
AN ABSTRACT OF THE THESIS OF

Byoungchul Ahn for the degree of Doctor of Philosophy in Electrical

and Computer Engineering, presented on May 3. 1989.

Title: The Analysis and Synthesis of a Parallel Sorting Engine

Abstract approv,

Redacted for Privacy
John M. Murray /

This thesis is concerned with the development of a unique

parallel sort-merge system suitable for implementation in VLSI.

Two new sorting subsystems, a high performance VLSI sorter and a

four-way merger, were also realized during the development

process. In addition, the analysis of several existing parallel sorting

architectures and algorithms was carried out.

Algorithmic time complexity, VLSI processor performance, and

chip area requirements for the existing sorting systems were

evaluated. The rebound sorting algorithm was determined to be the

most efficient among those considered. The rebound sorter

algorithm was implemented in hardware as a systolic array with

external expansion capability.

The second phase of the research involved analyzing several

parallel merge algorithms and their buffer management schemes.

The dominant considerations for this phase of the research were the

achievement of minimum VLSI chip area, design complexity, and

logic delay. It was determined that the proposed merger

architecture could be implemented in several ways. Selecting the

appropriate microarchitecture for the merger, given the constraints

of chip area and performance, was the major problem. The tradeoffs

associated with this process are outlined.

Finally, a pipelined sort-merge system was implemented in

VLSI by combining a rebound sorter and a four-way merger on a

single chip. The final chip size was 416 mils by 432 mils. Two

micron CMOS technology was utilized in this chip realization. An

overall throughput rate of 10M bytes/sec was achieved. The

prototype system developed is capable of sorting thirty two 2-byte

keys during each merge phase. If extended, this system is capable of

economically sorting files of 100M bytes or more in size. In order to

sort larger files, this design should be incorporated in a disk-based

sort-merge system. A simplified disk I/O access model for such a

system was studied. In this study the sort-merge system was

assumed to be part of a disk controller subsystem.

The Analysis and Synthesis of a Parallel Sorting Engine

by

Byoungchul Ahn

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Completed May 3, 1989

Commencement June 1989

Approved:

Redacted for Privacy
ociate Professor of Computer E4i-ieering in charge of major

Redacted for Privacy

Head of Department Oof Electricg and Computer Engineering

Redacted for Privacy
Dean of late School

Date thesis is presented May 3, 1989

Typed by Byoungchul Ahn for Byoungchul Ahn

ACKNOWLEDGEMENTS

First of all I would like to express my gratitude to my advisor,

Dr. John Murray, who has provided me with generous support,

constant encouragement, and advice throughout this research study.

I would also like to thank Drs. James Herzog, Theodore Lewis, and

Thomas Dietterich for serving on my thesis committee and for their

dedication in reading my manuscripts and offering valuable

feedback. In addition, my very special thanks to Dr. Roy Rathja for

helping me to get started with this study and encouraging my

research work, as well as serving on my thesis committee. I would

also like to thank Mr. Richard Lary who first suggested the double

buffering technique used in conjunction with the four-way merger.

Finally, I am ever grateful to my wife, my son, and my parents

for their patience during this long period of study. In particular, my

wife and son are due my special thanks for enduring the Oregon hay

fever season each spring.

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

1.1 Motivation and Objectives 2
1.2 Statement of the Problem 9
1.3 Definitions and Notation 1 0

1.3.1 Definitions 1 1

1.3.2 Notation 1 1

1.4 Organization of the Study 1 2

2. PARALLEL VLSI SORTERS 1 4
2.1 VLSI Sorters 1 5
2.2 Analysis of Parallel VLSI Sorters 1 7

2.2.1 Enumeration Sorter 1 8

2.2.2 The VLSI Sorter 2 2
2.2.3 Rebound Sorter 2 6

2.3 Comparison of Parallel VLSI Sorters 3 2
2.4 Conclusion 3 4

3. THE REBOUND SORTER 3 6
3.1 Design Considerations 3 6
3.2 Processing and Memory Elements 3 8

3.3 Controller 4 0
3.4 Pipeline Control 4 4
3.5 System Expansion 4 7

3.6 Silicon Compilation 5 2
3.7 Functional Simulation and Timing 5 3

3.8 Floorplanning and Routing 5 4
3.9 Architectural Extension 5 6

3.10 Conclusion 5 6

4. EXTERNAL PARALLEL SORTING 5 9

4.1 VLSI Merge Sort 6 0
4.2 Analysis of the External Sortings 6 1

4.2.1 Parallel Binary Merge Sort 6 2
4.2.2 Pipe lined Merge Sort 6 6

4.2.2.1 Pipe lined Multi-Way Merger 6 6

4.2.2.2 Block-Merge Sort 7 1

TABLE OF CONTENTS (Continued)

Page

4.3 Buffer Management 7 4
4.3.1 General Implementation 7 4
4.3.2 Rebound Sorter and Buffer 7 5

4.4 VLSI Implementation Considerations 7 6
4.5 Four-Way VLSI Merger 8 2

4.5.1 Buffer and Controller 8 2
4.5.2 Simulation and Timing 8 5

4.6 Conclusion 8 6

5. VLSI SORT-MERGE SYSTEM 8 8
5.1 Sort-Merge System Architecture 8 9
5.2 Sort-Merge Algorithm 9 2
5.3 System Implementation 9 4

5.3.1 Controller and System Integration 9 4
5.3.2 Simulation and Timing 9 7
5.3.3 Floorplanning and Routing 9 8

5.4 Additional Modular Sort-Merge Systems 100
5.4.1 Iterative Sort-Merge System 101

5.4.2 Tree Sort-Merge System 102
5.4.3 Disk-Based Sort-Merge System 102

5.4.3.1 Disk I/O Access Model 103
5.4.3.2 Disk-Based Sort-Merge System 109

5.5 Conclusion 112

6. CONCLUSIONS 115

6.1 Research Contributions 115
6.2 Research Recommendations 118

BIBLIOGRAPHY 120

APPENDICES
APPENDIX A: LAYOUT AND ROUTE PLOTS 125
APPENDIX B: TIMING ANALYSIS 133

LIST OF FIGURES

Figure Page

1.1 Sort-Merge System Application 8

1.2 Input Data Structure 9

2.1 Enumeration Sorter Block Diagram 1 9

2.2 Enumeration Sorter Operation 2 0

2.3 Enumeration Sort Algorithm (Algorithm 2.1) 2 1

2.4 Basic Cell of the VLSI Sorter 2 3

2.5 The VLSI Sorter Operation 2 4

2.6 The VLSI Sorter Algorithm (Algorithm 2.2) 2 6

2.7 Basic Structure of the Rebound Sorter 2 8

2.8 Rebound Sorter Operation 2 9

2.9 Rebound Sorter Algorithm (Algorithm 2.3) 3 0

3.1 Block Diagram of a Processing Element 3 9

3.2 Controller State Diagram 4 1

3.3 Initial State of the Rebound Sorter 4 3

3.4 Pipe lined Rebound Sorter Operation 4 5

3.5 Pipeline Control Block Diagram and Signal Patterns 4 8

3.6 Pipeline Control FSM State Diagram 4 9

3.7 Rebound Sorter Block Diagram 5 1

3.8 Critical Path and Major Delays of the Rebound Sorter 5 5

3.9 Architectural Extensions 5 8

4.1 Binary Merge Sort 6 4

4.2 Binary Merge Sort Algorithm (Algorithm 4.1) 6 5

4.3 Pipe lined Merge Sort Structure 6 8

LIST OF FIGURES (continued)

Figure Page

4.4 Pipe lined Merge Sort Operation 6 8

4.5 Pipe lined Merge Sort Algorithm (Algorithm 4.2) 6 9

4.6 Comparison of m-Way Mergers 7 2

4.7 Comparison of Four-Way Mergers 7 3

4.8 Double Block Buffer Method 7 7

4.9 Four-Way Comparator Structures 7 9

4.10 Timing Comparison of Four-Way Comparators 8 0

4.1 1 Four-Way Merger Block Diagram 8 4

5.1 Sort-Merge System Applications 9 0

5.2 Sort-Merge System Block Diagram 9 1

5.3 Sort-Merge System Operation 9 5

5.4 Critical Path and Major Delays of the Sort-Merge System 9 9

5.5 Sort-Merge System Chip Floorplan 100

5.6 Iterative Sort-Merge System 101

5.7 Tree Sort-Merge System 104

5.8 Takagi's Pipelined Sort-Merge System 110

5.9 Disk-Based Sort-Merge system 111

LIST OF TABLES

Table Page

2.1 Comparison of VLSI Sorters 3 3

3.1 Controller State Table 4 1

3.2 Pipeline Control FSM State Table 4 9

4.1 Comparison of Four-Way Comparators 8 1

5.1 Disk I/O Access Model Analysis 108

LIST OF APPENDIX FIGURES

Figure Page

A.1 Rebound Sorter Layout Plot 126

A.2 Rebound Sorter Route Plot 127

A.3 Four-Way Merger Layout Plot 128

A.4 Four-Way Merger Route Plot 129

A.5 Sort-Merge System Layout Plot 131

A.6 Sort-Merge System Route Plot 132

LIST OF APPENDIX TABLES

Table Page

B.1 Rebound Sorter Timing Analysis 134

B.2 Four-Way Merger Timing Analysis 136

B.3 Sort-Merge System Timing Analysis 138

THE ANALYSIS AND SYNTHESIS OF

A PARALLEL SORTING ENGINE

1. INTRODUCTION

Recent advances in very large scale integration (VLSI)

technology have resulted in a significant rate of increase in general

purpose computer performance. One consequence of this increase in

performance has been a corresponding increase in the amount of

data requiring computer processing. The development of VLSI

systems for performing specialized processing functions on large

volumes of data has lagged behind the development of more general

purpose computing systems. The development of special purpose

VLSI systems is expected to provide high performance in certain

application areas at a reasonable cost. One application area, that of

sorting large files, appears amenable to a hardware solution. VLSI

parallel sorters have the potential for sorting very large files

efficiently and economically.

This study includes the development of a parallel VLSI sort-

merge system suitable for implementation on silicon. An analysis of

parallel sorting architectures and algorithms is also accomplished. A

new parallel sorting algorithm is not developed, per se. Rather, the

unique design of a VLSI sort-merge system is accomplished by the

interconnection of a number of new sorting subsystems. These

2

include a parallel hardware sorter, merger, and associated support

hardware. Through the combination of these subsystems, a high

performance sort-merge system was obtained. This strategy saved

substantial design time and effort over that involved in the creation

and implementation of a conceptually new sort-merge algorithm.

The resulting sort-merge system can be extended to accommodate a

wide range of needs for sorting applications ranging from 103 to 1012

bytes in size. The system has the ability to provide increased

performance in executing many of the basic operations required by

various specialized processing systems at relatively low cost and

with high performance.

1.1 Motivation and Objectives

Sorting has been one of the most widely studied areas of

computer data processing and a problem area recognized as long ago

as 1945 when Von Neumann and Goldstine collaborated on the

development of the EDVAC (electronic discrete variable automatic

computer). Since 1973, the most complete reference on sequential

sorting is Knuth's three volume study, The Art of Computer

Programming. In his third volume, Sorting and Searching [26, p.3],

Knuth indicated that:

Computer manufacturers estimate that over 25 percent of the running

time on their computers is currently being spent on sorting, when all

3

their customers are taken into account. There are many installations in

which sorting uses more than half of the computing time.

In 1985, Linderstrom pointed to the importance of sorting

operations in a discussion of the amount of sorting time required for

bank applications [31]. He estimated that when using conventional

disk merge-based methods, major banks spent two or more hours

each night sorting demand deposit accounts. These accounts must be

processed prior to opening on the next business day. The sorted files

in question were on the order of several hundred megabytes (106

bytes) in size, a figure which is expected to increase by an order of

magnitude before the end of this decade. In this case, even with the

current generation of faster disks, an optimized merge sort would

take 10 to 15 hours. Currently, larger banking applications

encompass sorting files as large as 800 million bytes, which may

include 2 million records, with 400 bytes per record, and 50 bytes

per key. Within this decade file sizes in applications other than

banking are expected to reach more than 10 gigabytes (109 bytes), or

10 million records with 1000 bytes per records and 100 bytes or

more per key. Therefore, the need for the development of faster and

more cost effective sorting methods is obvious.

Conceptually, it is possible that the demand for special purpose

rapid sorting systems could be diminished due to the recent

increases in general purpose computing performance and low cost,

high capacity memory systems. However, for the foreseeable future,

4

the problem of sorting will remain as a dominant need in computer

information processing.

There are several reasons for this conclusion. First, there is an

increasing demand for database operations which can accommodate

the large amounts of data required by some applications, including

office automation processes, computer-aided design and computer-

aided manufacturing (CAD/CAM), graphics, and image processing

systems [20,38,42]. For these applications, data continues to be

stored in peripheral disks or tape. As the amount of data, the

number of records, the record lengths, and field sizes continue to

grow, the necessity for sorting will be unavoidable despite

improvements in processor speed and memory capacity. Fast and

efficient database operations involving large amounts of data are

primarily concerned with performing general purpose sorting

functions and relational operations. Efficient sorting computations

are the most effective method of completing merge operations that

eliminate duplicate records as well as performing other data base

operations [10,19,32,34,37].

Second, many parallel sorting algorithms have been developed

to improve the sorting performance compared with serial sorting on

traditional sequential machines. Many of these parallel sorting

algorithms concentrate on massively interconnected networks or

processors. These algorithms focus on sorting operations, without

regard to the means of data transfer to and from the sorting

hardware [4,7,28,35,40,44]. When parallel sorting algorithms are

evaluated, the costs of reading and writing data to peripheral devices

5

should be incorporated in their formulation, rather than ignored, i.e.,

there is no guarantee that a parallel sorting algorithm of the O(log N)

time complexity is optimal when the data input and output transfer

rate is 0(N2). Thus, the issue of data input and output time is equally

as important as the actual sorting operation itself when very large

files are involved.

Finally, VLSI developments, particularly the availability of

small geometry CMOS devices and the emergence of high level VLSI

CAD technology, has encouraged the design of inexpensive and fast

sorters. The fact that dynamic and static RAM capacities have

continued to increase and costs decrease has also helped make

special purpose VLSI sort-merge system solutions attractive. The

type of system under consideration can be incorporated as part of

either a database machine, or an independent sorting system with a

high capacity RAM memory, plus a serial disk, fast parallel disk, or a

RAM disk as required. The VLSI sort-merge system in this context

will eliminate a part of the computational burden on the general

purpose central processing unit (CPU) contained in almost all

computing system configurations, allowing it to concentrate upon

more valuable general purpose computing tasks.

To solve the above problems, special purpose parallel hardware

should be designed which can utilize the advantages inherent in

VLSI technology rather than conducting sorting operations by

software on traditional computers or on parallel computers. The

performance capabilities of an N processor parallel sorting algorithm

implemented in VLSI can be linearly proportional to the number of

6

items to be sorted. Indeed, several VLSI sorting algorithms have

shown impressive performance, performance significantly greater

than that obtained in sequential systems or parallel systems

[1,5,36,39,50].

Most parallel VLSI algorithms are of 0(N) or 0(logN) time

complexity with N processors. In contrast, sorting algorithms for

traditional sequential computers provide 0(NlogN) to 0(N2)
performance in sorting N items [26]. When parallel VLSI

architectures are used for sorting, the size of the files which can be

sorted is often limited by the number of processing elements and the

amount of local memory available. Performance will be highest if a

large number of processing elements and a substantial amount of

high speed local memory are available. For reasons stated at the

beginning of this study, external sorting techniques are generally a

necessity for sorting very large files [9,12,21,24]. In 1988, Beck and

Francis evaluated the application of parallel external sorting to

parallel computers and were able to show significant improvements

in sorting performance [6,22]. However, they used a merge-sort

algorithm rather than a special purpose hardware sorter. To date,

practical high capacity VLSI-based external sort-merge systems have

not been realized.

Therefore, the objective of this study is the design of a special

purpose parallel VLSI sort-merge system in which efficient sorting

and merging algorithms can be implemented to solve high

performance parallel sorting problems. The proposed sort-merge

system includes several VLSI subsystems. These subsystems not

7

only provide pipelined sorting capability, but also provide the initial

presorting when sorting very large files. The merge function is

designed to utilize pipelining capabilities for the improvement of

overall sorting performance, based on the use of 0(logN) processors.

The most efficient sorting algorithm was selected for

implementation in VLSI following the analysis and comparison of

several parallel sorting algorithms. The VLSI system design process

included the high level simulation of the proposed algorithm, as well

as the functional simulation and verification of the resulting chip.

These steps were performed in order to assure the correctness of the

design. A hierarchical design methodology and careful

documentation process were utilized. The system was implemented

using a commercial silicon compiler. Although a parallel VLSI sorter

of 0(N) time complexity was developed, it can be shown to be both

complex and expensive to build an isolated N-processor VLSI sorting

engine for large values of N. Therefore, a VLSI merger was
incorporated with the VLSI sorter to improve the overall sorting

capacity while maintaining reasonable hardware costs. The merger

plus presorter combination performs not only the internal sorting of

small files into sorted strings, but also provides an external sort

capability for sorting extremely large files in conjunction with

external memory structures and/or peripheral storage devices. The

external sorting performance of the sort-merge system is closely

related to the input and output operations of the mass storage

devices utilized, e.g., magnetic disks. For external sorting, I/O

processing is a significant performance factor because the data must

8

be transported between main memory and the storage devices a

number of times during sorting operations. Therefore, it is necessary

to carefully define an appropriate disk device I/O model for sort-

merge functions. Such a model will provide information regarding

collective system performance. The sort-merge system developed

may be utilized in a variety of system configurations. A general

application is illustrated in Figure 1.1.

CPU

Memory

Data/Control Bus

Preprocessor

SORT-MERGE
SYSTEM

Disk
I/O e4

Controller

..,
Disk 1

e
I
e

I

,----- -....,

_
Disk N

.....__ -/

Figure 1.1 Sort-Merge System Application

9

Ri

Record Pointer

RN

Key I

S

Key N

Original Records

MSB LSB

Key Ri

Key N RN

Sorter Input Format

Figure 1.2 Input Data Structure

1.2 Statement of the Problem

Typically a data file is divided into records, the basic units of

data processing. Each record is composed of one or more fields and

an ordered subset of the fields is designated as the key field or key.

Sorting is defined to be the process of rearranging records in

ascending or descending order by the relative magnitude of the key

fields. When a file to be sorted is loaded into the memory of a local

processing unit and the results of the sorting activity are placed in

memory as well, the sort is defined to be an internal sort; otherwise,

it is an external sort.

The input data structures for a typical hardware sorter are

indicated in Figure 1.2. The key fields are extracted from each

record and the keys plus associated pointers are compared. When

the key field is extracted the record pointer is added to the key so

10

that the original record order may be preserved. This procedure is

accomplished by a sort preprocessor, which retrieves the keys and

record pointers for each record before sorting, and restores the

original records following sorting, if desired.

The most common methods of organizing disk files are

sequential, partitioned, indexed sequential, and direct organization

[13]. The disk I/O access model is dependent upon the file

organization, the I/O blocking factor, the disk scheduling method, and

the disk access time. The output of an external merge sorter is a

sequence of records in ascending or descending order. Records are

generally distributed on the disk, prior to sorting, in random order.

For all practical purposes, file organization can be defined as a

partitioned sequential organization since the output of the external

merge sort is a sequence of sorted records. The final output will

have one partitioned sequence which corresponds to the entire file,

while the initial input of an external merge sort will have one record

per partitioned sequence. A partitioned sequential file can be stored

and retrieved in a indexed sequential order for each input and

output operation.

1.3 Definitions and Notation

The following is a summary of the notation and terms used

throughout this study. When additional notation and terms specific

to individual sections and/or chapters are introduced, they are

defined at the point of introduction.

11

1.3.1 Definitions

logx = log2x logarithm based on 2,

ix] = the least integer greater than or equal to x,

Lx.] = the greatest integer less than or equal to x,

[a,b] = {xl a < x < b} or the range of values that lie between a

and b inclusively,

(a,b) = {xi a < x < b) or the range of values that lie between a

and b exclusively.

1.3.2 Notation

B = buffer size in bytes,

N = number of records in the input file,

P = number of processors,

S = number of a presorted sequence,

r = record size in bytes,

m = order of merge,

a = disk assess time,

R = average rotational latency time (= 1/2 disk rotation

time),

Or = disk read time,

Ow = disk write time,

8 = physical disk block size in bytes,

y = disk cylinder size in bytes,

ti = total number of blocks (= rNIS),

12

p(n) = complexity of processor,

t(n) = complexity of time,

b(n) = complexity of buffer size,

c(n) = total cost (= p(n) x t(n)).

1.4 Organization of the Study

This study is presented in six chapters, including the

introductory chapter. Chapter 2 provides an analysis of existing

parallel sorting algorithms. Several previously implemented VLSI

sorters are. also briefly considered. In addition, three VLSI sorting

algorithms with similar structural characteristics are compared and

their architectural complexities and concepts are explained. The

implementations of these sorters in VLSI are compared in terms of

chip area and processing speed. In order for the comparison to be

meaningful, they were all implemented with the Genesil silicon

compiler [23] in 2-micron CMOS technology.

Chapter 3 presents design methods for the implementation of a

rebound sorter originally conceived by Chen et al. [18]. The rebound

sort algorithm constitutes the most efficient type of algorithm with

respect to chip area and processing time found. Improved and

modified features, as well as pipelining control capability and

expandability, were added to Chen's original concept. Functional

simulation, timing, floorplanning, and routing were performed and

are discussed.

13

In Chapter 4, several merge sort algorithms are analyzed in

terms of VLSI implementation. These algorithms include a parallel

binary merge sort algorithm [9,21] and a pipelined merge-sort

algorithm [25,47]. Since the disadvantage of external mergers is the

requirement of large external buffers, buffer management schemes

for reducing on-chip and external RAM size are discussed. Two

comparator implementation methods, the first an indirect four-way

comparator and the second a direct four-way comparator, are

provided for the improvement of processing speed. A VLSI four-

way merger is implemented using the indirect four-way comparator

technique.

Chapter 5 presents an integrated sort-merge system which

combines two rebound sorters and the four-way merger. The system

is designed to reduce merger stages and disk I/O access time, based

upon the analysis provided in chapter 4. The sort-merge system is

designed for implementation on a single chip. This system may be

modified if a larger sort-merge system is desired. Additional

modular sort-merge systems, which connect individual sorter and

merger chips for implementation of more efficient systems are

examined. These include an iterative sort-merge system, a tree sort-

merge system, and a disk based sort-merge system. The simple disk

I/O access model is defined, analyzed, and applied to the external

sort-merge system.

Chapter 6 summarizes the results of the study and suggests

interesting avenues for further research.

14

2. PARALLEL VLSI SORTERS

The theory of parallel sorting algorithms has been explored in a

number of studies. Some of these algorithms have been

implemented in hardware. A few parallel sorting algorithms have

been implemented with parallel processors and their performance

has been demonstrated [6,22,43]. In this chapter, several sorting

algorithms are discussed briefly. Criteria related to the time

complexity of each algorithm and its implementation feasibility are

presented. According to Akl [3] and Bitton et al. [11], parallel sorting

algorithms may be broadly classified in three categories: (1)

network sorting algorithms, (2) shared memory sorting algorithms,

and (3) parallel file sorting algorithms.

Most of these algorithms require a large number of processors.

The number of processors is proportional to N or, at a minimum, logN

when sorting N keys. Furthermore the size of the keys to be sorted

is limited by the internal memory size. The sort performance and

cost can be improved when N special VLSI processors are used

instead of general purpose processors. Moreover, when sorting very

large files, the data I/O transmission time between main memory

and the storage devices cannot be ignored. Therefore, external

sorting is more desirable than the internal sorting for sorting very

large files. The most interesting aspect of parallel internal sorting

algorithms is whether or not they can be implemented in VLSI and

15

whether or not the input and output times can be overlapped with

the sorting time.

Five parallel sorting algorithms can be considered, which meet

the above criteria: (1) The enumeration sort proposed by Yasuura et

al. [50], (2) the VLSI sorter proposed by Miranker et al. [36], (3) the

rebound sorter proposed by Chen et al. [18], (4) pipeline merge sort

proposed by Todd et al. [47], and (5) the hardware sort-merge

system proposed by Takagi et al. [45]. The first three algorithms are

analyzed and compared in this chapter, while (4) is discussed in

Chapter 4 and (5) is discussed in Chapter 5.

2.1 VLSI Sorters

Sorting algorithms for magnetic bubble memory systems were

proposed by Chung et al. [16] and Lee et al. [29] in 1980 and 1981,

respectively. Earlier a number of sorting algorithms for other

technologies were proposed by Chen and Todd in 1978. VLSI sorting

systems which have been implemented were developed by Carey et

al. in 1982, Yasuura in 1982, Miranker in 1983, Rajgopal in 1985,

and Bate in 1988.

Carey et al. implemented a parallel version of the classic

bubble sort algorithm, using a stack-based microarchitecture on

silicon [15]. This system has 0(N) time complexity and uses a chip

area of 0(N). The chip is not pipelined and requires 2N cycles to sort

an N-element data stream in which 16-bit records, 8-bit integer keys

and 8-bit record pointers, are pushed into a single stack. When

16

records are popped from the stack, they are returned in ascending

order. The core chip area was 7000 microns by 7000 microns (280

mils by 280 mils), excluding the power and I/O pads. Each chip has

the capability of producing 32 16-bit sorted records at its output.

The maximum estimated speed achieved by this system was about

0.84 MHz. The chip , which can be cascaded, may be used as a disk

block buffer for a database machine.

Rajgopal et. al implemented Yasuura's parallel enumeration

sort [39]. This implementation was also not pipelined. Its time

complexity were approximately the same as the sorter developed by

Carey et al. Rajgopal's implementation requires 2N cycles to sort an

N element data stream and a single chip can sort 8 16-bit keys.

Following the sorting activity, the index of the sorted key value is

returned. Given the 8-key limit of each chip, 32 chips can be directly

cascaded to sort up to 256 keys. The total die area was 9200
microns by 7900 microns (368 mils by 316 mils) in 4-micron NMOS

technology. No speed performance estimates were given for this

chip.

Bate implemented the rebound sorter in pipelined VLSI

architecture [5]. This implementation achieved 0(N) time and area

complexity, requiring 2N cycles to sort an N element data stream. A

single chip is capable of sorting 16 16-bit keys and cannot be

chained. The total area of the chip is about 10000 microns x 10000

microns (400 mils x 400 mils) in 2-micron CMOS technology and it

achieves speeds up to 5.7 MHz. The chip pipeline controller design is

very complex.

17

Segal described a content-addressable, sequential data

management chip for the performance of sort and search operations

in 1986 [42]. The data management chip consists of an articulated

(adjustable) first-in, first-out (FIFO) register and a binary search

engine. By implementation of an articulated FIFO register to

manipulate data files, sorting times are up to 500 times faster than

software sorting routines and the time complexity and area were

almost proportional to N. With 1024 bytes of internal RAM, the chip

treats each key as if it had two constant width fields, i.e., a key field

of 1 to 255 bytes and a pointer of 0 to 255 bytes. Up to 256 of these

chips may be cascaded, enabling the sorting of 256 Kilo(103) bytes

of data. The chip is fabricated with 1.6 micron CMOS technology and

data speeds of 2.6M bytes per second at a clock rate of up to 16 MHz

have been achieved. It is a powerful commercial sorting chip, but

has 8-bit data bus to transfer data to and from the chip.

2.2 Analysis of VLSI Parallel Sorters

Many parallel sorting algorithms have been proposed for

hardware or software implementation [2,4,7,14,18,36,40,44,47,50].

Few of these algorithmic architectures are suitable for

implementation in VLSI [27]. The VLSI implementations must be

small and capable of high performance in order to be commercially

feasible. Many of the proposed implementations do not satisfy these

criteria. Thompson [46] discussed the time-area complexity of VLSI

sorters for 13 algorithms in order to find the existence of an area x

time2 tradeoff sorting problem. The area x time2 performance

18

figures for most of the designs were close to the theoretical

minimum value, O(N2logN). In addition, Leighton and Bilardi

conducted a study of the upper and lower bounds for this problem

[8, 30]. These studies concentrated on the time-area complexity of

the number of circuits, including the wires and gates, number of bits,

and the time required to sort N keys. Possible restrictions on input

and output times were removed.

In the following sections, three other algorithms, each requiring

N processors for sorting N keys, having an area proportional to N, are

considered in more detail from the standpoint of time and processor

complexity: (1) the enumeration sorter [50], (2) the VLSI sorter [36],

and (3) the rebound sorter [18].

2.2.1. Enumeration Sorter

The enumeration sort can be regarded as two separate

procedures, an ordering process and an arranging process. Ordering

is the process of determining the order of each key in the set of keys,

K = {ki,k2,...,kn). When ki is the ith smallest key in the set of keys,

K, the result returns the order c . equal to i-1 corresponding to k1.
1

The order c . is calculated by counting the results of comparisons

between k. and all of the keys in K. In turn, rearranging is

performed by software, through the host computer or a memory

device with special mechanisms. A block diagram for this algorithm

is shown in Figure 2.1 and an example of the enumeration sorter

operation is shown in Figure 2.2.

Key Input

Control
Signals

Reset

Output

Input Bus

Input Bus
or

Previous
Cell

Control
Signals

Cell

0

Cell

1

Cell

2

19

- PO' -.W-I
- -INN. -Ow

t
1

Output Bus

Cell

n

a. Parallel Enumeration Sorter Block Diagram

Input Bus

Shift
Data

Register

Bus Data Register

Controller

i1
Comparator

Reset

Counter

Output Bus

No-Next Cell

b. Enumeration Sorter Cell Block Diagram

Figure 2.1 Enumeration Sorter Block Diagram

Control
D.- Signals

Time
7

Cell 0

t o -1110-717--

Input Data : 7, 9, 6, 8
Cell 1 Cell 2

t1

t2

9

0 0+1

8

7

0+1

9

1

7 9
t3

411j8 6
--11 1 1+1
EOD(End of Data)

9
t4

8

1 11P0' 2+1
11

EOD

t5

3

3 -41

t6

t7

2-411

111110"7

0

Cell 3

6

0

0

No'

EOD

8

0

0

0+1

1

8
--OB.,6

110- 1 + 1

--OD"

EOD

8

8

2

2

Figure 2.2 Enumeration Sorter Operation

20

21

begin

for i = 1 to N do in parallel
c

i
= 0

for j = 1 to i-1 do

if k. k. then
1 j

c
1.

= c
I.

+ 1

end if

end for

for j = i to N do
if k. > k. then

1 J

c
1.=

c
1.

+1

end if

end for

end for

end

I* k.
1

=k. and i < j -> ci < ci */
1

Figure 2.3 Enumeration Sort Algorithm (Algorithm 2.1)

Algorithm 2.1 shown in Figure 2.3 assures that two or more

keys are not stored in the same location and that if ki = kj and i < j,

then c
i

< cj. N processor elements execute Algorithm 2.1 and

compute orders in parallel. Keys and their orders are transmitted

serially between the memory device and a sorting circuit which

22

performs the ordering process. Input/output time completely

overlaps the sort processing time.

The number of processors, p(N), for Algorithm 2.1 is N. The

total time required is 0(N2). The time complexity for N processors is,

p(N) .N,

t(N) = (-2\1j = 0(N),0(N)

and the total cost, c(N), is

c(N) = p(N) x t(N) = 0(N2)

The ordering process requires 2N cycles. The algorithm requires a

host computer rearranging process following completion of the

ordering process. The reordering process is of 0(N) time complexity.

2.2.2. The VLSI Sorter

The VLSI sorter proposed by Miranker et al. [36] are similar to

the basic operations of the bubble sorter proposed by Lee et al. [29].

However, the cell microarchitecture is considerably different. This

sorter consists of a linear array of [N/21 cells, each of which has an

array of 1-bit comparators and memory elements. For instance, n-

bit basic cells, dibit cells, are connected with each other to sort n-bit

key fields. Each cell is connected to the cells above and below it in

order to establish data communication and proper data movement

during sorting. The block diagram of the basic dibit cell and the

overall comparator structure is shown in Figure 2.4 and a sorting

example of the VLSI sorter is provided in Figure 2.5.

MSB LSB

An Atli A2 A'2

Bit
Comparator

Bn B'n

Input / b

i

Al Atl

Cin Cout Bit
Comparator

Ao 'o

On Coin Bit
Comparator

23

4-1

B2 B'2 B i B'1

a. Comparator Structure

WRT
o

SELF 4

A

No-

N*-1 Y

WRT

1 : Input Stage A < B
: Output Stage A > B
Data flow direction during output

111' Data flow direction during input

b. Dibit Cell Block Diagram

SEL

Figure 2.4 Basic Cell of the VLSI Sorter

BO WO

Tag
Bits

a / Output

I_0.. Input Stage (larger items
are compared)

3
1
6
2
4
5

3
1
6
2

5
CO

CO CO

CO CO

Compare Transfer
to tl

3
1

216
5 4

Ka co

C

t8 t9

t2

3
1
6
2

5 4

CO CO

CO CO

T

t3

3
1
6
2

5 4

eg CO

CO

C

t4
T

t5

3
1
6

eg 00

C

t6

I Output Stage (Smaller items are
compared)

3

V
1-11°'

1

1 g 3 1 3 2. 3 2

6 4 5 4 2 5 4

5 CO 5 6 S 6

14

CO 6

V
ob

A
CO

T

C T

t16 t17

C T

tio tii

5 6
CO 6
CO

C T

t18 t19

C T

t12 t13

1
2
3

5 6

CO eg

00 eg

C

1
2
3
4

T

t20 t21

Figure 2.5 The VLSI Sorter Operation

3 2

5 6

24

3
1

I
2

5

co

6

4

CO

T

t7

1

2

A

3 4

5 6

CO CO

C T

t14 t15

1
1 2
2 3
3 4
4 5

CO CO 00

CO CO CO

eg CO co

C T

t22 t23

25

The VLSI sorter can sort keys in ascending or descending order

by modifying the data flow direction. Each sorting step has two

phases:

1. Compare Phase: Two keys in each cell are compared each

other.

2. Transfer Phase: Depending on the result of the

comparison, one of the two keys is transferred to a

neighboring cell and the original cell receives an item from

its remaining adjacent cell.

The VLSI sorter cell contains two stages, an input stage and an

output stage. In the input stage, the larger of the two keys in each

cell is transferred downward so that the smallest key is located in

the top cell and the largest key is located in the bottom cell. In

general, the ith smallest key must be in one of the top i cells. In the

output stage, the smaller of two keys in each cell is transferred

upward (Figure 2.6, Algorithm 2.2).

The time required for Algorithm 2.2 is 0(N2). When N/ 2

processors are used, the time complexity is 0(N):

p(N) = N/2 = 0(N) ,

t(N) =
0(N2)
(57/) = 0(N) ,

and

c(N) = p(N) x t(N) = 0(N2) .

This algorithm can be used to sort one ascending order and one

descending sequence. The total sorting time is 4N cycles to sort N

keys with N/2 processors.

begin
for j = 1 to N/2 in parallel

for i = 1 to N /* Input stages */
if a

J
. < b

1
. then /* larger data are transferred

aj. +1 = b
j.

or bj. +1 = b1.

b
.1

. = max(at. b
1.

)-1' -1

else
aj .+1 = aj. or bj. +1 = a i

a
J
. = max(a.-1'b i-1)

end if

end for
for i= N+1 to 2N /* Output Stage

if a
1

. < b
1

. then /* smaller data
b

i.-1
= a

i
or a

i-1
= a

i

else

a
1

. = min(ai+l'bi+
1)

a i-i orb.= b . = b .
1-1 1

b
1

. = min(ai+l'bi+ 1)

end if
end for

end for
end

*1

are transferred

Figure 2.6 The VLSI Sorter Algorithm (Algorithm 2.2)

2.2.3. Rebound Sorter

26

*1

*1

The rebound sorter is a new sorting scheme based upon an

improvement of the uniform ladder sorter [48], which is an N-loop

shift register structure capable of holding N keys with one key per

27

loop [17]. This storage structure is suitable for hardware

implementation. The algorithm is a variation of the odd-even

transposition sort algorithm. If the time for circulating data within a

loop is called a period, then N keys stored in the ladder can be sorted

in (N+1)/2 periods, using (N-1) comparators.

Input and output time completely overlap sorting time. The

rebound sorter cell consists of a controller, memory elements, and a

data steering unit. Multiple instances of the basic cell are used to

compose the complete sorter. The basic building block known as the

steering unit, contains an upper-left cell, U, and a lower-right cell, L,

as shown in Figure 2.7. A sorter for N keys is assembled by

connecting (N-1) steering units, plus the top and bottom cells. An

example of the rebound sorter operation is shown in Figure 2.8.

In the rebound sorter, keys are divided into two parts: the

most significant and the least significant parts. The most significant

part of a key is fed into the sorter and the least significant part of

the key follows after one clock period. Thus, in order to sort an N

key sequence, 4N cycles are required.

The sorter alternates between two states: the decision state and

the continuation state. The latter state may be a pass data vertical

state, a pass data horizontal state, or a second decision state. In the

decision state, each steering unit compares the key stored in its

upper-left (Ui) and lower-right (Li) cells, steering the halves of the

keys either vertically or horizontally, depending on the comparison

results. In the continuation state, each steering unit steers the keys

in a direction determined from the previous decision state.

28

1
Rebound

Sorter
Cell

t
Bottom
Out 1B

a. Rebound Sorter Structure

A IN

B B

a)Vertical Data Flow b)Horizontal Data Flow

b. Rebound Sorter Cell Data Flow

Figure 2.7 Basic Structure of the Rebound Sorter

Input Data: 34, 56, 78, 12 : Decision State

12 12
78 78 12
56 56 8
34 4 56

#$

12
78

t

to

5

4
3

t4

4
2

3

8 5

7

3

12
8

s

tl

7

6

5

3

t5

1

A

2
3

6

7

4
3

12

t

t2

8

7

6 3

5 4

t6

12

4

4

5

78
12

6

t
5

4

3

t3

2

i
1

8 3

7 4

5

t7

12
3

A

4

5

7

t8

12
34

4

t9

12
34
5

4

t10

12
34
56

4

tl 1

12
34
56
7

4

5 7 8

6 7 8

7 8

8

t12 t13 t14

Figure 2.8 Rebound Sorter Operation

t15

29

begin

for j = 1 to N in parallel
for i = 0 to 2N-1 do

if mod(i,2) = 0 then /* Even processors start

(1) if L . > U. then

L. = Li

= U

*/

/* vertical data movement */
U._1

else if L. < U . then
J J

L =U 1*

U. = Lj-1 j

horizontal data movement

(2)

(3)

end if
else

if L . < U . then
.1 I

Li+i = Ui

Uj-1 = Lj
else

L =L.

/* L
I

. =U . at cycle (i-1) */
I

/* Odd processors start */

I* L. >U. at cycle (i-1) */

U. = Uj.

or
L. = U. /* L . <U . at cycle (i-1)

J
U. = Lj-1 j

end if
end if

end for
end for
end

1. Item (1) is the first decision state, item (2) is the second
decision state and item (3) is the continuation state.

2. Even processors start in the first decision state(1) and
odd processors start in the pass vertical state(3)

Figure 2.9 Rebound Sorter Algorithm (Algorithm 2.3)

*/

30

31

Algorithm 2.3 (Figure 2.9) requires 0(N2) time. The time

complexity for N processors is

p(N) = N 1 = 0(N),

and

t(N)
0(N2)

0(N) ,

c(N) = 0(N2) .

The algorithm requires 4N cycles to sort N keys, but this
number can be reduced to 2N cycles if the rebound sorter is

pipelined. When the number of comparisons are considered, the

rebound sorter exhibits two extreme cases. For the best case, each

comparator requires N comparisons to sort N keys; for the worst

case, 2N times are required for each comparator. When the values of

the half-key are the same, i.e., 2411, 2412 etc., the worst case can be

applied. Although the sorter operates according to the worst case,

the total time complexity is 0(N) with N processors, including the

input and output times. No time penalty is incurred for the

additional comparison in the hardware implementation of this

algorithm. If the algorithm were implemented in software, a time

penalty would be incurred.

The time complexity for sorting, in addition to data

input/output time is 0(N) since pipelining introduces latency in the

system only for a particular key. The record division and merge

time for the rebound sorter is also absorbed in the sorting time

through the employment of a unique buffer management scheme

(analyzed in Section 4.3).

32

2.3 Comparison of Parallel VLSI Sorters

In the previous section, three sorting algorithms amenable to

implementation in VLSI were analyzed. These algorithms can be

further analyzed from the point of view of total chip area and system

performance. Table 2.1 provides the performance and chip area data

for the three parallel VLSI sorters [1]. Representative internal blocks

from each of these sorters were synthesized on a silicon compiler in

order to obtain these area and performance estimates.

The VLSI sorter (Algorithm 2.2) of Miranker et al. [36] has the

smallest overall chip area, using N/2 cells to sort N keys. The

parallel enumeration sorter (Algorithm 2.1) developed by Yasuura et

al. [50] requires the largest chip area. Though the chip area of the

rebound sorter is slightly larger than that of the VLSI sorter, its

performance is much better, i.e., the processing speed of the rebound

sorter is twice as great as the VLSI sorter.

Among all of the parallel VLSI sorters analyzed to implement

using silicon compilation technology, the comparators determined the

critical timing path. The comparators were built using subtracter

blocks included within a parallel datapath, which is a fundamental

microarchitectural element contained in the silicon compiler's

building block library. Other comparator structures, such as those

implemented with programmable logic arrays (PLA) and random

logic (or logic gates), used excessive chip area and their performance

were poor due to the excessive wiring requirement.

Table 2.1 Comparison of VLSI Sorters

Functional Blocks
of 1 Sorter Cell

Area of Each
Functional Block

(mils x mils)

Total Area
of N Cells

(mils x mils)

No of
Clock
Cycles

Maximum
Clock

Frequency

Enumeration
2 16-bit data register 2x 3 .60 x 115.19

Sorter 1 16-bit comparator 52.24 x 11 .81 N x 1903.31 2N 6 MHz

1 8-bit counter 16.67 x 27 .98

2 16-bit data register 2 x 3 .60 x 115.19
The VLSI
Sorter 1 16-bit comparator 52.24 x 11 .81 N/2 x 1807.54 4N 6 MHz

2 16-bit 2-way multiplexer 2 x 3.96 x 46 .80

2 8-bit data register 2x 3 .60 x 62 .75
Rebound
Sorter 1 8-bit comparator 30.89 x 11 .81 N x 1013.27 2N 17 MHz

2 8-bit 2-way multiplexer 2x 3 .96 x 24 .83 (pipelined)

Note: Assumes equal area for controllers

34

The 8-bit comparator utilized by the rebound sorter is much

faster than the 16-bit comparators used in the other sorters. In

order to increase the processing speed for the 16-bit comparators,

the area must be increased to twice that shown in Table 2.1. The

estimated maximum frequency for the resulting high speed

comparators is 6 MHz, when static carry technology is employed and

14 MHz when a precharged carry chain is used. When a precharged

carry chain is implemented, it is necessary to add additional circuitry

to overcome the significant timing problems which result. Therefore,

the rebound sorter is the most feasible structure for VSLI

implementation in terms of performance and overall chip area.

2.4 Conclusion

Three parallel VLSI sorting algorithms which have very similar

characteristics were analyzed for time complexity. Although there

were slight differences, each achieved 0(N) time complexity with

0(N) processing elements. The enumeration sorter proposed by

Yasuura et al. [50] fails to consider the internal delay of the counter

for each cell and the rearranging process time. The more the total

number of processors is increased, the greater the counter delay time

and the larger the counter area must be in order to reduce delay

time.

The VLSI sorter proposed by Miranker et al. [36] has a suitable

algorithm for VSLI implementation since it requires fewer

processors, N/2 processors, than the others. However, its speed is

twice. as slow as the others. Considered by itself, the VLSI sorter

35

comparator achieves only one-half the speed of its rebound sorter

counterpart. To improve comparator speed, other design methods or

the application of lower level VLSI CAD tools should be considered.

Consequently, the rebound sorter is the most efficient in terms of
processing speed and chip area. Processing speed is twice that of the

others and the chip area is one-half of the enumeration sorter area

and only slightly larger than the VLSI sorter. However, for the

rebound sorter an external preprocessor is required to decompose

the records and merge them following the sort. Implementation

methods for merging two half-keys are discussed in Chapter 4.

36

3. THE REBOUND SORTER

In the previous chapter, three parallel VLSI sorting

algorithms [18,36,50] with 0(N) time complexity were analyzed in

terms of processing speed and chip area and the rebound sorter

was determined to be the most cost effective. In this chapter,

processing elements, pipeline control, and the expandability of the

VLSI implementation of the rebound sorter are discussed. Detailed

design methods, including floorplanning and timing issues, are

discussed as well as the functional simulation of the chip for

purpose of design verification.

To build each module of the sorter, several possible design

methods were considered and compared. The smallest chip area

and the lowest delay times were selected and a basic processing

element was designed and replicated in order to build the complete

rebound sorter with the capability of sorting eight 16-bit keys. For

VLSI design, delay time considerations of block modules were an

important factor since the delay time affects overall system chip

size and performance.

3.1 Design Considerations

To formulate a simple design process the following

assumptions were necessary:

37

1) The order of sorting is performed such that keys emerge

from the sorter in ascending order. Larger keys will

descend to the bottom of the sorter upon entry, while

smaller keys ascend toward the top.

2) Keys to be sorted are directed to the rebound sorter's

input port and sorted keys exit through the output port.

3) The size of each key is 16 bits. In general, key size is

arbitrary and this requirement can be made variable by

hardware modification (refer to Section 3.9).

4) If the number of keys exceeds the capacity of the sorter,

additional sorting chips can be chained; alternatively, an

external merger can be used to merge numbers of sorted

strings for sorting more than N keys.

To sort N keys, the rebound sorter includes N identical

processing elements and one pipeline controller. Each processing

element is composed of two memory units, two data steering units,

and a control unit. A block diagram of the processing element is

shown in Figure 3.1.a [1]. The memory unit, the comparator, and

the data steering unit are designed as a single datapath module,

using silicon compilation technology, to minimize chip area and

reduce interconnections among the separate modules. The control

unit is a finite state machine (FSM) built using a programmable

logic array (PLA).

38

3.2 Processing and Memory Elements

The steering and memory units for the processing element are

included within the same datapath module as indicated in Figure

3.1.b. The memory unit consists of two transparent latches, which

retain the data for a complete clock cycle. New data is loaded into

the first latch on phase A and into the second latch on phase B. The

comparator is composed of a subtracter plus an equal flag unit

within the datapath module. Comparator output signals are

"greater-than" and "equal-to" and are provided as inputs to the PLA

FSM controller during the same clock phase.

The steering unit, consisting of a comparator and two

multiplexers, compares two keys, one-half of a key at a time. In

functional terms, the most significant half-key of a particular key

from the sorter cell above is applied to the upper left input (U1) of

the cell in question, while the most significant half-key of a second

key from the cell below is applied to the lower right input (L i) of

the cell. The steering unit moves the input half-keys through the

cell vertically or horizontally, depending upon their relative

magnitudes as determined by the comparator. The smaller value of

the two half-keys ascends to the upper right output (L1_1), while

the larger value of the two half-keys descends to the left lower

output (U1+1). If the values of the two half-keys are equal, data

movement is vertical and in the next clock cycle the least significant

half-keys which follow are compared. Data comparison and

movement of the least significant half-keys in the second clock

From Cell Above
(ui)

V

Memory Unit

Data
Steering
Unit

1

To Cell Above
(Li -1)1

Memory Unit

Comparator

V

`Multiplexer /

(Ui+1)/
To Bottom Below

Control
Signals

-

Multiplexer

:v

Control Unit
(Li)

From Bottom Below

a. Processing Element of Rebound Sorter Cell

From Cell Above
(Ui) A

:EQ :GT

39

To Cell Above
(Li-1)

Shift
Register

Sub-
tracter

Mux

Mux

Shift
Register

(Li)
From Cell Below

b. Datapath Implementation

(Ui+1/
To Cell Below

Fig 3.1 Block Diagram of a Processing Element

40

cycle are conceptually identical to those for the most significant

half-keys. All controller signals are dependent upon the

comparison results and multiplexers are used to change data flow

direction.

3.3 Controller

The controller for the processing element consists of a finite

state machine. Three possible implementation methods were

considered for this unit: A pure combinational logic

implementation, the use of a read only memory (ROM), and the use

of a programmable logic array. The PLA approach allowed for rapid

design, due to the existence of a PLA generator in the silicon

compiler. The controller receives inputs from the comparator and,

when pipelining is implemented, from an external controller. Based

on these inputs, the controller determines the next state of the state

machine, and provides multiplexer outputs to steer incoming half-

keys in the proper direction during each clock cycle.

The controller state table is shown in Table 3.1 and its state

diagram is shown in Figure 3.2 [1]. In Figure 3.2, each node in the

diagram represents a controller state and each edge represents the

state transition and its associated inputs and outputs as illustrated.

The left and the right sides of the "/" are, respectively, input and

output, while the dash, "-" indicates a "don't care" condition. The

input signals are reset, GT (greater than) and EQ (equal to) and the

output signal which controls the multiplexers is pass-vertical if

output = 1 and pass-horizontal if output = 0.

Table 3.1 Controller State Table

Present State

Next State, Output *

GT EQ
00 01 11 10

D1
(State-0) PH,0 D2,1 X PV,1

PV
(State-1) D1,1 D1,1 X D1,1

PH
(State-2)

D1,0 D1,0 X D1,0

D2
(State-3)

D1,0 D1,1 X D1,1

Reset
Even PE --0.- D1
Odd PE -ID- PV

Reset

Dl: First Decision
PV: Pass Vertical
PH: Pass Horizontal
D2: Second Decision
X: Don't cares

*1: Pass Vertical Output
0: Pass Horizontal Output

* 1: Pass Vertical Output
** 0: Pass Horizontal Output

Figure 3.2 Controller State Diagram

41

42

The controller has four states as follows:

1) At State-0 (State-D1), the initial decision state,

comparison of the two half-keys is performed, i.e., the

most significant halves of the pair of keys in question.

One half-key is provided at the upper left input (U),

while the other half-key appears at the lower right input

(L .). These are moved vertically if the upper left half-

key (t i) is greater than or equal to the lower right half-

key (1, 1). When the upper left input (U 1) is less than

lower right input (L thethe half-keys are moved

horizontally.

2) State-1 (State-PV) is entered when the half-key (II i) is

greater than the half-key (L i). In this case, the second or

least significant half-keys are also passed vertically, a

process which occurs because the initial decision has

already determined which half-key is larger and no

additional magnitude decisions are required.

3) State-2 (State-PH), in which the second or least

significant half-keys are passed horizontally, is entered

when the upper left input half-key (L1), is less than the

lower right half-key (I i).

4) State-3 (State-D2) is entered if the upper left input half-

key (U), is equal to the lower right half-key (L1). This is

a second decision state, which compares the least

significant half-keys to determine proper data flow

direction.

43

All processing elements operate synchronously. The PE

control units, shown in Figure 3.3, are initialized as follows:

1) Even PEs from the input stage, e.g., PEO, PE2, are initially

set to State-D1 when the reset signal is received.

2) Odd PEs from the input stage, e.g., PE1, PE3, are initially

set to State-PV when the reset signal is received.

Input Output

Dl: First Decision State(State-0)
PV: Pass Vertical State (State-1)
min: Minimum Data Value = 0

Figure 3.3 Initial State of the Rebound Sorter

44

3.4 Pipeline Control

The rebound sorter is capable of holding and processing N

keys, producing sorted strings of the same length at its output. In

order to maximize performance, input and output operations must

take place simultaneously. This requires presentation to the sorter

of new, unsorted keys while the previously sorted keys associated

with earlier input data are emerging at the output. This process is

referred to as pipelining. An example of the pipelined rebound

sorter operation is provided in Figure 3.4.

In the pipelined rebound sorter, it is assumed that the sorter

is filled with data currently in the process of being sorted. New

unsorted keys enter as input and descend through the system

without being sorted for 2N clock cycles. On completion of 2N

cycles, the new half-keys are compared, while the remaining half-

keys within the sorter associated with an earlier input sequence

continue to emerge, undisturbed, from the sorter's output.

A specialized controller provides the necessary control signals

to each sorter cell for the correct implementation of pipelining,

which is implemented as follows:

1) First, the incoming N keys are isolated from the current

set of N keys

2) When the new incoming keys descend to the bottom cell

of the sorter, comparison is initiated and the previously

sorted data ascends vertically to the output port.

Input Records: 63, 38, 34,
52 52
34 34
38 38
63 2

to

52

4

tl

t5

0 Pipeline State

45

52 199, 88, 77, 11 I 43, 21, 87, 65

52
34
38

t2

88
99
2

52
34
8

t6 t7 t8

DI: First Decision State PV: Pass Vertical State
D2: Second Decision State PH: Pass Horizontal State

52
34

t4

Figure 3.4 Pipelined Rebound Sorter Operation

t9

46

Input Records: 63, 38, 34, 52 1 99, 88, 77, 11 143, 21, 87, 65

11 11 34 21 34
77 77 34 11 34 11 38 4 3 38
8: 34 3 77 38 52 1 52

2 1
4 3

t10 tll

34 65 34
38 87 38
52 21 52
6 43 63

t15

0 Pipeline State

t12

65
87
21
3

t13

t16 t17 t18

DI: First Decision State PV: Pass Vertical State
D2: Second Decision State PH: Pass Horizontal State

t14

65
87

1

11
7

t19

Figure 3.4 Pipelined Rebound Sorter Operation (Continued)

47

3) The pipeline control signals produced by the specialized

PLA FSM to assure correct operation during pipelining

are illustrated in Figure 3.5.a.

The PLA pipeline control signals are implemented in two

stages. First a pipeline FSM, as indicated in Figure 3.5.b produces a

control sequence. A pipeline pattern generator then translates this

sequence into the appropriate pipeline control pattern. For ease of

design and maintenance, this method is preferable to the

combination of two blocks in a single FSM. The pipelined state

machine controller may be expanded if it is desired to chain several

sorters together. The pipelined FSM state table and diagram are

shown in Table 3.2 and Figure 3.6, respectively.

3.5 System Expansion

Since the sorter chip is capable of maintaining only N keys

internally, large files must be sorted using multiple sort chips. To

provide this expansion capability, the rebound sorter of Chen et al.

[18] was modified to encompass multiple chips chained in series.

The design requirements resulting from this decision include the

following [1]:

1) Pipeline control signals have the capacity to pass across

multiple chained chips.

48

PEo

PEi

PE2

PE3

Reset

to t1 t2 t3 t4 t5 t6 t7

1 1 1 1 1 1 1 1

o 1 1 1 1 1 1 0

o 0 1 1 1 1 0 0

o 0 0 1 1 0 0 0

1: Pipeline control signal
0: Normal operation

a. Pipeline Control Signal Patterns

Top In Top Out

4 I

Pipeline

BotOut

FSM

DONE

BotOut

Pipeline
Pattern

Generator

b. Pipeline Control FSM Block Diagram

Pipeline
Patterns

N.-

Figure 3.5 Pipeline Control Block Diagram and Signal Patterns

49

Table 3.2 Pipeline Control FSM State Table

Present State

Next State, Output (BOTOUT, TOPOUT)

DONE = 0
TOPIN BOTIN

00 01 10 11

DONE = 1
TOPIN BOTIN

00 01 10 11

A A,00 A,00 B4O0 B4O0 A,00 A,00 B4O0 B4O0

B B4O0 D,00 B4O0 D,00 C,10 D,00 C,10 D,00

C C,00 D,00 C,00 D,00 C,00 D,00 C,00 D,00

D D,00 D,00 B4O0, B4O0 A,01 A,01 B4O0 B4O0

*Ouput Signals = BOTOUT TOPOUT

Figure 3.6 Pipeline Control FSM State Diagram

50

2) All chained chips are aware of their own position in the

chain, i.e., chips at the top of the chain perform I/O

operations in correct order and chips at the bottom of

the chain automatically connect their lower-left output to

their lower-right input.

A block diagram of the complete VLSI rebound sorter chip

with expansion capability is shown in Figure 3.7 [1]. The control

unit recognizes the expansion by triggering the control signals,

which are described as follows:

1) The reset signal initializes all chip controllers

simultaneously, including the pipeline control FSM.

2) The expansion control signal determines the source of the

data applied to the lower processing element (cell) of the

sorting chip. Data input originates either from another

chip or from its own lower-left output port.

3) The top/bottom pipe control expansion input/output

signals are used to enable pipelined pattern generation

for a chain of chips.

The input and output of the data bus is processed through an

expansion multiplexer as follows:

1) When the expansion control signal is low, the lower cell

input is routed directly from the lower-left chip cell.

2) When the expansion control signal is high, lower cell

input is routed from another chip.

51

3) When the sorting chip is the lowest of the chained chips,

the bottom input and output of the pipe control

expansion signals are connected directly.

4) When the sorting chip is the highest chained chip in a

series, the top input and output of the pipe control

expansion signals are connected directly.

Top Pipe
Expansion
Control In

(TOPIN)

r 117"

Top Pipe
Expansion
Control Out
(TOPOITT)

Pipeline

Controller

Reset

PEO

PE7

Input Output

Control

Unit

A

PEO
-

P.-
- -NB-

Processing
Element 0

(Cell 0)

PE7
Po-

- -IN-
Processing
Element 1

(Cell 1)

Processing
Element 7

(Cell 7)

Bottom Pipe
Expansion
Control Out
(BOTOUT)

Bottom Pipe
Expansion
Control In

(BOTIN)

4
Expansion

/Multiplxe Control

Expansion Expansion
Output Port Input Port

Figure 3.7 Rebound Sorter Block Diagram

52

3.6 Silicon Compilation

The Genesil silicon compiler is the computer-aided design

(CAD) tool for VLSI design used in implementing this architecture.

Silicon compilation allows a hierarchical design methodology to be

employed whereby large systems are decomposed into datapath

modules, general modules, blocks (e.g. RAM, ROM, PLA, I/O Pads,

etc.) and random logic. Both timing verification and sophisticated

logic simulation capabilities are provided by this CAD tool.

The rebound sorter shown in Figure 3.7 is composed of the

Genesil silicon compiler building blocks [23]. The basic sorter

processing element, steering unit and memory unit, was

implemented with a parallel datapath module, resulting in the

reduction of chip area and in increased performance in comparison

to other possible logical implementations. The memory units were

also included within the datapath module to reduce chip area, and

the sorter cell and the pipeline controllers were implemented with

PLA finite state machines.

The total die area, including the power ground, clock, and

input and output data pads consumes 5801 microns by 5283

microns (228 mils by 208 mils) in 2-micron CMOS technology. This

chip can be packaged in a 48-pin pin-grid array, although only 40

of the pins are utilized. Since the chip core area is 159.2 mils by

146.8 mils, the chip potentially could be expanded to include up to

32 processing elements within an area of 400 mils by 400 mils.

53

3.7 Functional Simulation and Timing

Simulation was performed on functional models constructed

from the compiler block specification tools. Successful design

verification required that both switch-level and functional models

pass the same set of test vectors. Using a synchronized two-phase

clocking system, the individual modules, PLAs, and blocks were

simulated, verifying their functionality and performances. When a

basic module or block was designed, functional verification was

used to debug each element in the design hierarchy prior to moving

to a higher design level. Top-down architectural definition and

decomposition into an appropriate microarchitecture, followed by

bottom-up implementation and verification, proved to be a

successful methodology.

Four test verification procedures were conducted for: (1) A

complete sorted input sequence (ascending order); (2) A complete

sorted sequence (descending order); (3) An unsorted random

sequence;, and (4) A sorted sequence consisting of the most

significant half-keys of keys with the same digits, e.g., 1123 and

1122. The test sequences were recorded in a set of test vector files.

All of the above sequences verified the operation of the rebound

VLSI sorter at the chip level.

Timing analysis provided a design consistency check (type

checking) against the block level timing attributes used in the logic

design process. Using a two phase, non-overlapping clocking

method, the timing references for all, logically associated clocked

devices were checked. All of the data and control signals for a

54

block instance were classified as either valid, stable, or propagate

with respect to the phase pair associated with the specific block.

This verification tool also automatically calculated worst-case signal

propagation delays through all timing paths, plus the input setup

and hold times. It also provided the maximum attainable system

clock rate. The rebound sorter design achieved a performance rate

of 17M bytes/sec. The critical path and major block delay times of

the rebound sorter chip are shown in Figure 3.8.

3.8 Floorplanning and Routing

Floorplanning consists of the placement of design objects on

the chip, the assignment of routing channels, and the

implementation of appropriate external connections. Floorplanning

was conducted in three steps: placement, fusion, and pinout.

Placement specified the initial location of objects, fusion defined the

wiring channels, and pinout specified the external inputs and

outputs.

Design objects for the rebound sorter consist of eight

processing elements, one controller, and one pipeline controller. To

reduce chip area and propagation delays and minimize wiring

complexity, the 10 modules were given an adjacent placement and

aligned with their respective signal ports. From this position they

may be turned, rotated, and/or flipped. A number of trial-and-

error attempts were repeated in order to obtain the final

placement. Upon completion of floorplanning, the core size without

pads was 159 mils by 146 mils.

Ll

Input Output

a. Critical Path

t=0

Input

Latchl(L1) -(

Latch2(L2)

Comparator

PLA Latch 1(L3)

PLA Latch2(L4)

Mux Select

Output

VA

SB

c

(VA)--

SA

SA

(SA)

SB

b. Major Delays

VB)

55

18.9 nsec

0
A

Delay

4.5 nsec

0.7 nsec
0B

Delay

10.9 nsec

Figure 3.8 Critical Path and Major Delays of the Rebound Sorter

56

3.9 Architectural Extension

The rebound sorter has an 8 keys, 16-bit per key sorting

capacity, as noted previously. In the architecturally expanded

version of the rebound sorter, the key length can be increased in

16-bit increments. This scheme is shown in Figure 3.9. The

performance of the expanded sorter increases because of the

additional parallelism provided. At the same time, the clock rate

decreases slightly with expansion due to the carry propagation

across multiple chips. The only special design requirement is the

addition of an external controller. In order to use variable key

lengths, a dynamic method of configuration may be considered. In

systems where a small number of large keys are required, the

sorter subsystems would operate in parallel; in systems where a

large number of small keys are to be sorted, the sorter subsystems

could be configured serially.

3.10 Conclusion

The proposed design is only one illustration of several

possible methods of implementation of the rebound sorter

architecture, as modified and extended. The feasibility of

implementing the proposed sorting engine using silicon compilation

technology has been demonstrated.

A simple and efficient processor element design for this sorter

has been achieved. The pipeline control unit consists of a pipeline

57

FSM and a pipeline pattern generator, a methodology which makes

for ease of maintenance and provides for future expansion. The

overall size is less than one-half the area of Bate's design [5],

achieving a speed which is three times as fast.

The proposed chip is capable of sorting eight 16-bit keys. It

can readily be expanded to handle larger files, through either the

use of smaller geometry technology or chaining, or in conjunction

with an appropriate external hardware merger structure. The

increase of the key length was discussed. The proposed design is

based upon 16-bit data, but the length of the key can be extended

to much larger sizes, dependent upon specific processor application

speeds.

Input Records: 112233, 445566
44 55

1 22

in Cou

66
33

Cul Cout Cin

a. Connection Diagram and Initial State at t=to

4 5

Cin Cout Cin Cout

b. State after t=t3

Figure 3.9 Architectural Extensions

58

0

0

0

0

0

0

0

59

4. EXTERNAL PARALLEL SORTING

External sorting is a process based on the repeated merging of

a number of sorted strings. External sorting is appropriate when the

files to be sorted are too large to fit in main memory. Mass storage

devices such as disks or magnetic tapes are used to hold the large

volumes of data involved in the process. The basic objective of the

merge sort, a form of external sorting, is the generation of a single

large sorted string from two or more sorted data strings. The

algorithms and techniques for merging two sorted strings are less

complicated than those for sorting single files since the merge input

are a sequence of sorted data. The parallel sorters analyzed in

Chapter 2 use N processors to sort N records, where as the external

sort-merge sort uses only logmN processors, where m is the order of

merge.

A number of performance evaluation studies of serial and

parallel external sorting have been conducted [11,12,21,22,24,25,47].

Performance modeling and analysis of either the serial or parallel

external merge sort is a complex process since access time, disk

scheduling, and the file distribution and organization of the mass

storage devices is often necessary. External sorting algorithm

analysis must also consider the architectural characteristics of the

mass storage devices used in order to obtain satisfactory results. A

simple I/O access model is analyzed in Chapter 5.

60

This chapter begins with an analysis of external sorting

techniques. In particular, the characteristics of the external parallel

merge sort are considered since high performance algorithms for the

internal merge sort have already been thoroughly analyzed for use

with parallel computers [6,22]. Several parallel merge sort

algorithms are discussed to implement and methods of memory

management are considered. Following this analysis, the VLSI

implementation of a 4-way merge sorter is considered

4.1 VLSI Merge Sort

Even [21] proposed two methods for parallel tape-sorting

based upon a serial, two-way, external merge sort algorithm. In the

first method, all processors must initiate the merge simultaneously,

sorting a group of files in parallel. In the best case, this method

performs (N/P)logN + 3N unit times using P < logN , where N is the

number records to be sorted and P is the number of processors. For

the second method, processors were added one at a time t o

implement a pipelined sorting algorithm. This resulted in the use of

logP processors and 4 x FlogP1 tape units for the sort of 3.21-10 gN1

write cycles, where N > P. These sorting methods were complicated

by the necessity of rewinding the tapes before they could be read.

Todd [47] formulated a pipelined merge sort technique based

on Even's algorithm [21]. More sophisticated hardware, including

bubble memory and faster RAM of less complex design, was used.

The algorithm allowed logN processors to sort N records in just over

61

2N write cycles. This pipelined merge sorter was implemented by

Kitsuregawa et al. [25] in 1983, sorting data streams at 3M bytes/sec.

In 1982, Bitton [9, 11] analyzed a variety of parallel sorting

algorithms and architectures. The best performance was achieved by

a parallel binary merge algorithm, which was a modified parallel

two-way merge sort based upon the Even algorithm. In 1985, Takagi

[45] applied Todd's pipelined merge sort algorithm to disks with

initial sorters. The idea was to provide IBM disk storage systems

with internal intelligent disk processor subsystems capable of

performing sorting directly. Takagi noted a number of limitations of

these subsystems, including problems associated with the

synchronization of data transmissions and avoidance of I/O latency

time.

4.2 Analysis of the External Sortings

The merge sort, a form of external sorting, is suitable for

hardware implementation. This approach may readily be pipelined

and can achieve a throughput rate is O[N]. The processing overhead

for this system is only that associated with pipeline latency.

Separate input and output ports are assumed. The most difficult

factor in implementing the merge sort is buffer management.

Buffering is required since it is used for storing sorted data between

each of the merge steps. In order to produce an economical

hardware system, it is important to synthesize an efficient scheme of

merge buffer management. Techniques for efficient buffer

management methods are discussed in Section 4.3. For purposes of

62

analysis, it is assumed that the total number of records to be sorted

is always a power of m , for an m -way merge. If the number of

records is less than a power of m , dummy records are added to

satisfy this requirement. Two merge sort algorithms are analyzed:

Bitton's [9] parallel binary merge sort and Todd's [47] pipelined

merge sort.

4.2.1 Parallel Binary Merge Sort

The algorithm proposed by Bitton for implementation on disk

requires a binary tree connection between processors, as shown in

Figure 4.1 [9,11]. The disk storage system was modified by

simplification of a moving head disk. In 1988, Beck [6] applied this

algorithm to a backend multiprocessor built around a fast packet bus,

resulting in a system which was judged to be more cost-effective.

The binary merge sort utilizes a binary tree of merge

processors with a sequence of N length and P leaf processors, where

is N and P are a power of 2. The binary tree has a total of 2P 1

processors and 1 +logP levels. The algorithm has three stages:

suboptimal, optimal and post-optimal. Each processor has only two

record buffers and the input sequence of length N is initially

assigned to P leaf processors with subsequences of N I2P length.

When the leaf processors generate an initial record, it is transferred

to the parent processor, whereupon the parent processor merges the

record and transfers it to its own parent processor. Processors for ith

levels function in 2` merge operations. The sequence is shown Figure

4.2 (Algorithm 4.1).

63

The following assumptions were observed for the performance

analysis of a synchronous and pipelined parallel design: (1) All

processors at the same level of the tree execute their tasks

concurrently; (2) all processors, with the exception of the root

processor, send each record directly to their parent processors,

rather than writing a record to a mass storage device; and (3) all

processors at the same level of the tree start and stop merge

operations simultaneously. The operational sequence is as follows:

1) An N record input sequence is distributed to P leaf

processors, each processor holding N/2P records. This step

takes N time units.

2) Each processor of P leaf processors performs log(N/ 2P)

phases of the serial merge operations for N IP records

during the suboptimal stage. The merging time for each

processor is NIP.

3) At the ith level, every processor merges two sorted runs of

the size 2` records into single sorted runs of the size 2i+ 1

records.

The total time for one synchronous merge stage of size 2i-1 i s

2 i+ 1 -2 time units and N /(2iP) merge pairs are required for

synchronous processing. For example, processors at the second level

merge N/(2P) pairs of two-record size into a single four-block run

with N /(4P) pairs and six time units. Thus, the entire process takes

1 g (7,)N
N i+i

P 2
2N N 2NL (2 -2) = log 77+4 .

i=i (21P)

64

Mass Storage Devices

1

Postoptimal
Stage

Optimal
Stage

1

16
Suboptimal

Stage

16125
103

14 15

Figure 4.1 Binary Merge Sort

65

begin

Divide N records into N I2P blocks.

for i = 1 to log N I2P do in parallel

for all processors at level i do in parallel

merge two sorted runs of size 2i-1

into a single sorted run of size 2i

end for

end for

end

Figure 4.2 Binary Merge Sort Algorithm (Algorithm 4.1)

The total time is

N 2N
t(N) = N +

2N77 log

2N2N
= log + N -

2N

N
= 0(N) +

N
T, logi),

and the number of processor is

p(N) = 2P 1 .

When the input sequence distribution buffers are ignored in the first

step, the number of buffers is

b(N) = 2(2P-1) .

66

Thus, the binary merge sort is

c(N) = (2P 1) (0(N) + 0(1/4 log 1:!p-))

= 0(NP) + 0(NlogN) .

When the binary merge sort has P = logN processors, total

complexity is optimal. The maximum delay time requires the same

as the number of tree levels after the initiation of the merge step.

4.2.2 Pipelined Merge Sort

The algorithm proposed by Todd [47] for implementation in

bubble memory or fast RAM was based on of Even's second

algorithm [21] for improved sorting performance. In contrast to the

connected binary tree structure of the parallel binary merge sort

algorithm considered in the previous section, this algorithm is a

cascaded connection of merge processors. In 1985, Takagi [45]

applied this algorithm to a hardware sort-merge system intending to

add sorting capability to a disk subsystem. First the two-way merge

is analyzed and an m -way merge operation is then discussed. A

block-merge sort algorithm is also discussed.

4.2.2.1 Pipelined Multi-Way Merger

Assume that each processor within a structure of Flo gN1 + 1

processors can conduct two-way merge operations. A serial two-way

merge operation is carried out in FlogN 1 + 1 steps, and a sorted

sequences of records created at each step as follows:

67

1) Upon completion of the first step, N records are split into

two groups, each consisting of N/2 records.

2) Individual records are merged into streams of paired

records.

3) The pairwise records are merged into four-record streams.

4) Following the ith steps, the length of the data stream is

2i-1.

5) Following rlogN + 1i steps, all N records are merged in a

single sorted stream.

The structure of the merge sorter is shown in Figure 4.3, an

example of the pipelined merge sort operation is illustrated in Figure

4.4, and the algorithm is presented in Figure 4.5.

For this algorithm, input and output time are absorbed into the

merge operations. To sort N= 2k, k+1 processors (P are1,...,P k) are

required. The output from the processor P is 2` records with 2"

sorted sequences. Processors P . and P are connected by two

buffers, B2i+i and B21+2. Processor P i+1 initiates merging operations

as soon as there is an input sequence of the length 2` on one of its

two input lines, and a sequence of length one on the other, i.e., 2i+ 1

cycles after P . If the processor Po is initiated in cycle 1, then P

initiates merge processing of its first input

i- 1

1 + (241) = 2` + i
j=0

cycles later.

Input

20 21 22 23

AL nilap0
11 um II

2N-1

Figure 4.3 Pipe lined Merge Sort Structure

68

Input

Po

P2

P3

a. Pipe lined Merge Sort Example

tO tl t2 t3 t4

6

4

t5 t6 t7 t8 t9

El 11

lit 10 El

5

t10 t12 t13 t14 t15 t16 t17 t18

EEW6111i1WE

Delay

b. Pipeline Timing

3 4 5 E El

Figure 4.4 Pipelined Merge Sort Operation

110-
Output

69

begin

for i = 1 to N

split records into 2 alternate groups

end for

for i = 2 to log N in parallel

while k<N do

if the 1st buffer in P
i- 1

contains 2i-2 records and

the 2nd buffer contains 1 record

then for j = 1 to 2i-I do

compare two records in the buffer and

move the smaller one to a Buffer.of P.

else

end for

move the record to the first buffer of P.

end if

end while

If the 1st buffer in PlogN contains 21°gN-1 records

and the 2nd buffer contains 1 record

then for j = 1 to 21°gN

logN+ 1
, the processor compares the two

records and outputs the smaller record

end for

end if

end for
end

Figure 4.5 Pipelined Merge Sort Algorithm (Algorithm.4.2)

70

The processor P merges for N cycles and completes merging

following N + 2` + i 1. The sorting procedure completes the

operations at processor Pk in the cycle

N +2k +k-1=2N + logN 1 .

Hence the merge sort algorithm is

p(N) = 0(log N) ,

t(N) = 0(N) + 0(logN) ,

c(N) = 0(NlogN) ,

and

b(N) =
logN

(2 +1) = 0(N) .

i =1

The output buffer length of the ith processor can be calculated.

The processor P begins to merge as soon as there is an input

sequence of length 2' on one of its two input lines and a sequence of

length one on the other. Thus, Pi+ initiates merging operation after

the processor P has written 2i+1 records into the buffers.

Thereafter, when a record is written by processor P it is read by the

processor Pi+ since P completes each write cycle only when the

processor P reads the record. Therefore, the maximum buffer

length of the processor P is 2` + 1 and the total number of buffers is

2k 1, where k= logN

This two-way merge operation can be extended to an m-w ay

merge operation. For an m -way merge sort, k+1= Flog mNi + 1

processors are required to sort N records in 2N + k 1 cycles. Thus,

the time complexity of an m -way merge sort is 2N + logmN 1, where

2N represents the input and output time of the data stream and

logmN 1 represents the flush time for the pipeline. The processor

71

speed for m -way mergers should be faster than that for two-way

mergers since each processor cycle of an m -way merger includes

0(log2m) comparisons. When each processor is able to perform m-

way merge operations, the ith processor, Pi, which has a buffer for

the storage of (m-1)m i-1 records outputs m data streams. Thus, the
i l.total number of buffers is (k-1)m + FN/mk-To sort N records, the

m-way merge sorter has 0(N) time complexity and 0(N) buffer space

for FlogmN1+ 1 processors.

4.2.2.2 Block-Merge Sort

To sort N records with single record input to Po in a single step,

the first few processors merge only very short record streams. If the

input to the first processor, P0, is a presorted record sequence, S, it is

possible to economize on the number of processors and the amount

of buffers and sorting time. The input to processor Po then consists

of S record sequences. The processor Pi produces S x mi." records

and only Flogin(N/S)1 processors are required for sorting N records.

The number of processors and buffers required for a m -way merge

sort and four-way merge sort using presorted sequences are

illustrated in Figure 4.6 and Figure 4.7 respectively.

When presorting methods are used, sorting time is 2N +

Flog.(N/S)1-S cycles, plus S read cycles prior to the first write cycle.

The required number of buffers for the processor P1 is (m-1)S x mi.

Depending upon the particular hardware implementation, the

record block-merges improve sorting performance. Blocking causes a
delay in record transfer from processor Pi to process Pi±i and slows

30

20

10

0

150

100

50

2 4 8
Order of Merge

a. Comparison of Processor Numbers

16

28 Records
216 Records

o---c 224 Records

32

2 4 8

Order of Merge

16

b. Comparison of Buffer Numbers

Figure 4.6 Comparisons of m -Way Mergers

32

72

15

10

5

0

60

50

40

30

20

10

0

0 8 32 64

Number of Records per Sorted Sequence

a. Comparison of Processor Numbers

256

0 8 32 64

Number of Records per Sorted Sequence

b. Comparison of Buffer Numbers

Figure 4.7 Comparisons of Four-Way Merger

256

73

74

down the sort. However, by using presorted records, the blocking

method improves merge performance when it is combined with such

peripheral devices as disks or tape. Sorting time is then 2N + S

[logm(N IS)] 1. If S records are input in a block size B, the processor

P. buffer size is B(m-l)mi + B.

4.3 Buffer Management

4.3.1 General Implementation

To store and retrieve sorted data from the buffer of each

processor, using the pipelined merge sort algorithm discussed in the

previous section, a buffer or queue management scheme is required.

The size of buffer is dependent upon the efficiency of the design

scheme. Three memory management algorithms [25] are considered:

(1) the double memory method, (2) the pointer method, and (3) the

block division method. The double memory method is quite simple,

but is limited to memory efficiency of 50 percent. The pointer

method achieves relatively higher efficiency, but its limitation lies in

the requirement for more sophisticated processor design. The block

division method reflects a midpoint of design complexity and

processor efficiency. Its memory space is divided into fixed-size

blocks, each of which can store several records. The size of a block

can be determined as a multiple of the record length.

For an m -way merge, the double memory method requires

2 x (m -1) data sequence buffers [25]. In turn, the block division

75

method requires (m-1) x B + m buffers, B is the size of each block,

and the pointer method requires m buffers. The pointer method is

the best method to reduce chip area size for VLSI implementation.

However, it requires complex controls to maintain the sorted

sequences. The double memory and block division methods are

difficult to implement for m -way merge sorts in VLSI. The problem

with this technique is that dynamic allocation of buffers is required

to execute merging operations. The buffer management controller

must determine when each buffer is empty and allocate available

buffers to allow for the input of new data streams. When all of the

processors are operated at identical speeds, or if they are operated

synchronously, even more buffer space is required. When the

dynamic allocation method is not implemented, buffer space

requirements consist of 2 x m data sequence buffers.

4.3.2 Rebound Sorter and Buffer

The merger used for the finite-length strings from the rebound

sorter must be compatible with the sorter operations. Some of the

more important design considerations in connecting the merge unit

and the sorter are as follows:

1) The output data for the rebound sorter consists of half-

records, which are merged into whole records prior to the

initiation of merge sort operation.

2) Storage of the input merge data from the sorter in the

merger's memory buffers requires 2N cycles, while N

cycles are required to merge data from the buffers. Buffer

76

management and merge operations are asynchronous

operations.

3) The output sequence of the rebound sorter consists of S

presorted data strings. Each buffer should have the

capacity to hold an entire presorted sequence.

The merge sort buffer for the output sequence of the rebound

sorter can be implemented using the double block buffer method

shown in Figure 4.8. There are 2m buffers of m i size, increased by

0(N) complexity. Using double block technique, the merge process is

independent of processor speed, is simple to implement, and requires

only a small controller area. In operation, data is initially loaded in

the first half of the buffer and merge operations may begin as soon

as it is filled. While merging takes place, the remaining half of the

buffer is loaded with another data stream.

4.4 VLSI Implementation Considerations

To reduce the length of the merge stage, a four-way merge

structure was designed for sorting large files. In the four-way

merger, the number of merge stages can be reduced by a factor of

two and still maintain the performance associated with the two-way

merger. Therefore, the four-way merge sort is preferable to the

two-way merge sort since the number of merge stages and the

number of buffers can be reduced. The four-way merger consists of

three two-way comparator and multiplexers shown in Figure 4.9.a

Data 0

77

Data 0

Bank #0

Bank #1

1. Bank #0 is
filled with
data

Data 0'

Bank #0

Data 1

Merging

Bank #1 Bank #1

2. Bank #0 starts
merging while
Bank #1 is filled
with new data.

3. Bank #1 starts
merging while
Bank #0 is filled
with new data.

Figure 4.8 Double Block Buffer Method

In this section, two methods of comparator design are

considered. In general terms, an m -way comparator is required,

based upon logm stages and m -1 two-way comparators. A four-way

comparator can be designed in two stages or as three two-way

comparators. To connect the first and second stages, either the direct

connection method or the indirect connection method consisting of an

intermediate buffer connection may be used. These implementation

schemes are shown in Figure 4.9. The direct four-way comparator

yields a smaller chip area than the indirect four-way comparator, but

is twice as slow. The critical timing paths for these two connections

are shown in Figure 4.10. Processing speeds achieved with the direct

connection method are only one-half that of the

Therefore, there is no performance advantage

method.

In the indirect method, total delay time is

delay time of either the first stage or the

separated by intermediate buffers. Thus, the

four-way comparator is equivalent to the first

combination with the delay time required to

78

two-way merge sort.

to adaption of this

dependent upon the

second stage and is

delay time for the

stage delay time in

write data into the

buffer, or to the data access delay time in combination with second

stage delay time. A comparison of two methods is indicated in Table

4.1. The four-way merger with the indirect four-way comparator

method is similar to the two-way merge, with the additional feature

that it economizes on the number of buffers, controllers, and merging

processing delays required to process the data stream..

The loading and access times of the intermediate buffer are

small and the buffer requires only a small chip area (57 mils by 44

mils). This area increases as the number of merge stages are

increased. That is, the buffer size of the ith merge stage is 2m i+S.

Merge processing time and area requirements reflect a trade-off

effect. By using an intermediate buffer, the merge processing delay

time requires only one clock cycle. As soon as the data streams for

two merge sequences are stored in the buffer, the second comparator

stage initiates operations with an overall delay of one cycle. Other

advantages in the use of the indirect comparison method is that it is

simple to control and requires only limited chip area for the

controller and data paths. In the Genesil silicon compiler, RAM area

size for buffers is proportional to the capacity of the memory.

Data 0

Data 1

Data 2

Data 3

2-Way
Compa-
rator

2-Way
Compa-
rator

Data 0

Data 1

Data 2

Data 3

2-Way
Compa-
rator

2-Way
Compa-
rator

-41.-
2-Way
Compa-
rator

-0.-

L.....
Output

4,...MUX__

r7

a. Direct Four-Way Comparator

1.tmll

14.1I Iii

2-Way
Compa-
rator

b. Indirect Four-Way Comparator

79

Output
._ MUN,,,-

Tv

Figure 4.9 Four-Way Comparator Structures

Logic
Circuits

11
Compa-
rator #1

Buffer

a. Critical Path of Direct Four-Way Comparator

Compa-
rator #3

Buffer --IN-
L3 PLA L4 --1111 Counter #1

b. Critical Path of Indirect Four-Way Comparator

0A

oB

Buffer

Comparator #1

Logic + Mux

t = 0 2--

SB

)

Comparator #2 -(SB

SB

PLA Latchl(L1)

Counter #1

SB

SA

)

CIA)

SA

Buffer -(VA)

Comparator #3

)

SB

PLA Latchl(L3) SB

Counter #2

)

SA)

c. Delay Time Comparison

32.2 nsec

14.7 nsec

31.8 nsec

4.5 nsec

Direct Four-Way Comparator

80

Indirect Four-Way Comparator

32.2 nsec

4.2 nsec

Figure 4.10 Timing Comparison of Four-Way Comparators

Table 4.1 Comparison of Four-Way Comparators

Unit : mils

3 Comparators Input Buffers Intermediate
+ 3 Mutiplexers (8 x 16-bit) Output Buffer Buffer Controller Total Area Speed
+ 2 Data Buses (32 x 16-bit) (16 x16-bit)

Direct 8 x
Four-Way 51.54 x 130.78 54.43 x 46.24 92.44 x 45.74 None 54.18 x30.07 32732.44 5.6MHz
Comparator = 6740.32 = 2516.84 = 4228.21 = 1629.19 = 181 x 181

Indirect 8 x 2 x
Four-Way 51.54 x 130.78 54.43 x 46.24 92.44 x 45.74 57.48 x 44.20 54.18 x30.07 35273.06 10.9MHz

Comparator = 6740.32 = 2516.84 = 4228.21 = 2540.62 = 1629.19 = 188 x 188

82

4.5 Four-Way VLSI Merger

The four-way merger includes intermediate buffers to improve

performance. After buffer halves are filled with presorted data

streams, the merger is initiated. After the initial loading delay, the

merger input and output operations

merging operation and pipelined.

4.5.1 Buffers and Controller

are overlapped completely with

Buffers for the four-way VLSI merger can be implemented

using several techniques, including FIFO, RAM , and the use of shift

registers. The use of RAM provides very fast access in the smallest

possible chip area. For the actual merger buffers, RAM memory was

selected and the buffers are shown in the block diagram in Figure

4.11. The buffers were designed to perform as follows:

1) The buffers act like FIFO queues, storing data while merge

operations are performed. Dual port RAM was used for

simultaneous read and write capability.

2) Half-records are merged into complete records in the

buffer as follows: The merge input data from the

presorter consists of a sequence of half records, the most

significant and the least significant, of which are combined

to construct a complete record.

3) The buffers achieve fast access time in comparison to the

merge processor since data read and write access times

can be absorbed into the data transfer time.

83

The RAM can be used as a FIFO queue through the use of two

counters which act as memory pointers, one for input and the other

for output. To reduce routing, netlisting, and the chip area required

for buffer control, the counters are imbedded in a PLA in conjunction

with a controller. For an eight word buffer containing 16 bits per

word, a 4-bit buffer input counter and a 3-bit buffer output counter

are required. Sixteen 8-bit sorted data input streams must be stored

in the eight word buffer. The first 3 bits of the 4-bit input counter

are used to address the last bit of the four-bit input counter in order

to merge two 8-bit data streams in one 16-bit complete record. The

Genesil RAM allows "slice" read and write data operations, which

provide the designer with access to the desired locations for slicing

RAM inputs and outputs into fractional words rather than full word

widths. This technique removes extra logic from this application and

RAM access time is less than 15 nsec.

For the first stage of the merger, asynchronous control methods

are used. The number of cycles for the input port is twice that for

the output port. The controller controls data routing and control

signals (Figure 4.11), thereby generating reads and writes to and

from the RAM buffers. The control signal sequence for the RAM

buffers is as follows:

1) The switch bank signal selects one of two buffer banks.

While one buffer bank is read by a merge processor, the

other buffer bank is stored with data from the presorter

without sending data to the merge processor.

Reset/ Start Meger

Select
Buffer

Input
Address 1.3.9iffer 0

Controller
moo-
Buffer 7Switch Bank

8-bit Input

Bank 0

Buffer 0

Buffer 1

Buffer 2

Buffer 3

Bank 1

Buffer 4

Buffer 5

Buffer 6

Buffer 7

16-bit

Increment
MergerMerger Counter

Controller

Four-Way
Comparator

Output
Address

Controller

Output

Figure 4.11 Four-Way Merger Block Diagram

84

Buffer 0

Buffer 7

2) The select signal generates RAM write enable signals for

the buffers of two banks. Only one signal must be enabled

in order to store a data sequence in a given RAM buffer.

85

3) The start merger signal enables the initialization of merge

processing operations, causing the system to send output

data to intermediate buffers in the next stage.

4) The increment counter signal causes the buffer output

counters to be incremented. Only one counter is

incremented at a time when buffer data is selected to be

moved.

4.5.2 Simulation and Timing

For purpose of simulation, it was assumed that the first stage of

a merger was connected to the output of a rebound sorter. The

simulation input data were 16 half-records, which were merged into

8 complete records in the buffers. Variable test sequences were

applied and the functionality of the system was verified. The total

response delay time of the merger in simulation was 65 clock cycles.

The merger can achieve speeds up to 10.8 MHz, assuming

symmetric clock cycle. To increase merge processing speed, the

indirect method was implemented. The use of RAM slices for this

implementation saved time when merging half-records into complete

records. The critical timing path of the four-way merger is shown in

Figure 4.10.c. The comparator caused the longest delay path and

when more efficient comparators are designed by the customer

design, the total delay time may be reduced by a factor of four in

comparison to the delay times achieved with the present merger.

86

4.6 Conclusion

Merge algorithms and their associated time complexities were

analyzed in this chapter. The intent of the analysis was to develop

an optimal design for an efficient VLSI merge algorithm. The

parallel binary merge and the pipeline merge sort algorithms had

time complexities on the order of 0(logN). The performance and

parallelism of the parallel binary merge were superior to those of the

pipelined merge sort [9]. The buffer size requirements of the former

were modest in comparison to those of the latter. The number of

processors required for an efficient parallel binary merge sort (0(N))

is much greater than for the pipelined merge sort (logN). However,

the processors for the parallel binary merge sort could not be

operated synchronously, implying that a child processor could be

blocked when its parent processor is not ready to receive new

records. In general, it is necessary to consider the bandwidth of the

processors, along with the limits of tree levels. Performance of the

pipelined merge processor could be improved by the implementation

of a block-merge sort algorithm, which would increase the input

length of the presorted input sequences. When presorted sequences

of the length S are used, the block-merge algorithm requires log(N/S)

processors.

Buffer management methods for the merge sort were discussed

with the objective of reducing RAM sizes and optimizing the design

process. The double block buffer method was implemented for the

VLSI merger, resulting in a buffer memory size increase of 0(N)

complexity. The buffer management scheme adopted requires

87

connection of the merge sorter in a chain to improve the sorting

performance for very large files.

In order to implement a four-way comparator with three two-

way comparators, both direct and indirect methods were examined.

The direct four-way comparator area requirements were modest in

comparison to those of the indirect four-way .comparator, but at the

same time the former achieved only one-half the speed of the latter.

Consequently, there was no advantage to the use of a four-way

merger based upon a direct four-way comparator in place of the

two-way merger. The four-way comparator is faster, but presents

the disadvantage of a slight increase in chip area. However, the total

area requirement of the four-way merger based upon the indirect

four-way comparator is less than that of the two-way merger chip

area, and better performance is achieved without the loss of speed.

Utilizing the indirect method, a four-way merger was

implemented in VLSI. Its maximum speed was 10.8 MHz. The chip

area, including power, ground, clock, and input and output pads, was

9013 microns by 9009 microns (354 mils by 354 mils). The basic

merge structure was based on block-merge microarchitecture with

presorted inputs. This format can be used in several applications,

including a cascaded connection of tree structures with external RAM

or mass storage devices. This application will be considered in

Chapter 5.

88

5. VLSI SORT-MERGE SYSTEM

In the preceding chapters, several VLSI sorters and mergers

were compared. The architecture and design of both a high

performance rebound sorter and a four-way merger were proposed.

In order to achieve adequate sorting capacity for very large files as

well as maximum performance, it was determined that the sorter

and the merger should be combined in a single sort-merge system.

It was also established that the use of presorted sequences allows

the use of fewer merger stages.

In this chapter the development of a VLSI pipelined parallel

sort-merge system is presented. The system consists of two

pipelined rebound sorters connected to a unique, pipelined four-way

merger. The proposed system uses two rebound sorters for the

generation of sorted strings of a fixed length, and a four-way merger

for the combination of individually sorted strings into a single,

continuous string of sorted records. The rebound sorter input data

pass'es continuously through the input ports. This process generates

sorted strings which are stored in a 8 x 16-bit dual-port RAM buffer.

When the first buffer is filled, a pipelined merge is initiated while

the sorter simultaneously fills the second buffer. Sorting and

merging are synchronized and operate concurrently. The two RAM

buffer banks can alternate merge and storage functions. Overall

performance for the proposed sort-merge system is excellent since

89

input and output operations are completely overlapped with sorting

operations. In general, this system consists of a series of pipelined

mergers with appropriately sized buffers. The system may be used

to extend the basic sorter or merger discussed previously, or it may

be connected in the tree-structured sort-merge system proposed by

Bitton [9].

In addition, the system may be attached directly to a disk

controller or to an I/O bus between main memory and disk storage.

It may also be attached to a general purpose computer CPU as a sort-

merge coprocessor. These applications are illustrated in Figure 5.1.

When a disk controller is combined with several high capacity disk

systems with fast access times, the sort-merge system can be

imbedded in the disk controller to provide internal sorting capability,

or it may be shared by a network file system. High speed low-level

sorting and searching units may be used for the execution of selected

database functions, e.g., join, member, select, and sort [10,19,32,34].

5.1 Sort-Merge System Architecture

The basic performance of the sort-merge system is extended

by a factor of two with the sort-merge configuration shown in Figure

5.2. This system includes a first stage presort in which multiple

rebound sorters are used for the initial sorting of input sequences.

Merge operations are conducted in the following stage.

90

Memory

Sort-Merge
System

a. Attached Sort-Merge System

CPU Data/Control Bus

Sort-Merge
System

b. Independent Sort-Merge System

I/O
Devices

Disk 1
Disk

Memory CPU I/O
Controller

Disk n

\ 7
Sort-Merge

System

c. Disk-Based Sort-Merge System

Figure 5.1 Sort-Merge System Applications

PE
Controllers,

_
Start

Controller

Reset -1w-
Main I

i

End Controller
I

Batik 1
of-... .

Data
I

Start Sort

Output

=BUNION. 1011

401 Four-Way Merger

Buffers

Pipeline
Controller

Bank 0

Merger I

Buffers

Bank 0 Bank 1

OMEN.=

Processing
Elements

[Rebound Sorter

Processing
Elements

1 Rebound Sorter]

Pipeline
Controller

PE
Controllers

91

Input 0 Input 1

Figure 5.2 Sort-Merge System Block Diagram

When the presorted outputs are sorted sequences of length S,

the merger performs an In -way merge operation which generates

sorted sequences of the length in x S. The ith merge produces a data

stream of the length mi xS, and the final merge processor

(logm(N/S)th) produces sorted sequences of length mk x S, where k =

92

logm(N/S). Buffer implementation methods were described in detail

in section 4.3. The buffers can be implemented directly in VLSI or

on a printed circuit board (PCB) using commercially available RAM,

depending on the number of records to be sorted and the nature of

the application.

In an alternative application, a sort-merge system consisting of

multiple rebound sorters, mergers, and RAM may be designed for

incorporation on a printed circuit board (PCB). Such a system

provides additional flexibility to the system designer. Current VLSI

technology is sufficient to support either approach.

5.2 Sort-Merge Algorithm

The basic parallel merge sort algorithm was discussed in

Chapter 4. If the presorter is implemented with a rebound sorter,

each record is divided into two half-records. To compensate for this

disadvantage, two rebound sorters are utilized. Each sorter

generates S records every 2S time units. These sorters are required

to implement the algorithm presented in section 4.2.1. Four buffers

are connected to the first stage processors, Po and P1, of the four-way

merger. The merger contains two processors, Po and P1, in the first

stage and one processor, P2, in the last. The sorter stores sorted

sequences of length S in two buffers of length 2S in 4S time units.

Initially, the merger's first stage processors are idle for 2S time

units. After 4S time units, the processor Po starts merge operations.

In the last stage, P initiates merge operations as soon as the

processors P and P1 output data to the intermediate buffer. The

93

total time for P
2

processing is 4S , with a total delay time through the

merger of 4S+1. The delay in the operation of processors Po and P1 is

compensated by the four-way merge operation. Given that the sort-

merge system is designed as a pipelined merge sorter, and that the

system accepts sorted strings of length S , the following complexity

measures can be derived:

and

t(N) = 2S + S Flog4 S + 2N

N
= 0(S log TO + 0(N),

N
p(N) = 3 logo 7, + 2S

N
= 0(log T.) + 0(S),

N
c(N) = (0(N) + 0(S log

N
)) (0(log 7) + 0(S))S

= 0(NS) + 0(S2 log
N Nlog s) + 0(Nlog) + 0(S (log s)2),
S

N .

b(N) = 2Sm 1 m1
1 =1

= 2S m m 1
mlogm(N/S)_ 1

= 0(N)

When S is selected properly, c(N) can be optimal. When S = N, c(N) is

maximum complexity of 0(N)2.

94

5.3 System Implementation

Two rebound sorters and a four-way merger were combined in

a single sort-merge system on a single chip, the block diagram of

which is shown in Figure 5.2. The system is simple in design, but is

capable of sorting 106 records in 0.2 second when connected to 15

merge stages. To reduce the number of merge stages, the initial

sorter capacity can be increased. For example, if the sorter can

simultaneously process 64 data sequences, only 10 merge stages are

required for sorting 106 records. This implementation is similar to

the sorter and merger designs presented in the previous chapters.

An example of the VLSI sort-merge system operation is shown in

Figure 5.3.

5.3.1 Controller and System Integration

To control the sort and merge stages, an overall system

controller is required. This controller generates the proper control

signals for each sort and merge stage. A hierarchical control strategy

was employed. The system controller's primary function is to pass

appropriate control signals to controllers at lower levels in the

controller hierarchy. The controller was implemented as a PLA finite

state machine.

The overall system controller generates the signals shown in

Figure 5.2. The signals perform the following functions:

"1111/

...1.

1=11111a

..

..II1.

a a a

a

R

Buffers

17 15 13 11
18 16 14 12

./MIIINI.

m
on

a. Before Merging

Sorter Output 1

00000000
00000000
EEllillililEEE
PEIEEIEEIR El

17
18

m
on

21

25

111111

mi
on

=11.

Buffers

15

16

.II

21
25

IMMIM=0,

m
Pm

b. After 4 cycles of Merging

19

mi

1001

m
m

19

23

m
m

/ 14

Figure 5.3 Sort-Merge System Operation

re] In

95

m

96

Sorter Output 0

00000000
00000000
000@BBOB
EOREIBEH

Sorter Output 1

00000000
00000000
0E0000BEI
OBBOUBRB

m
42

Buffers

m
GI
m

ui
ni

IIII1=

1,

IIINIMMII

IIIMMIP I,
.1111 AMMII

al
ei

m
m m

c. After 16 cycles of Merging

Sorter Output 0

00000000
00000000
EMEIEIEM
EIEIEIEMEHIO

Sorter Output 1

00000000
00000000

11 1MM
111 11 N

F
A

Buffersri
0

m
m

40

.111111.

.111

=1I1,

110.

.111. 11111.

111111,

.11MINIIM

IIIIP IMPE.

d. After 32 cycles of Merging

II III rn

Note:
Ei New Data Set 0

0 New Data Set 1

ElNew Data Set 2

New Data Set 3

42

/
II 28

Figure 5.3 Sort-Merge System Operation (continued)

97

1) The start sort signal initiates sorting operations.

2) The start merge signal initiates the first stage of four-way

merge operations.

3) The end of data signal is used to halt sorting and merging

operations.

To integrate the sort-merge operations of the individual

modules, system input and output data flow must be considered.

Two input sequences are simultaneously applied to each of the

rebound sorters, while unsorted records are distributed in a balanced

method by an external preprocessor. It is assumed that N = 2 x Si,

where S is the length of the input sequence and N represents the

number of records to be sorted. When N is an arbitrary integer,

dummy records with maximum values are added to the input file

and the presort and merge stages are synchronized.

The sort-merge system, consisting of two sorters, a merger, a

controller, and input and output pads was built on a single chip. The

chip is area is 10400 microns by 10800 microns (416 mils by 432

mils). It was assumed that the system output is stored in a separate,

external RAM.

5.3.2 Simulation and Timing

A variety of input sequences were simulated to verify the

functionality of the sort-merge system. Two sets of 16-bit data

sequences were prepared. Each record was divided into two half-

records for input to the two sorters. After applying eight records to

the input of each sorter, a second sequence of eight records was also

98

loaded into the sorter, i.e., N/2 records were loaded into a sorter,

where N/2 is a multiple of eight records. Dummy records of

maximum value were added to complete the eight-record sequence,

when required.

Timing verification was performed to establish the total

input/output delay time and the maximum symmetric clock

frequency for the system. The critical timing path is shown in Figure

5.4. The sort-merge system operated at a maximum throughput rate

of 10.8 MHz. Overall system performance was less than that of the

high performance (17MHz) rebound sorters clue to the additional

logic delays associated with the sort-merge system, plus parasitic

delays incurred due to additional wiring. The longest delay path

occurred in the 16-bit comparator's carry chain. If the comparator is

optimized using custom VLSI implementation techniques, it may be

possible to increase the system performance while reducing the

overall chip area.

5.3.3 Floorplanning and Routing

Floorplanning is defined as the process of moving building

blocks around on a chip in order to minimize area and delay time.

Efficient floorplanning was achieved in this case via manual

methods. This process was difficult given the varying shapes of the

system building blocks. Automatic techniques for performing these

floorplanning functions in an optimal way are not yet available. The

final floorplan is shown in Figure 5.5. The input ports are located on

east and west sides of the chip and the output port is located on the

I----- 0B

To Sorter
,.pqmparator

Input

to

OB

Input --(VA

Interface (
Sorter

Comparator

1

0A

Input
Buffet

11111.-Controllerl--

Merger
Comparator

a. Critical Path

2

PLA Latch

Input
Buffer

Merger
Comparator
Controller

+ Mux
Output
Buffer

SB

SB

)

)

SA

SA)
SA)

VA)

b. Major Delays

99

114 Output
Buffer

5.6 nsec

18.8 nsec

4.5 nsec

6.7 nsec

20.1 nsec

15.8 nsec

7.1 nsec

Next
Merge
Stage

0
B

Delay

0A Delay

Figure 5.4 Critical Path and Major Delays of the Sort-Merge System

100

0

Output Data Pads

Merger 0

Input
Buffer 0

Merger 2 Merger 1

Input
Buffer 1

Output
Buffer

Rebound
Sorter 0

Input 0 Data Pads

Rebound
Sorter 1

rInput 1 Data Padsi

Figure 5.5 Sort-Merge System Chip Floorplan

south side. The main controller is located in the center of the chip to

reduce the length of the routing lines used for control signals.

5.4 Additional Modular Sort-Merge Systems

In the previous section, a sort-merge system built on a single

chip was described. System architectures incorporating individual

sort and merge chips composed of the subsystems described in

previous chapters may also be implemented, if desired. Among

these are the iterative sort-merge system, the tree sort-merge

system, and the disk-based sort-merge system.

101

5.4.1 Iterative Sort-Merge System

The structure of an iterative merge system which uses

individual rebound sorter chips, merger chips, or sort-merge chips is

similar to the pipelined merge sorter proposed by Todd [47] . The

first stage of the iterative merge system may consist of a rebound

sorter or a sort-merge chip. Sorted data streams from the first stage

are applied to the next stage. Multiple buffers are required to obtain

high performance. The block diagram for this system is shown in

Figure 5.6.

Input

&Dn.-Merge
Splaffin

Buffer 1

- record

S- record

111110.
Merger

Buffer N
(N x Buffer 1)

record

S- record

Buffer 2
(2 x Buffer 1)

S- record S- record

S- record S- record

. .

II

S- record

S- record L
Merger

N

Note: S is the length of the sort-merge system output sequence.

Figure 5.6 Iterative Sort-Merge System

102

5.4.2 Tree Sort-Merge System

The tree sort merge system can be configured in a variety of

methods. These ways are dependent upon the nature of the

application and thedesired system processor speed. The binary tree

structure is one of the most desirable structures since it has the

advantage of requiring only a small buffer. If the processing speed

of a higher level processor in such a system is twice as fast as its

lower level processors, a powerful sort-merge system can be

achieved. However, each processor has its own speed limitations.

For a tree structure of h levels, the processing speed of the root

should be 2h times that of its leaf processors. When the binary tree

structure is combined with a block-merger, the binary tree structure

can be built with processors of identical speeds. With a buffer size of

B, all processors may operate at identical processing speeds so long

as inter-level communications are asynchronous. A block diagram

for this system is shown in Figure 5.7.

5.4.3 Disk-Based Sort-Merge System

The sort-merge system may be incorporated in a disk

controller. In this case, the system does not require a high speed

processor due to the I/O rates associated with standard disk

controllers (3M bytes/sec). Sort-merge system inputs and outputs

may be sent directly to the disk. Alternatively, they may be passed

through appropriate buffers to reduce the number of disk accesses

103

and increase overall system performance [24, 45]. A simple disk I/O

model is analyzed in the following section. The VLSI sort-merge

system discussed in Section 5.3 plus a disk controller are

incorporated in the design of a system capable of handling very large

files.

5.4.3.1 Disk I/O Access Model

Disk I/O access time can be divided into three components:

seek time, rotational latency time, and input and output data transfer

time [13,33,41,49]. Seek time is dependent upon the distance the

disk heads move from one cylinder to the next cylinder. Modeling

seek time appropriately is a complex process, given the application

dependent seek distributions [49]. Rotational latency is defined as

the time spent reading or writing to a specific cylinder block and is

proportional to the number of blocks placed on each cylinder. Input

and output data transfer time is the time required to perform data

read and write operations, plus data transfer time between buffers

and heads. To model a disk system adequately for the sort-merge

system, the following assumptions were made:

1) The disk system contains multiple disks and each cylinder

on the each disk is composed of several tracks.

2) Head movement for accessing the records is random, i.e.,

heads remain in place following an I/O disk access, thus

alternating record accesses require head repositioning for

each seek.

3) Average rotational latency time is one-half of one

complete disk revolution.

Output
(Mass Storage Devices)

Two -Way
Merger

Two -Way
Merger

Two -Way
Merger

Sort-Merge
System

Sort-Merge
System

Input 0 Input 1 Input 2 Input 3

Sort-Merge
System

104

Sort-Merge
System

Input 4 Input 5 Input 6 Input 7

Figure 5.7 Tree Sort-Merge System

105

Blocks indicate physical blocks rather than logical blocks

and several logical blocks may be contained within a single

physical block.

5) Average input and output times are used.

6) Record length is fixed.

Based upon these assumptions, the following theory was

developed:

Lemma 5.1: The expected head movement for accessing N

records randomly distributed on disk is N /3.

Proof: Let a set of records, r1, r , rN, be randomly distributed

on disk cylinders with the same fixed record lengths.
N

Their access probabilities are pi, p2,...,pN and E pi= 1.
1=1

The expected distance traveled by the head from one

requested position to another is:

N N
E(di) = E E plpj d(i,j)

i=1 j=i

N N
= E E Thp Id.-d.1

j=i

where d(i,j) denotes the distance between records ri and

r.. Since all records are accessed only once during each

merge phase, the probability of accessing each record

distributed unformly on the disk is
1

P =P2 = = PN = 7

and

106

N N
E(d.) =

1
2 Id.-d.1

N

1 N
2 [E(i-j)]

N i=1 i=1 i=j+1

1 N
= N2 2 E [j(j-1)/2 + (N-j)(N-j+1)12]

.1

1 ,N3 -N
N2 3 6

N 1

3 6N

When N is large, the expected distance traveled by the head is

proportional to 3.

To read a record and move to another record in a randomly

distributed file system, the expected movement to access N records is

proportional to N/3. From the lemma, the disk total transaction time

can be calculated for an individual record as follows:

T = seek time x (input record size/cylinder size)

+ rotational latency time

+ input record read time

+ seek time x (output record size/cylinder size)

+ rotational latency time

+ output record write time,

where: a = disk assess time,

= average rotational latency time (= 1/2 disk rotation

time),

107

Or = disk read time,

Ow = disk write time,

8 = physical disk block size in bytes,

y = disk cylinder size in bytes,

T = total number of blocks (= rNI8),

N = number of record in a file,

r = record size in bytes,

m = order. of merge

It was assumed that a block of sorted records was read from

and written to contiguous cylinders to save disk access time in a

partitioned sequential file system [13]. For example, a block from

the ith sort-merge stage may be written to the same cylinder or to

the next contiguous cylinder when the size of the block is too large to

write in a single cylinder. During the first sort-merge pass, the seek

time is the product of a and T and the number of blocks is equal to

the number of records to be sorted, or t=rN/8. Thus, the seek time

for the first input stage is a't x (N/3). Rotational latency time is the

product of 13 and T. The read time is the product of Or and t, where Or

is the disk read time. After reading data from the disk, the merger

writes the block of merged records to the disk. Thus, seek time has

been decreased by a factor of m since individual records are merged

into Nlm merge blocks, and the total seek time is reduced by a factor

of m. Disk write time is the product of Ow and T, where 0 is the

disk write time.

108

Table 5.1 Disk I/O Access Model Analysis

Merge
Stage

Seek
Time

Rotational
Latency

Read
Time

Seek
Time

Rotational
Latency

Read
Time

1

2

3

k 1

k = log niN

N-xca
3

L xli.xca
m 3

N)X x cam2 3

1777,3N xTN x at

m2 x± x ca
3

m x1V--xoct
3

ti (3

ti (3

T p

tip

t 0

ti (3

t 4..

T 4.

t 4.

T (1.

I

.

ti El.

t 4

N N
X X aT

3

niN-2x3x ca

Al-,2 XL X Ca
m , 3

L A
m4 3

m xN XCET
3

ca

tit

tip

T p

T 0

T r3

ti 13

T (14,

T 94,

T qv

Ttip,,

ti qv

T Ett,

Total Acess Time = at N crt+ 2N___ga+ (1 1 1

3 3 m iir2+ '+mk-1)+1"(213+9,-+(t)
= at + N cer+ 2N ca ((21 N m) + Ict p + e +0)

3 3

= act +kt(213+0r+ew)

. 0(N 2)

In the second and subsequent passes through the merger, all

the timing parameters become proportional to the number of merge

stages. Table 5.1 shows the results for an m -way merge of N records.

The total I/O access time for the merge phase is 0(N2). The sort-

merge process, in isolation, is O(logN), while the disk I/O time is

0(N2). Therefore, disk access time is much greater than sort-merge

time and the overall sort-merge process in a single disk based

system is 0(N2). To overcome the problem of disk I/O access, two

109

methods are available. First, when the records are arranged in

sequential rather than random order, the total I/O time can be

reduced to 0(N). To arrange the records in sequential order is not

practical in a real application. Parallel disks may be used to improve

disk I/O performance. Second, the sort-merge system has the ability

to perform disk I/O access efficiently as long as the sort-merge

system has enough buffers and merge stages. Detailed observation

of Table 5.1 indicates that the sort-merge process using a single disk,

will be improved by removing the repeated read/write operations.

If logmN merge stages are used, the disk I/O time is 0(N) and the

overall sort-merge process for a single disk is 0(N).

5.4.3.2 Disk-Based Sort-Merge System

In 1985, Takagi et al. [45] proposed a hardware sort-merge

system which used a key-pointing sorter as the initial sorter and a

pipelined m -way merger, as shown in Figure 5.8. The merger

consisted of several intelligent disks, each of which had a simple

processor and m +1 two-bank buffers. Problems with the

synchronization of data transmissions and excessive latency times

were experienced. The m +1 two-bank buffers were used in the disk

system for an m -way merge, setting each bank at a size equal to the

disk track size to avoid latency time problems. However, chip

architecture, details of implementation, and the merger structure

used by Takagi are unknown In the present study a new VLSI sort-

merge system including multiple disks is proposed.

110

File

Buffer
Key-Pointer

Sorter

Intelligent Disks

RAM

Initial Sorter...__ .__ .

Pipe lined Merger

Processor -4-1110.- Buffer Disk 1
'"--------1

,

Processor Buffer

...... v.-04

-.4-0.- Disk 2
...., -./

,

Processor --111.- Buffer .4 Disk N
......_______-

,

Figure 5.8 Takagi's Pipelined Sort-Merge System

Disk 1

Disk 2.1.1"'

Disk N

41110110,-

Multiple
Disk 'SIM'

Control lei

Sort-Merge Sort-Merge Sort-Merge Sort-Merge
System System System System

L

Buffer

Four-Way Merger

Buffer

Four-Way Merger

Figure 5.9 Disk-Based Sort-Merge System

111

The parallel sort-merge system in this section is composed of

multiple sort-merge systems, each of which contains multiple

rebound sorters and mergers. The system, with buffers, is attached

112

directly to one or more disks operating in parallel. One or more disk

controllers may be used in such a system. Sorting may be performed

in the disk controller rather than in the CPU of the host system. The

system must have sufficient buffer space to store sorted data

temporarily, and the processing speed should match the disk I/O

access time. In the previous section, the disk I/O access time was of

0(N2) time complexity, in contrast to 0(N) time complexity for the

merger when a partitioned sequential file organization was used.

Thus, sorting time is faster than the disk I/O time and the disk
controller performance will not be degraded during data transfer to

and from the sorter. The proposed system configuration is shown in

Figure 5.9.

5.5 Conclusion

The proposed single-chip sort-merge system was implemented

in VLSI. The resulting chip size was 416 mils by 432 mils and the

throughput rate achieved was 10.8 MHz. The single chip version

contains two rebound sorters, plus a four-way merger with

intermediate buffers. The single chip sort-merge system accepts

inputs in the form of 8-bit half-records every clock cycle, and

outputs a complete 16-bit sorted string. Various input data were

applied during simulation and correct system functionality was

verified. Performance data was also obtained through the use of a

timing verifier. The overall time complexity achieved was 0(N) and

the chip area was also 0(N). The system, as currently implemented,

does not have the expansion capabilities described in the study.

113

Moreover, it requires a preprocessor to retrieve a key from each
record and to add the required pointers.

Three additional methods for creating sort-merge systems

were also discussed, the iterative sort-merge system, the tree sort-

merge system, and the disk-based sort-merge system. These sort-

merge systems can be built by combining rebound sorter, merger, or

sort-merge chips for specific applications. The disk storage

subsystem is the most desirable method of implementing the sort-

merge system as a special processor for the rapid sorting of larger

files. Large files can be initially sorted by rebound sorters and then

repeatedly merged by the pipelined merger.

The disk I/O access model for the iterative pipelined merger

was analyzed, resulting in an I/O complexity proportional to the

number of records to be sorted. Other method has been reviewed by

Kwan [24], who noted that selection of a large merge order is not

optimal for files composed of a very large number of records. When

a partitioned sequential file organization was used, disk I/O access

time was found to be of 0(N2) time complexity in contrast to the

0(1 ogN) time complexity of the sort-merge system. Disk I/O

performance can be improved by increasing the number of merge

stages with appropriate buffers. Although the simulated model was

simplified in contrast to the complexities of actual disk I/O, the

results indicate that the sort-merge system can be used with a disk

subsystem. Through the implementation of efficient disk scheduling

methods, disk I/O access time can be improved.

Future research based upon the proposed system should

examine techniques to better model the disk storage subsystem.

114

Additional research should allow for the optimization of file

distributions across several disks to provide maximum I/O

performance.

115

6. CONCLUSIONS

In this chapter, key research contributions are summarized,

and directions for future research are suggested.

6.1 Research Contributions

The first research objective of this study was to develop a

unique parallel sort-merge system capable of sorting large files at a
high throughput rate. Suitability for implementation in VLSI was a

key requirement. This objective was achieved and constitutes a key

research contribution. In the process, a unique 4-way merger and

high performance sorter were also synthesized. The second

objective, that of analyzing current parallel sorting architectures and

algorithms, particularly those in which I/O functions are overlapped

with sorting, was also successfully achieved. The process associated

with the achievement of these objectives is summarized in the

following paragraphs.

Although extensive studies have been conducted in the area of

parallel sorting, few of the algorithms proposed have overlapped

sorting -time with input and output times. Three algorithms have

achieved 0(N) time complexity for implementation in VLSI. The

VLSI sorter proposed by Miranker et al. [36] requires the smallest

chip area, but achieved only relatively slow processing speed. The

rebound sorter proposed by Chen et al. [18] was the fastest of the

116

three algorithms and was implemented in a comparatively small chip

area. The enumeration sorter of Yasuura et al. [50] has the largest

chip area and achieved only modest processing speeds. Each of these

algorithms reflected 0(N) area complexity.

Following chip area and performance analysis, the rebound

sorter was selected for implementation. The algorithm was modified

and improved by the implementation of specialized pipelining

techniques and the inclusion of expansion capability. As modified,

the rebound sorter can process N 16-bit records using N processing

elements. The chip designed for this system consists of eight

processing elements and controllers, one pipeline controller, and one

expansion multiplexer. Sequences of 8-record data streams are

applied, then sorted in ascending order. The proposed chips can be

chained to sort large files. File size is only limited by clock
distribution and economic considerations. The core area of this

sorter is 159 mils by 146 mils and the total chip area, including I/O

pads, is 228 mils by 208 mils. Several sorters can be built on a

single chip. For example, 72 16-bit sorting chips can be placed on a

single 540 mils by 510 mils chip. The sorter processing speed was

17 MHz. Methods to expand the rebound sorter were also examined.

With a special controller, the key length can be extended up to 256

bytes by the horizontal connection of parallel rebound sorters.

By itself, the rebound sorter can handle only small files

economically. Compared to the cost of the merger hardware, it is also

expensive to build. The merger described uses an iterative process

[47] for external sorting, whereas the rebound sorter cannot. The

merger algorithm and merge stages were examined for

117

implementation in VLSI and the parallel binary merge sort and

pipelined merge sort algorithms were compared. The parallel binary

merge sort achieves better performance with smaller buffers than

the pipelined sort-merge, but it presents a processor bandwidth

problem when implemented synchronously. Therefore, processor

speed limitations of the parallel binary merge sort must be

considered in any hardware implementation..

A four-way block merge algorithm using presorted input data

was selected for implementation. This method requires sufficient

buffers for the accommodation of intermediate processing results.

Buffer management schemes were studied and a double buffer

method was implemented in order to reduce design costs. To

implement a four-way merger in VLSI, two methods were compared:

direct and indirect four-way merging. The indirect method was

faster than the direct merger, and its chip area was less than that

required for the two-way merger. An indirect four-way merger was

implemented in VLSI at a size of 354 mils by 354 mils, including

internal buffers. The processing speed achieved was 10.8 MHz.

In summary, a sort-merge system was designed and

implemented on a single chip, 416 mils by 432 mils in area. The

maximum frequency for this system was 10.8 MHz. The chip has not

yet been fabricated. All implementation results are based on silicon

compiler simulation data. The performance achieved is substantial

relative to other architectures described in the literature. The

system can be configured in several ways. These include an iterative

sort-merge system, a tree sort-merge system, or as a disk-based

sort-merge system. To implement the disk-based system, a

118

simplified I/O access model was studied. The disk I/O access time

achieved, (0(N2) time complexity) is less than that of the sort-merge

system when partitioned sequential files are used. However, the

disk model can be reduced to 0(N) time complexity for this

organizational structure by a variety of means, including the use of a

multiple disk system and methods to increase the number of sort
keys available for processing.

6.2 Research Recommendations

Some of the problems and limitations of sorting which were not

examined during the course of this study are considered in this

section. General recommendations for future research in the area of

VLSI sorting systems are also provided.

The proposed sort-merge system requires preprocessors for

sorting records. The system has the potential of serving as a

dedicated accelerator for special and general purpose processor

hardware systems. For example, a number of parallel sorting and

database hardware systems have been studied or proposed

[19,32,34], but to date no functional systems which can perform both

sorting and database operations have been developed. Many of the

problems specific to such systems have not been addressed in the

literature.

The buffer management scheme developed for this study has

been discussed for merging purposes only. The buffers used in the

proposed sort-merge system could be used, for example, as a disk

cache. For these more general purpose activities, a dynamic

119

allocation scheme for buffer management, such as a partitioned

buffer, would have to be developed.

In disk I/O modeling, input and output data are uniformly

distributed on the disk model. However, in the real world the data

may be distributed in a variety of ways, such as Gaussian [49],

Poisson, or binomial distributions. It is important that the statistical

characteristics of the system be measured in accordance with the file

organization method in use. The various disk I/O access methods

and head movements reviewed by Wong [49] should

the development of more practical disk I/O modeling.

the disk I/O complexity of external sorting, it is necess

realistic and practical disk models, as well as analysis

various file organization and disk scheduling methods.

should incorporate more experimental observations

times in real application environments.

The system developed in the present study

be applied to

To evaluate

ary to develop

techniques for

Further study

of disk seek

is ready for

fabrication. It should be physically fabricated and tested,

to being simulated.

in addition

120

BIBLIOGRAPHY

[1] B. Ahn and J. M. Murray, "A Pipe lined, Expandable VLSI Sorting
Engine Implemented in CMOS Technology, ISCAS'89 Proc., pp.
134-137, May 1989.

[2] S.G. Akl and H. Schmeck, "Systolic Sorting in a Sequential
Input/Output Environment," Parallel Comput. vol.3, pp. 11-23,
1986.

[3] S.G. Akl, Parallel Sorting Algorithms, Orlando, FLA:Academic
Press, 1985.

[4] K.E. Batcher,"Sorting Networks and Their Applications," AFIPS
Proc. Spring Joint Comput. Conf., vol.32, pp. 307-314, Apr.
1968.

[5] J.G. Bate, "The Architecture and Design of a Parallel Sorting
Engine," MS Thesis, Oregon State Univ., Corvallis, Oregon, 1988.

[6] M. Beck, D. Bitton and W.K. Wilkinson, "Sorting Large Files on a
Backend Multiprocessor," IEEE Trans. on Comput. vol.37, No.7,
pp. 769-778, July 1988.

[7] G. Bilardi and F.P. Preparata, "An Architecture for Bitonic
Sorting with Optimal VLSI Performance," IEEE Trans. on
Comput. vol.C-33, No.7 pp. 646-651, July 1984.

[8] G. Bilardi, "The Area-Time Complexity of Sorting," Ph.D
Dissertation, Univ. of Illinois, Urbana, Illinois, 1985.

[9] D. Bitton, "Design, Analysis and Implementation of Parallel
Sorting Algorithms." Ph.D Dissertation, Univ. of Wisconsin,
Madison, Wisconsin, Dec. 1981.

[10] D. Bitton and D.J. DeWitt, "Duplicate Record Elimination in Large
Data Files," ACM Trans. Database Sys. vol.8, No.2 pp. 255-265,
June 1983.

[11] D. Bitton, D.J. DeWitt, D.K. Hsiao ans J. Menon, "A Taxonomy of
Parallel Sorting," Computing Surveys, vol.16, No.3, pp. 287-318,
Sep. 1984.

[12] N.A. Black, "Optimum Merging from Mass storage," Comm. ACM,
vol.13, pp. 745-749, Dec. 1970.

121

[13] M. Bohl, Introduction to IBM Direct Access Storage Devices,
Chicago, ILL:Science Research Associate, 1981.

[14] M.A. Bonuccelli, E. Lodi, and L. Pagli, "External Sorting in
VLSI," IEEE Trans. Comput., vol.C-33, pp. 931-934, Oct. 1984.

[15] M.J. Carey, P.M. Hansen and C.D. Thompson, "RESST: A VLSI
Implementation of a Record-Sorting Stack,' Report No. UCB/CSD
82/102, U. of California, Berkeley, Apr 1982.

[16] K.M. Chung, F. Luccio and C.K. Wong, "On the complexity of
sorting in Magnetic Bubble Memory Systems," IEEE Trans. on
Comput. vol.C-29, No.7, pp. 553-563, July 1980.

[17] T.C. Chen and C. Tung, "Storage Management Operations in
Linked Uniform Shift Register Loop," IBM J. of Res. Develop.,
vol.20, pp. 123-131, Mar. 1976.

[18] T.C. Chen, V.Y. Lum, and C. Tung, "The Rebound Sorter: An
Efficient Sort Engine for Large Files," IEEE Proc., pp. 342-318,
June 1978.

[19] Y. Dohi, A. Suzuki, N. Matsui, "Hardware Sorter and Its
Application to Data Base Machine," Proc. 9th Annual Symp.
Comput. Arch.(ACM Sigarch), vol.10, pp. 215-225, 1982.

[20] J.E. Dorband, "Sort Computation and Conservative Image
Registration," Ph.D. Dissertation, Pennsylvania State Univ.,
Pennsylvania, Dec. 1985.

[21] S. Even, "Parallelism in Tape-Sorting," Commun. ACM vol.17,
No.4, pp. 202-204, Apr. 1974.

[22] R. Francis and I.D. Mathieson, "A Bench Mark Parallel Sort for
Shared Memory Multiprocessors," IEEE Trans. on Comput.
vol.37, No.12, pp. 1619-1626, Dec. 1988.

[23] Silicon Compiler Inc., Genesil System Compiler Library, vol. I, II
and III, 1988.

[24] S.K. Kwan, "External Sorting: I/O Analysis and Parallel
Processing Techniques," Ph.D Dissertation, Univ. of Washington,
Seattle, Washington, 1986.

[25] M. Kitsuregawa, S. Fushirra, H. Tanaka, T. Moto-oka, "Memory
Management Algorithms in Pipeline Merge Sorter," Database
Machines, Berlin:Springer-Verlag, pp. 208-232, 1985.

[26] D.E. Knuth, The Art of Computer Programming:Sorting and
Searching, vol.3, Reading, MA:Addison-Wesley, 1973.

[27] H.-W. Lang and M. Schimmler, "A Method for Realistic
Comparisons of Sorting Algorithms for VLSI," IEEE Proc. of the
Intl Conf. Kyoto, Japan, pp. 236-40, May 1985.

122

[28] H.-W. Lang, M. Schimmier, H. Schmeck, and H. Schroder,
"Systolic Sorting on a Mesh-Connected Network," IEEE Trans.
Comput. vol.C-34, pp. 652-658, July 1985.

[29] D.T. Lee, H. Chang and C.K. Wong, "An On-chip Compare/Steer
Bubble Sorter," IEEE Trans. Comput. vol.C-30, pp. 396-405, June
1981.

[30] T. Leighton, "Tight Bounds on the Complexity of Parallel
Sorting." IEEE Trans. on Comput. vol.C-34, No.4, pp. 344-353,
Apr. 1985.

[31] E.E. Linderstrom and J.C. Vitter, "The Design and Analysis of
Bucket Sort for Bubble Memory Secondary Storage," IEEE Trans.
on Comput., vol.C-34, No.3, pp. 218-232, Mar. 1985.

[32] M. Maekawa, "Parallel Sort and Join for High Speed Database
Machine Operations," AFIPS Conf. Proc:Natl Comput. Conf, pp.
512-520, 1981.

[33] R.E. Matick, Computer Storage Systems and Technology, New
York, NY:John Wiley & Sons, 1977.

[34] J. Menon, "Sorting and Join Algorithm for Multi-processor
Database Machines,' Database Machines Berlin:Springer-Verlag,
pp. 289-322, 1986.

[35] F. Meyer auf der Heide and A. Wigderson, "The Complexity of
Parallel Sorting," IEEE Proc., pp532-540, Apr. 1985.

[36] G. Miranker, L. Tang, and C.K. Wong, "A 'Zero-Time' VLSI
Sorter," IBM J. of. Res. Develop. v-27, pp. 140-148, Mar. 1983.

[37] M. Negri and G. Pelagatti, "Join during Merge: An Improved Sort
Based Algorithm," Inf. Proc. Letters, vol.21, No.2, pp. 11-16,
July 1985.

[38] R.J. Offen, VLSI Image Processing, New York, NY:McGraw-Hill,
1985.

[39] S. Rajgopal, S. Ghatak, J. McNair, S. Kumar, and D. Bouldin, "A
VLSI Implementation of the Parallel Enumeration Sort
Technique,' IEEE VLSI Tech. Bulletin, vol.1, No.3, pp. 35-42, Dec.
1986.

[40] L. Rudolph, "A Robust Sorting. Network," IEEE Trans. Comput.
vol.C-34, pp. 326-335, Apr. 1985.

[41] M. Satyanarayanan, Modeling Storage Systems, Ann Arbor,
MICH:UMI Research Press, 1986.

[42] M. Segal, "Hardware Sorting Chip Steps up Software Face,"
Electronic Design, pp. 85-91, June 1986.

123

[43] P.H. Singgih, H.B. Demuth, M.T. Hagan, and R.L. Wainwrite,
"Parallel Merge-Sort Algorithms on the HEP," ACM Fourteenth
Annual Comput. Science Conf.: CSC '86 Proceedings, pp. 237-
244, Feb. 1986.

[44] H.S. Stone, "Parallel Processing with the Perfect Shuffle," IEEE
Trans. Comput., vol.C-20, pp. 153-161, Feb. 1971.

[45] N. Takagi and C.K. Wong, "A Hardware Sort-Merge System," IBM
J. of Res. Develop. v-29, pp. 49-67, Jan 1985.

[46] C.D. Thompson, "The VLSI Complexity of Sorting," IEEE Trans.
Comput. vol.C-32,. pp. 1171-1184, Dec. 1983.

[47] S. Todd, "Algorithm and Hardware for a Merge Sort using
Multiple Processors," IBM J. of Res. and Develop. vol.22, No.5,
pp. 509-517, Sep. 1978.

[48] C. Tun, T.C. Chen, and H. Chang, "Bubble Ladder for
Information Processing," IEEE Trans. on Magn., vol. Mag-11,
No.5, pp. 1163-1165, Sep. 1975.

. [49] C.K. Wong, Algorithmic Studies in Mass Storage Systems,
Rockville, MD:Computer Science Press, 1983.

[50] H. Yasuura, N. Takagi and A. Yajima, "The Parallel Enumeration
Sorting Scheme for VLSI," IEEE Trans. Comput. vol.C-31, pp.
1192-1201, Dec. 1982.

APPENDICES

125

APPENDIX A

LAYOUT AND ROUTE PLOTS

'7
1

O
g co

.. ..
a

q
ti1

II
I

L
:I

11
9

9
U

P
I::

.Y
-1

...
II

4.
...

.6
..-

.4
.

r6
...

ri
t

34
i5

.
44

4
,..

.
1.

11
11

.1
1!

T
ill

ta
r'4

1.
...

1.
1

4,
 j

..,
 M

E
lle

 M
M

. '
r.

fia
llM

ol
ui

--
II

Ill
ir.

:-
.

7.
:4

-e
-7

7-
-'2

1.
=

 _
:

...
1

fl
lP

 I
N

Z
...

...
...

.-
--

11
11

/1
1

!'-
',.

:

D
I I

I'II
I

11
11

1

11
11

1

w
ili

m
m

om
pr

ill
ow

im
m

u

T
lir

fi
rr

ii7
1

11
11

11

Il
l "

II

it
a
u

4
ra

ni
jit

 r
ill

/a

ir
m

ql
M

et

,
J1

11
 M

N
 1

1
11

11
11

11
11

11
11

11
61

1.
61

11
1.

1.
61

41
11

 1
1

i

lip
 ii

al
67

1

ri
itl

ill
11

:1
01

1,
,iM

ai
r

11
I

f
II

T
11

i

ur
:

,0
1

,
r

1
1
1

nr
rr

i
11

11
11

11
11

1

11
11

11
,,.

..,
,,i

;:i

U
 I

II
II

.

D
I

1
r11

11
1

iir
pi

r
"i

4
1

-
i

II 1

R
pm

 ,
1

,
1

.
0
,
1
1

I
,

1

r
r
.

o

.
.

.
.

,
.
.

.
1

11
11

,1
11

11
1:

.
li

In
a

'1
11

1
In

 H
I

m
g

fi
t

II

r
.1

1
.1

11
11

r.
1

II
'

I,
 W

H
IM

I

ti
..

-
A

ilu
m

m
m

um
-

'1
11

1

!I
Il

l t
ri

ll
Il

l
1

11
1

I

Il
i:

1
-1

3
L

,

= .
:,

iis
ir

, 4
11

1
I

,:t
__

_
II

I
ili

f
7:

:.:
.;i

"A
ll

'
.

,
-.

01
1

E
l

. .
.. ,

. 8

i
.

D
 I

P
 I

7,
!.

..;
1

41
 ,

11
11

 A
l.

1.
1

11
11

1
I

li
fil

l
a

11
11

1.
4:

,6
4.

6.
7,

,..
.

vi
m

' 1
1

11
11

11
.

...
'.

.1
1

N
or

 im
ou

p1
11

1

1
'

1
1

r
.1

I

, i
ir

 ,i
m
e
,

f
i
r
m
,

.
.

.

,
I

a
l

1
1
1
1
-
1
.
i
j
i
^

1
11

11
H

''
I

;T
IE

' I
P.

. i
ll

i ..
...

.-
Ii-

:
, ,

 r
im

e

PE
I

'''
. .

,
..

,
,..

,;

'
11

I
,1

21
1

;
.::

:
;

,

in
 il

i.i
.,.

l
.=

. -
n.

-;
;;1

00
;4

41
..A

1
;1

.,1
-3

4M
4i

4i
i4

E
l

,
fr

,!
,-

,,,
,-

-,
,

ni
ni

41
0!

4i
1

,

.o
.

H
in

t-
-

-"
Y

.
...

..
.f

_E
...

...
.,

...
..

...
...

,

'7
W

:A
16 , ..:

10

S
i
l
i
c
o
n

...
../

4-
;

...
...

...
.0

:-
_,

w
ai

-

F
r
s
t
e
r
s

O
b
j
e
c
t
:

so
rt

A
c
c
o
u
n
t
:

ge
na

hn
S
c
a
l
e
:

26
 1

9
O
b
j
e
c
t

s
i
z
e

(
m
i
l
s
)
.

22
8.

40
 x

 2
08

.0
2

D
a
t
e
: tp

r
23

 8
9

9:
13

S
u
b
-
a
c
c
o
u
n
t
: ah

n
P
a
g
e
:

.1

of
: 1

W
i
n
d
o
w

l
i
m
i
t
s

(
m
i
l
s
)
:

N
on

e
C
o
m
p
i
l
e
r

pe
_c

on
tr

o1
01

ow
eu

rd
w

of
po

s
so

rt
 /c

m
p_

m
em

 7

pe
_c

on
tr

ol
67

so
rt

/c
m

p_
m

em
9
W
e
l
d
C
I
W
O
/
I
J
O
S

zw
eu

rd
w

o/
po

s
so

rt
/c

m
p_

m
em

 5

pe
_c

on
tr

ol
23

vw
ew

dw
on

io
s

pe
_c

on
tr

ol
45

.
.

I
l
m
o
l
i

a
m

I
I

I '
O
b
j
e
c
t
:

A
c
c
o
u
n
t
.

S
c
a
l
e
.

O
b
j
e
c
t

s
i
t
e

(
m
i
l
s
)
.

s
o
r
t

g
e
n
a
h
n

2
8
.
1
9

2
2
8

4
0

x

2
0
8
0
2

_
,
.
_
_
,
:
i
.
,
.
.
.
-

D
o
t
e
.

S
u
b

-
a
c
c
o
u
n
t
.

P
a
g
e
.

o
t
:

W
i
n
u
o
4

l
i
m
i
t
s

(
m
i
l
s
)

;
:
i
l
i
L
n
;

L
o
,
4
1
:
1
,
:
r

'
;
i
:
i
*
:
w
1

A
p
r

2
3

8
9

8
.
3
5

a
h
n

1
1

.

N
o
n
e

B
.

II
M

M
Ir

,

-1
1P

lim
m

ii0
11

11
11

11
11

ir
ia

lm
m

t.,

'ip
po

n
'

'

i,

, m
y

v
.

11
,1

1
.

I.
i
l
l
,

f

;#
*

1

i
um

,
1"

tr
l

..
,

,-
:

.,1
11

11
11

1!
..

i,

rm
.4

,..
--

. -
--

--
M

O
 4

0.
...

..:
.:1

11
1

il
Il

ia
..

II
)

31
1!

x
i
s
.
.
.
.

.

a

'
1
:
1
!
!
'

. 4
1

St
 1

...
L

en
--

A
ll

S
V

S
tg

ir:
:

O
bj

ec
t.

m
e
r
g
e

A
cc

ou
nt

. g
e
n
a
h
n

S
ca

le
:

1
5
.
3
6

O
bj

ec
t s

iz
e

(
m
i
l
s
)
:

3
5
4
.
8
8

x

3
5
4
.
7
1

D
at

e: 4P
 r

2
3

8
9

8
.
5
5

S
ub

-a
cc

ou
nt

:
a
h
n

P
ag

e
1

nf
:

I
1

W
i
n
d
o
w

l
i
m
i
t
s

(
m
i
l
s
)
:
N
o
n
e

C
om

p.
.r

ot

r
1

C
IO 0 1-

1 0 r
j 0 = 04 P 0

(
I
Q

C
D P
C
J
0 c
o

c
) c
v
n

,-
--

--
: .-

O
b

et
; t

.
t
h
e
r
e

A
cL

ou
vt

. g
e
r
.
h
n

S
t:a

 le
.

1
5
.
3
6

O
b

je
Lt

 r
ite

 (
m

il)
.

3
5
4
.
8
8

x

3
5
4
.
7
1

C
le

te
.
A
p
r

2
3

8
9

6
2
3

S
ub

 -
ac

Lo
un

t. d
h
n

P
ag

e.
1

ot
. 1

W
in

do
w

 li
m

its
(m

ils
)

N
o
n
e

a
u
o
N

(suctto
'4'cltiT

T
 m

opuT
m

T:40
T

.abed
m

it-)
-}unn7rie-

qns
6
0
'
6

6
9

c
a

J
d
v'aqua

-
-
'
'
'
'

-
u
'
'
-
,
r
.

711';

--
L
.
P
.
F
9
2

x

5
b
'
T
8
P

A
sIT

w
)

arcs
4-)0(10

9
F
.
6
T

'aier)S
m

ieuan
'4uncm

qv
sE

3@
oosid

:41;(10

m
ergerlfin_control

tionnqino
/zie6Jew

/zie6Jew

II

021

Ogg@

.11... simm
:... ...a- I =:..

- -4' i 0
I i -ir .

-...........^iiii-,ilii.4

.., j i 2_I-A 11 -
I

_ _u
_,/ ; ...

:

low- ..7,111Irmumfoilliti 1.4.11. .,-.

I
, L

II. ! 1.I II

.. I

1 Iliso 4. .I.

4 11(i' 11
' .1:.!' lit ,fi Ili !

...

;PIM.; .,FL. -awn. .,..ei....,m.g.;._ 7"'"`......uss

= -17.. ...ill
i, . - r . m II

_ 1 J.........._ -= 1,...'....__ '01m111111.111111.1r 'I. IIIIMIMINNIElholimm
I;

1, = . - _ __._... _ Ts
= j . i Ai 6 I.-i' .'lill .:=-. -: = :-:. = 101 t ir

TA : .1111=111=tial i --- I
!1- T,1 6-17im..ii- IF..--,..... mmi_ '641

1

J 111'
lammiwr HRH

ire

.-,'

=1: -=-= r 9: =II = : =,r -: 1'
:.:'

77 I . '77,1614mili
_.:1 hili := :

_ ill -.row ran 51 I
itair=11.1".

=HIEN
li Et: 1: ,f1 lim A _...,......._,,, .,:.,.....

....
rri

1111 'ii'
...,

mow- -.Iona ormissoll1111111
, -

,1
, dmig,,:alm-

demi inUillb", m.,

..1 II ,, L

1 111."4:
. 1 -. ; 7 i's

Ilimil-_.77 1.111011.07- 7

r

I _
11

.7-7.: r M111ftra._. r fir,, a , , f

I I - , I =...... E a

I
. ___ ---- .

messaMI
.2. , .,..,,,,

: 1 1

ONG-MI Ill
MI.. .,

-.11 -11 -2
'1 I I

111 I

.1,

0
0
0

0

0

C.

,

IC

EQ

DI

tr

8

CO
CV

L
sI

LI

iii
i

i
1

I
ia

'rE
lli

iII
III

Ir

i LI
P

17
11

1
1

2
S

IM
II

M
=

M
N

al
l

I
I

I
71

I
I

I

a
I

1
I

1,
i

ii
ill

1
I

I

''
--

II4
'2

1_
."

-
-.

_
ilo

rd
ia

m
m

om
na

12
-

m
ill

io
r

11
I

11
11

11
11

1,
11

.1
11

11
1

11
11

11
11

H

M
M

I
I,

I
II

i
w

a.

""
--

 w
im

r
m

or
11

11
11

1.
1

I
11

0
11

1u
m

ile
m

an
A

M
II

ow

11
.1

;1
1p

iii
l I

lli
ti:

1

m
e.

.7
i

I

1.
It

!.

IIIi
1

IM
!!

1
i

i
m

e
=

N
I

11

133

APPENDIX B

TIMING ANALYSIS

134

Table B.1 Rebound Sorter Timing Analysis

Genesil Version v7.0 -- Thu Nov 10 22:44:31 1988
Chip: -genahn/ahn/rebound Timing Analyzer

CLOCK REPORT MODE

Fabline: VTI_CN20A Corner: TYPICAL
Junction Temperature:75 degree C Voltage:5.00v
External Clock: clockpad
Included setup files: default setup file

CLOCK TIMES (minimum)
Phase 1 High: 26.4 ns Phase 2 High: 29.9 ns

Cycle (from Phi): 53.1 ns

Minimum Cycle Time: 56.3 ns

Cycle (from Ph2): 19.8 ns

Symmetric Cycle Time: 59.9 ns

CLOCK WORST CASE PATHS
Minimum Phase 1 high time is 26.4 ns set by:

** Clock delay: 4.4ns (30.8-26.4)
Node Cumulative Delay Transition
process/cmp memo /(internal) 30.8 rise
process/cmp memO/port0_EXT2[1] 28.6 fall
process/cmp meml/port9_EXT2[1] 28.6 fall
<ocess/cmp_meml/port9_EXT2[1]' 28.5 fall
process/cmp_meml/inter7_SEL2 17.7 fall
process/pe_fsm01/V21 17.7 fall
process/pe_fsm01/V211 17.0 fall
process/pe_fsm01/PHASE_B 5.3 rise
clock_pad/phasea 2.0 rise
clockpad 0.0 rise

Minimum Phase 2 high time is 29.9 ns set by:

** Clock delay: 5.3ns (35.2-29.9)
Node Cumulative Delay Transition
process/pe_fsm45/(internal) 35.2 fall
process/pe_fsm45/GTO 30.7 fall
process/cmp_mem4/sub5_COUT 30.7 fall
process/cmp_mem4/sub5_COUT1 30.4 fall
process/cmp_mem4/portO_EXT1[0] 11.9 fall
process/cmp_mem3/port9_EXT1[0] 11.9 fall
<ocess/cmp_mem3/port9_EXT1[0]' 11.3 fall
<ocess/cmp_mem3/inter8_VAL1[0] 9.1 fall
process/cmp_mem3/PHASE_B 6.3 rise
clockpad/phaseb 3.7 rise
clockpad 1 0.0 fall

135

Table B.1 Rebound Sorter Timing Analysis (Continued)

Minimum cycle time (from Phl) is 53.1 ns set by:

** Clock delay: 6.1ns (32.6-26.5) cycle_sharing disabled
Node Cumulative Delay Transition
process/pe_fsm01/(internal) 59.0 fall
process/pe_fsm01/GTO 54.5 fall
process/cmp_memO/sub5_COUT 54.5 fall
process/cmp_memO/sub5_COUT' 54.0 fall
process/cmp_memO/inter4_IV2[1] 36.6 fall
<ocess/cmp_memO/inter2_VAL2[1] 35.5 rise
*process/cmpmem0/(internal) 31.9 fall
<ocess/cmp memO/interl_VAL2[1] 31.3 rise
process/cmp_memO/portO_EXT2[1] 28.4 rise
process/cmp meml/port9_EXT2[1] 28.4 rise
<ocess/cmp meml/port9_EXT2[1]' 28.2 rise
process/cmp meml/inter7_SEL2 17.7 fall
process/pe_fsm01/V21 17.7 fall
process/pe_fsm01/V211 17.0 fall
process/pe_fsm01/PHASE_B 5.3 rise
clock_pad/phasea 2.0 rise
clockpad 0.0 rise

Minimum cycle time (from Ph2) is 19.8 ns set by:

** Clock delay: 5.3ns (15.2-9.9) cycle_sharing disabled
Node Cumulative Delay Transition
process/cmp_mem4/(internal) 31.3 rise
<ocess/cmp mem4/interl VAL2[1] 30.4 fall
process/cmp mem4/port0_EXT2[1] 27.6 fall
process/cmp_mem5/port9_EXT2[1] 27.6 fall
process/cmp mem5/inter7SEL2 16.3 rise
process/pe_fsm45/V_p1 16.3 rise
process/pe_fsm45/V211 15.9 rise
*process/pe_fsm45/(internal) 13.2 fall
process/pe_fsm45/PHASE_B 4.4 fall
clock_pad/phasea 2.0 fall
clockpad 0.0 fall

136

Table B.2 Four-Way Merger Timing Analysis

Genesil Version v7.0 -- Sat Apr 22 21:13:23 1989

Chip: -genahn/ahn/merge Timing Analyzer

CLOCK REPORT MODE

Fabline: VTI_CN20A Corner: TYPICAL
Junction Temperature:75 degree C Voltage:5.00v
External Clock: clock
Included setup files: default setup file

CLOCK TIMES (minimum)
Phase 1 High: 46.4 ns Phase 2 High: 31.4 ns

Cycle (from Phi): 19.5 ns Cycle (from Ph2): 38.7 ns

Minimum Cycle Time: 77.8 ns Symmetric Cycle Time: 92.8 ns

CLOCK WORST CASE PATHS
Minimum Phase 1 high time is 46.4 ns set by:

** Clock delay: 18.3ns (64.7-46.4)
Node Cumulative Delay Transition
<merge2/out buffer0/(internal) 64.7 rise

<ge2/out bul-fer0/out datain[3] 57.7 fall
</mergeO/compare/port7_EXT1[3] 57.6 fall
<mergeO/compare/port7_EXT1[3]' 57.2 fall

<ss/merge0 /compare/inter5_SEL1 41.5 rise
<cess/mergeO/compare/sub3_COUT 41.5 rise

<ess/mergeO/compare/sub3_COUT' 41.3 rise

</merge0 /compare/port0_EXT1[6] 21.8 rise
<merge0/in_buffer2/outdatal[6] 21.8 rise
<ergeO/in_buffer2/outdatal[6]' 21.2 rise
<cess/mergeO/in_buffer2/phaseb 15.2 fall

clockpad /phaseb 2.6 fall

clock 0.0 rise

Minimum Phase 2 high time is 31.4 ns set by:

** Clock delay: 15.1ns (46.5-31.4)
Node Cumulative Delay Transition
</mergeO/in bufferl/(internal) 46.5 rise

</merge0 /in_bufferl/address[2] 33.2 fall

<erge0 /in_control/count_out[3] 33.2 fall

<rge0 /in_control/count_out[3]' 29.8 fall

<cess/mergeO/in_control/phaseb 17.7 rise

clockpad/phaseb 3.7 rise

clock 0.0 fall

137

Table B.2 Four-Way Merger Timing Analysis (Continued)

Minimum cycle time (from Phl) is 19.5 ns set by:

** Clock delay: 17.6ns (27.4-9.8) cycle_sharing disabled
Node Cumulative Delay Transition
</mergel/in control/(internal) 31.4 fall
<ergel/in_control/out_addr0[1] 30.3 rise
<rgelan_control/out_addr0[1]' 28.1 rise
*<mergel/in_control/(internal) 25.4 fall
<cess/mergel/in_control/phaseb 15.3 fall

clock_pad/phaseb 2.6 fall

clock 0.0 rise

Minimum cycle time (from Ph2) is 38.7 ns set by:

** Clock delay: 7.5ns (46.2-38.7)
Node Cumulative Delay Transition
<merge2/out_control/(internal) 46.2 rise
process/merge2/out_control/GT2 42.7 fall
<ess/merge2/compare2/sub3_COUT 42.7 fall
<ss/merge2/compare2/sub3_COUT' 42.1 fall
<merge2/compare2/port0_EXT2[6] 22.9 rise
<2/out_bufferl/out_dataout0[6] 22.9 rise
</out_bufferl/out_dataout0[6]' 22.6 rise
<ess /merge2 /out_bufferi /phasea 6.2 fall
clock_pad/phasea 2.0 fall

clock 0.0 fall

138

Table B.3 Sort-Merge System Timing Analysis

Genesil Version v7.0 Tue Jan 3 23:20:19 1989
Chip: -genahn/ahn/sort merge Timing Analyzer

CLOCK REPORT MODE

Fabline: VTI_CN20A Corner: TYPICAL
Junction Temperature:75 degree C Voltage:5.00v
External Clock: clockpad
Included setup files: default setup file

CLOCK TIMES (minimum)
Phase 1 High: 46.2 ns Phase 2 High: 36.8 ns

Cycle (from Phi): 41.7 ns Cycle (from Ph2): 37.4 ns

Minimum Cycle Time: 83.0 ns Symmetric Cycle Time: 92.3 ns

CLOCK WORST CASE PATHS
Minimum Phase 1 high time is 46.2 ns set by:

** Clock delay: 22.7ns (68.9-46.2)
Node Cumulative Delay Transition
<merge2/out bufferl/(internal) 68.9 rise
<ge2/out_bufferl/out_datain[9] 61.8 fall
</mergel/compare/port7_EXT1[9] 61.8 fall
<mergel/compare/port7_EXT1[9]' 61.4 fall
<ss/mergel/compare/inter5_SEL1 45.6 rise

<cess/mergel/compare/sub3_COUT 45.6 rise
<ess/mergel/compare/sub3_COUT' 44.9 rise

</mergel/compare/port0_EXT2[6] 25.5 rise

<mergelan_bufferl/outdatal[6] 25.5 rise
<ergel/in_bufferl/outdatal[6]' 24.8 rise

<cess/mergel/in_bufferl/phaseb 18.8 fall

clock_pad/phaseb 2.6 fall

clockpad 0.0 rise

Minimum Phase 2 high time is 36.8 ns set by:

** Clock delay: 13.9ns (50.7-36.8)
Node Cumulative Delay Transition
<s/rbsortl/pe fsm45/(internal) 50.7 fall
process/rbsortl/pe_fsm45/GTO 46.2 fall

<ss/rbsortl/cmp_mem4/sub5_COUT 46.2 fall
<s/rbsortl/cmp_mem4/sub5_COUT' 45.9 fall
<bsortl/cmp_mem4/portO_EXT1[0] 27.4 fall
<bsortl/cmp_mem3/port9_EXT1[0] 27.4 fall

<sortl/cmp_mem3/port9_EXT1[0]' 26.8 fall

<sortl/cmp mem3/inter8_VAL1[0] 24.6 fall
<cess/rbsortl/cmp_mem3/PHASE_B 21.8 rise

clock_pad/phaseb 3.7 rise
clockpad 0.0 fall

139

Table B.3 Sort-Merge System Timing Analysis (Continued)

Minimum cycle time (from Phl) is 41.7 ns set by:

** Clock delay: 21.3ns (42.2-20.8) cycle_sharing disabled
Node Cumulative Delay Transition
<s/rbsort0 /pe_fsm01/(internal) 56.1 fall
process/rbsort0 /pe_fsm01/GTO 51.6 fall
<ss/rbsort0 /cmp_memO/sub5_COUT 51.6 fall
<s/rbsortO/cmpmemO/sub5_COUT' 51.0 fall
<bsortO/cmp memO/inter4_IV2[7] 44.3 rise
<sortO/cmp memO/inter2_VAL2[7] 43.0 fall
*</rbsortO/cmp memo /(internal) 40.9 rise
<sortO/cmp memO/interl VAL2[7] 40.0 fall
<bsortO/cmp_memO/port0_EXT2[7] 37.2 fall
<bsortO/cmp meml/port9_EXT2[7] 37.2 fall
<sortO/cmp meml/port9_EXT2[7]' 37.1 fall
</rbsort0 /cmpmeml/inter7_SEL2 26.3 fall
process/rbsort0 /pe_fsm01/V21 26.2 fall
process/rbsort0 /pe_fsm01/V_P1l 25.5 fall
<cess/rbsortO/pe_fsm01/PHASE_B 13.8 rise
clock_pad/phasea 2.0 rise
clockpad 0.0 rise

Minimum cycle time (from Ph2) is 37.4 ns set by:

** Clock delay: 19.8ns (57.2-37.4)
Node Cumulative Delay Transition
</mergel/in buffer2/(internal) 57.2 fall
</mergel/in_buffer2/address[2] 37.6 fall
<ergel/in_control/count_out[3] 37.5 fall
<rgel/in_control/count_out[3]' 34.1 fall
<cess/mergel/in_control/phaseb 22.0 rise
clockpad/phaseb 3.7 rise
clockpad 0.0 fall

