsFile<<std::setw(3)<<i<<"|";

 for(int j = 0;j<size;++j){

 std::cout<<std::setw(3)<<mat[i][j]<<"|";

 resultsFile<<std::setw(3)<<mat[i][j]<<"|";

 }

 std::cout<<"\n";

 resultsFile<<"\n";

 }

}

//Description:Print the transition time matrix to results and console

void DataCrawler::printTransitionTimeMatrix(float** mat, int size){

 std::cout<<std::setw(9)<<std::right<<" PID";

 resultsFile<<std::setw(9)<<std::right<<" PID";

 for(int i = 0;i<size;++i){

 std::cout<<std::fixed<<std::setw(10)<<std::right<<i;

 resultsFile<<std::fixed<<std::setw(10)<<std::right<<i;

 }

 std::cout<<"\n";

 resultsFile<<"\n";

 for(int i = 0;i<size;++i){

 std::cout<<std::setw(9)<<std::right<<i<<"|";

 resultsFile<<std::setw(9)<<std::right<<i<<"|";

 for(int j = 0;j<size;++j){

 std::cout<<std::setfill('

')<<std::fixed<<std::right<<std::setw(9)<<std::setprecision(3)<<mat[i][j]<<"|";

 resultsFile<<std::setfill('

')<<std::fixed<<std::right<<std::setw(9)<<std::setprecision(3)<<mat[i][j]<<"|";

 }

 std::cout<<"\n";

 resultsFile<<"\n";

 }

}

//Description: Return the pid from a given jid string

int DataCrawler::getProcessID(std::string line){

252

 int start = getPosOfColon(line);

 int end = getPosOfDash(line, start);

 int length = end - start -1;

 int pid = std::atoi(line.substr(start+1,length).c_str());

 return pid;

}

//Description: get all the process IDs in a provided string

std::vector<int> DataCrawler::getPIDS(std::string line){

 std::vector<int> ans;

 int index = 0;

 while(index != line.length()-1){

 index = posOfNextBracket(line, index);

 int closingPos = getClosingBracket(index+1, line);

 int pid = getProcessID(line.substr(index+1,closingPos-index-1));

 ans.push_back(pid);

 index = closingPos;

 }

 return ans;

}

//Description: sum all transition counts in matrix

void DataCrawler::countTransitions(int **mat, int size, std::vector<Finish>

&myfin){

 for(int i = 1;i<myfin.size();++i){

 std::string jid = myfin[i].jobID;

 int pid = getProcessID(jid);

 //need to get upstream transitions

 std::string depend = getDependancy(jid);

 if(depend == "x")continue;

 //need to parse dependency to get the PID of each upstram task if not x

 std::vector<int> upstream = getPIDS(depend);

 for(int j = 0;j<upstream.size();++j){

 int process = upstream[j];

 mat[process][pid] = mat[process][pid]+1;

 }

 }

}

253

//Description: get the next start event info for a given finish job id

startInfo DataCrawler::getStart(std::string id,std::vector<Start> &myStart){

 startInfo info;

 for(int i=1;i<(int)myStart.size();++i){

 int depNum = (int)myStart[i].connections.size();

 for(int j = 0;j<depNum;++j){

 if(myStart[i].connections[j].compare(id)==0){

 //they are equal and return info

 info.startTime = myStart[i].time;

 info.Pid = getProcessID(myStart[i].jobID);

 return info;

 }

 }

 }

 info.startTime = -999.999;

 info.Pid = -99;

 return info;

}

//Description: Sum the transition times into the transition time matrix

void DataCrawler::getTransitionTimes(float** mat, int size, std::vector<Finish>

&myFin, std::vector<Start> &myStart){

 //for every finish except last position check when it begins next and is the major

dependency of the start

 for(int i = 1;i<(int)myFin.size()-1;++i){

 int pid = getProcessID(myFin[i].jobID);

 float finishTime = myFin[i].time;

 startInfo info = getStart(myFin[i].jobID,myStart);

 if(info.Pid <0)continue;

 float elapsedTime = info.startTime - finishTime;

 mat[pid][info.Pid] = mat[pid][info.Pid] + elapsedTime;

 }

}

//Description: Use frequencies and summed amounts to provide an average

transition time matrix

void DataCrawler::averageTransitionTimes(float** mat, int size,int** matFreq){

254

 for(int i = 0;i<size;++i){

 for(int j = 0;j<size;++j){

 if(matFreq[i][j]==0)continue;

 mat[i][j] = mat[i][j]/(float)matFreq[i][j];

 }

 }

}

//Description: Return the max seen number of jobs in system from finish events

int DataCrawler::getMaxJobsInSystem(std::vector<Finish> &myFin){

 int max = myFin[0].jobsInSystem;

 for(int i = 1;i<(int)myFin.size();++i){

 if(myFin[i].jobsInSystem > max){

 max = myFin[i].jobsInSystem;

 }

 }

 return max;

}

