
AN ABSTRACT OF THE THESIS OF

David T. Hu for the degree of Master of Science in Chemical Engineering presented

on September 11, 2003. Title: Fault Probability and Confidence Interval Estimation

of Random Defects seen in Integrated Circuit Processing

Abstract Approved:

Milo D. Koretsky

Various methods of estimating the fault probabilities based on defect data of

random defects seen in integrated circuit manufacturing are examined. Estimates of

fault probabilities based on defect data are less costly than those based on critical area

analysis and are potentially more reliable because they are based on actual

manufacturing data. Due to limited sample size, means of estimating the confidence

interval associated with these estimates are also examined. Because the mathematical

expressions associated with defect data- based estimates of the fault probabilities are

not amenable to analytical means of obtaining confidence intervals, bootstrapping

was employed.

The results show that one method of estimating the fault probabilities based

on defect data proposed previously is not applicable when using typical in-line data.

Furthermore, the results indicate that under typical fab conditions, the assumption of a

Poisson random defect distribution gives accurate fault probabilities. The yields as

predicted by the fault probabilities estimated from the limited yield concept and kill

ratio and those estimated from critical area simulation are shown to be comparable to

actual yields observed in the fab. It is also shown that with in-line data, the FP

Redacted for privacy

estimated for a given inspection step is a weighted average of the fault probabilities of

the defect mechanisms operating at that inspection step.

Four bootstrapped based methods of confidence interval estimation for fault

probabilities of random defects are examined. The study is based on computer

simulation of randomly distributed defects with pre-assigned fault probabilities on

dice and the resulting count of different categories of die. The results show that all

four methods perform well when the number of fatal defects is reasonably high but

deteriorate in performance as the number of fatal defects decrease. The results also

show that the BCA (bias -corrected and accelerated) method is more likely to

succeed with a smaller number of fatal defects. This success is attributed to its ability

to account for change of the standard deviation of the sampling distribution of the PP

estimates with the PP of the population, and to account for median bias in the

sampling distribution.

Fault Probability and Confidence Interval Estimation of Random Defects seen in

Integrated Circuit Processing

by

David T. Hu

A THESIS

submitted to

Oregon State University

In partial fulfillment of
the requirements for the

degree of

Master of Science

Presented September 11, 2003
Commencement June 2004

Master of Science thesis of David T. Ru presented on $çptember 11, 2003.

APPROVED:

Major Professor, representing Chemical Engineering

Chair of Department of Chemical Engineering

Dean of aduate School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

David T. Ru, Author

Redacted for privacy

Redacted for privacy

Redacted for privacy

Redacted for privacy

ACKNOWLEDGEMENTS

I would like to thank the following people for making the completion of this thesis
possible.

Dr. Milo Koretsky, for his support, encouragement, and tireless guidance while I
was a student in the department and during the writing of this thesis.

Manu Rehani, of LSI Logic, for introducing me to this topic and for his expert
mentorship during my internship.

Loan Pham, my wife, for her unwavering love and support of me while raising
our newborn son, Patrick.

Daniel Hu, my brother, who made sure I did not get discouraged when the going
got tough.

Finally, to my parents, whose unconditional love made everything possible.

TABLE OF CONTENTS

1 INTRODUCTION .1

1.1 Overview of the Thesis . 1

1.2 Integrated Circuit Yield Analysis ... 2

1.3 Defect Limited Yield .. 6

1.4 Process Steps and some Common Defects .. 7

1.5 Bootstrapping .. 13

1.6 Outline of the Thesis .. 14

2 FAULT PROBABILITY AND KILL RATIO ESTIMATION BASED ON
ANALYSIS OF DEFECT DATA .. 16

2.1 Introduction .. 16

2.2 Estimating Fault Probability Based on Kill Ratio 18

2.3 Averaging of PP for all Defect Sizes .. 24

2.4 Results and Discussion ... 28

2.4.1 Comparison of Estimated Fault Probabilities 28
2.4.2 Comparison of Estimated Fault Probabilities with Yield................. 33
2.4.3 Sources of Error in PP Estimation ...35
2.4.4 The Components of the PP Estimated for an Inspection Step40
2.4.5 Estimation of FP when the Defects are Clustered 44

2.5 Conclusion ... 49

3 CONFIDENCE INTERVAL ESTIMATION BASED ON
BOOTSTRAPPING FOR THE FAULT PROBABILITIES OF
RANDOM DEFECTS ... 51

TABLE OF CONTENTS (Continued)

3.1 Introduction .51

3.1.1 Methods of Confidence Interval Estimation51
3.1.2 Bootstrap Simulation ... 58

3.2 Results and Discussion ...61

3.2.1 Bootstrap Sampling Distribution Results61
3.2.2 Performance of the Basic Pivotal Methods68
3.2.3 Performance of the BCA Method.. 83

3.3 Conclusion .. .87

4 CONCLUSIONS AND FUTURE WORK ... 89

4.1 Conclusions .. 89

4.2 Suggestions for Future Work ... 90

BIBLIOGRAPHY .. 93

APPENDIX .. 96

Simulation Code for Ch.3 written in Excel Visual Basic for Applications........97

LIST OF FIGURES

Figure

1.1 Scanning electron micrograph of a random defect causing
a short between metal lines ..4

1.2 Example of critical area analysis done by HPL Inc. in which the
critical areas for bridges and breaks have been determined5

1.3 Process flow chart of device fabrication and location of
the various inspection steps ...

1.4 Cross-section of a transistor at the end of metal 2 etch 10

1.5 Schematics of a device at various representative process
steps .. 12

2.1 Comparison of LY versus DD for a Poisson distribution and
clustered distributions at two different cluster factors, for
FP=0.02 .. 22

2.2 Comparison of LV versus DD, corresponding to FP=0.02, and
FP=0.33 .. 23

2.3 Defect Size Distribution, h(x), where xo=O.l Lm27

2.4 An example of h(x), FP(x), and the resulting FP(x)*h(x) 29

2.5 KR versus defect density at various cluster factors
compared to FP ..45

2.6 Average PP estimates based on assumption of no clustering,
FPLY, and based on no assumption regarding clustering,
FPc1, versus defect density...48

3.1 A general representation of a sampling distribution52

LIST OF FIGURES (Continued)

Figure

3.2 Typical random distribution obtained of the three defect
types used in the simulation on a lOxlO wafer............................59

3.3 Two bootstrap sampling histograms for representative
values of FPtrue: a) FPtrueO.03, b) FPtrueO.00662

3.4 Bootstrap estimated bias, variance, and 5" and 95th percentiles
vs. the number of bootstrap replications for FPtrueO.O08, at
FPsampO.00762 ...63

3.5 The proportions of LLTH and ULTL vs. FPtrue for the four
methods of CI estimation ..66

3.6 The 500 standard deviations of bootstrap distributions (SDb0ot)

versus FPsamp for three representative values of FPtrue...................69

3.7 Bootstrapping estimates when the pivotal approximation
isvalid ... 71

3.8 Bootstrapping estimates when the pivotal approximation is not
valid ... 74

3.9 Comparison of UCL and LCL estimated by the first percentile
method to that of the "gold standard" estimated from the actual
sampling distribution ... 77

3.10 SDboot and SDac vs. percentile of FPsa,i 78

3.11 Effect of the right-skewed shape of the sampling distribution
on the coverage of the first and second percentile methods 82

LIST OF TABLES

Table

1.1 Inspection steps examined for defects and the process steps
immediately preceding them.. 13

2.1 Estimated parameters for each of the eight inspection
steps .. 30

2.2 Estimated LY and FPLY for each of the eight inspection
steps .. 30

2.3 Possible fault mechanisms for the defects detected at various
inspection steps ..31

2.4 Random yields, YR, calculated based on estimates of
FPROSS, FPLY and CAA..34

2.5 Defect detection and causes of undetected defects36

2.6 Comparison of LY predicted by Equations (1-4) and (2-13)............38

2.7 Comparison ofFPLY estimates based on assumption
of no inspection errors with those based on inspection errors 40

2.8 Comparison of the estimates of FP based on the assumption
of no defect clustering and based on no assumption
regarding defect clustering ..47

3.1 Estimates of the distances a and b in the sampling distribution
for various CI estimation methods... 55

3.2 FP values assigned for each run.. 60

3.3 Performance of four different methods of CI estimation
for a 90% CI in terms of the proportion of failed CI 67

LIST OF TABLES (Continued)

Table

3.4 The equation of the best-fit line of SDboot to FPsamp, and
the estimated sample SD for various values of FPtrue 72

3.5 Average "shape factor" of the bootstrap distributions for
the lower and upper 10% values of FPsamp81

3.6 Average values of the BCA parameters estimated from
500 samples for each value of FPtrue 85

NOMENCLATURE

a a distance in the sampling distribution
a acceleration constant in BCA method
ADie die area

cluster factor of defect type A
b a distance in the sampling distribution
B bias of estimator
BR bootstrap estimate of bias
J3 bias constant in BCA method
CI confidence interval
DDA defect density of defect type A
PP Fault probability
FPtrue PP parameter of population
FPA one of the three values of FPtrue assigned in each run
FPB one of the three values of FPtrue assigned in each run
FPc one of the three values of FPtrue assigned in each run
FPLY FP estimated using the limited yield equation with the yield given by

the kill ratio equation
FPROSS FP estimated using the Ross method

FPsamp point estimate of FPtrue
PP estimated using critical area analysis

FP* bootstrap estimate of FPsa,i

h(x) probability density function of defect size x
IC integrated circuit
ISEF island etch
KR kill ratio
X average number of fatal defects per die
LYA limited yield of defect type A
mo a transformation function
M1EF metal 1 etch
M1MD metal 1 mask
N number of dice with one defect
n fatal defects per unit area

number of failed dice with one defect

transformed estimator

0 transformed parameter
P{E} probability of event E
POLF poly etch
R total number of bootstrap estimates

standard deviation of 0
s estimate of standard deviation

NOMENCLATURE (Continued)

SD standard deviation
A

SDb00f standard deviation of the bootstrap-estimated FPs

SDact estimate of the SD of the actual sampling distribution ofFPsa,np based
on actual values of FPsarnp

SL2R salicide formation
SPCE spacer etch
T total number of dies sampled
t point estimate of 0

bootstrap estimate of t
t lOOa percentile of bootstrap estimates
T, total number of dice with defect type i on them
TG total number of good dice sampled
TG total number of good dice with defect type i on them
TN1T Ti-Nitride deposition 1
0 population parameter
0 point estimator of 0

VR sample variance of the bootstrap estimates
estimate of the mean

YDLi defect limited yield
YR random yield
Ys systematic yield
zct standard normal variable having cumulative probability a

Fault Probability and Confidence Interval Estimation of Random Defects
seen in Integrated Circuit Processing

1. INTRODUCTION

1.1 Overview of the Thesis

Because of the importance of yield estimation in integrated circuit (IC)

manufacturing, the research in this area has been extensive. Most of the research,

however, has focused on estimation of fault probabilities based on critical area

analysis. The goal of this thesis is to come up with a comprehensive approach based

on measured defect data to find the fault probabilities of individual steps in an IC

manufacturing line. Estimates of fault probabilities based on defect data are less

costly than those based on critical area analysis and are potentially more reliable

because they are based on actual manufacturing data instead of just the die layout.

Chapter 2 compares the various methods of estimation of fault probabilities using

actual defect data to discover which method is most reliable. A way of accounting for

defect clustering in the estimation is also discussed.

As a consequence of the typically limited sample size of the defect data used

for estimating fault probabilities, means of assessing the uncertainty associated with

these estimates are also examined. This uncertainty is best expressed as a confidence

interval. Because the mathematical expressions associated with defect data- based

estimates of the fault probabilities are not amenable to analytical means of obtaining

confidence intervals, bootstrapping was employed. Chapter 3 examines different

bootstrap based methods of obtaining confidence intervals for these estimates of fault

probability.

Finally, based on the results of estimating the fault probabilities from the

actual defect data, recommendations for achieving more accurate and complete

detection of defects occurring on the manufacturing line will be made.

Recommendations for the sample size needed for accurate CI estimates are also given

based on the results from bootstrapping.

A simple analogy to basic engineering statistics summarizes the goals of this

thesis. To obtain an unbiased estimate for the mean of a normal population, we would

use

x11 n.

To obtain its 1-2a % confidence interval, we have:

± / ta,

where s is the sample standard deviation, n is the number of observations in the

sample, and t is the a percentile of the t distribution. The goal of this thesis is to

obtain the analogous expressions for the fault probability of the population of a

certain class of defects based on defect data measured in the IC fab.

3

1.2 Integrated Circuit Yield Analysis

The estimation of yield is critical for economically efficient production of

integrated circuits. In a newly implemented process, many yield detractors need to be

identified. This can only be done if methods of estimating the yield loss from these

yield detractors have been implemented. When the process is mature, even small

improvements in yield can greatly increase profitability. It has been estimated that in

a typical fab with an output of 20,000 wafers per month, if yield is improved by even

2%, profit could go up by about $10 million per year. The reason for this steep

increase in profit is that once a process is mature the cost of manufacturing ICs is

approximately constant whatever the yield. [1]

The total yield at wafer probe is typically viewed as made up of two

components: the systematic yield, and the random yield. The systematic yield loss is

due to 1) design problems, such as a design not meeting minimum spacing rules, 2)

process steps not meeting specifications, such as photo-mask misalignment and under

etching, and 3) faulty testing procedures. These are usually issues in the early

development of the IC manufacturing process. Once a process is mature, the main

yield loss is due to the random defects.

Random defects are caused by random events, such as particle deposition, that

occur during the fabrication process. They mostly stem from the processing

equipment and processing material and can cause the formation of features on the die

not intended in the design layout. If they occur in a critical region, or critical area, of

the die, they will cause opens or shorts, or some other type of fatal defect, and cause

the chip to fail. [2] A scanning electron micrograph of a random defect causing a

short is shown in Figure 1.1.

Figure 1.1. Scanning electron micrograph of a random defect causing a short
between metal lines

Each type of random defect has a probability of causing a fault associated

with it. This probability, the fault probability (FP), is simply the ratio of the critical

area associated with that particular defect type to the total area of the chip. It is a

function of parameters associated with both the defect itself and the layout of the die:

the size and type of the defect, and the circuit geometry. [2]

To predict random yield the values of the fault probabilities associated with

each defect type must be established. In general, there are two ways to establish these

fault probabilities. One is by analyzing existing defect data and inferring the fault

probabilities through models of the defect distribution. This method is sometimes

referred to as "data mining" because it depends heavily on the ability to extract

information from the database associated with the defect maps of the particular defect

5

type. The second method is to simulate the defect distribution by means of Monte

Carlo techniques on the die layout, and determine the fault probabilities from the

number of failed circuits. This method is referred to as critical area analysis [3]. An

example of a die layout with the critical areas for bridges and breaks determined is

shown in Figure 1.2. A bridge is the unintentional linking of two layers, while a break

is the unintentional break in a layer, where the layer can be conductive, such as metal

or polySi, or nonconductive, such as the field oxide separating the active regions of a

transistor.

i I,

C

I I!

Critical areas for bridges arid break fau'ts

Figure 1.2. Example of critical area analysis done by HPL Inc. in which the
critical areas for bridges and breaks have been determined

1.3 Defect Limited Yield

The defect limited yield for a particular defect type can be defined as the yield

that would result if that particular defect type were the only defect present. In actual

manufacturing, of course, there is usually more than one defect type, and, assuming

the defect types occur independently of one another, the overall yield can be

computed by:

Y-SYR_YSYDI1'DL,.YDL_YSHYDL, (1-1)

where Y is the systematic yield, YR is the random yield, and DL j= 1,2,3,... are the

defect limited yields for defect types i. [4] For example, if no other defects are present

other than defect type 1, and the systematic yield is 1, then '=
'DL,

i.e., the resulting

yield would be equal to the defect limited yield for defect type 1, and is limited by the

yield loss due to this defect.

To estimate DL , a distribution model for the defects is assumed. All the

different yield equations result from different assumptions of the distribution of the

defect density. Assuming the defects are distributed such that they have equal

probability of occurring anywhere on a wafer, it can be shown from a binomial

probability model that the probability of finding n fatal defects in a unit area, e.g., a

chip area, ADje, of region of constant defect density D is given by,

7

where

(2)' e
p(n;2)= (1-2)

n!

2=FP.ADi.D (1-3)

and FP is the fault probability. Since the fault probability may be defined as the

portion of defects which are fatal, 2 represents the average number of fatal defects per

chip. [5] Equation (1-2) is the simplest distribution to assume and is known as the

Poisson distribution. Defining the random yield for a particular type of defect, YDLi, as

the probability of zero fatal defects, n=O, Equation (1-2) gives,

DL =e (1-4)

As the die area is known, the determination of the fault probability and the defect

density for each defect type per layer is the primary task in estimating the random

yield.

1.4 Process steps and some common defects

Typically there are more than 200 steps in the manufacture of an integrated

circuit. Figure 1.3 presents a flow diagram of twenty-seven major process steps that

are involved in the fabrication of a typical device; however, the last eight steps are

repeated for each metal layer grown. Additionally, the location of the inspection steps

relative to these process steps are shown. Seven inspection steps are shown: ISEF,

POLF, SPCE, SL2R, TN1T, M1MD, M1EF. The defect data we collected, which are

Bare Wafer
I

N/P Well Implant RTA(SilicidatIon)

Pad Oxide Growth Gate Oxidation PSG CVD Deposition

SiN Deposition

Photoresit Coat

Expose and Develop PR

Nitride and Si Etch

Field Oxidation

Nitride Strip

Oxide Strip

PolySi Deposition PSG CMP

Contact Mask and Etch

TIN CVD

W Deposition and CMP

Ml Deposition

Ml Mask

L[M1MD

Ml Etch

PolySi Implant

PolySi Mask

PolySi Etch

Spacer Deposition

Spacer Etch

HSPCEI

S/D Implant and Anneal

Figure 1.3 Process flow chart of device fabrication and location of the various
inspection steps

presented in Chapter 2, were gathered using these inspection steps. The processes

shown allow a device containing transistors with metal layers on top to be constructed

from a bare silicon wafer. Figure 1.4 shows a cross- sectional schematic of a single

transistor after the second metal layer has been etched. Once all the metal layers are

built, the passivation layers are deposited and etched for the bond pads. Finally, the

chips are tested and their pass/fail status recorded at electrical sort.

In our scheme, classification of the defects is based on the process step just

preceding the inspection step at which the defects were detected. Table 1.1 labels the

inspection steps by identifying the process steps immediately preceding them. The

defects are named to correspond to the inspection steps at which they were detected.

Figure 1.5 shows schematics of the defect mechanisms that can occur during device

fabrication. Figure 1.5a illustrates an active bridge and an active bridge. An active

bridge is formed when two active regions are connected due to an unintentional break

in the field oxide. An active break is formed when the field oxide encroaches upon an

active region that should be free of field oxide. As the cross-section shows, these

defects appear after island-etch. Figure 1 .5b illustrates a poly bridge and a poly break,

which manifest after polysilicon etch. A poly bridge refers to the unintentional

linking of two polySi layers, and a poly break refers to the unintentional break in a

polySi layer. Likewise, Figure 1.5c shows defects occurring during metalization. A

metal bridge is the unintentional linking of two metal layers, while a metal break is

the unintentional break in a metal layer. A poly- metal short is formed when there is a

IMD1

II w
Contact

Figure 1.4 Cross-section of a transistor at the end of metal 2 etch

10

Field Oxide

Field oxide will be grown
here A tive bridge _________IA ye

Oxide Activ b L

R gion

Substrate

Cross section of device
after island etch

Field Oxide

/si
Ltff

Cross section of device
after polysilicon etch

a

Top view of device after island
etch, field oxidation, and
nitride and oxide strip

Poly bridge

1t I

P 4k

Top view of device after polysilicon
etch, spacer deposition, spacer etch, and
salicide formation (RTA)

11

12

W will be

Cross section of device after TiN
CVD

W Contact

Conta
block

PolyM
short

Ml Brea

Metal 1 Ml

FekJ Oxide
ge

Top view of device after TiN
CVDJ W deposition, CMP, Ml

deposition, Ml mask, and Ml
etch

Figure 1.5 (a-c) (Continued) Schematics of a device at various representative process
steps. In each of parts a to c the planar schematic shows the possible defects that can
occur between the two process steps shown.

13

conductive link between the polySi layer and a metal layer. For layers above the

metal 1 layer the interconnections between the metals are called via, instead of

contacts, and the defect that causes the contact or via to be interrupted is called a

contact block, or via-block, respectively.

Table 1.1. Inspection steps examined for defects and the process steps immediately
preceding them.

Inspection Step Process step immediately
preceding it

ISEF Island etch: Nitride and Si
etch that define the active
regions

POLF Poly etch: PolySi etch
SPCE Spacer etch
SL2R Rapid thermal anneal

(RTA) that forms salicide
layer on PolySi

TN1T First TiN deposition prior to
W deposition and contact
formation

M1MD Metal 1 mask
M1EF Metal 1 etch
TN2T Second TiN deposition

prior to W deposition and
via formation

M2MD Metal 2 mask
M2EF Metal 2 etch

1.5 Bootstrapping

The estimation of fault probabilities based on analysis of defect maps

produces only point estimates of fault probabilities. A method to come up with range

estimates based on this method, i.e., confidence intervals (CI), has not yet been

14

reported. Standard formulae exist for estimation of the confidence interval for only a

limited number of parameters. For point estimates of FP based on measured defect

data only, no such analytical procedures exist because the defect map estimated FP is

complicated in terms of the underlying data structure and point estimation function.

Bootstrapping can overcome this difficulty because it can estimate the CI as long as

the procedure for obtaining the point estimate from a sample is known.

The basic idea of bootstrapping is very simple. The sample is used as an

approximation for the parent population itself. An estimate of the sampling

distribution of the estimator of a given parameter can then be achieved by random

sampling with replacement from the sample. The resulting bootstrap estimates for the

parameter then approximate the actual sampling distribution of the estimator and can

be used as a basis to estimate confidence intervals for that parameter. By means of a

simple computer algorithm this procedure of re-sampling can be automatic and

relatively quick.

The success of bootstrapping as a means of estimating CI can be seen by its

flourishing application in almost all scientific disciplines. These include the

biological sciences [6-8], physical sciences [9], engineering disciplines [10-11], and

the social and behavioral sciences [12-13]. This research hopes to add to this history

of success by applying the bootstrap to the CI estimation of FPs of random defects

seen in semiconductor processing.

15

1.6 Outline of the thesis

Chapter 2 describes how fault probabilities were estimated using binomial

statistics and kill ratios based on defect data. The resulting fault probabilities are

examined and compared with those based on critical area analysis. The estimated

random yields (based on Equation (1-1)) are also compared with actual random yields

for certain lots from the fab. The optimal method to estimate fault probabilities is

determined by the method that gives random yields consistent with the actual random

yields. The fault probability for an inspection step is shown to be an average of the

different defects seen at the inspection step. Finally, a simulation is done to show the

effects of clustering on the estimation of fault probability.

Chapter 3 discusses four methods of confidence interval estimation based on

bootstrapping. A simulation based on randomly generated defects, with pre-assigned

fault probabilities, distributed on wafers is performed to compare these four methods.

The resulting confidence interval estimates are then evaluated based on the proportion

of confidence intervals that actually capture the true value of the fault probabilities.

Chapter 4 presents the conclusions and recommendations for further study.

16

2. FAULT PROBABILITY AND KILL RATIO ESTIMATION BASED
ON ANALYSIS OF DEFECT DATA

2.1 Introduction

In the literature, the term kill ratio (KR) is sometimes used interchangeably

with the term fault probability (FP). In this study, we distinguish the two. Like FP,

KR can be used to estimate the defect limited yield; therefore, the KR as well as FP

was estimated. The calculations were based on three months of defect data collected

on the fabrication line at LSI Logic in Gresham, OR. In this sample set, more than

one hundred thousand random defects were detected by optical inspection tools

placed after specific process steps on the fabrication line, such as etching or

deposition.

In addition to classifying the defects based on the process steps, we also

classified the defects by increments of size. The size bins are categorized from Szl to

SzlO, the bin Szl representing all defect sizes from 0 to less than 1 micron, in

diameter, bin Sz2 from 1 to less than 2 microns, etc, up to bin SzlO, representing those

defect sizes 9 microns and greater. By defect data we mean the number of dice in a

certain category based on criteria such as the type of defect(s) detected on the die and

its pass or fail status at probe. For example, TGA is the total number of good dice with

defect type A, TA is the total number of dice with defect type A, TG is the total number

of good dice inspected, and T is the total number of dice inspected for defect type A.

After classifying all the defects based on the above method, the FP and KR

were calculated. Two methods were used to estimate the FP from the defect data. One

17

method was based on isolating the dice with only one defect, and counting the total

number of dice with a particular defect and the number of failed die for the same

particular defect. [14] IfN dice with only one defect type, A, are counted, and NF of

them fail, the estimated FP for this defect would be:

FPA=NFI'N (2-1)

This method was proposed by Ross, and the estimate based on Equation (2-1) is also

referred to as FPROSS. [14]

The second method used to estimate FP from the defect data is based on the

kill ratio. A kill ratio can be defined as the ratio of the increased probability that a die

will fail due to a particular defect type A present on it, to the probability that the die

will not fail if that particular defectA is not present:

KRA
P{R/A}_P{R/Ac}

(2-2)
P{GIAC}

[4], where R represents the event that a die is rejected, or fails electrical test, G is the

event that the die is good, or passes electrical testing, A is the event that defect typeA

is present on the die, and AC is the event that defect type A is not present on the die. If

one were also to define the FPA in the same terms used to define KRA, we would

have:

FPA = P{R I Aoniyone } (2-3)

where Aoniyone is the event that a die has only one defect, of type A. In other words,

FPA can be defined as the probability of a die failing when only one defect, of type A,

is present. It is straightforward to show that FP and KR are not, in fact, the same, and

estimate different probabilities. For example, if the failure rate is zero when defect

type A is not present, P[RIAC]=O, P[G/A]=1, and Equation (2-2) becomes,

KRA = P{R I A} (2-4)

Comparing Equations (2-3) and (2-4), it is clear that the KR will be greater than FP,

because the probability of failure for a die with at least one defect must be greater

than that for a die with just one defect. However, if the defect density of defect type A

is low, and there is no clustering of defects, most of the die that have any defects on

them would have only one defect type A. In that case, Equation (2-4) would

approximate Equation (2-3). Therefore, if the defect density is not too high, the KR

for a particular defect type may offer a good approximation to the FP.

2.2 Estimating Fault Probability based on Kill Ratio

In addition to serving as upper limits to the FP, estimating KR is of value

because it can be used to estimate the defect limited yield, from which the FP may be

inferred. Based on Equation (2-2), one can show that KR of defect type A can be

estimated by the following:

TGA TG

KRA1 TAT- (2-5)
TG TGA

TTA

[15].

It can be shown from basic probability theory that the limited yield for defect

type A can be computed as follows:

LYA =1 P{A}. KRA (2-6)

[15]. From this expression, it can be further shown that:

LY
TG(T-TA)

(2-7)A
T(TG-TGA)

[15]. Equations (2-5) to (2-7) are based on the assumption that the defects have the

same constant probability of occurring on any dice on the wafer; i.e., the defects have

a Poisson distribution. Thus we can equate Equations (1-4) and (2-7) to obtain an

expression for FPA based on the defect data:

ln(
TG (T TA))

T(TG -TGA)
FPA = (2-8)

DDA

whereDDA is the number of defects of type A per die.

The negative binomial equation has been shown as representative of the actual

distribution of random defects on a wafer in the fab setting because it accounts for

defect clustering [5]. The negative binomial equation is given by:

F(aA +n) (DDA IaA)
p(n) = (2-9)

n!F(aA) (1+DDA 10A)

where aA is the cluster factor that determines how clustered the defects of type A are,

and p(n) is the probability of having n defects of type A on a die. Substituting n=0

into the negative binomial equation, we have,

1
PA(0) (2-10)

(1+ DDA /aA)A

If we know the spatial probability distribution function of defects on a wafer, PA. we

can estimate TA as,

TA =T(1pA(0)) (2-11)

where pA(0) is the probability a die will not have any defects of type A on it.

Substituting Equation (2-10) into Equation (2-11), and rearranging, we have,

1
=1TAIT (2-12)

(1+DDA I'aA)

Equation (2-12) is a nonlinear equation for a which can be solved by numerical

methods, such as a bisection search or the Newton Raphson method. Thus, we can

solve for a once we know T, TA and DDA. We can calculate the defect limited yield

for the defect type A, again with the aid of the negative binomial equation, as

1
LYA = (2-13)

(1+DDA FPAIaA)°

Equation (2-13) does not assume that the defects follow a Poison distribution.

Thus, it is not correct, strictly speaking, to equate Equation (2-7), or equivalently

Equation (1-4), with Equation (2-13). However, under certain conditions, this equality

21

is a good approximation, even if the distribution is clustered. To illustrate this point,

Figure 2.1 compares the behavior of the limited yield under a Poisson distribution,

i.e., Equation (1-4), and a distribution that may be clustered, i.e., Equation (2-13), for

FP0 .02, versus defect density for varying values of ci. We see that the agreement

between these two equations lessens as the cluster factor decreases, i.e., as the

distribution becomes more clustered, or as the DD increases. However, at a low FP,

we see that at a higher DD and low cluster factor, the agreement is still quite good.

From Figure 2.1 we see that for the LV for a clustered distribution with a=0. 1 and a

DD of more than one defect per die, the agreement with the LY for a Poisson

distribution is better than 99%, when the FP is 0.02.

On the other hand, at high FP's, this approximation quickly breaks down as

the DD is increased. Figure 2.2 shows two sets of LV' s, one corresponding to FP =

0.02, the same set used in Figure 2.1, and one to FP = 0.33. The LYcurves for FP

0.02 are superimposed on the top curve in this figure, while the LY's set for FP= 0.33

are clearly separated, dramatically illustrating the dependence of the approximation of

Equations (1-4) and (2-13) on the FP value. From the above illustration, we see that

at lower values of FP, DD per defect type below one defect per die, and o above 0.1,

conditions typically seen in the fab, the values of the LV predicted by Equations (1-4)

and (2-13) are comparable. Thus, under the conditions just given, the FP predicted by

Equation (2-8) should be accurate, even with clustering of defects.

22

Figure 2.1 Comparison of LY versus DD for a Poisson distribution and clustered
distributions at two different cluster factors, for FP=O.02

23

si
FP=O.02

0.9

0.85

0.8
S..',

CXO1

X1
0.75

S..',

0.7 FP=O.33 .',',, A Poisson

0.65 S% cLO.1
S..

.S.

0.6 X= 1

0.55 .i..., Poisson

0.5
I I

0 0.5 1 1.5 2

DD

Figure 2.2 Comparison of LY versus DD, corresponding to FP=O.02, and
FP=0.33. For each FP there is a Poisson distribution and two clustered
distributions set at different cluster factors. The curves of LV at FP=0.02 are
superimposed on the top line

24

2.3. Averaging of FP for all Defect Sizes

Finally, FP values were estimated from computer simulation based on the die

layout for each layer, using a method known as critical area analysis (CAA). [16]

Basically, in CAA, the computer randomly places defects of a certain type on the die

layout; if the defect type were a conductor, for example, the critical area would be the

area of the places where this defect type would cause a short. The estimate of the FP

is then the ratio of the number of defects that landed on a critical area of the layout to

the total number of defects generated. To facilitate comparison with the values of FP

estimated from the defect data, the values of FP estimated by CAA simulation had to

be averaged over the same size bins, or over all defect sizes. To obtain the average FP

over a defect size range from the simulation results, we can start with the general

expression for the expectation of a function of a random variable:

E[g(x)] _fg(x)f(x)dx (2-14)

[17], where f(x) is the probability density function of the random variable x. If we

know FP as a function of size, FP(x), where x is size, then the average FP over all

possible defect sizes would be, per Equation (2-14):

= LFPxrnx (2-15)

where h(x) is the probability density function of the defect sizes, also known simply

as the defect size distribution. To determine the average simulatedFP over a specific

defect size range, x,j,, to x,, we use the following expression,

25

rntmx
Xmrn (2-16)

fh(x)dx

The exact functional form of h(x) can be determined from defect monitors.

However, it has been found that assuming a linear increase in h(x) up to a certain size,

x0, and a 11x3 decrease above this size is an adequate approximation for most defect

size distributions found in the fab. In most cases, x0 has been found to be much

smaller than the minimum dimension of the device [18]. Once x0 is established, h(x)

is determined by recognizing that the probability density function must satisfy the

following relationship:

Assuming that

and

fh(x)dx = 1 (2-17)

h(x) = ax for 0 x x0 (2-18a)

h(x)=b/x3 for x0 x<oo (2-18b)

[19], we have, by substitution of Equations (2-18) into Equation (2-17),

faxdx+fb/x3dx=1 (2-19)

Since !z(x) must be continuous,

26

ax = b / x3 at x =x0 (2-20)

Solving Equations (2-19) and (2-20) simultaneously, we have,

and

Thus,

a=1/x02 (2-21a)

2
b = (2-2 ib)

2x/x0 foroxx0
h(x) = { 2

(2-22)
x0 Ix forx0xoo

Figure 2.3 shows an example of h(x) where x0 is assumed to be 0.1j.tm. Once we

determine FP(x) and h(x) we can estimate the average FP over all defect sizes for any

given defect type by numerically integrating Equation (2-15).

27

Figure 2.3 Defect Size Distribution, h(x), where xo=O.l tm.

2.4 Results and Discussion

2.4.1 Comparison of Estimated Fault Probabilities

When the defects were sorted into the bin sizes, Szl to SzlO, greater than 99%

of the defects fell into the Szlor Sz2 bins. Thus the larger size bins would have too

much statistical uncertainty associated with the FP estimates for meaningful

comparisons. In light of this result, we did not use the size bins in our study. Figure

2.4 shows an example of the fault probability versus defect size curve, FP(x), for

metal bridges, obtained through critical area analysis. Also shown in Figure 2.4 are

the defect size distribution curve, h(x), and the FP (x) * h (x) curve, the area under

which gives us the average fault probability for metal bridges.

Table 2.1 shows the defect density, cluster factor, a, and the counts of TA, TGA,

T and TG for each of the inspection steps. Table 2.2 shows the estimated FPLY based

on Equation (2-8) and the limited yield LY estimated by Equation (2-7), using the

values shown in Table 2.1, for each of the eight inspection steps. These estimates

assume that the inspection tools have no inspection errors that cause defects of type A

to go undetected.

In order to compare the FP based on defect data (FPLY) with the FP based on

simulation (FPsim), we must realize that the estimates of FPLY represent an average of

the values of the FP of different fault mechanisms. The different fault mechanisms by

which the defects detected at a particular inspection step may cause a fault are shown

29

1.6
0.035

11.4
0.03

p1.2
LI1 0.025

-0.O2- lJO.8

0.015
0.6

0.010.4-

0.0050.2

0- I
I I --0

0 2 4 6 8

x (defect size in microns)

Figure 2.4 An example of h(x), FP(x), and the resulting FP(x) *h(x). FP(x) is the
fault probability for metal bridges and was obtained from CAA. The average fault
probability for all defect sizes is the area under the curve FP(x) *h(x).

30

Table 2.1 Estimated parameters and the LY and FPLY for each of the eight inspection
steps

Inspection
Step

DD a TA TGA T TG

ISEF 0.537 0.407 4885 3764 16848 13266
M1EF 0.166 0.266 2206 1686 18252 14420
M2EF 0.169 0.375 2136 1560 16380 12573
M3EF 0.068 0.647 789 601 12636 9676
POLF 0.454 0.298 6653 5398 27612 21840
TN1T 0.071 0.118 1060 700 19656 15781
TN2T 0.091 0.186 835 613 11700 8903
TN3T 0.065 0.310 674 485 11700 8999

Table 2.2 Estimated LY and FPLY for each of the eight inspection steps

[nspectior
LY FPLY

ISEF 0.9913 0.0162
M1EF 0.9955 0.0270
M2EF 0.9928 0.0428
M3EF 0.9997 0.0052
POLF 1.0000 0.0000
TN1T 0.9900 0.1424
TN2T 0.9973 0.0297
TN3T 0.9961 0.0601

in Table 2.3. Table 2.3 also shows that the values of FPsjm for the different fault

mechanisms can vary significantly. In general, the FP for a particular inspection step

1 can be calculated by the following expression:

FP1 = FP * ç + FP * t% + FP * t. +... (2-23)

where t, t, t are the fraction of defects detected at inspection step 1 that can cause a

fault by defect mechanisms x, y, z, respectively. This expression will later be verified

31

Table 2.3 Possible fault mechanisms for the defects detected at various inspection
steps compared with defect data estimated KR and FP

Inspection Simulated Fault Mechanism! FPsim at
FPLYstep xo=0.5 tm

Active Active PolyMi
ISEF

0.0164
bridge break short
0.0136 0.0092 0.303

Ml M1M2 M1M2
M1EF

0.0272
bridge

Ml break
short via block

0.0551 0.0741 0.416 0.0144

0.0432
M2 M2break M2M3 M2M3

M2EF bridge short via block
0.0613 0.093 0.358 0.0078

0.0052
M3

M3 break
M3M4 M3M4

M3EF bridge short via block
0.033 0.0626 N/A 0.0002

Poly Poly PolyMi Contact
POLF 0.0000

bridge break short block

0.0252 0.093 0.303 0.0293
Ml

0. 1486 contact Mibridge Ml PolyMi
TN1T

block
break short

0.029 0.0613 0.0741 0.303

0.0299
M1M2

M2 bridge
M2 M1M2

TN2T via block break short
0.0144 0.0613 0.093 0.416

0.0605
M2M3

M3 bridge
M3 M2M3

TN3T via block break short
0.0078 0.033 0.0626 0.358

by probability arguments. FPLY is assumed to be equivalent to FP1 in Equation (2-23).

The fault mechanisms and fractions of each defect type seen at each inspection step

must be determined by the use of test structures and failure analysis. [18] With the

current classification scheme of the defect data we can only estimate the FP1.

32

However, the fault mechanisms can be speculated based upon past experience with

similar layouts.

In general, defects may cause a fault at a layer before the inspection step at

which it is detected, or cause a fault at a subsequent layer. For example, at ISEF,

not only can the active area be affected by extra field oxide -"bridging"- across the

active area, but they can also be affected by missing oxide "active break". In

addition, defects detected at ISEF may cause the polySi and metal 1 formed at a

subsequent step to be shorted together. Thus for the defects detected at the ISEF

inspection step, there may actually be three fault mechanisms at work that can cause a

die to fail. By a similar process of looking at the process steps that precede and follow

each inspection step, we can deduce the possible fault mechanisms of the defects

detected at a particular inspection step.

Once we have determined the process steps at which defects being simulated

may occur, the inspection step at which these defects may be detected is established.

For example, FPLY for the TN1T inspection step represents the average FP for the

defects detected right after the first TiNi deposition. The CAA estimated FP named

"Contact" is based on the layout showing the location of contacts. TN1T is the

inspection step occurring immediately after the contacts are etched and TiN is

deposited, and before tungsten is deposited into the contacts, as shown in Figure 1.3.

Therefore, we can assume that some of the defects detected at this inspection step are

defects that could cause a contact to be blocked, as shown in Figure 1.5c. Similarly,

Ml break, Ml bridge, and PolyMi short are other possible defect mechanisms. Thus

33

FPLY for the TN1T inspection step should be comparable to the average of the values

of for the contact block, Ml bridge and break, and PolyMi short.

Using a value of xo=0.5 tm in Equations (2-15) and (2-22), the averages of

the values of for each inspection step are comparable to those of FPLY. As can

be seen from Equation (2-23), we can adjust the fractions of each defect type shown

in Table 2.3 so that FPS,Z=FPLY at x0=0.5 Jim. For example, using a value of XO =0.5

Lm, we can arbitrarily adjust the fractions of the FP5, of each defect mechanism

detected at TN1T to 25% for Ml contact block, 20% for Ml bridge, 16.4% for Ml

break, and 38.6% for polyMi, so that the weighted average of the FPsim of these

defect types equals the FPLY value of 0.149. Table 2.3 shows the values of the

at xo=O.5 jnn for each of the possible fault mechanisms of the defects detected at the

inspection steps. The estimates of FPLY for each of the inspection steps are also

shown.

2.4.2 Comparison of Estimated Fault Probabilities with Yield

To evaluate the various methods of FP estimation, we use the estimated

values of the FP for each inspection step to calculate random yields for wafers which

have known yields and defect density for each inspection step. We will assume that

at x0=0.5 jim is equivalent to FPLY. For we will use values based on

x0=0. 1 pm and x0=1 jim as well. The estimated yields are calculated using Equation

(1-1), where each of the limited yields is calculated using Equations (1-3) and (1-4).

34

Table 2.4 shows each of the estimated random yields (YR) compared with the actual

yields for 11 wafers.

Table 2.4 Random Yields, YR, calculated based on estimates of KR, FPRos, FPLY and
FPCAA

Wafer
Number

Actual
Random

Yield

YR estimated from...

FPRos
(Eq. 2.1)

FPLy
(Eq. 2.8) (xo=0.1

pm)

FP1,

(xo=O.5
pm)

FP
(x0=1tm)

1 0.919 0.840 0.972 0.999 0.972 0.892
2 0.926 0.827 0.961 0.999 0.961 0.89
3 0.942 0.852 0.97 0.999 0.97 0.901
4 0.912 0.811 0.969 0.998 0.969 0.864
5 0.918 0.671 0.94 0.998 0.94 0.835
6 0.948 0.667 0.947 0.998 0.947 0.824
7 0.976 0.740 0.943 0.997 0.943 0.805
8 0.939 0.839 0.968 0.998 0.968 0.882
9 0.916 0.916 0.968 0.999 0.968 0.96
10 0.938 0.854 0.972 0.999 972 0.894
11 _ 0.949 0.820 0.99 0.998 0.99 0.877

As we do not know if the eight inspection steps cover all the possible defect

limited yields, we can only judge the success of a method of yield estimation by

whether it is above or below the actual yield. The results of Table 2.4 show that the

predicted yield based on FPROSS significantly under predicts the yield, meaning that

FP based on Equation (2-1) over-estimates the actual FP per inspection step. at

x0=1.0 pm is seen to over estimate the true PP as well. Only the FP estimated from

Equation (2-8), FPLY, and FP5, with x0 less than or equal to 0.5 give yield results

35

that are consistent with the actual yields. For wafers 6 and 7, the random yields

predicted by FPLY and FP1 at xo=O.5 n-mi are slightly below the actual yields. This

indicates that the true value of x0 may be less than 0.5 Jim, and FPLYmay slightly

over estimate the true FP. This value of x0 is greater than the critical dimension of the

device, indicating that the assertion that x0 is usually found to be significantly less

that the critical dimension may not apply in our case [181.

2.4.3 Sources of Error in PP estimation

The reason that the FP based on Equation (2-1) overestimates the true FP is

that the defects detected at any of the inspection steps may not represent all the

defects actually present on the die. There are two potential reasons that a defect may

not be detected on any given wafer: 1) they are covered by a previous deposition

(smaller defects go more easily undetected than larger ones); i.e., they occurred at a

process step which was never inspected for defects, and 2) they are so similar to the

surrounding layout in texture and topography that the inspection tool cannot

distinguish them from the background.

It seems the first reason would be most responsible for contributing to the

missed defects. This can be understood by realizing that not all the possible process

steps at which defects may occur are examined for defects. In other words, there

could potentially be more inspection steps that would allow all defects occurring on a

wafer to be detected. Thus, although a particular die may show only one defect

present on the final defect map, in fact it may contain defects from other steps that

were not examined. Table 2.5 shows the possible ways by which defects can go

undetected. The column with the title, "Cause of undetected defects" shows the layer

under which defects that occur between two inspection steps may be buried and go

undetected. For example, defects that occur between the ISEF (island etch) and POLF

(poly etch) inspection steps may be covered under the polySi or nitride deposits when

inspected at POLF, but defects that occur between the POLF and SPCE inspection

steps have no place to be buried when inspected at SPCE.

Table 2.5 Defect Detection and causes of undetected defects

Inspection step Cause of undetected defects
ISEF Nitride (only defects< 1 .t)

POLF PolySi (only defects<1 .t)

SPCE Virtually no place to take cover
SL2R Virtually no place to take cover

TN1T PSG, Ti-Nitride (only defects<
1 j.t)

M1IVID Metall, Metall PR
M1EF Virtually no place to take cover
TN2T IMD1, Ti-Nitride only def < lu
M2MD Metal2, Metal2 PR
M2EF Virtually no place to take cover

We would now like to see how it is possible to over estimate the FPLY. Unlike

the assumption behind the Ross method, the derivation of the limited yield based on

the KR does not assume that there are no other defects present on the die. For

example, for the FPLY of TN1T, it does not matter whether there are defects from

other process steps that are undetected, as long as those defects are not part of the

37

defects that are classified as being part of TN1T. Defects seen at, or classified as

ISEF, will not be seen at TN1T; however, this does not affect the estimation of the FP

of the defects seen at TN1T. This is because a basic assumption of the kill ratio is that

there are other defects types-in our case defects from other inspection steps-present.

Thus the FPLY is immune to defects hidden at other inspection steps. However, the

FPLY is not immune to the effects of defects that are undetected if these defects are

the defects whose FP is being estimated. Thus for example, when the FPLY of TN1T

is estimated, defects not detected at TNIT that should be detected because they are

classified as defects that belong to TN1T will affect the estimation of FPLY of TN1T.

Before we further explore the effects of missing defects on the estimation of

FPLY, it would be wise to verify that Equation (2-8), which is only true when the

defects are Poisson distributed, can be used to give accurate estimates of PP. Equation

(2-8), strictly speaking, should only be used when there are no clustering of defects.

To get an estimate of the error we are introducing when using the equation, we can

compare the limited yields estimated by Equations (1-4) and (2-13) for the values of

FP, defect density, and cluster factor we estimated for each inspection step. They

should be comparable if clustering is negligible. The results are shown in Table 2.6.

All the errors are below 0.01 percent except for TN1T, which has a relatively high

estimated FPy of 0.15, approximately, so that we would expect a less accurate

approximation. Even so, the approximation is still less than 0.05 percent off.

Table 2.6 Comparison of limited yields (LY) predicted by Equations (1-4) and (2-13)
and the percent error of the LY for the estimated values of DD, FP and ce.

Inspection
Step

DD FPLY

LY
(estimated
from Eq.

1-4)

LY
(estimated
from Eq. 2-

13)

LY % Error

ISEF 0.5373 0.0164 0.9912 0.9913 0.0074

MIEF 0.1657 0.0272 0.9955 0.9955 0.0003

M2EF 0.1693 0.0432 0.9927 0.9928 0.0088

M3EF 0.0678 0.0052 0.9996 0.9997 0.0053

POLF 0.4538 0.0000 1.0000 1.0000 0.0000

TN1T 0.0707 0.1486 0.9895 0.9900 0.0456

TN2T 0.0909 0.0299 0.9973 0.9973 0.0014

TN3T 0.0654 0.0605 0.9961 0.9961 0.0049

Thus, we can be sure that any significant estimation error in FPLy will not

come from neglecting defect clustering. Besides, we know from the results in Table

2.4 that it is more probable that the FPLY over estimates the true FP. It will later be

shown that when clustering is ignored, the FPLYwill under estimate the true FP. Most

likely, errors come from missing defects that the inspection tools are assumed able to

detect, and from misclassifying the dice. Let a be the probability of not counting a die

as TA when it does contain defects of type A. This inspection error rate a is a measure

of the die misclassification rate. An estimate of a would be:

T
(2-25)

TA

[15], where TA is the number of dice with defect type A observed and TA is the

actual number of dice with defect type A. We can define a measure of the rate of

missing defects as the capture rate c:

DDObS
(2-26)

DDact

where DD0b is the observed defect density and DDact is the actual defect density.

Introducing these two error terms into Equation (2-8), we have

TG(T(1â)TAO))

1T(TG (1 a) TGAO)
(2-27)FPA=

DDAO/c

where TAO and TGAO are the observed counts of TA and TGA.

Using Equation (2-27), with a =0.05, and ê =0.9, so that the rate of correctly

counting a die as TA is 1-0.05=0.95, and the rate of correctly identifying a defect is

0.9- in effect allowing the probability of misclassifying a die to be lower than missing

a defect- we can see how FPLYmight over-estimate the true FP. If 1-a is less than c,

then the FPLY would under estimate the true FP. Table 2.7 shows the results of using

these values for the inspection errors in Equation (2-27) compared to that assuming

no inspection errors.

The results from Table 2.7 show that if we assume no errors in our inspection,

we could possibly over estimate the FP, as long as 1-a is greater than c. A greater

probability of missing a defect than misclassifying a die is more likely to occur with

clustering. With clustering, there are some dice with many defects on them, and

missing a few of these defects will not affect the classification of those dice as TA, as

much as it will lower the defect density estimate. Since clustering is significant at

each of the inspection steps, it seems probable that 1-a is greater than c.

Table 2.7 Comparison of FPLY estimates based on assumption of no inspection error
with those based on inspection errors

Inspection Step FP
without error

FP
with error

ISEF 0.0162 0.0157

M1EF 0.0270 0.0258

M2EF 0.0428 0.0409

M3EF 0.0052 0.0049

POLF 0.0000 0.0000

TN1T 0.1424 0.1352

TN2T 0.0297 0.0283

TN3T 0.0601 0.0571

In summary, we see that FPROSS over estimates the fault probability because of

undetected defects. FPLY slightly overestimates the fault probability if we do not

account for missing defects, but may be corrected by incorporating the inspection

error rates in its estimation. FPsjm with x0 less than 0.5 urn gives us estimates of FP

that are consistent with yield as well.

2.4.4 The Components of the FP Estimated for an Inspection Step

We now verify that the FPLY estimated by Equation (2-8) is equivalent to the

FP1 defined by Equation (2-23). We can show that FP must be defined by Equation

41

(2-23) in order for the limited yields based on the KR , Equation (2-6) and the limited

yield based on based on the Poisson equation, Equation (1-4), to agree; i.e., for

Equation (2-8) to be valid. We begin by deriving an expression for KRA in terms of

the density probability distribution and component FP of each of the defects seen at

inspection step A. To estimate KR for inspection step A, we need all the estimates for

the parameters on the RHS of Equation (2-5). TA can be estimated once we know the

spatial probability distribution function of defects seen at inspection step A, PA. Since

TA is the number of dice with the number of defects greater than or equal to 1 detected

at inspection step A, we can use Equation (2-11) to estimate TA,

TA = T(1 PA (0)) (2-28)

To estimate TGA, we use the formula for conditional probabilities [17]:

T T * P(GA) = T * P(A) * P(G / A) = T * (1 PA (0)) * [
PA (1)

P(G IA1) +GA

PA(2) PA(3) P(GIA3)+.]
1PA(°) 'PA(0)

(2-29)

where P(G/A1), P(GIA2), P(G/A3), ..., are the conditional probabilities of a die not

failing given it has exactly one defect found at inspection step A, exactly two defects

found at inspection step A, exactly three defects found at inspection step A, .

respectively. These probabilities are weighted by the probability that a die will have a

certain number n of defects occurring on it, pA(n); i.e., the probability that exactly ii

number of defects will occur on the die. For P(G/A1), we have,

42

P(G/ A1) = [(1 FP)t + (1 FP)t + (1 z)t + ...] (LY)B (LY)

(2-30)

where t, t, ti,... are the fraction of defects with fault mechanism x, y, z. . . (or defect

types x, y, z,...) found at inspection step A. LYB, LY .. . are the defect limited yields

for all the other inspection steps B, C..... , which are independent of the yield at other

inspection steps, and Ys is the systematic yield. Defining FPA as,

FPA =FP +FP +FP +... (2-31)

where t + t+ t, +.. .=1, Equation (2-30) becomes,

P(G/A1) =[1(FP .t .ty +Z tZ)1(LY)B(LY)c ...Ys =

(1FPA)(LY)B(LY)c I'S

We can show by a similar process that,

and

(2-32)

P(G/A2) = (1FPA)2LYBLYC YS (2-33)

P(GIA3)=(1FPA)3LY8LYcYs (2-34)

etc. Substituting Equations (2-32) to (2-34) back into Equation (2-29), we obtain,

TGA =T(YBYC ...Y)Lv (l)(lFPA)+p (2)(1FP)2 +p(3)(1FP)3

(2-35)

TG is simply the number of die that are yielding,

43

TG = T(LY)A(LY)B(LY)C Ys (2-36)

Substituting Equations (2-28), (2-35) and (2-36) into the expression for the KR,

Equation (2-5), and simplifying, we have,

[PA(l)(1FPA)+PA(2)(lFPA)2 +PA(3)(1 FPA) +...}
KRA 1

(1 PA (0))

PA (0)

'A [PA(1)(1FPA)+PA(2)(lFPA)2 +PA(3)(l FPA) +...]
(2-37)

Using the spatial probability distribution function, PA, as given by Equation

(2-9), and estimating LYA by Equation (2-13), we can solve Equation (2-37) for FPA.

The value of FPA for each inspection step was calculated according to Equation (2-

37). These values were equivalent to those calculated by Equation (2-8). Thus we

have shown that the FPLY for inspection step A estimated based on Equation (2-8) is

consistent with the average FP for inspection step A as defined by Equation (2-3 1).

This definition of FPA is the only definition that would be appropriate in the yield

equation given by Equation (2-13) because the term DDA FPA in Equation (2-13)

must refer to the average number of faults per die, 2, and only if FPA is defined as in

Equation (2-3 1) can this term be equivalent to 2. [18]

From Equation (2-37), we can also see that only when the defect density is

extremely low are FPA and KRA the same. That is, as the defect density approaches

zero,

PA(0)1 (2-38)

while PA (l),PA (2), ... approach zero, and YA approaches 1, so that Equation (2-37)

becomes

PA(1)(1FPA) PA(0)KRA =1
1PA(0) 1(pA(1))(1FPA)

(2-39)

1 PA(')) .!=1_(1FPA) -FPA
PA(') 1

Here we also use the approximation that PA (0) + PA (1) 1, so that 1 PA (0) = PA (1).

The approach of PA (0) to 1, and hence the approach of KR,, to FPA, is faster for

spatial distributions that follow a more random pattern; i.e., as am Equation (2-37),

contained in the expressions for LYA andPA, becomes larger. Figure 2.5 plots KRA for

different values of a using Equation (2-37) and compares them to the given FPA, the

bottom most horizontal line on the plot. As a gets larger, and the DD becomes lower,

the curves of KRA approach FP,,.

2.4.5 Estimation of FP when the Defects are Clustered

Up to this point, we have assumed in our estimation of FPLY that the

probability that a defect will occur on a die is the same for all die. However, we see

from the estimated values of a shown in Table 2.4 that the defects do not completely

follow this type of distribution. Nevertheless, we showed that because the defect

density and values of FP were low, the limited yields based on the assumption of no

45

Figure 2.5 KR versus defect density at various cluster factors compared to FP

clustering, Equation (1-4), and based on clustering, Equation (2-13), are

approximately the same, and the FP estimated from Equation (2-8) is thus

approximately accurate.

If we need to be more accurate in our estimation of FP, or we have a situation

in which the defect density or FP is high, there is another way to estimate FP based

on defect data that is accurate for any defect distribution. This method is based on the

following result derived from basic probability:

(2-40)
j

where TGO is the number of die with zero visible defects that are good, T0 is the

number of die with zero visible defects, E(TGA) is the expected value of TGA, FP3 is the

fault probability of defect type j, and N1 is the number of type j defects in die i. 2OI

For each defect type A, then, in addition to determining TGA and TA, which is used to

estimate E(TGA) , we must count the number of each defect type in each die with at

least one defect type A , up to TA dice. If we have n defect types that we have

identified with our n inspection steps, then we will have n equations with n

unknowns, where each equation is based on Equation (2-40).

Table 2.8 shows the results of estimating FP based on Equation (2-40) using

the same defect data previously used, along with the values of a the defect density,

and the values ofFP based on Equation (2-8) that we calculated previously. The

resulting set of eight nonlinear equations was solved using a modified Newton-

Raphson iteration method, where the initial values used were those calculated based

47

on Equation (2-8). As can be seen from Table 2.8, the estimates of FP based on

Equations (2-40) and (2-8) are practically the same, confirming our previous

conclusion that clustering can be neglected when the defect density and FP are low.

Table 2.8 Comparison of the estimates of FP based on the assumption of no defect
clustering (Eq. (2-8)) and based on no assumption regarding defect clustering (Eq. (2-
40))

Inspection
Step

(defectsl a FPLY

ISEF 0.537 0.406 0.016 0.017
M1EF 0.165 0.266 0.027 0.029
M2EF 0J69 0.37 5 OAM3 0.046
M3EF 0.067 0.642 0.005 0.005
POLF 0.453 0.297 0.000 0.000
TN1T 0.070 0.113 0.149 0.151
TN2T 0.090 0.181 0.030 0.031
TN3T 0.065 0.313 0.060 0.058

A computer simulation was developed in order to show the effect of ignoring

clustering when the FP or DD is high. In the simulation, we can input the values for

DD, a, and the true value of FP for up to 10 inspection steps. The estimates given in

the simulation are based on Equations (2-8) and (2-40). Figure 2.6 shows the average

of the two different estimates of FP, FPLY and FPNC (the PP based on Equation (2-

40)) for a particular defect type at different defect densities, whose FP is set at 0.4

and a set at 0.1. Each point represents the average of 100 estimates. We see that as

the defect density increases, the FP estimated by Equation (2-8) increasingly under

FPtrueO.4, LOl

0 0.1 0.2 0.3 0.4 0.5

DD

Figure 2.6 Average FP estimates based on assumption of no clustering, FPLY, and
based on no assumption regarding clustering, FPc1, versus defect density.

estimates the true FP, while the FP estimated by Equation (2-40) remains

approximately 0.4.

The simulation program can be used to assess the adequacy of using Equation

(2-8) to estimate FP. Once we have estimated the DD, a; and theFP (estimated by

Equation (2-8)) from the defect data, we can input these values into the simulation

program. If the simulation-estimated FP based Equation (2-40) is close to the value of

FP that was inputted, then Equation (2-8) should be adequate for estimating FP from

the defect data. If not, we should use Equation (2-40). Estimating FP using Equation

(2-8) is still useful in this case, since it can be used as an initial value to solve the

nonlinear equation of Equation (2-40).

2.5 Conclusion

The most reliable means of estimating the fault probability for an inspection

step are by CAA simulation of probable defect mechanisms on the layout for the layer

closest to inspection step A, and by the use of the fault probability estimate based on

equating the defect limited yield equation given by the Poisson equation with that

given by the kill ratio. FPLY can be a more accurate estimate of FP if we incorporate

inspection error rates into its estimation. A defect distribution parameter of x0=0.5 jtm

or slightly less causes the two methods to give approximately equal yields. This value

of x0 is greater than the critical dimension of the device. Estimates using FP0

uniformly over estimate the fault probability due to the presence of undetected

defects.

50

It was shown that the estimated FPLY for inspection step A is equivalent to the

weighted average of the various defect mechanisms detected at inspection step A. Our

analysis also shows that KRA approximates the FP of inspection step A only under the

conditions of low defect density and low clustering (high cluster factor a). It also

shows KR provides an estimate of an upper limit for PP and is an integral part of the

derivation of the expression for FPLY. Finally, a simulation program was developed

for testing whether defect clustering can be ignored when the cluster factor ais low

and the FP and defect density are high.

51

3. CONFIDENCE INTERVAL ESTIMATION BASED ON
BOOTSTRAPPING FOR THE FAULT PROBABILITIES OF

RANDOM DEFECTS SEEN IN INTEGRATED CIRCUIT
PROCESSING

3.1. Introduction

3.1.1 Methods of Confidence Interval Estimation

To construct a confidence interval for an estimate, we must have some

knowledge of the sampling distribution of the estimator. In bootstrapping, knowledge

of this distribution comes from the bootstrap sampling distribution [21}. Referring to

Figure 3.1, which is a general schematic of a sampling distribution, the distances a

and b are approximated by the corresponding distances in the bootstrap distribution.

If we knew the actual sampling distribution, a central (1 -2c'4% CI could be estimated

by the following estimates as the upper confidence limit (UCL), and lower confidence

limit (LCL):

UCL=t+a (3-1)

and

LCL=tb (3-2)

where t is the sample estimate [211.

Four methods of CI estimation by bootstrapping will be examined in this

chapter. These methods are: the standard method, the first percentile method, the

second percentile method, and the BCA method. The fundamental assumption used

52

Figure 3.1 A general representation of a sampling distribution.

53

by the standard, first percentile, and second percentile methods, referred to hereafter

as the basic pivotal methods, is that the variance of the sampling distribution of the

estimator is independent of the value of the parameter 0 being estimated. The basic

pivotal methods rely on the assumption that the variance, or equivalently, 0 0, can

be approximated by the corresponding value in the bootstrap distribution. This

statement is equivalent to assuming that °a 0 is an approximately constant

quantity no matter what the value of 0 is. A measure such as this is called a pivotal

quantity, and results from the variance of the sampling distribution of the estimator

being approximately constant regardless of the value of the parameter being

estimated.

The simplest method of estimating a confidence interval is variously called

the standard method or the normal approximation. This method assumes that the

estimator, Ô, follows an approximately normal distribution with mean equal to the

true value of the parameter, 0, plus the bias of the estimate, B, defined as E (0)- 0.

The distances a and b in Figure 3.1 are thus estimated by Zl_aVR"2, where zi_ais the

standard normal variable having an area of 1-. a to the left, and VR is the sample

variance of the resulting estimates from bootstrapping, t, r=1,2,. . .R, where R is the

total number of bootstrap samples:

R -
VR Rl

2= tr t R) (3-3)

r=1

The bias is estimated by using the sample estimate, t, as the population parameter,

and the average of all the bootstrap estimates,

- i R

tR =_J:::Ift*r (3-4),
Rr=i

as the estimate of the expectation of the estimator. The bootstrap estimate of bias,

denoted as BR, is then given by:

BR=tt (3-5)

The second percentile method uses b t and a t t. In the case of

the first percentile method, the distance b is estimated by t t while a is estimated by

t. Therefore, the first percentile method also relies on the assumption that

0 is an approximately pivotal quantity, but the estimates for the pivotal

quantities are swapped with those of the second percentile method. Thus, we see that

for the basic pivotal methods to work, the estimated distances a and b from

bootstrapping must approximate that of the actual sampling distribution, for all values

of 0. The estimates of the distances a and b for these three methods are summarized

in Table 3.1. The upper and lower bounds of these methods can then be estimated by

using Equations (3-1) and (3-2).

55

Table 3.1 Estimates of the distances a and b in the sampling distribution for
various CI estimation methods

Method a b

Normal 1,2
VR Z1aBR

1/2
VR Z1a+DR

First t t

Second tt tt
The BCA method is based on the assumption that a monotonic transformation

m exists such that 0 = m(0) follows a normal distribution. The mean and variance of

this normal distribution, however, incorporate two additional parameters, the

acceleration and bias constants, a and
f3 , respectively:

0 - nl(Øfl0o,o2) (3-6a),

where 0 = m(0), nl() represents the normal distribution, and the standard deviation is

given by

[22].

c70 =1+a0 (3-6b)

The parameter a improves the approximation of the first percentile method by

accounting for distributions where the variance might change with the population

parameter being estimated, on the normalized scale. From Equation (3-6b) we see can

da
see that a = f-. Thus a is a measure of the rate of change of the standard

dØ

deviation of the transformed estimator with the transformed parameterØ.

As seen from Equation (3-6a), the parameter /0 is a measure of the bias of

the normalized estimator. If the untransformed estimator is biased, as estimated by the

bootstrap estimate of bias, Equation (3-5), the bias constant will also reflect this bias,

but on the normalized scale. Even if the untransformed estimator is unbiased,

however, there may be a bias once the estimator is normalized. This situation arises

when the untransformed estimator has a skewed distribution. In this case, the mean

and median of the untransformed distribution differ, that is there is a median bias, and

the normally transformed skewed distribution will have a bias relative to 0. Thus the

parameter fl allows for the normal transformations of skewed distributions, in

addition to accounting for biases in the estimator.

From relationship (3-6a) it can be shown that a 1-2a confidence interval for 0

based on the BCA method is:

t*ai <0<t*a,, (3-7)

where a1 and a2 are given by the following probabilities

and

+ Za
a1 = Pr(z < fl0 +) (3-8a)

1a(/30 +Za)

1% + Zi
a2 =Pr(z<fl0+ a

) (3-8b)
la(fl0 +Zi_a)

56

57

fl0 and â are the bootstrap estimates of the bias and acceleration constants. The

bias-correction constant fl0 can be estimated by the standard normal variable whose

area to the left is equal to the proportion of bootstrap estimates, O (b), that are below

the sample estimate, Ô It can be computed by,

(#{t*(b) < t}

B
(3-9)

where B is the total number of bootstrap estimates, and #{Ô (b) <0} is the number of

bootstrap estimates below the sample estimate. The acceleration constant â. can be

estimated by,

;:-
t(j)

)3

ac

yj
- 21

(3-10)
6 t())

Here, t(j) is what is called ajackknife value of the statistic 0 = sQ [22]. It is

computed as t(j) = s(X()), where X(j) is the original sample with the ith data point

removed. is the average of all the jackknife estimates from the sample X:

t(j) I n. Like the basic pivotal methods, the BCA percentiles are also

percentiles of the bootstrap distribution based on a sample with t as its estimate. If 13o

and a are equal to zero, for example, then relationship (3-7) is equivalent to the

confidence limits based on the first percentile method.

3.1.2 Bootstrap Simulation

Since the KR method is more economical than the CAA method, it is

desirable for PP estimation. However, the KR method relies on a sample of limited

size. Thus this chapter explores the uncertainty associated with this FP estimate

through Monte Carlo simulation. In the simulation, the values of the PP estimates

from the previous chapter will be used, as they reflect realistic estimates from high

volume manufacturing data.

In the simulation, we use three defect types, A, B and C, with assigned fault

probabilities FPA, FPB, and FPc, respectively, for each run. Thus the defect types are

classified by the value of the PP assigned to them. These defects are distributed on

wafers of 100 dice each, arranged in a 10-row by 10-column configuration. The upper

and lower number of defects of each type that can occur on a wafer range from 30 to

40 defects per wafer. There is no clustering of defects, i.e., they can occur with equal

probability anywhere on the wafer. A typical defect distribution output from the

simulation is shown in Figure 3.2.

The re-sampling procedure is as follows: Each original sample contains 20

wafers, with defects and faults distributed on them according to values of FP, and

density. Each die is then assigned a bin number, or pass! fail status, depending on

whether a fault lies in it. The bootstrap sample is created by randomly picking dice

from this original sample, with replacement, until 20 x 100 dice are picked. These

2,000 dice, the same number of dice in the original sample, constitute a bootstrap

sample. From this bootstrap sample the fault probability of any defect type i, FP1, is

59

Figure 3.2 Typical random distribution obtained of the three defect types
used in the simulation on a lOx 10 wafer

estimated the same way as it was in the original sample, i.e., by equating the limited

yield for defect type i, as estimated by the Poisson yield equation, with that estimated

from the kill ratio:

LY=exp(_FP*DD.)= TG(T-Tj)
(3-11)

1 1

T(TG-TG)

where DD is the defect density of defect type i per die, T is the total number of dice,

TG is the total number of good dice, T1 is the total number of dice with at least one

defect type i on them, and TG is the total number of good dice with at least one defect

type i on them. Rearranging Equation (3-1 1), we have:

ln[TG(TTl)]
T(TG TG)FP = (3-12)
DD1

A total of four runs were done, with PP values ranging from 0.15 to 0.001.

This range reflects the FP values based on actual fab defect data obtained in the

previous chapter. The FP values assigned for each run are shown in Table 3.2. Run 1

has the largest values of EP, with the values for FP assigned in each run decreasing to

the smallest values in run 4.

Table 3.2 PP values assigned for each run

i,')

'xlii

lxlIl1 lxlIi

SXlIl)11111) huh

61

3.2 Results And Discussion

3.2.1 Bootstrap Sampling Distribution Results

Figure 3.3 shows two bootstrap sampling histograms from two separate

samples taken from populations with FPtrue values of 0.03 and 0.006. The respective

sample FP estimates, FPsan,, are 0.0362 and 0.00757. For these two samples, the

values of FPsan are close to their respective FPtrue values, and the estimated CI

values based on all four bootstrap methods cover FPtrue. In both cases, the sampling

distributions are right-skewed, with the one for FPtrue =0.006 more so. At smaller

values of FPtrue, some values of FPsa,i, are negative, and some values in the bootstrap

sampling distribution are negative even when FPsarnp is positive, as can be seen in

Figure 3b. The negative estimate is a natural result of using the FP estimator of

Equation (3-12). Although the negative values in the bootstrap sampling distributions

are not realistic, they are kept, because this facilitates computation of the various

bootstrap estimates. Only when the resulting confidence limit is negative, do we set

its value to zero.

Figure 3.4 shows the bootstrap-estimated bias, variance, and 5tb and 95th

percentiles for various values of R, the number of bootstrap replications, for a sample

drawn from a population with FPtrueO.008, whose sample FP estimate, FPsamp, has a

value of 0.00762. The general trends seen in Figure 3.4 are seen for the other eleven

defect types used in the simulation. As can be seen from Figure 3.4a, the magnitude

of the bias tends to decrease and stabilize with increasing R, and is quite small

62

FPtrueO.03

125

100

75

o \ \

25

0

Bin

Figure 3.3 Two bootstrap sampling histograms for representative values
of FPtrue: a) FPtrue=0.03, b) FPtrueO.006

63

Bias (x 1O)

0 200 400 600 800 1000

R

a

Variance(x 1 O)

0 200 400 600 800 1000

R

Percentiles

0 200 400 600 800 1000

C

R

Figure 3.4 Bootstrap estimated bias, variance, and 5th and 95th percentiles
vs. the number of bootstrap replications for FPtrueO.008, at

compared with the value of FPsa,np. The biases are less than one percent of their

respective estimates for all the defect types, at high values of R. The stabilization in

the bias value as R increases is one reason that the number of replicates needs to be

large. Therefore, we have good evidence that the bias of the estimate of FP using

Equation (3-5) is negligible.

Figure 3 .4b shows that the variance stabilizes more quickly than the bias. For

example, at approximately R >200, the variance stabilizes, while at approximately R

>600, the bias stabilizes. Figure 3.4c shows the 5th and percentiles of the

bootstrap estimates of FP. Like the variance, the percentiles also stabilize more

quickly than the biases. Again, these general trends are seen for all the other eleven

defect types. It is concluded that 1000 bootstrap replications should provide enough

bootstrap estimates for accurate estimates of the bias, variance, and percentiles

needed for the bootstrap CI estimation methods.

To assess whether a CI estimation method works for a given run, we estimated

the proportion of the estimated confidence intervals that failed to capture the true

value of the parameter FP (FPtrue), for a large number of samples. Table 3.3 shows a

summary of the performance of the four different methods of CI estimation for a 90%

CI, for various values of FPtrue. The performance of each method was measured by

the proportion of failed CIs that were below FPtrue (Upper Limit too Low, ULTL) and

the proportion of failed CIs above FPtrue (Lower Limit too High, LLTH). Each

estimate of performance was determined from a total of 500 samples drawn from a

particular population with the assigned FPtrue. Thus, for each FPtrue in Table 3.3, a

65

total of, (500samples) x (1000 bootstrap estimates! sample)=500,000 bootstrap

estimates were used to determine the 500 CT's for each CI estimation method.

Ideally, when estimating a central 90% CI, each of the two categories, TJLTL

and LLTH, should be approximately 5% for a CI estimation method to be qualified as

a success. However, we must also account for the variation in Table 3.3 due to

generating only 500 estimates of CI. To determine acceptance criteria, we use a

hypothesis test. If we let our null hypothesis be that the true proportion of ULTL or

LLTH is 5%, that is, we have a procedure that estimates an exact central 90%

confidence interval, an approximately 95% acceptance region for this null hypothesis

can be estimated from a binomial distribution with p=0.O5 and n=500. In this case,

the proportion of ULTL or LLTH from 0.034 to 0.066 indicates we cannot reject the

null hypothesis. Thus, if both ULTL and LLTH for a particular CI estimation method

are between 0.034 and 0.066, we will count the method as a success. If either is

outside this range, we will count the method as a failure.

Figure 3.5 shows the proportions of LLTH and ULTL for each of the four

methods of CI estimation, along with the lines showing the upper and lower success

criteria. Using these criteria, we see that the standard method, the first percentile, and

the second percentile method all consistently fail below FPtrueO.01. The BCA

method, however, does not consistently fail until FPtrueO.003 or below. The

standard, the first percentile, and the second percentile methods work fairly well for

runs 1 and 2. In run 3, however, these three methods all fail, while the BCA method is

still successful. In run 4, where the values of FPtrue are set to 0.003, 0.002, and 0.001,

0.08

0.06

0.04

0.02

0.2

-I

0.1

',xii.r.

0.034

1 0.1 0.01 0.001

FPtrue

LIStand istA 2nd x BCA

1

.)L)1 - -,.x- -----
04

1

0.066
0.034

0.1 0.01 0.001

FPtrue

.Stand 1st 2nd xBCA

Figure 3.5 The proportions of LLTH and ULTL vs. FPtrue for the four
methods of CI estimation

67

all four methods fail. Moreover, when they fail, the LLTH tends to predict too few

ranges of CI out of range while the ULTL tends to predict too many.

Table 3.3 Performance of four different methods of CI estimation for a 90%
CI in terms of the proportion of failed CIs

Run FPtrue Standard
1st

Percentile Percentile BCA

1

0.15
LLTH 0.052 0.06 0.048 0.062
ULTL 0.066 0.064 0.070 0.056

0.10
LLTH 0.054 0.054 0.052 0.060
ULTL 0.052 0.048 0.054 0.048

0.07
LLTH 0.062 0.058 0.064 0.064
ULTL 0.070 0.068 0.072 0.058

0.03
LLTH 0.034 0.038 0.026 0.050
ULTL 0.062 0.056 0.072 0.042

2 0.02
LLTH 0.036 0.044 0.034 0.056
ULTL 0.060 0.056 0.064 0.042

0.01
LLTH 0.040 0.050 0.038 0.064
ULTL 0.054 0.054 0.054 0.042

0.008
LLTH 0.016 0.020 0.010 0.042
ULTL 0.068 0.060 0.080 0.032

3 0.006
LLTH 0.016 0.018 0.012 0.042
ULTL 0.054 0.052 0.060 0.036

0.004
LLTH 0.018 0.020 0.010 0.042
ULTL 0.094 0.090 0.100 0.064

0.003
LLTH 0.008 0.010 0.006 0.018
ULTL 0.138 0.120 0.228 0.080

4 0.002
LLTH 0.016 0.018 0.012 0.036
ULTL 0.096 0.096 0.108 0.086

0.001
LLTH 0.018 0.036 0.010 0.070
ULTL 0.144 0.142 0.144 0.140

3.2.2 Performance of the Basic Pivotal Methods

To understand the limitations of the standard, the first percentile, and the

second percentile methods, the basic assumption employed by these methods must be

recalled, which is that the standard deviation of the bootstrap distribution is

approximately independent of the value of the sample estimate. Figure 3.6 shows the

standard deviation of the bootstrap FP estimates (SDb00t) versus the sample FP values

(FPsarnp) for three representative values of FPtrue from Table 3.2. Each plot in Figure

3.6 shows 500 values of SDb00 estimated from 500 samples, each sample being

drawn from the population with the specified FPtrue. The sample standard deviation,

SD act , is also shown. It represents the best estimate of the standard deviation of the

actual sampling distribution of FPsan for each value of FPtrue. To facilitate

comparison, the range of the y-axis for each plot is scaled to match SD act.

Figure 3.6 indicates that the SDb00t increases with FPsa,np. We also see that the slope

of the best-fit line increases with decreasing FPtrue.

Table 3.4 presents the equations of the best-fit lines of SDboot to FPsanzp, for

each of the twelve defect types from Table 3.2. It also gives the values of the sample

standard deviation of the 500 values of FPsamp, for each value of FPtrue. The slope of

the best-fit line gives us an indication of the change of the standard deviation of

FPsamp with FPtrue for each of the four runs. Table 3.4 shows that the slope of the

SDb00t increases by approximately 6 fold from run 1(high FPtrue) to run 3(low FPtrue),

FPueO. 1
0.024

0.02

0.016
= -

SDb,,
0.012

SDb0r = 0.O23FPsamp + 0.014

R2 = 0.29
0.008

0.05 0.07 0.09 0.11 0.13 0.15

FPsamp
L

a

0.006

0.005

0.004

SD1
0.003

0.002

b

SD =94

FP,=OOO6

-0.004 0 0.004 0.008 0.012 0.016

FPsamp

C

Figure 3.6 The 500 standard deviations of bootstrap distributions (SDb00t)

versus FPsamp for three representative values of FPtrue.

70

and by approximately 12 fold from run 1 to run 4. However, within the same run, the

slopes are relatively constant. Thus, the assumption of constant variance for all values

of FPsarnp becomes worse from run 1 to run 4, and we should expect the CI estimation

based on the basic pivotal methods to become worse. This expectation is confirmed

by the results in Table 3.3, where the standard, first percentile, and second percentile

methods all fail beginning at run 3.

Examination of Figure 3.5 reveals that for the basic pivotal methods the

proportion of LLTH decreases as FPtrue decreases. Conversely, the proportion of

UILTL increases as FPtrue decreases. For example, at FPtrueO.lS, and FPtrue=O.lO,

these two proportions are roughly the same, at approximately 5%, and these methods

are successful; on the other hand, at FPtrue=0.004, the proportion of LLTH is only

about 1% to 2%, while that of ULTL is 9 to 10%. As Figure 3.6 shows, the further

away the value of FPsa,i, from FPtrue, the more SD boot deviates from the SD act. When

A

FPsa,np is larger than FPtrue, SDb00t tends to be larger than SD act , and when FP0, is

smaller than FPtrue, SDb00 tends to be less than SD act.

Figure 3.7 schematically illustrates the case when the pivotal approximation is

A A

valid, i.e., when SDb00 approximates SDact . Figure 3.7a represents a general

sampling distribution, with the areas of the lower and upper a percentiles shaded.

Figures 3.7b and 3.7c represent bootstrap distributions resulting from samples whose

FPsamp have small and large values, tSm and tig, respectively. Consider a CI estimated,

71

c tig tia
t

Figure 3.7 Bootstrapping estimates when the pivotal approximation is
valid

72

Table 3.4 The equation of the best-fit line of SDboot to FPsamp, and the
estimated sample SD for various values of FPe

Run
FPgrue Fit of SDb00f SD act

0.15 O.O24FPsa,np+O.013 0.018
1 0.10 0.023 FPsamp +0.014 0.016

0.07 0.024 FPsamp +0.014 0.016
0.03 0.070 FPsamp +0.0055 0.0074

2 0.02 0.069 FPsamp +0.0058 0.007 1
0.01 0.066 FPsamp +0.0060 0.0066
0.008 0.14 FPsamp +0.0030 0.0038

3 0.006 0.13 FPsamp+0.0032 0.0036
0.004 0.13 FPsamp +0.0032 0.0036
0.003 0.25 FPsamp +0.0016 0.0023

4 0.002 0.26 FPsa,np +0.0016 0.0022
0.001 0.22 FPsainp +0.0018 0.0021

for example, by the first percentile method. When the pivotal approximation is true,

any CI, estimated from a sample whose sample estimate, t, is taken from the area

between the shaded areas, would cover the true value of the parameter, 0. On the

other hand, any CI estimated from a sample with sample estimate t taken within the

shaded regions would fail. Thus, an approximately 1-2aproportion of the CIs would

succeed.

For example, Figure 3.7b shows a bootstrap distribution with mean centered at

connected by the dotted line to the same value in Figure 3.7a. In this case, we see

that the resulting UCL estimated by the first percentile method, t, will just be large

enough so that the resulting CI will contain 0. Thus, we see that the first percentile

works only if the bootstrap distribution has the same spread, or variance, as the actual

73

sampling distribution; i.e., the quantity 0 O is equal to t tsm An example of a

case when the CI fails is shown in Figure 3 .7c. The estimate is taken from the shaded

region, where tig is an estimate that is slightly larger than O. In this case, we see

that the resulting LCL estimated by the first percentile method, t, will not bracket

0, as seen by the dotted line connecting 0 to the bootstrap sampling distribution of

Figure 3.7c. This result again is due to the spread of the bootstrap distribution being

the same as that of the actual sampling distribution; i.e., the quantity 0 is equal

to tg t. Thus, when the pivotal approximation is valid, the proportion of ULTL

and LLTH is approximately a. Similar arguments apply in the case of the standard

and second percentile methods.

Figure 3.8 is analogous to Figure 3.7 except that it shows what happens when

the variance of the bootstrap distribution does not approximate that of the actual

sampling distribution. Figure 3.8b shows a bootstrap distribution whose variance is

lower than that of the actual sampling distribution, represented in Figure 3.8a, while

Figure 3.8c shows a bootstrap distribution whose variance is larger. Figure 3.8b

shows that when the SDb00 under-estimates the SD act , the resulting UCL estimated

by the first percentile method, t, will not bracket 0. Thus the dotted line from t,

in Figure 3.8b is to the left of Oin Figure 3.8a. In summary, some CI ranges estimated

from samples with sample estimate t taken from the region Oa <0 <0 would fail,

where they should succeed. Thus Figure 3.8b graphically represents the consequence

74

tg

Figure 3.8 Bootstrapping estimates when the pivotal approximation is not valid. 8b

shows the case when SDb00t <SDact 8c shows the case when SDb00t > SD.

75

of the quantity t_a tsm being less than 0 0, which is that the probability of ULTL

will be higher than a. This result is seen at small values of FPtrue.

A fl

Conversely, Figure 3.8c shows a case where SDb00t over-estimates SD act

when estimating from a sample whose estimate t is larger than 0. Some CI ranges

estimated from samples with sample estimates from the region <0 would

succeed, where they should fail. This case is represented by the dotted line from t,

the LCL of the first percentile method, being to the left of 0 in Figure 3. 8a. Thus

Figure 3 .8c graphically represents the consequences of the quantity tlg t being

greater than O1 0. This case results in the probability of LLTH being lower than a,

as seen at low values of FPtrue. Similar arguments can be used in the case of the

standard and second percentile methods to show that the probability of ULTL will be

higher than a and the probability of LLTH will be lower than a when the SD boot

increases with FPsa,np.

We can estimate the quantities a = 0 0 and b = 0 of Figure 3.1

directly from the 500 values of FPsamp for a given FPtrue and compare them with those

estimated by each of the basic pivotal methods. Let Oi-a 0 be estimated by

FPimp,i_a FPsamp, where FFamp,i_a5 the (1-a)th percentile of the 500 values of

FPsanip, and FPsamp is the average. In a similar way, we can estimate 0 Oa by

FPsamp FPsamp Since we have 500 original samples, these two estimates should be

76

fairly accurate, as should the confidence limits based on them. For any value of

FPsa,np, we calculate the lower and upper confidence limits as follows:

LCL = FPsamp (FPamp,i_a FPsamp) (13a)

UCL = FPçamp +(FPsampFPsampa) (13b)

We term the estimates represented by Equations (3-1 3a) and (3-1 3b) our "gold

standard", since in practice we do not have 500 samples, but only one.

Figure 3.9 compares confidence limits estimated by the first percentile method

with those by the gold standard, Equations (3-13). Only every third of the 500

confidence limits estimated by the first percentile method are shown to preserve

clarity. Figure 3.9a represents samples drawn from the population with FPtrue=0 .1.

Figure 3 .9a shows that the values for LCL and UCL estimated from the first

percentile method fall over the LCL and UCL curves estimated from Equations (3-

13). Analogous plots for the standard and second percentile method show similar

results. These results indicate that the quantities O 0 and 0 Oa of Figure 3.1 are

approximately pivotal in the case of FPtrue=0.1 . Figure 3.10 shows the 500 values of

A A

SD boot, each estimated from one original sample, compared with SDact, vs.

percentiles of FPsa,np. Figure 3. lOa represents values for FPtrue=O .1. While there exists

a slight positive slope, all values of SDb00t are still approximately centered about the

horizontal line representing SDact. Thus the quantities O 0 and 0 °cc are

77

FPtrueO.1

0.2 --------
0.18

!o

FP,

0.02 o)dstand.

0 __r_*r*r7T
0 10 20 30 40 50 60 70 80 90 100

FPsamp%

a

FPtrueO.004

025

FPsamp%

0

stand

CL

:0.004

Figure 3.9 Comparison of UCL and LCL estimated by the first percentile method
to that of the "gold standard" estimated from the actual sampling distribution for a)
FPtrueO. 1, b) FPtrueO.004.

FPfrue=O. 1

0.02

0.016

0.012

0.008 SD

0.004

0
I I

0 20 40 60 80 100

FPsamp%

a

FPtueO.004

0.006

0.005

0.004

0.003
SDb00

0.002

0.001

0

0 20 40 60 80 100

FPsamp%

t :

0

:

0 e l

.

:.. ..

Figure 3.10 SDb0Ot and SDact vs. percentile of FPsamp for a) FPtrueO .1, b)

FPtrueO.004.

79

indeed approximately pivotal in the case of FPtrue=O. 1, and consequently the

proportions of ULTL and LLTH reported in Table 3.3 are close to 5% for FPtrtie=O.1.

Figures 3.9b and 3.lOb are analogous plots to Figure 9a and lOa, respectively,

for the case of FPtrue=O.004. In Figure 3.9b, the points representing the LCL and UCL

estimated by the first percentile method deviate from the LCL and UCL curves

estimated by Equations (3-13) at low and high FPsa,i, percentiles. Analogous plots for

the standard and second percentile method show similar behavior. These results can

be attributed to the increased rate of change of SD boot with FPsa,np, which is nearly six

times greater for FPtue=O.004 than for FPtrue=O .1. Figure 3. lOb shows that this

A

increased rate of change of SDb00t with FPsamp increases the deviations of the values

Of SDoot from SD0, at the more extreme values of FPsamp. This increased deviation

from SD act manifest in Figure 3.9b. At high percentiles of FPsa,np, the estimated CIs

are wider than those estimated by Equations (3-13), since the quantity O 0 is

over-estimated. At low percentiles, the converse is true, since this same quantity is

under-estimated.

The first percentile estimated UCL and LCL points shown in Figure 3.9b are

consistent with the trends seen in Figure 3.5. In Figure 3 .9b, the underestimation of

0 O tends to make the points representing the UCL estimated by the first percentile

method fall below the FPtrueO.004 line at a point greater than the 5th percentile of

reflecting the increase in ULTL above 5% at lower values of FPtrue, as seen in

Figure 3.5. For the points representing the LCL estimated by the first percentile

method, they tend to cross the FPtrue_O.004 line at a point greater than the 95th

percentile of FPsan,, reflecting the decrease in LLTH below 5% at higher values of

FPtrue, as seen in Figure 3.5. Similar figures for the second and standard percentile

method show similar behavior. Thus the effects of over and under estimating the

pivotal quantity on the proportions of LLTH and ULTL are seen directly from the

plot.

The success of the first percentile method in the case of FPtyue=O. 1 and failure

in the case of FPtrue=O.004 have been accounted for. The same principle applies to the

other values of FPtrue and to the other basic pivotal methods. Next, the three pivotal

methods are compared to one another. By the criteria that have been set, all three

methods perform well enough to be generally classified as successful in runs 1 and 2;

nevertheless the first percentile method displays better performance. The proportions

of LLTH and ULTL of the first percentile method are closer to 5% than the other two

methods, especially in run 2. The improved performance results from the slightly

right-skewed shape of the bootstrap distributions.

Table 3.5 shows the average "shape factor" of the bootstrap distributions for

the lower 50 values (lower 10%) and upper 50 values (upperlo%) of FPsarnp for each

FPtrue. The "shape factor", Sh, is measured by,

Sh = (FP - FP*)I(FP*_ FP) (3-14)

A "shape factor" greater than one will tend to come from a right- skewed distribution.

In Table 3.5, the average values of Sh are all greater than one. If the distributions

were symmethc, we would expect an approximately equal number of occurrences

below one as above. Thus it is likely that the bootstrap distributions are right- skewed

for each FPtrue. Table 3.5 also shows that the degree to which the bootstrap

distributions are right-skewed increases with decreasing FPtrue, from approximately

1.0 in run ito 1.1 in run 3.

Table 3.5 Average "shape factor" of the bootstrap distributions for the lower
and upper 10% values of FPsamp

FPtrue

lower 10% upper 10%
0.15 1.022 1.012
0.10 1.012 1.002
0.07 1.022 1.013
0.03 1.048 1.047
0.02 1.042 1.051
0.01 1.039 1.051

0.008 1.145 1.092
0.006 1.084 1.102
0.004 1.057 1.106

Figure 3.11 schematically shows the effect of such a right skewed distribution

on CI estimation. In Figure 3.1 la, we have a right-skewed sampling distribution. In

Figure 3.1 ib, we have a bootstrap distribution resulting from a sample with estimate

t.cm , taken from êa <Ô < 0. We see that the UCL for the first percentile method, t,

still covers 0, but that the UCL for the second percentile method, ç + (tsm t), will

just fall short of 0. This result will only occur if the variance of the bootstrap

distribution is smaller than that of the actual sampling distribution when sampling is

* *

C tcx tig t1_a

Figure 3.11 Effect of the right-skewed shape of the sampling distribution on the
coverage of the first and second percentile methods.

such that Oa <O<0. Thus the proportion of ULTL will be higher for the second

percentile method than for the first percentile method, as shown in Figure 3.5.

On the other hand, Figure 3.1 lc shows a bootstrap distribution resulting from

a sample with the estimate tg taken from <Ô. The LCL for the first percentile

method, t, will, correctly, not cover 0. However, the LCL for the second percentile

method, tg (t_a tig), will just cover 0. Again, this will only occur if the variance

of the bootstrap distribution is larger than that of the actual sampling distribution

when sampling from O1a <Ô. Thus we see that the proportion of LLTH will be

lower for the second percentile method than for the first percentile method. This

result is also reflected in Figure 3.5. The standard method would have proportions of

LLTH and ULTL between that of the first and second percentiles, since it uses the

variance of the entire bootstrap distribution- not just the distance of one side or the

other about 0- to estimate the pivotal distance Oa 0.

3.2.3 Performance of the BCA Method

The basic pivotal methods fail at low values of FPtrue because the bootstrap

estimated distances a and b vary with the actual distances a and b in Figure 3.1. These

discrepancies are a result of the change of SD boot with FPsa,np. Out of the four

methods of CI estimation applied in this study, only the BCA method recognizes the

possibility of this change, by specifying an acceleration constant, a, With a specified

as an additional parameter, the transformation function assumed in the BCA method,

given by Equation (3-6), need only be normalizing, but not necessarily variance

stabilizing, where the mean and variance are independent. The parameter allows

the normal transformation of distributions that are skewed. Thus the effect of the

additional parameters a and fl is to make the BCA assumption more general than

that of the basic pivotal methods, allowing the BCA method to work for a wider class

of problems. [23]

Table 3.6 shows the averages of the estimated acceleration and bias constants,

â and /3 , respectively, based on the 500 samples drawn, for each FPtrue. It also

shows the averages of the estimated percentiles, â and a2, in Equations (3-8). Table

3.6 shows that â and are both greater than 0. This result is expected for the

acceleration constant since we have seen that the slope of SDb00t vs. FPsa,j is positive.

It is also expected for the bias constant, the measure of the bias of the normalized

estimator. The more right-skewed the untransformed distribution, the greater the bias

of the normalized estimator, and the more positive the value of the bias constant. This

will be the case even if the untransformed estimator does not have bias, as defined in

Equation (3-5). In the present case, it seems reasonable to conclude that the positive

values of the bias constants are due to the right-skewed bootstrap sampling

distributions, as the biases as measured by Equation (3-5) are negligible. This

conclusion is bolstered by Table 3.6, which shows that the average values of /0 are

greatest in Run 3, where the shape factors of the bootstrap distributions are also

greatest, as shown in Table 3.6. The values of the bias constants in Run 4 may not be

meaningful as the BCA method fails in Run 4.

Table 3.6 Average values of the BCA parameters estimated from 500 samples
for each value of FPtrue.

4

The average acceleration constants tend to increase with decreasing FP true For

example, at FPtrue=0.15, it is approximately 0.008, but at FPtrue=0.004, it is about

0.047, almost a 6 fold increase. This trend is a reflection of the increasing slope of the

best-fit line of the SDb00 versus FPsa,np data shown in Table 3.4, which also displays a

6 fold increase. Whether this is a coincidence, or there is a direct proportionality

do do9between a = f- and needs to be further investigated.
dØ dO

The positive values of the acceleration and bias constants each shift the

bootstrap percentiles in the same rightward direction, as seen in Equations (3-8),

leading to â and a2 being greater than 5% and 95%, respectively. Table 3.6 shows

this to be the case. The increase in â and / in turn is reflected in the increase in

and a2 away from 0.05 and 0.95, as FPtrue decreases.

To see how the BCA method outperforms the basic pivotal methods in the

present case, let us refer back to Figure 3.8. In Figure 3.8b, we see that although the

estimate tsm is taken from the region Ca <0< 0, the UCL estimated by the first

percentile method is not greater than 0, since SDb00t <SDact. Those estimated by

the standard and second percentile methods will fall even further short of 0 due to

the right-skewed bootstrap distribution. For the BCA method â >0 and fl0 >0, and

we see from Equation (3-8) that a2 > 1 a. Therefore, the BCA estimate of the UCL,

t, will be greater than t, and the confidence interval can cover 0. The BCA

method can succeed even when the SD of the bootstrap sampling distribution is

smaller than that of the actual sampling distribution, as long as the assumption of

Equation (3-6) is met. In the present case, the probability of ULTL when the BCA

method is applied will thus remain approximately 5% even while those of the basic

pivotal methods exceed this percentage. For example, at FPtrue=O.004 in run 3, the

proportion of ULTL is approximately 0.1 in the case of the basic pivotal methods, but

is 0.064 in the case of the BCA method. Similar arguments can be used to show that

the percentage of LLTH will remain at approximately 5% even when SDboot > SD act.

We see that the BCA method is superior to the basic pivotal methods because

it allows for the SD of the sampling distribution to change with the value of the

parameter being estimated, and accounts for skewed sampling distributions, where the

mean and the median differ. When the sample size is large, or equivalently, when the

number of fatal defects is large, both the basic pivotal methods and the BCA method

work, because at large sample sizes, the SD of the bootstrap sampling distribution

will approximate the SD of the actual sampling distribution, and the sampling

distribution will be closer to being symmetric. But the BCA method will work at

smaller sample sizes where the basic pivotal methods fail, that is, when the SD

estimated from bootstrapping no longer approximates the SD of the actual sampling

distribution, or the sampling distribution becomes skewed.

In run 4, however, we see that even the BCA method of CI estimation fails. In

this run, the sample size is too small, as measured by the smaller values of FPtrue.

Since we have approximately 30-40 defects per wafer, at FPtrueO.l , we have: 30-40 x

0.1= 3-4 fatal defects per wafer, on average. Thus we have approximately 60-80 fatal

defects in each sample of 20 wafers. However, at FPtrue=O.001, we have, on average,

less than one fatal defect in each sample of 20 wafers. At these sample sizes, the

acceleration and bias constants can no longer be accurately estimated, and, as a result

these estimated BCA parameters can no longer be relied upon.

3.3 Conclusion

Bootstrapping has been applied to estimate the confidence interval for the

fault probability of random defects at values representative of those measured in an

integrated circuit fab. The standard, the first percentile, the second percentile, and the

raT.]

BCA methods succeed at values of PP between 0.15 and 0.01 where the sample size

is reasonably large. If the sample size is measured by the number of fatal defects, a

reasonably large size might be between 60-80 fatal defects (FP=0. 1) and 6-8 fatal

defects (FP=0.01) per sample of 2000 dies. Additionally, the BCA method succeeds

while the other three methods fail when the values of PP range from 0.008 to 0.004,

and the number of fatal defects per sample is between 3 and 6. All four methods fail

when the PP is 0.003 or less, where the number of fatal defects per sample is less than

3.

It was also observed that the standard deviation of the bootstrap sampling

distribution increases with the sample estimate of FP, and the rate of this increase

increases with decreasing values of the population PP. The bootstrap sampling

distributions were also observed to be right-skewed, and become more right-skewed

with decreasing values of the population PP. The success of the BCA method at lower

values of FPtrue, i.e., lower sample sizes, is explained based on its ability to account

for the change in SDb00t with FPsarnp, via the acceleration constant, and its ability to

account for skewed sampling distributions that have a median bias, via the bias

constant. The right-skewed sampling distributions also lead to the better performance

of the first percentile method over the other basic pivotal methods. When the values

of FPtrue become too low, sample size limits the effectiveness of any method to make

accurate CI estimates.

4. CONCLUSIONS AND FUTURE WORK

4.1 Conclusions

From the fault probability analysis based on the fab data, we see that the most

reliable means of estimating FP are by means of critical area analysis, and by use of

the defect limited yield equation with the kill ratio. The latter method of FP

estimation is based on defects detected at a specific inspection step and represents the

weighted average of the EP values of the defect mechanisms operating at the process

steps immediately preceding the inspection step. The estimated FP values are based

on the assumption of a Poisson distribution of the defects, but our analysis shows that

this approximation produces negligible error even when clustering is present due to

the relatively low defect density and FP values.

From our bootstrap analysis, we see that the standard, the first percentile, the

second percentile, and the BCA methods succeed at values of FP between 0.15 and

0.01, if the number of die sampled is 2000, and the defect density is between 30 to 40

per wafer. These values of FP correspond to 60-80 fatal defects (FP=0.1) and 6-8 fatal

defects (FP=0.01) per sample. Additionally, the BCA method succeeds while the

other three methods fail when the values of FP range from 0.008 to 0.004, and the

number of fatal defects per sample is between 3 and 6. All four methods fail when the

FP is 0.003 or less, where the number of fatal defects per sample is less than 3. The

success of the BCA method at lower FP is due to its incorporation of the acceleration

factor and the bias constant. The acceleration constant accounts for the change in the

standard deviation of the sampling distribution of the estimate with the population

parameter being estimated. The bias constant accounts for skewed sampling

distributions that have a median bias. The right-skewed sampling distributions also

lead to the better performance of the first percentile method over the other basic

pivotal methods. When the values of FPtrue become too low, sample size limits the

effectiveness of any method to make accurate CI estimates.

4.2 Suggestions for Future Work

The current work defines a defect type by where in the inspection process it is

detected by the inspection tools. There is no way of knowing the specific proportions

of each fault mechanism this defect type represents. Also due to limited sample sizes

for larger defects, it is also not practical to classify the defect type by size.

The only way to further classify the current defect types into their components

is by failure analysis at each of the inspections steps. Once an established database of

defect signatures is in place, the use of an automatic defect classification system

(ADC) to supplement the inspection tools would help in automating the classification

of the defects on-line [24-26. The only way to classify the defect types by size would

be to increase the sample size, i.e., the total number of wafers inspected, so that PP

estimates for larger sized defects would be statistically meaningful. Thus, for

example, instead of classifying a defect type as ISEF only, it could be further broken

down into ISEF-short-Sz5 or ISEF-break-Sz8.

91

From our bootstrap analysis we observed that the bootstrap-estimated standard

deviation of the FP estimate changes with the estimated FP. This change appears

linear with respect to the estimated FP. Furthermore the rate of this linear change

increases with the decreasing values of the FP being estimated. It appears that the

relationship may be modeled by the following equation:

O ==FP+C2 (5-1)

A

where o. is the standard deviation of the FP estimate, FP, Ci and C2 are constants,
FP

and n represents the sample size. This equation would explain not only why the

bootstrap estimated o. changes linearly with FP, but also why the slope increases
FP

with decreasing FP, as the FP value represents the proportion of fatal defects and is

thus proportional to sample size n. An interesting question is what precisely

constitutes n in our case. Since as FP decreases, T-TG decreases, n could be

proportional to T-TG.

Having established that the BCA method is the best method of CI estimation,

perhaps the most important practical issue to be addressed is how do we ascertain that

the BCA method is working in practice. In our simulations, of course, we know the

true value of FP and thus can easily evaluate the reliability of the BCA method. But

what method or criteria can we rely upon when we are given a sample from some

unknown population with many defect types each with unknown FP? More

92

specifically, how do we know if the sample size is large enough for the BCA-

estimated CI to be reliable? In the literature it is suggested that the sample size should

be at least 30 [27]. But in the case of PP estimation based on in-line defect data we do

not know exactly what constitutes a sample size. Examination of the behavior of the

distribution of the bootstrap estimates may be a good starting point to determine the

adequacy of the bootstrap CI estimate.

Another topic to explore is what is the relationship between the observed

slope of cr. vs. FP and the acceleration constant used in the BCA method. From our
FP

A

data we can observe that the ratio of the slope of o vs. FP from one run to another
FP

corresponds to the ratio of the acceleration constants from the same runs. This result

seems reasonable, as the acceleration constant is a measure of the rate of change of

the standard deviation with the parameter being estimated on a normalized scale.

Another result from the bootstrap analysis that should be further addressed is

A

the approximately constant value of the slopes of c vs. FP within runs, even
FP

though the PP changes within each run. This result suggests that the n in Equation (5-

1) may be more correlated with T-TG, than TA-TGA. A related issue is the degree of

A A A A

covariance or correlation that exists between FPA and FPB, FPA and FPc, etc.

Furthermore, how do estimates of their standard deviation or the confidence intervals

change when the relative values of the FPA and PP8. or FPA and PPc, are changed?

BIBLIOGRAPHY

1. Peters, L. "Introduction to Integrated Yield Analysis", Semiconductor
International, Jan. 1999.

2. Ferris-Prabhu, A.V., "Computation of the critical area in Semiconductor Yield
Theory", Proc. Electronic Automation Design Conf (EDA84), Mar. 1984,
p.171.

3. Pineda de Gyvez, J., Integrated Circuit Defect Sensitivity: Theory and
Computational Models, 1993, Kluwer Academic Publishers, Norwell, MA.

4. Kasten A., Zalnoski, J., and Mullenix, P., "Calculating Defect Limited Yields
From In-Line Inspections", Semiconductor International, July 1997, p.202.

5. Stapper, C.H., "Integrated Circuit Yield Statistics", Proc. IEEE, vol.7 1, April
1983.

6. Andrieu, G., Caraux, G., and Gascuel, 0., "Confidence intervals of
evolutionary distances between sequences and comparison with usual
approaches including the bootstrap method," Mol. Biol. Evol., vol. 14, pp.
875-882, 1997.

7. Dopazo, J., "Estimating errors and confidence intervals for branch lengths in
phylogenetic trees by a bootstrap approach," J. Mol. Evol., vol. 38, pp. 300-
304, 1994.

8. Manly, B.F.J., Randomization and Monte Carlo Methods in Biology, 2nd Ed.,
London, Chapman and Hall, 1997.

9. Kostelich, E.J., "Bootstrap estimates of chaotic dynamics," Phys. Rev. E., vol.
64, pp. 162130/1-16213/10, 2001.

10. Seki, T., and Yokoyama, S., "Robust parameter estimation using the bootstrap
method for the two- parameter Weibull distribution," IEEE Trans. On Reliab.,
vol. 45, pp. 34-41, 1996.

11. Martz, H.F., "A comparison of three methods for calculating lower confidence
limits on system reliability using binomial component data," IEEE Trans. On
Reliab., vol. 34, pp. 113-120, 1985.

12. Lunneborg, C.E., "Bootstrap applications for the behavioral sciences,"
Psychometrika, vol. 52, pp. 477-478, 1987.

13. Mooney, C.Z., and Duval, R.D., Bootstrapping: A Nonparametric Approach
to Statistical Inference. Quantitative Applications in the Social Sciences 95.
Newbury Park, CA, Sage Publications, 1993.

14. Ross, R. and Atchison, N., "The Calculation of Wafer Probe Yield Limits
from In-Line Defect Monitor Data", TI Technical Journal, Oct. 1998.

15. Kasten A., Zalnoski, J., and Mullenix, P., "Limited Yield Estimation for
Visual Defect Sources", IEEE Transactions On Semiconductor
Manufacturing, vol.10, Feb. 1997.

16. Simulations done by Julie Segal of HPL Inc.

17. Ross, S.M, Introduction to Probability Models, Academic Press, 1993.

18. Stapper, C.H., "Modeling of Integrated Circuit Defect Sensitivities", IBM
Journal of Research and Development, vol.27, November 1983.

19. Fems-Prabbu, A.V., Introduction to Semiconductor Device Yield Modeling,
1992, Artech House, Inc. Norwood, MA, pp.43-44.

20. Kikuchi, H., Nishio, N., Ikeyama, K., and Misumi, A. "Advanced Defect Kill-
Rate Estimation and Yield Analysis Incorporating Defect Clustering", IEEE
Conference Proceedings, 1999.

21. Lunneborg, C.E., Data Analysis by Resampling: Concepts and Applications,
Ch.7, Pacific Grove, CA, Duxhury, 2000.

22. Efron, B., An Introduction to the Bootstrap, Ch.13. Boca Raton, FL, Chapman
and Hall /CRC, 1993.

23. Efron, B., "Better Bootstrap Confidence Intervals", Journal of the American
Statistical Association, vol.82, pp.17 1-185, 1987.

24. Poag, F., Paradis, D., Reddy, M. and Button, J., "Implementing on-line ADC
and an automated yield information management system", Micro, vol. 67, pp.
67 76, 2000.

25. Riley, S .L., "Limitations to Estimating Yield Based on In-Line Defect
Measurements", International Symposium on Defect and Fault Tolerance in
VLSI Systems, 1999.

95

26. Segal, J., "A Framework for Extracting Defect Density Information for Yield
Modeling from In-line Defect Inspection for Real-time Prediction of Random
Defect Limited Yields", IEEE International Symposium on Semiconductor
Manufacturing Conference, Proceedings, 1999.

27. Chernick, M.R., Bootstrap Methods: A Practitioner's Guide. Hoboken, NJ,
Wiley-Interscience, 1999

APPENDIX

97

Simulation Code for Ch.3 written in Excel Visual Basic for Applications

Option Explicit

Sub GetCl2()

Dim arAProb() As Long
Dim arBProb() As Long
Dim arCProb() As Long
Dim arWafer() As Integer
Dim arSampFP() As Single
Dim arSampLY() As Single
Dim arRFP() As Single
Dim arStandClA() As Single
Dim arStandClB() As Single
Dim arStandClC() As Single
Dim arlstPrcntClA() As Single
Dim arlstPrcntClBO As Single
Dim arl stPrcntClC() As Single
Dim ar2ndPrcntClA() As Single
Dim ar2ndPrcntClB() As Single
Dim ar2ndPrcntClC() As Single
Dim arBCACIA() As Single
Dim arBCACII3() As Single
Dim arBCACIC() As Single
Dim FPA As Single
Dim FPB As Single
Dim FPC As Single
Dim BValueA As Single
Dim BValueB As Single
Dim BValueC As Single
Dim Aupper As Integer
Dim Alower As Integer
Dim Bupper As Integer
Dim Blower As Integer
Dim Cupper As Integer
Dim Clower As Integer
Dim intNo Wafers As Integer
Dim intDielDCnt As Integer
Dim Row As Integer
Dim TAdefA As Integer
Dim TAdefB As Integer
Dim TAdeft As Integer
Dim TGAdefA As Integer
Dim TGAdefB As Integer
Dim TGAdefC As Integer
Dim TG As Integer
Dim T As Integer
Dim NoCI As Integer

Dim intNoClCounter As Integer
Dim sngConfLevel As Single
Dim i As Integer
Dim k As Integer
Dim n As Integer
Dim m As Integer
Dim RowNumb As Integer
Dim LastRow As Integer
Dim intRow As Integer
Dim intCol As Integer
Dim B As Integer

'Get input values from WorkSheet 2
With Worksheets("Sheet2")

intNoWafers = .Cells(3, 2).Value 'Number of wafers per sample
BValueA .Cells(4, 2).Value 'These control the clustering;
BValueB = .Cells(5, 2).Value '0 corresponds to no clustering
BValueC = .Cells(6, 2).Value
Aupper = .Cells(7, 2).Value 'Number of defects per wafer upper
Alower = .Cells(8, 2).Value 'and lower limits
Bupper = .Cells(9, 2).Value
Blower = .Cells(l0, 2).Value
Cupper = .Cells(l 1, 2).Value
Clower = .Cells(12, 2).Value
FPA .Cells(13, 2).Value 'Assigned FP values
FPB .Cells(14, 2).Value
FPC = .Cells(15, 2).Value
NoCI = .Cells(16, 2).Value 'Number of CIs to estimate-
sngConfLevel = .Cells(17, 2) Value 'corresponds to number of original samples
B = .Cells(18, 2).Value 'Number of bootstrap samples per original

End With 'sample

ReDim arSampFP(1 To NoCI, 1 To 3)
ReDim arSampLY(1 To NoCI, 1 To 3)

ReDim arStandClA(1 To NoCI, I To 7)
ReDim arStandClB(1 To NoCI, I To 7)
ReDim arStandClC(I To NoCI, 1 To 7)

ReDim arlstPrcntClA(1 To NoCI, 1 To 2)
ReDim arlstPrcntClB(1 To NoC] 1 To 2)
ReDim an stPrcntClC(1 To NoCI, 1 To 2)

ReDim ar2ndPrcntClA(1 To NoCI, 1 To 2)
ReDim ar2ndPrcntClB(1 To NoCI, 1 To 2)
ReDim an2ndPrcntClC(1 To NoCI, 1 To 2)

ReDim arBCACIA(1 To NoCI, 1 To 6)
ReDim arBCACIB(1 To NoCI, I To 6)
ReDim arBCACIC(1 To NoCI, 1 To 6)

'Clear previous results
For intRow = 3 To 3002

'This array holds all the Sample FP estimates
'This array holds all the Sample LY estimates

'Holds conf. limis etc. for Standard method

'Holds conf limts for 1St percentile method

'Holds conf. limits for 2nd percentile method

'Holds conf limits etc. for BCA method

For intCol = 3 To 36
Worksheets("Sheet2").CelIs(intRow, intCol).Clear

Next intCol
Next intRow
For intRow = 3 To 1002

For intCol = 2 To 256
Worksheets("RFP").Ceils(intRow, intCol).Clear

Next intCol
Next intRow

'Start Loop Here
IAAA

For intNoClCounter 1 To NoCI
'Create Wafer Array showing all dies, number of defects and faults on each
'one of them, and each of their bin numbers

ReDim arWafer(1 To intNoWafers * 100, 1 To 9) 'Holds wafers array

'This subprocedure will create the wafers based on the input paramters
GetWaferArray Aupper, Alower, Bupper, Blower, Cupper, Clower,

BValueA, BValueB, BValueC, intNoWafers, FPA, FPB, FPC, arWaferHolder:=arWafer

'Display last wafer created on spreadsheet "Wafer"
If mtNoClCounter = NoCI Then

LastRow = UBound(arWafer, 1)
With Worksheets("Wafer")

For RowNumb = 1 To LastRow
.Cells(RowNumb + 1, 2).Value = arWafer(RowNumb, 1)
.Cells(RowNumb + 1, 3).Value = arWafer(RowNumb, 2)
.Cells(RowNumb + 1, 4).Value arWafer(RowNumb, 3)
.Cells(RowNumb + 1, 5).Value = arWafer(RowNumb, 4)
.Cells(RowNumb + 1, 6).Value = arWafer(RowNumb, 5)
.Cells(RowNumb + 1, 7).Value = arWafer(RowNumb, 6)
.CelIs(RowNuinb + 1, 8).Value = arWafer(RowNumb, 7)
.Cells(RowNumb + 1, 9).Value = arWafer(RowNumb, 8)
.Cells(RowNumb + 1, 1 0).Value = arWafer(RowNumb, 9)

Next RowNumb
End With

End If

'Get TA for each defect type
TAdefA = FuncTA("A", arWaferHolder:=arWafer)
TAdefB FuncTA("B", arWaferHolder:=arWafer)
TAdeIU FuncTA("C", arWaferHolder:=arWafer)

'Get TGA for each defect type
TGAdefA = FuncTGA("A", arWaferHolder:=arWafer)
TGAdefB = FuncTGA("B", arWaferHolder:=arWafer)
TGAdefC = FuncTGA("C", arWaferHolder:=arWafer)

'GetTGandT
TG = FuncTG(arWaferHolder:=arWafer)
T = UBound(arWafer, 1)

100

arSampFP(intNoClCounter, 1) = FuncFP(T, TG, TAdefA, TGAdefA, "A",
arWaferHolder:=arWafer)

arSampFP(intNoClCounter, 2) = FuncFP(T, TG, TAdefE, TGAdefB, "B",
arWaferHolder=atWafer)

arSampFP(intNoClCounter, 3) = FuncFP(T, TG, TAdefC, TGAdefC, "C",
arWaferHolder:=arWafer)

arSampLY(intNoCCounter, 1) FuncLY(T, TG, TAdefA, TGAdefA)
arSampLY(intNoClCounter, 2) FuncLY(T, TG, TAdefB, TGAdefB)
arSampLY(intNoClCounter, 3) FuncLY(T, TG, TAdefC, TGAdefC)

'Create Array of Bootstrap FP Values from arWafer
CreateRFPArray B, arSampFP(intNoClCounter, 1), arSampFP(intNoClCounter, 2),

arSampFP(intNoClCounter, 3), False, arWaferHolder:=arWafer, arRFPHolder:=arRFP

'Display bootstrap FP estimates for last 80 original samples (Cl's)
If intNoClCounter > NoCI - 80 Then

DisplayRFP 80, NoCI, mtNoClCounter, arRFPHolder:=arRFP
End If

'Display Biases, Variances, and Replicate FP Values for last CI.
If intNoClCounter = NoCI Then

DisplayBR B, arSampFP(intNoClCounter, 1), arSampFP(intNoClCounter, 2),
arSampFP(intNoClCounter, 3), arRFPHolder:=arRFP

DisplayVariance B, arRFPHolder:=arRFP
End If

'Get Standard C.I.'s and store into arStandClA, arStandClB, and arStandClC
GetStandCl "A", sngConfLevel, arSampFP(intNoClCounter, 1), intNoClCounter,

arRFPHolder:=arRFP, arStandClHolder:=arStandClA
GetStandCl "B", sngConfLevel, arSampFP(intNoClCounter, 2), intNoClCounter,

arRFPHolder:=arRFP, arStandClHolder:=arStandClB
GetStandCl "C", sngConfLevel, arSampFP(intNoClCounter, 3), intNoClCounter,

arRFPHolder:=arRFP, arStandClHolder:=arStandClC

'Get lstPercentile C.I.'s and store mt arlstPercentClA, arlstPercentClB,
'an stPercentClC
Geti stPrcntCl "A", sngConfLevel, intNoClCounter, arRFPHolder:=arRFP,

arClHolder:=anl stPrcntClA
GetlstPrcntCl "B", sngConfLevel, intNoClCounter, arRFPHolder:=arRFP,

arClHolder:=arl stPrcntClB
Geti stPrcntCl "C", sngConfLevel, intNoClCounter, arRFPllolder:=arRFP,

arClllolder:=arl stPrcntClC

Get2ndPrcntCl arSampFP(intNoClCounter, 1), arlstPrcntClA(intNoClCounter, 2),
an stPrcntClA(intNoClCounter, 1), intNoClCounter, arClHolder:=ar2ndPrcntClA

Get2ndPrcntCl arSampFP(intNoClCounter, 2), arl stPrcntClB(intNoClCounter, 2),
an stPrcntClB(intNoClCounten, 1), intNoClCounter, aTCIHoldeT:ar2nd?rcntCIB

Get2ndPrcntCl arSampFP(intNoClCounter, 3), an stPrcntClC(intNoClCounter, 2),
an stPrcntClC(intNoClCounter, 1), intNoClCounter, arClHolder:=ar2ndPrcntClC

101

GetBCACI sngConfLevel, arSampFP(intNoClCounter, 1), arSampFP(intNoClCounter, 2),
arSampFP(intNoClCounter, 3), mtNoClCounter, arRFPHolder:=arRFP,
arBCACIAHolder:=arBCACIA, aiBCACIBHolder:=arBCACIB,
arBCACICHolder:=arBCACIC, arWaferHolder:=arWafer

Next intNoClCounter
'Loop Ends Here
'AAA

For i = I To NoCI
With Worksheets("Sheet2")

.Cells(i * 3, 3).Value = "A"

.Cells(i * 3 + 1, 3).Value = "B"

.Cells(i * 3 + 2, 3).Value = "C"

.Cells(i * 3, 4).Value = arSampFP(i, 1)

.Cells(i * 3, 23).Value = arSampLY(i, 1)

.Cells(i * 3, 5).Value = arlstPrcntClA(i, 1)

.Cells(i * 3, 6).Value = arlstPrcntClA(i, 2)

.Cells(i * 3 + 1, 4).Value arSampFP(i, 2)

.Cells(i * 3 + 1, 23).Value = arSampLY(i, 2)

.Cells(i * 3 + 1, 5).Va1u = arlstPrcntClB(i, 1)
.CeIls(i * 3 + I, 6).Value arlstPrcntClB(i, 2)
.Cells(i * 3 + 2, 4).Value = arSampFP(i, 3)
.Cells(i * 3 + 2, 23)Value = arSampLY(i, 3)
.Cells(i * 3 + 2, 5).Value = arlstPrcntClC(i, 1)
.Cells(i * 3 + 2, 6).Value = arlstPrcntClC(i, 2)
If arlstPrcntClC(i, I) > FPC Or

arlstPrcntClC(i, 2) <FPC Then
.Cells(i * 3 + 2, 7).Value = "Failed"

End If
If an stPrcntClB(i, 1) > FPB Or

an stPrcntClB(i, 2) <FPB Then
.Cells(i * 3 + 1, 7).Value = "Failed"

End If
If arlstPrcntClA(i, 1) > FPA Or

arlstPrcntClA(i, 2) <FPA Then
.Cells(i * 3, 7).Value = "Failed"

End If
.Cells(i * 3, 8).Value ar2ndPrcntClA(i, 1)
.Cells(i * 3, 9).Value = ar2ndPrcntCL&(i, 2)
.Cells(i * 3 + 1, 8).Value ar2ndPrcntClB(i, 1)
.Cells(i * 3 + 1, 9).Value = ar2ndPrcntClB(i, 2)
.Cells(i * 3 + 2, 8).Value = ar2ndPrcntClC(i, 1)
.Cells(i * 3 + 2, 9).Value = ar2ndPrcntClC(i, 2)
If ar2ndPrcntClC(i, 1) > FPC Or

ar2ndPrcntClC(i, 2) <FPC Then
.Cells(i * 3 + 2, lO).Value "Failed"

End If
If ar2ndPrcntClB(i, 1) > FPB Or

ar2ndPrcntClB(i, 2) <FPB Then
.Cells(i * 3 + I, lO).Value "Failed"

102

End If
If ar2ndPrcntClA(i, 1) > FPA Or

ar2ndPrcntClA(i, 2) <FPA Then
.Cells(i * 3, 10).Value = 'Failed"

End If

If ar2ndPrcntClC(i, 1) > FPC Or
ar2ndPrcntClC(i, 2) <FPC Then
.Cells(i * 3 + 2, 10).Value = "Failed"

End If
If ar2ndPrcntClB(i, 1) > FPB Or

ar2ndPrcntClB(i, 2) <FPB Then
.Cells(i * 3 + 1, 10).Value "Failed"

End If
If ar2ndPrcntClA(i, 1) > FPA Or

ar2ndPrcntClA(i, 2) <FPA Then
.Cells(i * 3, 10).Value "Failed"

End If
For k 1 To 7

.Cells(i * 3 + 2, 10 + k).Value = arStandClC(i, k)

.Cells(i * 3 + 1, 10 + k).Value arStandClB(i, k)

.Cells(i * 3, 10 + k).Value arStandClA(i, k)
Next k
If arStandClC(i, 6) > FPC Or

arStandClC(i, 7) <FPC Then
.Cells(i * 3 + 2, 18) = "Failed"

End If
If arStandClB(i, 6) > FPB Or

arStandClB(i, 7) <FPB Then
.Cells(i * 3 + 1, 18) = "Failed"

End If
If arStandClA(i, 6) > FPA Or

arStandClA(i, 7) <FPA Then
.Cells(i * 3, 18) = "Failed"

End If

For k = 1 To 6
Cells(i * 3 + 2, 24 + k).Value = arBCACIC(i, k)
.Cells(i * 3 + 1, 24 + k).Value = arBCACIB(i, k)
.Cells(i * 3, 24 + k).Value = arBCACIA(i, k)

Next k
If arBCACIC(i, 5) > FPC Or

arBCACIC(i, 6) <FPC Then
Cells(i * 3 + 2, 31) = "Failed"

End If
If arBCACIB(i, 5) > FPB Or

arBCACIB(i, 6) <FPI3 Then
.Cells(i * 3 + 1, 31) = "Failed"

End If
If arBCACIA(i, 5) > FPA Or

arBCACIA(i, 6) <FPA Then
.CelIs(i * 3, 31) = "Failed"

103

End If

End With
Next i

MsgBox ("OkeyDokey")

End Sub

Function FuncNoPoints(ByRef arProb() As Long) As Integer
Dim upperbound As Long
Dim RandNumber As Long
Dim n As Integer

upperbound = arProb(UBound(arProb, 1), 4)
Randomize Timer
RandNumber Int((upperbound - 1 + 1) * Rnd + 1)

For n = 1 To UBound(arProb, 1)
If RandNumber >= arProb(n, 3) And RandNumber <= arProb(n, 4) Then

FuncNoPoints = arProb(n, 1)
Exit Function

End If
Next n

End Function
Function FuncNoBadPoints(ByVaI NoPoints As Integer, ByVal FP As Single) As Integer
Dim intPointsCnt As Integer
Dim RandNumber As Integer
Dim n As Integer

For intPointsCnt = 1 To NoPoints
Randomize Timer
RandNumber Int((10000 - 1 + 1) * Rnd + 1)
If RandNumber <= CInt(FP * 10000) Then

n=n+l
End If

Next intPointsCnt

FuncNoBadPoints = n

End Function

Function FuncProb(n As Integer, DD As Double, alpha As Double) As Double
Dim upperGuy As Double
Dim lowetGuy As Double

upperGuy = (Exp(ExceLWorksheetFunction.GammaLn(alpha + n)))
* (DD I alpha) A n

lowerGuy = Excel.WorksheetFunction.Fact(n) *
(Exp(Excel.WorksheetFunctionGammaLn(a1pha)))

104

* (1 + DD I alpha) A (n + alpha)
FuncProb = upperGuy / lowerGuy

End Function

Sub CreateProbArray(ByVal DD As Double, ByVal alpha As Double,
ByRef arFinalProb() As Long)

Dim n As Integer
Dim Row As Integer
Dim arProb(l To 100, 1 To 4)

n=0
Do

arProb(n + 1, 1) = n
arProb(n + 1, 2) = CLng(10000000 * FuncProb(n, DD, alpha))
If n = 0 Then

arProb(n + 1, 3) = 1
arProb(n+ l,4)=arProb(n+ 1,2)

Else
arProb(n + 1, 3) arProb(n, 4) + 1
arProb(n + 1, 4) = arProb(n, 4) + arProb(n + 1, 2)

End If

nn+ 1
Loop While (CLng(1000000 * FuncProb(n, DD, alpha))) >0

ReDim arFinalProb(1 To n, 1 To 4)
For Row 1 To n

arFinalProb(Row, 1) = arProb(Row, 1)
arFinalProb(Row, 2) arProb(Row, 2)
arFinalProb(Row, 3) = arProb(Row, 3)
arFinalProb(Row, 4) = arProb(Row, 4)

Next Row

End Sub
Function FuncBinNumber(ByVal ANoBadPoints As Integer, ByVal BNoBadPoints As Integer,

ByVal CNoBadPoints As Integer) As Integer

If ANoBadPoints >0 Or BNoBadPomts >0 Or CNoBadPoints >0 Then
FuncBinNumber =8

Else
FuncBinNumber = I

End If

End Function

Function FuncTA(ByVal strDefFype As String, ByRef arWaferHolder() As Integer)
As Integer

Dim intCol As Integer
Dim i As Integer
Dim TA As Integer

If strDefType = "A" Then

105

intCol = 3
ElseIf strDefType "B" Then

intCol 5
Else

mtCol 7
End If

For i = 1 To UBound(arWaferHolder, I)
If arWaferHolder(i, intCol) > 0 Then

TA TA + I
End If

Next i

FuncTA TA
End Function

Function FuncTGA(ByVal strDefType As String, ByRef arWaferHolder() As Integer)
As Integer

Dim intCol As Integer
Dim i As Integer
Dim TGA As Integer

If strDefType "A" Then
intCol = 3

ElseIf strDefType = "B" Then
mtCol = 5

Else
intCol = 7

End If

For i = 1 To IjBound(arWaferHolder, 1)
If arWaferHolder(i, intCol) > 0 And arWaferHolder(i, 9) = 1 Then

TGA = TGA + 1
End If

Next i

FuncTGA = TGA

End Function

Function FuncTG(ByRef arWaferHolder() As Integer)
As Integer

Dim i As Integer
Dim TG As Integer

For i = 1 To UBound(arWaferHolder, 1)
If arWaferHolder(i, 9) = 1 Then

TG = TG + I
End If

Next i

FuncTG = TG

106

End Function
Function FuncFP(ByVal T As Double, ByVal TG As Double, ByVal TA As Double,

ByVal TGA As Double, ByVal strDefType As String,
ByRef arWaferHolder() As Integer) As Double

Dim intCol As Integer
Dim i As Integer
Dim TotDefs As Integer
Dim TotDie As Integer

If strDefType = "1" Then
intCol = 1

ElseIf strDefType = "A' Then
intCol = 3

ElselfstrDeffype = "B" Then
intCol = 5

Else
intCol = 7

End If

TotDie = T

For i = 1 To TotDie
TotDefs = arWaferHolder(i, intCol) + TotDefs

Next i

FuncFP -Log(TG * (T - TA) / (T * (TG - TGA))) I (TotDefs I TotDie)

End Function
Function FuncLY(ByVal T As Double, ByVal TG As Double, ByVal TA As Double,

ByVal TGA As Double) As Double

FuncLY = TG * (T TA) I (T * (TG - TGA))
If FuncLY> 1 Then

FuncLY =1
End If

End Function
Sub CreateRFPArray(ByVal intNoReplicates As Integer, ByVal SampFPA As Single,

ByVal SampFPB As Single, ByVal SampFPC As Single, boolZ As Boolean,
arWaferHolder() As Integer, ByRef arRFPHolder() As Single)

Dim arWaferbootstrap() As Integer
Dim upperbound As Integer
Dim i As Integer
Dim T As Integer
Dim TG As Integer
Dim TAdefA As Integer
Dim TAdefB As Integer
Dim TAdeft As Integer
Dim TGAdefA As Integer
Dim TGAdefl3 As Integer
Dim TGAdeIC As Integer
Dim intNoReplicatesCnt As Integer

107

Dim RandNumber As Integer

If boolZ = True Then
ReDim arRFPHolder(1 To intNoReplicates, 1 To 6)

Else
ReDim arRFPHolder(1 To intNoReplicates, I To 3)

End If

upperbound = UBound(arWaferHolder, 1)
I = upperbound

For intNoReplicatesCnt = 1 To intNoReplicates
ReDim arWaferbootstrap(1 To upperbound, 1 To 9)

Randomize Timer
For i = 1 To upperbound

Randomly pick a die number between 1 and Number of Total Die
RandNumber Int((upperbound - 1 + 1) * Rnd + 1)
arWaferbootstrap(i, 1) = arWaferHolder(RandNumber, 1)
arWaferbootstrap(i, 2) = arWaferHolder(RandNumber, 2)
arWaferbootstrap(i, 3) = arWaferHolder(RandNumber, 3)
arWaferbootstrap(i, 4) = arWaferHolder(RandNumber, 4)
arWaferbootstrap(i, 5) arWaferHolder(RandNumber, 5)
arWaferbootstrap(i, 6) = arWaferHolder(RandNumber, 6)
arWaferbootstrap(i, 7) = arWaferHolder(RandNumber, 7)
arWaferbootstrap(i, 8) = arWaferHolder(RandNumber, 8)
arWaferbootstrap(i, 9) = arWaferHolder(RandNumber, 9)

Next i

TAdefA = FuncTA("A", arWaferHolder:=arWaferbootstrap)
TAdefB FuncTA("B", arWaferHolder:=arWaferbootstrap)
TAdefC = FuncTA("C", arWaferHolder:=arWaferbootstrap)

TGAdefA = FuncTGA("A", arWaferHolder:=arWaferbootstrap)
TGAdefB = FuncTGA("B", arWaferHolder:=arWaferbootstrap)
TGAdefC = FuncTGA("C", arWaferHolder:=arWaferbootstrap)

TG = FuncTG(arWaferHolder:=arWaferbootstrap)

arRFPHolder(intNoReplicatesCnt, 1) = FuncFP(T, TG, TAdefA, TGAdefA, "A",
arWaferHolder:=arWaferbootstrap)

arRFPHolder(intNoReplicatesCnt, 2) = FuncFP(T, TG, TAdefB, TGAdefB, "B",
arWaferHolder:=arWaferbootstrap)

arRFPHolder(intNoReplicatesCnt, 3) = FuncFP(T, TG, TAdeIC, TGAdefC, "C",
arWaferHolder:=arWaferbootstrap)

'If arRFPHolder(intNoReplicatesCnt, 1) = 0 Or arRFPHolder(intNoReplicatesCnt, 2) = 0
Or arRFPHolder(intNoReplicatesCnt, 3) = 0 Then
'intNoReplicatesCnt intNoReplicatesCni - 1

'End If

If boolZ = True Then
arRFPHolder(intNoReplicatesCnt, 4) = ZFunc("A", SampFPA, arRFPHolder

(intNoReplicatesCnt, 1), arWaferbootsfrapHolder:=arWaferbootstrap)
arRFPHolder(intNoReplicatesCnt, 5) = ZFunc("B", SampFPB, arRFPHolder

(intNoReplicatesCnt, 2), arWaferbootstrapHolder:=arWaferbootstrap)
arRFPHolder(intNoReplicatesCnt, 6) = ZFunc("C", SampFPC, arRFPHolder

(intNoReplicatesCnt, 3), arWaferbootstrapllolder:=arWaferbootstrap)
End If

Next intNoReplicatesCnt

End Sub

Sub GetStandCl(ByVal strDefType As String, ByVal sngConfLevel As Single,
ByVal SampFP As Single, ByVal intCllNoCnter As Integer,
ByRef arRFPHolder() As Single, ByRef arStandClHolder)

Dim SampFPmd As Double
Dim SampFPfaults As Double
Dim AvgBootFP As Single
Dim StDevFP As Single
Dim alpha As Single

alpha = 1 - sngConfLevel
AvgBootFP FuncAvgBootFP(strDefType, arRFPHolder:arRFPHolder)
StDevFP = FuncStDevBootFP(strDetType, AvgBootFP, arRFPHolder:=arRFPHolder)

arStandClHolder(intClNoCnter, 1) = SampFP
arStandClHolder(intClNoCnter, 2) = AvgBootFP
arStandClHolder(intClNoCnter, 3) = StDevFP
arStandClliolder(intClNoCnter, 4) = AvgBootFP - SampFP
arStandClHolder(intClNoCnter, 5) = (sngConfLevel) * 100
arStandClHolder(intClNoCnter, 6) = SampFP - (AvgBootFP - SampFP)

StDevFP * (Excel.WorksheetFunction.NormSlnv(1 - alpha I 2))
arStandClHolder(intClNoCnter, 7) SampFP - (AvgBootFP SampFP)

StDevFP * (Excel.WorksheetFunction.NormSlnv(alpha I 2))

End Sub

Function FuncStDevBootFP(ByVal strDefType, ByVal AvgBootFP As Single,
arRFPHolder() As Single) As Double

Dim Sum As Double
Dim intCol As Integer
Dim i As Integer
Dim upperbound As Integer

If strDefType = "A" Or strDefType = "1" Then
intCol = 1

ElselfstrDefJype = "B" Then
intCol = 2

Else
intCol = 3

End If

upperbound = UBound(arRFPHolder, 1)

109

For j = I To upperbound
Sum = (arRFPHolder(i, intCol) - AvgBootFP) A 2 + Sum

Next i

FuncStDevBootFP = (Sum / (upperbound - 1)) A (0.5)

End Function

Function FuncAvgBootFP(ByVal strDefType, ByRef arRFPHolder() As Single) As Double
Dim Total As Double
Dim Sum As Double
Dim intCol As Integer
Dim i As Integer
Dim upperbound As Integer

If strDefType = 'A" Or strDeflType = "1" Then
intCol 1

ElseIf strDefFype = "B" Then
intCol 2

Else
intCol 3

End If

upperbound = UBound(arRFPHolder, 1)

For i = 1 To upperbound
Total = aTRFPHOIdeT(i, intCol) + Total

Next i

FuncAvgBootFP Total / upperbound

End Function

Sub CreateSortedArray(ByVal strDefType As String, ByRef arRFPHolder() As Single)
Dim i As Integer
Dim j As Integer
Dim tmp As Single
Dim intCol As Integer

If strDefType "A" Or strDefType = "1" Then
intCol 1

Elself strDefType = "B" Then
intCol =2

Else
intCol = 3

End If

For i = LBound(arRFPHolder, 1) To UBound(arRFPHolder, 1) - I
For j = (i + 1) To UBound(arRFPHolder, 1)

If arRFPHolder(i, intCol) > arRFPHolder(j, intCol) Then
tmp = arRFPHolder(i, intCol)
arRFPHolder(i, intCol) = arRFPHolder(j, intCol)
arRFPHolder(j, intCol) = tmp

110

End If
Nextj

Next i

End Sub
Sub CreateSortedTArray(ByVal strDefType As String, ByRef arRFPHolder() As Single)
Dim i As Integer
Dimj As Integer
Dim tmp As Single
Dim intCol As Integer

If strDefType = "A" Or strDeffe = "1" Then
intCol =4

ElseIf strDefType = "B" Then
mtCol ='5

Else
intCol = 6

End If

For i = LBound(arRFPHolder, 1) To UBound(arRFPHolder, 1) - 1
For j = (i + 1) To UBound(arRFPHolder, 1)

If arRFPHolder(i, intCol) > arRFPHolder(j, intCol) Then
tmp = arRFPHolder(i, intCol)
arRFPHolder(i, intCol) arRFPHolder(j, intCol)
arRFPHolder(j, intCol) = tmp

End If
Next j

Next i

End Sub
Sub (3etlstPrcntCl(ByVal strDefType As String, ByVal sngConfLevel As Single,

ByVal intClNoCnter As Integer, ByRef arRFPHolder() As Single,
ByRef arClHolderO As Single)

Dim intLRow As Integer
Dim intURow As Integer
Dim intCol As Integer
Dim bootFPlow As Single
Dim bootFPhigh As Single
Dim alpha As Single

If strDetType = "A" Then
intCol = I

ElseIf strDelType = "B" Then
intCol=2

Else
intCol = 3

End If

CreateSortedArray strDefType, arRFPHolder:=arRFPHolder

alpha = 1 - sngConfLevel

intLRow = Int(UBound(arkFPHolder, 1) * alpha /2) + I

111

intURow = Int(UBound(arRFPHolder, 1) * (1 - alpha / 2)) + I

bootFPlow = arRFPHolder(intLRow, intCol)
bootFPhigh = arRFPHolder(intURow, intCol)

arClHolder(intClNoCnter, 1) = bootFPlow
arClHolder(intCNoCnter, 2) = bootFPhigh

End Sub

Sub Get2ndPrcntCl(ByVal SampFP As Single, ByVal FPlstPrcnthigb As Single,
ByVal FP 1 stPrcntlow As Single, intClNoCnter As Integer, ByRef arClHolder() As
Single)

Dim bootFPlow As Single
Dim bootFPhigh As Single

bootFPlow =2 * SampFP - FP 1 stPrcnthigh
bootFPhigh =2 * SampFP - FP I stPrcntlow

arClHolder(intClNoCnter, I) = bootFPlow
arClHolder(intClNoCnter, 2) = bootFPhigh

End Sub

Sub GetWaferArray(Aupper As Integer, Alower As Integer, Bupper As Integer, Blower As
Integer, Cupper As Integer, Glower As Integer, BValueA As Single, BValueB As
Single, BValueC As Single, lngWaferNo As Integer, FPA As Single,
FPB As Single, FPC As Single, arWaferHolder() As Integer)

Dim A(1 To 52, 1 To 52) As Integer
Dim B(l To 52, 1 To 52) As Integer
Dim C(1 To 52, 1 To 52) As Integer
Dim ANoOlPoints As Integer
Dim BNoOfPoints As Integer
Dim CNoOfPoints As Integer
Dim NoA As Integer
Dim NoB As Integer
Dim NoC As Integer
Dim Row As Integer
Dim Col As Integer
Dim i As Integer
Dim j As Integer
Dim k As Integer
Dim m As Integer
Dim n As Integer
Dim p As Integer
Dim lngWaferCounter As Long
Dim DiePointsA(1 To 10, 1 To 10) As Integer
Dim DiePointsB(1 To 10, 1 To 10) As Integer
Dim DiePointsC(1 To 10, 1 To 10) As Integer
Dim intDielDCnt As Integer

'Initialize Total Points Tracker

112

NoAO
NoB 0
NoC 0

For lngWaferCounter 1 To lngWaferNo

'Initialize Arrays to 0
For i 1 To UBound(A, 1)

Forj = 1 To UBound(A, 2)
A(i,j)=0
B(i, j) =0
C(i, j) 0

Next j
Next i

'Assign Random Number of Points for each Defect Type
ANoOfloints = RandNum(Aupper, Alower)
BNoOfPoints = RandNum(Bupper, Blower)
CNoOfPoints = RandNum(Cupper, Clower)

'Generate Negative Binomial Arrays
Randomize Timer
RandomizeArray ArrayHolder2:=A, NoOfPoints:=

ANoOlPoints, B:BVaIueA
RandomizeArray ArrayHolder2:=B, NoOfPoints:

BNoOfPoints, B :=BValueB
RandomizeArray ArrayHolder2:=C, NoOfPoints:=

CNoOfPoints, B:BValueC

Row =0
Col = 0
Fori= iTo 10

Forj = 1 To 10
DiePointsA(i, j) = 0
DiePointsB(i, j) = 0
DiePointsC(i, j) =0

Nextj
Next i

Fori=2To51 Step 5
Row = Row + 1
Col 0
Forj2To5l Step5

Col = Col + I
For k = i To i +4

For m j To j +4
DiePointsA(Row, Col) = A(k, m) + DiePointsA(Row, Col)
DiePointsB(Row, Col) = B(k, m) + DiePointsB(Row, Col)
DiePointsC(Row, Col) = C(k, m) + DiePointsC(Row, Col)

Next m
Next k

Nextj
Next i

113

n=0
p=O
For intDielDCnt = (lngWaferCounter - 1) * 100 + 1 To (lngWaferCounter - 1) * 100 + 100

n=n+ 1
Ifp< 10 Then

p=p+ 1
Else

p=1
End If

arWaferHolder(intDielDCnt, 1) Int((intDielDCnt / 100 - 0.00001) + 1)
arWaferHolder(intDielDCnt, 2) = mtDielDCnt
'Defect Type A
arWafetHolder(mtDielDCnt, 3) = DiePointsA(p, Int(n /10 - 0.0001) + 1)
arWaferHolder(intDielDCnt, 4) = FuncNoBadPoints(arWaferHolder(intDielDCnt, 3), FPA)
'Defect Type B
arWaferHolder(mtDielDCnt, 5) = DiePointsB(p, Int(n / 10 0.0001) + 1)
arWaferHolder(intDielDCnt, 6) = FuncNoBadPoints(arWaferHolder(intDielDCnt, 5), FPB)
'Defect Type C
arWaferHolder(intDielDCnt, 7) DiePointsC(p, Int(n /10 - 0.000 1) + 1)
arWaferHolder(intDielDCnt, 8) = FuncNoBadPoints(arWaferHolder(intDielDCnt, 7), FPC)

arWaferHolder(intDielDCnt, 9) = FuncBinNumber(arWaferHolder(intDielDCnt, 4),
arWaferHolder(intDielDCnt, 6), arWaferHolder(intDielDCnt, 8))

Next intDielDCnt

Next lngWaferCounter

End Sub

Function Test 1 (ByVal Aij As Integer, ByVal Tot As Integer,
ByVal B As Single, i As Integer,
j As Integer, intElements As Integer, ArrayHolder() As Integer) As
Integer

Const constA As Single = 0.5
Dim sngC As Single

sngC 1 / intElements

Aij = Aij + constA * (ArrayHolder(i - 1, j) +
ArrayHolder(i + 1, j) + ArrayHolder(i, j - 1) +
ArrayHolder(i, j + 1))

If (Aij * B + sngC) / (Tot * B + sngC * intElements)
> Rnd Then

Testl = I
Else

Test! =0
End If

End Function
Function ArrayTotalPoints(ArrayHolder() As Integer) As

114

Integer
Dim i As Integer
Dim j As Integer

ArrayTotalPoints 0
For i 1 To UBound(ArrayHolder, 1)

For j = 1 To UBound(Ai-rayFlolder, 2)
ArrayTotalPoints = ArrayHolder(i, j) +

ArrayTotalPomts
Nextj

Next i
End Function
Sub RandomizeArray(ArrayHolder2() As Integer, ByVal NoOfPoints

As Long, ByVal B As Single)
Dim I As Integer
Dim i As Integer
Dim j As Integer
Dim intElements As Integer

intElements = UBound(ArrayHolder2, 2) * UBound(ArrayHolder2, 1)
Do While ArrayTotalPoints(ArrayHolder:=ArrayHolder2)

<NoOlPoints
T = ArrayTotalPoints(ArrayHolder:=ArrayHolder2)
For i =2 To UBound(ArrayHolder2, 1) - 1

Forj =2 To UBound(ArrayHolder2, 2) - 1
Arrayllolder2(i, j) =
ArrayHolder2(i, j) +
Testl(ArrayHolder2(i, j), T, B,

i, j, intElements, ArrayHolder2O)
Next j

Next i
Loop

End Sub
Function RandNum(ByVal upperbound As Integer, ByVal

lowerbound As Integer) As Integer

If upperbound =0 And lowerbound =0 Then
RandNum =0

Else
RandNum = Int((upperbound - lowerbound + 1)

* Rnd + lowerbound)
End If

End Function

Function ZFunc(strDefType As String, SampFP As Single, BootFP As Single,
arWaferbootstrapRolder() As Integer) As Double

Dim arRFPHolder(l To 25, 1 To 1) As Single
Dim intNoRephcatesCnt As Integet
Dim upperbound As Integer
Dim RandNumber As Integer
Dim arWaferbootstrap() As Integer
Dim i As Integer

115

Dim T As Integer
Dim TG As Integer
Dim TA As Integer
Dim TGA As Integer
Dim avg As Double
Dim StDev As Double

upperbound = UBound(arWaferbootstrapHolder, 1)

For intNoReplicatesCnt = 1 To 25 'Number of Replicates
ReDim arWaferbootstrap(1 To upperbound, 1 To 9)

Randomize Timer
For i 1 To upperbound

'Randomly pick a die number between I and Number of Total Die
RandNumber = Int((upperbound - 1 + 1) Rnd + 1)
arWaferbootstrap(i, 1)= arWaferbootstrapHolder(RandNumber, 1)
arWaferbootstrap(i, 2) = arWaferbootstrapHolder(RandNumber, 2)
arWaferbootstrap(i, 3) arWaferbootstrapHolder(RandNumber, 3)
arWaferbootstrap(i, 4) = arWaferbootstrapHolder(RandNumber, 4)
arWaferbootstrap(i, 5) arWaferbootstrapHolder(RandNumber, 5)

arWaferbootstrap(i, 6) = arWaferbootstrapHolder(RandNumber, 6)
arWaferbootstrap(i, 7) = arWaferbootstrapHolder(RandNumber, 7)
arWaferbootstrap(i, 8) = arWaferbootstrapHolder(RandNumber, 8)
arWaferbootstrap(i, 9) = arWaferbootstrapHolder(RandNumber, 9)

Next i

TA FuncTA(strDefType, arWaferHolder:=arWaferbootstrap)

TGA = FuncTGA(strDefType, arWaferHolder:=arWaferbootstrap)

TO = FuncTG(arWaferHolder:=arWaferbootstrap)

T = upperbound

arRFPHolder(intNoReplicatesCnt, 1) FuncFP(T, TG, TA, TGA, strDefType,
arWaferHolder:=arWaferbootstrap)

Next intNoReplicatesCnt

avg = FuncAvgBootFP(" 1", arRFP}Iolder:=arRFPHolder)
StDev = FuncStDevBootFP(" 1", avg, arRFPHolder:=arRFPHolder)

ZFunc = (BootFP - SampFP) / (StDev / 5)

End Function

Sub GetbootstrapT(ByVal strDeffype As String, ByVal sngConfLevel As Single,
ByVal SampFP As Single, ByVal intClNoCnter As Integer,
ByRef arRFPHolder() As Single, ByRef arClHolder)

116

Dim SampFPmd As Double
Dim SampFPfaults As Double
Dim AvgBootFP As Single
Dim StDevFP As Single
Dim alpha As Single
Dim intCol As Integer
Dim intLRow As Integer
Dim intURow As Integer
Dim boottlow As Double
Dim bootthigh As Single

alpha = 1 - sngConfLevel
AvgBootFP FuncAvgBootFP(strDefType, arRFPHolder:=arRFPHolder)
StDevFP = FuncStDevBootFP(strDefType, AvgBootFP, arRFPHolder:=arRFPHolder)

If strDefType = "A" Then
mtCol =4

ElselfstrDefFype = "B' Then
intCol = 5

Else
mtCo1=6

End If

CreateSortedTArray strDefType, arRFPHolder:=arRFPHolder

mtLRow = Int(UBound(arRFPHolder, 1) * alpha / 2) + 1
intURow = Int(UBound(arRFPHolder, 1) * (1 - alpha / 2)) + I

boottlow = arRFPHolder(intLRow, intCol)
bootthigh = arRFP}Iolder(mtURow, intCol)

arClHolder(intClNoCnter, 1) = boottlow
arClHolder(mtClNoCnter, 2) = bootthigh
arClHolder(intClNoCnter, 3) = SampFP - bootthigh * StDevFP
arClHolder(intClNoCnter, 4) = SampFP - boottlow * StDevFP

End Sub

Sub DisplayBR(B As Integer, SampFPA As Single, SampFPB As Single, SampFPC As Single,
arRFPHolder() As Single)

Dim coIR As New Collection
Dim intR
Dim SampFP(1 To 3) As Single
Dim i As Integer
Dim Sum As Double
Dim arBR() As Single
Dim intRow As Integer
Dim intCol As Integer

SampFP(l) = SampFPA
SampFP(2) SampFPB
SampFP(3) = SampFPC

117

For i 1 To B / 20
colR.Add 20 *

Next i

ReDim arBR(1 To colR.Count, 1 To 4)

For Each intR In coiR
arBR(intR/20, 1)=nintR

Next mtR

For intCol = 1 To 3
For Each intR In coiR

Sum =0
For i = 1 To intR

Sum Sum + arRFPHolder(i, mtCol)
Next i
arBR(intR 1 20, intCol + 1) = Sum / intR - SampFP(intCol)

Next intR
Next intCol

With Worksheets(BR)
For mtRow = 1 To UBound(arBR, 1)

Ce1ls(intRow + 1, 1).Value arBR(intRow, 1)
.Cells(intRow + 1, 2).Value = arBR(intRow, 2)
.Cells(intRow + 1, 3).Value = arBR(intRow, 3)
.Cells(intRow + 1, 4).Value = arBR(intRow, 4)

Next intRow
End With

End Sub

Sub DisplayVariance(B As Integer, arRFPHolder() As Single)
Dim coiR As New Collection
Dim rntR
Dim i As Integer
Dim Sum As Double
Dim Sum2 As Double
Dim arVR() As Single
Dim intRow As Integer
Dim intCol As Integer
Dim avg As Double

For i = 1 To B /20
colR.Add 20 * i

Next i

ReDim arVR(l To colR.Count, I To 4)

For Each intR In coiR
arVR(intR 1 20, 1) = intR

118

Next intR

For intCol = 1 To 3
For Each mtR In coiR

Sum 0
For i = 1 To intR

Sum Sum + arRFPHolder(i, intCol)
Next i
avg = Sum! intR
Sum2 = 0
For i = 1 To intR

Sum2 Sum2 + (arRFPHolder(i, intCol) - avg) A 2
Next i
arVR(intR! 20, intCol + 1) = Sum2 / (intR - 1)

Next intR
Next intCol

With Worksheets("VarR")
For intRow = 1 To UBound(arVR, 1)

.Cells(intRow + 1, 1).Value = arVR(intRow, 1)

.Cells(mtRow + 1, 2).Value = arVR(mtRow, 2)
.Cells(intRow + 1, 3).Value arVR(intRow, 3)
.CeIls(intRow + 1, 4).Value arVR(intRow, 4)

Next mtRow
End With

End Sub

Sub DisplayRFP(intNoofDisp As Integer, intNoCl As Integer, intNoClCnter As Integer,
arRFPHolder() As Single)

Dim intRow As Integer
Dim n As Integer
Dim intN As Integer
Dim i As Integer

n = intNoCl - intNoClCnter + 1
intN mtNoofDisp - n

With Worksheets("RFP')
For intRow I To UBound(arRFPHolder, 1)

If n = intNoofDisp Then
.Cells(mtRow + 1, 1).Value = intRow
Fori= 1 TointNoofDisp

.Cells(l, 2 + 3 * (i - 1)).Value = i
Next i

End If
.Cells(intRow + 1, 2 + 3 * intN).Value = arRFPHolder(intRow, 1)
.Cells(intRow + 1, 3 + 3 * intN).Value = arRFPHolder(intRow, 2)
.Cells(intRow + 1, 4 + 3 * intN).Value = arRFPHolder(intRow, 3)

Next intRow
End With

End Sub
Sub GetBCACI(ByVal sngConfLevel As Single,

119

ByVal SampFPA As Single, ByVal SampFPB As Single, ByVal SampFPC As Single,
intClNoCnter As Integer, ByRef arRFPHolder() As Single, ByRef arBCACIAHolder()
As Single, ByRef arBCACIBHolder() As Single, ByRef arBCACICHolder() As Single,
ByRef arWaferHolder() As Integer)

Dim SampFPmd As Double
Dim SampFPfaults As Double
Dim AvgBootFP As Single
Dim StDevFP As Single
Dim alpha As Single
Dim intCol As Integer
Dim upperbound As Integer
Dim upperbound2 As Integer
Dim zo As Double
Dim i As Integer
Dim k As Integer
Dim n As Single
Dim arWaferlessone() As Integer
Dim arSampFP(l To 3) As Single
Dim arzo(l To 3) As Single
Dim arSum(l To 3) As Double
Dim ara(l To 3) As Double
Dim arAvg(l To 3) As Double
Dim aralphal(1 To 3) As Double
Dim aralpha2(l To 3) As Double
Dim arFPlow(I To 3) As Double
Dim arFPhigh(l To 3) As Double
Dim arFP() As Double
Dim TAdefA As Integer
Dim TAdefl3 As Integer
Dim TAdefC As Integer
Dim TGAdefA As Integer
Dim TGAdefB As Integer
Dim TGAdefC As Integer
Dim TG As Integer
Dim T As Integer
Dim topguy As Double
Dim bottguy As Double
Dim intLRow As Integer
Dim intURow As Integer
Dim colnumb As Integer

arSampFP(l) SampFPA
arSampFP(2) = SampFPB
arSampFP(3) = SampFPC

alpha = 1 - sngConlLevel
upperbouud = UBound(arRFPHolder, I)

For intColr= lTo3
n0
For i = 1 To upperbound

If arRFPHolder(i, intCol) < arSampFP(intCol) Then
n=n+ I

120

End If
Next i
If n = 0 Then

n=0.01
End If
arzo(intCol) = WorksheetFunction.NormSlnv(n / upperbound)

Next intCol

upperbound2 UBound(arWaferHolder, 1)

ReDim arFP(1 To upperbound2, 1 To 3)

For i 1 To upperbound2
ReDim arWaferlessone(1 To upperbound2 - 1, 1 To 9)
For k 1 To upperbound2

If k <> i Then
If k >i Then

For colnumb = 1 To 9
arWaferlessone(k - 1, colnumb) = arWaferHolder(k, colnumb)

Next colnumb
Else

For colnumb = I To 9
arWaferlessone(k, colnumb) = arWaferHolder(k, colnumb)

Next colnumb
End If

End If
Next k
TAdefA = FuncTA('A', arWaferHolder:=rarWaferlessone)
TAdefB = FuncTA("B", arWaferHolder:=arWaferlessone)
TAdefC = FuncTA("C", arWaferHolder:='arWaferlessone)

TGAdefA FuncTGA("A", arWaferHolder:=arWaferlessone)
TGAdefB FuncTGA("B", arWaferHolder:=arWaferlessone)
TGAdefC FuncTGA("C', arWaferHolder:=arWaferlessone)

TG = FuncTG(arWaferHolder:=arWaferlessone)
T UBound(arWaferlessone, 1)

arFP(i, 1) = FuncFP(T, TG, TAdefA, TGAdefA, ?A?!,
arWaferHolder:=arWaferlessone)

arFP(i, 2) = FuncFP(T, TG, TAdefB, TGAdefB, "B,
arWaferHolder:=arWaferlessone)

arFP(i, 3) = FuncFP(T, TG, TAdefC, TGAdefC,
arWaferHolder:=arWaferlessone)

Next i

For intCol = 1 To 3
For i = 1 To upperbound2

arSum(mtCol) = arFP(i, intCol) + arSum(intCol)
Next i

Next intCol

121

For intCol = 1 To 3
arAvg(intCol) arSum(intCol) / upperbound2

Next intCol

For intCol = I To 3
topguyr=O
bottguy =0

For i = 1 To upperbound2
topguy (arAvg(intCol) arFP(i, intCol)) A 3 + topguy
bottguy = (arAvg(intCol) - arFP(i, intCol)) A 2 + bottguy

Next i
If bottguy =0 Then

ara(mtCol) 0
Else

ara(intCol) topguy 1(6 * bottguy A 1.5)
End If

Next intCol

For intCol = 1 To 3
aralphal(intCol) = WorksheetFunction.NormSDist(arzo(intCol) +
(arzo(intCol) + WorksheetFunction.NormSlnv(alpha / 2)) / (1 - ara(intCol) *

(arzo(intCol) + WorksheetFunction.NormSlnv(alpha / 2))))
aralpha2(intCol) = WorksheetFunction.NormSDist(arzo(intCol) +
(arzo(intCol) + WorksheetFunction.NormSlnv(1 - alpha / 2)) / (1 - ara(intCol) *
(arzo(intCol) + WorksheetFunction.NormSlnv(I - alpha / 2))))

Next intCol

For intCol = 1 To 3
intLRow = Int(UBound(arRFPHolder, 1) * aralpha 1 (intCol)) + I
intURow Int(UBound(arRFPHolder, 1) * aralpha2(intCol)) + 1
arFPlow(intCol) = arRFPHolder(intLRow, intCol)
arFPhigh(intCol) = arRFPHolder(intURow, intCol)

Next mtCol

arBCACIAHolder(intClNoCnter, 1) = arzo(1)
arBCACIAHolder(intClNoCnter, 2) = ara(1)
arBCACIAHolder(intCll'oCnter, 3) = aralphal(1)
arBCACIAHolder(intClNoCnter, 4) = aralpha2(1)
arBCACIAHolder(intClNoCnter, 5) = arFPlow(1)
arBCACIAHolder(intClNoCnter, 6) = arFPhigh(1)

arBCACIBFIolder(mtClNoCnter, 1) = arzo(2)
arBCACIBHolder(intClNoCnter, 2) = ara(2)
arBCACIBHolder(intClNoCnter, 3) = aralphal (2)
arBCACIBHolder(mtClNoCnter, 4) = aralpha2(2)
arBCACIBHolder(intClNoCnter, 5) = arFPlow(2)
arBCACIBHolder(intClNoCnter, 6) = arFPhigh(2)

arBCACICHolder(intClNoCnter, 1) = arzo(3)
arBCACICHolder(mtClNoCnter, 2) = ara(3)
arBCACICHolder(intClNoCnter, 3) = aralphal(3)

122

arBCACICHolder(intClNoCnter, 4) = aralpha2(3)
arBCACICHolder(intClNoCnter, 5) = arFPlow(3)
arBCACICHoIder(intClNoCnter, 6) = arFPhigh(3)

End Sub

