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Various methods of estimating the fault probabilities based on defect data of
random defects seen in integrated circuit manufacturing are examined. Estimates of
fault probabilities based on defect data are less costly than those based on critical area
analysis and are potentially more reliable because they are based on actual
manufacturing data. Due to limited sample size, means of estimating the confidence
interval associated with these estimates are also examined. Because the mathematical
expressions associated with defect data- based estimates of the fault probabilities are
not amenable to analytical means of obtaining confidence intervals, bootstrapping
was employed.

The results show that one method of estimating the fault probabilities based
on defect data proposed previously is not applicable when using typical in-line data.
Furthermore, the results indicate that under typical fab conditions, the assumption of a
Poisson random defect distribution gives accurate fault probabilities. The yields as
predicted by the fault probabilities estimated from the limited yield concept and kill
ratio and those estimated from critical area simulation are shown to be comparable to

actual yields observed in the fab. It is also shown that with in-line data, the FP



estimated for a given inspection step is a weighted average of the fault probabilities of
the defect mechanisms operating at that inspection step.

Four bootstrapped based methods of confidence interval estimation for fault
probabilities of random defects are examined. The study is based on computer
simulation of randomly distributed defects with pre-assigned fault probabilities on
dice and the resulting count of different categories of die. The results show that all
four methods perform well when the number of fatal defects is reasonably high but
deteriorate in performance as the number of fatal defects decrease. The results also
show that the BCA (bias -corrected and accelerated) method is more likely to
succeed with a smaller number of fatal defects. This success is attributed to its ability
to account for change of the standard deviation of the sampling distribution of the FP
estimates with the FP of the population, and to account for median bias in the

sampling distribution.
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Fault Probability and Confidence Interval Estimation of Random Defects
seen in Integrated Circuit Processing

1. INTRODUCTION

1.1 Overview of the Thesis

Because of the importance of yield estimation in integrated circuit (IC)
manufacturing, the research in this area has been extensive. Most of the research,
however, has focused on estimation of fault probabilities based on critical area
analysis. The goal of this thesis is to come up with a comprehensive approach based
on measured defect data to find the fault probabilities of individual steps in an IC
manufacturing line. Estimates of fault probabilities based on defect data are less
costly than those based on critical area analysis and are potentially more reliable
because they are based on actual manufacturing data instead of just the die layout.
Chapter 2 compares the various methods of estimation of fault probabilities using
actual defect data to discover which method is most reliable. A way of accounting for
defect clustering in the estimation is also discussed.

As a consequence of the typically limited sample size of the defect data used
for estimating fault probabilities, means of assessing the uncertainty associated with
these estimates are also examined. This uncertainty is best expressed as a confidence
interval. Because the mathematical expressions associated with defect data- based

estimates of the fault probabilities are not amenable to analytical means of obtaining



confidence intervals, bootstrapping was employed. Chapter 3 examines different
bootstrap based methods of obtaining confidence intervals for these estimates of fault
probability.

Finally, based on the results of estimating the fault probabilities from the
actual defect data, recommendations for achieving more accurate and complete
detection of defects occurring on the manufacturing line will be made.
Recommendations for the sample size needed for accurate CI estimates are also given
based on the results from bootstrapping.

A simple analogy to basic engineering statistics summarizes the goals of this
thesis. To obtain an unbiased estimate for the mean of a normal population, we would

use

X= 2 x;/n.
i=1
To obtain its /-2 % confidence interval, we have:
x* (s/ Jn ) ty»
where s is the sample standard deviation, n is the number of observations in the
sample, and #, is the apercentile of the ¢ distribution. The goal of this thesis is to

obtain the analogous expressions for the fault probability of the population of a

certain class of defects based on defect data measured in the IC fab.



1.2 Integrated Circuit Yield Analysis

The estimation of yield is critical for economically efficient production of
integrated circuits. In a newly implemented process, many yield detractors need to be
identified. This can only be done if methods of estimating the yield loss from these
yield detractors have been implemented. When the process is mature, even small
improvements in yield can greatly increase profitability. It has been estimated that in
a typical fab with an output of 20,000 wafers per month, if yield is improved by even
2%, profit could go up by about $10 million per year. The reason for this steep
increase in profit is that once a process is mature the cost of manufacturing ICs is
approximately constant whatever the yield. [1]

The total yield at wafer probe is typically viewed as made up of two
components: the systematic yield, and the random yield. The systematic yield loss is
due to 1) design problems, such as a design not meeting minimum spacing rules, 2)
process steps not meeting specifications, such as photo-mask misalignment and under
etching, and 3) faulty testing procedures. These are usually issues in the early
development of the IC manufacturing process. Once a process is mature, the main
yield loss is due to the random defects.

Random defects are caused by random events, such as particle deposition, that
occur during the fabrication process. They mostly stem from the processing
equipment and processing material and can cause the formation of features on the die
not intended in the design layout. If they occur in a critical region, or critical area, of

the die, they will cause opens or shorts, or some other type of fatal defect, and cause



the chip to fail. [2] A scanning electron micrograph of a random defect causing a

short is shown in Figure 1.1.

Figure 1.1. Scanning electron micrograph of a random defect causing a short

between metal lines

Each type of random defect has a probability of causing a fault associated
with it. This probability, the fault probability (FP), is simply the ratio of the critical
area associated with that particular defect type to the total area of the chip. Itis a
function of parameters associated with both the defect itself and the layout of the die:
the size and type of the defect, and the circuit geometry. [2]

To predict random yield the values of the fault probabilities associated with
each defect type must be established. In general, there are two ways to establish these
fault probabilities. One is by analyzing existing defect data and inferring the fault
probabilities through models of the defect distribution. This method is sometimes
referred to as “data mining” because it depends heavily on the ability to extract

information from the database associated with the defect maps of the particular defect



type. The second method is to simulate the defect distribution by means of Monte
Carlo techniques on the die layout, and determine the fault probabilities from the
number of failed circuits. This method is referred to as critical area analysis [3]. An
example of a die layout with the critical areas for bridges and breaks determined is
shown in Figure 1.2. A bridge is the unintentional linking of two layers, while a break
is the unintentional break in a layer, where the layer can be conductive, such as metal
or polySi, or nonconductive, such as the field oxide separating the active regions of a

transistor.

Critical areas for bridaes and break fauits

Figure 1.2. Example of critical area analysis done by HPL Inc. in which the
critical areas for bridges and breaks have been determined



1.3 Defect Limited Yield

The defect limited yield for a particular defect type can be defined as the yield
that would result if that particular defect type were the only defect present. In actual
manufacturing, of course, there is usually more than one defect type, and, assuming
the defect types occur independently of one another, the overall yield can be
computed by:

Y=Y, Y=Y Yy Yy Yy =Y [ Yo (1-1)
where Y; is the systematic yield, Yz is the random yield, and Y, ,i=1,2.3,... are the
defect limited yields for defect types i. [4] For example, if no other defects are present

other than defect type 1, and the systematic yield is 1, then Y=Y, ; i.e., the resulting

yield would be equal to the defect limited yield for defect type 1, and is limited by the
yield loss due to this defect.

To estimate Y, , a distribution model for the defects is assumed. All the

different yield equations result from different assumptions of the distribution of the
defect density. Assuming the defects are distributed such that they have equal
probability of occurring anywhere on a wafer, it can be shown from a binomial
probability model that the probability of finding » fatal defects in a unit area, e.g., a

chip area, Ap;, of region of constant defect density D is given by,



(ﬂ)n e—}.

(1-2)
n!

p(mA) =

where

A=FP-A,, -D (1-3)
and FP is the fault probability. Since the fault probability may be defined as the
portion of defects which are fatal, A represents the average number of fatal defects per
chip. [5] Equation (1-2) is the simplest distribution to assume and is known as the
Poisson distribution. Defining the random yield for a particular type of defect, Ypy,;, as

the probability of zero fatal defects, n=0, Equation (1-2) gives,

Yy, = et (1-4)

As the die area is known, the determination of the fault probability and the defect
density for each defect type per layer is the primary task in estimating the random

yield.

1.4 Process steps and some common defects

Typically there are more than 200 steps in the manufacture of an integrated
circuit. Figure 1.3 presents a flow diagram of twenty-seven major process steps that
are involved in the fabrication of a typical device; however, the last eight steps are
repeated for each metal layer grown. Additionally, the location of the inspection steps
relative to these process steps are shown. Seven inspection steps are shown: ISEF,

POLF, SPCE, SL2R, TN1T, MIMD, M1EF. The defect data we collected, which are
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presented in Chapter 2, were gathered using these inspection steps. The processes
shown allow a device containing transistors with metal layers on top to be constructed
from a bare silicon wafer. Figure 1.4 shows a cross- sectional schematic of a single
transistor after the second metal layer has been etched. Once all the metal layers are
built, the passivation layers are deposited and etched for the bond pads. Finally, the
chips are tested and their pass/fail status recorded at electrical sort.

In our scheme, classification of the defects is based on the process step just
preceding the inspection step at which the defects were detected. Table 1.1 labels the
inspection steps by identifying the process steps immediately preceding them. The
defects are named to correspond to the inspection steps at which they were detected.
Figure 1.5 shows schematics of the defect mechanisms that can occur during device
fabrication. Figure 1.5a illustrates an active bridge and an active bridge. An active
bridge is formed when two active regions are connected due to an unintentional break
in the field oxide. An active break is formed when the field oxide encroaches upon an
active region that should be free of field oxide. As the cross-section shows, these
defects appear after island-etch. Figure 1.5b illustrates a poly bridge and a poly break,
which manifest after polysilicon etch. A poly bridge refers to the unintentional
linking of two polySi layers, and a poly break refers to the unintentional break in a
polySi layer. Likewise, Figure 1.5c shows defects occurring during metalization. A
metal bridge is the unintentional linking of two metal layers, while a metal break is

the unintentional break in a metal layer. A poly- metal short is formed when there is a
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occur between the two process steps shown.
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conductive link between the polySi layer and a metal layer. For layers above the
metal 1 layer the interconnections between the metals are called via, instead of
contacts, and the defect that causes the contact or via to be interrupted is called a
contact block, or via-block, respectively.

Table 1.1. Inspection steps examined for defects and the process steps immediately
preceding them.

Inspection Step Process step immediately
preceding it

ISEF Island etch: Nitride and Si
etch that define the active
regions

POLF Poly etch: PolySi etch

SPCE Spacer etch

SL2R Rapid thermal anneal
(RTA) that forms salicide
layer on PolySi

TNIT First TiN deposition prior to
W deposition and contact
formation

MIMD Metal | mask

MIEF Metal 1 etch

TN2T Second TiN deposition
prior to W deposition and
via formation

M2MD Metal 2 mask

M2EF Metal 2 etch

1.5 Bootstrapping

The estimation of fault probabilities based on analysis of defect maps
produces only point estimates of fault probabilities. A method to come up with range

estimates based on this method, i.e., confidence intervals (CI), has not yet been



reported. Standard formulae exist for estimation of the confidence interval for only a
limited number of parameters. For point estimates of FP based on measured defect
data only, no such analytical procedures exist because the defect map estimated FP is
complicated in terms of the underlying data structure and point estimation function.
Bootstrapping can overcome this difficulty because it can estimate the CI as long as
the procedure for obtaining the point estimate from a sample is known.

The basic idea of bootstrapping is very simple. The sample is used as an
approximation for the parent population itself. An estimate of the sampling
distribution of the estimator of a given parameter can then be achieved by random
sampling with replacement from the sample. The resulting bootstrap estimates for the
parameter then approximate the actual sampling distribution of the estimator and can
be used as a basis to estimate confidence intervals for that parameter. By means of a
simple computer algorithm this procedure of re-sampling can be automatic and
relatively quick.

The success of bootstrapping as a means of estimating CI can be seen by its
flourishing application in almost all scientific disciplines. These include the
biological sciences [6-8], physical sciences [9], engineering disciplines [10-11], and
the social and behavioral sciences [12-13]. This research hopes to add to this history
of success by applying the bootstrap to the CI estimation of FPs of random defects

seen in semiconductor processing.

14
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1.6 Outline of the thesis

Chapter 2 describes how fault probabilities were estimated using binomial
statistics and kill ratios based on defect data. The resulting fault probabilities are
examined and compared with those based on critical area analysis. The estimated
random yields (based on Equation (1-1)) are also compared with actual random yields
for certain lots from the fab. The optimal method to estimate fault probabilities is
determined by the method that gives random yields consistent with the actual random
yields. The fault probability for an inspection step is shown to be an average of the
different defects seen at the inspection step. Finally, a simulation is done to show the
effects of clustering on the estimation of fault probability.

Chapter 3 discusses four methods of confidence interval estimation based on
bootstrapping. A simulation based on randomly generated defects, with pre-assigned
fault probabilities, distributed on wafers is performed to compare these four methods.
The resulting confidence interval estimates are then evaluated based on the proportion
of confidence intervals that actually capture the true value of the fault probabilities.

Chapter 4 presents the conclusions and recommendations for further study.
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2. FAULT PROBABILITY AND KILL RATIO ESTIMATION BASED
ON ANALYSIS OF DEFECT DATA

2.1 Introduction

In the literature, the term kill ratio (KR) is sometimes used interchangeably
with the term fault probability (FP). In this study, we distinguish the two. Like FP,
KR can be used to estimate the defect limited yield; therefore, the KR as well as FP
was estimated. The calculations were based on three months of defect data collected
on the fabrication line at LST Logic in Gresham, OR. In this sample set, more than
one hundred thousand random defects were detected by optical inspection tools
placed after specific process steps on the fabrication line, such as etching or
deposition.

In addition to classifying the defects based on the process steps, we also
classified the defects by increments of size. The size bins are categorized from Szl to
Sz10, the bin SzI representing all defect sizes from O to less than 1 micron, in
diameter, bin Sz2 from 1 to less than 2 microns, etc, up to bin Sz/0, representing those
defect sizes 9 microns and greater. By defect data we mean the number of dice in a
certain category based on criteria such as the type of defect(s) detected on the die and
its pass or fail status at probe. For example, T, is the total number of good dice with
defect type A, Ty is the total number of dice with defect type A, T is the total number
of good dice inspected, and T is the total number of dice inspected for defect type A.

After classifying all the defects based on the above method, the FP and KR

were calculated. Two methods were used to estimate the FP from the defect data. One
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method was based on isolating the dice with only one defect, and counting the total
number of dice with a particular defect and the number of failed die for the same
particular defect. [14] If N dice with only one defect type, A, are counted, and N of

them fail, the estimated FP for this defect would be:

FP4s= Ng/N (2-1)
This method was proposed by Ross, and the estimate based on Equation (2-1) is also
referred to as FPpg,,. [14]
The second method used to estimate FP from the defect data is based on the
kill ratio. A kill ratio can be defined as the ratio of the increased probability that a die
will fail due to a particular defect type A present on it, to the probability that the die

will not fail if that particular defect A is not present:

_ P(R/A}-P{R/ A}

KRA
P{G/ A"}

(2-2)

[4], where R represents the event that a die is rejected, or fails electrical test, G is the
event that the die is good, or passes electrical testing, A is the event that defect type A
is present on the die, and A is the event that defect type A is not present on the die. If
one were also to define the FP, in the same terms used to define KR4, we would

have:

FP, = P(R/ A, (2-3)

nlyone }
where A, uyone is the event that a die has only one defect, of type A. In other words,

FP can be defined as the probability of a die failing when only one defect, of type A,
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is present. It is straightforward to show that FP and KR are not, in fact, the same, and
estimate different probabilities. For example, if the failure rate is zero when defect

type A is not present, P{R/A°}=0, P{G/A}=1, and Equation (2-2) becomes,

KR, = P{R/ A} (2-4)
Comparing Equations (2-3) and (2-4), it is clear that the KR will be greater than FP,
because the probability of failure for a die with at least one defect must be greater
than that for a die with just one defect. However, if the defect density of defect type A
is low, and there is no clustering of defects, most of the die that have any defects on
them would have only one defect type A. In that case, Equation (2-4) would
approximate Equation (2-3). Therefore, if the defect density is not too high, the KR

for a particular defect type may offer a good approximation to the FP.

2.2 Estimating Fault Probability based on Kill Ratio

In addition to serving as upper limits to the FP, estimating KR is of value
because it can be used to estimate the defect limited yield, from which the FP may be
inferred. Based on Equation (2-2), one can show that KR of defect type A can be

estimated by the following:

—_— (2-5)
TG — TGA

[15].



It can be shown from basic probability theory that the limited yield for defect

type A can be computed as follows:

LY, =1-P{A}-KR, (2-6)

[15]. From this expression, it can be further shown that:

y, = e =T) -7
TT;-T,,)

[15]. Equations (2-5) to (2-7) are based on the assumption that the defects have the

same constant probability of occurring on any dice on the wafer; i.e., the defects have

a Poisson distribution. Thus we can equate Equations (1-4) and (2-7) to obtain an

expression for I'P4 based on the defect data:

T, (T-T,)
T(T, ~T,,)
DD,

In( )

FP, =- (2-8)

where DD, is the number of defects of type A per die.
The negative binomial equation has been shown as representative of the actual
distribution of random defects on a wafer in the fab setting because it accounts for

defect clustering [5]. The negative binomial equation is given by:

T(a,+n) (DD,la,)"

(2-9)
n'l(ee,) A+DD, /)"

p(n) =
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where @4is the cluster factor that determines how clustered the defects of type A are,
and p(n) is the probability of having n defects of type A on a die. Substituting n=0

into the negative binomial equation, we have,

1

_ (2-10)
(1+DDala )™

pA(O) =

If we know the spatial probability distribution function of defects on a wafer, p,, we

can estimate T, as,

T,=T(1-p,©O) (2-11)
where p4(0) is the probability a die will not have any defects of type A on it.

Substituting Equation (2-10) into Equation (2-11), and rearranging, we have,

1
(1+DD, /e, )™

=1-T,/T (2-12)

Equation (2-12) is a nonlinear equation for & which can be solved by numerical
methods, such as a bisection search or the Newton —Raphson method. Thus, we can

solve for wonce we know T, T4 and DD,. We can calculate the defect limited yield

for the defect type A, again with the aid of the negative binomial equation, as

1

= (2-13)
(1+DD, -FP, /)"

YA

Equation (2-13) does not assume that the defects follow a Poison distribution.
Thus, it is not correct, strictly speaking, to equate Equation (2-7), or equivalently

Equation (1-4), with Equation (2-13). However, under certain conditions, this equality
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is a good approximation, even if the distribution is clustered. To illustrate this point,
Figure 2.1 compares the behavior of the limited yield under a Poisson distribution,
i.e., Equation (1-4), and a distribution that may be clustered, i.e., Equation (2-13), for
FP=0.02, versus defect density for varying values of . We see that the agreement
between these two equations lessens as the cluster factor decreases, i.€., as the
distribution becomes more clustered, or as the DD increases. However, at a low FP,
we see that at a higher DD and low cluster factor, the agreement is still quite good.
From Figure 2.1 we see that for the LY for a clustered distribution with @=0.1 and a
DD of more than one defect per die, the agreement with the LY for a Poisson
distribution is better than 99%, when the FP is 0.02.

On the other hand, at high FP’s, this approximation quickly breaks down as
the DD is increased. Figure 2.2 shows two sets of LY’s, one corresponding to FP =
0.02, the same set used in Figure 2.1, and one to FP = 0.33. The LY curves for FP=
0.02 are superimposed on the top curve in this figure, while the LY’s set for FP=0.33
are clearly separated, dramatically illustrating the dependence of the approximation of
Equations (1-4) and (2-13) on the FP value. From the above illustration, we see that
at lower values of FP, DD per defect type below one defect per die, and o above 0.1,
conditions typically seen in the fab, the values of the LY predicted by Equations (1-4)
and (2-13) are comparable. Thus, under the conditions just given, the FP predicted by

Equation (2-8) should be accurate, even with clustering of defects.
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Figure 2.1 Comparison of LY versus DD for a Poisson distribution and clustered
distributions at two different cluster factors, for FP=0.02
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Figure 2.2 Comparison of LY versus DD, corresponding to FP=0.02, and
FP=0.33. For each FP there is a Poisson distribution and two clustered
distributions set at different cluster factors. The curves of LY at FP=0.02 are

superimposed on the top line
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2.3. Averaging of FP for all Defect Sizes

Finally, FP values were estimated from computer simulation based on the die
layout for each layer, using a method known as critical area analysis (CAA). [16]
Basically, in CAA, the computer randomly places defects of a certain type on the die
layout; if the defect type were a conductor, for example, the critical area would be the
area of the places where this defect type would cause a short. The estimate of the FP
is then the ratio of the number of defects that landed on a critical area of the layout to
the total number of defects generated. To facilitate comparison with the values of FP
estimated from the defect data, the values of FP estimated by CAA simulation had to
be averaged over the same size bins, or over all defect sizes. To obtain the average FP
over a defect size range from the simulation results, we can start with the general

expression for the expectation of a function of a random variable:

Elg(0)]=[_ g(x)f(x)dx (2-14)

[17], where f(x) is the probability density function of the random variable x. If we
know FP as a function of size, FP(x), where x is size, then the average FP over all

possible defect sizes would be, per Equation (2-14):

FP= jo " FP(x)h(x)dx (2-15)

where h(x) is the probability density function of the defect sizes, also known simply
as the defect size distribution. To determine the average simulated FP over a specific

defect size range, Xmin tO Xmar, We use the following expression,
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X max

j FP(x)h(x)dx
o 05 = (2-16)

jh(x)dx

Xmin

The exact functional form of (x) can be determined from defect monitors.
However, it has been found that assuming a linear increase in A(x) up to a certain size,
Xo, and a I/x’ decrease above this size is an adequate approximation for most defect
size distributions found in the fab. In most cases, x, has been found to be much
smaller than the minimum dimension of the device [18]. Once x, is established, A(x)
is determined by recognizing that the probability density function must satisfy the

following relationship:

jo “h(x)dx =1 2-17)
Assuming that

h(x)=ax for 0<x<x, (2-18a)
and

h(x)=b/x> for x, <x<oo (2-18b)

[19], we have, by substitution of Equations (2-18) into Equation (2-17),

Taxdx+Tb/x3dx=1 (2-19)
0

*o

Since h(x) must be continuous,
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ax=b/x* at x=x, (2-20)

Solving Equations (2-19) and (2-20) simultaneously, we have,

a=1/x (2-21a)

and

b=x"’ (2-21b)

Thus,

x/x," for0<x<x,

2
X, 1x° for x, £ x<eo

h(x) ={ (2-22)

Figure 2.3 shows an example of A(x) where x, is assumed to be 0.1um. Once we
determine FP(x) and h(x) we can estimate the average FP over all defect sizes for any

given defect type by numerically integrating Equation (2-15).
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Figure 2.3 Defect Size Distribution, k(x), where xp=0.1 pm.
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2.4 Results and Discussion

2.4.1 Comparison of Estimated Fault Probabilities

When the defects were sorted into the bin sizes, Sz1 to Sz10, greater than 99%
of the defects fell into the Sz1or Sz2 bins. Thus the larger size bins would have too
much statistical uncertainty associated with the FP estimates for meaningful
comparisons. In light of this result, we did not use the size bins in our study. Figure
2.4 shows an example of the fault probability versus defect size curve, FP(x), for
metal bridges, obtained through critical area analysis. Also shown in Figure 2.4 are
the defect size distribution curve, h(x), and the FP (x) * h (x) curve, the area under
which gives us the average fault probability for metal bridges.

Table 2.1 shows the defect density, cluster factor, ¢, and the counts of Ty, Tia,
T and T for each of the inspection steps. Table 2.2 shows the estimated FP;y based
on Equation (2-8) and the limited yield LY estimated by Equation (2-7), using the
values shown in Table 2.1, for each of the eight inspection steps. These estimates
assume that the inspection tools have no inspection errors that cause defects of type A
to go undetected.

In order to compare the FP based on defect data (FPLy) with the FP based on
simulation (FPy;,), we must realize that the estimates of FPy represent an average of
the values of the FP of different fault mechanisms. The different fault mechanisms by

which the defects detected at a particular inspection step may cause a fault are shown
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Figure 2.4 An example of h(x), FP(x), and the resulting FP(x)*h(x). FP(x) is the

fault probability for metal bridges and was obtained from CAA. The average fault

probability for all defect sizes is the area under the curve FP(x)*h(x).
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Table 2.1 Estimated parameters and the LY and FP;y for each of the eight inspection
steps

Insgfggon DD | « T, Toa T To
ISEF | 0.537 | 0.407 | 4885 | 3764 | 16848 | 13266
MIEF |0.166 | 0.266 | 2206 | 1686 | 18252 | 14420
M2EF | 0.169 | 0375 | 2136 | 1560 | 16380 | 12573
M3EF | 0.068 | 0647 | 789 | 601 | 12636 | 9676
POLF | 0454 | 0298 | 6653 | 5398 | 27612 | 21840
TNIT |0.071] 0.118 | 1060 | 700 | 19656 | 15781
TN2T | 0091 0.186 | 835 613 | 11700 | 8903
TN3T |0.065| 0310 | 674 | 485 | 11700 | 8999

Table 2.2 Estimated LY and FPpy for each of the eight inspection steps

Inspection
Step LY FPry
ISEF | 0.9913 | 0.0162
MIEF | 0.9955 | 0.0270
M2EF | 0.9928 | 0.0428
M3EF | 0.9997 | 0.0052
POLF | 1.0000 | 0.0000
TNIT | 0.9900 | 0.1424
TN2T | 0.9973 | 0.0297
TN3T | 0.9961 | 0.0601

in Table 2.3. Table 2.3 also shows that the values of FPy;, for the different fault
mechanisms can vary significantly. In general, the FP for a particular inspection step

! can be calculated by the following expression:

FP, =FP *t +FP *t +FP *t +:- (2-23)
where t;, 1, ¢, are the fraction of defects detected at inspection step  that can cause a

fault by defect mechanisms x, y, z, respectively. This expression will later be verified



Table 2.3 Possible fault mechanisms for the defects detected at various inspection
steps compared with defect data estimated KR and FP

Inspection Simulated Fault Mechanism/ FPy;, at
FPry
step xp=0.5 um
Active | Active (PolyMl1
isEF | 00164 | \ridoe | break | short
0.0136 | 0.0092 | 0.303
M1 MIM2 | MIM2
MIEF | 09272 | pridge |MIP3K | ot |via block
0.0551 | 0.0741 | 0.416 | 0.0144
M2 M2M3 | M2M3
M2EF 0.0432 bridge M2 break short |via block
0.0613 | 0.093 0.358 | 0.0078
M3 M3M4 | M3M4
M3ER | 09052 | prigee [M3PreaK| oot |via block

0.033 0.0626 N/A | 0.0002

Poly Poly |PolyM1 | Contact

pOLE | 90900 | yidee | break | short | block
0.0252 | 0.093 | 0303 | 0.0203
M1
. M1 | PolyM1
INIT 0.1486 | contact [ Mlbridge break short
block
0.029 | 0.0613 | 0.0741 | 0.303
MIM2 . M2 | MIM2
™2t | 9029 |yia block|M2 Pridge| peak | short
0.0144 | 0.0613 | 0.093 | 0416
M2M3 . M3 | M2M3
TN3T | 00605 | 5ia block M3 bridgel ok | short

0.0078 [ 0.033 | 0.0626 | 0.358

by probability arguments. FP;y is assumed to be equivalent to FP; in Equation (2-23).
The fault mechanisms and fractions of each defect type seen at each inspection step
must be determined by the use of test structures and failure analysis. [18] With the

current classification scheme of the defect data we can only estimate the FP;.
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However, the fault mechanisms can be speculated based upon past experience with
similar layouts.

In general, defects may cause a fault at a layer before the inspection step at
which it is detected, or cause a fault at a subsequent layer. For example, at ISEF,
not only can the active area be affected by extra field oxide -“bridging”- across the
active area, but they can also be affected by missing oxide - “active break”. In
addition, defects detected at ISEF may cause the polySi and metal 1 formed at a
subsequent step to be shorted together. Thus for the defects detected at the ISEF
inspection step, there may actually be three fault mechanisms at work that can cause a
die to fail. By a similar process of looking at the process steps that precede and follow
each inspection step, we can deduce the possible fault mechanisms of the defects
detected at a particular inspection step.

Once we have determined the process steps at which defects being simulated
may occur, the inspection step at which these defects may be detected is established.
For example, FPpy for the TN1T inspection step represents the average FP for the
defects detected right after the first TiNi deposition. The CAA estimated FP named
“Contact” is based on the layout showing the location of contacts. TN1T is the
inspection step occurring immediately after the contacts are etched and TiN is
deposited, and before tungsten is deposited into the contacts, as shown in Figure 1.3.
Therefore, we can assume that some of the defects detected at this inspection step are
defects that could cause a contact to be blocked, as shown in Figure 1.5¢. Similarly,

M1 break, M1 bridge, and PolyM1 short are other possible defect mechanisms. Thus
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FPpy for the TNIT inspection step should be comparable to the average of the values
of FPgm, for the contact block, M1 bridge and break, and PolyM1 short.

Using a value of xp=0.5 um in Equations (2-15) and (2-22), the averages of
the values of FPy;, for each inspection step are comparable to those of FP;y. As can
be seen from Equation (2-23), we can adjust the fractions of each defect type shown
in Table 2.3 so that FPg;,=FPy at x,=0.5 um. For example, using a value of xp=0.5
um, we can arbitrarily adjust the fractions of the FPy;, of each defect mechanism
detected at TN1T to 25% for M1 contact block, 20% for M1 bridge, 16.4% for M1
break, and 38.6% for polyM1, so that the weighted average of the FPg;, of these
defect types equals the FP;y value of 0.149. Table 2.3 shows the values of the FPg,
at xo=0.5 um for each of the possible fault mechanisms of the defects detected at the

inspection steps. The estimates of FP,y for each of the inspection steps are also

shown.

2.4.2 Comparison of Estimated Fault Probabilities with Yield

To evaluate the various methods of FP estimation, we use the estimated
values of the FP for each inspection step to calculate random yields for wafers which
have known yields and defect density for each inspection step. We will assume that
FPy,, at x,=0.5 pm is equivalent to FP;y. For FPj;, we will use values based on
%,=0.1 pm and x,=1 um as well. The estimated yields are calculated using Equation

(1-1), where each of the limited yields is calculated using Equations (1-3) and (1-4).



Table 2.4 shows each of the estimated random yields (Yz) compared with the actual

yields for 11 wafers.

Table 2.4 Random Yields, Yz, calculated based on estimates of KR, FPgess, FPpy and
FPcaa

Yr estimated from...
Actual
Waf
o Random FPRoss FPLY FPsim FPsim
Number| "y 14 Eq.2.1)| (Bq.2.8) | (x¢=0.1 | (xo=0.5 | I Fsim
q. 2. q. 2. 0=VY. 0=V. (xo=1 “m)

pm) um)

0.919 | 0.840 0.972 0.999 0.972 0.892
0926 | 0.827 0.961 0.999 0.961 0.89
0942 | 0.852 0.97 0.999 0.97 0.901
0912 | 0.811 0.969 0.998 0.969 0.864
0918 | 0.671 0.94 0.998 0.94 0.835
0.948 | 0.667 0.947 0.998 0.947 0.824
0.976 | 0.740 0.943 0.997 0.943 0.805
0.939 | 0.839 0.968 0.998 0.968 0.882
0916 | 0.916 0.968 0.999 0.968 0.96
0938 | 0.854 0.972 0.999 0.972 0.894
0.949 | 0.820 0.99 0.998 0.99 0.877

e~ -1 CIEN o VA RN R Y

As we do not know if the eight inspection steps cover all the possible defect
limited yields, we can only judge the success of a method of yield estimation by
whether it is above or below the actual yield. The results of Table 2.4 show that the
predicted yield based on FPg, significantly under predicts the yield, meaning that
FP based on Equation (2-1) over-estimates the actual FP per inspection step. FPg;, at
x,=1.0 pum is seen to over estimate the true FP as well. Only the FP estimated from

Equation (2-8), FPry, and FPg, with x, less than or equal to 0.5 give yield results
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that are consistent with the actual yields. For wafers 6 and 7, the random yields
predicted by FPpy and FPg, at x)=0.5 mm are slightly below the actual yields. This
indicates that the true value of x, may be less than 0.5 um, and FPy may slightly
over estimate the true FP. This value of x, is greater than the critical dimension of the
device, indicating that the assertion that x, is usually found to be significantly less

that the critical dimension may not apply in our case [18].

2.4.3 Sources of Error in FP estimation

The reason that the FP based on Equation (2-1) overestimates the true FP is
that the defects detected at any of the inspection steps may not represent all the
defects actually present on the die. There are two potential reasons that a defect may
not be detected on any given wafer: 1) they are covered by a previous deposition
(smaller defects go more easily undetected than larger ones); i.e., they occurred at a
process step which was never inspected for defects, and 2) they are so similar to the
surrounding layout in texture and topography that the inspection tool cannot
distinguish them from the background.

It seems the first reason would be most responsible for contributing to the
missed defects. This can be understood by realizing that not all the possible process
steps at which defects may occur are examined for defects. In other words, there
could potentially be more inspection steps that would allow all defects occurring on a
wafer to be detected. Thus, although a particular die may show only one defect

present on the final defect map, in fact it may contain defects from other steps that
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were not examined. Table 2.5 shows the possible ways by which defects can go
undetected. The column with the title, "Cause of undetected defects” shows the layer
under which defects that occur between two inspection steps may be buried and go
undetected. For example, defects that occur between the ISEF (island etch) and POLF
(poly etch) inspection steps may be covered under the polySi or nitride deposits when
inspected at POLF, but defects that occur between the POLF and SPCE inspection

steps have no place to be buried when inspected at SPCE.

Table 2.5 Defect Detection and causes of undetected defects

Inspection step Cause of undetected defects

ISEF Nitride (only defects< 1 )

POLF PolySi (only defects<1 p)

SPCE Virtually no place to take cover

SL2R Virtually no place to take cover

TNIT PSG, Ti-Nitride (only defects<
1 W

MIMD Metall, Metall PR

MIEF Virtually no place to take cover

TN2T IMD1, Ti-Nitride only def < 1u

M2MD Metal2, Metal2 PR

M2EF Virtually no place to take cover

We would now like to see how it is possible to over estimate the FPpy. Unlike
the assumption behind the Ross method, the derivation of the limited yield based on
the KR does not assume that there are no other defects present on the die. For
example, for the FPry of TN1T, it does not matter whether there are defects from

other process steps that are undetected, as long as those defects are not part of the



defects that are classified as being part of TN1T. Defects seen at, or classified as
ISEF, will not be seen at TN1T; however, this does not affect the estimation of the FP
of the defects seen at TN1T. This is because a basic assumption of the kill ratio is that
there are other defects types-in our case defects from other inspection steps-present.
Thus the FPryis immune to defects hidden at other inspection steps. However, the
FPpyis not immune to the effects of defects that are undetected if these defects are
the defects whose FP is being estimated. Thus for example, when the FP,y of TNIT
is estimated, defects not detected at TN1T that should be detected because they are
classified as defects that belong to TN1T will affect the estimation of FPry of TN1T.
Before we further explore the effects of missing defects on the estimation of
FPyy, it would be wise to verify that Equation (2-8), which is only true when the
defects are Poisson distributed, can be used to give accurate estimates of FP. Equation
(2-8), strictly speaking, should only be used when there are no clustering of defects.
To get an estimate of the error we are introducing when using the equation, we can
compare the limited yields estimated by Equations (1-4) and (2-13) for the values of
FP, defect density, and cluster factor we estimated for each inspection step. They
should be comparable if clustering is negligible. The results are shown in Table 2.6.
All the errors are below 0.01 percent except for TN1T, which has a relatively high
estimated FPpy of 0.15, approximately, so that we would expect a less accurate

approximation. Even so, the approximation is still less than 0.05 percent off.
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Table 2.6 Comparison of limited yields (LY) predicted by Equations (1-4) and (2-13)
and the percent error of the LY for the estimated values of DD, FP and ¢.

LY LY
Inspection (estimated | (estimated
Step b FPuy from Eq. [from Eq. 2- LY % Exror

1-4) 13)
ISEF | 0.5373 | 0.0164 | 09912 | 09913 | 0.0074
MIEF | 0.1657 | 0.0272 | 0.9955 | 0.9955 | 0.0003
M2EF | 0.1693 | 0.0432 | 09927 | 0.9928 | 0.0088
M3EF | 0.0678 | 0.0052 | 0.9996 | 0.9997 | 0.0053
POLF | 0.4538 | 0.0000 | 1.0000 | 1.0000 | 0.0000
TNIT | 0.0707 | 0.1486 | 0.9895 | 0.9900 | 0.0456
TN2T | 0.0909 | 0.0299 | 09973 | 09973 | 0.0014
TN3T | 0.0654 | 0.0605 | 0.9961 | 0.9961 | 0.0049

Thus, we can be sure that any significant estimation error in FPy will not
come from neglecting defect clustering. Besides, we know from the results in Table
2.4 that it is more probable that the FP;y over estimates the true FP. It will later be
shown that when clustering is ignored, the FP;ywill under estimate the true FP. Most
likely, errors come from missing defects that the inspection tools are assumed able to
detect, and from misclassifying the dice. Let a be the probability of not counting a die
as T, when it does contain defects of type A. This inspection error rate a is a measure
of the die misclassification rate. An estimate of a would be:

T
G=1-—-Ae (2-25)

Ty
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[15], where T A, is the number of dice with defect type A observed and T A is the

actual number of dice with defect type A. We can define a measure of the rate of

missing defects as the capture rate c:

DD
DD

c=

o (2-26)

act
where DD, is the observed defect density and DD, is the actual defect density.

Introducing these two error terms into Equation (2-8), we have

T,(T(1-d)-T,,)
T(T,(1-a)-T,,,)
DD, /¢

In(

)

FP, =- 2-27)

where T, and T, are the observed counts of T4 and Tga .

Using Equation (2-27), with @ =0.05, and ¢ =0.9, so that the rate of correctly
counting a die as Ty is 1-0.05=0.95, and the rate of correctly identifying a defect is
0.9- in effect allowing the probability of misclassifying a die to be lower than missing
a defect- we can see how FPry might over-estimate the true FP. If /-a is less than c,
then the FPry would under estimate the true FP. Table 2.7 shows the results of using
these values for the inspection errors in Equation (2-27) compared to that assuming
no inspection errors.

The results from Table 2.7 show that if we assume no errors in our inspection,
we could possibly over estimate the FP, as long as 1-a is greater than c. A greater
probability of missing a defect than misclassifying a die is more likely to occur with

clustering. With clustering, there are some dice with many defects on them, and
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missing a few of these defects will not affect the classification of those dice as Ty, as
much as it will lower the defect density estimate. Since clustering is significant at
each of the inspection steps, it seems probable that I-a is greater than c.

Table 2.7 Comparison of FPLY estimates based on assumption of no inspection error
with those based on inspection errors

Inspection Step FpP FP
without error | with error
ISEF 0.0162 0.0157
MIEF 0.0270 0.0258
M2EF 0.0428 0.0409
M3EF 0.0052 0.0049
POLF 0.0000 0.0000
TNIT 0.1424 0.1352
TN2T 0.0297 0.0283
TN3T 0.0601 0.0571

In summary, we see that FPg, over estimates the fault probability because of
undetected defects. FPy slightly overestimates the fault probability if we do not
account for missing defects, but may be corrected by incorporating the inspection
error rates in its estimation. FPy;, with X, less than 0.5 um gives us estimates of FP

that are consistent with yield as well.

2.4.4 The Components of the FP Estimated for an Inspection Step

We now verify that the FPry estimated by Equation (2-8) is equivalent to the

FP;defined by Equation (2-23). We can show that FP must be defined by Equation
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(2-23) in order for the limited yields based on the KR , Equation (2-6) and the limited
yield based on based on the Poisson equation, Equation (1-4), to agree; i.e., for
Equation (2-8) to be valid. We begin by deriving an expression for KR4 in terms of
the density probability distribution and component FP of each of the defects seen at
inspection step A. To estimate KR for inspection step A, we need all the estimates for
the parameters on the RHS of Equation (2-5). T4 can be estimated once we know the
spatial probability distribution function of defects seen at inspection step A, pa. Since
T4 is the number of dice with the number of defects greater than or equal to 1 detected

at inspection step A, we can use Equation (2-11) to estimate Ty,

T,=T1-p,0) (2-28)

To estimate T4, we use the formula for conditional probabilities [17]:

T., =T * P(GA) =T * P(A)* P(G/ A) =T*(1—pA(O))*[%P(G/AI)+

Py

_Ps@ PG/ A,)+—P2O)

P(G/A)+:--
1-p,(0) 1—pA(0)( A+

(2-29)
where P(G/A;), P(G/Az), P(G/A3), ..., are the conditional probabilities of a die not
failing given it has exactly one defect found at inspection step A, exactly two defects
found at inspection step A, exactly three defects found at inspection step A, ...,
respectively. These probabilities are weighted by the probability that a die will have a
certain number n of defects occurring on it, pa(n); i.e., the probability that exactly n

number of defects will occur on the die. For P(G/A;), we have,
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P(GIA)=[(1-FP)t, + (1~ FPy)t, +(1- FP.)t, +..]- (LY) ;(LY),. - --Y,
(2-30)

where 1, t, t,,... are the fraction of defects with fault mechanism x, y, z...(or defect
types X, y, z,...) found at inspection step A. LYp, LY ...are the defect limited yields

for all the other inspection steps B, C,.... , which are independent of the yield at other

inspection steps, and Y is the systematic yield. Defining FP, as,

FPy=FP.-t_ +FPy-1 +FP. 1 +.. (2-31)

where t, + #,+ t, +...=1, Equation (2-30) becomes,

P(G/A)=[1-(FPx -t +FPy-t +FP. -1 )I(LY),(LY)z Yy =
(L= FPA)(LY),(LY), -,

(2-32)
We can show by a similar process that,
P(G/A))=(1-FP4)*LY,LY, ---¥, (2-33)
and
P(G/A)=(1—-FP4)’LY,LY, ---Y, (2-34)

etc. Substituting Equations (2-32) to (2-34) back into Equation (2-29), we obtain,

Tos =T(Ye - Y)[P, (DA~ FP,) + p, ()1~ FP,)" + p,(3(1~FP,)* +--]
(2-35)

T is simply the number of die that are yielding,



T, =T(LY),(LY),(LY), ---Y, (2-36)

Substituting Equations (2-28), (2-35) and (2-36) into the expression for the KR,

Equation (2-5), and simplifying, we have,

[p,(D1~FPa)+p,(2)A-FP4+)* + p,(3)1A-FP4)* +..]

KR, =1-
(1- p,(0)
. __ Da (V) __
Y, =[p,()A=FP4)+ p,(2)(1— FP4)* + p, (A —-FP4)’ +..]

(2-37)
Using the spatial probability distribution function, p,, as given by Equation
(2-9), and estimating LY, by Equation (2-13), we can solve Equation (2-37) for FP,.
The value of FP4 for each inspection step was calculated according to Equation (2-
37). These values were equivalent to those calculated by Equation (2-8). Thus we

have shown that the FP,,, for inspection step A estimated based on Equation (2-8) is
consistent with the average FP for inspection step A as defined by Equation (2-31).
This definition of FP4 is the only definition that would be appropriate in the yield
equation given by Equation (2-13) because the term DD, - FP, in Equation (2-13)
must refer to the average number of faults per die, 4, and only if FP, is defined as in
Equation (2-31) can this term be equivalent to A . [18]

From Equation (2-37), we can also see that only when the defect density is

extremely low are FP4 and KR, the same. That is, as the defect density approaches

Zero,
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p,(0)—>1 (2-38)

while p,(1), p,(2), ... approach zero, and Y, approaches 1, so that Equation (2-37)

becomes

_PaOU-FPy) — p,©®  _
1-p, (0 I-(p,())A-FP,)

| AU FP4) A1 0-FP.)=FP,
p.) 1

KR, =

(2-39)

Here we also use the approximation that p,(0)+ p,(1) =1 sothat 1- p,(0)=p, (D).

The approach of p,(0)to 1, and hence the approach of KR, to FP 4, is faster for
spatial distributions that follow a more random pattern; i.e., as «rin Equation (2-37),
contained in the expressions for LY, and p,, becomes larger. Figure 2.5 plots KR4 for
different values of arusing Equation (2-37) and compares them to the given FP,, the
bottom most horizontal line on the plot. As a gets larger, and the DD becomes lower,

the curves of KR4 approach FP.,.

2.4.5 Estimation of FP when the Defects are Clustered

Up to this point, we have assumed in our estimation of FPy that the
probability that a defect will occur on a die is the same for all die. However, we see
from the estimated values of & shown in Table 2.4 that the defects do not completely
follow this type of distribution. Nevertheless, we showed that because the defect

density and values of FP were low, the limited yields based on the assumption of no
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clustering, Equation (1-4), and based on clustering, Equation (2-13), are
approximately the same, and the FP estimated from Equation (2-8) is thus
approximately accurate.

If we need to be more accurate in our estimation of FP, or we have a situation
in which the defect density or FP is high, there is another way to estimate FP based
on defect data that is accurate for any defect distribution. This method is based on the

following result derived from basic probability:

BT, =23 [Ta-Fe)™) (2-40)

0 il
where Ty is the number of die with zero visible defects that are good, Ty is the
number of die with zero visible defects, E(Tga) is the expected value of Ty, FP;is the
fault probability of defect type j, and N;; is the number of type j defects in die i. [20]
For each defect type A, then, in addition to determining T4 and Ty, which is used to
estimate E(TGa) , we must count the number of each defect type in each die with at
least one defect type A , up to T4 dice. If we have n defect types that we have
identified with our n inspection steps, then we will have n equations with n
unknowns, where each equation is based on Equation (2-40).

Table 2.8 shows the results of estimating FP based on Equation (2-40) using
the same defect data previously used, along with the values of ¢, the defect density,
and the values of FP based on Equation (2-8) that we calculated previously. The
resulting set of eight nonlinear equations was solved using a modified Newton-

Raphson iteration method, where the initial values used were those calculated based
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on Equation (2-8). As can be seen from Table 2.8, the estimates of FP based on
Equations (2-40) and (2-8) are practically the same, confirming our previous
conclusion that clustering can be neglected when the defect density and FP are low.
Table 2.8 Comparison of the estimates of FP based on the assumption of no defect

clustering (Eq. (2-8)) and based on no assumption regarding defect clustering (Eq. (2-
40))

Inspection DD
g o \(defects/| o | FPry FPyc
p die)

LISEF 0.537 10.406| 0.016 0.017

MIEF | 0.165 |0.266] 0.027 0.029
M2EF | 0.169 |0.375| 0.043 0.046
M3EF | 0.067 [0.642] 0.005 0.005
POLF | 0.453 |0.297| 0.000 0.000
TNIT | 0.070 [0.113] 0.149 0.151
| TN2T | 0.090 |0.181] 0.030 0.031
TN3T | 0.065 |0.313] 0.060 0.058

A computer simulation was developed in order to show the effect of ignoring
clustering when the FP or DD is high. In the simulation, we can input the values for
DD, a, and the true value of FPP for up to 10 inspection steps. The estimates given in
the simulation are based on Equations (2-8) and (2-40). Figure 2.6 shows the average
of the two different estimates of FP, FP,yand FPyc (the FP based on Equation (2-
40)) for a particular defect type at different defect densities, whose FP is set at 0.4
and a set at 0.1. Each point represents the average of 100 estimates. We see that as

the defect density increases, the FP estimated by Equation (2-8) increasingly under
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estimates the true FP, while the FP estimated by Equation (2-40) remains
approximately 0.4.

The simulation program can be used to assess the adequacy of using Equation
(2-8) to estimate FP. Once we have estimated the DD, ¢, and the FP (estimated by
Equation (2-8)) from the defect data, we can input these values into the simulation
program. If the simulation-estimated FP based Equation (2-40) is close to the value of
FP that was inputted, then Equation (2-8) should be adequate for estimating FP from
the defect data. If not, we should use Equation (2-40). Estimating FP using Equation
(2-8) is still useful in this case, since it can be used as an initial value to solve the

nonlinear equation of Equation (2-40).

2.5 Conclusion

The most reliable means of estimating the fault probability for an inspection
step are by CAA simulation of probable defect mechanisms on the layout for the layer
closest to inspection step A, and by the use of the fault probability estimate based on
equating the defect limited yield equation given by the Poisson equation with that
given by the kill ratio. FPy can be a more accurate estimate of FP if we incorporate
inspection error rates into its estimation. A defect distribution parameter of x,=0.5 um
or slightly less causes the two methods to give approximately equal yields. This value
of x, is greater than the critical dimension of the device. Estimates using FPgoss
uniformly over estimate the fault probability due to the presence of undetected

defects.
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It was shown that the estimated FP.y for inspection step A is equivalent to the
weighted average of the various defect mechanisms detected at inspection step A. Our
analysis also shows that KR4 approximates the FP of inspection step A only under the
conditions of low defect density and low clustering (high cluster factor ¢). It also
shows KR provides an estimate of an upper limit for FP and is an integral part of the
derivation of the expression for FP;y. Finally, a simulation program was developed
for testing whether defect clustering can be ignored when the cluster factor «is low

and the FP and defect density are high.
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3. CONFIDENCE INTERVAL ESTIMATION BASED ON
BOOTSTRAPPING FOR THE FAULT PROBABILITIES OF
RANDOM DEFECTS SEEN IN INTEGRATED CIRCUIT
PROCESSING

3.1. Introduction

3.1.1 Methods of Confidence Interval Estimation

To construct a confidence interval for an estimate, we must have some
knowledge of the sampling distribution of the estimator. In bootstrapping, knowledge
of this distribution comes from the bootstrap sampling distribution [21]. Referring to
Figure 3.1, which is a general schematic of a sampling distribution, the distances a
and b are approximated by the corresponding distances in the bootstrap distribution.
If we knew the actual sampling distribution, a central (I-2¢)% CI could be estimated
by the following estimates as the upper confidence limit (UCL), and lower confidence
limit (LCL):

UCL=t+a (3-1)

and

LCL=t-b (3-2)

where ¢ is the sample estimate [21].
Four methods of CI estimation by bootstrapping will be examined in this
chapter. These methods are: the standard method, the first percentile method, the

second percentile method, and the BCA method. The fundamental assumption used



Figure 3.1 A general representation of a sampling distribution.
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by the standard, first percentile, and second percentile methods, referred to hereafter

as the basic pivotal methods, is that the variance of the sampling distribution of the

estimator is independent of the value of the parameter 8 being estimated. The basic
pivotal methods rely on the assumption that the variance, or equivalently, éa -6, can
be approximated by the corresponding value in the bootstrap distribution. This
statement is equivalent to assuming that éa — @ is an approximately constant
quantity no matter what the value of @ is. A measure such as this is called a pivotal
quantity, and results from the variance of the sampling distribution of the estimator
being approximately constant regardless of the value of the parameter being
estimated.

The simplest method of estimating a confidence interval is variously called
the standard method or the normal approximation. This method assumes that the
estimator, &, follows an approximately normal distribution with mean equal to the
true value of the parameter, @, plus the bias of the estimate, B, defined as E (6 )-6.

1/2 .
, where z,_,is the

The distances a and b in Figure 3.1 are thus estimated by z, ,V,
standard normal variable having an area of I-« to the left, and Vx is the sample

variance of the resulting estimates from bootstrapping, ., r=1,2,...R, where R is the

total number of bootstrap samples:

1 R = x
Ve=——Y (t. —t'r)* 3-3
k= 2 1) (3-3)

r=1
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The bias is estimated by using the sample estimate, #, as the population parameter,

and the average of all the bootstrap estimates,

—_— 1 R

t'R==>Y1" (3-4),
R

as the estimate of the expectation of the estimator. The bootstrap estimate of bias,

denoted as By, is then given by:

B, =t's—t (3-5)

The second percentile method uses b =¢, , —t and a = ~1,. In the case of
the first percentile method, the distance b is estimated by ¢ —¢, while a is estimated by

t, . —t. Therefore, the first percentile method also relies on the assumption that

A

8, —0 is an approximately pivotal quantity, but the estimates for the pivotal

quantities are swapped with those of the second percentile method. Thus, we see that
for the basic pivotal methods to work, the estimated distances a and b from

bootstrapping must approximate that of the actual sampling distribution, for all values

of é The estimates of the distances a and b for these three methods are summarized
in Table 3.1. The upper and lower bounds of these methods can then be estimated by

using Equations (3-1) and (3-2).
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Table 3.1 Estimates of the distances a and b in the sampling distribution for
various CI estimation methods

Method a b

Normal VRM Z1-a-Br VRW Z1-a+Br
First to—t t—t,

Second t—t, t,, —t

The BCA method is based on the assumption that a monotonic transformation
m exists such that ¢3 =m(@) follows a normal distribution. The mean and variance of

this normal distribution, however, incorporate two additional parameters, the

acceleration and bias constants, a. and f,, respectively:

é ~nl(p - ﬁoo-¢ ’O-¢2) (3-6a),

where ¢ = m(@), nl( ) represents the normal distribution, and the standard deviation is
given by

o,=1+ap (3-6b)

[22].
The parameter a, improves the approximation of the first percentile method by
accounting for distributions where the variance might change with the population

parameter being estimated, on the normalized scale. From Equation (3-6b) we see can
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do
see that a_ = d_¢ . Thus a. is a measure of the rate of change of the standard

deviation of the transformed estimator ¢? with the transformed parameter ¢ .

As seen from Equation (3-6a), the parameter £, is a measure of the bias of
the normalized estimator. If the untransformed estimator is biased, as estimated by the
bootstrap estimate of bias, Equation (3-5), the bias constant will also reflect this bias,
but on the normalized scale. Even if the untransformed estimator is unbiased,
however, there may be a bias once the estimator is normalized. This situation arises
when the untransformed estimator has a skewed distribution. In this case, the mean
and median of the untransformed distribution differ, that is there is a median bias, and

the normally transformed skewed distribution will have a bias relative to ¢ . Thus the
parameter S, allows for the normal transformations of skewed distributions, in

addition to accounting for biases in the estimator.
From relationship (3-6a) it can be shown that a /-2« confidence interval for

based on the BCA method is:

t'e, <0<t'a,, (3-7)

where ¢, and &, are given by the following probabilities

A BO+Za
=P i 3.8
a r(z<ﬂ0+1_&c(ﬂ0+za) ) (3-8a)

and

o, =Pr(z<fy+— Lol (3-8b)
1-a,(By +2,,)
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,30 and a, are the bootstrap estimates of the bias and acceleration constants. The
bias-correction constant ,30 can be estimated by the standard normal variable whose
area to the left is equal to the proportion of bootstrap estimates, 9" (b), that are below

the sample estimate, 9 .Itcanbe computed by,

[{0 = @‘(W) (3-9)

where B is the total number of bootstrap estimates, and #{@"= (b) < é} is the number of
bootstrap estimates below the sample estimate. The acceleration constant d, can be

estimated by,

n 3
&C = 21‘:1(%_ t(i)) 213 (3-10)
6&; (Z —Ly )2}

Here, 1, 1s what is called a jackknife value of the statistic 0= s(X) [22]. Itis

computed as 7, = s(X,), where X; is the original sample with the ith data point
removed. E: is the average of all the jackknife estimates from the sample X:
E; = 2:;1 t, I n. Like the basic pivotal methods, the BCA percentiles are also

percentiles of the bootstrap distribution based on a sample with 7 as its estimate. If S
and a. are equal to zero, for example, then relationship (3-7) is equivalent to the

confidence limits based on the first percentile method.
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3.1.2 Bootstrap Simulation

Since the KR method is more economical than the CAA method, it is
desirable for FP estimation. However, the KR method relies on a sample of limited
size. Thus this chapter explores the uncertainty associated with this FP estimate
through Monte Carlo simulation. In the simulation, the values of the FP estimates
from the previous chapter will be used, as they reflect realistic estimates from high
volume manufacturing data.

In the simulation, we use three defect types, A, B and C, with assigned fault
probabilities FP,, FPg, and FPc, respectively, for each run. Thus the defect types are
classified by the value of the FP assigned to them. These defects are distributed on
wafers of 100 dice each, arranged in a 10-row by 10-column configuration. The upper
and lower number of defects of each type that can occur on a wafer range from 30 to
40 defects per wafer. There is no clustering of defects, i.e., they can occur with equal
probability anywhere on the wafer. A typical defect distribution output from the
simulation is shown in Figure 3.2.

The re-sampling procedure is as follows: Each original sample contains 20
wafers, with defects and faults distributed on them according to values of FP, and
density. Each die is then assigned a bin number, or pass/ fail status, depending on
whether a fault lies in it. The bootstrap sample is created by randomly picking dice
from this original sample, with replacement, until 20 x 100 dice are picked. These
2,000 dice, the same number of dice in the original sample, constitute a bootstrap

sample. From this bootstrap sample the fault probability of any defect type i, FP;, is
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estimated the same way as it was in the original sample, i.e., by equating the limited
yield for defect type i, as estimated by the Poisson yield equation, with that estimated

from the kill ratio:

TG(T_Ti)

—_— 3-11
T'(TG _TGi) ( :

LY, = exp(~FP,*DD,) =
where DD; is the defect density of defect type i per die, T is the total number of dice,
T is the total number of good dice, T;is the total number of dice with at least one
defect type i on them, and Ty; is the total number of good dice with at least one defect
type i on them. Rearranging Equation (3-11), we have:

T, (T -T,)
o TUe=Ts)
DD,

H

—In[ 1

(3-12)

A total of four runs were done, with FP values ranging from 0.15 to 0.001.
This range reflects the FP values based on actual fab defect data obtained in the
previous chapter. The FP values assigned for each run are shown in Table 3.2. Run 1
has the largest values of FP, with the values for FP assigned in each run decreasing to

the smallest values in run 4.

Table 3.2 FP values assigned for each run

Run FPA FPB FPC
0.15 0.10 0.07
0.0 0.02 0.01

0.00{ 0.00 0.004

0.001 0.00 0.00

EEGIRUSEE o) P
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3.2 Results And Discussion

3.2.1 Bootstrap Sampling Distribution Results

Figure 3.3 shows two bootstrap sampling histograms from two separate
samples taken from populations with FPy,, values of 0.03 and 0.006. The respective
sample FP estimates, FPuyp, are 0.0362 and 0.00757. For these two samples, the
values of FP,,, are close to their respective FP;,,, values, and the estimated CI
values based on all four bootstrap methods cover FP,.,. In both cases, the sampling
distributions are right-skewed, with the one for FP,,,, =0.006 more so. At smaller
values of FPiy, some values of FP,,,, are negative, and some values in the bootstrap
sampling distribution are negative even when FPy.mp 18 positive, as can be seen in
Figure 3b. The negative estimate is a natural result of using the FP estimator of
Equation (3-12). Although the negative values in the bootstrap sampling distributions
are not realistic, they are kept, because this facilitates computation of the various
bootstrap estimates. Only when the resulting confidence limit is negative, do we set
its value to zero.

Figure 3.4 shows the bootstrap-estimated bias, variance, and 5™ and 95®
percentiles for various values of R, the number of bootstrap replications, for a sample
drawn from a population with FP;,,=0.008, whose sample FP estimate, FPgump, has a
value of 0.00762. The general trends seen in Figure 3.4 are seen for the other eleven
defect types used in the simulation. As can be seen from Figure 3.4a, the magnitude

of the bias tends to decrease and stabilize with increasing R, and is quite small
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compared with the value of FPp. The biases are less than one percent of their
respective estimates for all the defect types, at high values of R. The stabilization in
the bias value as R increases is one reason that the number of replicates needs to be
large. Therefore, we have good evidence that the bias of the estimate of FP using
Equation (3-5) is negligible.

Figure 3.4b shows that the variance stabilizes more quickly than the bias. For
example, at approximately R >200, the variance stabilizes, while at approximately R
>600, the bias stabilizes. Figure 3.4c shows the 5™ and 95" percentiles of the
bootstrap estimates of FP. Like the variance, the percentiles also stabilize more
quickly than the biases. Again, these general trends are seen for all the other eleven
defect types. It is concluded that 1000 bootstrap replications should provide enough
bootstrap estimates for accurate estimates of the bias, variance, and percentiles
needed for the bootstrap CI estimation methods.

To assess whether a CI estimation method works for a given run, we estimated
the proportion of the estimated confidence intervals that failed to capture the true
value of the parameter FP (FP,,,), for a large number of samples. Table 3.3 shows a
summary of the performance of the four different methods of CI estimation for a 90%
CI, for various values of FP,,,,. The performance of each method was measured by
the proportion of failed Cls that were below FP,,,, (Upper Limit too Low, ULTL) and
the proportion of failed CIs above FP,,,, (Lower Limit too High, LLTH). Each
estimate of performance was determined from a total of 500 samples drawn from a

particular population with the assigned FP;,,.. Thus, for each FP,, in Table 3.3, a
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total of, (500samples) x (1000 bootstrap estimates/ sample)=500,000 bootstrap
estimates were used to determine the 500 CI’s for each CI estimation method.

Ideally, when estimating a central 90% CI, each of the two categories, ULTL
and LLTH, should be approximately 5% for a CI estimation method to be qualified as
a success. However, we must also account for the variation in Table 3.3 due to
generating only 500 estimates of CI. To determine acceptance criteria, we use a
hypothesis test. If we let our null hypothesis be that the true proportion of ULTL or
LLTH is 5%, that is, we have a procedure that estimates an exact central 90%
confidence interval, an approximately 95% acceptance region for this null hypothesis
can be estimated from a binomial distribution with p=0.05 and #=500. In this case,
the proportion of ULTL or LLTH from 0.034 to 0.066 indicates we cannot reject the
null hypothesis. Thus, if both ULTL and LLTH for a particular CI estimation method
are between 0.034 and 0.066, we will count the method as a success. If either is
outside this range, we will count the method as a failure.

Figure 3.5 shows the proportions of LLTH and ULTL for each of the four
methods of CI estimation, along with the lines showing the upper and lower success
criteria. Using these criteria, we see that the standard method, the first percentile, and
the second percentile method all consistently fail below FPy,,,=0.01. The BCA
method, however, does not consistently fail until FP,,,,=0.003 or below. The
standard, the first percentile, and the second percentile methods work fairly well for
runs 1 and 2. In run 3, however, these three methods all fail, while the BCA method is

still successful. In run 4, where the values of FP,,,, are set to 0.003, 0.002, and 0.001,
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all four methods fail. Moreover, when they fail, the LLTH tends to predict too few

ranges of CI out of range while the ULTL tends to predict too many.

Table 3.3 Performance of four different methods of CI estimation for a 90%
CI in terms of the proportion of failed CIs

lst 2nd
Run | FPiru. Standard Percentile | Percentile BCA
0.15 LLTH 0.052 0.06 0.048 0.062
: ULTL 0.066 0.064 0.070 0.056
1 0.10 LLTH 0.054 0.054 0.052 0.060
ULTL 0.052 0.048 0.054 0.048
0.07 LLTH 0.062 0.058 0.064 0.064
ULTL 0.070 0.068 0.072 0.058
0.03 LLTH 0.034 0.038 0.026 0.050
ULTL 0.062 0.056 0.072 0.042
2 0.02 LLTH 0.036 0.044 0.034 0.056
ULTL 0.060 0.056 0.064 0.042
0.01 LLTH 0.040 0.050 0.038 0.064
ULTL 0.054 0.054 0.054 0.042
0.008 LLTH 0.016 0.020 0.010 0.042
ULTL 0.068 0.060 0.080 0.032
3 0.006 LLTH 0.016 0.018 0.012 0.042
ULTL 0.054 0.052 0.060 0.036
0.004 LLTH 0.018 0.020 0.010 0.042
ULTL 0.094 0.090 0.100 0.064
0.003 LLTH 0.008 0.010 0.006 0.018
ULTL 0.138 0.120 0.228 0.080
4 0.002 LLTH 0.016 0.018 0.012 0.036
ULTL 0.096 0.096 0.108 0.086
0.001 LLTH 0.018 0.036 0.010 0.070
ULTL 0.144 0.142 0.144 0.140




3.2.2 Performance of the Basic Pivotal Methods

To understand the limitations of the standard, the first percentile, and the
second percentile methods, the basic assumption employed by these methods must be
recalled, which is that the standard deviation of the bootstrap distribution is

approximately independent of the value of the sample estimate. Figure 3.6 shows the

A

standard deviation of the bootstrap FP estimates ( SDson ) versus the sample FP values

(FPsamp) for three representative values of FPy,,, from Table 3.2. Each plot in Figure

3.6 shows 500 values of SDy. estimated from 500 samples, each sample being

drawn from the population with the specified FP,,,. The sample standard deviation,

A

SD e , is also shown. It represents the best estimate of the standard deviation of the

actual sampling distribution of FPu, for each value of FPy,,. To facilitate

A

comparison, the range of the y-axis for each plot is scaled to match SDac .

Figure 3.6 indicates that the SDso increases with FPg,np. We also see that the slope

of the best-fit line increases with decreasing FP;,,.

Table 3.4 presents the equations of the best-fit lines of SADzm, to FPgpp, for
each of the twelve defect types from Table 3.2. It also gives the values of the sample
standard deviation of the 500 values of FPqamp, for each value of FP,,, The slope of
the best-fit line gives us an indication of the change of the standard deviation of

FPgump with FP,,,, for each of the four runs. Table 3.4 shows that the slope of the

SDwo increases by approximately 6 fold from run 1(high FPy,,,) to run 3(low FPy,,,),
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Figure 3.6 The 500 standard deviations of bootstrap distributions (SD o0 )
versus FPg,y, for three representative values of FPy,,.
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and by approximately 12 fold from run 1 to run 4. However, within the same run, the
slopes are relatively constant. Thus, the assumption of constant variance for all values
of FP,,, becomes worse from run 1 to run 4, and we should expect the CI estimation
based on the basic pivotal methods to become worse. This expectation is confirmed
by the results in Table 3.3, where the standard, first percentile, and second percentile
methods all fail beginning at run 3.

Examination of Figure 3.5 reveals that for the basic pivotal methods the
proportion of LLTH decreases as FP,,, decreases. Conversely, the proportion of
ULTL increases as FPy,, decreases. For example, at FPy,,,=0.15, and FP,,,,=0.10,
these two proportions are roughly the same, at approximately 5%, and these methods
are successful; on the other hand, at FP,,,,=0.004, the proportion of LLTH is only

about 1% to 2%, while that of ULTL is 9 to 10%. As Figure 3.6 shows, the further

A A

away the value of FPg,,, from FPy,,, the more SDu deviates from the SD.. When
FPmp is larger than FPy,,, SDwa tends to be larger than SD .o , and when FPggyy, is

smaller than FP,,,,, SDsoo tends to be less than SD . .

Figure 3.7 schematically illustrates the case when the pivotal approximation is

A A

valid, i.e., when SDso approximates SD.. . Figure 3.7a represents a general
sampling distribution, with the areas of the lower and upper o percentiles shaded.
Figures 3.7b and 3.7c represent bootstrap distributions resulting from samples whose

FPgump have small and large values, , and f;,, respectively. Consider a CI estimated,
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Figure 3.7 Bootstrapping estimates when the pivotal approximation is
valid
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Table 3.4 The equation of the best-fit line of SDsoor t0 FPsgmp, and the
estimated sample SD for various values of FPye

Run A R
FPurue | Fit of SDsoor SD e
0.15 0.024 FP,un, +0.013 0.018
1 0.10 0.023 FPyan, +0.014 0.016
0.07 0.024 FP,,,, +0.014 0.016
0.03 0.070 FPyam, +0.0055|  0.0074
2 0.02 0.069 FP,qm, +0.0058]  0.0071
0.01 0.066 FP,am, +0.0060]  0.0066
0.008 0.14 FPyqm, +0.0030 0.0038
3 0.006 0.13 FPyqp, +0.0032 0.0036
0.004 0.13 FP,y +0.0032 0.0036
0.003 0.25 FPyyn, +0.0016 0.0023
4 0.002 0.26 FP,qmy +0.0016 0.0022
0.001 0.22 FPyump +0.0018 0.0021

for example, by the first percentile method. When the pivotal approximation is true,

any CI, estimated from a sample whose sample estimate, ¢, is taken from the area

between the shaded areas, would cover the true value of the parameter, 8. On the
other hand, any CI estimated from a sample with sample estimate ¢ taken within the
shaded regions would fail. Thus, an approximately /-2 proportion of the CIs would
succeed.

For example, Figure 3.7b shows a bootstrap distribution with mean centered at

tsm, connected by the dotted line to the same value in Figure 3.7a. In this case, we see

*

that the resulting UCL estimated by the first percentile method, #,_,, will just be large

enough so that the resulting CI will contain 6. Thus, we see that the first percentile

works only if the bootstrap distribution has the same spread, or variance, as the actual
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sampling distribution; i.e., the quantity & — éa is equal to #,_, —¢, . An example of a
case when the Cl fails is shown in Figure 3.7c. The estimate is taken from the shaded

region, where #,, is an estimate that is slightly larger than él—a . In this case, we see

that the resulting LCL estimated by the first percentile method, ¢, , will not bracket

6, as seen by the dotted line connecting @ to the bootstrap sampling distribution of

Figure 3.7c. This result again is due to the spread of the bootstrap distribution being

the same as that of the actual sampling distribution,; i.e., the quantity él_a —@ is equal
to 7, — t,.. Thus, when the pivotal approximation is valid, the proportion of ULTL

and LLTH is approximately o. Similar arguments apply in the case of the standard
and second percentile methods.

Figure 3.8 is analogous to Figure 3.7 except that it shows what happens when
the variance of the bootstrap distribution does not approximate that of the actual
sampling distribution. Figure 3.8b shows a bootstrap distribution whose variance is
lower than that of the actual sampling distribution, represented in Figure 3.8a, while

Figure 3.8c shows a bootstrap distribution whose variance is larger. Figure 3.8b
shows that when the SDj. under-estimates the SD .., the resulting UCL estimated

by the first percentile method, #,_,,, will not bracket 8. Thus the dotted line from 7, ,
in Figure 3.8b is to the left of #in Figure 3.8a. In summary, some CI ranges estimated
from samples with sample estimate ¢ taken from the region éa <6 <6 would fail,

where they should succeed. Thus Figure 3.8b graphically represents the consequence
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of the quantity #, , —¢, being less than 6 — éa , which is that the probability of ULTL

will be higher than o. This result is seen at small values of FP,,.

A A

Conversely, Figure 3.8c shows a case where SDuon over-estimates SD

when estimating from a sample whose estimate ¢ is larger than €. Some CI ranges

estimated from samples with sample estimates from the region él_a <8 would
succeed, where they should fail. This case is represented by the dotted line from ¢, ,

the LCL of the first percentile method, being to the left of @in Figure 3.8a. Thus

Figure 3.8¢ graphically represents the consequences of the quantity te = t. being

greater than 91_(1 — 6. This case results in the probability of LLTH being lower than a,

as seen at low values of FPy,,. Similar arguments can be used in the case of the
standard and second percentile methods to show that the probability of ULTL will be
higher than o and the probability of LLTH will be lower than o when the SDj0

increases with FPygpp.
We can estimate the quantities a =0 — éa and b= él_a — 6 of Figure 3.1

directly from the 500 values of FPgap, for a given FPy,, and compare them with those
estimated by each of the basic pivotal methods. Let 81-o— @ be estimated by

- F_Pmp , where FP

samp,1-c

FP

samp,1-o

is the (1-a)th percentile of the 500 values of

A

FPyamp, and FP .y is the average. In a similar way, we can estimate 8 — 8, by

F—'Psamp“FP

samp,& *

Since we have 500 original samples, these two estimates should be
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fairly accurate, as should the confidence limits based on them. For any value of

FPqup, we calculate the lower and upper confidence limits as follows:

LCL=FP,,, ~(FP, o= FPum) (13a)
UCL=FP,,, +(FPum—FP,, ) (13b)

We term the estimates represented by Equations (3-13a) and (3-13b) our “gold
standard”, since in practice we do not have 500 samples, but only one.

Figure 3.9 compares confidence limits estimated by the first percentile method
with those by the gold standard, Equations (3-13). Only every third of the 500
confidence limits estimated by the first percentile method are shown to preserve
clarity. Figure 3.9a represents samples drawn from the population with FP;,,,=0.1.
Figure 3.9a shows that the values for LCL and UCL estimated from the first
percentile method fall over the LCL and UCL curves estimated from Equations (3-

13). Analogous plots for the standard and second percentile method show similar
results. These results indicate that the quantities él_a —6 and 6 - éa of Figure 3.1 are

approximately pivotal in the case of FP,,,,=0.1. Figure 3.10 shows the 500 values of

A A

SD oo , €ach estimated from one original sample, compared with SD ., vs.

percentiles of FPy,,,. Figure 3.10a represents values for FP,,,=0.1. While there exists

A

a slight positive slope, all values of SDs. are still approximately centered about the

A

horizontal line representing SD .. . Thus the quantities él—a -6 and 6~ éa are
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Figure 3.9 Comparison of UCL and LCL estimated by the first percentile method
to that of the "gold standard" estimated from the actual sampling distribution for a)
FP4,.=0.1, b) FP,,,,=0.004.
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indeed approximately pivotal in the case of FP,,,,=0.1, and consequently the
proportions of ULTL and LLTH reported in Table 3.3 are close to 5%7 for FPy,,=0.1.
Figures 3.9b and 3.10b are analogous plots to Figure 9a and 10a, respectively,
for the case of FP,,,=0.004. In Figure 3.9b, the points representing the LCL and UCL
estimated by the first percentile method deviate from the LCL and UCL curves
estimated by Equations (3-13) at low and high FP,.mp percentiles. Analogous plots for

the standard and second percentile method show similar behavior. These results can

A

be attributed to the increased rate of change of SD s With FPg,,p, which is nearly six

times greater for FP,,~0.004 than for FP,,,,=0.1. Figure 3.10b shows that this

A

increased rate of change of SD.,x with FPq,,p increases the deviations of the values

A A

of SDer from SD.., at the more extreme values of F, Pgamp- This increased deviation

from SD. manifest in Figure 3.9b. At high percentiles of FPygp,, the estimated Cls

are wider than those estimated by Equations (3-13), since the quantity é1~a -0 is
over-estimated. At low percentiles, the converse is true, since this same quantity is
under-estimated.

The first percentile estimated UCL and LCL points shown in Figure 3.9b are

consistent with the trends seen in Figure 3.5. In Figure 3.9b, the underestimation of
6 - éa tends to make the points representing the UCL estimated by the first percentile

method fall below the FP;.,,=0.004 line at a point greater than the 5th percentile of
FP,,, reflecting the increase in ULTL above 5% at lower values of FP,,,., as seen in

Figure 3.5. For the points representing the LCL estimated by the first percentile
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method, they tend to cross the FP;,,,=0.004 line at a point greater than the 95
percentile of FP,y,, reflecting the decrease in LLTH below 5% at higher values of
FPyy,, as seen in Figure 3.5. Similar figures for the second and standard percentile
method show similar behavior. Thus the effects of over and under —estimating the
pivotal quantity on the proportions of LLTH and ULTL are seen directly from the
plot.

The success of the first percentile method in the case of FP;.,,=0.1 and failure
in the case of FP,,,=0.004 have been accounted for. The same principle applies to the
other values of FPy,, and to the other basic pivotal methods. Next, the three pivotal
methods are compared to one another. By the criteria that have been set, all three
methods perform well enough to be generally classified as successful in runs 1 and 2;
nevertheless the first percentile method displays better performance. The proportions
of LLTH and ULTL of the first percentile method are closer to 5% than the other two
methods, especially in run 2. The improved performance results from the slightly
right-skewed shape of the bootstrap distributions.

Table 3.5 shows the average “shape factor” of the bootstrap distributions for
the lower 50 values (lower 10%) and upper 50 values (upperl0%) of FPqq,y,, for each

FPy,,. The “shape factor”, Sk, is measured by,
Sh=(FP,~FP")/(FP'~ FP.) (3-14)

A “shape factor” greater than one will tend to come from a right- skewed distribution.

In Table 3.5, the average values of Sk are all greater than one. If the distributions



were symmetric, we would expect an approximately equal number of occurrences
below one as above. Thus it is likely that the bootstrap distributions are right- skewed
for each FPy,,. Table 3.5 also shows that the degree to which the bootstrap
distributions are right-skewed increases with decreasing FPy,,, from approximately
1.0inrun 1to 1.1 in run 3.

Table 3.5 Average “shape factor” of the bootstrap distributions for the lower
and upper 10% values of FPump

FPtrue Sh
lower 10% upper 10%

0.15 1.022 1.012
0.10 1.012 1.002
0.07 1.022 1.013
0.03 1.048 1.047
0.02 1.042 1.051
0.01 1.039 1.051
0.008 1.145 1.092
0.006 1.084 1.102
0.004 1.057 1.106

Figure 3.11 schematically shows the effect of such a right skewed distribution
on CI estimation. In Figure 3.11a, we have a right-skewed sampling distribution. In

Figure 3.11b, we have a bootstrap distribution resulting from a sample with estimate

*
1-a

t,,, taken from éa <6< 6. We see that the UCL for the first percentile method, ¢

still covers &, but that the UCL for the second percentile method, ¢, + (¢, — 1, ), will

just fall short of &. This result will only occur if the variance of the bootstrap

distribution is smaller than that of the actual sampling distribution when sampling is
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Figure 3.11 Effect of the right-skewed shape of the sampling distribution on the
coverage of the first and second percentile methods.
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such that éa <6< 6. Thus the proportion of ULTL will be higher for the second

percentile method than for the first percentile method, as shown in Figure 3.5.

On the other hand, Figure 3.11c shows a bootstrap distribution resulting from

a sample with the estimate ¢, , taken from él_a <. The LCL for the first percentile
method, 7, will, correctly, not cover 8. However, the LCL for the second percentile
method, #,, — (t , — t,,) , will just cover €. Again, this will only occur if the variance
of the bootstrap distribution is larger than that of the actual sampling distribution

when sampling from él_a < 6. Thus we see that the proportion of LLTH will be

lower for the second percentile method than for the first percentile method. This
result is also reflected in Figure 3.5. The standard method would have proportions of
LLTH and ULTL between that of the first and second percentiles, since it uses the

variance of the entire bootstrap distribution- not just the distance of one side or the

other about - to estimate the pivotal distance éa -0.

3.2.3 Performance of the BCA Method

The basic pivotal methods fail at low values of FP,,,, because the bootstrap

estimated distances a and b vary with the actual distances a and b in Figure 3.1. These

A

discrepancies are a result of the change of SDsr With FPgapp. Out of the four
methods of CI estimation applied in this study, only the BCA method recognizes the

possibility of this change, by specifying an acceleration constant, a., With a, specified

83
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as an additional parameter, the transformation function assumed in the BCA method,
given by Equation (3-6), need only be normalizing, but not necessarily variance
stabilizing, where the mean and variance are independent. The parameter £, allows
the normal transformation of distributions that are skewed. Thus the effect of the
additional parameters a. and f, is to make the BCA assumption more general than

that of the basic pivotal methods, allowing the BCA method to work for a wider class
of problems. [23]

Table 3.6 shows the averages of the estimated acceleration and bias constants,
a, and ,30 , respectively, based on the 500 samples drawn, for each FPy,,. It also

shows the averages of the estimated percentiles, &, and &, , in Equations (3-8). Table

3.6 shows that a_ and ,30 are both greater than 0. This result is expected for the

acceleration constant since we have seen that the slope of SDypor VS. FPyanyp 18 positive.
It is also expected for the bias constant, the measure of the bias of the normalized
estimator. The more right-skewed the untransformed distribution, the greater the bias
of the normalized estimator, and the more positive the value of the bias constant. This
will be the case even if the untransformed estimator does not have bias, as defined in
Equation (3-5). In the present case, it seems reasonable to conclude that the positive
values of the bias constants are due to the right-skewed bootstrap sampling

distributions, as the biases as measured by Equation (3-5) are negligible. This
conclusion is bolstered by Table 3.6, which shows that the average values of ,30 are

greatest in Run 3, where the shape factors of the bootstrap distributions are also
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greatest, as shown in Table 3.6. The values of the bias constants in Run 4 may not be

meaningful as the BCA method fails in Run 4.

Table 3.6 Average values of the BCA parameters estimated from 500 samples

for each value of FP;,,..
Run FP,,, i a. o o
1 0.15 0.010 0.008 0.055 0.953
0.10 0.011 0.008 0.055 0.954
0.07 0.007 0.008 0.054 0.953
» 0.03 0.022 0.025 0.062 0.961
0.02 0.023 0.025 0.063 0.961
0.01 0.023 0.024 0.062 0.960
3 0.008 0.050 0.047 0.076 0.970
0.006 0.050 0.047 0.076 0.970
0.004 0.046 0.044 0.075 0.969
4 0.003 0.021 0.072 0.092 0.965
0.002 0.020 0.067 0.091 0.963
0.001 0.010 0.055 0.086 0.958

The average acceleration constants tend to increase with decreasing FPy,,,. For
example, at FP;,,=0.15, it is approximately 0.008, but at FP,,,=0.004, it is about
0.047, almost a 6 fold increase. This trend is a reflection of the increasing slope of the
best-fit line of the SDp,or versus FPg,m, data shown in Table 3.4, which also displays a
6 fold increase. Whether this is a coincidence, or there is a direct proportionality

do,
between a, = —— and

d¢

Op

needs to be further investigated.

The positive values of the acceleration and bias constants each shift the
bootstrap percentiles in the same rightward direction, as seen in Equations (3-8),

leading to &, and &, being greater than 5% and 95%, respectively. Table 3.6 shows
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this to be the case. The increase in @, and S, in turn is reflected in the increase in &,

and @, away from 0.05 and 0.95, as FP,,,, decreases.

To see how the BCA method outperforms the basic pivotal methods in the

present case, let us refer back to Figure 3.8. In Figure 3.8b, we see that although the

A A

estimate ¢, is taken from the region 8, << @, the UCL estimated by the first

A

percentile method is not greater than @, since SDponr < SDax. Those estimated by
the standard and second percentile methods will fall even further short of @ due to
the right-skewed bootstrap distribution. For the BCA method a, > 0 and ,30 >0, and
we see from Equation (3-8) that &, >1— «. Therefore, the BCA estimate of the UCL,
t:,z , will be greater than ?,_, , and the confidence interval can cover 8. The BCA

method can succeed even when the SD of the bootstrap sampling distribution is
smaller than that of the actual sampling distribution, as long as the assumption of
Equation (3-6) is met. In the present case, the probability of ULTL when the BCA
method is applied will thus remain approximately 5% even while those of the basic
pivotal methods exceed this percentage. For example, at FP,,,,=0.004 in run 3, the
proportion of ULTL is approximately 0.1 in the case of the basic pivotal methods, but

is 0.064 in the case of the BCA method. Similar arguments can be used to show that

the percentage of LLTH will remain at approximately 5% even when SDsoor > SD e .
We see that the BCA method is superior to the basic pivotal methods because

it allows for the SD of the sampling distribution to change with the value of the
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parameter being estimated, and accounts for skewed sampling distributions, where the
mean and the median differ. When the sample size is large, or equivalently, when the
number of fatal defects is large, both the basic pivotal methods and the BCA method
work, because at large sample sizes, the SD of the bootstrap sampling distribution
will approximate the SD of the actual sampling distribution, and the sampling
distribution will be closer to being symmetric. But the BCA method will work at
smaller sample sizes where the basic pivotal methods fail, that is, when the SD
estimated from bootstrapping no longer approximates the SD of the actual sampling
distribution, or the sampling distribution becomes skewed.

In run 4, however, we see that even the BCA method of CI estimation fails. In
this run, the sample size is too small, as measured by the smaller values of FP,y.
Since we have approximately 30-40 defects per wafer, at FPy,,,=0.1, we have: 30-40 x
0.1=3-4 fatal defects per wafer, on average. Thus we have approximately 60-80 fatal
defects in each sample of 20 wafers. However, at FP,,,,=0.001, we have, on average,
less than one fatal defect in each sample of 20 wafers. At these sample sizes, the
acceleration and bias constants can no longer be accurately estimated, and, as a result

these estimated BCA parameters can no longer be relied upon.

3.3 Conclusion

Bootstrapping has been applied to estimate the confidence interval for the
fault probability of random defects at values representative of those measured in an

integrated circuit fab. The standard, the first percentile, the second percentile, and the



BCA methods succeed at values of FP between 0.15 and 0.01 where the sample size
is reasonably large. If the sample size is measured by the number of fatal defects, a
reasonably large size might be between 60-80 fatal defects (FP=0.1) and 6-8 fatal
defects (FP=0.01) per sample of 2000 dies. Additionally, the BCA method succeeds
while the other three methods fail when the values of FP range from 0.008 to 0.004,
and the number of fatal defects per sample is between 3 and 6. All four methods fail
when the FP is 0.003 or less, where the number of fatal defects per sample is less than
3.

It was also observed that the standard deviation of the bootstrap sampling
distribution increases with the sample estimate of FP, and the rate of this increase
increases with decreasing values of the population FP. The bootstrap sampling
distributions were also observed to be right-skewed, and become more right-skewed
with decreasing values of the population FP. The success of the BCA method at lower

values of FPy,,, i.c., lower sample sizes, is explained based on its ability to account

A

for the change in SDsoo With FPy,y, via the acceleration constant, and its ability to
account for skewed sampling distributions that have a median bias, via the bias
constant. The right-skewed sampling distributions also lead to the better performance
of the first percentile method over the other basic pivotal methods. When the values
of FPy,, become too low, sample size limits the effectiveness of any method to make

accurate CI estimates.
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4. CONCLUSIONS AND FUTURE WORK

4.1 Conclusions

From the fault probability analysis based on the fab data, we see that the most
reliable means of estimating FP are by means of critical area analysis, and by use of
the defect limited yield equation with the kill ratio. The latter method of FP
estimation is based on defects detected at a specific inspection step and represents the
weighted average of the FP values of the defect mechanisms operating at the process
steps immediately preceding the inspection step. The estimated FP values are based
on the assumption of a Poisson distribution of the defects, but our analysis shows that
this approximation produces negligible error even when clustering is present due to
the relatively low defect density and FP values.

From our bootstrap analysis, we see that the standard, the first percentile, the
second percentile, and the BCA methods succeed at values of FP between 0.15 and
0.01, if the number of die sampled is 2000, and the defect density is between 30 to 40
per wafer. These values of FP correspond to 60-80 fatal defects (FP=0.1) and 6-8 fatal
defects (FP=0.01) per sample. Additionally, the BCA method succeeds while the
other three methods fail when the values of FP range from 0.008 to 0.004, and the
number of fatal defects per sample is between 3 and 6. All four methods fail when the
FP is 0.003 or less, where the number of fatal defects per sample is less than 3. The
success of the BCA method at lower FP is due to its incorporation of the acceleration

factor and the bias constant. The acceleration constant accounts for the change in the
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standard deviation of the sampling distribution of the estimate with the population
parameter being estimated. The bias constant accounts for skewed sampling
distributions that have a median bias. The right-skewed sampling distributions also
lead to the better performance of the first percentile method over the other basic
pivotal methods. When the values of FP,,,, become too low, sample size limits the

effectiveness of any method to make accurate CI estimates.

4.2 Suggestions for Future Work

The current work defines a defect type by where in the inspection process it is
detected by the inspection tools. There is no way of knowing the specific proportions
of each fault mechanism this defect type represents. Also due to limited sample sizes
for larger defects, it is also not practical to classify the defect type by size.

The only way to further classify the current defect types into their components
is by failure analysis at each of the inspections steps. Once an established database of
defect signatures is in place, the use of an automatic defect classification system
(ADC) to supplement the inspection tools would help in automating the classification
of the defects on-line [24-26]. The only way to classify the defect types by size would
be to increase the sample size, i.e., the total number of wafers inspected, so that FP
estimates for larger sized defects would be statistically meaningful. Thus, for
example, instead of classifying a defect type as ISEF only, it could be further broken

down into ISEF-short-Sz5 or ISEF-break-Sz8.
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From our bootstrap analysis we observed that the bootstrap-estimated standard
deviation of the FP estimate changes with the estimated FP. This change appears
linear with respect to the estimated FP. Furthermore the rate of this linear change
increases with the decreasing values of the FP being estimated. It appears that the

relationship may be modeled by the following equation:

0. :EI—'FP+C2 (5-1)

Fp n

A

where o .. is the standard deviation of the FP estimate, FP, C; and C; are constants,
FpP

and n represents the sample size. This equation would explain not only why the

A

bootstrap estimated o . changes linearly with FP, but also why the slope increases
FP

with decreasing FP, as the FP value represents the proportion of fatal defects and is
thus proportional to sample size n. An interesting question is what precisely
constitutes 7 in our case. Since as FP decreases, T-T decreases, n could be
proportional to T-Tg.

Having established that the BCA method is the best method of CI estimation,
perhaps the most important practical issue to be addressed is how do we ascertain that
the BCA method is working in practice. In our simulations, of course, we know the
true value of FP and thus can easily evaluate the reliability of the BCA method. But
what method or criteria can we rely upon when we are given a sample from some

unknown population with many defect types each with unknown FP? More



specifically, how do we know if the sample size is large enough for the BCA-
estimated CI to be reliable? In the literature it is suggested that the sample size should
be at least 30 [27]. But in the case of FP estimation based on in-line defect data we do
not know exactly what constitutes a sample size. Examination of the behavior of the
distribution of the bootstrap estimates may be a good starting point to determine the
adequacy of the bootstrap CI estimate.

Another topic to explore is what is the relationship between the observed

A

slope of o . vs. FPand the acceleration constant used in the BCA method. From our
FP

A

data we can observe that the ratio of the slope of & . vs. FP from one run to another
FP

corresponds to the ratio of the acceleration constants from the same runs. This result
seems reasonable, as the acceleration constant is a measure of the rate of change of
the standard deviation with the parameter being estimated on a normalized scale.

Another result from the bootstrap analysis that should be further addressed is

A

the approximately constant value of the slopes of ¢ . vs. FP within runs, even
P

though the FP changes within each run. This result suggests that the 7 in Equation (5-

1) may be more correlated with T-Tg, than T4-Tga. A related issue is the degree of

A A

covariance or correlation that exists between FP4 and FPy, FP4 and FPc, etc.
Furthermore, how do estimates of their standard deviation or the confidence intervals

change when the relative values of the FP and FPg, or FP4 and FPg, are changed?
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Simulation Code for Ch.3 written in Excel Visual Basic for Applications

Option Explicit
Sub GetCI2()

Dim arAProb() As Long

Dim arBProb() As Long

Dim arCProb() As Long

Dim arWafer() As Integer

Dim arSampFP() As Single
Dim arSampLY() As Single
Dim arRFP() As Single

Dim arStandCIA() As Single
Dim arStandCIB() As Single
Dim arStandCIC() As Single
Dim arlstPrentCIA() As Single
Dim ar1stPrentCIB() As Single
Dim ar1stPrentCIC() As Single
Dim ar2ndPrcntCIA() As Single
Dim ar2ndPrentCIB() As Single
Dim ar2ndPrentCIC() As Single
Dim arBCACIA() As Single
Dim arBCACIB() As Single
Dim arBCACIC() As Single
Dim FPA As Single

Dim FPB As Single

Dim FPC As Single

Dim BValueA As Single

Dim BValueB As Single

Dim BValueC As Single

Dim Aupper As Integer

Dim Alower As Integer

Dim Bupper As Integer

Dim Blower As Integer

Dim Cupper As Integer

Dim Clower As Integer

Dim intNoWafers As Integer
Dim intDieIDCnt As Integer
Dim Row As Integer

Dim TAdefA As Integer

Dim TAdefB As Integer

Dim TAdefC As Integer

Dim TGAdefA As Integer
Dim TGAdefB As Integer
Dim TGAdefC As Integer
Dim TG As Integer

Dim T As Integer

Dim NoClI As Integer
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Dim intNoCICounter As Integer
Dim sngConfLevel As Single
Dimi As Integer

Dim k As Integer

Dim n As Integer

Dimm As Integer

Dim RowNumb As Integer
Dim LastRow As Integer
Dim intRow As Integer

Dim intCol As Integer

Dim B As Integer

'Get input values from WorkSheet 2

With Worksheets("Sheet2")

intNoWafers = .Cells(3, 2).Value
BValueA = .Cells(4, 2).Value

BValueB = .Cells(5, 2).Value
BValueC = .Cells(6, 2).Value
Aupper = .Cells(7, 2).Value
Alower = .Cells(8, 2).Value
Bupper = .Cells(9, 2).Value
Blower = .Cells(10, 2).Value
Cupper = .Cells(11, 2).Value
Clower = .Cells(12, 2).Value
FPA = .Cells(13, 2).Value
FPB = .Cells(14, 2).Value
FPC = Cells(15, 2).Value
NoCI = .Cells(16, 2).Value

sngConfLevel = .Cells(17, 2).Value

B = .Cells(18, 2).Value
End With

ReDim arSampFP(1 To NoClI, 1 To 3)

98

'Number of wafers per sample
'These control the clustering;
'0 corresponds to no clustering

Number of defects per wafer upper
‘and lower limits

'Assigned FP values

Number of CIs to estimate-
'corresponds to number of original samples

"Number of bootstrap samples per original
'sample

'This array holds all the Sample FP estimates

ReDim arSampLY(1 To NoCI, 1 To 3) "This array holds all the Sample LY estimates

ReDim arStandCIA(1 To NoCl, 1 To 7) 'Holds conf. limis etc. for Standard method
ReDim arStandCIB(1 To NoCl, 1 To 7)
ReDim arStandCIC(1 To NoClI, 1 To 7)

ReDim ar1stPrentCIA(1 To NoCIL, 1 To2)  'Holds conf. limts for 1st percentile method
ReDim ar1stPrentCIB(1 To NoClI, 1 To 2)
ReDim arlstPrentCIC(1 To NoCl, 1 To 2)

ReDim ar2ndPrentCIA(1 To NoCI, 1 To2)  'Holds conf. limits for 2nd percentile method
ReDim ar2ndPrentCIB(1 To NoCI, 1 To 2)
ReDim ar2ndPrentCIC(1 To NoCl, 1 To 2)

ReDim arBCACIA(1 To NoClI, 1 To 6) 'Holds conf. limits etc. for BCA method
ReDim arBCACIB(1 To NoClI, 1 To 6)
ReDim arBCACIC(1 To NoCl, 1 To 6)

'Clear previous results
For intRow = 3 To 3002
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For intCol = 3 To 36
Worksheets("Sheet2").Cells(intRow, intCol).Clear
Next intCol
Next intRow
For intRow = 3 To 1002
For intCol = 2 To 256
Worksheets("RFP").Cells(intRow, intCol).Clear
Next intCol
Next intRow

'Start Loop Here
’/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\
For intNoCICounter = 1 To NoCI

'Create Wafer Array showing all dies, number of defects and faults on each

'one of them, and each of their bin numbers

ReDim arWafer(1 To intNoWafers * 100, 1 To 9) 'Holds wafers array

"This subprocedure will create the wafers based on the input paramters
GetWaferArray Aupper, Alower, Bupper, Blower, Cupper, Clower, _
BValueA, BValueB, BValueC, intNoWafers, FPA, FPB, FPC, arWaferHolder:=arWafer

'Display last wafer created on spreadsheet "Wafer"
If intNoCICounter = NoCI Then
LastRow = UBound(arWafer, 1)
With Worksheets("Wafer")
For RowNumb = 1 To LastRow
.Cells(RowNumb + 1, 2).Value = arWafer(RowNumb, 1)
.Cells(RowNumb + 1, 3).Value = arWafer(RowNumb, 2)
.Cells(RowNumb + 1, 4).Value = arWafer(RowNumb, 3)
.Cells(RowNumb + 1, 5).Value = arWafer(RowNumb, 4)
.Cells(RowNumb + 1, 6).Value = arWafer(RowNumb, 5)
Cells(RowNumb + 1, 7).Value = arWafer(RowNumb, 6)
.Cells(RowNumb + 1, 8).Value = arWafer(RowNumb, 7)
.Cells(RowNumb + 1, 9).Value = arWafer(RowNumb, 8)
.Cells(RowNumb + 1, 10).Value = arWafer(RowNumb, 9)
Next RowNumb
End With
End If

'Get TA for each defect type

TAdefA = FuncTA("A", arWaferHolder:=arWafer)
TAdefB = FuncTA("B", arWaferHolder:=arWafer)
TAdefC = FuncTA("C", arWaferHolder:=arWafer)

'Get TGA for each defect type

TGAdefA = FuncTGA("A", arWaferHolder:=arWafer)
TGAdefB = FuncTGA("B", arWaferHolder:=arWafer)
TGAdefC = FuncTGA("C", arWaferHolder:=arWafer)

'‘Get TGand T
TG = FuncTG(arWaferHolder:=arWafer)
T = UBound(arWafer, 1)
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arSampFP(intNoCICounter, 1) = FuncFP(T, TG, TAdefA, TGAdefA, "A", B
arWaferHolder:=arWafer)

arSampFP(intNoCICounter, 2) = FuncFP(T, TG, TAdefB, TGAdefB, "B", _
arWaferHolder:=arWafer)

arSampFP(intNoCICounter, 3) = FuncFP(T, TG, TAdefC, TGAdefC, "C", _
arWaferHolder:=arWafer)

arSampLY (intNoCICounter, 1) = FuncLY(T, TG, TAdefA, TGAdefA)

arSampL Y (infNoCICounter, 2) = FuncLY(T, TG, TAdefB, TGAdefB)

arSampLY (intNoCICounter, 3) = FuncLY(T, TG, TAdefC, TGAdefC)

'Create Array of Bootstrap FP Values from arWafer
CreateRFP Array B, arSampFP(intNoCICounter, 1), arSampFP(intNoCICounter, 2),
arSampFP(intNoCICounter, 3), False, arWaferHolder:=arWafer, arRFPHolder:=arRFP

‘Display bootstrap FP estimates for last 80 original samples (CI's)
If intNoCICounter > NoCI - 80 Then

DisplayRFP 80, NoClI, intNoCICounter, arRFPHolder;=arRFP
End If

‘Display Biases, Variances, and Replicate FP Values for last C.L

If intNoCICounter = NoCI Then
DisplayBR B, arSampFP(intNoCICounter, 1), arSampFP(infNoCICounter, 2),
arSampFP(intNoCICounter, 3), arRFPHolder:=arRFP

DisplayVariance B, arRFPHolder:=arRFP
End If

'Get Standard C.1.'s and store into arStandCIA, arStandCIB, and arStandCIC

GetStandCI "A", sngConfLevel, arSampFP(intNoCICounter, 1), infNoCICounter, _
arRFPHolder:=arRFP, arStandCIHolder:=arStandCIA

GetStandCI "B", sngConfLevel, arSampFP(intNoCICounter, 2), infNoCICounter, _
arRFPHolder:=arRFP, arStandCIHolder:=arStandCIB

GetStandCI "C", sngConfLevel, arSampFP(intNoCICounter, 3), intNoCICounter, _
arRFPHolder:=arRFP, arStandCIHolder:=arStandCIC

'Get 1stPercentile C.1's and store int ar1stPercentCIA, arlstPercentCIB,

'ar1stPercentCIC

GetlstPrentCI "A", sngConfLevel, infNoCICounter, arRFPHolder:=arRFP,
arCIHolder:=ar1stPrcntCIA

Getl1stPrentCI "B", sngConfLevel, intNoCICounter, arRFPHolder:=arRFP, _
arCIHolder:=ar1stPrcntCIB

Getl1stPrentCI "C", sngConfLevel, intNoCICounter, arRFPHolder:=arRFP, _
arCIHolder:=ar1stPrcntCIC

Get2ndPrentCl arSampFP(intNoCICounter, 1), arlstPrentCIA(intNoCICounter, 2), _
ar1stPrentCIA(intNoCICounter, 1), intNoCICounter, arClHolder:=ar2ndPrentCIA

Get2ndPrentCI arSampFP(intNoCICounter, 2), ar1stPrentCIB(intNoCICounter, 2),
ar1stPrentCIB(intNoCICounter, 1), infNoCICounter, arCIHolder:=ar2ndPrentCIB

Get2ndPrentClI arSampFP(intNoCICounter, 3), arlstPrentCIC(intNoCICounter, 2),
arlstPrentCIC(intNoCICounter, 1), intNoCICounter, arCIHolder:=ar2ndPrentCIC



GetBCACIT sngConfLevel, arSampFP(intNoCICounter, 1), arSampFP(intNoCICounter, 2),

arSampFP(intNoCICounter, 3), intNoCICounter, arRFPHolder:=arRFP, _
arBCACIAHolder:=arBCACIA, arBCACIBHolder:=arBCACIB, _
arBCACICHolder:=arBCACIC, arWaferHolder:=arWafer

Next intNoCICounter
'"Loop Ends Here

'/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\

Fori=1To NoCI
With Worksheets("Sheet2")
Cells(i * 3, 3).Value ="A"
Cells(i * 3 + 1, 3).Value = "B"
.Cells(i * 3 + 2, 3).Value = "C"
.Cells(i * 3, 4).Value = arSampFP(j, 1)
Cells(i * 3, 23).Value = arSampLY(j, 1)
.Cells(i * 3, 5).Value = arlstPrentCIA(l, 1)
.Cells(i * 3, 6).Value = arlstPrentCIA(i, 2)
.Cells(i * 3 + 1, 4).Value = arSampFP(i, 2)
Cells(i * 3 + 1, 23).Value = arSampL Y(j, 2)
Cells(i * 3 + 1, 5).Value = arlstPrentCIB(, 1)
Cells(i * 3 + 1, 6).Value = arlstPrentCIB(i, 2)
.Cells(i * 3 + 2, 4).Value = arSampFP(i, 3)
Cells(i * 3 + 2, 23).Value = arSampL Y(j, 3)
Cells(i * 3 + 2, 5).Value = arlstPrentCIC(i, 1)
Cells(i * 3 + 2, 6).Value = ar1stPrcntCIC(i, 2)
If ar1stPrentCIC(i, 1) > FPC Or _
arlstPrentCIC(], 2) < FPC Then
.Cells(i * 3 + 2, 7).Value = "Failed"
End If
If ar1stPrentCIB(i, 1) > FPB Or _
arlstPrentCIB(i, 2) < FPB Then
.Cells(i * 3 + 1, 7).Value = "Failed"
End If
If arlstPrentCIA(G, 1) > FPA Or _
arlstPrentCIA(), 2) < FPA Then
.Cells(i * 3, 7).Value = "Failed"
End If
Cells(i * 3, 8).Value = ar2ndPrentCIA(, 1)
Cells(i * 3, 9).Value = ar2ndPrentCIA(, 2)
.Cells(i * 3 + 1, 8).Value = ar2ndPrentCIB(, 1)
Cells(i * 3 + 1, 9).Value = ar2ndPrcntCIB(, 2)
Cells(i * 3 + 2, 8).Value = ar2ndPrcntCIC(, 1)
Cells(i * 3 + 2, 9). Value = ar2ndPrentCIC(], 2)
If ar2ndPrentCIC(j, 1) > FPC Or _
ar2ndPrentCIC(i, 2) < FPC Then
Cells(i * 3 + 2, 10).Value = "Failed"
End If
If ar2ndPrentCIB(1, 1) > FPB Or _
ar2ndPrentCIB(), 2) < FPB Then
Cells(i * 3 + 1, 10).Value = "Failed"
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End If

If ar2ndPrentCIA(i, 1) > FPA Or _
ar2ndPrentCIA(], 2) < FPA Then
.Cells(i * 3, 10).Value = "Failed"

End If

If ar2ndPrentCIC(i, 1) > FPC Or _
ar2ndPrentCIC(i, 2) < FPC Then
.Cells(i * 3 + 2, 10).Value = "Failed"
End If
If ar2ndPrentCIB(i, 1) > FPB Or _
ar2ndPrentCIB(}, 2) < FPB Then
.Cells(i * 3 + 1, 10).Value = "Faijled"
End If
If ar2ndPrentCIA(], 1) > FPA Or _
ar2ndPrentCIA(], 2) < FPA Then
.Cells(i * 3, 10).Value = "Failed"
End If
Fork=1To 7
Cells(i * 3 + 2, 10 + k). Value = arStandCIC(j, k)
Cells(i * 3 + 1, 10 + k). Value = arStandCIB(j, k)
Cells(i * 3, 10 + k).Value = arStandCIA(j, k)
Next k
If arStandCIC(i, 6) > FPC Or _
arStandCIC(i, 7) < FPC Then
.Cells(i * 3 + 2, 18) = "Failed"
End If
If arStandCIB(i, 6) > FPB Or _
arStandCIB(i, 7) < FPB Then
.Cells(i * 3 + 1, 18) = "Failed"
End If
If arStandCIA(j, 6) > FPA Or _
arStandCIA(i, 7) < FPA Then
.Cells(i * 3, 18) = "Failed"
End If

Fork=1To 6
Cells(i * 3 +2, 24 + k). Value = arBCACIC(, k)
Cells(i * 3 + 1, 24 + k).Value = arBCACIB(], k)
Cells(i * 3, 24 + k).Value = arBCACIA(, k)
Next k
If arBCACIC(j, 5) > FPC Or _
atBCACIC(i, 6) < FPC Then
.Cells(i *3 + 2, 31) = "Failed"
End If
If arBCACIB(, 5) > FPB Or _
arBCACIB(, 6) < FPB Then
.Cells(i * 3 + 1, 31) = "Failed"
End If
If arBCACIA(], 5) > FPA Or _
arBCACIA(, 6) < FPA Then
.Cells(i * 3, 31) = "Failed"
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End If

End With
Next i

MsgBox ("OkeyDokey")

End Sub

Function FuncNoPoints(ByRef arProb() As Long) As Integer
Dim upperbound As Long

Dim RandNumber As Long

Dim n As Integer

upperbound = arProb(UBound(arProb, 1), 4)
Randomize Timer
RandNumber = Int((upperbound - 1 + 1) * Rnd + 1)

For n= 1 To UBound(arProb, 1)
If RandNumber >= arProb(n, 3) And RandNumber <= arProb(n, 4) Then
FuncNoPoints = arProb(n, 1)
Exit Function
End If
Next n

End Function

Function FuncNoBadPoints(ByVal NoPoints As Integer, ByVal FP As Single) As Integer
Dim intPointsCnt As Integer

Dim RandNumber As Integer

Dim n As Integer

For intPointsCnt = 1 To NoPoints
Randomize Timer
RandNumber = Int((10000 - 1 + 1) * Rnd + 1)
If RandNumber <= CInt(FP * 10000) Then
n=n+1
End If
Next intPointsCnt

FuncNoBadPoints = n
End Function

Function FuncProb(n As Integer, DD As Double, alpha As Double) As Double
Dim upperGuy As Double
Dim lowerGuy As Double

upperGuy = (Exp(Excel. WorksheetFunction.GammaLn(alpha + n)))
* (DD / alpha) " n

lowerGuy = Excel. WorksheetFunction.Fact(n) * _
(Exp(Excel. WorksheetFunction.GammaLn(alpha)))
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*(1+ DD/ alpha) " (n + alpha)
FuncProb = upperGuy / lowerGuy

End Function

Sub CreateProbArray(ByVal DD As Double, ByVal alpha As Double,
ByRef arFinalProb() As Long)

Dim n As Integer

Dim Row As Integer

Dim arProb(1 To 100, 1 To 4)

n=0
Do
arProb(n+ 1, 1)=n
arProb(n + 1, 2) = CLng(10000000 * FuncProb(n, DD, alpha))
If n=0 Then
arProb(n+1,3) =1
arProb(n + 1, 4) = arProb(n + 1, 2)
Else
arProb(n + 1, 3) = arProb(n, 4) + 1
arProb(n + 1, 4) = arProb(n, 4) + arProb(n + 1, 2)
End If

n=n+1
Loop While (CLng(1000000 * FuncProb(n, DD, alpha))) > 0

ReDim arFinalProb(1 To n, 1 To 4)
ForRow=1Ton
arFinalProb(Row, 1) = arProb(Row, 1)
arFinalProb(Row, 2) = arProb(Row, 2)
arFinalProb(Row, 3) = arProb(Row, 3)
arFinalProb(Row, 4) = arProb(Row, 4)
| Next Row

| End Sub
Function FuncBinNumber(ByVal ANoBadPoints As Integer, ByVal BNoBadPoints As Integer, _
‘ ByVal CNoBadPoints As Integer) As Integer

‘ If ANoBadPoints > 0 Or BNoBadPoints > 0 Or CNoBadPoints > 0 Then
FuncBinNumber = §
Else
FuncBinNumber = 1
End If

End Function

Function FuncTA(ByVal strDefType As String, ByRef arWaferHolder() As Integer)
As Integer

Dim intCol As Integer

Dim i As Integer

Dim TA As Integer

If sttDefType = "A" Then




intCol =3

Elself strDefType = "B" Then
intCol =5

Else
intCol = 7

End If

For i =1 To UBound(arWaferHolder, 1)
If arWaferHolder(i, intCol) > 0 Then
TA=TA+1
End If
Next i

FuncTA =TA
End Function

Function FuncTGA(ByVal strDefType As String, ByRef arWaferHolder() As Integer) _

As Integer
Dim intCol As Integer
Dim i As Integer
Dim TGA As Integer

If strDefType = "A" Then
intCol =3

Elself strDefType = "B" Then
intCol =5

Else
intCol = 7

End If

For i =1 To UBound(arWaferHolder, 1)
If arWaferHolder(i, intCol) > 0 And arWaferHolder(i, 9) = 1 Then
TGA=TGA+1
End If
Next i

FuncTGA = TGA

End Function

Function FuncTG(ByRef arWaferHolder() As Integer) _
As Integer

Dimi As Integer

Dim TG As Integer

For i= 1 To UBound(arWaferHolder, 1)
If arWaferHolder(i, 9) = 1 Then
TG=TG+1
End If
Next i

FuncTG = TG
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End Function

Function FuncFP(ByVal T As Double, ByVal TG As Double, ByVal TA As Double, _
ByVal TGA As Double, ByVal sttDefType As String,
ByRef arWaferHolder() As Integer) As Double

Dim intCol As Integer

Dim i As Integer

Dim TotDefs As Integer

Dim TotDie As Integer

If sttDefType = "1" Then
intCol = 1

Elself strDefType = "A" Then
intCol =3

Elself strDefType = "B" Then
intCol = 5

Else
intCol =7

End If

TotDie=T

Fori=1 To TotDie
TotDefs = arWaferHolder(i, intCol) + TotDefs
Next i

FuncFP = -Log(TG * (T - TA)/ (T * (TG - TGA))) / (TotDefs / TotDie)

End Function
Function FuncLY(ByVal T As Double, ByVal TG As Double, ByVal TA As Double, _
ByVal TGA As Double) As Double

FuncLY = TG * (T - TA) / (T * (TG - TGA))
If FuncLY > 1 Then

FunclLY =1
End If

End Function

Sub CreateRFPArray(ByVal intNoReplicates As Integer, ByVal SampFPA As Single,
ByVal SampFPB As Single, ByVal SampFPC As Single, boolZ As Boolean, _
arWaferHolder() As Integer, ByRef arRFPHolder() As Single)

Dim arWaferbootstrap() As Integer

Dim upperbound As Integer

Dimi As Integer

Dim T As Integer

Dim TG As Integer

Dim TAdefA As Integer

Dim TAdefB As Integer

Dim TAdefC As Integer

Dim TGAdefA As Integer

Dim TGAdefB As Integer

Dim TGAdefC As Integer

Dim intNoReplicatesCnt As Integer
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Dim RandNumber As Integer

If boolZ = True Then

ReDim arRFPHolder(1 To intNoReplicates, 1 To 6)
Else

ReDim arRFPHolder(1 To intNoReplicates, 1 To 3)
End If

upperbound = UBound(arWaferHolder, 1)
T = upperbound

For intNoReplicatesCnt = 1 To intNoReplicates
ReDim arWaferbootstrap(1 To upperbound, 1 To 9)

Randomize Timer

Fori=1 To upperbound
'Randomly pick a die number between 1 and Number of Total Die
RandNumber = Int((upperbound - 1 + 1) * Rnd + 1)
arWaferbootstrap(i, 1) = arWaferHolder(RandNumber, 1)
arWaferbootstrap(i, 2) = arWaferHolder(RandNumber, 2)
arWaferbootstrap(i, 3) = arWaferHolder(RandNumber, 3)
arWaferbootstrap(i, 4) = arWaferHolder(RandNumber, 4)
arWaferbootstrap(i, 5) = arWaferHolder(RandNumber, 5)
arWaferbootstrap(i, 6) = arWaferHolder(RandNumber, 6)
arWaferbootstrap(i, 7) = arWaferHolder(RandNumber, 7)
arWaferbootstrap(i, 8) = arWaferHolder(RandNumber, 8)
arWaferbootstrap(i, 9) = arWaferHolder(RandNumber, 9)

Next i

TAdefA = FuncTA("A", arWaferHolder:=arWaferbootstrap)
TAdefB = FuncTA("B", arWaferHolder:=arWaferbootstrap)
TAdefC = FuncTA("C", arWaferHolder:=arWaferbootstrap)

TGAdefA =FuncTGA("A", arWaferHolder:=arWaferbootstrap)
TGAdefB = FuncTGA("B", arWaferHolder:=arWaferbootstrap)
TGAdefC = FuncTGA("C", arWaferHolder:=arWaferbootstrap)

TG = FuncTG(arWaferHolder:=arWaferbootstrap)

arRFPHolder(intNoReplicatesCnt, 1) = FuncFP(T, TG, TAdefA, TGAdefA, "A", _
arWaferHolder:=arWaferbootstrap)
arRFPHolder(intNoReplicatesCnt, 2) = FuncFP(T, TG, TAdefB, TGAdefB, "B",
arWaferHolder:=arWaferbootstrap)
arRFPHolder(intNoReplicatesCnt, 3) = FuncFP(T, TG, TAdefC, TGAdefC, "C", _
arWaferHolder:=arWaferbootstrap)
It arRFPHolder(intNoReplicatesCnt, 1) = 0 Or arRFPHolder(intNoReplicatesCnt, 2) =0 _
Or arRFPHolder(intNoReplicatesCnt, 3) = 0 Then
'intNoReplicatesCnt = intNoReplicatesCnt - 1
"End If

If boolZ = True Then
arRFPHolder(intNoReplicatesCnt, 4) = ZFunc("A", SampFPA, arRFPHolder _
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(intNoReplicatesCnt, 1), arWaferbootstrapHolder:=arWaferbootstrap)
arRFPHolder(intNoReplicatesCnt, 5) = ZFunc("B", SampFPB, arRFPHolder _
(intNoReplicatesCnt, 2), arWaferbootstrapHolder:=arWaferbootstrap)
arRFPHolder(intNoReplicatesCnt, 6) = ZFunc("C", SampFPC, arRFPHolder _
(intNoReplicatesCnt, 3), arWaferbootstrapHolder:=arWaferbootstrap)
End If

Next intNoReplicatesCnt
End Sub

Sub GetStandCI(ByVal strDefType As String, ByVal sngConfLevel As Single,
ByVal SampFP As Single, ByVal intCINoCnter As Integer,
ByRef arRFPHolder() As Single, ByRef arStandCIHolder)

Dim SampFPrnd As Double

Dim SampFPfaults As Double

Dim AvgBootFP As Single

Dim StDevFP As Single

Dim alpha As Single

alpha =1 - sngConfLevel
AvgBootFP = FuncAvgBootFP(strDefType, arRFPHolder:=arRFPHolder)
StDevFP = FuncStDevBootFP(strDefType, AvgBootFP, arRFPHolder:=arRFPHolder)

arStandCIHolder(intCINoCnter, 1) = SampFP
arStandCIHolder(intCINoChnter, 2) = AvgBootFP
arStandCIHolder(intCINoCnter, 3) = StDevFP
arStandCIHolder(intCINoCnter, 4) = AvgBootFP - SampFP
arStandCIHolder(intCINoCnter, 5) = (sngConfLevel) * 100
arStandCIHolder(intCINoCnter, 6) = SampFP - (AvgBootFP - SampFP) -
StDevFP * (Excel. WorksheetFunction.NormSInv(1 - alpha / 2))
arStandCIHolder(intCINoCnter, 7) = SampFP - (AvgBootFP - SampFP) -
StDevFP * (Excel.WorksheetFunction.NormSInv(alpha / 2))

End Sub

Function FuncStDevBootFP(ByVal strDefType, ByVal AvgBootFP As Single,
arRFPHolder() As Single) As Double

Dim Sum As Double

Dim intCol As Integer

Dimi As Integer

Dim upperbound As Integer

If strDefType = "A" Or strDefType = "1" Then
ntCol =1

Elself strDefType = "B" Then
intCol = 2

Else
intCol =3

End If

upperbound = UBound(arRFPHolder, 1)



For i=1 To upperbound
Sum = (arRFPHolder(i, intCol) - AvgBootFP) » 2 + Sum
Next i

FuncStDevBootFP = (Sum / (upperbound - 1)) ~ (0.5)
End Function

Function FuncAvgBootFP(ByVal strDefType, ByRef arRFPHolder() As Single) As Double
Dim Total As Double

Dim Sum As Double

Dim intCol As Integer

Dim i As Integer

Dim upperbound As Integer

If strDefT'ype = "A" Or strDefType = "1" Then
intCol = 1

Elself strDefType = "B" Then
intCol = 2

Else
intCol = 3

End If

upperbound = UBound(arRFPHolder, 1)

For i =1 To upperbound
Total = arRFPHolder(i, intCol) + Total
Next i

FuncAvgBootFP = Total / upperbound
End Function

Sub CreateSortedArray(ByVal sttDefType As String, ByRef arRFPHolder() As Single)
Dimi As Integer

Dim j As Integer

Dim tmp As Single

Dim intCol As Integer

If strDefType = "A" Or strDefType = "1" Then
intCol = 1

Elself strDefType = "B" Then
intCol = 2

Else
intCol = 3

End If

For 1= LBound(arRFPHolder, 1) To UBound(arRFPHolder, 1) - 1
For j = (i + 1) To UBound(arRFPHolder, 1)
If arRFPHolder(i, intCol) > arRFPHolder(j, intCol) Then
tmp = arRFPHolder(i, intCol)
arRFPHolder(i, intCol) = arRFPHolder(j, intCol)
arRFPHolder(j, intCol) = tmp
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End If
Next j
Next i

End Sub

Sub CreateSortedTArray(ByVal strDefType As String, ByRef arRFPHolder() As Single)
Dimi As Integer

Dim j As Integer

Dim tmp As Single

Dim intCol As Integer

If strDefType = "A" Or strDefType = "1" Then
intCol =4

Elself strDefType = "B" Then
intCol =5

Else
intCol = 6

End If

For i = LBound(arRFPHolder, 1) To UBound(arRFPHolder, 1) - 1
For j = (i+ 1) To UBound(arRFPHolder, 1)
If arRFPHolder(i, intCol) > arRFPHolder(j, intCol) Then
tmp = arRFPHolder(i, intCol)
arRFPHolder(i, intCol) = arRFPHolder(j, intCol)
arRFPHolder(j, intCol) = tmp
End If
Next j
Next i

End Sub

Sub GetlstPrentCI(ByVal strDefType As String, ByVal sngConfLevel As Single,
ByVal intCINoCnter As Integer, ByRef arRFPHolder() As Single,
ByRef arCIHolder() As Single)

Dim intLRow As Integer

Dim intURow As Integer

Dim intCol As Integer

Dim bootFPlow As Single

Dim bootFPhigh As Single

Dim alpha As Single

If strDefType = "A" Then
intCol = 1

Elself sttDefType = "B" Then
intCol = 2

Else
intCol =3

End If

CreateSortedArray strDefType, arRFPHolder:=arRFPHolder
alpha = 1 - sngConfLevel

intLRow = Int(UBound(arRFPHolder, 1) * alpha / 2) + 1
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intURow = Int(UBound(arRFPHolder, 1) * (1 - alpha / 2)) + 1

bootFPlow = arRFPHolder(intLRow, intCol)
bootFPhigh = arRFPHolder(intURow, intCol)

arCIHolder(intCINoCnter, 1) = bootFPlow
arCIHolder(intCINoCnter, 2) = bootFPhigh

End Sub

Sub Get2ndPrentCI(ByVal SampFP As Single, ByVal FP1stPrenthigh As Single,
ByVal FP1stPrentlow As Single, intCINoCnter As Integer, ByRef arCIHolder() As _
Single)

Dim bootFPlow As Single

Dim bootFPhigh As Single

bootFPlow = 2 * SampFP - FP1stPrcnthigh
bootFPhigh = 2 * SampFP - FP1stPrcntlow

arCIHolder(intCINoCnter, 1) = bootFPlow
arCIHolder(intCINoChnter, 2) = bootFPhigh

End Sub

Sub GetWaferArray(Aupper As Integer, Alower As Integer, Bupper As Integer, Blower As
Integer, Cupper As Integer, Clower As Integer, BValueA As Single, BValueB As
Single, BValueC As Single, IngWaferNo As Integer, FPA As Single,
FPB As Single, FPC As Single, arWaferHolder() As Integer)

Dim A(1 To 52, 1 To 52) As Integer

Dim B(1 To 52, 1 To 52) As Integer

Dim C(1 To 52, 1 To 52) As Integer

Dim ANoOfPoints As Integer

Dim BNoOfPoints As Integer

Dim CNoOfPoints As Integer

Dim NoA As Integer

Dim NoB As Integer

Dim NoC As Integer

Dim Row As Integer

Dim Col As Integer

Dim i As Integer

Dimj As Integer

Dim k As Integer

Dim m As Integer

Dim n As Integer

Dimp As Integer

Dim IngWaferCounter As Long

Dim DiePointsA(1 To 10, 1 To 10) As Integer

Dim DiePointsB(1 To 10, 1 To 10) As Integer

Dim DiePointsC(1 To 10, 1 To 10) As Integer

Dim intDieIDCnt As Integer

'Initialize Total Points Tracker



NoA=0
NoB=0
NoC=0

For IngWaferCounter = 1 To IngWaferNo

'Initialize Arrays to 0
Fori=1To UBound(A, 1)
Forj =1 To UBound(A, 2)
AG4, =0
B@,j)=0
C4,j)=0
Next j
Next i

'Assign Random Number of Points for each Defect Type
ANoOfPoints = RandNum(Aupper, Alower)
BNoOfPoints = RandNum(Bupper, Blower)
CNoOfPoints = RandNum(Cupper, Clower)

'Generate Negative Binomial Arrays

Randomize Timer

RandomizeArray ArrayHolder2:=A, NoOfPoints:=
ANoOfPoints, B:=BValuecA

RandomizeArray ArrayHolder2:=B, NoOfPoints:= _
BNoOfPoints, B:=BValueB

RandomizeArray ArrayHolder2:=C, NoOfPoints:= _
CNoOfPoints, B:=BValueC

Row =0
Col=0
Fori=1To 10
Forj=1To 10
DiePointsA(i, j) =0
DiePointsB(i, j) = 0
DiePointsC(i, j) = 0
Next j
Next i

Fori=2 To 51 Step 5
Row = Row + 1

Col=0
Forj=2To 51 Step 5
Col=Col +1

Fork=iToi+4
Form=jToj+4
DiePointsA(Row, Col) = A(k, m) + DiePointsA(Row, Col)
DiePointsB(Row, Col) = B(k, m) + DiePointsB(Row, Col)
DiePointsC(Row, Col) = C(k, m) + DiePointsC(Row, Col)
Next m
Next k
Nextj
Next i
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n=0
p=0
For intDielDCnt = (IngWaferCounter - 1) * 100 + 1 To (IngWaferCounter - 1) * 100 + 100
| n=n+1
If p <10 Then
p=p+1
Else
p=1
End If

arWaferHolder(intDieIDChnt, 1) = Int((intDieIDCnt / 100 - 0.00001) + 1)
arWaferHolder(intDieIDChnt, 2) = intDieIDCnt

Defect Type A

arWaferHolder(intDieIDCnt, 3) = DiePointsA(p, Int(n / 10 - 0.0001) + 1)
arWaferHolder(intDieIDCnt, 4) = FuncNoBadPoints(arWaferHolder(intDieIDCnt, 3), FPA)
Defect Type B

arWaferHolder(intDieIDCnt, 5) = DiePointsB(p, Int(n / 10 - 0.0001) + 1)
arWaferHolder(intDieIDCnt, 6) = FuncNoBadPoints(arWaferHolder(intDieIDCnt, 5), FPB)
"Defect Type C

arWaferHolder(intDieIDCnt, 7) = DiePointsC(p, Int(n/ 10 - 0.0001) + 1)
arWaferHolder(intDieIDCnt, 8) = FuncNoBadPoints(arWaferHolder(intDieIDCnt, 7), FPC)

arWaferHolder(intDieIDCnt, 9) = FuncBinNumber(arWaferHolder(intDieIDCnt, 4),
arWaferHolder(intDieIDCnt, 6), arWaferHolder(intDieIDCnt, 8))
Next intDieIDCnt

Next IngWaferCounter

End Sub .
'******************************************************************************
Function Test1(ByVal Aij As Integer, ByVal Tot As Integer, _

ByVal B As Single, i As Integer, _

J As Integer, intElements As Integer, ArrayHolder() As Integer) As _

Integer
Const constA As Single = 0.5
Dim sngC As Single

sngC = 1/ intElements

Aij = Ajj + constA * (ArrayHolder(i- 1,j) + _
ArrayHolder(i + 1, j) + ArrayHolder(i, j - 1) + _
ArrayHolder(i, j + 1))

If (Aij * B + sngC) / (Tot * B + sngC * intElements) _
> Rnd Then
Testi =1

Else
Testl =0

End If

End Function
Function ArrayTotalPoints(ArrayHolder() As Integer) As _
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Integer
Dim i As Integer
Dim j As Integer
ArrayTotalPoints = Q
Fori=1 To UBound(ArrayHolder, 1)
For j = 1 To UBound(ArrayHolder, 2)
ArrayTotalPoints = ArrayHolder(i, j) + _
ArrayTotalPoints
Next)
Next i
End Function
Sub RandomizeArray(ArrayHolder2() As Integer, ByVal NoOfPoints
As Long, ByVal B As Single)
Dim T As Integer
Dimi As Integer
Dim j As Integer
Dim intElements As Integer

intElements = UBound(ArrayHolder2, 2) * UBound(ArrayHolder2, 1)
Do While ArrayTotalPoints(ArrayHolder:=ArrayHolder2)
< NoOfPoints
T = ArrayTotalPoints(ArrayHolder:=ArrayHolder2)
For i =2 To UBound(ArrayHolder2, 1) - 1
For j = 2 To UBound(ArrayHolder2, 2) - 1
ArrayHolder2(i, j) =
ArrayHolder2(i, j) +
Testl(ArrayHolder2(j, j), T, B, _
1, j, intElements, ArrayHolder2())
Next j
Next i
Loop

End Sub
Function RandNum(ByVal upperbound As Integer, ByVal _
lowerbound As Integer) As Integer

If upperbound = 0 And lowerbound = 0 Then
RandNum =0
Else
RandNum = Int((upperbound - lowerbound + 1) _
* Rnd + lowerbound)
End If

End Function

Function ZFunc(strDefType As String, SampFP As Single, BootFP As Single,
arWaferbootstrapHolder() As Integer) As Double

Dim arRFPHolder(1 To 25, 1 To 1) As Single

Dim intNoReplicatesCnt As Integer

Dim upperbound As Integer

Dim RandNumber As Integer

Dim arWaferbootstrap() As Integer

Dim i As Integer
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Dim T As Integer
Dim TG As Integer
Dim TA As Integer
Dim TGA As Integer
Dim avg As Double
Dim StDev As Double

upperbound = UBound(arWaferbootstrapHolder, 1)

For intNoReplicatesCnt = 1 To 25 'Number of Replicates
ReDim arWaferbootstrap(1 To upperbound, 1 To 9)

Randomize Timer

Fori=1 To upperbound
'Randomly pick a die number between 1 and Number of Total Die
RandNumber = Int((upperbound - 1 + 1) * Rnd + 1)
arWaferbootstrap(i, 1) = arWaferbootstrapHolder(RandNumber, 1)
arWaferbootstrap(i, 2) = arWaferbootstrapHolder(RandNumber, 2)
arWaferbootstrap(i, 3) = arWaferbootstrapHolder(RandNumber, 3)
arWaferbootstrap(i, 4) = arWaferbootstrapHolder(RandNumber, 4)
arWaferbootstrap(i, 5) = arWaferbootstrapHolder(RandNumber, 5)
arWaferbootstrap(i, 6) = arWaferbootstrapHolder(RandNumber, 6)
arWaferbootstrap(i, 7) = arWaferbootstrapHolder(RandNumber, 7)
arWaferbootstrap(i, 8) = arWaferbootstrapHolder(RandNumber, 8)
arWaferbootstrap(i, 9) = arWaferbootstrapHolder(RandNumber, 9)

Next i

TA = FuncTA(strDefType, arWaferHolder:=arWaferbootstrap)

TGA = FuncTGA(strDefType, arWaferHolder:=arWaferbootstrap)

TG = FuncTG(arWaferHolder:=arWaferbootstrap)

T = upperbound

arRFPHolder(intNoReplicatesCnt, 1) = FuncFP(T, TG, TA, TGA, strDefType, _
arWaferHolder:=arWaferbootstrap)

Next intNoReplicatesCnt

avg = FuncAvgBootFP("1", arRFPHolder:=arRFPHolder)

StDev = FuncStDevBootFP("1", avg, arRFPHolder:=arRFPHolder)

ZFunc = (BootFP - SampFP) / (StDev / 5)

End Function

Sub GetbootstrapT(ByVal strDefType As String, ByVal sngConfLevel As Single,
ByVal SampFP As Single, ByVal intCINoCnter As Integer, _
ByRef arRFPHolder() As Single, ByRef arCIHolder)
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Dim SampFPrnd As Double
Dim SampFPfaults As Double
Dim AvgBootFP As Single
Dim StDevFP As Single

Dim alpha As Single

Dim intCol As Integer

Dim intLRow As Integer

Dim intURow As Integer
Dim boottlow As Double
Dim bootthigh As Single

alpha = 1 - sngConfLevel
AvgBootFP = FuncAvgBootFP(strDefType, arRFPHolder:=arRFPHolder)
StDevFP = FuncStDevBootFP(sttDefType, AvgBootFP, arRFPHolder:=arRFPHolder)

If strtDefType = "A" Then
intCol = 4

Elself strDefType = "B" Then
ntCol = 5

Else
ntCol = 6

End If

CreateSortedTArray strDefType, arRFPHolder:=arRFPHolder

intLRow = Int(UBound(arRFPHolder, 1) * alpha / 2) + 1
intURow = Int(UBound(arRFPHolder, 1) * (1 - alpha / 2)) + 1

boottlow = arRFPHolder(intLRow, intCol)
bootthigh = arRFPHolder(intURow, intCol)

arCIHolder(intCINoChnter, 1) = boottlow
arCIHolder(intCINoCnter, 2) = bootthigh
arClHolder(intCINoCnter, 3) = SampFP - bootthigh * StDevFP
arCIHolder(intCINoCnter, 4) = SampFP - boottlow * StDevFP

End Sub

Sub DisplayBR(B As Integer, SampFPA As Single, SampFPB As Single, SampFPC As Single,
arRFPHolder() As Single)

Dim colR As New Collection

Dim intR

Dim SampFP(1 To 3) As Single

Dimi As Integer

Dim Sum As Double

Dim arBR() As Single

Dim intRow As Integer

Dim intCol As Integer

SampFP(1) = SampFPA
SampFP(2) = SampFPB
SampFP(3) = SampFPC
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Fori=1ToB/20
colR.Add 20 *
Next i

ReDim arBR(1 To colR.Count, 1 To 4)

For Each intR In colR
arBR(intR / 20, 1) = ntR
Next intR

For intCol=1To 3
For Each intR In colR
Sum =0
Fori=1 To intR
Sum = Sum + arRFPHolder(i, intCol)
Next i
arBR(intR / 20, intCol + 1) = Sum / intR - SampFP(intCol)
Next intR
Next intCol

With Worksheets("BR")

For intRow = 1 To UBound(arBR, 1)
.Cells(intRow + 1, 1).Value = arBR(intRow, 1)
.Cells(intRow + 1, 2).Value = arBR(intRow, 2)
.Cells(intRow + 1, 3).Value = arBR(intRow, 3)
Cells(intRow + 1, 4).Value = arBR(intRow, 4)

Next intRow

End With

End Sub

Sub DisplayVariance(B As Integer, arRFPHolder() As Single)
Dim colR As New Collection

Dim intR

Dimi As Integer

Dim Sum As Double

Dim Sum2 As Double

Dim arVR() As Single

Dim intRow As Integer

Dim intCol As Integer

Dim avg As Double

Fori=1ToB/20
colR.Add 20 * i
Next i
ReDim arVR(1 To colR.Count, 1 To 4)

For Each intR In colR
arVR(intR / 20, 1) = intR
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‘ Next intR

‘ For intCol =1 To 3
For Each intR In colR
| Sum=0
Fori=1 To intR
| Sum = Sum + arRFPHolder(i, intCol)
Next i
avg = Sum/ intR
Sum2 =0
Fori=1 To intR
Sum2 = Sum?2 + (arRFPHolder(j, intCol) - avg) * 2
Next i
arVR(intR / 20, intCol + 1) = Sum2 / (intR - 1)
Next intR
| Next intCol

With Worksheets("VarR")

For intRow = 1 To UBound(arVR, 1)
Cells(intRow + 1, 1).Value = arVR(intRow, 1)
.Cells(intRow + 1, 2).Value = arVR (intRow, 2)
.Cells(intRow + 1, 3).Value = arVR(intRow, 3)
.Cells(intRow + 1, 4).Value = arVR(intRow, 4)

Next intRow

End With

End Sub

Sub DisplayRFP(intNoofDisp As Integer, intNoClI As Integer, intNoClICnter As Integer,

arRFPHolder() As Single)

Dim intRow As Integer

Dimn As Integer

Dim intN As Integer

Dim i As Integer
n = intNoCl - intNoCICnter + 1
mntN = intNoofDisp - n

With Worksheets("RFP")
For intRow = 1 To UBound(arRFPHolder, 1)
If n = intNoofDisp Then
Cells(intRow + 1, 1).Value = intRow
Fori=1 To intNoofDisp
Lells(1,2+3 *(i-1)).Value =1
Next i
End If
Cells(intRow + 1, 2 + 3 * intN).Value = arRFPHolder(intRow, 1)
Cells(intRow + 1, 3 + 3 * intN).Value = arRFPHolder(intRow, 2)
.Cells(intRow + 1, 4 + 3 * intN).Value = arRFPHolder(intRow, 3)
Next intRow
End With

| End Sub
Sub GetBCACI(ByVal sngConfLevel As Single, _

118



ByVal SampFPA As Single, ByVal SampFPB As Single, ByVal SampFPC As Single,
intCINoCnter As Integer, ByRef arRFPHolder() As Single, ByRef arBCACIAHolder() _
As Single, ByRef arBCACIBHolder() As Single, ByRef arBCACICHolder() As Single,
ByRef arWaferHolder() As Integer)

Dim SampFPrnd As Double
Dim SampFPfaults As Double
Dim AvgBootFP As Single

Dim StDevFP As Single

Dim alpha As Single

Dim intCol As Integer

Dim upperbound As Integer
Dim upperbound? As Integer
Dim zo As Double

Dim i As Integer

Dim k As Integer

Dimn As Single

Dim arWaferlessone() As Integer
Dim arSampFP(1 To 3) As Single
Dim arzo(1 To 3) As Single

Dim arSum(1 To 3) As Double
Dim ara(1 To 3) As Double

Dim arAvg(1 To 3) As Double
Dim aralphal(1 To 3) As Double
Dim aralpha2(1 To 3) As Double
Dim arFPlow(1 To 3) As Double
Dim arFPhigh(1 To 3) As Double
Dim arFP() As Double

Dim TAdefA As Integer

Dim TAdefB As Integer

Dim TAdefC As Integer

Dim TGAdefA As Integer

Dim TGAdefB As Integer

Dim TGAdefC As Integer

Dim TG As Integer

Dim T As Integer

Dim topguy As Double

Dim bottguy As Double

Dim intLRow As Integer

Dim intURow As Integer

Dim colnumb As Integer

arSampFP(1) = SampFPA
arSampFP(2) = SampFPB
arSampFP(3) = SampFPC

alpha = 1 - sngConfLevel

upperbound = UBound(arRFPHolder, 1)

For intCol =1 To 3
n=0
Fori=1 To upperbound

If arRFPHolder(i, intCol) < arSampFP(intCol) Then

n=n+1
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End If
Next i
If n =0 Then
n=0.01
End If
arzo(intCol) = WorksheetFunction.NormSInv(n / upperbound)
Next intCol

upperbound2 = UBound(arWaferHolder, 1)
ReDim arFP(1 To upperbound2, 1 To 3)

For i=1 To upperbound2
ReDim arWaferlessone(1 To upperbound?2 - 1, 1 To 9)
For k = 1 To upperbound2
Ifk <>1iThen
Ifk>1i Then
For colnumb =1 To 9
arWaferlessone(k - 1, colnumb) = arWaferHolder(k, colnumb)
Next colnumb
Else
For colnumb=1To 9
arWaferlessone(k, colnumb) = arWaferHolder(k, colnumb)
Next colnumb
End If
End If
Next k
TAdefA = FuncTA("A", arWaferHolder:=arW aferlessone)
TAdefB = FuncTA("B", arWaferHolder:=arWaferlessone)
TAdefC = FuncTA("C", arWaferHolder:=arWaferlessone)

TGAdefA = FuncTGA("A", arWaferHolder:=arWaferlessone)
TGAdefB = FuncTGA("B", arWaferHolder:=arWaferlessone)
TGAdefC = FuncTGA("C", arWaferHolder:=arWaferlessone)

TG = FuncTG(arWaferHolder:=arW aferlessone)
T = UBound(arWaferlessone, 1)

arFP(i, 1) = FuncFP(T, TG, TAdefA, TGAdefA, "A", _
arWaferHolder:=arWaferlessone)

arFP(i, 2) = FuncFP(T, TG, TAdefB, TGAdefB, "B", _
arWaferHolder:=arWaferlessone)

arFP(i, 3) = FuncFP(T, TG, TAdefC, TGAdefC, "C", _
arWaferHolder:=arWaferlessone)

Next i

For intCol =1 To 3
For i =1 To upperbound2
arSum(intCol) = arFP(i, intCol) + arSum(intCol)
Next i
Next intCol



For intCol=1To 3
arAvg(intCol) = arSum(intCol) / upperbound2
Next intCol

For intCol =1 To 3
topguy =0
bottguy =0
Fori=1 To upperbound?2
topguy = (arAvg(intCol) - arFP(i, intCol)) ~ 3 + topguy
bottguy = (arAvg(intCol) - arFP(i, intCol)) * 2 + bottguy
Next i
If bottguy = 0 Then
ara(intCol) = 0
Else
ara(intCol) = topguy / (6 * bottguy * 1.5)
End If
Next intCol

For intCol =1 To 3
aralphal(intCol) = WorksheetFunction NormSDist(arzo(intCol) + _
(arzo(intCol) + WorksheetFunction.NormSInv(alpha / 2)) / (1 - ara(intCol) * _
(arzo(intCol) + WorksheetFunction.NormSInv(alpha / 2))))
aralpha2(intCol) = WorksheetFunction. NormSDist(arzo(intCol) +

(arzo(intCol) + WorksheetFunction.NormSInv(1 - alpha / 2)) / (1 - ara(intCol) * _

(arzo(intCol) + WorksheetFunction. NormSInv(1 - alpha / )
Next intCol

For intCol =1 To 3
intLRow = Int(UBound(arRFPHolder, 1) * aralphal(intCol)) + 1
intURow = Int(UBound(arRFPHolder, 1) * aralpha2(intCol)) + 1
arFPlow(intCol) = arRFPHolder(intLRow, intCol)
arFPhigh(intCol) = arRFPHolder(intURow, intCol)

Next intCol

arBCACIAHolder(intCINoCnter, 1) = arzo(1)
arBCACIAHolder(intCINoCnter, 2) = ara(1)
arBCACIAHolder(intCINoCnter, 3) = aralphal(1)
arBCACIAHolder(intCINoCnter, 4) = aralpha2(1)
arBCACIAHolder(intCINoChnter, 5) = arFPlow(1)
arBCACIAHolder(intCINoCnter, 6) = arFPhigh(1)

arBCACIBHolder(intCINoCnter, 1) = arzo(2)
arBCACIBHolder(intCINoCnter, 2) = ara(2)
arBCACIBHolder(intCINoCnter, 3) = aralpha1(2)
arBCACIBHolder(intCINoCnter, 4) = aralpha2(2)
arBCACIBHolder(intCINoCnter, 5) = arFPlow(2)
arBCACIBHolder(intCINoCnter, 6) = arFPhigh(2)

arBCACICHolder(intCINoCnter, 1) = arzo(3)
arBCACICHolder(intCINoCnter, 2) = ara(3)
arBCACICHolder(intCINoCnter, 3) = aralphal(3)
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arBCACICHolder(intCINoCnter, 4) = aralpha2(3)
arBCACICHolder(intCINoCnter, 5) = arFPlow(3)
arBCACICHolder(intCINoCnter, 6) = arFPhigh(3)

End Sub
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