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ABSTRACT 

The optimal harvesting time in a fish farm is analyzed in the paper. Fish population is assumed to be   
heterogeneous with respect to weight, so a distributed parameter dynamic model is considered. 
Theoretical and numerical results are obtained and compared with the ones concerning homogeneous fish 
cultures only. The results are applied to the tilapia farming in Mexico for which empirical and market data 
were obtained. The actual managerial practices turn out to be close to the optimal solution in the model 
where weight-heterogeneity of the culture is taken into account. 
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INTRODUCTION 
 
The production activity in farming concerns with the growth of a livestock since an inmature age to 
commercial size. This growth is influencing by physiological (metabolism, appetite), exogenous 
(temperature, stress) and management factors (density, ration, feed frequency). The combination of these 
elements in the farm constitutes the firm technology. 
 
In particular, industrial fish farming has shown a very significant increase in last decades. Accordingly, 
many bioeconomic models have been elaborated in order to optimize several relevant management 
aspects, as the harvesting time, ration size or density, among others (Bjorndal 1988, Cacho 1990, Arnason 
1992). These previous models generally assume a homogeneous growth of fish at the same cage. 
However, variability in sizes inside the same pond or cage is a common phenomenon observed in both 
extensive and intensive culture. The causes are manifolds, being those related with social behaviour of 
each species, as hierarchy of competition for food some of the most relevant (Brett 1979, Olla et al. 1997, 
Irwin et al. 1999, McLean et al. 2000). 
 
The size heterogeneity is an important issue the firms need to regard. The intensive culture is usually 
conducted with high density levels in order to reach economic efficiency, causing lower dissolved oxygen 
in cages and stress in fish. This fact carries on usually a decrease in growth and increase in mortality rate 
that affects mainly to smaller sizes (Via et al. 1998, Bjornsson 1994). As the culture management in farms 
is influenced by this factor, some practices as optimal harvesting time or ration size can be modified if 
growth variability is considered. 
 
This paper analyzes the optimal harvesting time in a fish farm where size heterogeneity is included. We 
make use of a continuous size-structured population model similar to the one proposed by Sinko and 
Streifer (1967). Although size structured models have been extensively applied to fishery populations 
(Clark 1985, Horbowy 1996, Basson and Fogarty 1997), the interest of researchers has not been focused 
on farming. An exception is found in Forsberg (1999), which analyzes the optimal harvesting in an age-
distributed model, but assuming linear relationships among variables, as the growth rate. The model we 
propose includes a logistic growth of fish. We also present a numerical application of the model for 
culture of tilapia in Yucatán, Mexico, in order to compare the optimal results with the real practices.  
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OPTIMAL HARVESTING TIME IN A HOMOGENEOUS POPULATION 
 
In this section we revise the theory of the optimal harvesting time so far. More details and references 
concerning can be found in Bjorndal (1988). So, it is assumed that all juvenile fishes are stocked at the 
same initial time t = 0 into a cage (pond or farm), all of them with the same weight and with the same 
growth law. Let the speed of growth at size x be g(x). Then the size of each fish at time t, denoted by x(t), 
satisfies the equation 

,0)0(),()( sxxgtx ==  
where $s_0$ is the initial size of the fish. The function g includes all factors affecting growth, such as the 
body weight, ration size, temperature, etc. For the sake of simplicity, we explicitly incorporate in the 
growth law only the weight, considering the rest of the factors as exogenous and constant. 
 
Several expressions for g are proposed in the specialized literature, such as logistic, von Bertalanffy or 
Chapman-Richards function for fish farming, etc. All of them result in an S-shaped curve for the 
individual weight across time, and the most appropriate ones vary across species and type of culture 
(Gamito 1998). Generally, we assume that g is a continuously differentiable function defined in the 
interval [0,w], where w > 0 is the maximal possible weight that a fish can achieve. Correspondingly, we 
assume that g(0) = 0 and g(w) = 0 and that g is positive in (0,w). 
 
Let N0 be the number of fish in the cage at the beginning of the culture, t = 0. This number is not 
maintained all the time due to mortality with a size-dependent rate m(x)≥0. We assume that m is a 
continuous non-negative function. Thus the evolution of the number of fish, N(t), is given by the 
differential equation 
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The product B(t) = x(t) N(t) represents the total biomass in the cage at time t. The function p(x) represents 
the price per kilo of a fish with weight x. It is assumed nonnegative and continuously differentiable. 
 
We consider also the accumulated maintenance costs, C(t), given by 
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where f(x) is the cost of maintaining a fish of size x for one unit of time. This cost may have size-
independent component (fixed costs per fish) and size-dependent component (e.g. feed costs per fish, 
which depends on the size). We assume that f(0)≥0 and f is an increasing continuously differentiable 
function. The parameter r represents the discount rate. 
 
We consider only one culture cycle, so the rotation problem is not included (although it is easy to 
incorporate). Thus, the farmer problem is to determine the time when the present value of the revenue 
obtained by harvesting all the biomass is maximum, that is,  

{ })()()()(max tCtBxpet rt
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Differentiating in t and using the differential equations for x and N we obtain that the necessary 
optimality condition becomes  

f(x).  x p(x) m(x)) (r    g(x) p(x)  x g(x) (x)p' ++=+  
The expression in the left-hand side represents the marginal revenue from maintaining an additional fish a 
unit of time growing. The revenue increases due to price appreciation of weight and due to weight 
increase itself. The expression on the right is the cost of opportunity represented by the discount rate, loss 
of value due to mortality, and instantaneous maintenance costs. 
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OPTIMAL HARVESTING TIME IN A HETEROGENEOUS POPULATION 
 
In this section we relax the assumption of identical weight for all individuals, that is, different sizes grow 
at the same time in the cage. However, we maintain no differences in fish growth across sizes, so that the 
initial weights determine the posterior heterogeneity in the cage. 
 
Let, as above, N0 be the initial size of the population, and n0(x), x in [0,w] be the initial (probability) 
density of the population. The dynamics of the population is described by the following size-structured 
model, in which N(t,x) is the number of individuals of size x at time t:  
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where m(x)≥q is the mortality rate, g(x) is the growth velocity at size x, as before. The initial (probability) 
density n0 is supposed continuous, which is not necessary, but avoids some technicalities connected with 
the meaning of the solution of equation above and some of the formulas involved. 
 
The above model was proposed by Sinko and Streifer (1967) and Bell and Anderson (1967). Numerical 
approaches are proposed in Ito et al. (1991) and Angulo and López-Marcos (1999). 
 
The farmer problem is again to optimize the harvesting time in order to obtain the maximum net revenue 
of the product. Considering the price, p(x), as dependent on size, the value of the biomass in cage is 
determined by  
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The accumulated maintenance cost till time t is 
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The farmer maximizes the current value of the net revenue: 
{ })()()(max tCtVet rt

t −=Π −  
Differentiating in t, using equation (1) and having in mind that g(w)=0, then the necessary optimality 
condition  becomes  0)( =Π t
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One can give similar economic interpretation of the terms in the above expression as in the homogeneous 
case. Similarly as in the homogeneous case, equation (2) may have more than one solution (see 
Proposition 1 (i) below). 
 
In order to compare the optimal harvesting times in the homogeneous and in the heterogeneous model, we 
assume the same growth function g, the same m, r, p and initial population size N0, and with the initial 
weight in the homogeneous model equal to the mean weight in the heterogeneous model. That is, the 
homogeneous model is just a simplification of the heterogeneous one, obtained by assuming that all fish 
have initially the same weight equal to the mean one. 
 
Namely, we assume that the initial density n0 is concentrated in the interval [s0-ε,s0+ ε] in [0,w] and the 
mean value is s0: 

)3(.)(,1)()(
0

0000

0

0

0

0

∫ ∫∫
+

−

+

−

===
w s

s

s

s

sdsssndssndssn
ε

ε

ε

ε

 

 3



IIFET 2006 Portsmouth Proceedings 

We present the main result of our paper. Firstly, in addition to the assumptions in section 2, we include 
that m and p are independent of the size, the functions g and h(x):= p g(x) - f(x) are twice continuously 
differentiable and strongly concave (that is, the second derivative is strictly negative). Moreover, we 
assume that h has a positive value for some x in [0,w].  
 
Proposition 1. There exist numbers ρ>0 and ε0>0 such that for every ε in (0, ε0] and non-negative r, m 
and function f(x) satisfying the above conditions and the inequality r +m+f(x) ≤ ρ, and for every 
probability density n0 satisfying (3), equation (2) has exactly two non-negative solutions, larger one 
equal to the optimal harvesting time tH. Moreover, the optimal time in the heterogeneous model is bigger 
than that in the homogeneous model, so tH > th. 
 
We avoid in this version the proof of the proposition. The essence of the proposition is that if the 
mortality rate, the discount rate, and the maintenance cost are sufficiently small, the homogeneous model 
tends to underestimate the optimal harvesting time. This finding is supported by the numerical results 
obtained in the next section for real fish farms. The assumptions for g and f fulfilled for the particular 
model presented in the next section. We mention, however, that for some (unrealistically) large discount 
rate, mortality rate, or maintenance costs it may happen that tH<th. 
 
A NUMERICAL EXAMPLE 
 
We present in this section a numerical case study of the effect of heterogeneity over the optimal 
harvesting time. The example was extracted from the real commercial culture of tilapia in Yucatan, 
Mexico. Table 1 shows the most representative economic and biological data of the culture, obtained 
from the market and literature. The daily maintenance costs f(x) is defined by fixed and feed costs. 
Capital depreciation is not initially considered, so only daily labor cost is included in the fixed cost. The 
feed costs represent over 40% of the total operating cost in a fish farm, and are determined by the 
conversion rate f0, which indicates the amount of food necessary to increase the fish weight by one gram. 
So, function f(x)=c0+cff0g(x), where cf is the feed cost per gram.  
 

Table 1. Data of commercial culture of tilapia in Yucatan, Mexico. 
Parameter Description Value Source 
m Daily mortality rate 0.00058 Empirical estimation 
p(400) Price per g. for 400g. fish   $0.002 Local market 
p(500) Price per g. for 500g. fish   $0.003 Local market 
cf Feed cost per g. $0.0005 Local market 
f0 Conversion rate 1.7 Empirical estimation 
c0 Fixed cost per day and individual $0.001107 Local market 
N0 Initial number of individuals 2474 Local firm 
 
 
The growth function g(x) was estimated from empirical data by means of an experiment conducted from 
April to December 2003. The fish was cultured in four tanks with different fish weights inside each of 
them. Firstly, we analyzed the growth for the fish with maximum and minimum weight in each tank, 
having no significant differences in two tanks. We take the most representative one of these two tanks to 
calibrate the growth model for the tilapia. Assuming four different growth equations (Chapman-Richards, 
von Bertalanffy, Gompertz and logistic), the logistic equation was selected to replicate the experimental 
data. Thus, the fish growth model follows the expression g(x)=ax-bx^2, where parameters a=0.0182 and 
b=0.000214 were statistically estimated. The estimated asymptotic weight is w=850 g. 
 
We assume mortality as constant and the initial distribution of fish follows a beta function, that is,  
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where Γ is the gamma function and N0 is the total number of the individuals at time t = 0. The culture 
starts from the minimum (x0=18.2 g.) and maximum (x1=47.4 g.) weight found at the initial time in the 
tank. The mean and variance of the distribution are assumed s0=20 g. and σ2=20 respectively, implying 
figures of ε=17.4, α=3.7445 and β=5.5216.  We take also the mean value s0=30 g. as the initial weight for 
the homogeneous model. 
 
The optimal harvesting time was calculated for both homogeneous and heterogeneous case, and results 
for different variances of the initial distribution are shown in Table 2. The market data reflect a fish price 
oscillating between values of $2 and 3 per kg. We present in the optimal time calculation these two 
constant prices and a linear increasing function p(x)=0.00001(x-200), with 0<x≤w, which assumes a 
continuous commercial appreciation for fish bigger than 200 g. 
 
Table 2. Optimal harvesting time for the homogeneous and heterogeneous model for different variances 
σ2 of the initial distribution. Three pattern of prices per x g. of fish are included, with 0<x≤w. 
Fish price σ2=0  

(homogeneous case) 
σ2=20  
 

σ2=30  
 

σ2=40  
 

$0.002 290 290 291 295 
$0.003 299 299 301 305 
$10-5(x-200) 377 377 380 383 
 
The results in Table 2 confirm Proposition 1 of the previous section, that is, the optimal harvesting time is 
larger if size heterogeneity is considered. This rule is satisfied not only for constant fish prices, but also 
for a size-dependent price function. However, the gap between optimal times is lower than one week for 
the highest values of the variance, what does not seem very relevant in the commercial culture. Moreover, 
the recommended harvesting times around 300 days drive to fish of size 760g., clearly above the real 
managerial practices of tilapia culture. Farmer tends to take the fish after six or seven months after the 
stocking, obtaining a fish weight around 400 grams. Other effects influencing the managerial decisions 
can explain this fact, as the environmental factors (Pascoe et al. 2001). It appears that farmers adopt a 
precautionary response to the risk inherent to an economic activity related with the environment, what is 
not captured by the model. 
 
CONCLUSIONS 
 
The optimal harvesting time theory for fish farming developed so far in the literature assumes that the 
population in a culture cycle has the same weight at any time, so only one representative individual is 
necessary in the analysis. In this paper, we extend the theory considering heterogeneity of weight in the 
same culture area. We employ a size-structured population model to describe the evolution of the 
individuals in a farm and compare the optimal harvesting time with the previous ones obtained in the 
literature. The results indicate that fish should be maintained longer in the tank or cage if size 
heterogeneity is taking into account. 
 
The theoretical results were tested numerically with real culture data of tilapia in Yucatan, Mexico. Fish 
growth and costs data were estimated and two models were designed, one assuming identical 
homogeneous growth for all individuals in the tank and the other with heterogeneous growth. The 
numerical figures confirm the theory, but the gap between optimal harvesting times for both 
homogeneous and heterogeneous growth is not very significant in practical terms. However, this gap is 
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very dependent on the specific growth function, so more relevant consequences over the optimal 
managerial strategy may be observed in the culture of other species. 
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