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The asymptotic boundary layer problem involving an axial

incompressible Newtonian fluid flow past a circular cylinder parallel

to its axis was investigated by Stewartson (1955). He addressed hi-

self primarily to the Mangler's (1948) derivation, namely, the

character of the boundary layer on a circular cylinder is equivalent to

that on a flat plate owing to the boundary layer thickness being small

compared with the radius of the body. Stewartson found from his

investigation that if the velocity of the main stream is constant, the

skin friction on the cylinder is increased at the corresponding points

of a flat plate due to the effect of the transverse curvature of the

cylinder, and, for the same reason, that the boundary layer thickness

is slightly reduced in comparison with that of the flat plate. Thus,

there certainly exist differences between the behavior of boundary

layer on a circular cylinder and that on a flat plate. In this thesis we



investigate the behavior of the asymptotic boundary layer of an axial

incompressible micropolar fluid flow on a circular cylinder, and

obtain the boundary layer solutions and their characteristics arising

out of the orientable nature of the fluid medium. The present investi-

gation is found to lead to the confirmation of the longstanding famous

conjecture of Eringen (1966) that the theory of micropolar fluids may

have a mechanism capable of explaining drag reduction near a solid

boundary. Expressions for the velocity and microrotation fields in

the boundary layer as well as those of skin-friction and boundary

layer thickness are obtained. This thesis also presents a review of

several existing continuum and microcontinuum constitutive theories

of great interest to orientate the recent trend in the field of continuum

mechanics and to provide for ready reference.
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THE ASYMPTOTIC BOUNDARY LAYER ON A CIRCULAR
CYLINDER IN AXISYMMETRIC MICROPOLAR FLUID

FLOW AND CONSTITUTIVE THEORIES

INTRODUCTION

It is well-known that the mass distribution function for a

material is not as smooth as assumed in the classical continuum

mechanics. In fact, the sequence consisting of the ratios formed by

AM where AM is the total mass of a small volume element AV
AV '

of a homogeneous material at any given time, is assumed to possess

a limit known as mass density in classical continuum mechanics.

But in reality, this sequence does not have a unique limit, when the

size of AV is below a certain critical volume AV*. Contrary

to this actual state of affairs the classical theories of continua are

based on the rather inaccurate assumption that all material bodies

possess continuous mass densities. Moreover, the classical laws of

motion and the axioms of constitution are inaccurately assumed to be

valid for every part of the medium regardless of its size. Thus, the

continua of the classical theory are just dense assemblages of point

masses, devoid of internal structures. Inherent in the classical

viewpoint are drastic limitations on the extent to which continuum

descriptions of macroscopic behavior can successfully bring out the

fine structure of matter. This inadequacy of the classical continuum
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approach to describe the macroscopic manifestations of microscopic

events like the production of internal angular momentum due to the

microspin motion, coupled with a strong motivation for extending the

range of applicability of continuum mechanics in the study of real

material behavior, has led to the fast development of theories of the

so-called microcontinua. Microcontinuum mechanics is intended to

describe the fine structures of materials which the classical continua

are devoid of. Duhem (1893) was the first to introduce the idea of an

oriented-medium by viewing a continuum as an assemblage of points,

each of which is associated with a set of three mutually perpendicular

vectors known as directors capable of deforming independently of the

deformations of the points. Subsequently, E. and F. Cosserat (1909)

built a unified theory for deformable bars, surfaces and bodies on the

concept of a three-space director -oriented continuum. The oriented-

medium so defined has since become known as the microcontinuum.

In theories of microcontinua, a material is regarded not only as a set

of structured particles with mass and velocity, but also as consisting

of substructures which can support microinertia and spin-inertia.

Because of the interactions among microelements, theories of micro-

continua admit couple stresses besides Cauchy stresses. These

theories also involve mechanics of orientation of the elements consti-

tuting the microcontinuum, and of the production of internal angular

momentum on account of their intrinsic rotation and deformations. The
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common feature of al1 the theories of microcontinua is that they all

take into account the couple stress and body couples so that the con-

tinuum under consideration is polar in nature, exhibiting an asym-

metric stress tensor. Among all the existing theories of microcon-

tinua, the theory of micropolar fluids, due to Eringen (1966), seems

to be one of the most promising ones in its mathematical simplicity

and elegance as well as its physical applicability. In fact, such

important fluids as animal blood, liquid crystals, polymeric fluids,

fluids containing certain additives fall into this category. Therefore,

it should be worthwhile to employ the theory of micropolar fluids to

study boundary layer phenomena.

The study of the asymptotic boundary layer of an incompressible

Newtonian fluid of constant properties on the exterior of a right cir-

cular cylinder with flow parallel to the cylinder axis was made by

Stewartson (1955). Around 1950, the investigation of the boundary

layer on a slender body of revolution had grown significant with an

increased frequency of prototype flight and test models under low

pressure conditions. Seban and Bond (1951) examined the skin fric-

tion in the boundary layer upon the leading edge of a right circular

cylinder and found that the initial effect of the curvature of the cylinder

is to increase the skin friction in comparison with the flat plate solu-

tion of Blasius. This very same effect was shown by Stewartson to

prevail even in the asymptotic region of the boundary layer under the
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same geometry. Especially when the boundary layer thickness

becomes comparable to the size of the body, the effect under discus-

sion would be enhanced due to the greater momentum and energy

exchanges inside the layer.

It is the main purpose of this thesis to bring out the asymptotic

boundary layer characteristics on a circular cylinder in axial incom-

pressible micropolar fluid flow which has not been investigated before.

In Chapter 1 we discuss several important classical constitutive

theories for ready reference. Chapter 2 presents a review of five

major microcontinuum constitutive theories advanced so far by

Eringen and Suhubi (1964), Eringen (1964, 1966), Allen, Desilva, and

Kline (1967), and Kirwan (1968), together with Mindlin's (1964)

microstructure theory based on Hamilton's variational principle. In

the present thesis, a review of Mindlin's theory is also made for

purposes of an interesting comparison with other microcontinuum

approaches, especially the linear theory of simple micro-elastic

solids by Eringen and Suhubi (1964). In Chapter 3 a set of boundary-

layer equations with appropriate boundary and matching conditions is

derived and solved for the present flow problem, obtaining expres

sions for the skin friction, the velocity profile, and the boundary

layer thickness. In Chapter 4 we conclude this thesis with a discus-

sion of the results and scope of further work.
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1. A REVIEW OF CONSTITUTIVE THEORIES IN
CLASSICAL CONTINUUM MECHANICS

1. 1 Preliminary Remarks

Non linearity of deformation and flow fields in materials is a

well-established fact. Therefore, the physical cause-effect relation-

ships should be explained accordingly.

Both the Newtonian theory of hydrodynamics and the Hooke's

law of elasticity do not admit nonlinearity in their response functions

[for example, the Merrington swelling effect (1943), the Weissenberg

climbing effect (1947), the lengthening and shortening of twisted bars].

The failure of these classical theories of continua to manifest the

effects of nonlinearity has prompted a rapid development of nonlinear

continuum mechanics. Such classical nonlinear theories as Reiner-

Rivlin theory (1945, 1948), Rivlin-Ericksen theory (1955), Green-

Rivlin theory (1957), Noll's theory (1958), Oldroyd theory (1958) have

been very successful in explaining nonlinear behaviors of materials.

However, their general constitutive equations are too complicated and

too unwieldly to solve many of the physical problems. Seth (1962,

1964, 1966) then recognized that the ever-increasing complexity of the

nonlinear constitutive equations of continuous media and their ad-hoc

generalizations resulted as a consequence of using ordinary measures

of deformation and its rate such as the Cauchy strain measure in the
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constitutive equations of rheologically nonlinear materials. In other

words, the constitutive equations have to be complicated as long as

we use the classical measures of deformation and rate-of-deformation

in their formulations. To avoid unnecessary complications in stress -

strain relationships and at the same time to predict results fairly

compatible with the experimental investigations, Seth generalized the

classical measures of deformation as well as the rate of deformation.

This concept has yielded suitable constitutive equations applicable to

physical problems, as demonstrated by Narsimhan and Sra (1969).

Seth's approach to the constitutive equations of continua has proven to

be a major departure from the conventional methodologies in non-

linear continuum mechanics.

In the following section, we discuss several important classical

constitutive theories for ready reference.

1.2 Newtonian Theory of Hydrodynamics

The constitutive equation of classical hydrodynamics of viscous

fluids is

where

t = (-p+X tr d)I + 21.14-1,

t = stress tensor,

d = deformation-rate tensor,

I = unit tensor,

(1.2.1)
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X = dilatational viscosity,

p. = shear viscosity, and

p = hydrostatic pressure.

It is clear that (1. 2. 1) is a constitutively linear relation in the

deformation-rate tensor d. Some fluids of ordinary experience,

e.g. , water, alcohol, air, mercury, fall into the domain of Newtonian

fluids to a fair degree of accuracy. (1.2.1) has no mechanism of

explaining such phenomena as the Weissenberg effect (1947), the

Merrington effect (1943), varying flow rates and torques in the

Poiseuille and Couette flows, respectively, and variable viscosity.

Fluids characterized by these anomalous behaviors are termed non-

Newtonian fluids. Typical examples are: condensed milk, liquid

lubricants, pastes, plastics, colloids, high polymers, blood,

asphalts, protein solutions, and so on. The ever-increasing use of a

number of non-Newtonian fluids in recent industrial and biological

investigations has stimulated several researchers to propose adequate

mathematical models for such fluids.

1.3 Theories of Non-Newtonian Fluids

The class of non-Newtonian fluids was divided by Bhatnagar

(1962) into the following three subclasses:
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subclass I: visco -inelastic fluids (or Stokesian fluids),

subclass II: time-dependent fluids, and

subclass III: visco -elastic fluids.

Subclass I (Visco-Inelastic Fluids)

The constitutive equation for visco-inelastic fluids does not

involve the time derivatives of the stress and deformation-rate com-

ponents. This subclass of fluids exhibits diverse behavior in response

to applied stress. Thus, it is customary to further divide visco-

inelastic fluids into the following three categories:

Bingham plastics,

Pseudoplastic and dilatant fluids, and

Reiner -Rivlin fluids.

Bingham Plastics: This fluid obeys the Newtonian constitutive

equation (1. 2. 1) but differs from the Newtonian fluid in sustaining a

certain finite stress called the yield-stress before the flow begins.

Pseudoplastic and Dilatant Fluids: Tomita (1959) obtained a

constitutive equation for pseudoplastic and dilatant fluids in the fol-

lowing form:

,t; + Ilid[fid]n-1/2

where

(1.3. 1)
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H.
1

= coefficient of viscosity,

n = rheological constant, and

IId = the second invariant of d.

The main difference between the pseudoplastic (n < 1) and dilatant

fluids (n > 1) is that in the former category of fluids the apparent

viscosity (i. e. , the viscosity measured by a viscometer) decreases

with an increase in the rate of shear, while the opposite effect holds

true for the latter. Note that when n = 1, (1.3. 1) reduces to the

constitutive equation of an incompressible Newtonian fluid. It is

noteworthy that (1.3. 1) contains only one viscosity coefficient.

Reiner -Rivlin Fluids (1945, 1948): This theory is based on the

assumption that the stress tensor t which is isotropic can be

expressed in a power series of the first deformation-rate tensor d.

With this assumption and the Cayley-Hamilton theorem (i. e. , a

matrix satisfies its characteristic equation), Reiner (1945) and

Rivlin (1948) deduced for incompressible, isotropic viscous fluids

the following constitutive equation:

t = -pI + aid + azd2 , (1.3.2)

where

t = stress tensor,

d = first deformation-rate tensor,

al = coefficient of viscosity,
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a
2

= coefficient of cross-viscosity, and

p = hydrostatic pressure.

al and a
2

are functions of material properties (e. g. , temperature

and specific volume) and also of the three invariants of d. The

rheological coefficients al and a
2

are unknown and the theory,

by itself, has no way of specifying them explicitly. There has been

so far no experimental evidence that supports the existence of this

class of fluids in nature or in industry. Experiments have also con-

tradicted the theoretical prediction of the existence of two normal

stresses in certain viscometric flows, when the rate of shear

becomes appreciably larger.

Subclass II (Time-Dependent Fluids)

Rheopectic Fluids: This fluid exhibits an increase in viscosity

with increasing time, while subjected to a steady rate of shear under

isothermal conditions.

Thixotropic Fluids: This fluid possesses the opposite property,

namely, its viscosity decreases as time increases under the same

conditions as in rheopectic fluids.

These behaviors of time-dependent fluids are attributed to

the whole chain of molecular deformations that occur subsequent

to an impressed disturbance. Due to our lack of knowledge

for representing the mechanism of the breaking and of
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reformation of molecular chains, no definite constitutive equation has

been established thus far for this subclass of non-Newtonian fluids.

Subclass III (Visco -Elastic Fluids)

In elastic fluids one can no longer ignore the strain measure

used however small it may be, as it is responsible for the recovery of

the original state and for the reverse flow that follows the removal of

stress. These material strains are determined by the stress history

of the fluid and cannot be specified kinematically in terms of the large

overall movements of the fluids. During the flow the natural state of

the fluid changes constantly and tries to attain the instantaneous state

of the deformed state, yet it does not succeed completely. This lag

measures the elasticity of the fluid.

There exist two types of approaches to describing such a class

of fluids:

i) Relaxation Theory, and

ii) Rivlin-Ericksen Theory, Green-Rivlin Theory, and Noll's

Theory.

i) Relaxation Theory. In this approach to a mathematical theory

of visco-elastic fluids, the elasticity is integrated into the constitutive

equations by introducing stress relaxation times and strain-

retardation times.



Oldroyd Constitutive Theory: The constitutive equation pro-

posed by Oldroyd (1958) is of the following form:

tik) + X.1
t(e)

+ t(e)
d.

(t..e) (
d. +t. e)

d ) + v t(e)d 5
ik

0 33 L 13 3k ik ij 1 ji ji idt

Odik
= 2110

(dik
+X2 Dt - 2p. d .d. + v d d )

2 3k 2 ji ji ik

for incompressible, isotropic elastico-viscous fluids, where

12

(1.3.3)

(e
dtik

) tik + p8.
Lk

( eviatoric part of the stress tensor), (1.3.4)

2d
ik

= vi,k + vk . (deformation-rate tensor), and (1. 3. 5)

t Jaumann derivative operator.

k .
.By definition, the Jaumann derivative of a tensor b i. . is given by

Dt
8 kbi.k .. =bi.. . +ymbi...,mat

m k k m
+ b m. ..+ Z1w b i . .in (1.3. 6)

where Z(Z1) stands for summation of similar terms, one for each

covariant (contravariant) index and w.. is the spin tensor defined by
13

2w.. = v. . v. ..
LJ 1,3 3,1



Here

v. = velocity vector,
1

p = fluid pressure,

KO.

1k
= ronecker delta,

d.. = 0 for all p,ii

11
0

= coefficient of viscosity,

k
1

= relaxation time constant,

X2 (< X1) = retardation time constant, and

40,111,i-12,111, and v2 are arbitrary scalar physical

constants, each with the dimensions of time.

13

Oldroyd (1950) discussed two particular types of liquids of this class,

namely Liquid A and Liquid B. They are derivable from (1.3.3) as

follows:

Liquid A:

Liquid B..

r10 > 0, XI = -ill > X2 = -ii.
2

> 0, p.
0

= v
1

= v2 = 0

(1.3.7)

r10
>0, X1 = p.1 >X2 = 42 >0, p.0 riv

1
= v2 = 0 (1.3.8)

The liquids A and B would exhibit very different bulk properties.

The elasticity of the fluid has been accounted by relaxation and

retardation times Xl and Xz, and the linearity of the Newtonian
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constitutive equation has been broken by introducing quadratic terms

in the deformation-rate, and the products of stress and the

deformation-rate. There is no physical theory that determines the

character istic times X1 and X2 in the constitutive equation. We

finally mention that the nonlinearity of the equation has been introduced

in a very arbitrary manner, rather than on a concrete basis.

Maxwell Fluids: Walter (1962) showed that the general equations

of state of an isotropic incompressible elastico -viscous liquid have

the forms:

Liquid A':

Liquid 13`:

-t. = pg.. + t(.e.
)

ij 13 1.3

t
1

m ,n
(e) ax axt.. (x,t) = 2S gi(t-t') . . d (xt,e)de
13 1 j mn

-oo ax ax

(1. 3. 9)

(1.3.10)

tii = -pgii + t(e)ii (1. 3. 11)

A,i ,
t(e)ii(x,t) = 2 S qi(t-t') axi_ '-: d--(xt,t')dti (1.3. 12)

-co a x' 111 ax'1'

Here x li -- x I i (x,t,t1) is the position at time t' of the element

which is instantaneously at the point xi at time t. 4(t-t') is

defined as



ooS4i(t-t') NT e-(t-t')/T aT ,
0 T

15

(1.3.13)

where N(T) is called the relaxation spectrum [ N(T) is defined

such that N(T)dT represents the total viscosity of the Maxwell ele-

ments with relaxation times between T and T dT .

Oldroyd's liquids A and B and the Newtonian liquid are special

cases of A' and B'.

Reiner -Philippoff Theory:

where

(e) [Leo -110tij
110+ 1 )2 2 2 t(e) t(e) d.

2T
0 n= 1 m=1 nm mn

e
t(.

) = deviatoric stress tensor,

d.. = first deformation-rate tensor, and

40 , 1100 TO
, are adjustable positive parameters.

(1.3. 14)

It is apparent from (1.3.14) that for very small or large values

of To the fluids behave like Newtonian, and for the intermediate

values of T0, they are markedly non-Newtonian.

ii) Rivlin-Ericksen Theory, Green-Rivlin Theory and Noll's Theory

Rivlin-Ericksen Theory (1955): Starting with the assumption

that the stress at a point x at time t is a function of the
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gradients, in the spatial system of velocity, acceleration, second and

higher accelerations at the point x at atime t, Rivlin and

Ericksen formulated the constitutive equation

t = a I +
N

i=1

M.+M. )

for incompressible, isotropic visco -elastic fluids. a.'s are

(1.3.15)

unknown functions of the second and third invariants of the kinematic

tensors d
(1) ,d (2)

, ,d(n) to preserve their forms under rigid

motions. d(i) is the j-th material derivative of the square of the

line -element. M. (i = 1, 2, . . . , m) are certain tensor products

formed for the kinematic tensors d
(1)

, d
(2) ,d (n)

, and M. is

the transpose of M..

One disadvantage of this theory is that (1.3.15) is very compli-

cated by the presence of several higher order kinematic tensors

(j) (j 1, 2,... , n) and unknown functions of their invariants. How-

ever, Rivlin-Ericksen theory covers both inelastic and elastic fluids,

and it has been very successful in obtaining normal stresses which are

not necessarily equal. A large number of fluids like aqueous solution

of polyacrylamid, polyisobutylene fall into this class of fluids.

Green-Rivlin Theory (1957): Assuming that the stress T

depends on the complete deformation history of a fluid, expressed by



g = xm (T)xn (T)6
pq p , q mn over the range -00 < T < t, and that the

17

stress is a continuous function of the gradients of velocity and

accelerations, Green and Rivlin finally obtained the following constitu-

tive equation for visco -elastic fluids:

T =(30(t)I +

j =1 -00 i=0

)
P

1
( t , T

1
T

2
, T.)(M.0 +M.

0
)

x d-r1d-r 2... dT. , (1.3.16)

0)where M. (i = 1,2, ... ,R) are certain tensor products formed

from the tensors g (T.) and the kinematic tensors
pq

d(1), d(2), ,d(n) already defined in the Rivlin-Ericksen theory,

0) iand M. is multilinear in the tensors
r-' 1.

.transpose of M. ), (3 s
--- 1

gpq(T.); is the

are continuous functions of t, T1, T
2,

T..

Green-Rivlin theory is a further generalization of Rivlin-

Ericksen theory. Due to the similar structure of constitutive equa-

tion between the two theories, the remarks made in the Rivlin-

Ericksen theory apply even more strongly to the present theory. For

this very reason, these two theories have not been employed in their

most general forms to solve any physical problems.

Noll's Theory (1958): Assuming that the stress in an incompres-

sible fluid at time T depends, to within a hydrostatic pressure, on

the past history of the so-called relative deformation gradient up to



time T, Noll derived the following constitutive equation:

where

t = -pI + [G(s)] ,

s=0

18

(1.3. 17)

is the constitutive functional and G(s) represents the

history of the relative deformation gradient. This theory is somewhat

similar in concept to the theory of Green and Rivlin. The solution of

any problem with this theory requires the experimental determination

of the three material constants, that is, the viscosity function and the

two normal stress functions.

Seth's Approach to Non-Linear Constitutive Equations

Narasimhan and Sra (1969) extended the concept of generalized

measures of deformation-rates, pioneered by Seth (1962, 1964, 1966),

to derive a physically applicable constitutive equation for visco -

elastic fluids whose flows depend not only on velocity gradients but

also on acceleration gradients.

They obtained the following generalized measures of

deformation-rates:

and

D+
k [I-(I-2mD)n/2

]
q

,

q
qm n

k [I-(I-2mI13)n1/2 q

miq niq ti

(1.3. 18)

(1. 3. 19)



where

D* = generalized first deformation-rate tensor,ti
B* = generalized second deformation-rate tensor,

D = classical first deformation-rate tensor,

B = classical second deformation-rate tensor,

n,nl,q, and q' are called measure indices, and

m and m' are parameters used to maintain the dimensions of

the various terms on both sides of (1.3.18) and (1.3. 19).

19

With such generalized deformation-rate measures, Seth established

that a linear stress strain-velocity relation (1.2.1) would suffice for

constructing constitutive equations for rheological materials. Hence,

the following linear constitutive relation was chosen by Narasimhan

and Sra (1969, 1971, 1972):

t = -pI + 2p.D* + 4TiB* (1.3.20)

where µ and Ti are the classical viscosity and viscoelasticity

coefficients .

Now, (1.3.20) becomes

-(p+F
0

+G
0
)I+F

1
D+F

2
Dz+G

1
B + G Bz

,-- , (1. 3. 21)

through the use of the Cayley-Hamilton theorem in the expansions
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involved. For specific values of n, q, n', and q', which are to

be determined through experiments analogously to that of viscosity

coefficients, the F's are known functions of the invariants of D

and G's are known functions of the invariants of B with a finite

number of terms in each case. The non-linearity in (1.3.21) has con-

densed itself into three terms in each of the tensors D and B.

Since the use of B* is found to accomplish the goal of predicting

the well-known visco -elastic phenomena, any higher order kinematic

tensors beyond B are not necessary. Furthermore, it must be

noted that (1.3. 21) does not involve any unknown response coefficients.

Moreover, these constitutive theories have been applied by various

workers for solving shearing flows, helical flows and secondary

flows reaching good agreement with experiments.

We finally list for the sake of completeness several customarily

used constitutive equations based on empirical or semi-empirical

laws characterizing the shear stress T .

Prandtl Fluids:

Eyring Fluids:

T = A sin-1 (cux)

T = B 1 ux +C sin(T /A)

(1. 3. 22)

(1.3.23)



Powell-Eyring Fluids:

Williamson Fluids:

where

-1T = Aux + B sinh (Cu
x )

21

(1.3.24)

T = Ux{A /(B+ux)+400], (1.3.25)

du
u =

x dx = velocity gradient ,

u = limiting viscosity at infinite rate of shear, and

A, B, C are constants which are typical of the particular fluid.

All of these equations are considerably more difficult to put into use

than the power law and usually do not offer any compensating

advantage s .

Rabinowitsch Fluids:

U = (1+CT
2),

X
110

(1.3.26)

where C and 1.1.0 are constants typical of the fluid. This is an

approximate rheological equation which can describe, for example,

polyethylene and polystyrene malts.
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2. A REVIEW OF MAJOR CONSTITUTIVE THEORIES
IN MICROCONTINUUM MECHANICS

2. 1 Preliminary Remarks

In this chapter the theory of micropolar fluids, due to Eringen,

is presented together with the fundamental equations of microcontinua

for later use. In addition, for the purpose of comparison and ready

reference, a brief review of the following constitutive theories in

microcontinuum mechanics is given:

linear theory of simple micro-elastic solids,

linear theory of simple microfluids,

linear theory of simple deformable directed fluids,

linear theory of fluids containing nonrigid structures, and

Mind lin's theory of microstructure in linear elasticity.

2.2 Microcontinuum Constitutive Theories

Linear Theory of Simple1 Micro-Elastic Solids: Eringen and

Suhubi (1964) presented a properly invariant nonlinear continuum

theory of simple micro-elastic solids which are capable of supporting

local stress moments and body moments, and are also influenced by

the local inertial spin. The underlying idea of the theory is that each

1 The term "simple" refers to the first order gradient of the
various arguments retained in the constitutive equ,ations.
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material volume element contains micro-volume elements which can

translate, rotate, and deform independently of the motion of the

macro-volume elements, and the material points are assumed to

undergo a certain affine transformation in the process of deformation.

The constitutive equations are expressed in terms of the

derivatives of a stress potential with respect to e (the classical

strain tensor), E (the micro-displacement gradient tensor), and

y (a micro-deformation tensor). The general polynomial form of

the constitutive equations are extremely lengthy and complicated.

Here, we give only the linearized constitutive equations for a simple

micro-elastic solid

tic/ = [- Tr +(k+T)emm +11Emm] 5 + 2(p.+o- )eki +
fl1E.Qk

+ TI2Eki , (2. 2.

tk/ = [-Tr+(X.+2-r)e inm+(2ri-T)E mmj5k/ + 2(p.+2o-)ek/ + (11
1

+11 2 -0(e +E
Id

(2. 2.

X
102 m

= (a
1
ymrr +a

2
yr mr +a3 yrrm)6k/

+(a4N.P rr+a1Nr/ r+a5yrr/ )5km

(2. 2.(a5ykrr+a3Nrkr+a6Nrrk)5/m.

1)

k
),

2)

3)

+ a
7

yimk + a 8(ymk.t +yid m) + a9 y/ km + a
10

ym/
k

+ al
1
yki m
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and where

tkQ = stress tensor,

tic/ = microstress average tensor,

X = first stress moment tensor ,

2eki = uk,1 +

Ek.Q -4) Id + UQ,k

-(1)ki,m '

= Kronecker delta, andSid

Tr/ X.1P.)1"/ 0-211211117-12/ai = 1,2, ... , 11) are elastic coefficients.

Here uk and 43.k1 are respectively the displacement vector

and the micro-displacement tensor which are the basic unknowns of

the theory. The micro elastic properties of an isotropic linear

elastic solid are completely described by 18 elastic coefficients, Tr

being zero for a natural stress free state.

Linear Theory of Simple Microfluids: Eringen (1964) developed

the fluid counterpart of the theory of simple micro-elastic solids and

obtained the linearized constitutive equations

t = [-Tr+X tr d +X tr(b-d)]I + 2p.d + 2µ0(b -d) + 2p.1(bT-d), (2. 2 4)

T= [-Tr+X tr d+1
0

tr(b -d)]I + 2µd + (b-bT-2d), (2.2.5)



= (y
1
amrr +y

2
armr +y

3
arrm )8 + (y4 a,e rr +y5 aril- +y6 arri )5kmxkf m k/

where
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(Y7akrr+N8arkr+V9a rrk )6 + ,/
14

aimk + y
15

amik , (2. 2. 6)

d = deformation-rate tensor (2dice = vk,1 + ve,k),

b = micro-deformation rate tensor (bk/ = vld-2/ +

a = gyration gradient (a

I = unit tensor ,

6.. = Kronecker delta,

= v
Ictm k/,m),

tr = trace,

T = transpose, and

X' X0'
Flo, 41,110, y and y. (i = 1,2,... , 15) are viscosity

coefficients.

Fluids whose mechanical behavior is governed by (2. 2. 4), (2. 2. 5),

and (2.2. 6) are termed simple microfluids. Anisotropic fluids,

vortex fluids, and fluids in which other intrinsic gyrational effects are

important, are conjectured to fall into the domain of simple micro-

fluids. Immediate application of the present theory is not possible due

to the mathematical difficulties encountered upon application.

Further, no information is available on the signs of the numerous

viscosity coefficients which appear in the theory.

2/See (2. 2. 8).
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Owing to the analytical complexity of the theory of simple

microfluids, Eringen (1966) formulated the theory of micropolar

fluids that possesses certain simplicity and elegance in its mathe-

matical formulation, by imposition of no-microstretch and micro-

isotropy on simple microfluids.

Theory of Micropolar Fluids: Many fluids found in industry and

biological laboratories such as animal blood, polymeric fluids, liquid

crystals, fluids containing certain additives are known to be consti-

tuted by bar -like elements which undergo only rigid motions (i. e.

translation and rotation). These fluids fall into the category known

as micropolar fluids. In the theory of micropolar fluids, the micro-

deformation tensor X defined by the affine transformation

= XKK
is orthogonal, that is, XXT = I = X X ,

(2.2.7)

in order to support only

microrotations. In other words, no-microstretch is allowed in the

motion of a microelement. Consequently, the gyration tensor v
kQ

and the first stress moment tensor X.
Icern

become skew-symmetric,

That is,

and

v = -v
k/

Xid m
X

km./

(2.2.8)
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= X X
-1 The constitutive equations for micropolar fluids

rti

are derivable from those of simple microfluids with (2. 2. 8).

where

tk/ --rr+Xvr , r
)5k.f + Ovk

, 1+v , k
) + K (v1

, k
-

kJ r
yr ) ,

(2..2. 9)'

mk/ = avr, r 5 + pvk,
1

+ v ,k
, (2. 2. 10)

tic/ = stress tensor,

mkf = couple stress tensor ,

5k/ = Kronecker delta,

vk = velocity vector,

v = microrotation vector, and

X-, P., k are known as the viscosity coefficients, while a, p, and

are called gyroviscosity coefficients.

The micropolar fluid flow has two prominent departures from the case

of Navier -Stokes theory, that is, the presence of the couple stress

and the asymmetry of the stress tensor. The constitutive equations

of the linear micropolar fluid involve six material coefficients,

which conform to inequalities forced by the Clausius-Duhem thermo-

dynamical inequality:



3X. + 2p. + > 0,

211 + K > 0,

K > 0, Y > 01

P < Y, 3a + P > 0,
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(2.2.11)

for 0 (= temperature) > 0.

This class of fluids reduces to the Navier -Stokes fluids with the

suppressions of the micropolar material constants K, a, p, y and

with the vanishing of the body moment.

Linear Theory of Simple Deformable Directed Fluids: To

develop the constitutive equations for their linear theory of simple

fluids with deformable microelements, Allen, Desilva and Kline (1967)

derived a canonical form of energy equation which, when coupled with

the entropy production inequality, served as a guide to define a simple

deformable directed fluid. The microstructure was described by a

frame of director vectors d (a = 1,2,3) at each point x of the

fluid. This director frame associates with it not only the conventional

translation velocity but also a rotational velocity and an ability to

deform, thereby assigning structure and orientation to each micro-

element. In addition to such kinematical variables as velocity vk,

velocity gradient vkm, a measure of relative changes in the

lengths of, and the angles between, the directors W(mn) , the spin

Allen et al. included the vectorstensor of the directors W[mn]'

d in the arguments of the constitutive equations, since they were
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interested in fluid suspensions and in the effect of particle orientation

on the flow. The explicit constitutive equations are given by

tij = A ijkm[v(k, m) (km)(km)] + FijkmW(km)

+ Biikm[
v[k , m] -w [mk ]] '

(2. 2. 12)

ijkmtij
= Cijkm[v(k, m) -W(km).1 + G W

(km)

xijk Eijkpqrw
+ DijkPqrW(rq),p [rq], p

where

tij = stress tensor,
Tij = microstress average tensor,

X
ijk = first stress moment tensor, and

(2. 2. 13)

parentheses enclosing subscripts denote the symmetric part and

the square brackets enclosing subscripts denote the skew-

symmetric part of the various field variables. For example,
1 1

v(k, m) = 2 (vk, m+vm, k) and w[mn] = 2 [w -wnm-w].

ijkm, BijkmFurther, in the above equations, A
Bijkm,

C
ijkrn, Dijkpqr

Eijkpqr .c.sijkm ijkm
, are material coefficient tensors and are

functions of d , specific volume, and temperature.

As pointed out by Toupin (1964), a homogeneous deformation is

uniquely determined by the motion of any three linearly independent
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vectors like a director frame. Since the deformation of the micro-

elements in the theory of Eringen and Suhubi obeys a certain affine

relative transformation, we may regard the model of a material with

a triad of deformable directors assigned to each point of the continuum

as identical to the Eringen-Suhubi formulation.

Kirwan's Theory: Kirwan (1968) formulated a constitutive

theory for a fluid containing nonrigid microelements by employing a

measure of deformation-rate of the microelements as an additional

constitutive variable to the ordinary deformation-rate tensor, the

kinematics being set up by the introduction of director frame within

the fluid. Thus, this theory allows for nonrigid responses of the fluid

microelements. Two new physical principles were utilized in

developing constitutive equations. One principle required that the

constitutive equations uniquely determine the stresses and couple

stresses from the objective variables and vice versa. This require-

ment could be thought of as an invertible mapping between stress and

deformation. In this way, any assumptions regarding the microele

ment kinematics are automatically reflected in the stresses. As the

second principle, Kirwan assumed that only the phenomenological

coefficients which appear in the Clausius-Duhem inequality have

physical significance. Requiring the phenomenological coefficient

tensors to be isotropic and using the above two newly introduced con-

cepts, Kirwan gave the following linear constitutive equations:



where

D + 3E wt.. = [A D +E w ]6.. + 2A
2

D..
2 (ji)31 1 mm 1 mm ji

+ 2E3[w[ij] +Wij1,

t = [A D +B w ]6.. + 2A D.. + 2B w ,
JL 1 mm 1 ram 31 2 ji 2 (j/)

(2.

(2.

2.

2.

31

15)

16)

= +5 .(w +wX
kij

X1[6 w +5kimm, jj wkmm, i kn, n nk, n)]

+ X2[6kiwnj, n+6jkwin, n] + X3[6kiwjn, n+6jkwni, n]

+ X [5 .w +X +X [w .+w .]4 j1 mm,k 5 6 kJ, ' ik, 3

+ k
7

w ij,k + X. [w.
1

1(.1 ,8 3k,1,3

t.. = stress tensor,
31

t.. = microstress average tensor,
31

= first stress moment tensor,
k13

Dmn = deformation-rate tensor,

Wmn = vorticity tensor of the fluid,

w = microdeformation-rate tensor, andmn

A's, B's, E's, )'s are viscosity coefficients.

(2. 2. 17)

This theory has been shown to reduce to the established equa-

tions of Eringen (1966) and Allen and Kline (1968), when the micro-

elements are assumed to be rigid.

Mindlin's Theory.. Mindlin (1964) derived from Hamilton's

variational principle a linear theory of a three-dimensional elastic
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continuum which has some of the properties of a crystal lattice as a

result of inclusion, in the theory, of the idea of the unit cell. The unit

cell can be interpreted as a molecule of a polymer, a crystallite of a

polycrystal or a grain of a granular material.

The constitutive equations of Mindlin's elastic materials were

derived by differentiating the potential energy-density function W

with respect to the deformation-rate tensor d.., relative deforma-
13

tion tensor
13

(i.e. , the difference between the macro-displacement

gradient tensor and the micro-deformation tensor), and micro-

deformation gradient tensor ijk (i. e. , the macrogradient of the

micro deformation tensor). That is,

X.

BWt stress tensor,ad.. 8

W
y.j

awti. 8d= microstress average tensor, and
J

..

aw
ijk a 1<

first stress moment tensor.
..ljk

For a centrosymmetric, isotropic linear elastic material, the

potential energy-density function is given in the following form:
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1 1 1 1
laW= Xd..d. + d..d. + b y...y. + b y. y +b y y +a v

2 11 jj ij 2 1 jj 2 2 ij ij 2 3 ij ji -1 .iidii

+ gz(yii+yiddij + a, K.. Kkji + a
2 jk + 2
K K a

3
K.. K..

1 Ilk ilk

1 1 1a K ,K + a K ,K a K .K a K K..
2 4 ijj ikk 5 ijj kik 2 8 iji kjk 2 10 ijk ijk

+a K K +a K K -r a K.. K.. -r a K.. K11 ijk jki 2 13 ijk ikj 2 14 ijk jac 2 15 ijk kji

(2.

Hence,

(t

ij
= X+g

1
)5..d

kk
+

2(µ +g2 )d..
+ (g

1
+b

1
)5..y + (g2+132)yii

ij

(g2 +b3)y (2.

t.
j

= + + g
1

y + g
2

5.. (y..+y..), (2.
i 13 kk

2.

2.

2.

18)

19)

20)

X. = a (K 5. +K 5 ) + a (K 5..+K
ijk 1 mmi jk krnrn ij 2 mmj 13 mkm5ij )

where

+
a

K 5 + a K, 5. + a (K. 5. +K 5. )3mmk ij 4 imm jk 5 jmm jk

a8Kmjm5jk a10Kijk all(Kkij +Kiki) a13Kikj a16Kijk

+ a K15 kji

5.. = Kronecker delta, and
iJ

X, b b2, b3 ,g1 ,g2 ,a's are elastic coefficients.

(2. 2.21)

This theory is analogous to the general theory of simple microelastic

materials of Eringen and Suhubi (1964).
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2. 3 Fundamental Equations of Microcontinua

Basic principles of microcontinuum mechanics, namely con-

servation of mass, conservation of microinertia moments, balance of

momenta, balance of first stress moments, conservation of energy

and entropy inequality lead to the fundamental equations. (Eringen, 1966).

Equation of continuity:

=0

ph = 0

(2.3.

(2. 3.

(2. 3.

(2. 3.

(2. 3.

1)

2)

3)

4)

5)

+ (pvm );m = 0at

Conservation of microinertia moments:

ai k/
at + ik.e; mvm i/mvmk ikm vm/

Conservation of linear momentum:

tki; + p(f/ 1) = 0

Conservation of moment of momentum:

t
k tk.e xrk/ ; r + ) C'; t[Ice

Conservation of energy:

pE tidy/ ;k
(tk/ -tk./)vId

- kmicev k;m



Entropy inequality:

where

qk
Pal () ;k P-0 > 0

0

p = mass density,

i

tk/

/kQ

crk.e

= body force ,

= microinertia moment,

= micro-stress average,

= the first body moment per unit mass ,

= inertial spin,

E = internal energy density per unit mass,

qm = heat flux vector,

h = heat source per unit mass ,

t = stress tensor,

v = velocity vector,

via = gyration tensor,

mkt = the first stress moments,

35

(2. 3. 6)

11 = entropy density, and

0 = absolute temperature .

A semicolon followed by an index indicates covariant differentiation

with respect to general curvilinear coordinates
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The basic field equations of a micropolar fluid motion which

result by substituting the constitutive equations (2. 2.9) and (2.2. 10)

into the balance laws (2 3. 3) and (2. 3. 4) become in the linear case

[Eringen (1966)]:

Equation of continuity:

(2. 3. 7)+ v (y ) 0,at

Linear momentum equation:

Dv
p Dt

= pf - Vp + KV x v - (p.+K)v x vxv+ (X.+2p.+K)VVVP (2. 3. 8)

Angular momentum equation:

Dv
v), (2. 3. 9)

Pi Dt
p/ + K(V x v-2v) NV ic V x v + (a+(3+\/)V(V

where

D/Dt = material derivative operator,

p = mass density,

p = hydrostatic pressure,

j = constant microinertia moment,

.v linear velocity vector,

v = microrotation vector,

= first body moments per unit mass,



f = body force per unit mass,

X, P.; K are the viscosity coefficients and a, p, y, the

gyroviscosity coefficients.

We refer the motion of the fluid to a system of cylindrical

coordinates in anticipation of the problem to be treated in the next

chapter.

Equations of Motion in Cylindrical Coordinate System (r, 0, z)

with Axial Symmetry and Incompressibility Condition:

Equation of continuity:

a(rur) a(ruz
0,

)

ar az

Radial component of linear momentum equation:

au r aur aur LIB

at + ur 8r + uz az

an,
r par

2 r K=f 2.2- v+
K

)kV ur 2 azr

Azimuthal component of linear momentum equation:

au au
0

au
0

u ru

at
+ ur ar + uz az +

u an an20Krz
= f

K

(v+ XV u0- (
r 2 p az ar
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(2. 3. 10)

(2. 3. 11)

(2. 3. 12)



Axial component of linear momentum equation:

au au
z

au
z

at + ur 8r + uz 8z

= f
z p az + (v +

p
15-)v2u

z
+

p
[ r ar1 -/- (rn

0
)] ,

Radial component of angular momentum equation:

anr anr an u n
00+ ur ar + Liz az

r
at r

n au
= r (V 2n r ) K (

0 + 2n ) ,

Pj r r 2 pi 8z r

Azimuthal component of angular momentum equation:

an8n
0 0

u
0

nr an
0

at + ur 8r + r + uz az

no aux. Buz

= -Y- (vn
0 z

-7--.. ) + -7- (
Pj pi z ar 2n0),r

Axial component of angular momentum equation:

whe re

anz an
z

an a_ 2 K rl a ,
= . V n + [..---- kru )-Ln j,at + ur ar + uz az pi z pi r ar 0 z
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(2. 3. 13)

(2. 3. 14)

(2. 3. 15)

(2. 3. 16)
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and ur, u0, uz; nr, n0, nz; and fr , f0, fz are the velocity

components, microrotation components and body forces in the

cylindrical coordinates along the r-, 0- and z-directions respectively.
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3. THE ASYMPTOTIC BOUNDARY LAYER ON A CIRCULAR
CYLINDER IN AXISYMMETRIC INCOMPRESSIBLE

MICROPOLAR FLUID FLOW

3. 1 Preliminary Remarks

Stewartson (1955) obtained an asymptotic series solution for the

stream function i = 4J( ), where Ti and are dimensionless

independent variables taken along the radial and axial directions,

respectively, in the boundary layer on a semi-infinite circular

cylinder in an axial incompressible Newtonian fluid flow. Application

of the method of successive approximations to the linear momentum

equation led to the following form of solution:

= 1 +
a

00

s,t=

P' (T1)s,t
s -1

[ ln ]t
C

In particular, for s = 1 in the series on the righthand-side of

(3. 1. 1),

= 1 +
a 11

00

t=

Ft
L

i(r1)
1+ 0( In)

(3. 1. 1)

where the prime indicates partial differentiation with respect to T1,

and ln C = Euler Is constant. His analysis showed that if the velocity

of the main stream is constant, the skin friction on the cylinder is
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increased at the corresponding points of a flat plate due to the effect

of transverse curvature of the cylinder, and, for the same reason,

that the boundary layer thickness is slightly reduced in comparison

with that of the flat plate.

We believe that it would be of practical interest to examine the

corresponding boundary layer flow problem using micropolar theory

of fluids, since it is a more realistic model of fluids than the classical

theory of viscous fluids

On account of the introduction of the gyration tensor and micro-

inertia moment tensor in Eringen's theory of micropolar fluids, the

field equations will consist of linear and angular momentum equations.

They will be nonlinear i.r character and coupled in the two unknown

field vectors, that is, linear velocity and microrotation vectors. We

will follow here the Peddieson and Mcnitt's (1970) approach for

investigating the boundary layer flow for a micropolar fluid.

In Section 3. 2 we formulate our problem in a concrete manner ,

deriving a set of boundary-layer equations with appropriate boundary

and matching conditions. Those equations will be solved with the aid

of the method of successive approximations in Section 3. 3. Finally,

in the fourth and last section, results for the local effective wall shear

stress, the velocity profile, and the boundary layer thickness are



3. 2 The Statement of the Problem

We consider the asymptotic boundary layer induced by a steady,

axial, incompressible micropolar fluid flow on a semi-infinite circu-

lar cylinder of radius a, whose axis is taken along the positive

z-direction in cylindrical polar coordinate system (r, 0, z). The

coordinate r represents the transverse distance from the axis and

v, u, the components of the fluid velocity in the r- and z -directions ,

respectively. The body force and body moment are neglected in our

problem. The velocity field and the microrotation field for our

problem are of the form:

v = (ur , u0, u
z

): ur = v(r, z), u0 = 0, uz = u(r,z).

v (nr ,n
0

,n
z

): nr = 0, n
0

= n(r,z), nz = 0.

We will treat only the case of uniform mainstream velocity U

at zero incidence for simplicity.

v
u

U

far downstream
region
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z

Figure 3. 2. 1. The geometry of the problem in the cylindrical coordi-
nates.



The Equations of Motion

With the velocity and microrotation fields give by (3.2.1) and

(3. 2.2), respectively, the equations (2.3.10) through (2. 3. 16) of

continuity and motion reduce to the following simpler forms:

Equation of continuity:

I'LL) a(12.1)

ar az

r -component linear momentum equation:

8v 8v 1 122. K 2 v K an+ u + (V+ )(V V- )dr dz par r 2 p az

z -component linear momentum equation:

au au 1 22 K 2 K n an+ u = - + (v+ )v u + + -8--r ) ,dr dz p gaz

0-component angular momentum equation:

where

an an 2 n K au
u. of n

r 21 pj k az 8r 2111

2 2

v2
a 1 a a

art
+ r ar +

az2
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(3.2.3)

(3. 2. 4)

(3.2.5)

(3.2.6)
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Boundary Layer Equations

The boundary-layer magnitude estimates for micropolar fluid

flow developed in our problem are based on the analysis of Peddie son

and Mcnitt (1970). To study the inner (i. e. , boundary-layer) flow the

following new variables are introduced:

-1/2 1/2 -1/2v = R v, u = u, n R n, p = p, r =R r, z = z,

(3. 2. 7)

where the barred and unbarred quantities are unrestricted field

variables and inner variables, respectively, and R is the Reynolds

1/2number, R-1/2 being small compared with unity, i. e. , << 1.

Inserting the new variables (i. e . , the unbarred variables) into

(3. 2. 3) through (3. 2. 6), we finally obtain the following boundary layer

equations:

Equation of continuity:

a(rv) a(ru)
0 ,ar az

r -component linear momentum equation:

= 0 (i. e. , p = p(z)) ,ar

(3.2.8)

(3. 2. 9)
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z -component linear momentum equation:

v
a + u = 1 ap..+ (v+ 1 a (r au +K

(
n

+ an), (3.2.10)ar az r az p r ar ar p r ar

0-component angular momentum equation:

an an K au
V Ur= - +2n) + [ 1 (r .

rdz pj ar pj r ar ar 2
(3. 2. 11)

It is to be noted here that the above boundary layer equations

contain the terms characterizing the asymmetry of the stress tensor,

the couple stress, and the microspin-inertia tensor.

Boundary and Matching Conditions

v(a, z) = u(a,z) = 0 (hyper-stick condition),

lim u(r, z) = U(z) (z > 0) ,
r

where U(z) is the velocity of the fluid in the main stream and is

taken to be proportional to z .

lim n(r, z) = 0, (3. 2. 14)
r co

n(a, z) = n
0

(z). (3. 2. 15)

The matter of proper microrotation boundary condition is as yet

unresolved. At present, there seems to be no physical theory that
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enables us to choose the appropriate boundary conditions on the

microrotation n. Hence, under such circumstances, one has to

resort to an existence problem to settle the matter. Accordingly, we

pose the problem, namely what sort of microrotation boundary condi-

tions would permit the desired type of flow under consideration and

also be consistent with the velocity boundary conditions ? Here, by

investigating this consistency requirement, we will establish the

actual determination of the microrotation boundary condition permit-

ting the asymptotic boundary layer flow in question. Thus, we choose

the boundary condition (3. 2. 15) and will discuss its nature later in

the next section.

3. 3 The Solution of the Boundary Layer Equations

The hydrostatic pressure p is obtained by putting

u= U = Czm in (3. 2.10), yielding:

1 d_E rriU
_

p dz

2

Note that if m = 0, there is no pressure gradient in the flow.

Accordingly, there is no problem of boundary-layer separation.

We first define a stream function using the equation of

continuity as follows:

(3. 3. 1)



where

(v+ )Z4(1,

r2U

2z(v+
K)

p

2Z ( V+
K

)

Ua2
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(3. 3. 2)

(3.3. 3)1

(3. 3.3)2

Then, the velocity components v and u are expressed in terms

1 8

of the stream function

u = r 8r [(V +
K

)Z41.1 = U141

a r,v - Lkr az

- (V + K )

- --e- [4i+( 1 -n1)( )]

(3. 3. 4)

(3. 3. 5)

where the subscripts 71 and indicate partial differentiation as

specified.

Next, the microrotation can be expressed in the form:

n = r (3. 3. 6)

where I'(11, is assumed to be bounded for large and so

that the flow may approach a potential flow as 00 for fixed z.



After substituting 4i, and their derivatives into both

(3. 2. 10) and (3. 2. 11), we find that for uniform mainstream velocity,

namely in = 0,

z -component linear momentum equation:

211qi (2-44 =W)71 11Jiickitikrin)
111111

0-component angular momentum e,quation:

+ (4, t. _4, (1, ) 4, _ 1.

21.1 2 4)t +A BO 1,
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(3. 3. 7)

= , (3. 3. 8)

where

2

A =
µ +K

, B , and D (u+K)j

The, boundary and matching conditions are now expressed in terms of

LP and as follows:

LP11 We 0 at it = 1, (3.3.9)

---- 1 as 00 for all A (3. 3. 10)
1

and as t 0+, provided >

is bounded for large 11 and t , and (3. 3. 11)

= at it = 1. (3. 3. 12)
0
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(3. 3. 7) and (3. 3. 8) are highly nonlinear in character and form a

coupled system of two partial differential equations involving the

stream function LIJ and the microrotation represented by the function

c. These nonlinear coupled partial differential equations are, in

general, extremely difficult to solve. Here, the method of successive

approximations can be appropriately used in order to solve for tli

and .

Before seeking to determine the solution of the system of

equations (3.3. 7) and (3. 3. 8), we note that in the boundary layer,

.ri = 0(1), since (L. )2 a+5 )2 25
a a a where S

denotes the boundary layer thickness. In the asymptotic region

( > > 1 ) the terms AB A and A B 1 11,rm in (3. 3. 8) are of the

same order-3/ when is of the same order as tp
1111

for fixed 11.

Following Stewartson (1955), the relation that AB A - A13/14,,tri is

possible by selecting the asymptotic series expansions for LPin and

g/ as follows:

co
G"(TI)

s

s=1 C
[1n( ')]s

+ 0 1

and

(3. 3. 13)

3/We use the notation - to express the same order of magni-
tude, whenever such a need arises in our subsequent discussion.



where G "(11)

=

00
Hs (11)

1

s=1 [1n(
C

ns
+ 0 r

ln()-1
C
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(3. 3. 14)

2E -s
and Hs(TI) are unknown coefficients of [ln(C

and the double prime stands for the second derivative with respect

to

With (3. 3. 13) and (3. 3. 14), the order of magnitude of the other

terms in (3.3.8) can be shown to be small compared to those of

Alq(1 and AlEi4, within powers of [1n( )]
-s for s > 1 and

T111

fixed ri . It suffices to check only the first dominant term of each

expansion for purposes of estimating terms of the desired order of

magnitude:

11H " ( )

11T1
1 n ( )

G
1

(T1)H
1

(T1)

T1 [1n(21.)]3

(3. 3. 15)
H1(11)

ri
[in ( ]

TIHII(T1)

T1 [1n( L-.)]



H
1

(ri)

t[ln()]

H1(r)

[1n(-2-L)]

1G1(11)H1(71)

rl t[ln(IL)]3

H1(T1)

[1n( -"4-2 )]

G1(11)

[1n( -)]

Therefore, (3. 3. 8) may now be approximated by

or
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(3. 3. 15
cont. )

= ABriLprin (3. 3. 16)

(1. =
1111

. (3. 3. 17)

We regard (3. 3. 16) or (3. 3. 17) as the first approximation of (3. 3. 8)

and use it to construct the approximate series solution of

Putting (3.3. 17) into (3. 3. 7), we obtain

2r1qi + (2+0) = + Aerkp +4,
Trin rrn onn

which simplifies into the following form:

4J.

(3. 3. 18)
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(2 -A)14i
11-n

+ (2 -A+04J = 4J ) (3.3.19)

Following Stewartson (1955), in order to obtain the first and crucial

term of the asymptotic series for 4,(on we can take 4, 0,
) as co for each value of . The right-hand side

of (3.3,19) becomes zero in the limit 4 - 00 and the boundary con-

ditions change to

and

Hence, we have

=0 at n = 0
11

(3.3.20)1

1 as Ti 00 (3. 3. 20)2

(2 -A)rip + (2-A+4i)iiirm = 0 . (3.3.21)

Integrating (3.3.21) once gives

T111
= K()exp ,

0
(2-A)ri (3. 3. 22)

where K() is an arbitrary function of integration. Near fl = 0,

(3. 3. 22) becomes either

(3. 3.23)

or

ki)

T111
= 0 , (3. 3. 24)

when K(E) = 0, except possibly at T1 = 0.
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Since the choice (3. 3. 23) does not lead to a solution satisfying

the boundary condition on 4,11 at = 0, we choose (3. 3. 24) as

our first approximation of 4i. Thereby, we obtain the first approxi-

mation

LP - 1. (3. 3. 25)

Note that this is simply the stream function of the undisturbed stream

and satisfies (3. 3. 19) The boundary conditions are, however,

violated since

and

=1 0 at lig = 1

= 11 0 at i1 = 1.

We can always improve our approximation by substituting q =

back into (3. 3. 22) and applying the boundary condition on 4J
11

at

11 = 1 instead of at 11 = 0. Then

(2-
11 LI) = K("De

-7-1/ A) (3. 3.26)

Integrating (3. 3.26) once with the boundary condition on t.I.J1 as

00, we have

I e-z/(2-A)dz
= 1 - K()

11

When Ti is small (i. e. '(< 1)

(3. 3.27)



e-z/(2-A)dz -Ei( 2 -A )

11
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(3. 3. 28)
00

YJ

n+1
.= -In( 2-A (n+1)(n+1)! (2-A )

n=0

where In C = 0.577 ... and is Euler's constant. Using the

boundary condition

function K(t)

LPY1 at it -= 1, we can determine the unknown

1

ln
K(g) 1- ----)

(Z -A )t In

Hence, we have for our second approximation to LP

z /(2-A)dz
1

= 1 - (,-A)t
e

11

(3. 3.29)

(3.3.30)

Since the correction term is very small when t is large except near

= 1 , we may write in the form of an asymptotic expansion:

00
G

1

[In (2-A3 is + O( In )
s.= C

The investigation of the properties of Gs(11)

(3. 3. 31)

is in order. If our

expansion is asymptotic, then it must be possible to make the error in
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qi as small as we please by taking large enough with a sufficient

number of terms. This requirement can be shown to be met, because

of the analogous asymptotic series expansion of (3. 3. 31) to the cor-

responding expansion for a Newtonian fluid.

Substituting

(2
C
A) -,-sin (3. 3. 19) and comparing coefficients of [ln i , we obtain

(2-A)riGill + (2-A+TOG" = -(s-1)G' G G"
s s s -1 s -1 1

(3. 3. 32)
s -2

[tGIGI +G (tG" -G" ]t s-t-1 t s-t-1 s-t
t=1

In the determination of the G's, we will take as boundary conditions

tl., = 0 at 1 = 0 ,

= 0 at 11 = 1 , and (3. 3. 33)
11

1 as T1 - 00 for all
11

The boundary condition (3. 3.33) iis inaccurate. In this connection,

Stewartson (1955) showed that the error incurred by taking the

boundary condition on 4 at 11 .=.- 0 is sufficiently small for large
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z. This result is also valid for the micropolar case owing to the

similar form of expansion of the stream function. We now prove that

if

Gt(ri) = D ln + E + A ri(ln -5C )2 + B 1 In C + 0(i)t 2-A t t 2-A t 2-A

(3. 3. 34)

near 1 = 0, for 1 < t < s-1, where A's, B's, D's, and E's

are constants, then G' has a similar form near 11 = 0 for all

s > 1. From (3. 3. 34) it follows that near rl = 0

Gt = Dt ln TIC

2-A + (E -D + 1 A ri ( 1 n TIC )2t t 2 t 2-A

+
2 TIC

A 1+ 0(2)1 (B 1 in 2t -A
t ) (3. 3. 35)

since Gt(r)) = 0 at ri = 0. Furthermore, differentiating (3. 3. 34),

we obtain

GI' = D
-1 riC+ A (ln )

2 + (2A +B) 1
n

+ 0(1) . (3. 3. 36)t t t 2-A t t 2-A

Substituting (3. 3. 34), (3. 3. 35) and (3. 3. 36) into (3. 3. 32) yields:

(2-A)iG"' + (2-A-Fri)Gn = (2-A)A (ln )2
s

-n-C2-A

+ (2-A)(B
s

+4A
s

)1n 2 + 0(1), (3. 3 37)

where
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(2-A)As =

s-2

t=1

{tDtDs -t- 1}
,

(2-A)(B
s

+4A
s

) = -(s-1)Ds-1 -D1Ds-1

(3. 3. 38)
s-2

-/ [t(DtEs-t _t_lEt)+(tD )]-1 +D
s tD

s -t - 1
-DtDs -t

t=1

Now (3.3.37) can be rearranged as

riC
(TIG ur + ( )71G" = A

s 2-A(1n ) 2 + (B
s

+4A
s 2

)1n + 0(1) .2A
1

s
ac

(3. 3. 39)

Integrating (3. 3.39) once gives

riGs = A
s

/1(ln 2A )
2 + (B

s
+2A

s
)TIan 2A ) + Ds + 0(11). (3. 3. 40)

Therefore, with the help of the method of mathematical induction,

TIC riC
)2

TICG' = D In + E + A Tian 2-A ) + B riln + 0(71)
s s 2-A s s s 2-A

(3. 3.41)

near TI = 0 for all s > 1.

Thus, near 11 = 0 ,



1 +
Ti

co

s =1

rCD in +E
s 2-A s 1+ 0( )(2.-A)t is t in t
in C
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(3. 3. 42)

Now, we can determine the unknown coefficients A's, B's,

D's, and E's from the boundary conditions. When TA = 1,

= 0, so that from (3. 3 42) we have

1 =

00
Es

s=

This result leads to

(2-A) y -1
C s =1

(2-A)
JsC

(3. 3.43)

D
1

= 1 and Ds = Es-1 for s > 1. (3. 3. 44)

Expressing A's and B's in terms of Dt, we obtain from

(3. 3. 38) and (3. 3. 44)

s-2

(2-A)As = {tDtDs-t-1},

t=1

2(s -1Bs +4A
s

= -
2 -A s -1

s -2
1

2-A {2(t-1)Ds-tDt+tD tD s-t-1 }

t-71

(3. 3. 45)
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Since the E's are determined from the condition that Gt (11)

approaches to zero as Ti goes to infinity, and A's, B's, D's

are dependent only on the E's, we may determine as many of them

as we please by successive substitution.

The equation governing G1 is:

(2-A)TIGIDI + (2-A-F1)G1 = 0.

Integrating once gives

-1 ,1/(2-A)
G" D e

1 1

(3. 3. 46)

(3. 3.47)

Further integrations result in

e-z/(2z-A)dz

(1-e -111(2-A)).

(3.

(3.

(3.

3.

3.

3.

48)

49)

50)

G 1 = -Di
1

and

-z/(2-40)
ze

G
1

= -D
1

- (2 -A)D
1z

From (3. 3.28) and (3. 3. 30) it now follows that

D1= 1 and E
1

= 0.

Taking into account only the first dominant term of the asymptotic

expansion of we obtain
1111

in the following form:



-1

C
[n

+ 0
In

(2-A)e (21-Me
)2
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(3. 3. 51)

From (3. 3. 17) the microrotation function 4' is finally expressed by

-1
if = -

1111 (2.-A)e + 0(
In (ln )

2 ) (3. 3. 52)

Now that the desired solution for the asymptotic boundary layer flow

has been established, we may discuss the boundary and matching con-

ditions on the microrotation n. The matching condition (3.2.14) is

satisfied in the limit r 00 as shown by

, -Un U
= = ) -r k

111 r In 2(2p.+K)z

pUa
2C

for fixed large z.

0

The boundary condition on the microrotation at r = a, is:

U 1
n0 = ( )

0 a In
2(2p.+K)z

pUa
2C

for large z.

(3.3. 53)



3. 4 Boundary Layer Thickness and Skin-Friction

The shear stress t in physical components in cylindricalrz
coordinate system may be obtained from (2.2. 9) with covariant dif-

ferentiation replacing ordinary differentiation. Thus,

aut rz
= (p,+K)

ar
av

u az
+ Kn

61

(3.4.1)

Using (3. 2. 7), we get for the shear stress in terms of boundary layer

variables,

R
-1 /2 au ,t = -r Knrz 8r

At the wall of the cylinder, (3.4.2) becomes

R
-1 /2 tw = (µ +K)

aar I + Kno ,

(3.4.2)

(3.4.3)

where the subscript w denotes that the expression is evaluated at

the boundary. In accordance with the expression for the classical

wall shear stress, we regard R -1 /2t as our micropolar wall

shear stress, which we denote by t . Hence,w. m.

2
, au

I
= (11+K) 1 + Kn p.= (+K)

w. m.. . ar w 0 Dr 2 w + Kn
0

. (3. 4. 4)

Now when is small,



1 211Ut = (1+ A)w.m. 2 a
1

(1+
1.6.)44z

In
pUa2C

+O 1

(1+
1

6.)411z
2

In
2

pUa
2C
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(3. 4. 5)

where A = 0 and if A = 0, (3. 4. 5) reduces to the case of a

Newtonian fluid. The expression for the couple stress mr0 may

be obtained through (2. 2. 10), in terms of physical components,

8n
mre = -(3(11) + 11( ar )

In terms of boundary layer variables,

R 1mr8 = ) + y(ar )

On the wall of the cylinder, (3. 4. 7) becomes

an
P( 11) + Y()r w ar w

(3. 4. 6)

(3. 4. 7)

(3. 4. 8)

Since n = - r , the couple stress at the wall is expressed by

mw r

"Prli]w 2 1111 wr

= (P+Y) 2
a

1 +O
1

1.1.

pUa
2C

(.n
pUa

2C

(1+
2

0)4µz (1+-
2

A)4z
In

1 (3. 4. 9)



63

Now, we may calculate the effective wall shear stress teff. defined

by

That is,

where

m

Leff.
= [-t + 1.Qrz r r=a

2U
L

(-1- pd-p*-1-N44)
eff. a 2

+0 1

1

1
(1+ A)4p.z

In

(1 +20)4µz
(.n

pUa
2C

pUa
2C

> 0 ..`il* 2
/3* - _ > 0 and

24a 21.1.a

(3. 4. 10)

(3.4.11)

The effective wall shear given by (3. 4. 11) is found to be reduced in

the micropolar case compared to the Newtonian case if the material

coefficients satisfy the following condition:

2p 13* < 0.

The micropolar skin-friction coefficient denoted by Cf. m.

(3.4.12)

is



11 _ -FR )teff. 4v 2-
A

r-

Cf. m.
2
1 2 Ua

(1+Up 2A)4vz
In

Ua C
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(3. 4. 13)

We may now form the ratio of the micropolar skin-friction coefficient

to the Newtonian skin-friction coefficient, Cf. n.

by setting A = p = y = O.

4v
ln(

z
)

C f.m. 1 Ua -C= (1+ A p*-Nt)
Cf. n.

2 (-1+1p)4vz

In view of (3.4. 12),

Hence, the ratio

In
Ua C

1
1 - 13* - N* < 1

Cf. m.
C = < 1.

f Cf. n.

which is obtained

(3. 4. 14)

(3. 4. 15)

(3. 4. 16)

This confirms Eringen's conjecture.

Next, we obtain the expression for the micropolar velocity

profile at large distances from the cylinder when z is large. Since

the axial component of the velocity, u, is the first derivative of the

stream function tl) with respect to ri multiplied by the uniform



mainstream velocity U, we find that

where

and

2
;i

11

(1+ IA) -( )
24-A

2 e: 1 -
U r2 1ln(1+-

2
A)z-

L (1,1_)1 /2
vz

4vzz -
Ua C
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(3. 4. 17)

Finally, we estimate the boundary layer thickness on the cylin-

der. In the boundary layer, the radial coordinate r can be written

as r = a + r', where a 1.9 the radius of the cylinder and r' is

less than or equal to the boundary layer thickness 6. The partial

derivative operator
a a ar' a

ar ari ar 88r1

a can now be replaced by a
, s ince

Then, (3. 2. 10) can be rewritten in the form

au au 1 LE K 82u 1 au K n an
v + u = + (v+ + ) + ( +--, ).

ar az p az art a+r' a r p a+r' ar

(3. 4. 18)

From (3. 4. 17), we get the following relationship:

2

(1+1
A) 2

1
2:

1 2 -2r /2 +p.
eu ln(1+ A) z U ln(1+

2
A)z - 2r

(3. 4. 19)
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Note that the last term of (3. 4. 19) depends entirely on r and it will

approach zero in the asymptotic sense as r 00 (i. e. , after pass

ing through the outer edge of the boundary layer). This suggests that

the main contribution to the longitudinal component of the velocity
1comes from the first term, namely U ln(1+2 A)z in (3.4. 19) in the

asymptotic sense as r 00. Thus, the potential flow U is modi-
1fied by a factor ln(1+2 A)z, due to the presence of the cylinder.

This concept fixes the outer edge of the boundary layer, allowing for

estimating the boundary layer thickness S. We now recall the

Prandtl's assumption that the viscous forces are of the same order of

magnitude as the inertial forces in the boundary layer. Making use of

this assumption, (3. 4. 18) yields the following estimate for 5:

or

Hence,

au
a z

v+
P r,2

a 2 K U

aZ ) (v+p),2r

1 1[U ln(1+
2

)z]
2

(v+ ln(1+ 2 )z]

Solving for 5 gives

5

z

1/2

[U ln(1+ts)z1 1 (1+-6)4vz1

[U ln

(1+,6 )vz (1-1-L )vz-

2 2

Ua2C

1/2

(3. 4. 20)

(3. 4. 21)

(3. 4. 22)



Cf. m.
Cf. n.

1.

0.

0.
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0
A = (3* = N* = 0

A = 0. 2, 13* = 0. 1, y* = 0. 0

A = 1. 0, 13* = 0. 2, y* = 0. 3

9

A = 4. 0, p* = 1. 0 , Ni* = 1.0

8

0 1-fi 1

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 (x 103)

z

Figure 3. 4. 1. The ratio of the micropolar to Newtonian effective
wall shear stresses at various local points z.
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Figure 3.4. 2. The velocity profile.
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4. DISCUSSION OF THE RESULTS AND SCOPE
OF FURTHER WORK

4. 1 Discussion of the Results

Our present analysis has shown that if the micropolar

material coefficients

68

are restricted by the upper bound

relation (3. 4. 12), then there occurs drag reduction at the wall

of the cylinder in an axial incompressible micropolar fluid flow in

relation to the case of a Newtonian fluid. This result is clearly due

to the presence of the couple stress which counteracts the action of

the shear stress, thereby reducing the drag near the wall of the

cylinder (see Figure 3.4.1). Therefore, with the restriction (3.4. 12)

on K, p, y, the longstanding famous conjecture of Eringen (1966) is

confirmed that the theory of micropolar fluids may have a mechanism

capable of explaining drag reduction near a rigid body. The analysis

of the results also reveals that the micropolar velocity profile is

flattened in comparison to the Newtonian counterpart, as shown in

Figure 3. 4. 2. The micropolar boundary layer thickness is shown to

be larger than the Newtonian one. The increase in the boundary layer

thickness is attributed to the presence of the micropolar viscosity

coefficient K
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4. 2 Scope of Further Work

The present study of the asymptotic boundary layer on a

circular cylinder in axial incompressible micropolar fluid flow has

been limited only to the case dealing with a uniform mainstream

velocity, that is, m = 0, due to the complex nature of the equations

of the boundary layer involving the stream function 4, and the

microrotation function '1. When m = 0, there is no pressure

gradient and therefore the phenomenon of boundary-layer separation

does not arise. However, it should be definitely more interesting to

examine the case where the mainstream velocity is proportional to

zm with -1/2 < m < 1, from the practical consideration that an

exact knowledge of the trailing edge phenomena on a body of revolution

in general is yet to be gained. Therefore, a further work of the pre-

sent investigation should be carried out in a more general setting with

m not necessarily equal to zero so that the more important problem

of boundary-layer separation, whose phenomenon is always associ-

ated with the formation of vortices and with large energy losses in the

wake of the body, may be treated for a better understanding of the

trailing edge phenomena under consideration.
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