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1.  Introduction 

 

In the context of today’s society, radiation detection has become more important 

than ever.  In the wake of the terrorist attacks on September 11
th

 2001, and the ongoing 

war on terror, there is an increased urgency for the detection of radiological dispersal 

devices and nuclear weapons entering this country.  Prior to September 11
th

, the urgency 

to examine all cargo entering the country was lacking.  Much of the radiation detection 

instrumentation now protecting our ports of entry has been in place for only a few years 

and remains largely untested for the vast number of threat scenarios that exist.  

Additionally, there are new radiation detection methods and devices continually being 

proposed and researched to enhance or replace the devices presently deployed around the 

country.  For proof-of-concept and verification of operational capabilities, the 

instrumentation should be subjected to a series of experiments using real threat sources 

and scenarios to obtain accurate experimental data.  Unfortunately, due to the dangerous 

nature of threat sources and the prohibitive cost of implementing many of the scenarios, 

experimental results obtained under realistic conditions are scarce.  To offset this lack of 

experimental data, numerical simulation is often used to design and assess radiation 

detection instrumentation. 

1.1 Current Radiation Detection Instrumentation 

 Radiation detection technology generally falls into three broad categories: gas 

filled detectors, solid state detectors and scintillators. The most common gas-filled 

detector is the Geiger-Mueller (GM) counter.  The GM counter operates on the premise 

that incident radiation will interact with and ionize the gas in the detector volume.  The 
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GM counter operates at a very high voltage; to where the initial ion created by the 

incident radiation creates an avalanche of ions until no more charge can be collected and 

a pulse is generated.  Because of this method of charge collection, GM counters can only 

be used to detect the presence and quantity of radiation.  It is impossible for a GM 

counter to provide information regarding the spectrum of radiation.   

Another type of gas-filled detector is a proportional counter.  This uses the same 

mechanism as a GM counter, but it operates within a finite voltage range where the size 

of the generated pulse is proportional to the energy of the incident radiation.  Therefore, it 

is possible to use these detectors for spectroscopy purposes with low energy gamma rays.  

Proportional counters can also differentiate between alpha and beta particles.  Alpha 

particles deposit their entire energy over a very short range, while only a small fraction of 

energy from beta particles will be deposited in a typical proportional counter volume.  

Therefore, the pulses due to these two types of particles will be different sizes; with alpha 

pulses being larger than beta pulses. 

Solid state (or semiconductor) detectors have many desirable aspects, especially 

in spectroscopy.  For each interaction occurring in the detector, there are significantly 

more ions created than in either gas-filled detectors or scintillators.  This is due to the 

small amount of ionization energy required to create an ion pair, a factor of 10 smaller 

between semiconductor and gas-filled detectors.  Because of this, semiconductor 

detectors offer the greatest energy resolution for spectroscopic purposes.  Some 

drawbacks include the susceptibility to damage when exposed to radiation fields, and 

limitations on size.  In this area, there are two main types: Germanium (Ge) and Silicon 

(Si).  Making functional solid state detectors involves creating high purity germanium 
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(HPGe), or silicon doped with lithium (Si(Li)).  The reason for this is to create the largest 

possible active volume.  When considering gamma spectroscopy, HPGe detectors offer 

the greatest energy resolution of all detectors discussed.  One of the largest deficiencies 

in solid state detectors is the need to maintain the material at very low temperatures.  

These types of detectors are created by forming positive and negative regions at opposite 

ends of the detector material, with an “active volume” in between where incident 

radiation will interact.  The very low temperatures are required to prevent the positive 

and negative ends of the material from drifting toward each other and combining; 

effectively neutralizing the detector volume and rendering it useless.  This requirement 

limits the capability and size of these detectors.  

Scintillators are probably the most widely used type of detector.  Reasons for this 

include the wide variety of possible shapes, sizes, types, and low cost.  Scintillators can 

take the forms of glass, organic liquids, and inorganic liquids.  Scintillators rely on 

fluorescence or phosphorescence to produce light pulses that are then multiplied in a 

photomultiplier tube.  Scintillators are most widely used in spectroscopy.  The specific 

choice of scintillation material will depend on desired characteristics, including 

efficiency, light output, wavelength emission, and decay time or response time (Knoll 

2000).  There are various benefits and drawbacks for each type of scintillation detector, 

which should be carefully weighed. 

1.2 Characteristics of Homeland Security Detection Problems 

 The types of radiation detection scenarios present in Homeland Security 

applications present a level of difficulty for numerical methods that are unseen in other 

areas of numerical simulation.  A few of the scenarios of interest include radiation 
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detection at land border crossings, airports, and other ports-of-entry.  Another growing 

area of interest is security of our seaports, and examining containers being unloaded from 

cargo ships.  Each of these scenarios presents large physical dimensions that must be 

accurately modeled.  Transporting the radiation from the source to detector over this large 

area in sufficient detail poses large problems for numerical methods.  In many of the 

scenarios, as in real-world situations, the source will be well shielded.  This creates deep 

penetration problems that are also difficult for many numerical methods.  Finally, many 

of the scenarios will also be highly scattering.  An ideal simulation tool will be one that 

can solve these types of problems quickly and efficiently, and remain portable enough to 

be used on a PC. 

1.3 Scenario Analysis 

 

 The objective of scenario analysis is to determine the type of radiation present and 

identify potential threat sources.  This requires distinguishing between a number of 

different source types; including naturally occurring radioactive material (NORM) like 

granite, threat sources including U-235 and Pu-241, nuisance sources such as the 

naturally occurring radioactivity in cat litter, and medical sources such as I-131 or Tc-

99m.  The success of scenario analysis depends on the ability to accurately predict or 

determine the sensitivity of the radiation detection instrumentation.  One way of 

accomplishing this is to calculate pulse height distributions for the detection approaches 

being considered for a given scenario.  Scenario variations may include changing the size 

or type of shielding, adjusting source strength, and most importantly, provide variation of 

source type.  Additional goals of scenario analysis involve establishing an alarming 

metric and calculating the minimum detectable activity (MDA) for a specific detector.  
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The purpose of an alarming metric is to set a standard for determining when a threat 

source is present, as opposed to a benign or legitimate source (Smith, Gesh and Pagh 

2005). 

1.4 Numerical Simulation 

 Ideally, real measurements should be used in scenario analysis.  In many 

situations of interest, this is not possible.  Reasons include time or cost constraints, 

availability of sources, and safety of the public.  Often, numerical simulation provides the 

only option for scenario analysis (Smith, Gesh and Pagh 2005).   

In numerical simulation, the aim is to create a realistic scenario environment to 

provide a framework for accurate analysis.  Each simulation should present the greatest 

accuracy achievable while maintaining a balance between detailed re-creation of the 

scenario environment, speed and efficiency.  There are two primary goals of numerical 

methods used for scenario analysis: the first is the calculation of the radiation field 

produced by the source, and second is the calculation of the response of the detector to 

the radiation field.  There are two primary classes of transport methods available to 

perform these calculations: deterministic and Monte Carlo.  A detailed discussion of both 

will be given in Chapter 2. 

1.5 RADSAT 

 The RAdiation Detection Scenario Analysis Toolbox (RADSAT) is an ongoing 

project funded by DOE’s Nuclear Nonproliferation Division NA-22, and managed by 

Pacific Northwest National Laboratory (PNNL).  Oregon State University’s role in this 

project has been to research the creation of pulse height distributions from deterministic 

transport simulations.   
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 The RADSAT project has two stated goals: (1) development of a efficient and 

accurate transport simulations; and (2) the analysis of radiation detection scenarios and 

the creation of a portable, integrated software package for deployment in the field.  A few 

examples of the potential uses of RADSAT include near real-time search scenarios for 

training purposes, detector optimization and research, and border protection.  Potential 

users of RADSAT include emergency or first responders, laboratory analysts, border 

patrol agents, and intelligence agencies (E. Smith, et al. 2005).   

 RADSAT utilizes a three dimensional deterministic transport code called Attila
TM

 

(Wareing 2001).  Attila uses unstructured tetrahedral meshes created from computer-

aided design (CAD) models that allow for very complex geometries to be easily modeled 

(Gesh, et al. 2005).  Attila requires multi-group cross sections which are obtained from 

CEPXS (Coupled Electron/Photon Cross Sections)  (SANL 1991).  The radiation is 

transported from the various sources present in the problem, and the angular flux is 

calculated on the surface of an imaginary sphere surrounding the detector.  The angular 

flux is then ported into MCNP5 (LANL 2005) which is used to calculate the pulse height 

distribution.  The angular flux data from Attila is used as the boundary condition in 

MCNP5 for a simplified detector problem that can be quickly solved for the pulse height 

distribution (Gesh, et al. 2005).  Porting the angular flux data into MCNP5 has created a 

number of problems, including formatting and accuracy issues, and the need to create a 

specific source definition piece of software that currently limits the ability of MCNP5 to 

operate in parallel, causing computational time to be greatly increased.  Computational 

time is a large concern, and is one of the greatest weaknesses of MCNP5 in many 

scenarios of interest to RADSAT.  Operating in parallel is an option in MCNP5 to help 
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improve computational efficiency by distributing a calculation across many computers at 

the same time.  In the current evolution of RADSAT, this capability is not available, 

limiting the speed and efficiency of the entire package. 

1.6 Detector Response Functions vs. Pulse Height Distributions 

In radiation detection simulation, there are two related concepts that are of utmost 

importance; detector response functions (DRF) and pulse height distributions (PHD).  A 

DRF is the real response of a detector exposed to radiation.  The response can account for 

such processes as energy deposition, scintillation, light collection by the photomultiplier 

tube, the efficiency of the detector, and other effects caused by the electronics creating 

the pulse such as amplifier gain.  A DRF will be different for each detector type, and may 

even differ between detectors of the same type.  The pulse height distribution models the 

idealized energy deposition of a detector exposed to radiation.  For a PHD, there are only 

three ways in which energy deposition events can occur: Compton scatter, photoelectric 

absorption, and pair production.  A more detailed discussion will be provided in Chapter 

3. 

Both PHDs and DRFs are dependent upon a number of factors, including the various 

interaction cross sections of the detector material, the size and type of the detector, and 

the energy and type of incoming radiation (Knoll 2000).  Knowledge of PHD/DRFs is 

important in many radiation detection and measurement applications, including Prompt 

Gamma Neutron Activation Analysis (PGNAA), radiotherapy dose measurement, 

medical imaging, and homeland security.  Homeland security radiation detection 

applications include detection of threat sources, border security, and nonproliferation.  In 

the cases of threat source detection and border security, PHD/DRFs are being used to 
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accurately interpret and analyze signals from radiation detectors to determine the type of 

radiation present and identify source radionuclides.  Nonproliferation applications utilize 

PHD/DRFs in the enforcement and verification of international treaties, along with 

safeguarding the current stockpile of nuclear material both at home and abroad.  This is 

accomplished by continually monitoring the energy spectrum at a specified location, 

including all outgoing and incoming material.  In this manner, any deviation from what is 

expected can be seen and a more thorough investigation can take place. 

1.7 Current Methods for Determining Detector Response Functions and Pulse Height 

Distributions 

There are two methods most often employed in numerical simulation to determine 

detector response functions and pulse height distributions: a semi-empirical approach and 

Monte Carlo radiation transport simulation.  In the semi-empirical case, DRFs are 

generated by creating an analytic model of detector response for each detector feature 

and, for example, using a least squares fit to combine each feature into a continuous 

spectrum (Gardner 2005).  Because it is semi-empirical, this method employs several 

parameters that can be varied to fit the model to the desired result expected given a 

specific detector type. Another method for calculating parameters is to build up a DRF by 

using known sources.  In each method, the detector’s response can be quantified and 

parameters can be adjusted and applied when the source is unknown.  Fixes can include 

adjusting the spectra to duplicate specific characteristics of NaI detectors or nonlinearity 

of charged particle interaction.  In many simple cases, this approach can provide quick 

and accurate results.  Complications arise for more detailed and sophisticated scenarios 

(Gardner and Sood 2004).   
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PHDs can also be generated semi-analytically.  This is accomplished using the photon 

interaction cross section data in the solution of the Klein-Nishina equation.  In addition 

there are a number of parameters that can be manipulated to account for the various 

mechanisms related to energy deposition.  

 The most common approach for the creation of PHDs in numerical simulation is 

Monte Carlo radiation transport simulation.  Energy deposition is an inherently stochastic 

process that depends on the cross sections and geometry of the detector materials.  Monte 

Carlo radiation transport faithfully simulates the lifecycle of radiation in the detector and 

naturally incorporates this stochasticity.  Monte Carlo methods track every particle in a 

simulation from birth to death, including every interaction that occurs.  This ability of 

Monte Carlo methods leads to a very precise model of the particle physics inside a 

detector volume.  It is also possible to accurately model complex geometries in Monte 

Carlo codes such as MCNP5 (Gesh, et al. 2005).  MCNP5 uses well tested and 

established cross section libraries.  For this reason, Monte Carlo methods are considered 

the standard for radiation detection simulation.   

In the area of radiation detection and measurement, one of the largest advantages of 

Monte Carlo methods is the ability to create precise and detailed pulse height 

distributions.  It is also possible to post-process the PHDs to obtain a simplified detector 

response function.  The most widely used example includes applying a Gaussian 

distribution to the PHD to broaden the peaks in an attempt to model the resolution of a 

specific detector type.  This is called Gaussian Energy Broadening (GEB).  There is much 

ongoing research in this area to further enhance this ability and more truthfully simulate 

many detector characteristics (Sood and Gardner 2004).  The detector response function 
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depends on the detection mechanism employed by, and the design of, the specific 

detector used.  For example, in the case of NaI detectors there is an inherent non-linearity 

in the energy deposition from electrons due to collisions with gamma rays.  This is 

because the relationship varies with the energy of the incoming particle, and the 

scintillation efficiency of the NaI crystal (Gardner and Sood 2004).  There are also 

inconsistencies in detector response between what should be identical detectors, because 

it is essentially impossible to create two identical crystals.  The differences between each 

crystal will affect the scintillation efficiency of the detector and lead to variation in light 

collection.  This is true even if the energy deposited into the detector is the same in each 

case.  These characteristic variations are present in every type of detector, making 

accurate simulation of detector response calculations difficult. 

1.8 Motivation 

 Numerical simulation for radiation detection of Homeland Security applications is 

continuing to grow in importance.  Currently the only widely used method available to 

create a pulse height distribution is the Monte Carlo method. It is for these reasons that 

RADSAT ports the data from Attila into MCNP5 to create the pulse height distribution.  

Many of the difficulties created by porting to another code could be alleviated by having 

a deterministic-only option, and having all the necessary data to create a pulse height 

distribution in one code.  In this thesis, we describe a new methodology for calculating 

PHDs from deterministic transport simulations.  One of the goals of this research is to 

provide a framework and create the opportunity to have a deterministic-only option to 

perform the radiation transport and create a pulse height distribution.  This is an area that 

has not been previously explored, and can create another branch of numerical simulation 
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that has been closed to deterministic methods; and provide another tool for users.  We 

will evaluate the performance of our methodology relative to MCNP5 on several test 

problems of practical interest. 

1.9 Layout of Thesis 

The remainder of this thesis is organized as follows.  Chapter 2 contains a more 

thorough description of pulse height distributions, along with the derivations of the 

deterministic and Monte Carlo methods used in this analysis.  Chapter 3 contains a 

description of the detector problems used to test our methodology, and the results from 

the two methods with comparisons to calculations using MCNP5.  Chapter 4 will present 

a discussion of the results and data presented in chapter 4.  Chapter 5 will discuss the 

limitations of the research so far, as well as suggestions for further research.   
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2.  Methods 

 

In this section, we describe an approach to the calculation of a pulse height 

distribution in a deterministic radiation transport code.  We present a derivation of the 

deterministic transport method discretization in slab geometry.  Pulse height distributions 

are commonly calculated in Monte Carlo radiation transport codes, and we will use 

MCNP5 to generate the benchmark distributions for comparison with those from our 

deterministic approach.  

The remainder of this chapter is organized as follows.  We begin with a 

discussion of the challenges facing the radiation transport methods, both deterministic 

and Monte Carlo.  We then will define the pulse height distribution and describe its 

behavior in several physical limits.  We will end the chapter with a description of how the 

pulse height distribution is calculated via Monte Carlo methods, and using the data 

provided by our deterministic transport method. 

2.1 Radiation Transport Method Challenges  

The Boltzmann transport equation is an integro-differential equation that can be 

extremely difficult to solve in a variety of physical problems.  Examples include deep 

penetration, heavily shielded sources, highly scattering, and physically large problems 

with small detector volumes (Pagh, et al. 2005).  Each scenario will require accurate 

calculation of the radiation field and pulse height distribution.   

2.1.1 Monte Carlo Radiation Transport Challenges 

 Monte Carlo transport includes individual history tracking resulting in direct 

simulation of the particle physics, geometric flexibility, and highly accurate and 
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straightforward calculation of the pulse height distribution (Gesh, et al. 2005).  For these 

reasons, Monte Carlo methods, and specifically MCNP, have been a standard in the 

detection community for over 20 years.  Many scenarios of interest to RADSAT pose 

difficulties for Monte Carlo methods.   

 Deep penetration (optically thick) problems, like those in shielding applications 

and nuclear well logging, are extremely difficult for standard analog Monte Carlo.  To 

reach acceptable statistical limits many particles must be sampled because the likelihood 

of survivability is low.  Additionally, the relationship between the size of the sampling 

population and the variance is not linear: there is a 
N

1
  correlation, where N is the size 

of the sampling population.  Variance requirements for a given simulation may cause 

runtimes to become prohibitively long and strain the ability of the Monte Carlo method to 

obtain a result in a reasonable amount of time.  Some Monte Carlo codes, such as 

MCNP5, employ variance reduction techniques (including roulette, splitting, and weight 

windows).    The goal of variance reduction is to maximize the number of particles 

reaching a region of interest without biasing the end result.  Variance reduction methods 

are the subject of much ongoing research.  Viable techniques for variance reduction with 

PHDs currently do not exist outside of MCNPX; and this poses a dilemma for many in 

the detector community.  [Variance reduction methods for the calculation of pulse height 

distributions are will not be discussed in this thesis.  For a more detailed discussion of 

variance reduction, refer to (Brown 1996).]  The types of scenarios related to Homeland 

Security applications, including deep penetration, highly scattering, and physically large 

problems with small detector volumes pose a large challenge to Monte Carlo methods; 
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and without variance reduction, the computational time required to sufficiently resolve 

these problems becomes very prohibitive. 

 The use of radiation detection instrumentation at our nation’s borders highlights 

another area where the performance of Monte Carlo methods is not optimal: physically 

large, scattering dominated simulations.  The Radiation Portal Monitor Project (RPMP) 

(PNNL 2008) is one of the largest ongoing projects at Pacific Northwest National 

Laboratory (PNNL).  The goal of the RPMP is to install radiation detectors at U.S. 

borders, airports, and seaports and monitor all traffic entering the country.  While some 

experimental data can be gathered, the majority of research relies on numerical 

simulation to provide scenario analysis.  Typical problems involve modeling objects of 

large scale (semi-trucks and multiple lanes of traffic, shipping containers, etc) coupled 

with relatively small detector volumes (Pagh, et al. 2005).  The physics of these scenarios 

requires many particles to be sampled to guarantee enough are reaching the detector 

volume to provide good statistics.  If the source is well shielded, moving, and background 

radiation is included, the simulation becomes a deep penetration, time dependent problem 

on a large scale.  To distinguish the source from the background, a very high degree of 

resolution is required.  In realistic scenarios like this, Monte Carlo methods require many 

histories to be run, perhaps on the order of billions.  The time and cost necessary to 

obtain accurate results become serious obstacles. 

 Another weakness in Monte Carlo methods is the lack of global solutions.  Monte 

Carlo methods follow a particle from birth to death, and in the case of PHDs determine 

the energy deposition in a desired region for all particles tracked.  The solution is only 
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available in pre-specified tally regions.  In order to obtain solutions in multiple regions, 

more work will be required. 

Finally, as with all stochastic methods, the solution has a statistical error.  This 

error depends on geometry, size of simulation (physical and optical thickness), and 

number of particles sampled.  In many cases of interest, the time required to obtain 

solutions with an acceptable statistical error may be on the order of weeks.  Typical 

statistical error for the test problems presented in this thesis varies between 0.1% and 1%, 

with a maximum statistical error of approximately 10%.  Results containing statistical 

errors of greater than 10% should not be considered valid and should be used with 

caution (LANL 2005). 

2.1.2 Deterministic Radiation Transport Challenges 

Deterministic methods provide results via solution of the linear Boltzmann 

transport equation.  Both deterministic and Monte Carlo methods can provide the same 

result for a given scenario, but there are a few important differences between the 

methods.  First, deterministic methods provide a global solution.  By having a global 

solution, it is possible to “walk” a detector through a scenario geometry and look at 

specific locations of interest without the need to rerun the problem many times, assuming 

the detector does not interact with the radiation field.  Second, in cases of interest to 

RADSAT, deterministic solutions are more computationally efficient than Monte Carlo 

methods.  There are many deterministic methods that will provide accurate solutions in a 

very reasonable amount of time.  Thirdly, there is no statistical error associated with 

deterministic solutions (Smith, Gesh and Pagh 2005).  While there are no statistical errors 
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associated with deterministic methods, there are is error due to the numerical 

discretizations required to go from analytic to discrete equations. 

It is commonly believed that it is not possible to calculate PHDs directly from the 

solution of a single deterministic transport problem.  Monte Carlo methods, because of 

the simulated individual particle histories, are well-suited for the calculation of PHDs.   

2.2 The Linear Characteristic (LC) Deterministic Transport Method in Slab Geometry 

 We have developed a slab geometry neutral particle transport code to demonstrate 

a new approach to the construction of the pulse height distribution from deterministic 

transport simulations.  We will utilize the collided components of the scalar flux and the 

user specified multigroup cross-section data to build this distribution.  

Separating the scalar flux into its collided components is illustrated in the 

following example.  Particles that travel through the detector region without undergoing 

an interaction make up the uncollided or the 0
th

-collided component of flux.  The flux of 

particles having undergone one scattering collision in the detector is the 1
st
-collided 

component of flux.  By calculating the collided components of the scalar flux, 

information about the scattering of the particles can be preserved; most importantly, the 

source and final energy group of the particles as they undergo collisions in the detector.  

This approach for calculating source and final energy groups differs from Monte Carlo 

because individual histories are not simulated.  The information about all the particles in 

the problem is kept as a function of the number of scattering events that have occurred.  

These data are then used to help calculate the distribution of energy deposition events, 

which is then mapped to the pulse height distribution.  In the remainder of this section, 

we introduce the Boltzmann transport equation, and make the simplifications required to 
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obtain a slab geometry transport equation.  We describe the discretizations we employ to 

numerically solve this equation, including a derivation of the Linear Characteristic spatial 

discretization, the SN angular discretization, and the multigroup approximation in energy. 

2.2.1 Boltzmann Transport Equation 

 

Equation (2.1) below is the generalized, three dimensional, energy dependent, neutral  

particle Boltzmann transport equation. 
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(2.1)  

  

where υ defines the speed of the particle, ),ˆ,,( tEr 


 is the angular flux (particles/cm
2
-

MeV-steradian-sec), ̂  represents the unit direction vector of particle travel, ),( Ert


  is 

the macroscopic total cross section (cm
-1

), '')','(  ddEEEs is the double 

differential scattering cross section, defining the probability per unit path length of scatter 

from within dE’ about energy 'E  to within dE about E and within dΩ’ about '  to within 

dΩ about  , and ),ˆ,,( tErS 


 represents the external source. 

We now make a number of assumptions which will simplify the transport 

equation significantly.  The first assumption is time independence.  This assumption is 

valid due to the fact that the systems being modeled are non-multiplying and external 

sources and boundary conditions are also time independent. We next simplify the 

geometry to 1-D, azimuthally symmetric slab geometry; i.e. 
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Inserting these three relations into equation 2.1 gives the slab geometry transport 

equation: 
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 Every term in equation (2.5) has been multiplied through by 2π to account for the 

2

1
factor in equation (2.3).   

If we expand the general, anisotropic scattering cross-section in terms of a series 

of Legendre polynomials, we obtain  
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where,  
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The total group averaged cross section σt,g, and the group averaged source ),( ng xS  , are 

calculated the same way as the group averaged angular flux in equation (2.8).  The group 

averaged scattering cross section ', ggsl   represents the probability of a particle 

scattering from group g into group g’, for a given Legendre polynomial expansion l.  Pl is 

the Legendre polynomial expansion function of order l.  Additionally in equation (2.6), 

we have discretized the angular variable, using the SN angular discretization with 

Gaussian quadrature.  This involves replacing the integration over µ in equation (2.5), by 

a quadrature sum for a specific choice of angles and weights; dictated by n: 
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  (2.9)  

 

Therefore, equation (2.6) represents the anisotropic, slab geometry transport equation for 

one angle only (µn). 

The slab geometry transport equation is well-posed if the angular flux incident on 

the problem boundary is specified, either as a known quantity or as some function of the 

exiting angular flux.  Typically, transport problems in detectors are driven by particles 

incident on the problem boundary, and have no internal source.  

2.2.2 The Linear Characteristic Spatial Discretization 

Beginning with equation (2.5) written in a slightly different form: 
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In this equation, n  is the angular flux in the n
th

 angular ordinate, and   is the scalar 

flux. Many quadrature sets are available, but Gaussian Quadrature has been used in this 

research.  

The idea behind the Linear Characteristic spatial discretization is that it inverts the 

transport plus collision operator exactly, assuming that the source in each cell is spatially 

linear.  Because the transport equation is an integro-differential equation, iteration on the 

scattering source is often employed to compute the solution.  The LC method provides 

the way to calculate the angular flux using the integral transport equation: 
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In equation 3.14: 
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 In these equations, the superscript “x” on the coefficients indicates the first spatial 

moment, or slope.  The subscript “i” indicate cell averaged values.  Looking at equations 

(2.12) and (2.13), it is apparent that if Qi and Qi
x
 are known, then the angular flux can be 

calculated.  However, these two quantities also depend on the solution of the problem 
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(scalar flux).  The 0
th

 and 1
st
 spatial moments of equation (2.10) can be used to generate 

equations for these quantities: 
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Solving equation (2.14) for in,  and inserting it into equation (2.15), all the terms are 

known except for the exiting edge angular fluxes.  These fluxes can be found by 

evaluating equation (2.12) on the exiting edge for a given direction: 
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(2.17)  

 

 

Equations (2.16) and (2.17) make up the LC method, and allow us to solve the Boltzmann 

transport equation from equation (2.6) and calculate the angular flux, scalar flux, and 

partial currents.  The LC method is very accurate.  Assuming sufficient spatial resolution, 

the method is 4
th

 order locally accurate.  This means by reducing the width of a spatial 

mesh cell by 2, the spatial error will decrease in the cell by a factor of 16.  If we are 
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considering a source-free pure absorber or a case where the source is isotropic or linearly 

anisotropic, the method will provide the exact solution.   

 

2.3 Outline of Algorithm to be Employed 

 

Because of the nature of the problem, Source Iteration will be used to step 

through the discretized equations and arrive at a converged scalar flux. 

 

Figure 2.1:  Flowchart of Algorithm Employed by LC Method 
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The first step is to create and initialize the required variables.  These include the 

number and size of the cells in the problem.  At this point it is also necessary to import 

the cross section data, number of energy groups, Gaussian quadrature angles and weights, 

the number of flux components to keep, and any external sources. 

Source iteration requires a beginning guess for the scalar flux.  One very 

important point here is that, in order to calculate the scattered flux components, the initial 

guess for the scalar flux must be zero in every cell.  In addition, for the LC method the 1
st
 

moment of the scalar flux must also be provided, and is also zero (since the scalar flux is 

constant).   

First, the 0
th

 and 1
st
 moments of the scattering source are created; S and S

x
.  S and 

S
x
 are functions of the downscatter and inscatter reaction rates.  The external source is 

introduced into the problem as a boundary condition.  The iterations begin with the 

uncollided component of the first energy group, and subsequent iterations will calculate 

the remaining scattered components of flux for the first energy group.  The number of 

iterations required depends only on the number of required collided components 

necessary to ensure convergence of the scalar flux.  The external source boundary 

condition is set to zero while calculating the remaining components because higher 

scattered flux components depend only on previously calculated flux components.   

Equations (2.14) and (2.15) are solved for the 0
th

 and 1
st
 spatial moments of the 

angular flux, from which the Legendre moments of the scalar flux are calculated and 

passed back to the program.  The entire algorithm is repeated for the remaining energy 

groups. 



24 

 

2.4 Pulse Height Distribution 

The pulse height distribution is used by the radiation detection community to 

identify the source of a measured radiation field.  It is defined as the frequency of energy 

deposition events in a detector as a function of energy, caused by particles emitted by an 

external source.  This distribution contains information about the energy spectrum of the 

source particles.    The pulse height distribution, or 
dE

dN
, is defined as the differential 

number of energy deposition events per unit energy.  The total number of energy 

distribution events is obtained by integrating the pulse height distribution over energy.  

The total energy deposited in the detector can be obtained by integrating 



E
dN

dE
 over 

energy.   

2.4.1 Small Detector Limit 

There are several physical limits that give insight into the shape of the pulse height 

distribution.  The first is the “small detector” limit, where small is defined by the mean 

free path of secondary gamma radiations (Knoll 2000).  This definition creates detector 

sizes of no more than a few centimeters on average.  In small detectors, the majority of 

incoming particles only undergo a single collision prior to leaving the detector volume 

(either by absorption or leakage).  Therefore, two physical processes contributing to the 

pulse height distribution are Compton scattering and photoelectric absorption; and the 

result is a well defined Compton continuum and full energy peak.  In the case of 

incoming particles with energies higher than 1.022 MeV, a double escape peak, due to 

pair production, will also be present. 
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2.4.2 Large Detector Limit 

Another limit of interest is the “large detector” limit.  Detectors are “large” if 

gamma rays, including secondary particles like scattered gamma rays and annihilation 

photons are all (or nearly all) absorbed in the detector volume (Knoll 2000).   In this case, 

no incident radiation escapes the detector volume, regardless of the incoming particle 

energy. Therefore, despite the various interaction mechanisms acting on particles in the 

detector, all of the particle energy is deposited resulting in a full energy peak.  In this 

case, the pulse height distribution would consist only of full-energy deposition events.   

2.4.3 Intermediate Detector Pulse Height Distributions 

In most cases, real detectors lie somewhere between these two limits.  In addition 

to Compton continua and full energy peaks, the pulse height distribution will contain both 

double and single escape peaks if the incoming energy is above 1.022 MeV.  Single 

escape peaks are caused when one annihilation photon escapes the detector and the other 

is absorbed in the detector.  Also present will be a number of counts lying between the 

Compton edge and the full energy peak caused by photons undergoing multiple scattering 

events occurring in the detector before escaping.   

2.4.4 Other Complicating Effects on the Pulse Height Distribution 

Beyond the energy deposition mechanism, there are four other influences on the 

pulse height distribution (Knoll 2000).  The first is the presence of secondary electrons.  

If the detector volume is small compared to the range of these electrons, a large fraction 

may leave the detector prior to depositing their energy.  This results in a decrease in the 

full energy peak and may skew parts of the Compton continuum to lower energies.   
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Bremsstrahlung can also impact the shape of the pulse height distribution. 

Bremsstrahlung is caused by the slowing down of secondary particles in the detector 

volume.  Much like the problem with secondary electrons, a significant portion of 

bremsstrahlung radiation may leak out of the detector prior to absorption, skewing the 

pulse height spectrum to lower energies.   

In many cases when a photoelectric absorption occurs, a characteristic x-ray, with 

an energy determined by the absorber atom, is emitted.  If the detector is small enough or 

the photoelectric absorption occurs near the surface of the detector, this x-ray may escape 

the detector volume.  The end result is an energy deposition equal to the full energy peak 

minus the energy of the characteristic x-ray.   

The presence of materials surrounding the detector, usually shield materials, can 

also influence the shape of the pulse height distribution.  This occurs when particles 

interact in the surrounding material and deposit energy in the detector.  The three main 

examples of this are the presence of an x-ray peak, a backscatter peak, and an 

annihilation peak in the pulse height spectrum.  The x-ray peak is due to a photoelectric 

absorption in the shield and the release of a characteristic x-ray that is absorbed in the 

detector.  A backscatter peak is caused by Compton scatter in the shield and subsequent 

absorption of the scattered particle in the detector.  An annihilation peak, due to pair 

production in the surrounding material, may also be present, even if the source strength is 

below 1.022 MeV; cosmic radiation can interact in the shield and cause a pair production 

event.  If one of the annihilation photons is absorbed in the detector, this event will 

contribute to the annihilation peak.  
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In the context of homeland security, the pulse height distribution is used to 

develop and verify detectors that form a line of defense against the possibility of nuclear 

attack in this country.  For radiation detectors placed at border crossings, pulse height 

distributions are used to identify potential threats. However, the size and scope of the 

potential detection zone makes calculation of PHDs difficult.  For example, a threat 

source could be transported in a tractor-trailer surrounded by a number of shielding 

materials that are designed to significantly depress the most recognizable radiation field.  

Here, the number of full energy events seen by the detector will be very few, and the 

Compton continuum will be inflated and perhaps skewed in energy due to the number of 

scattering events occurring prior to reaching the detector.  Throughout, there will be 

varied background radiations, and possibly a variety of other sources from other vehicles 

contributing to the pulse height distribution.  These characteristics highlight the 

importance of accurate calculations of the PHD. 

2.5 Monte Carlo Pulse Height Distribution 

Monte Carlo radiation transport codes solve the Boltzmann transport equation by 

faithfully simulating the life histories of radiation particles as they interact in the 

underlying physical medium.  Pseudorandom numbers are used to sample from 

probability distributions describing the relevant physical interactions of radiation with 

matter; this approach is also called “stochastic” radiation transport.  Using pseudorandom 

numbers and the known cross section data for the materials present in the simulation, a 

“random-walk” is performed and the particles are followed from birth to death, including 

the generation of any secondary particles.    Pulse height distributions can be easily 
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calculated in Monte Carlo transport codes because the energy of both the initial and final 

energies easily determined.   

At the end of each random walk, when the particle is either absorbed or leaks out 

of the problem, both the initial and final energy of the particle are known.  Subtracting 

the final from the initial energy provides the total amount of energy deposited by the 

particle.  This quantity will lie within one of the energy bins that span the range of 

potential energy deposition events.  In whichever bin the quantity resides, a tally is 

added.  This process is repeated until all histories have been completed.  The end result is 

the PHD, 
E

N




, where N  is the number of counts depositing energy over the small 

energy range E .  The pulse height tally is usually displayed with N on the ordinate 

axis and the energy range on the abscissa.  

2.6 Deterministic Pulse Height Distribution 

 Deterministic transport codes typically track energy deposition events by 

calculating dose rate.  This quantity is fundamentally different from the pulse height 

energy deposition distribution.  Calculations of dose rate involve the total energy 

deposition rate. The pulse height distribution requires information about the amount of 

energy deposited from each particle interaction.    

As particles have interactions in the detector, it is imperative that we keep track of 

their initial and final energies, and we obtain this information from reaction rates using 

the collided components of the scalar flux.  Computing the series of collided components 

of scalar flux requires approximately the same computational effort. 
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2.6.1 Energy Deposition Bin Structure 

Accurate calculation of energy deposition events requires mapping from the 

energy group bin structure used in the transport calculation to the energy deposition bin 

structure for display of the pulse height distribution.  The latter is completely determined 

by the structure of the former and is calculated in the following manner.  Energy group g 

has a width defined as LowgHighgg EEE ,,  ; where HighgE ,  and LowgE ,  represent the high 

and low energy boundaries of the bin.  In a downscatter event from group g to g’ the 

corresponding range of the energy loss:   

 
LowggHighgggg EEE ;',;',',    (2.18)  

 

where, 

  

LowgHighgHighgg EEE ,',;',    

 

(2.19)  

 
HighgLowgLowgg EEE ,',;',    (2.20)  

 

By repeatedly employing equations (3.21) and (3.22) for all values of g and g’, all 

possible energy losses from scattering can be precomputed.  It is important to note that 

any particular ',ggE  may span more than one energy deposition bin; this is most common 

with energy group structures that are non-uniform.  Also, many group to group transfers 

may yield the same range of energy deposition values especially in the case of uniform 

energy group structures.  

2.6.2 Tracking Source and Final Energy Groups 

 Most photon sources of interest have multiple emission lines, each of which will 

contribute a different full energy peak and Compton continuum in the pulse height 
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distribution.  We have developed two important matrices that allow initial (source) and 

final energy groups to be computed for each group to group transfer.  The first is the 

scattered source matrix, whose m,g element is calculated as: 
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Equation (2.20) calculates the fractional contribution of a scattering event from group m 

to g, to the total scattering source in group g.  The scattering reaction rate due to s-th 

collided component will come from three possible sources: external (uncollided only), 

downscatter, and within-group scatter.   

 The second matrix uses the information stored in the scattered source matrix and 

calculates the fraction of particles originating in source group l, surviving s collisions and 

arriving in group g.  The calculation of this matrix involves a recursive formula due to the 

fact that, in order to survive s collisions and make it to group g, the particles must first 

survive 1s  collisions: 
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2.6.3 Calculation of Energy Deposition Events 

The rate of events that deposit a specified amount of energy is calculated in two 

pieces:  those from scattering events and those from absorption events.  ',, ggscatterN  is the 

reaction rate of particles scattering from group g to group g’.   

  
s

s

gg

s

gggscatter fJN )(

',

)(

'',,  (2.24)  

 

The outgoing partial current for the s collided component of flux, )(

'

s

gJ  , represents the 

number of particles that leave the problem in group g’ after s collisions.  Therefore, 

multiplying by )(

',

s

ggf  yields the number of particles in group g’, originating in group g, 

that have undergone s collisions prior to leaking out of the problem. 

 Finally the number of particles originating in group g, undergoing s collisions and 

ultimately being absorbed in group g’, is simply given as the absorption rate in group g’ 

multiplied by )(

',

s

ggf : 
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2.6.4 Construction of Pulse Height Distribution 

The end result of equations (2.23) and (2.24) are two quantities, ',, ggscatterN  and  

ggabsN  ,,  
that include all the data necessary to construct the pulse height distribution.  

These quantities contain the rate at which particles that were sourced in at group g leak 

out or are absorbed in group g’.  The next step is to map the data onto the energy 

deposition bin structure  by stepping through every element of both matrices, equations 

(2.23) and (2.24), and calculating the upper and lower bounds of the energy deposition 
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events using equations (2.18) and (2.19).  The upper and lower bounds may span one or 

more energy group bins, and the correct number of events must be distributed into each 

bin.  This is accomplished by treating 
dE

dN
 as a constant over each energy deposition 

range.  The correct fraction is calculated by using the following equality: 
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therefore, 
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Equation (2.26) is employed for each x, where x represents an energy bin encompassed 

by the total energy deposition range, TotalE .  

2.7 Summary 

 In this chapter, we have described a methodology for the calculation of the pulse 

height distribution from collided components of the scalar flux, and we have described a 

slab geometry deterministic transport code we will use to test the methodology.  We have 

also presented a description of the common Monte Carlo transport approach to the 

calculation of the pulse height distribution. 
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3.  Results 

 

In this chapter we provide descriptions of the test problems used to evaluate the 

new deterministic transport method for calculating the pulse height distribution.  We also 

investigate the importance of resolving the angular and energy discretizations for a given 

problem.  We present the results from each test problem using our deterministic method 

and comparisons with the results from MCNP5. 

3.1 Description of Test Problems 

 For our representative test problems, we have arbitrarily chosen the 1-D slab to be 

of length 5 cm in the x-direction, and infinite in both the y- and z-directions.   Sodium 

Iodide (NaI) is the material making up the detector volume.  For each test problem, the 

source will be treated as an incident boundary condition on the left face of the slab.  

Currently, the source is defined as incident at only one angle, but the code allows for any 

number of angles to be specified.  Finally, in order to ensure consistency in the data, all 

cross sections were generated using CEPXS v1.4.  The deterministic solutions use 100 

equally spaced energy groups for energy discretization, in both the transport and pulse 

height distribution calculations; and the MCNP5 results are tallied with the same 100 

energy bins.  The energy group bin boundaries differ in each test problem and are 

dictated by the highest source energy.  The energy range for test problem 1 is [0.00662 

MeV, 0.6617 MeV] divided into 100 bins with constant ΔE = 0.00662 MeV.  Test 

problem 2 encompasses an energy range of [0.01334 MeV, 1.334 MeV] divided into 100 

energy groups with a ΔE = 0.01334 MeV.  Finally the energy range of test problem 3 is 

[0.02615 MeV, 2.615 MeV], and 100 energy groups with ΔE = 0.02615 MeV.  The 
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deterministic transport method solution is obtained using a spatial mesh of 20 cells across 

the slab, and we store 20 collided components of scalar flux.  Finally, in all test problems, 

2.0e8 histories are used in MCNP5 to achieve reliable statistics, on the order of 0.1% to 

1% statistical error. 

 The angular flux incident on the left face of the slab is chosen as 1e6 

particles/cm
2
-sec.  Particles enter the left face of the slab at a grazing angle closest to 

normal to the left face of the detector.  This angle depends on the choice of SN order.   

Given the incident angular flux and the weight associated with the source grazing angle, 

the incoming partial current on the left face of the slab can be calculated.   

The variations between each test problem are defined by the different source 

nuclides.  The first test problem assumes a Cs-137 source.  The source for the second test 

problem is Co-60.  The last test problem uses a 1.0 μCi Th-232 source with daughter 

products from 100 years of ingrowth.  For a detailed definition of the Th-232 source used 

in test problem 3, refer to Appendix A.  

3.2 Test Problem 1: Cs-137 Source 

Figure 3.1 shows the results from test problem 1.  This graph contains the results 

from the deterministic PHD calculation (dN) and from MCNP5 (F8).   

The deterministic pulse height distribution was created using an S32 angular quadrature 

set and P14 scattering order.  In an S32 quadrature set, the source incident angle lies at                  

µn = 0.997264, with a corresponding weight (wn) of 0.00701861.  In general, the incident 

partial current on the left face of the detector is defined below in equation (2.28): 

 


 
0

 nnn wJ  
(2.28)  
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nninc wJ 

 (2.29)  

 

Because the source incident on the left face of the detector is monodirectional, the 

summation in equation (2.28) reduces to the expression in equation (2.29). 

The incoming angular flux (ψinc) is 1e6 particles/cm
2
-s, therefore, the incident partial 

current driving the source is calculated from equation (2.29) and is 6.9994e3 

particles/cm
2
-sec.  The incident partial current is defined as the number of photons 

crossing the left face of the detector in the +µ direction.  It is used as the particle weight 

(wgt) in MCNP5 to allow for a direct comparison with the deterministic transport 

method.  In figure 3.2 we compare the scalar flux calculated from both the deterministic 

and MCNP5 methods, and figure 3.3 compares the exiting current on the right face of the 

slab from the deterministic code and MCNP5.  Figures 3.2 and 3.3 provide another point 

of comparison between the two codes to be certain the same problem is being solved in 

both cases.  
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Figure 3.1: Comparison of PHD for Test Problem 1 

 

 

 
Figure 3.2: Comparison of Scalar Flux for Test Problem 1 
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Figure 3.3: Comparison of Exiting Current on Right Face of Slab for Test Problem 1 

 

3.3 Test Problem 2: Co-60 Source 

 Figure 3.4 shows the deterministic and MCNP5 pulse height distributions from a 

Co-60 source.  The strength of the source is calculated in the same way as in test problem 

1.  The angular discretization is S32 with a P14 scattering order. The incident angular flux 

remains the same, 1e6 particles/cm
2
-sec, except in this test problem, there are two source 

energies: 1.173 MeV and 1.332 MeV.  The source strength is 1.3998e4 particles/cm
2
-sec; 

split evenly between the two source energies.  Therefore, each source energy group has 

an incident partial current on the left face of the detector of 6.999e3 particles/cm
2
-sec; 

this value is used as the particle weight in MCNP5 to ensure consistency between the two 

transport methods.  Figures 3.5 and 3.6 show deterministic and MCNP5 calculated scalar 

flux and partial current exiting the right face of the slab. 
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Figure 3.4: Comparison of PHD for Test Problem 2 

 

 

 

 

 
Figure 3.5: Comparison of Scalar Flux for Test Problem 2 
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Figure 3.6: Comparison of Exiting Current on Right Face of Slab for Test Problem 2 

 

3.4 Test Problem 3: Th-232 

 The strength of the Th-232 source used in this test problem is 1 µCi, with 100 

years of daughter product ingrowth.  There are 2.18e5 photons/sec being emitted by the 

source, which is the incident angular flux on the left face of the slab at an angle of              

µ = 0.997264, with a corresponding weight of 0.00701861.  This leads to an incident 

partial current of 1.526e3 particles/cm
2
-sec, used as the particle weight in MCNP to 

ensure a consistent comparison between MCNP5 and the deterministic transport method.  

S32 angular quadrature and P14 scattering order were used in this simulation.  

A comparison of the pulse height distribution calculated using the deterministic 

transport method and MCNP5 are given in figure 3.7.  The scalar flux from both transport 

approaches is displayed in figure 3.8, and the exiting partial current on the right face of 

the slab for both transport approaches is shown in figure 3.9.   
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Figure 3.7: Comparison of PHD for Test Problem 3 

 

 

 

 
Figure 3.8: Comparison of Scalar Flux for Test Problem 3 
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Figure 3.9: Comparison of Exiting Current on Right Face of Slab for Test Problem 3 

 

3.5 Dependence of Quality of Deterministic Solutions on Discretization  

To ensure the precision of the pulse height distribution, it is necessary to verify 

the convergence of the radiation transport simulation.  In Monte Carlo methods, 

convergence can be determined in a number of ways.  For example, the variance or 

standard deviation of the results can be a good first metric. In MCNP5, there are a 

number of built-in calculations that aid the user in determining convergence of the 

simulation.  These include ten statistical checks performed and displayed in the Tally 

Fluctuation Chart (TFC) provided in the output file.  Also provided in the MCNP5 output 

file is a quantity called the Figure of Merit (FOM) defined as 1/(σ
2
t), where σ is the 

variance and t represents the computer time in minutes (LANL 2005).   
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In deterministic methods, convergence depends on the choice of discretization in 

angle, space, time, and energy.  In this research, there are two additional discretization 

options; scattering order, and number of collided components.   

We have investigated the dependence of the deterministic transport solutions on 

the various discretizations by considering a simple example.  We use the data from test 

problem 1 to run a number of simulations to show the dependence for each discretization.  

Figures 3.10 through 3.13 display the maximum relative error in scalar flux for each 

discretization as the resolution is continually refined.  In order to calculate the relative 

error, there must be a sufficiently resolved solution to which we can compare the results.  

In each case the resolved solution is the solution from a “fine mesh” calculation.  In 

figure 3.10, the spatially converged quantity is calculated on a spatial mesh with 40 cells.  

In figure 3.11, the relative error of the scalar flux is calculated by varying the number of 

angles in the angular quadrature set.  The converged solution is calculated using an S32 

angular quadrature.  Figure 3.12 illustrates the maximum relative error as a function of 

the number of collided components of scalar flux.  The converged solution is calculated 

using 20 collided components.  Figure 3.13 displays the relative error of the scalar flux as 

a function of the scattering order.  The converged solution is calculated using a scattering 

order of P14. 
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Figure 3.10: Relative Error of Scalar Flux  

 

 

 

 

 

Figure 3.11: Relative Error of Scalar Flux  
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Figure 3.12: Relative Error of Scalar Flux 

 

 

 

 

 

 

Figure 3.13: Relative Error of Scalar Flux  
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There is an alternative method available to aid in examining the resolution of the 

scattering order: we directly observe the shape of the scattering function.  Each scattering 

function (downscatter and within group scatter) is expanded in Legendre polynomials in 

the scattering angle.  As the order of the Legendre polynomial is increased the scattering 

function expansions can better handle anisotropic scattering.  The scattering function 

expansion is defined in the following way: 
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Equation (2.27) represents the downscatter function expansion, and equation (2.28) 

defines the within group scattering function expansion. 

   As an example, we consider the same geometry and detector material as in the 

previous test problems, but we will only consider two energy groups.  The driving source 

in this example is a unit incident partial current on the left face of the slab.  The scattering 

function is most anisotropic in the fast group, and this group will be the slowest to 

converge.  Figure 3.14 shows the shape of the within-group scattering function for P0 

through P7 with S16 angular quadrature.  This figure demonstrates that after P4, there is 

almost no change in the angular shape of the within-group scattering function.  Figure 

3.15 displays the convergence of the downscatter function for P0 through P7 with S16.  

The downscatter function is more anisotropic than the within-group scattering function.   

From these plots, we see that the convergence of the within-group and downscatter 
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function requires at least a scattering order of P8.  This agrees very well with the 

conclusions drawn using the first method described above.  As the number of energy 

groups is increased, the within group scattering function will be more anisotropic, since 

only “glancing” events will allow the particle to remain in the group after a scatter event.  

This may become important in certain transport simulations.  Additionally, it is important 

to vary the SN order in an attempt to minimize the scattering function expansion and 

reduce the runtime for a given simulation.   
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Figure 3.14: Within Group Scattering Function vs. Pn Order (P0 – P7) 

 

  
Figure 3.15: Downscatter Function vs. Pn Order (P0 – P7) 



48 

 

4.  Discussion 

 

 This chapter contains a discussion of the results of the test problems presented in 

the previous chapter. In the initial sections, we will comment on the outcomes from the 

three test problems.  We then offer discuss the resolution criteria required to obtain 

precise data from the deterministic transport method.  

4.1 Test Problem 1: Cs-137 

 Results from test problem 1 were calculated using high resolution in all 

independent variables: 20 spatial cells across the slab, S32 angular quadrature, P14 

scattering order, and 20 collided components of the scalar flux.  Figure 3.1 shows that 

there is excellent agreement in each of the three peaks of the pulse height distribution: the 

full energy peak located in the energy group bin containing 0.6617 MeV, the x-ray escape 

peak located in the energy group bin holding 0.635 MeV, and the peak in the lowest 

energy group bin at 1.0e-5 MeV.  The characteristic (k-shell) x-ray emitted by NaI has an 

energy of 28 keV.  The x-ray escape peak located in the bin surrounding 0.635 MeV 

corresponds to a full energy deposition of 0.662 MeV minus the characteristic x-ray 

energy of 0.028 MeV. 

There is a small discrepancy between the MCNP5 and deterministic x-ray escape 

peaks in figure 4.1.  This is due to the energy resolution of the test problem.  The value of 

the x-ray escape peak lies very near the boundary between the 0.635 MeV and 0.642 

MeV energy bins.  Because of the fine energy resolution desired, the counts belonging to 

the x-ray escape peak are distributed between these two bins in the deterministic pulse 

height distribution calculation.  If the boundaries of the energy group structure are 

shifted, the counts making up the x-ray escape peak will be properly distributed in one 
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bin.  This is a consequence of the use of multigroup cross section data in the transport 

calculation and is an important consideration in the choice of energy group structure.    

The peak in the lowest energy bin (1.0e-5) is an artificial peak generated by 

MCNP5.  It contains the number of particles that have streamed through the slab 

uncollided.  In this way MCNP5 can ensure particle conservation.  For consistency, we 

have included the uncollided (0
th

 collided) component of the partial current exiting the 

right face of the slab, and locate the results in the same lowest energy bin.  The two 

methods generate very comparable results in this lowest energy bin. 

There is also excellent agreement throughout the entire Compton continuum, and 

Compton edge.  Looking at the similarities between the peaks and Compton continuum 

and edge, we can conclude that, using MCNP5 as our correct solution, we are correctly 

calculating the amount of energy deposited in the slab from both photoelectric absorption 

and Compton scatter in this simple test problem.   

The most significant deviations between the methods are in the region between 

the Compton edge and x-ray escape peak, and between the x-ray escape peak and full 

energy peak.  These regions are often called multiple scatter regions.  One possible 

reason for this difference is the cross section data being used by the two codes.  MCNP5 

utilizes continuous energy cross section data while CEPXS generates multigroup cross 

section data.  The downscatter cross section from CEPXS is zero in this energy range 

until after the 4
th

 scattering event.  The magnitude of the component of flux with 4 or 

more scatters is insignificant compared to the first three collided components.  The 

scattering reaction rates after the 4
th

 collided component result in very few energy 

deposition events that which is evident in the deterministic pulse height distribution in 
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figure 3.1.  It is possible that the continuous energy data in MCNP5 will generate a small 

number of low probability downscatter events in this energy range after one or two 

scattering events.  Figure 3.1 shows that the number of pulses calculated by MCNP5 in 

this energy range is greater than that while calculated from the deterministic method.     

Figures 3.2 and 3.3 compare the average scalar flux and exiting partial currents 

from the two transport methods.  There is excellent agreement in nearly all regions of 

importance; photoelectric absorption depositing energy over the range [0.65508 MeV, 

0.662MeV], x-rays located in the energy group bounded by the range [0.019851 MeV, 

0.026468 MeV], and also the Compton continuum.  The most significant discrepancy 

between the two approaches is in the multiple scatter region.  These figures suggest that 

the fundamental difference between the two methods is in the particle transport – if the 

fluxes and exiting partial currents agreed in the multiple scatter region, it is likely the 

PHD would agree as well. 

 In each of the important energy ranges, the full energy peak, x-ray escape peak, 

and Compton continuum, the results from the deterministic transport code are 

indistinguishable from those calculated using MCNP5.  In the energy ranges where 

discrepancy exists, the cause is likely differences in nuclear data between the two codes. 

4.2 Test Problem 2: Co-60 

 The same problem specifications used in test problem 1 are used here: 20 spatial 

cells, S32 angular quadrature, P14 scattering order, and 20 collided components of flux.  

Figure 3.4 provides a comparison of the pulse height distribution calculated using 

MCNP5 and our deterministic transport method.  At each of the two full energy peaks 

(1.17 MeV and 1.33 MeV) depositing energy in the groups bounded by [1.159 MeV, 
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1.1725 MeV] and [1.3205 MeV, 1.334 MeV] respectively, and at the peak located in the 

lowest energy group (described previously), there is excellent agreement between the two 

methods.  Although the two source energies are emitted with the same probability, there 

is an unequal probability of absorption.  There is a higher likelihood of absorption for the 

1.17 MeV source gammas because the absorption cross section is larger at lower 

energies.  Normally, the sizes of the two peaks differ by roughly 10%.  Figure 3.4 appears 

to display peaks of equal size.  Looking at the data, the peak value for 1.17 MeV gammas 

is 2.57e3 counts, while the peak value for 1.33 MeV gammas is 2.37e3 counts.  The 

difference between the peak values is 0.2 MeV.  The 1.33 MeV peak is roughly 10% 

smaller than the 1.17 MeV peak; which is what should be expected.  The logarithmic 

scale of figure 3.4 makes this difference difficult to observe graphically. There is a single 

escape peak, caused by pair production occurring from the 1.33 MeV gammas, which is 

present in this test problem that was not in test problem 1.  This is because each of the 

source energies lies above the pair production threshold of 1.022 MeV.  The Compton 

continuum and Compton edges are nearly identical in the two methods.   

There are two regions in this plot where the methods do not agree as well: the 

multiple scatter region and the x-ray escape peak.  The multiple scatter region was 

discussed in test problem 1.  The x-ray peak value calculated from our deterministic 

transport method is 0.994 while the value calculated using MCNP5 is 4.33.  The end 

result is the deterministic calculation being a factor of 4.35 lower.  We suspect this 

difference is caused by differences in the scattering cross section between CEPXS and 

MCNP5.   
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Figures 3.4 and 3.5 show the average scalar fluxes and exiting partial currents for 

the two methods.  Overall, there is good agreement between the codes, with differences 

again in the multiple scatter region and at the x-ray escape peak. 

4.3 Test Problem 3: Th-232 

 This last test problem involves a source for which there are 362 discrete source 

energies and associated probabilities of emission.  Figure 3.7 compares the pulse height 

distributions calculated from MCNP5 and our deterministic transport method.  At each of 

the peak energies, the magnitudes of the coincident peaks are virtually indistinguishable 

from each other.  An important difference occurs in the peak located in the energy bin 

containing 2.12 MeV.  This peak corresponds to the single escape peak from pair 

production events caused by the 2.62 MeV photons in the highest energy bin.  The peak, 

as calculated by our deterministic transport method is spread over two energy bins, just 

like the x-ray escape peak in test problem 1.  This is a consequence of the choice of 

energy bin boundaries, and can be alleviated by a different choice of boundaries.  The 

sum of the counts in each of the two energy bins is equal to the number of counts in the 

single escape peak calculated by MCNP5.   

Also, throughout the majority of the Compton continuum, the results calculated 

from each method are the same.  However, the portion of the Compton continuum and 

edge that lie above the single escape peak differ between the methods.  Our deterministic 

transport method is unable to accurately match the slope over this range.  Lastly, the 

same discrepancy in the multiple scatter region is present in this test, although the 

difference is significantly smaller than in the previous two test problems.   
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In figures 3.8 and 3.9, the scalar fluxes and exiting currents on the right 

face of the slab from MCNP5 and the deterministic method are shown 

respectively.  One noteworthy difference occurs at 0.0523 MeV.  MCNP5 

calculates a scalar flux of 17.3 photons/cm
2
-sec and a partial current of 2.61e-1 

photons/cm
2
-sec in this energy bin.  Our deterministic transport method gives 

values of 6.9 photons/cm
2
-sec and 8.36e-2 photons/cm

2
-sec for scalar flux and 

exiting partial current respectively.  This peak corresponds to the x-ray escape 

peak due to photoelectric absorption occurring in the 2.615 MeV source energy 

group.  Looking at the pulse height distribution in figure 3.7, the x-ray escape 

peak is indistinguishable from the Compton continuum.    

4.4 Quality of Discretizations on Deterministic Solutions 

 In the previous chapter we described the spatial, angular, scattering order, and 

collided component discretizations used in out deterministic code.  In this section, we 

investigate the dependence of the quality of our results on the resolution in each of these 

variables.  We have chosen the Cs-137 test problem, test problem 1, as the basis for 

comparison.  We have examined the angular dependence of the scattering function to 

determine the scattering order necessary for accurate results. 

4.4.1 Spatial Resolution 

 Figure 3.10 shows the relative difference in scalar flux between coarse spatial 

meshes and a “converged” fine mesh result calculated using 40 equal sized cells across 

the slab.  Spatial discretizations of 1, 5, and 10 cells results in a maximum relative error 

of greater than 10%.  A spatial discretization of 20 cells results in a maximum relative 

error of less than 1%.  There is no analytic result with which to compare our numerical 
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results, but these test problems do show a reduction in error as the mesh is refined.  

Figure 3.10 indicates that a minimum of 10 cells should be used to obtain reasonable 

accuracy. 

4.4.2 Angular Resolution 

 Figure 3.11 shows the maximum relative error of the scalar flux as a function of 

the number of angles in the quadrature set.  The “converged” solution is calculated using 

S32 angular quadrature.  This figure suggests that quadratures smaller than S16 yield 

unacceptably large errors in the solution.  In more complicated geometries, highly 

scattering problems or scenarios where ray effects are present, substantially more angular 

resolution may be required.   

4.4.3 Collided Flux Component Resolution 

 Figure 3.12 shows the maximum relative error in scalar flux as a function of the 

number of collided flux components used in the simulation.  The “converged” result is 

calculated using 20 collided flux components.  The number of collided components being 

used by the simulation is similar to replacing the number of iterations on the scattering 

source in normal source iteration.  If an insufficient number of collided components are 

not kept, we may not be iterating to convergence on the scalar flux.  Figure 3.12 shows 

that keeping only 2 or 4 collided components yields very inaccurate results.  With 8 

collided components, the maximum relative error is still large at 34%, and keeping 10 

collided components gives an error of 12%.  In this test problem, a minimum of 10 

collided components is necessary to obtain reasonably accurate results. 
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4.4.4 Scattering Order Resolution 

 Figure 3.13 shows the maximum relative error in the scalar flux calculated as a 

function of the order of the scattering function expansion.  The “converged” solution is 

calculated using P14 scattering, which means a 14
th

 order Legendre polynomial expansion 

is used.  The scattering order is a measure of the amount of anisotropy of the scattering 

cross section.  For example, if the scattering function is isotropic or linearly anisotropic, 

then a polynomial expansion of order 0 or 1 (P0 or P1) will exactly characterize the 

scattering function.  The more anisotropic the scattering, the higher the scattering order 

must be to accurately represent the scattering function.  In the Cs-137 example problem, 

we show that P0 and P1 are insufficient to accurately represent the scattering function.  P4 

gives a maximum relative error of 3.95% and a scattering order of 8 results in a 

maximum relative error of 1.57%.  In this test problem, the scattering function can be 

represented by a polynomial of order 3 with a relative error of less than 4%.   

An alternative approach involves looking directly at the scattering function.  

Figure 3.14 shows the within group scattering function as a function of PN order.  This 

figure also shows that a scattering order of P4 is sufficient to accurately recreate the 

within group scattering function curve.  Figure 3.15 displays the results for the 

downscatter scattering function.  A visual inspection of this figure indicates that P5 

scattering is enough to accurately reproduce the anisotropy of the downscatter scattering 

function. 
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4.4.5 Resolution of Energy Group Structure 

 The quality of the numerical solution generated by the deterministic transport 

code is dependent on the number of energy groups used to generate the cross section data.  

Most often, energy resolution (group structure) is problem dependent and specified at the 

outset.  However, in some radiation detection problems, the choice of group structure is 

dictated by the energy resolution available in instrumentation or from measurements. 
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5.  Conclusions 

 

 In this section, we discuss the limitations of the research presented in this thesis, 

and discuss future work necessary to completely validate the research and methods we 

have presented. 

5.1 Limitations  

We have demonstrated a new method for deterministic calculation of the 

pulse height distribution in 1D slab geometry. In principle, however, the extension 

to three dimensions is straightforward.  The physics of the algorithm we have 

developed requires only that the scalar flux be generated from post-processing, 

and 3-D deterministic transport codes are available that can perform these 

calculations in complex geometries.  

Some of the discrepancies exhibited in our test problems may be due to 

differences in the cross section data.  To verify whether or not this is the case may 

require exploration into alternative cross section data than that provided in 

CEPXS.   

Another current limitation of this research is that we have assumed that the 

radiation field is known on the face of the detector.  However, it is not a difficult 

process to move the source away from the slab.  There are two ways we could 

approach a solution.  First we could run deterministic transport using normal 

source iteration, for example, and calculate the angular flux at the face of the 

detector from a shielded source located an appreciable distance away.  At this 

point we would run another deterministic simulation this angular flux as our 

boundary condition, and run in collided component mode (using the method 
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presented in this thesis).  The other option would be to run the entire problem 

using collided components.  The only difficulty here is the number of components 

necessary to accurately represent scattering over the entire problem. 

5.2 Future Work 

To fully reproduce the capabilities of MCNP5, pair production must be 

better treated in the deterministic calculation of PHDs.  In some cases, coupled 

photon/electron transport may be necessary to generate very accurate PHDs.  

Coupled deterministic electron/photon transport is possible in 1-D (through 

CEPXS-ONELD) and 3-D (through Attila).  Coupled electron/photon transport 

may improve the energy deposition events near the surface of a detector where 

some of the electron energy can escape.   

This research has presented a limited number of test problems.  Further 

research will involve a larger number of detector geometries (in multiple 

dimensions), and also detector materials.  Another area of research may involve 

post-processing PHDs to mimic simplified detector response functions.  MCNP5 

accomplishes this with Gaussian Energy Broadening (GEB) functions to account 

for resolution issues of detectors. 
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5.3 Summary 

 We have described a new approach to the calculation of the pulse height 

distribution in radiation detectors.  Our methodology is the first to use deterministic 

transport instead of Monte Carlo transport.  This methodology has been tested using a    

1-D slab geometry linear characteristic transport code, and for several test problems, its 

results (scalar flux, exiting partial current, and pulse height distribution) compare very 

favorably with MCNP5. 
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Appendix A: Source Definition file for Th-232 with 100 years of ingrowth 

 

 

 

Source Energy 
(MeV) Prob. Of Emission Photons/sec Nuclide ZAID 

Num. 
Density 

              

0.0089534 2.54E-04 5.55E+01 Bi 212 830212 3.63E+03 

0.0091845 3.98E-05 8.69E+00 Tl 208 810208 1.83E+02 

0.0094195 5.69E-04 1.24E+02 Pb 212 820212 3.83E+04 

0.009658 3.63E-06 7.93E-01 Bi 212 830212 3.63E+03 

0.010137 1.23E-05 2.68E+00 Ra 224 880224 3.16E+05 

0.0102585 5.15E-03 1.12E+03 Bi 212 830212 3.63E+03 

0.0105409 7.91E-04 1.73E+02 Tl 208 810208 1.83E+02 

0.010622 3.00E-04 6.55E+01 Th 228 900228 6.04E+07 

0.0108281 1.11E-02 2.43E+03 Pb 212 820212 3.83E+04 

0.0109938 4.80E-05 1.05E+01 Bi 212 830212 3.63E+03 

0.011118 1.50E-03 3.28E+02 Ac 228 890228 2.21E+04 

0.0111185 6.97E-05 1.52E+01 Bi 212 830212 3.63E+03 

0.0113493 1.06E-05 2.32E+00 Tl 208 810208 1.83E+02 

0.011712 1.47E-04 3.21E+01 Pb 212 820212 3.83E+04 

0.0117131 2.27E-04 4.96E+01 Ra 224 880224 3.16E+05 

0.012085 1.06E-06 2.31E-01 Bi 212 830212 3.63E+03 

0.0122816 5.98E-03 1.31E+03 Bi 212 830212 3.63E+03 

0.0123246 5.31E-03 1.16E+03 Th 228 900228 6.04E+07 

0.0127014 7.40E-04 1.62E+02 Tl 208 810208 1.83E+02 

0.01276 3.22E-02 7.03E+03 Ra 228 880228 1.81E+08 

0.012855 5.69E-06 1.24E+00 Ra 224 880224 3.16E+05 

0.012952 2.56E-02 5.59E+03 Ac 228 890228 2.21E+04 

0.0130993 1.02E-02 2.24E+03 Pb 212 820212 3.83E+04 

0.0135009 6.88E-05 1.50E+01 Bi 212 830212 3.63E+03 

0.01352 1.69E-01 3.70E+04 Ra 228 880228 1.81E+08 

0.013662 1.60E-04 3.49E+01 Th 228 900228 6.04E+07 

0.0143363 3.09E-04 6.75E+01 Ra 224 880224 3.16E+05 

0.014511 6.64E-04 1.45E+02 Ac 228 890228 2.21E+04 

0.0145628 1.38E-03 3.02E+02 Bi 212 830212 3.63E+03 

0.0148839 1.37E-04 2.98E+01 Tl 208 810208 1.83E+02 

0.01515 1.69E-02 3.70E+03 Ra 228 880228 1.81E+08 

0.0152303 8.01E-03 1.75E+03 Th 228 900228 6.04E+07 

0.0153763 1.92E-03 4.20E+02 Pb 212 820212 3.83E+04 

0.0158689 1.34E-05 2.92E+00 Bi 212 830212 3.63E+03 

0.016154 3.47E-02 7.57E+03 Ac 228 890228 2.21E+04 

0.01618 7.62E-02 1.67E+04 Ra 228 880228 1.81E+08 
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0.0168813 6.68E-05 1.46E+01 Ra 224 880224 3.16E+05 

0.0179517 1.80E-03 3.94E+02 Th 228 900228 6.04E+07 

0.0188 2.20E-02 4.81E+03 Ra 228 880228 1.81E+08 

0.0191132 7.85E-03 1.71E+03 Ac 228 890228 2.21E+04 

0.0194 1.52E-03 3.33E+02 Ra 228 880228 1.81E+08 

0.0398458 1.86E-03 4.07E+02 Bi 212 830212 3.63E+03 

0.0578137 8.89E-04 1.94E+02 Ac 228 890228 2.21E+04 

0.0589921 3.22E-04 7.03E+01 Th 232 900232 4.43E+17 

0.0708316 1.27E-04 2.77E+01 Bi 212 830212 3.63E+03 

0.0728035 1.30E-03 2.84E+02 Tl 208 810208 1.83E+02 

0.0728729 2.14E-04 4.68E+01 Bi 212 830212 3.63E+03 

0.0748137 1.79E-02 3.90E+03 Pb 212 820212 3.83E+04 

0.0749693 2.19E-03 4.78E+02 Tl 208 810208 1.83E+02 

0.0768582 1.01E-04 2.21E+01 Bi 212 830212 3.63E+03 

0.0771073 3.00E-02 6.56E+03 Pb 212 820212 3.83E+04 

0.07929 1.69E-04 3.68E+01 Bi 212 830212 3.63E+03 

0.0810674 2.09E-04 4.56E+01 Ra 224 880224 3.16E+05 

0.0824337 7.56E-05 1.65E+01 Bi 212 830212 3.63E+03 

0.083787 3.46E-04 7.56E+01 Ra 224 880224 3.16E+05 

0.084257 2.05E-03 4.48E+02 Th 228 900228 6.04E+07 

0.0847893 7.73E-04 1.69E+02 Tl 208 810208 1.83E+02 

0.0851851 2.12E-05 4.64E+00 Bi 212 830212 3.63E+03 

0.0854291 2.97E-05 6.49E+00 Th 228 900228 6.04E+07 

0.0871902 1.06E-02 2.32E+03 Pb 212 820212 3.83E+04 

0.0876316 2.23E-04 4.88E+01 Tl 208 810208 1.83E+02 

0.088471 4.88E-05 1.07E+01 Th 228 900228 6.04E+07 

0.0896389 5.98E-05 1.31E+01 Bi 212 830212 3.63E+03 

0.0899547 5.80E-03 1.27E+03 Ac 228 890228 2.21E+04 

0.0901281 3.15E-03 6.89E+02 Pb 212 820212 3.83E+04 

0.0926726 1.82E-05 3.98E+00 Bi 212 830212 3.63E+03 

0.09335 9.42E-03 2.06E+03 Ac 228 890228 2.21E+04 

0.0946774 1.22E-04 2.67E+01 Ra 224 880224 3.16E+05 

0.0979075 3.90E-05 8.53E+00 Ra 224 880224 3.16E+05 

0.0995475 2.27E-03 4.96E+02 Ac 228 890228 2.21E+04 

0.0999155 1.75E-05 3.82E+00 Th 228 900228 6.04E+07 

0.1033407 5.70E-06 1.24E+00 Th 228 900228 6.04E+07 

0.1053616 3.41E-03 7.45E+02 Ac 228 890228 2.21E+04 

0.1089898 1.13E-03 2.47E+02 Ac 228 890228 2.21E+04 

0.1151221 1.00E-03 2.19E+02 Pb 212 820212 3.83E+04 

0.1240876 2.74E-05 5.98E+00 Bi 212 830212 3.63E+03 

0.1243673 7.28E-05 1.59E+01 Th 232 900232 4.43E+17 

0.1290348 4.96E-03 1.08E+03 Ac 228 890228 2.21E+04 

0.1300666 3.04E-05 6.65E+00 Bi 212 830212 3.63E+03 
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0.1314968 2.16E-04 4.72E+01 Th 228 900228 6.04E+07 

0.1314968 7.71E-09 1.68E-03 Fr 224 870224 1.60E+02 

0.1356828 2.95E-05 6.44E+00 Ac 228 890228 2.21E+04 

0.1411871 8.35E-05 1.82E+01 Ac 228 890228 2.21E+04 

0.1439876 1.70E-05 3.72E+00 Bi 212 830212 3.63E+03 

0.1460594 4.84E-04 1.06E+02 Ac 228 890228 2.21E+04 

0.15389 1.43E-03 3.12E+02 Ac 228 890228 2.21E+04 

0.1639876 7.91E-06 1.73E+00 Bi 212 830212 3.63E+03 

0.1641456 7.75E-06 1.69E+00 Pb 212 820212 3.83E+04 

0.1664293 2.33E-10 5.09E-05 Fr 224 870224 1.60E+02 

0.1664293 1.39E-04 3.03E+01 Th 228 900228 6.04E+07 

0.1741802 5.40E-05 1.18E+01 Ac 228 890228 2.21E+04 

0.1765774 8.65E-05 1.89E+01 Pb 212 820212 3.83E+04 

0.1847173 2.32E-04 5.06E+01 Ac 228 890228 2.21E+04 

0.1900666 4.26E-05 9.31E+00 Bi 212 830212 3.63E+03 

0.1912894 2.06E-04 4.51E+01 Ac 228 890228 2.21E+04 

0.1995398 4.68E-04 1.02E+02 Ac 228 890228 2.21E+04 

0.2043677 2.67E-04 5.83E+01 Ac 228 890228 2.21E+04 

0.2057452 4.82E-05 1.05E+01 Th 228 900228 6.04E+07 

0.2057452 1.28E-09 2.79E-04 Fr 224 870224 1.60E+02 

0.2093852 6.98E-03 1.52E+03 Ac 228 890228 2.21E+04 

0.2107595 3.93E-04 8.58E+01 Ac 228 890228 2.21E+04 

0.2113055 1.03E-04 2.26E+01 Tl 208 810208 1.83E+02 

0.2157538 4.69E-04 1.02E+02 Th 228 900228 6.04E+07 

0.2157538 1.67E-08 3.65E-03 Fr 224 870224 1.60E+02 

0.2162404 1.33E-03 2.91E+02 Ac 228 890228 2.21E+04 

0.2204883 2.33E-05 5.09E+00 Ac 228 890228 2.21E+04 

0.2237161 1.12E-04 2.46E+01 Ac 228 890228 2.21E+04 

0.2323474 9.82E-05 2.15E+01 Ac 228 890228 2.21E+04 

0.2333229 1.88E-04 4.11E+01 Tl 208 810208 1.83E+02 

0.2385784 7.39E-02 1.62E+04 Pb 212 820212 3.83E+04 

0.2407643 6.61E-03 1.44E+03 Ra 224 880224 3.16E+05 

0.2524527 4.86E-04 1.06E+02 Tl 208 810208 1.83E+02 

0.2572874 5.40E-05 1.18E+01 Ac 228 890228 2.21E+04 

0.2635654 9.82E-05 2.15E+01 Ac 228 890228 2.21E+04 

0.2702561 6.39E-03 1.39E+03 Ac 228 890228 2.21E+04 

0.277283 4.13E-03 9.02E+02 Tl 208 810208 1.83E+02 

0.2792584 3.93E-04 8.58E+01 Ac 228 890228 2.21E+04 

0.2820244 1.50E-04 3.28E+01 Ac 228 890228 2.21E+04 

0.288084 5.78E-04 1.26E+02 Bi 212 830212 3.63E+03 

0.2904808 1.52E-05 3.33E+00 Ra 224 880224 3.16E+05 

0.2950876 4.08E-05 8.91E+00 Bi 212 830212 3.63E+03 

0.3000336 5.66E-03 1.24E+03 Pb 212 820212 3.83E+04 
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0.321912 4.27E-04 9.34E+01 Ac 228 890228 2.21E+04 

0.3252026 4.19E-10 9.16E-05 Fr 224 870224 1.60E+02 

0.3276742 2.28E-04 4.97E+01 Ac 228 890228 2.21E+04 

0.3278235 3.26E-10 7.12E-05 Fr 224 870224 1.60E+02 

0.3279297 2.31E-04 5.05E+01 Bi 212 830212 3.63E+03 

0.3280698 5.86E-03 1.28E+03 Ac 228 890228 2.21E+04 

0.3324763 8.01E-04 1.75E+02 Ac 228 890228 2.21E+04 

0.3349107 5.12E-10 1.12E-04 Fr 224 870224 1.60E+02 

0.3384199 2.11E-02 4.60E+03 Ac 228 890228 2.21E+04 

0.3409398 8.87E-04 1.94E+02 Ac 228 890228 2.21E+04 

0.3568347 3.34E-05 7.30E+00 Ac 228 890228 2.21E+04 

0.3722728 1.47E-05 3.22E+00 Ac 228 890228 2.21E+04 

0.3779352 5.40E-05 1.18E+01 Ac 228 890228 2.21E+04 

0.3831426 2.98E-10 6.51E-05 Fr 224 870224 1.60E+02 

0.3888728 2.46E-05 5.37E+00 Ac 228 890228 2.21E+04 

0.3968728 5.50E-05 1.20E+01 Ac 228 890228 2.21E+04 

0.3992365 6.19E-05 1.35E+01 Ac 228 890228 2.21E+04 

0.4092903 6.78E-06 1.48E+00 Ra 224 880224 3.16E+05 

0.4096246 3.73E-03 8.14E+02 Ac 228 890228 2.21E+04 

0.4143684 4.10E-10 8.95E-05 Fr 224 870224 1.60E+02 

0.4151556 4.77E-05 1.04E+01 Pb 212 820212 3.83E+04 

0.4161728 2.95E-05 6.44E+00 Ac 228 890228 2.21E+04 

0.4172529 5.59E-11 1.22E-05 Fr 224 870224 1.60E+02 

0.4192252 4.42E-05 9.66E+00 Ac 228 890228 2.21E+04 

0.4335128 2.44E-05 5.32E+00 Bi 212 830212 3.63E+03 

0.4404871 2.46E-04 5.37E+01 Ac 228 890228 2.21E+04 

0.4495689 1.10E-04 2.40E+01 Ac 228 890228 2.21E+04 

0.4527734 6.15E-04 1.34E+02 Bi 212 830212 3.63E+03 

0.4608419 8.99E-05 1.96E+01 Ac 228 890228 2.21E+04 

0.4631049 7.73E-03 1.69E+03 Ac 228 890228 2.21E+04 

0.4713728 5.89E-05 1.29E+01 Ac 228 890228 2.21E+04 

0.4733586 8.52E-05 1.86E+01 Bi 212 830212 3.63E+03 

0.4743246 4.91E-05 1.07E+01 Ac 228 890228 2.21E+04 

0.4781974 4.08E-04 8.91E+01 Ac 228 890228 2.21E+04 

0.481792 1.47E-05 3.21E+00 Ac 228 890228 2.21E+04 

0.4857752 3.04E-05 6.64E+00 Tl 208 810208 1.83E+02 

0.4923558 3.44E-05 7.51E+00 Ac 228 890228 2.21E+04 

0.4926191 1.03E-05 2.26E+00 Bi 212 830212 3.63E+03 

0.4982645 7.34E-05 1.60E+01 Ac 228 890228 2.21E+04 

0.5037075 3.64E-04 7.94E+01 Ac 228 890228 2.21E+04 

0.5091719 8.35E-04 1.82E+02 Ac 228 890228 2.21E+04 

0.5106055 1.31E-02 2.87E+03 Tl 208 810208 1.83E+02 

0.5152396 7.37E-05 1.61E+01 Ac 228 890228 2.21E+04 
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0.5199744 1.33E-04 2.90E+01 Ac 228 890228 2.21E+04 

0.5231832 2.06E-04 4.51E+01 Ac 228 890228 2.21E+04 

0.5404728 4.91E-05 1.07E+01 Ac 228 890228 2.21E+04 

0.546361 3.73E-04 8.15E+01 Ac 228 890228 2.21E+04 

0.549704 1.19E-04 2.59E+01 Rn 220 860220 5.56E+01 

0.5552728 8.35E-05 1.82E+01 Ac 228 890228 2.21E+04 

0.5626522 1.71E-03 3.74E+02 Ac 228 890228 2.21E+04 

0.570232 3.14E-04 6.87E+01 Ac 228 890228 2.21E+04 

0.5725102 3.15E-04 6.88E+01 Ac 228 890228 2.21E+04 

0.5804264 1.34E-06 2.93E-01 Bi 212 830212 3.63E+03 

0.5815247 2.55E-03 5.56E+02 Ac 228 890228 2.21E+04 

0.5830215 5.22E-02 1.14E+04 Tl 208 810208 1.83E+02 

0.5832753 2.55E-04 5.58E+01 Ac 228 890228 2.21E+04 

0.5878165 2.43E-05 5.31E+00 Tl 208 810208 1.83E+02 

0.6158547 1.47E-04 3.22E+01 Ac 228 890228 2.21E+04 

0.6198847 1.81E-04 3.96E+01 Ac 228 890228 2.21E+04 

0.6202721 6.09E-06 1.33E+00 Bi 212 830212 3.63E+03 

0.6235925 1.12E-04 2.45E+01 Ac 228 890228 2.21E+04 

0.6299263 8.47E-05 1.85E+01 Ac 228 890228 2.21E+04 

0.6406739 1.03E-04 2.25E+01 Ac 228 890228 2.21E+04 

0.6491867 7.37E-05 1.61E+01 Ac 228 890228 2.21E+04 

0.6500542 1.19E-05 2.59E+00 Ra 224 880224 3.16E+05 

0.6501351 2.19E-05 4.78E+00 Tl 208 810208 1.83E+02 

0.651439 1.72E-04 3.76E+01 Ac 228 890228 2.21E+04 

0.6604305 2.21E-05 4.83E+00 Ac 228 890228 2.21E+04 

0.6663728 7.86E-05 1.72E+01 Ac 228 890228 2.21E+04 

0.673864 1.72E-04 3.76E+01 Ac 228 890228 2.21E+04 

0.6770728 1.45E-03 3.16E+02 Ac 228 890228 2.21E+04 

0.6875821 6.39E-05 1.39E+01 Ac 228 890228 2.21E+04 

0.6880483 6.39E-05 1.39E+01 Ac 228 890228 2.21E+04 

0.6925034 5.78E-06 1.26E+00 Ac 228 890228 2.21E+04 

0.7017969 3.29E-04 7.19E+01 Ac 228 890228 2.21E+04 

0.7052351 1.34E-05 2.92E+00 Tl 208 810208 1.83E+02 

0.7074949 2.59E-04 5.66E+01 Ac 228 890228 2.21E+04 

0.7219105 1.23E-04 2.69E+01 Tl 208 810208 1.83E+02 

0.7266278 1.47E-03 3.22E+02 Ac 228 890228 2.21E+04 

0.7272466 1.13E-02 2.46E+03 Bi 212 830212 3.63E+03 

0.7376714 6.88E-05 1.50E+01 Ac 228 890228 2.21E+04 

0.7392292 4.82E-06 1.05E+00 Ac 228 890228 2.21E+04 

0.7443224 7.76E-06 1.70E+00 Ac 228 890228 2.21E+04 

0.7485842 2.61E-05 5.71E+00 Tl 208 810208 1.83E+02 

0.7552773 2.24E-03 4.88E+02 Ac 228 890228 2.21E+04 

0.7625131 1.16E-09 2.52E-04 Fr 224 870224 1.60E+02 
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0.7630576 9.97E-04 2.18E+02 Tl 208 810208 1.83E+02 

0.7722775 1.85E-03 4.03E+02 Ac 228 890228 2.21E+04 

0.773963 1.47E-04 3.22E+01 Ac 228 890228 2.21E+04 

0.7821229 9.97E-04 2.18E+02 Ac 228 890228 2.21E+04 

0.7855095 1.88E-03 4.10E+02 Bi 212 830212 3.63E+03 

0.7910482 3.49E-05 7.63E+00 Ac 228 890228 2.21E+04 

0.7911517 4.91E-05 1.07E+01 Ac 228 890228 2.21E+04 

0.7947914 7.77E-03 1.70E+03 Ac 228 890228 2.21E+04 

0.801829 5.50E-10 1.20E-04 Fr 224 870224 1.60E+02 

0.8166165 5.93E-05 1.30E+01 Ac 228 890228 2.21E+04 

0.8211387 2.43E-05 5.31E+00 Tl 208 810208 1.83E+02 

0.8252602 9.82E-05 2.15E+01 Ac 228 890228 2.21E+04 

0.8305857 1.07E-03 2.34E+02 Ac 228 890228 2.21E+04 

0.8316205 1.58E-10 3.46E-05 Fr 224 870224 1.60E+02 

0.8356032 2.90E-03 6.33E+02 Ac 228 890228 2.21E+04 

0.8367613 5.40E-09 1.18E-03 Fr 224 870224 1.60E+02 

0.8404411 1.59E-03 3.47E+02 Ac 228 890228 2.21E+04 

0.8535999 2.44E-05 5.34E+00 Ac 228 890228 2.21E+04 

0.8603036 7.29E-03 1.59E+03 Tl 208 810208 1.83E+02 

0.8704656 1.12E-04 2.45E+01 Ac 228 890228 2.21E+04 

0.8739196 3.26E-10 7.12E-05 Fr 224 870224 1.60E+02 

0.87443 1.42E-04 3.11E+01 Ac 228 890228 2.21E+04 

0.8776516 3.44E-05 7.51E+00 Ac 228 890228 2.21E+04 

0.8810068 4.66E-10 1.02E-04 Fr 224 870224 1.60E+02 

0.8832692 1.88E-05 4.11E+00 Tl 208 810208 1.83E+02 

0.8839855 1.72E-04 3.76E+01 Ac 228 890228 2.21E+04 

0.8874606 3.44E-05 7.51E+00 Ac 228 890228 2.21E+04 

0.8934199 6.21E-04 1.36E+02 Bi 212 830212 3.63E+03 

0.9042878 1.51E-03 3.30E+02 Ac 228 890228 2.21E+04 

0.9111572 4.87E-02 1.06E+04 Ac 228 890228 2.21E+04 

0.9191851 4.67E-05 1.02E+01 Ac 228 890228 2.21E+04 

0.9222845 3.50E-05 7.64E+00 Ac 228 890228 2.21E+04 

0.9239459 3.85E-05 8.41E+00 Ac 228 890228 2.21E+04 

0.9274171 7.59E-05 1.66E+01 Tl 208 810208 1.83E+02 

0.9310728 2.46E-05 5.37E+00 Ac 228 890228 2.21E+04 

0.9406464 6.42E-05 1.40E+01 Ac 228 890228 2.21E+04 

0.9439235 1.82E-04 3.97E+01 Ac 228 890228 2.21E+04 

0.948351 2.06E-04 4.51E+01 Ac 228 890228 2.21E+04 

0.9521726 2.98E-04 6.52E+01 Bi 212 830212 3.63E+03 

0.9583036 5.21E-04 1.14E+02 Ac 228 890228 2.21E+04 

0.9646375 9.78E-03 2.14E+03 Ac 228 890228 2.21E+04 

0.9682576 4.94E-10 1.08E-04 Fr 224 870224 1.60E+02 

0.9689707 2.95E-02 6.45E+03 Ac 228 890228 2.21E+04 
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0.9757648 2.02E-04 4.41E+01 Ac 228 890228 2.21E+04 

0.9796728 3.93E-05 8.58E+00 Ac 228 890228 2.21E+04 

0.9825171 1.20E-04 2.61E+01 Tl 208 810208 1.83E+02 

0.9878698 5.76E-04 1.26E+02 Ac 228 890228 2.21E+04 

0.98794 3.24E-04 7.08E+01 Ac 228 890228 2.21E+04 

1.0161171 4.23E-05 9.25E+00 A c 228 890228 2.21E+04 

1.01965 4.23E-05 9.25E+00 A c 228 890228 2.21E+04 

1.033322 2.62E-04 5.72E+01 A c 228 890228 2.21E+04 

1.0399701 9.38E-05 2.05E+01 A c 228 890228 2.21E+04 

1.04135 5.40E-05 1.18E+01 A c 228 890228 2.21E+04 

1.0525142 2.52E-10 5.49E-05 F r 224 870224 1.60E+02 

1.0543009 5.36E-05 1.17E+01 A c 228 890228 2.21E+04 

1.0650465 2.89E-04 6.32E+01 A c 228 890228 2.21E+04 

1.0740665 2.68E-05 5.85E+00 B i 212 830212 3.63E+03 

1.0786919 9.07E-04 1.98E+02 B i 212 830212 3.63E+03 

1.0936255 2.25E-04 4.91E+01 T l 208 810208 1.83E+02 

1.0958738 2.23E-04 4.87E+01 A c 228 890228 2.21E+04 

1.1040055 2.95E-05 6.44E+00 A c 228 890228 2.21E+04 

1.1106962 6.56E-04 1.43E+02 A c 228 890228 2.21E+04 

1.1169742 1.03E-04 2.25E+01 A c 228 890228 2.21E+04 

1.1255842 3.04E-06 6.64E-01 T l 208 810208 1.83E+02 

1.1353889 2.06E-05 4.51E+00 A c 228 890228 2.21E+04 

1.1427406 1.72E-05 3.76E+00 A c 228 890228 2.21E+04 

1.1536873 2.70E-04 5.90E+01 A c 228 890228 2.21E+04 

1.1605509 6.68E-06 1.46E+00 T l 208 810208 1.83E+02 

1.1619626 4.84E-10 1.06E-04 F r 224 870224 1.60E+02 

1.1635566 1.28E-04 2.79E+01 A c 228 890228 2.21E+04 

1.1736912 8.38E-11 1.83E-05 F r 224 870224 1.60E+02 

1.1747876 4.91E-05 1.07E+01 A c 228 890228 2.21E+04 

1.1850842 1.03E-05 2.26E+00 T l 208 810208 1.83E+02 

1.1857911 1.21E-10 2.65E-05 F r 224 870224 1.60E+02 

1.2163986 4.42E-05 9.66E+00 A c 228 890228 2.21E+04 

1.2199023 9.32E-11 2.04E-05 F r 224 870224 1.60E+02 

1.2452262 1.47E-04 3.22E+01 A c 228 890228 2.21E+04 

1.2466005 9.58E-04 2.09E+02 A c 228 890228 2.21E+04 

1.2498092 9.82E-05 2.15E+01 A c 228 890228 2.21E+04 

1.2775435 3.44E-05 7.51E+00 A c 228 890228 2.21E+04 

1.2826842 3.16E-05 6.90E+00 T l 208 810208 1.83E+02 

1.2866472 2.01E-04 4.40E+01 A c 228 890228 2.21E+04 

1.2982578 4.47E-10 9.77E-05 F r 224 870224 1.60E+02 

1.3000665 1.22E-05 2.66E+00 B i 212 830212 3.63E+03 

1.3095728 3.56E-05 7.77E+00 A c 228 890228 2.21E+04 

1.3147638 3.59E-05 7.83E+00 A c 228 890228 2.21E+04 
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1.3401912 2.35E-09 5.13E-04 F r 224 870224 1.60E+02 

1.3475857 2.21E-05 4.83E+00 A c 228 890228 2.21E+04 

1.3513984 5.31E-10 1.16E-04 F r 224 870224 1.60E+02 

1.3575848 4.91E-05 1.07E+01 A c 228 890228 2.21E+04 

1.3742601 3.39E-05 7.40E+00 A c 228 890228 2.21E+04 

1.3777152 1.60E-09 3.50E-04 F r 224 870224 1.60E+02 

1.3809841 4.25E-06 9.29E-01 T l 208 810208 1.83E+02 

1.415749 4.42E-05 9.66E+00 A c 228 890228 2.21E+04 

1.4309728 5.40E-05 1.18E+01 A c 228 890228 2.21E+04 

1.4356549 9.32E-10 2.04E-04 F r 224 870224 1.60E+02 

1.4512496 3.09E-05 6.76E+00 A c 228 890228 2.21E+04 

1.4591932 1.79E-03 3.92E+02 A c 228 890228 2.21E+04 

1.4687974 3.44E-05 7.51E+00 A c 228 890228 2.21E+04 

1.4811587 3.44E-05 7.51E+00 A c 228 890228 2.21E+04 

1.4960311 1.78E-03 3.89E+02 A c 228 890228 2.21E+04 

1.5014408 9.82E-04 2.15E+02 A c 228 890228 2.21E+04 

1.5038676 4.83E-05 1.05E+01 A c 228 890228 2.21E+04 

1.5127531 5.30E-04 1.16E+02 B i 212 830212 3.63E+03 

1.5288728 1.13E-04 2.47E+01 A c 228 890228 2.21E+04 

1.5373973 8.30E-05 1.81E+01 A c 228 890228 2.21E+04 

1.5485004 7.29E-05 1.59E+01 A c 228 890228 2.21E+04 

1.5569696 3.44E-04 7.51E+01 A c 228 890228 2.21E+04 

1.5676912 3.07E-10 6.72E-05 F r 224 870224 1.60E+02 

1.572031 8.45E-05 1.85E+01 A c 228 890228 2.21E+04 

1.5732716 9.33E-05 2.04E+01 A c 228 890228 2.21E+04 

1.5734912 2.33E-10 5.09E-05 F r 224 870224 1.60E+02 

1.5802836 1.20E-03 2.63E+02 A c 228 890228 2.21E+04 

1.5882271 6.08E-03 1.33E+03 A c 228 890228 2.21E+04 

1.6100178 1.96E-05 4.29E+00 A c 228 890228 2.21E+04 

1.6206632 2.56E-03 5.58E+02 B i 212 830212 3.63E+03 

1.6212802 1.68E-10 3.66E-05 F r 224 870224 1.60E+02 

1.6250651 5.40E-04 1.18E+02 A c 228 890228 2.21E+04 

1.6304746 3.30E-03 7.21E+02 A c 228 890228 2.21E+04 

1.6380969 9.19E-04 2.01E+02 A c 228 890228 2.21E+04 

1.6473842 1.22E-06 2.65E-01 T l 208 810208 1.83E+02 

1.6520912 5.59E-10 1.22E-04 F r 224 870224 1.60E+02 

1.6584912 1.21E-10 2.65E-05 F r 224 870224 1.60E+02 

1.6664313 3.37E-04 7.36E+01 A c 228 890228 2.21E+04 

1.6703911 1.21E-10 2.65E-05 F r 224 870224 1.60E+02 

1.6779069 1.13E-04 2.47E+01 A c 228 890228 2.21E+04 

1.6794156 1.16E-04 2.53E+01 B i 212 830212 3.63E+03 

1.6860034 1.77E-04 3.86E+01 A c 228 890228 2.21E+04 

1.7023054 1.13E-04 2.47E+01 A c 228 890228 2.21E+04 
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1.7055365 1.49E-10 3.26E-05 F r 224 870224 1.60E+02 

1.7060654 2.31E-05 5.05E+00 A c 228 890228 2.21E+04 

1.7126237 1.49E-10 3.26E-05 F r 224 870224 1.60E+02 

1.7132513 7.93E-06 1.73E+00 A c 228 890228 2.21E+04 

1.7242445 5.40E-05 1.18E+01 A c 228 890228 2.21E+04 

1.7390516 3.29E-05 7.19E+00 A c 228 890228 2.21E+04 

1.7411727 2.60E-05 5.69E+00 A c 228 890228 2.21E+04 

1.743569 1.22E-06 2.65E-01 T l 208 810208 1.83E+02 

1.7508728 1.57E-05 3.43E+00 A c 228 890228 2.21E+04 

1.7578842 7.01E-05 1.53E+01 A c 228 890228 2.21E+04 

1.7844728 1.62E-05 3.54E+00 A c 228 890228 2.21E+04 

1.8013092 3.04E-05 6.64E+00 B i 212 830212 3.63E+03 

1.8059344 1.89E-04 4.12E+01 B i 212 830212 3.63E+03 

1.823469 8.62E-05 1.88E+01 A c 228 890228 2.21E+04 

1.8350991 6.88E-05 1.50E+01 A c 228 890228 2.21E+04 

1.842285 8.20E-05 1.79E+01 A c 228 890228 2.21E+04 

1.8711727 4.42E-05 9.66E+00 A c 228 890228 2.21E+04 

1.8869178 2.01E-04 4.38E+01 A c 228 890228 2.21E+04 

1.9000983 7.85E-06 1.71E+00 A c 228 890228 2.21E+04 

1.9074615 8.01E-05 1.75E+01 A c 228 890228 2.21E+04 

1.9302728 4.18E-05 9.12E+00 A c 228 890228 2.21E+04 

1.9525027 1.23E-04 2.68E+01 A c 228 890228 2.21E+04 

1.9652748 3.99E-05 8.72E+00 A c 228 890228 2.21E+04 

2.2000667 3.04E-05 6.65E+00 B i 212 830212 3.63E+03 

2.6143542 6.08E-02 1.33E+04 T l 208 810208 1.83E+02 

 


