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INFERENCE PROCEDURES FOR PAIRS OF DISTRIBUTIONS
WITH PROPORTIONAL FAILURE RATE FUNCTIONS

1. INTRODUCTION

The intent of this paper is to establish some statistical proce-

dures associated with the class of pairs of distributions

to = {(F,G):G = 1 - (1-F)0, 6 > 01, which is closely related to the

nonparametric alternative to the nonparametric hypothesis H0 = G,

proposed. by Lehmann in 1953. is one of the one-parameter

family of nonparametric classes known as the Lehmann alternatives.

Although Lehmann establishes the use of nonparametric classes of

alternatives to compare the power of nonparametric tests as early as

1953, the principal use of the Lehmann alternatives continues to be for

the analysis of nonparametric tests. Other properties of distributions

(F, G) E (.e, however, may be useful to a statistician considering

nonparametric methods of estimation. We review the established

properties of by following Shorack (1967), who gives a good

summary of the nature of this class.

(i) An interesting interpretation is obtained when 0 is a posi-

tive integer, say k, in which case G(x) = 1 - (1-F(x))k will be the

distribution function of the minimum of a random sample of size k

from distribution F.

(ii) The class ele contains a host of pairs of parametric
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distributions, since F may be any parametric distribution and G

is the distribution defined by the relationship G(x) = 1 - (1-F(x))k.

In most cases, the function G(x) would be mathematically complex

and would not belong to the particular parametric family as F; how-

ever, if F is the Weibull distribution defined by

-13(x.-)a -0(3(x-)ct
F(x) = 1 - e , x > a > 0, 13 > 0, then G(x) = 1 - e

is also a Weibull distribution. Another case in which F and G

belong to the same parametric family is given by the modified extreme

value distribution F(x) = 1 - e-a(eNx-1), a > 0, x > 0, y > 0. Shorack

notes that other less well known pairs (F, G) E e can be found in
e

Dubey (1965a, 1965b).

(iii) If (FIG) E ol''e then for 0 > 1, (0 < 0 < 1) the distri-

bution G is stochastically greater (less) than the distribution F.

(iv) The following characterization theorem is given by Shorack

(1967): For random variables X and Y with absolutely continu-

ous distribution functions F and G, then G = 1 - (1 -F)0, 0 > 0

if and only if there exists a strictly increasing continuous transforma-

tion g( ) and constants 01 and 02, 01 /02 = 0, such that

X' = g(X) and Y' = g(Y) are exponentially distributed with param-

eters 01 and 02.

(v) Let F be an absolutely continuous distribution with density

f. The failure rate function (or hazard function) is defined by

r F(x) = f(x)/(1-F(x)) for F(x) < 1. It is proved in Allen (1963),
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Shorack (1967), and NS.das (1970) that if densities f and g exist,

then a necessary and sufficient condition for (F, G) E ote is that

rG(x) = OrF(x) on the support of the distributions.

NS.das uses the following counter-example to show that this

result does not hold for discrete distributions. Let 0 < p < 1 and

0 < kp < 1. Let P(X=x) = p(1-p)x and P(Y=x) = kp(1-kp)x,

x = 0,1,2, .. . . Then kp = rG(x) = krF(x), but

.i.cp)X ..p)kX (P(X >x))k when x = 1,2, ... unless

k = 1.

(vi) The following result appears in two different forms. Allen

(1963) and Thomas (1969) independently prove minor variations of the

following proposition: Let X and Y be independent random vari-

ables having continuous distributions with common support, then

P(X < YI X < t) is independent of t if and only if rG(t) = OrF(t).

Allen's result is for n independent random variables, n > 2.

1\161das proves the related result: Let X and Y be inde-

pendent random variables with distributions F and G being either

purely discrete or absolutely continuous. Then

P(t < X I X < Y) = P(t < Y J Y < X), -00 < t < co , if and only if

rG(t) = OrF (t). NA,das describes this proposition as: The minimum of

independent random variables X and Y is independent of the event

X < Y if and only if the hazard functions of X and. Y are pro-

portional. The relationship between the two forms may be established
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by an elementary probability argument.

(vii) Van der Laan (1970) carries out an extensive analytical

and numerical study of the behavior of moments and densities of

Fk(x) and 1 - (1-F(x))k for various classes of distribution func-

tions F(x).

Property (v) is the genesis of this paper. A frequent criticism

of nonparametric estimation is that, since they allow for every con-

tingency, the estimators tend to be too conservative in comparison to

parametric estimators. In certain cases, however, one may be able

to use a priori information to reduce the admissible class of estimators.

Such is the case in the single sample problem of estimating the failure

rate function, subject to the assumption that the failure rate is mono-

tone. Marshall and Proschan (1965) show that the monotone maximum

likelihood estimator is closer to the failure rate function, with respect

to a certain metric, than the unconstrained maximum likelihood esti-

mator. It is reasonable to expect other nonparametric estimators to

be improved, in some sense, by using assumed properties of the fail-

ure rate function or distribution function. For the case of two sam-

ples, one is able to use a priori information about the functional

relationship between the failure rate functions to construct a combined-

sample estimator of each failure rate function. This study considers

some inference procedures based on the assumption that the failure

rate functions are proportional.
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We expect that in many experimental situations it would be

natural to assume the proportionality of failure rate functions. An

example is the situation where one is considering mortality-type data

in which two random samples are drawn from the same population,

one of which is used as a placebo and the other being subjected to a

treatment. The simplest time-dependent-relationship between the two

failure rate functions is proportionality; provided that this assumption

is valid, the constant of proportionality (0) will reflect the effect of

the treatment, being greater than one if the treatment increases the

failure rate, and less than one if the treatment decreases the failure

rate. In such an experimental situation, one can obtain estimates of

as well as nonparametric estimators of each failure rate function

based on the combined sample, and consequently, nonparametric

estimators of each reliability and distribution function.

Cox (1971) generalizes the work of Kaplan and Meier (1958) by

incorporating regression-like arguments into life-table analysis. Each

individual on trial is assumed to have available observations on one or

more explanatory variables. The failure rate function is taken to be a

function of the explanatory variables and unknown regression coeffi-

cients multiplied by an arbitrary and unknown function of time. By

conditioning upon the risk set (the individuals on test) at the failure

times, Cox gives the conditional probability that individual j fails

at time t3 ..
Conditioning on these probabilities, a likelihood function
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is obtained, from which inference procedures about the unknown

regression coefficients are given. Good use is made of likelihood

ratio procedures in the inference section.

Cox's paper is closely related to this dissertation; Cox gives a

general framework for the study of distributions having structurally

related failure rate functions. The case of censored data is consid-

ered. Methods of estimation and test procedures stem naturally from

the conditional likelihood function. For complete data, Cox's esti-

mator of the proportionality constant (0) coincides with our esti-

mator 0MI.
We use Cox's methods in Chapter 4 where we consider

tests of proportionality. Our work concentrates on the method of

maximum likelihood for the simple proportionality model. Many of

the potential generalizations mentioned by Cox are contained in our

work.

We consider only the method of maximum likelihood and restrict

our attention to the case in which the distributions are absolutely con-

tinuous. In Chapter 2 we derive the nonparametric maximum likeli-

hood estimators of 8, the failure rate functions, and the reliability

functions. A Monte Carlo study of the estimators is evaluated in

Chapter 3.

In Chapter 4 we consider the problem of testing the assumption

that the failure rate functions are proportional. Only one new test is

described but an exposition of three other proposed tests is given.
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Graphical prodecures are also discussed. A Monte Carlo study of

the test statistics is evaluated in Chapter 5.

A summary is given in Chapter 6.
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2. DEVELOPMENT OF ESTIMATORS

2. I. Introduction to Nonparametric Maximum
Likelihood Estimation

Given two random samples x
1,

,x and yl, , yn from

respective distribution functions F and. G belonging to the

parametric family cL = {(F, G): G = 1 - (1-F)0, 8 > 01, we derive

nonparametric maximum likelihood estimators for 8, F, G (the

reliability functions associated with F and G) and for the failure

rate functions rF and rG We consider four classes which are

associated with e Let = {(F,G): F and G are absolutely

continuous c d. f. otc = {(F G): (F, G) E Or and G = 1 (1 -F)0 ,

> 0}, Qt.IFR = {(F'G):(F'G) E and F and G have increasing

failure rate}, and °IDFR = {(F, G): (F, G) E oC and F and G

have decreasing failure rate }. Clearly ot IFR C C

orDFR CX CZ and cfc C e

The classes or , orFR' DFR
provide the first of two

underlying concepts for the discussion of nonparametric maximum

likelihood estimation of 0. Each of these classes provide a different

parameterization of the likelihood function and the resulting estimators

are generally different. It is necessary then, to refer to a nonpara-

metric MLE of 0 with respect to a particular class or parameteri-

zation; for example, 0IFR and 0DFR refer to MLE of 0 with



respect to XIFR and DFR' respectively.

The second underlying concept is the meaning of nonparametric

maximum likelihood estimation. Since the distributions F and G

are both unknown, the value of F( ) and of G( ) at the order statis-

tics are considered nuisance parameters when estimating 0. The

invariance procedure used in Section 2.2 removes the difficulty of

having to estimate these functions at order statistics. However, in

other procedures we do estimate the distribution function F at the

order statistics.

For the single sample problem, Kaplan and Meier (1958) say of

nonparametric estimation:

Most general methods of estimation, such as maxi-
mum likelihood or minimum chi-square, may be interpreted
as prodecures for selecting from an admissible class of
distributions one which, in a specified sense, best fits the
observations. To estimate a characteristic (or parameter)
of the true distribution one uses the value that the charac-
teristic has for this best fitting distribution function. It
seems reasonable to call an estimation procedure non-
parametric when the class of admissible distributions from
which the best fitting one is to be chosen is the class of all
distributions.

There are two difficulties involved in applying this definition of

nonparametric estimation. If the class of all distributions is consid-

ered for maximum likelihood estimation, then there is no sigma-finite

measure relative to which all distributions are absolutely continuous.

Kiefer and Wolfowitz (1956, p. 893) propose a generalization of the

maximum likelihood concept which is used by Barlow (1968) whose



10

definition we use. For some class of distributions , let

F1, F2 e , and let f( ; Fl, F2) denote the Radon-Nikodym deriva-

tive of F1 with respect to the measure induced by F1 + F2. F

is called the maximum likelihood estimate relative to <5" if

satisfies

sup Fup[f(X.;F,P){1 - f(X.; ,T')}-1] = 1,
F E *5" 1=1

where X = (X1, X2, , Xn ) is a random sample. Barlow notes that

this definition coincides with the usual definition when the family

is dominated by a sigma-finite measure. For example, if T is the

class of discrete distributions, then consider F which places mass

p. at each of the order statistics X., i = 1, ,n, where

Z.n p. = 1. Now consider an arbitrary distribution F E which
1 =1 1

places mass

so that

13 iateach X., = 1, ,n, Z. p. < 1. Then
i =1 1

f(X.; F, ) = /(pi+fid

Ff(X.:F,F)/{1f(X.; 'I")} = p. /5.

For F to be the maximum likelihood estimator w. r. t. 3 , F

must be such that

FE
117 1(P1 /171) 1,

super

1=
or equivalently,



n
n1. p. = s u n.

=1 1 F 1=1
p.

1

Thus the estimator of the generalized definition coincides with the

usual MLE.

As an application of Kaplan and Meier's definition, suppose we

use the method of maximum likelihood to select a distribution from

the admissible class
NS'

where
NS

11

is the class of distribu-

tion functions which can be decomposed into a discrete component and

an absolutely continuous component. Then for a given random sample

X1, , Xn we consider distributions

F(t) f(x)dx + En. p I (X.),
1=1 i (-00, ti

where f(x) is the density function associated with the absolutely con-

tinuous component and I
(-co, d( ) is the indicator function. The

maximum likelihood estimator, of course, places mass p. at each

order statistic ri Aand E. p
i

X.
1

= 1. Then for an E -neighborhood
1=1

about X. we have the relationship,

X.+E
1

2E f(Xi) + pi = f(t; F ,1)d(F+P)
-E

1

X.+E

= f(t; F, moth + (pi+Iii)f (X ;F, P)
-E

1



if the Radon-Nikodyn derivative of F w.r.t. the measure induced

by F + F is defined by

f(t; F, F) = 1 if t X.
1

P.

13.+13i
if t =X..

1

X E.+

tr(i-E
That is, the right hand .side equals f(t)dt + pi

For F to be the MLE with respect to

must satisfy
InNS'

n A
II1. up II. .

=1 1
= s

1
F E

= 1
p.

NS

the vector

12

P.

Kaplan and Meier prove their estimator of F does achieve this

supremum, and therefore, in the sense of the generalized definition of

Keifer and Wolfowitz, is called the maximum likelihood estimator of

F with respect to "NS.
We also adopt Kiefer and Wolfowitz's generalized definition of

maximum likelihood estimators (MLE) and shall refer to nonpara-

metric likelihood functions of the form OL(XIF)= {F(X.)-F(X.+ )}
1=1

as likelihood functions, even if there does not exist a dominating

sigma-finite measure.

The second difficulty is also involved with using the class of all

distributions as the admissible class. There is no objection with the
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definition for the one sample problem since it conveniently allows the

use of a discrete distribution to estimate a continuous distribution.

However, for the two-sample problem one wants to restrict the class

of admissible distributions to a certain family of distributions, such

as
e

for example. By using such a restriction, one is able to

construct a likelihood function for a particular parameterization.

Thus we use or

assume (F, G) E ZIFR

belong to oL we use

4FR
or

e

as the admissible class when we

DFR. When we assume (F,G) to

to be the admissible class to allow

F to be estimated by a discrete distribution.

For the two sample problem, we use an analogue of Kiefer and

Wolfowitz's definition. For some class of distributions , let

Fl, F2, Gl, G2 E and let f( ; F 1,
F

2) d g( G1, G2) denote

the Radon-Nikodym derivatives of Fl and G1 w.r.t. the meas-

ure induced by F1 + F2 and. G
1

+ G 2' respectively. Let be

some class of pairs of distributions (F, G) such that F G E

and G is a function of F.

n
Definition 1. (F,G) are called the maximum likelihood estima-

tors relative to 63 if (F, G) E and satisfy

A

i=

f(Xi;F , F)

i=

g(YJ.
;
G,8)

sup nm
l " nn i ^ - 1,

(F, G) E r 1-f(X.;F,F) 1-g(Y.
J;

G,G)



where

14

1
is a random sample from F and Y

1
, Yn

is a random sample from

Example: Let j
NS

be the class of distributions defined pre-

viously, and consider the class of pairs of distributions of e. For

(F, G) to be MLE w. r. t. to ot9 e
the following relationship must be

satisfied,

sup
(F,G)E

A
g(Y. ;G G)f(X.F,F)

1. 1.n..

A,, 3=1 1_ (y. ;G,e)i=1 1,(x.;F,x,
) g J

For the one-sample case we have

Af(X.;F,F) = 1 if t X.

=

Gg(Y.; = 1 if t Y,

= q1 /(qJ-44)

so that (2,q) must satisfy

m Pi n
=sup n=1 /% -=1

(F, G) E

or equivalently,

14,1 = ni
=1

rn m n
J1 = sup

1

or in terms of the reliability functions, which are assumed to be left



continuous,

15

L 0(.2,1= sup rini. {i(x )-F(x.1 + )} n1.1 {E(y.)-E(y.+o)}
(F, G) E 3=1 31=1 i-

ece

n+nsup
i=1

{F(t.)-F(t.+ )}
FENS,OE(O,00)

1-6.
X {-17(yeF(ti+O)u} 1,

where t
1' tm+n are the ordered observations with corresponding

identification vector (51, Sm+n). This is the maximization prob-

lem which is solved in Section 2.3.1, so that the resulting estimators

are MLE w.r.t. oC
e

in the sense of Definition 1.

In a similar manner, the MLE of F and G w. r. t.

and w. r. t. DFR

IFR

can be found by means of constrained maximiza-

tion methods.

We believe that these modifications to Kaplan and Meier's defi-

nition give sufficient meaning to the term "nonparametric maximum

likelihood estimation." Henceforth we delete the word "nonparametric!'

We will denote a nonparametric maximum likelihood estimator as

MLE with respect to the particular class to which we assume (F,G)

belongs.

In Section 2. 2 we find the MLE of 0 with respect to the dis-

tribution of a maximal invariant- -the ranks of the ordered X

observations in the combined sample. We denote this invariant MLE
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A
0 by 0MI.

Following the same procedure as Kaplan and Meier

(1956) we express, in Section 2.3, the likelihood function for the
A

combined sample in terms of F and 0 to obtain c and Oc.

A different approach is used in Section 2.4 where the MLE 0
U

is a
A

function of F and G by way of the U-statistic, P(X >Y). When the

failure rate is monotone, an appropriate likelihood function can be

written in terms of the failure rate r F(t) and 0 where

r (t) = OrF(t). Both IFR and DFR cases are considered in Section

2.5.

2.2. MLE of 0 With Respect to the Distribution of Ranks

For the first procedure, we use the principles of invariance to

find a maximal invariant and its distribution. Following Ferguson

(1967), if 4 is the group of transformations

g
()

(xi ,xm, y
1

, . . . , yn ) = ( ( x
1

) , . .
, ( 1 )

( xm) , 4(y 1), , 4)(y n))
where

4) is a continuous increasing function from the real line onto the real

line, then a maximal invariant is the set of ranks of the X order

statistics in the combined sample, R = (r1, . . ,rm ). Once the dis-

tribution P(RI 0) is known,we can maximize the distribution function

with respect to 0.

Lehmann (1953) derives P(R1G = F0
, 0 > 0) and Shorack

(1967) notes that it is possible to show by an analogous method to

Lehmann (1953), or by a combinatorial argument, that
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P(R(G = Fe) = P(R'(G = 1 - (1-F) ), where R' is the decreasing

ranks of the X sample. An alternate derivation of

P(R(G = 1 - (1 -F)0) is given for completeness of this section.

Let x
1

. , x
na

and yl, ...,yn be samples from densities

f and g respectively, and let R denote the vector of ranks of the

X's in the total sample, and let the rank order statistic vector be

denoted by 5 = (51, , 5rn+n) where 6. = 1(0) if the ith order

statistic in the combined sample is an X(Y). Then by a special case

of Hoeffding's theorem as given in Ferguson (1967), provided g(x) = 0

implies f(x) = 0,

-1

P(R (0) =
(rn

6i

E
N (f(V1)
i= 1 g(V.)

where V. are the order statistics from a sample of size m+n

with density g. Since the distribution of R depends on f and g

only through the function OF), where

G(F(x); 0) = t.1)(F(x)) = 1 - (1-F(x))° and g(x; 0) = 41(F(x))f(x), we

may choose any f and g so related. A natural choice is to take

f(v) = e-v and g(v) = ee

and,

-0v so that,

f(v)/g(v) = 0-1e(0-1)v



N

-1

(P(RI 0) =. E{exp EN
1

6
i
(0-1)V.- In 0}

1= 1m

-mE{exp E.
1
6.(0-1)V.}.

1= 1 1

It is well known, see for example Ferguson (1967, p. 255), that by

defining new variables through V. = E. Y., i = 1, ...,N, that the
3=1 3

Y's are independently distributed with

Thus

and

Y.- (N+1-j)0 exp{-(N+1-j)0y. }, j = 1, , N.

r
E[eXP{E. (0-1)6.V.}] = TIN ELexp{(0-1)(EN 6.)Y.}]

i= 11=1 1 1 j=1 1 1

= nN
1
{(N+1-i)0}/{(N-i+1)0+(1-0)E. .6.}

P(RI 0) = mlnI0 n /IIN {EN (6,+0(1-6.))}.
1=1 j=i 3
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(2. 1)

Theorem 2.1. For the distribution P(RI 0), there exists a

unique maximum with respect to 1.3% E (0,00) provided Ern. 6. m
1=1

and En. (1-6 )
1=1 i

Proof: Since neither 0
A A

= 0 nor 0 = 00 can maximize

, A
P(R. I 0) it is necessary that -diPkR 1,,, = 0 for 0 to be a MLE

of 0. By differentiation we obtain



n/6 - EN. n /(m = 0,
.37-1
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(2.2a)

where n. = E. .(1-6.) and m. = E. .6.. Every solution to (2.2a)
3 1 3 1=3

is also a solution to

r- EN 14n./(m.+#1\n.) = n.
i=13 J 3

(2.2b)

Consider first the trivial solutions to (2.2b). If E. 6. = m then
1=1 1

(2.2b) becomes lana)n+m) + + 8ni(8n+1) + n8 /n6+ + 6/6 = n.

A solution is approached as 8 -- 0. If Eni 1(1-6i) = n then (2.2b)

becomes 8n /(13n+m) + + 6/(6+m) + 0 + + 0 = n. In this trivial

case a solution is approaches as 0

To prove that (2.2b) has a unique positive solution we make the

following observations. The first terms in the sum are of the form

/en./(On.+m.) with n. > 1, m. > 1, which are nonnegative, strictly
J 3 3

A
3

increasing functions of 0 E (0,00) with range (0, 1), and latter

terms which are either all 0 or all 1. If the latter terms are 0

then by the assumption En. (1-6) n, S(6) has (0, n+1) in its
1=1

.

range. If the latter terms are 1, then by assumption E. S. m
1=1

there are fewer than n-1 terms identically 0, so that S(g) has

(n-1, N) in its range. Thus S(1) is a strictly increasing function
A

of 0 E (0,00) with n in its range, and the result follows.

The following method was used to solve Equation (2.2b).
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If either of the trivial cases occur then 0 could be taken to be

0 or co respectively. In other cases the Newton-Raphson method

can be used. to find the root of

where

f(g) = EN. n g/(m.+n g) - n = 0,
J=1 J J j

f'(0) = EN m. n. /(m.+n.0)2 > 0.
J=1 J J J J

Then given initial le, i+10 = i0 - f(i0)/ft(i0) can be sequentially

found until f(i0) < Ei, or until ie_i+10/(i+10) < e2. Since

g(10) = i0 - f(i0)/f1(i0) is analytic for 0 E (0, CO) and g'(8*) = 0,

where 0* is a solution to f(0) = 0, we have sufficient conditions,

by a theorem in Macon (1963, p. 30), for the sequence 19,0, 0,

to converge in an E -neighborhood of 0*. Moreover,

f"(0) = -2E, m n. (m,+n.0) 3 < 0 so that f(0) is a strictly
J=1 iJ J J

increasing concave function of 0 > 0 and the sequence 10,0, 0,

will converge for any 10, where 0 < 10 < co.

2.3. Product-Limit Parameterization of the Likelihood Function

2.3.1. Derivation of the MLE of 0

In their classic paper, Kaplan and Meier (1956) discuss non-

parametric estimation of a reliability function from incomplete data.
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One section of their work relevant to this paper is the maximum like-

lihood derivation of the product-limit estimate, since we use the same

parameterization of the likelihood function. Efron (1965) constructs a

"self-consistent" estimate of F(x) = 1 - F(x) which coincides with

Kaplan and Meier's product-limit estimate. For the two sample prob-

lem, he uses these MLE of F and G to show that

W F(s)dG(s) is the maximum likelihood estimate of P(X >Y).

Provided 0F = G, we can use P(X >Y) to obtain a MLE of 0

with respect to W. In this section however, we assume (F, G) e Qt

to write a likelihood function in terms of F and 0. In comparison

to the former method, this approach has the disadvantage of requiring

an iterative solution but has a distinct advantage by obtaining a com-

bined sample MLE of F, denoted by F . Both methods are suited

for arbitrarily censored data.

Let xl, ...,x and y
1

, . . , yn
be random samples from

their respective distributions F and G belonging to etc.

Assume that all ordered observations are distinct and complete, each

being denoted by t1, .., to with associated indicator variables 6.

having values 1(0) if t. is an F(G) observation.

By expressing G(t) as F(t)0 and letting F(ti+0) represent

the limit of F(ti) from the right,we define the (nonparametric) like-

lihood function
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6. 1-6.
L(t, 61F, 0) = 11

i=1
{F(t

1
.)-F(t.1 +0)} 1{F

1(t.) 0
1

F(t.+0)°} .
1

This likelihood function will be maximized by making f(ti) as large

as possible and making F(ti+0) as small as possible while remain

ing consistent with nonincreasing property of reliability functions.

This requires that f(ti+0) = i = 1, ... N-1, 1(t1) = 1 and

F(tN +O) = 0. We change parameters to express F(ti) in terms of

pi = P(X >ti+ (X >ti) i = 1, . , N-1, so that F(t.) = Ili-1
k=1

p
k

. Then

1..7(ti+1) = {nk=1 Pk}(1-pi) and F(ti)0 - (ti+1)
0

= {II
k = 1

pk }(1 -pi ®).
).

Then,

where

bi i-1 0
1-6i

1 2L(t, 6, 0) = N i 1

ni=1[1( k=iPk)(1-Pi {(11k= 113k ( )1

N k=i+1
{6

k+0(1-6
k )}

(1-pi)
6i(1-p.0)1-6i

1=1P.

N.(0)-6.-0(1-6.) 1-6
1 1 6i 0 i

= ni=lpi (1-pi) (1-pi ) ,

N O.( ) = m. + On. = Zk=
i

N
{6

k
+0(1-6 )}.

Before maximizing the likelihood function,we observe that

0 < pi < 1 for the likelihood to be positive. Let

L(2, 0) = in L( t, 6(2, 0). By setting the gradient V. In L(2, 0) = 0

we obtain



a ln L
api

which implies,

so that,

and

vit;-
N.(6)- S. 43( 1

1
)1 /0.

1
-6. /( 1

1 ,\(1-6.) = 0
1 1 1 1-pi

fj
{0i-Ni(g)+5i/Ni(4)} -Ni(0)+(1-6i)/8/Ni(g)} = 0

= {N (gpi {N.(8) Si} /Nitta) if 6. = 1

A

1%3 = {N.( )-(1-45.)/4}/NA) if 6. = 0
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(2. 3)

(2.4)

a ln L A/6 /. Aie
jA=EN [{n (1-6.)p lnp /(1- ) = 0

ao e i

to imply

A/6 AE }
N

1
{ni-(1-6.)/(1-p. ) In pi = 0.

By substituting p, appropriate to S. into the last equation, we

obtain

6=1 1

A
{n. ln(1 6. /N. (E))} = E

6=0
[m.ln{1 6i)/A} /N. (b.)] /0

2
, (2.5)

1 1

where the sets {i: 6i=1} and {i:6i=0} are denoted by 6 = 1 and

6 = 0 respectively.

We need the following lemma to prove the uniqueness of the

solution to (2.5).

Lemma. 2. 1. If x > 1, y > 1 and 0 > 0 then



x- 1+y0h(0) = -y0 ln( x+ e ) is a strictly increasing function of 0.
y

Proof: Let X(y) = ln(1-1/(x+y)), y > 0 so that

X.'(y) = ln(1-1 /(x+Y)) Ni(x+y)(x+y-1) > [1 /(x+y)]h-y/(x+y-1)]> 0,

since -1n(1-y) > y for y < 1.

Corollary. If x > 1, y > 1

k(0) = -x/0 ln[(x/0+y-1)/(x/O+y)]

in 0.

and 0 > 0 then

is a strictly decreasing function
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Theorem 2. 2. The solution to the maximum likelihood equation

(2.5) is unique provided Ei.i5i m and 1E.( n, where
1=1

N = m+n.

Proof: L(.2, 0) > 0 only if 0 < pi < 1, i = 1, ...,N and

0 < 0 < 00, so that a solution cannot exist on the boundary of the
,Aparameter set. Then for (2., 0) to maximize L(R, 0) it is neces-

sary for vL(P,%) = 0. The solution vector 2. is a unique function

of 0, so that if there is a unique /0 satisfying (2.5), then 1, /0)

is unique. Let f(0) = E5=ini ln(1-5i/Ni(0)) < 0, 0 < 0 < 00, w.e.h.

iff E.
1 6
(1-5.) n, let g(0) = Z m. ln [1-(1-6.)0/N.(0)] < 0,m

0=

0 < 0 <00, w.e.h. iff Ern 5 m and let 4(0) = g(0) /(02f(0)).
i=1 i

We adopt the convention that if either m. = 0 or n. = 0 we

define m. In [1-0/N.(0)] = 0 or n. ln(1-1 /N.(0)) = 0, respectively,
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for all 0 E [0,00]. Thus we need only consider non-zero terms in

f(0) and g(0) and can therefore assume that m. > 1 and 11. > 11
for each term being summed. Provided the hypothesis is satisfied,

then for E > 0, 0 > 0 we have

{g(0+E) /[(0+E)2f(0+E)]} {[02f(0)} /g(0)}

m1 (1- 0+E
) E n 0 1n(1- 1

E )
5=0 0+E m.+n. (0+0 5=1 i m.+On.

1 1 1 1
= < 1

E

m1
0

)
E

5=1
n

i
(0+e) In (1- m+(0+E)n.

5=0 011n(1- m.+n.0 1 i

by application of the corollary and Lemma 2.1 to the first and second

terms, respectively. Hence 4)(0) is a strictly decreasing function

for positive 0.

Before evaluating the limiting values of 4)(0), we consider the

limiting values of the component functions;

and

nlimg(0) = lim E5=0m. 1 [1-0/(m.+On.)] = 0,
0 0 0 0

lim f(0) = lim ln[1-1/(mi+Onin
0 0 0 °-

= E
8=1 i

n ln[(m.-1)/m.]
m. 1

1

lim E
5=1

n. ln[1-1/(1+0n.)
1 10

1m.=



which equals a negative constant plus a term tending to infinity if

xrn < yn. If xm > yn then lim 02f(0) = 0. If xm < yn then
0-0

lirn 0
2f(0) = 0 + lim E

8=1
02n. ln[1-1/(1+0m.)]

10-6.0 m.=1

= lim /(1+0n
i )(On

i
)14-20 3] = 0

0'0

by use of l'Hopital's rule. Thus the form of lim (10) is
e-0

Now,

lirn (He) = lim gI(0)/[20f(0)+02f1(0)]
0-- 0 0 0

= lirn
0-0

i
20E

5=-1
n ln(1-1/N(0))+0 2Z

5=1
n i{N (0)[N (0)-1}}

i

OE

8=Omi
2 /{Ni(0)[N.( )- 0] }

0
0
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= CO

To find lirn 4(0), we write
0.00

lim 4)(e) = lim
2

g(e) /0
f(e)

00--- oo

0(which is of form
0

)

lirn -4(0)/03+00)/02
=

f0co '(0)

= lirn -2g(0)/0+00)
0

2
f1(0)

= lirn 0-2/0Em.
1

ln[1-0/N.( )15=00-0c
5=0

m.2 iIN.(0)[N.(0)-0]} = 0.
1 1



Hence 4)(0) is a strictly decreasing function of 0 having range
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(0,00), and therefore, the equation g(0)102 = 1 has a unique posi-

tive solution. Since f(0) 0 on [0,00), the equation

f(0) = g(0) /02 has a unique positive solution.

To numerically find a solution to (2. 5), one can use the Newton-

Raphson method to find a solution to the related equation

h(0) = f(0) - g(0)/02 = 0. Care should be exercised to begin the iter-

ation in the interval (0, 0') where 0' is the solution to 1110) = 0.

The function h(0) has limiting value 00 at 0+ and decreases

to a negative value at 0', after which, h(0) increases asymptoti-

cally to 0 as co. If 1-11(n0) < 0 for some n, then

no

2. 3. 2. Estimation for Arbitrarily Censored Data

The derivation of the full sample likelihood function is easily

extended to the case of arbitrarily censored data via the method of

Kaplan and Meier (1958). In brief, the extension is as follows: Sup-

pose for the ith item placed on test there is a fixed observation

period L., such that, if the item fails before L. then the failure
1 1

time is recorded, but if the item is effective after time L. then the
1

censoring time is recorded. An example of such a scheme is given by

the use of random arrivals in a medical experiment which has a fixed

termination date.
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Let t1, . , tk, k < N, denote distinct failure times and let

X .(E.) denote the number of F(G) censorings in [ti, ti+i),

i = 0, ,k, and tk
+1 = 00. Then by the same argument 8.6 in the

complete sample case, but conditioning upon the censored observa-

tions,

k 1
m +0n.-6.- (1-6.)0 61. 91 -6i

L(m, n IR, 0) = ipi (1-pi) (1 -pi )

where m. = E. .6. + X. and n. = E. .(1-6.) + E The maximum
1 3=1 j 3=1 J

likelihood estimates have the same form as in the complete sample

case.

2. 3. 3. Combined-Sample MLE of the F Reliability Function and
Failure Rate Function

By expressing the likelihood function in terms of F, 0 and

subsequently 2, 0 we have readily available a combined-sample

MLE of F. The conditional probability p.
1

= P(X >t
i+1

I X >t.) is

^
= {146.+(1-6.A/N.(6)}estimated by Pi . Hence the

1 i i

responding MLE of F(s) is given by F (s) for
C 1=1 pi

An

S E (tk-1, tk]. Also, G(s) may be estimated by G
C

(s) = iC (s)

The failure rate function for a discrete distribution function with

imass at x., = , -1, 0, 1, 2, ... is defined to be
oc,r. 13. /E. .p.. Although the t. are random in our setup, we do have
3=1 j

a MLE of F(t.) and consequently of r(ti) at each If required
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to estimate r(s) on {t1, tN) then one could, in the absence of

smoothing considerations, estimate r(ti) = pi/F(ti) for

i = 1, N-1 and then adjust the discrete estimator by spreading the

mass over each interval to obtain a continuous estimator:

(1) 7(u.) =7(t.) for t. < u < t
i+1

+
1 1

(2) linear approximation on (t1.,
1

t.
+1

Vi
1

(u) =7(t.) m.(u-t.)

where m. ri(ti+1)-i
1

.(t.)1/(t.
+1

-t
i
).

2.4. MLE of 0 as a Function of a U-Statistic

Several papers are devoted to the two-sample problem of esti-

mating P(X >Y), two of which are Govindarajulu (1968) and Church

and Harris (1970). In general, these estimates are used for either

constructing confidence intervals on P(X >Y) or for testing the two-

sample problem hypothesis, H0:F = G. Efron (1965, p. 838) notes:

A desirable property of any test statistic for the two
sample problem is that when the null hypothesis is not
true, that is when F° G°, the statistic estimates some
reasonable measure of the difference between the distri-
butions. Usually we are not interested in a simple accep-
tance or rejection of the null hypothesis but would like to
made a quantitative assessment of the treatment differences.

The MLE 1:\)(X >Y) is such a measure for the two-sample prob-

Elem. For the case (F,G) there is also such a measure of

interest to the statistician. By calculating P(X >Y) given that



(F,G) E ;:dt c we have

P(X >Y I G = 0) F(s)da(s)
-co

0+1

= 01(0+1).

00

- 00

30

Ghosh (1970) refers to the parameter 0 as a measure of the inten-

sity with which X tends to be larger than Y.

If a MLE of P(X >Y) is found within the class of all pairs of

distributions, then by the invariance property of MLE under 1-1

n A
transformations,

A
= P(X >Y)/[1-P(X >Y)] is the MLE of 0 based

nog
on (F, G) within the subclass Efron (1965) provides a gen-

eral MLE of P(X >Y) when he investigates the two sample problem

with censored data. He shows that his "self-consistent" estimator of

F and G coincide with Kaplan and. Meier's product limit estimator,

r.0
A A

and hence are MLE. The statistic defined by W = - j F(s)dG(s)
-co

is shown to be the MLE of P(X >Y) as well as being asymptotically

normally distributed.
"

We refer to 0 = W/(1-W) as the maximum likelihood esti-

mate of 0 based on the U-statistic W. Thus 0 is the ratio

/'
P(X >Y) /P(X <Y). Another way to view this relationship is the follow-

ing. If the random walk associated with the empirical distributions
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and. Gn is plotted in the unit square, the walk beginning atm

(0, 0) and moving one step of size lim to the right or one step of

size or 0

respectively, then 0
A

is the ratio of the area below the random walk

to the area above the random walk.

2.5. Estimation of 0 and r (x) Assuming Monotone Failure Rate

2. 5. 1. Introduction

From either the structure of an experiment or from prior knowl-

edge of items under test, one may be able to assume some property

of the failure rate function. When the failure rate is monotone, an

appropriate likelihood function can be written. Monotone failure rate

has been studied extensively for the single sample problem:

Grenand.er (1956) derived the MLE for distributions with IFR,

Marshall and. Proschan (1965) extended the MLE to distributions with

monotone failure rate for both continuous and discrete distributions,

Bray et al. (1967) derived the MLE for distributions with U-shaped.

failure rate functions. Other papers have extended. MLE for various

censoring schemes.

Let = {F IF (0) = 0 and - log[1 -F(x)] is convex for x >

which defines the class of IFR (increasing failure rate) distributions.

It is proved in Barlow and Proschan (1965) that IFR distributions are
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absolutely continuous on their interval of support but may have a jump

at the right-hand end. Barlow (1968) notes that by using the general-

ized definitions of MLE one need only consider estimators absolutely

continuous with respect to Lebesgue measure on [0,X
n)

with a jump

at X
n

. However, in applying the Kuhn-Tucker conditions, we find the

bounded approach used by Grenander to be a convenient formulation of
n

the problem. The resultant estimators (F, G) satisfy the general-

ized definition.

2. 5. 2. Two-Sample IFR Likelihood. Function

Let x , ...,xm and y1, . , yn
be random samples from

distributions F and. G where (F, G) E
C: IFR. Let t denote

the vector of the combined ordered sample with corresponding identi-

f an F(G) observa-
i i

tion. By using the relations r(t) = f(t) /(1-F(t)) and

1 - F(t) = exp{- trr(u)du} with corresponding expressions for G,
0

we can write

5. 1-5. ti
L

N
( t, 5 r, e) =

1
rF (t.)

G
1

(t.) exp[-5. rF (u)du-(1-5 )1t1rG(u)du]
0 0

1-6.
..ct.= 1r(ti)0 sexp{-E. r(u)duZ. .[5.+0(1-5.)]}}

1=1 1=1 3=1 3
t.
1-1
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since rG(t) = OrF(t), t > t0 = 0, and where r(t) = rF(t). If

L ( t, 51r, 0) is to be maximized subject to the constraints
N

r(t
0

) < r(t
1
) < < r(t

N
) < M < 00 then, as Grenander argues, the

maximum likelihood estimator of r (t) must be of the form

(u) = r(t.), t .
1

< u < ti.+1, i = 0, 1, . . . , N-1

t
N

< u.= M

Thus the log likelihood function is

1N(, I r, 0) = N.
{ r.+ (1-5.) In 0 - (a. +1).0)r.

1=1 1-1

where rhere= (t.), a. = Pt. EN .5 is the exposure time of the F
1 1 1 1-1 j=i j

observations in the interval [ti-1' ti.), and b1. = Pt1. -1 3=1 j

for i = 1, , N.

To carry out the maximization of subject to

(F, G) E et IFR'

framework:

we state the problem in a non-linear programming

NLP Problem 1.

max
N 1

(r, 0) = E. fln r i 1
+ (1-5.) In 0 - (a.+b.0

such that g
0
(r, 0) = r0 > 0

gi (r, 0) = ri r. >0, i = 1, ...,N
1-1

}



g N+1
(r, 0) = 0 > 0

g N+2
(r, 0) = M - rN = O.

Following Zangwill (1969, p. 42) we state the Kuhn-Tucker (K-T)

conditions which are necessary for (r*,0*) to be optimal for this

problem:

(1) (r*, 0*) is feasible;

there exist multipliers 0, i = 0, , N+1, and unconstrained

multiplier XN+2, such that

and

(2) Xigi(r*, 0*) = 0, i = 0, , N+1

N+1
(3) v ot

N
(r*,

1
0*) + E. X.v g.(r*, 0*) = 0.

1=0 1
Condition (3) requires

-(a1 +b10) K0 -A1
1

1 /rl -(a
2

+b 20)
X1

1 /r
2
-(a

3
+b 30)

1 irN-1 -(a
N

+b
N

0)

1 /r

EN (1-6.)/0-zN-lb
1=1 i=0 i+1 i

or equivalently,

XN+2

34

=0
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X1 = -(a
1
+b 0) + AO

0

X2 = 1 /r
1

- (a
2
+b 0) + X1

= 1 /r N-1 - (aN +bNO) + X N-1

X
N+2

= 1 /r
N

+ X
N

N-1
X = b r - n /0.

N+1 i=0 i+1 i

The equations resulting from K-T condition (3) can be reduced by

using condition (I) and (2). If r0 > 0 then X
0

= 0 which implies

ki = -(ai+bie) < 0. Therefore r0 must equal 0 and letting

X.0 = (a
I

+b
10)

gives X1 = 0. 0 = 0 implies l'
N

(r,0)= -00 which

cannot be optimal, so that it is necessary that X
N+1

= 0 to make

X
N+1

g
N+1

(r, 0) = 0. To be feasible, rN must equal M, and pro-

vided M is sufficiently large, riN._i < M, to require X
N

= 0.

We now seek multipliers X2'
' XN-1

such that

and.

(1) (r.-r. ) >0, i= ...,N-1;

(2) k.(r.-r. ) = 0, i = 2,...,N-1;
1-1

X2 = 1 /r1 - (a
2

+b
2

0)

X.3 = 1 /r
2

- (a
3

+b 30)
+ X.2

X = 1 /r (a +b 0) + X
N-1 N-2 N-1 N-1 N-2

0 = 1 /r
N-1

- (a
N

+b
N

0) + X N-1

(2. 6)



E=1N- lb
i+1

r
i

= n /0.i
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(2.7)

For any fixed finite 0 > 0 there is a sequential procedure for

obtaining a vector k and a feasible vector r. This procedure is

analogous to the sequential algorithms given by Grenander (1956),

Brunk (1958), and Marshall and. Proschan (1965); the significance of

this description is that the algorithm is described within the frame-

work of Kuhn-Tucker theory, a framework which we find to be con-

venient for solving NLP Problem 1.

Given 8, set k, = 0, i = 2, ... , N-1, to obtain unconstrained
1

estimates of r
1
. = 1 Rai+1 +bi.+18), i = 1, , N-1. Set j = 1 and

begin with step (a).

(a) j = j+1. If j = N then procedure is completed.

(b) If r. > r. return to (a).3 3-1
(c) If r. < r. then constraint

3 3-1

feasible.

g. = r. - r is not
3

(i) Set r. = r. so that a harmonic average for r.
3 J-1

will be found. (Note that condition (2) appropriate to

constraint j, that is X.g. = 0, does not require
J J

X. = 0 since g. = r. - = 0.) Suppose that r.
J 3 3 j-1 3-1

has been averaged with k prior r Is, where

k = 0,1, ..., j-2, so that r = ...= r . Let
i-1 j -1-k

through X. equal the right hand sides of their
Xj -k
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equations in (2. 6) and solve

3+1
= 0 = 1 /rj-1-k - (aj-k+Obj-k)+...+ l/r.- (a.+1+Ob.3+1 )

3

to obtain

rj- 1-k = = (k+2)/[E.e=j-1-k (a/+Ob )] = 1 /(a.+0b.) .
J J

(ii) If r. > r3- 1-k J-
return to (a). Otherwise average

(and preceding r's if averaged) withr. -k

r. - 1-k through r. and return to (ii) with k now

equalling the number of r's averaged with 1. . .3-1

There are a few notes that should be made about the sequential proce-

dure for finding (r, X.):

1. The resultant vector r has components

r1 < r < < r 1<i=M<co, r. /(aj+1 +bj+1
0)

1 2 N-1

where aj+1 and bj+1 may be averages of two or more

terms.

2. The resultant vector X has zero component X k+1
if

rk +l is not averaged with rk, and positive component

X
j+ 1

if rj+1 is averaged with r.. The necessity of

X. > 0 follows since if initially r. > rj
+1

and r < r.;

then a. + b 0 < a + b. 0 so that,j+1 j+1 j+2 3+2

r. = r. = [a +a +(b +b +2
)0]/2 = a.+2

b 0 and
3 3+1 j+1 j+2 j+1 j 3+2 j+2
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k
= 1/7% - (a +b 0) = [(a. -a. )+ (b. -b. )0] > 0

3+1 3+1 j+1 j+1 3+2 3+1 3+2 3+1

and Xj+2 - (aj+z+bi+20) + = 0.

Similarly, if r. is averaged with f previous r's,

= 0,1, 2, j-1 and r,
3

> r. , then the intermediate positive
3+1

multipliers h. .., X. increase when r, is decreased with theA,

averaging with the smaller rj+1, and consequently the reciprocal of

the average r is increased. For example, if we have

k,
= 1 Fr. - (a. +b3-/ 3+1 j-1+1 j4+1 > 0

- (a.Fr . .h'3-1+2 1 j 3-1+2 +b3-1+20) + X3-1+1> 0

X. = 1 rr, - (a.+13.0) + X.
J J J J-1

Xj+1 = 1 /7- - (a. +b, +
j j+1 j+1 3

= I /r - (a. +b. 0) + X.
j+2 j+1 3+2 3+2 3+1

> 0

= 0

= 0

and r j > r. , where the subscript on r denotes the highest index
3+1

of the r's in the average, then the resulting average is less

than the previous average r., and 1/Tin. > lir, to increase the

value of X j-/+1 through Xj+1
. Consequently, if it is necessary to

include r .
+1

into the average, then the previous ordering will not

be changed.

3. The procedure terminates after at most N-2 averagings.
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Lemma 2. 2. For NLP Problem 1, if am+1 0 and

bn+2 i 0 or equivalently, ZNi=m+16i > 0 and. Z. (1-8.) > 0 or
j=n+2 j

equivalently, Zm 6. m and. Z
n+1 (1-6.) i n, then there exist

J -1 j 3=1 3

(r, X, 0) which satisfies the K-T conditions.

Proof: For any fixed 6 > 0, the sequential procedure guaran-

tees a set of ordered r. (functions of 0) which are feasible, and

the vector (r, X) satisifes K-T condition (2) and (3) with the excep-

tion of (2. 7). But each of the 2N-2 possible orderings or averag-

ings of r gives a constrained estimate of the form

r. = 1/(a. +b
i+ 1

0), i = 1, , N-1, so that, if the condition
1+1

NZii 1 Obi+iri = n is satisfied for each possible ordering, then there

exist (r, X, 0) satisfying the K-T conditions.

Now

ZN-10b r. = N-1
Ob. /(a +b. 0) = ZN-1 0b /(a+1+bi+10)

i=1 i+1 i=1 1+1 i+1 1+1i =1
. .

in which at least the first n+1 terms are not identically zero by

assumption bn+z > 0, and fewer than n of the last terms in the

summation are identically 1 by assumption am+1 > 0. The terms

not identically zero or one are positive increasing functions of 0

with range (0, 1), so that the sum must have the interval (n-1, n+1)

within its range.



Theorem 2.3. For NLP Problem 1, if am+1 0 and

bn+
2

0 then the vector

unique.

(r, X 0) satisfying the K-T conditions is

40

Proof: For any finite 0 > 0 the sequential procedure finds a

feasible vector r in which the components are ordered with the

form r.
1

= 1 /(a. +1;i+1 0), i = 1, , N-1, and satisfy the relation-
1+1

ship EN -1(a. +b 0)r. = N-1. Then for 0 < 0 < c0 and the cor-
i =1 1+1 i+1 1

responding ordered vector r , the logarithmic likelihood function

becomes

ot
N

(r, 0) = E.N 11 n+ 0) - N-1)
1=-1

being a function of only 0 and. N for given a, b, and may be

denoted by

cl° (r(0), 0).
N

The dependence of the ordered r's on 0 is as follows.

Given the initial constants a and b then for given 0, 0 < 0 < 00,

we find unconstrained estimators r .., rN-1 where

r. = 1 Rai.+1+bi.+10), i = 1, ... , N-1. When the vector r is con-
1

_

strained, some of the adjacent components r., r.
+1

will be set

equal, which in turn requires the corresponding constants a., a.
3+1

and b., b.
+1

to be arithmetically averaged. Since there are N-1

N-2components, there are at most 2 possible averagings in which
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ing the vector r(0) as a function of 0, as 0 varies from

0+ to c0, the orderings or averagings of r(0) will in general

change with 0 But there are at most 2N-2 values of 0, say

0 < 01 < 02 < < ON < 00 where N
2

< 2N -2, at which the
2

ordering of r(0) will change.

Such a change in ordering will involve either averaging or

"de -averaging " components and r., say, as 0 crossesj-1

one of the points 0k.
But this necessitates that the average and

unaveraged values of rj_i and r. are equal at 0k The crucial

points for the proof are that both the upper and the lower limits of the

ordered components of r(0) are equal at each 0k and that the con-

stants in each constrained r.(0) are a function of only the points

01' , 01\1. and initial vectors a and b.
2

Consider now cf
N

(i.:**( 0), 0) where 1(0) is any one of the

2N -2 possible orderings. The hypothesis bn+2 i 0 implies that

In Othereare at least n+1 terms in Zr
=

-
1

1
1 r.( ) of the form

1

-1n(ain+17)i+10) with 171i.+1 N0 so that, lim MO), 0) = -00.
0 00

Similarly, the hypothesis am+1 0 implies that there are fewer

than n terms in

ai+1 0, so that lim o
N

(r(0), 0) = -00.

For 0 E (0, 007 °0t)
N

(r(0), 0) is a differentiable function. Since

zN-1
1=1 1

the form -1n(ai+1+bi+10),
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(r(0), 0) = n In 0 - EN-1 ln(a. +17; 0) + (N-1)
N i=1 i +1 i+1

(r(0), 0) = n/0 - E1N. 3--1-1- /(;..
1

+1; 0)
N =1 i+1 +1 i+1

= n/0 - EN-1i=1b i+1 1
r.(0)

= n/0 - EN-
1

lb
i+1

r
i
(0),

it is clear that
N

is differentiable between the points

e
1

, 02, , 01\1. But
2

so that

lim r.(0) = lim r.(0), V 0k, V r.
0 0

k
0s-0

k-

lim (r(0), 0) = lim (r(0), 0) V 0 k=1,... N2
k

0-- 0k
N _ N

k

to obtain the result that

cict N
dO

if

N
(r(0), 0) is differentiable on (0,00).

A necessary condition for ofN(r(0), 0) to be maximized is that

t\-- 0. n/6 EN-11; Ka-, +; = 0, /0\ E (0, C('), if and only
1 i+1 1+1 i+1

h( t/i) = EN-
1
1 {/8b

i+1 /(-1a.
+1

+b i+1i=

/' N-1h'(0) = E. a b /(a +b
1=1 i+1 i+1 i+1

so that by the same argument as in Lemma
de

13)1 - n = 0. (2. 8)

A 2
0) > 0, 0 E (0,00), (2.9)

i+1

2.2 h(0) has only one

n ),0 = 0 is an equivalent
r(0solution. By recognizing that

dO
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equation to Equation (2.7) the result follows.

2.5.3. Description of the Algorithm Used for Maximizing IFR
Likelihood Function

t%The algorithm used to find (r, 0, A) in the simulations is an

adaptation of the sequential procedure for finding (r*, X) for a given

value of 0, which is itself, a two sample analogue of the procedure

in Marshall and Proschan (1965). Since the functional form of r(0)

is known, the value of 0 may be updated by solving Equation (2.7).

Because short computation time is, crucial in simulation studies, we

maintained the averaged form of r(0) from one value of 0, say

n0, to the updated value n+10 when we would check to see if future

averagings were necessary and if any previous averaging were unneces-

sary for n+1
0. Future averagings were identified by the K-T

feasiblity conditions. Unnecessary averagings for n +10 were

identified by negative Lagrangian multipliers X. For the simple

case r. = r. and. Ai X. = 0,= 0, X
i+1

= Ili. (a. +b i+1 0)
1+1 i +2 +1

becomes negative if a
i+2

+ b i+2
n+1 0 < a i+1

+ b
i+1

n+1 0. A similar

situation occurs for the "multiple averaged" case. When a Lagrangian

multiplier became negative (defined to be < -10 10) the algorithm

maintained the present value of

estimator s

n+1
0 and reordered the initial

n+1_,, where ri = 1 R iai+i+b+1n+1id) 0), i = 1, . , N-1.

When the value of 0 did not change during a reordering the



Flow Chart for the IFR Algorithm

(T (I), M(I), N(I), 0MI 1).

= 0 MI
T(I) = T(I)-T(I-1)

A 1 (I) = M(I)446, T(I)
B 1(I) = N(I) *o T(I)
R(1) = X(1) = 0.
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= 2,...,N

A2(I) = Al(I)
B2(I) Bl(I)

(I-1) = 1/(Al(I)+Bl(I)*.n0).)
Fa) 0

Find
4 IR = index of first R averaged with R(I)

JR = index of last R averaged with R(I+1)

Yes R(I+1 N

> R(I)

Find
A2(IR)= =A2(JR) = X
B2(IR)= = B2(JR) = B
R(IR)= ...=R(JR)
X(IR+1), , X(JR)

Yes

(IR-1)
<R(IR)

N Extend averaging to first
R averaged with R(IR-1)
Set IR = index of first R
averaged with R(IR-1)

Find n+1

=2,...,N-

FINISH
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algorithm terminated. The function h(0), whose root the algorithm

finds, is of the same form as Equation (2.2b) so that by the same rea-

soning as in Section 2. 2 the Newton-Raphson method will converge.

An alternate algorithm might for each n0 order the initial is

so that the check for X. < 0 would not be necessary. This approach

has the advantage of not requiring the vector X to be calculated but

will usually require more time than the algorithm we used.

2.5.4. Decreasing Failure Rate Distribution

Suppose that xl, ...,x and y
1, yn are random samples

from distributions F and G, let t be the combined ordered

vector, and let 6. be an indicator variable having value 1 or 0

according to whether ti is an F or G observation. Assume

also that x and y are positive random variables. Then by use

of the same relationships used in the IFR case we can write

1-6.
(t, 51r, =

N
i=1 r(t

i
)0 1] expt-ZNi=1[ r(u)du Z. .(5 -1-9(1-6.))11.

N J=1
ti -1

If LN(.1, Sir, 0) is to be maximized subject to the constraint

<r(t

0
) > r(t

1
) > ... > r(t

N 1 1 1
) then r(u) = r(ti) = r. for t. -1 u < t.

will minimize the exponential terms. Then

1-5,
S = [II. r.0 1] exp [-Z. (a.+b0)r.],

=1 1=1
.
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a. = (t. -t. )E. .8,
1 1 1-1 3=1 3

b. = (t.-t. )E, i = 1, ...,N.
1 1 1-1 3=1 3

Using the same approach as in the IFR case,we express the DFR

problem as a NLP problem.

NLP Problem 2.

max (r, 0) = EN.
1
[ln r.-(a.+b.0 + n ln 0

such that gi(r, 0) = ri - > 0, i = 1, , N-1,

gN
(r, = rN > 0

gN+ 1(11' e) >

Lemma 2. 3. For NLP Problem 2, if an+1 0 and

bm+1 0 then there exist X. such that (r, 0) satisfies the K-T

conditions.

Proof: K-T condition (3) requires

X = a1 + b 0 - 1/r
1 1 1 1

X
2

= a
2

+ b20 - 1 /r2 + X1

XN= aN+bNO - 1

EN
1
Ob.r

i
n

i= 1

+ X.N-1
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after setting X
n+1

= 0. The sequential method of finding X. is the

same as in the IFR case with the obvious difference of having

ri - ri+1 > 0. Existence of n
0 for each of the 2N-1 possible

orderings is the same as the proof for the existence of 0MI
except

that the a's and b's may be averaged. There is no bound M.

Using a similar argument as in the IFR case we have

Theorem 2.4. For NLP Problem 2, if an+1 0 and
n

0 then the vector (r, X, 0) satisfying the K-T conditions isbm+1

unique.

2.6. A Worked Example Giving Estimates of 0

Consider the following hypothetical data:

t. 1 1.5 2.5 2.75

t. 1 .5 1.0 .25
1

8. 1 0 1 0

m. 2 1 1 0

n. 2 2 1 1

Combined sample estimate, 0
A Evaluation of

n. ln(1-1/N.(0A)) = 1;6=0rn
i

1 n [ 1 - ]/) 0AZ
6= 1 1 1

gives



1+26c l+f)% n 2
2 ln( ) + ln( A ) = /0

C2+20 1+0 1+20

which has solution AC = . 282.

U -statistic estimate, 0 U.

/ir fj" 1

n 5=0 2

" "so that 0
A

W= /(1-W) = 1/3.

1 1

2+0] = 4
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Maximal invariant estimate, 0
MI

. For this data the equation
n.1 0

E.1=1 m.+n.0 n is

20 20 0 0
2i-20 1+20 1+0 0-

or equivalently, 40
2 A+ 0 - 1 =

0MI = .39.

and

which has approximate solution

Increasing failure rate, 0IFR. We need to find X such that

2
= 1 /r

1
(a

2
+b 20) = 1 /r

1
. 5+0)

X
3

= 1 /r - (a
3

+b 30) + X.2 = 1 /r
2

- (1+0) + X2

X4 = 1/r
3

- (a4
+b 40) + X3 = 1/r

3
- (. 25) + X3

ZN-
1

lb
i+ 1

Or i n.
i=



Step 1. Set X. = 0. Find ri to solve the last equation
0 .250

+ + = 2.5+0 1+0 .250 to find. 0 = N1.5 = .707.

Step 2. Check the feasibility of ri: r
1

= .823, r
2

= .584,

r3 = 4. Since r1 > r2, r1 and r2 are averaged to obtain

ri = r2 = 1/(.75+0) = .685 and X2 = .96 - 0 = .25, X3 = X4 = 0.

Step 3. Solve 20
1 to find 0 = .75..75+0

Step 4. Is Onew = °old ? No.

Step 5. Update r, X: r1 = r2 = 2/3 and r3 = 4, X2 = .21

and X3 = X4 = 0. Check to see if X. >0.

Step 6. Check feasibility of ri: r1 = r2 = 2/3 < r = 1.

Step 7. Solve E. 013 r. = n. Stop since ()new = ()old.N-1
1=1 i+1 1

Decreasing failure rate. We need to find X such that

X.
1

= al + b 10 - 1/r
1

= (2+20) - 1/r
1

X.2 = a2 + b 20 - 1 /r
2

+ X1 = (. 5+0) - 1 /r
2

+ X1

X3 = a
3

+ b30 - 1/r
3

+ X
2

= (1+0) - 1/r
3

+ X2

X4 = a4 + b

and

- 1/r
4

+ X3 = . 250 - 1 /r
4

+ X3

Z.
1
b

i
Or

i
= n.

1=

49
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Step 1. Set X = 0, find r and then solve EN b Or = 2.
i=1

/'This is the same equation as in 0MI' so that 0 = .40.

Step 2. Check the feasibility condition and average where

necessary.

r
1

= 1 /(2+2( . 4))

r
2

= 1 /(. 5+. 4) =

r
3

= 1/(1+.4) =

= . 357

1.11

.71

r4 = 1/(.25)(.4) = 10;

(a)

(b)

r
1

< r
2,

r
2

< r 3'

set r
1

= r
2

= .54

set r
1

= r = r
3

= . 588

(c) r
3

< r4, set rl= r2 r = r4 = 1 /1.875+1.06(. 4)] = . 63.

Step 3. Update value of 0. E. b. Or =
4(1.06)0 = 2 to

1=1 1 1 .875+1.060

give 0 = .825. Continue since A = 0
new old.

Step 4. Update values of r and X. using the ordering from

Step 2. Xi = 1.900, A2 = 1.475, X3 = 1.550, X4 = .03. (Because

X. > 0, i = 1, , 4 we know that the orderings in Step 2 has no unnec-

essary averagings for Onew

Step 5. Check the feasibility conditions.

Step 6. Update 0. Algorithm terminates because 0 remains

the same.
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3. EVALUATION OF THE MONTE CARLO STUDY

3.1. Descri tion of Pro ram Used for Em irical Stud

A Monte Carlo study of the estimators was carried out on

Oregon State University's CDC3300 computer. The system of pro-

grams consisted of a main program with several subroutines which

had access to common arrays. The main program generated two

random samples from Weibull distributions, and calculated summar-

izing statistics for the various estimators. An ordering subroutine

constructed an array containing the combined ordered sample, with

corresponding arrays for the indicator variables 5, m. = Z. .5.
i 1 j=1

and n. = Z. .(1-5.), The estimator 0 was also calculated in the
1 j=1. j

/'
ordering subroutine. The next subroutine used 6 J as the starting

value to iteratively find the maximal invariant MLE, OMI. Using

Aas a starting value, the third subroutine found 0C, which is

the MLE of 6 with respect to the combined sample. In the first

stage of the fourth subroutine the conditional maximum likelihood

estimator for r F(t) assuming IFR was calculated; the estimator

was conditional on 0MI so that given OMI, the basic estimates r.,

i = 1, , N-1, were constrained to be increasing to obtain

-CIFR( )`
In the second stage the MLE of 0, (0 IFR ) and the

unconditional MLE IFR( ) were obtained. In the third stage the

cummulative failure rate functions (corresponding to ii-CIFR and



A
rIFR)
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were obtained, and subsequently the estimates of the reliabil-

ity functions 1 CIFR' T"IFR' FM, and fc at ti = .2, . 4 2. 0,

where FM is the empirical reliability function based only on the

single sample x
1
,...,xm

Our objective for the empirical study was to compare the

estimators under changes in 0, in sample size, and in the intensity

of "increasingness" of the failure rate functions. All estimators are

scale invariant so that the Weibull distributions with scale parameter

equal one, F(t) = 1 - e -tc c
and G(t) 1 - e

_ot
, were used for the

study. Four basic combinations of (c, 9) were considered: (1,1),

(3, 1), (1, 3), (3, 3). These combinations allow pairwise comparisons

when only 0 or only c is changed. When c = 1 the distribu-

tions have monotone failure rate, and when c = 3 the distributions

have strictly increasing failure rate. When 0 = 1 and c is con-

stant both distributions are identical; when 0 < 1 and c constant

G(t) < F(t), when 0 > 1 and c constant G(t) >F(t) to.make

the y observations from G stochastically less than the x obser-

vations from F. We used eqUal samples sizes m = n = 10, 20, and

40.

One mild restriction was imposed on the samples to guarantee

solutions to all procedures. All procedures required that the two

samples overlap by at least one observation, that is (Z1,11 6. m and
J
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Z. (1-5.) n) with the exception of the IFR case which required
J=1 J

Z. ,5. m and. E +1 (1 -b.) n. Any sample not satisfying the
3=1 3 j=1 3

stronger restriction was rejected.

Comparison of the failure rate function estimators and reliability

function estimators were made at time points .2, .4, .6, ... , 2.0. For

each sample, the failure rate function was estimated only on [0, tN)

and is given value of 00 on [tN, 00) If tN was less than 2.0,

the estimate on [tN-1, tN) was continued to 2.0. A count of the

number of "infinities" on each subinterval was recorded.

3.2. Comparison of MLE of 0

Several trends can be observed from the data contained in

Tables I-IV, of which many are as expected and will be mentioned only

for completeness. The following observations are appropriate.

1. All estimators have a positive bias. This is as expected

because "high" estimates have range (0, 00) while "low"

estimates have range (0,0), and hence the arithmetic mean

will reflect the bias of the "high" estimates.

2. In general, the bias decreases with increasing sample size

but there are two exceptions. For the case c = 1, 0 = 1

the bias of both 0
A

MI
and 0 increase slightly when the

sample size is increased from 20 to 40. (The MSE decreases,

however.)
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Table I. Empirical moments of four maximum likelihood
estimators for 0 when true distributions are Weibull.

These results are based on 200 simulations using
-e

F(t) = 1
t

e and G(t).= 1- e-etc where 0 =1, c =1.

m =n=10

e
MI

0u c eI
F R

Mean 1.147584 1.164617 1.177045 1.432509
Variance . 442442 . 524659 . 567755 1.270405
3rd central . 600793 . 809 265 . 922167 3.754207
4th central

m =n = 20

1.755142 2.556371 3.067744 20.923734

AMI
es
AU

ec
IFR

Mean 1.012018 1.049156 1.014489 1.079914
Variance . 119046 . 161899 . 133426 . 194833
3rd central . 035870 060349 . 045451 . 091208
4th central

m n =40

. 068438 . 107658 . 089054 . 210491

e
MI AU Ac IFR

Mean 1.021612 1. 018193 1.023609 1.060344
Variance . 064036 . 071219 . 068635 . 094642
3rd central . 026487 . 026030 . 029532 . 051035
4th central . 040286 . 036835 . 046134 . 091277
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Table II. Empirical moments of four maximum likelihood
estimators for 8 when true distributions are Weibull.

These results are based on 200 simulations using

F(t) =1 e
tc and G(t) e

-e tc where 0 =1, c =3 .

m = n = 10

e
M I

Au c 'FR

Mean 1.139709
Variance .355858
3rd central . 344443
4th central . 838867

M =n = 20

1.167642 1.166007 1.356748
.435565 .451970 .787063
.481708 .521000 1.603561

1. 288920 1.412062 6.791009

AMI AU Ac eIFR

Mean 1.047312
Variance . 138327
3rd central . 044045
4th central . 064398

m =n =40

1. 085869 1.051300 1.118398
. 219811 . 153205 . 199563
. 147604 . 051978 . 094278
. 285439 . 077939 . 166487

A
MI

AU c AI
FR

Mean 1.017211 1. 021277 1.018373 1. 051211
Variance . 054346 . 069241 . 058246 . 068007
3rd central . 006457 . 011127 . 007409 . 009897
4th central . 009001 . 017137 . 010319 . 014523
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Table III. Empirical moments of four maximum likelihood
estimators for A when true distributions are Weibull.

These results are based on 200 simulations using
e cF(t) =1- e-t and G(t) =1 - e-et where 0=3, c=1.

m =n = 10

e
MI u C IFR

Mean 3.917476 4.294263 4. 474457 7. 412966
Variance 7. 013842 21.372088 11. 296877 50. 979839
3rd central 37. 817435 544.395622 83. 634934 1012. 919882
4th central

m =n =20

387. 699589 21523.166416 1088. 316865 30684. 642187

e
MI u c ;IFR

Mean 3. 302968 3.428827 3.483258 4. 523752
Variance 1. 926413 3.335900 2.354526 4. 631293
3rd central 5. 410304 18.858883 7.747019 20. 031946
4th central

m =n =40

38. 310249 217.578604 61.650333 214. 644838

MI
AU

VG AI FR

Mean. 3. 130677 3.183356 3. 207650 3. 826419
Variance . 544874 .758789 .591893 1. 070823
3rd central , 120377 .554551 . 137649 . 494119
4th central . 73 2876 2.197108 . 866973 3. 228011
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Table IV. Empirical moments of four maximum likelihood
estimators for 0 when true distributions are Weibull.

These results are based on 200 simulations using

F(t) =1- e-tc and G(t) - e-etc where 0 =3, c =3.

m =n = 10

OMI AU
C I FR

Mean 3.916268 4.387027 4. 455282 6.908776
Variance 6. 621895 21.645630 10. 545860 59. 545095
3rd central 35. 919833 552.789688 78. 424926 1830. 691414
4th central

m = n = 20

374. 598958 21724.933405 1039. 436698 86197. 881708

A

43MI u AC
I FR

Mean 3. 470803 3. 585685 3. 672115 4. 475879
Variance 2. 843463 3. 626121 3. 597574 9. 405419
3rd central 13. 246012 18. 920859 20. 595340 153. 271707
4th central

m =n =40

130. 970442 203. 916666 239. 933249 4178. 040535

e
MI

eu c IFR

Mean 3. 142702 3. 178296 3. 221978 3.540186
Variance . 773018,' 1. 476249 . 842575 1.171490
3rd central , 845420'4 5. 997962 981437 1.826236
4th central 3. 288367' 50. 913108 3. 975654 8.800516
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Table V. Empirical correlation matrices of four maximum likeli-
hood estimators for 0 when true distributions are Weibull.

These results are based on 200 simulations using
c -F(t) = 1 - e-t and G(t) At

e where 0 = 1, c = 1.

m = n = 10

EMI
eu c 4IFR

1. 000000 .991648 .999433 .993940
1.000000 .991142 .986105

1. 000000 .995385

m = n = 20

e
MI U

ec

1. 000000

e IFR

m n = 40

1. 000000 .989748 .991649 .997323
1. 000000 .990575 .990896

1. 000000 .998105
1. 000000

8
MI

8u 8c AIFR

1.000000 .995332
1.000000

.999793
.995440

1. 000000

.998351

.995901

.998377
1. 000000



Table VI. Empirical correlation matrices of four maximum like-
lihood estimators for 0 when true distributions are Weibull.

These results are based on 200 simulations using
eF(t) - e-te and G(t) =1- e -Ot where 0 =1, e =3.

n =m = 10

0MI IFR

1.000000 .996117 .999357 .990245
1.000000 .996357 .987449

1.000000 . 991392

n =m fr--- 20

0MI
eu ec

1.000000

e
IFR

n =m = 40

1.000000 .984642
1.000000

.999600

.983224
1.000000

.996382

.993053

.995631
1.000000

u 14

MI
A ec IFR

1.000000 .996631
1.000000

.999765

.996640
1.000000

.999154

.997389

.999321
1. 000000
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Table VII. Empirical correlation matrices of four maximum like-
lihood estimators for 0 when true distributions are Weibull.

These results are based on 200 simulations using
-

F(t) e-to and G(t) =1 etc
e where 0 =3, e =1.

m =-- n = 10

m n = 20

m =n =40

0MI u OC IFR

1 . 000000 .908052 .998913 .984313
1 . 000000 .911030 .927427

1. 000000 .990373
1. 000000

e
M I u ec 4;)

IFR

1.000000 .988758 .999687 .998149
1.000000 .991097 .987997

1.000000 .997930
1. 000000

e
M I

eU ec e IFR

1.000000 .986920
1.000000

.999969

.987062
1.000000

.994991
.991460
.995099

1. 000000

60
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Table VIII. Empirical correlation matrices of four maximum
likelihood estimators for 0 when true distributions are Weibull.

These results are based on 200 simulations using
cF(t) =1- e and G(t) =1- e-et where 0 =3, c =3.

m =n = 10

MI
eU ec 0

IFR

1. 000000 .909773 .998808 .957368
1. 000000 .914019 .974756

1. 000000 .963833
1. 000000

m -n = 20

e
M I u c e

F

1. 000000 .993166 .999443 .969116
1. 000000 .992712 .960467

1. 000000 .975656
1. 000000

m =n =40

e
MI

eC 0
I FR

1. 000000 .951939 999950 .998014
1. 000000 . 952923 .960272

1. 000000 .998286
1. 000000
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3. The variance and the mean square error of all estimators

decrease with increasing sample size. The variance

decreases by about 1/N/2 for each doubling of the sample

size, with a greater decrease for the cases with 0 = 3.

4. The MSE of all estimators increases with 0.

5. When 0 = 1 there is little change in MSE of the estimators

between the case where c = 1 and c = 3. However, when

0 = 3 there is generally an increase in MSE when c = 3.

6. On the basis of MSE, the best estimator of 0 is Ml
because it is uniformly best over all cases. The next best

estimator is 0C, which is almost uniformly better than the

remaining two estimators; the exception is in the case c = 1,

0 = 1, n = m = 10 where 0u is slightly better.

3.3. Comparison of Two Estimators of the Failure Rate Function

Two estimators of the F distribution failure rate function are

compared at time points .2 units apart on the fixed interval (0,2.0).

There are two difficulties encountered in comparing failure rate func-

tion estimators on a fixed interval, and both are concerned with the

estimation on the latter part of the interval. As noted in the introduc-

tion to Chapter 3, the function is only estimated on (0, tN) for each

sample and we use the estimate on [tN-1, tN) to also estimate on

[tN, 2. 0). For high values of 0 and/or c the number of such
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extended estimates become large. The second difficulty concerns the

extremely large estimate that can occur near the end of estimating

interval [0, tN). The basic estimate of the failure rate on, [t., t.+1 ),
1

for instance, is the reciprocal of the total exposure time between

[t.,ti+1 ). If t. and ti.+1 are very close together, then the basic
1 1

estimate will be very large. Provided ti is in the first part of the

estimating interval, a large estimate will be dampened when averaged

with succeeding basic estimators. However, if a large basic estimate

occurs near tN, then it will be less likely to be averaged. In fact,

if the basic estimate on [tn-1, tN) is extremely large, it will not be

dampened. As the parameter c is increased, the probability of

obtaining a large basic estimate near tN is also increased. In

practice, one would be skeptical of MLE of an increasing failure rate

function near tN.

In the Monte Carlo study, the number of extended estimates and

the number of "extreme" estimates on the interval [0, 2. 0) are both

increased by:

(i) small sample sizes,

(ii) large values of c,

(iii) large values of 0. In each of these cases we can expect

extreme estimates on the latter part of [0, 2.0). In com-

paring two estimators of a failure rate function, we give

more weight to the estimation of the first portion of [0, 2. 0).
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On the basis of the data in Tables IX-XII, the following conclu-

sions seem to be appropriate.

1. The MSE of both estimators decreases with increasing sample

size.

2. The MSE of both estimators decreases initially, and then

increases on [0, 2. 0) when c is increased from 1 to 3.

3. On the basis of MSE at the chosen time points, one estimator

is not uniformly better than the other. The conditional MLE

of rN is slightly better for c = 1, 0 = 1 and the MLE of

rN is slightly better for c = 3, 8 = 3. The intermediate

cases are indeterminate.

4. The bias of is generally less than the bias of/IFR

on the initial portion of [0, 2.0).FR

3.4. Comparison of Four Estimators of the Reliability Function F

One important application resulting from this study is having

access to combined sample estimates of the F-reliability function

when (F,G) E . The purpose of this section of the empirical work

is to consider three combined sample estimators of F, and corn-

pare them to the single sample empirical reliability function, denoted

by FM. The first estimator F , which we call the "combined

sample MLE of F," is calculated by



Table IX. Two I FR maximum likelihood estimators of the 65
F failure rate when true distributions are Weibull.

These results are based on 200 simulations using
C

F(t) - e
-t and G(t) =1 - e-At where 0 -1, c =1.

The minimum MSE for each t is underlined.
m n t, 10
t Conditional MLE MLE No. of

InfinitiesBias MSE Bias M SE

.2
. 4
. 6
.8

- 0.177209 183363 -0.
-0.
-0.

221106
109970
038826
018060

220632
. 220250
. 242640
. 279653

0

0

0
0

-0. 063880 182243
. 011465 204439
.068295 . 240410

1. 0 157539 . 276094 111285 .3141.39 0

1. 2 247278 . 357776 . 201372 .379583 0

1.4 .360625 . 715104 319702 . 747836 0

1. 6 . 677754 7. 395917 . 642786 7.471170 1

1. 8 .914063 9. 664267 884458 9. 740837 2

2. 0 1. 254949 15. 386455 1. 236303 15. 795541 5

m =n = 20

t Conditional MLE MLE No. of
Bias MSE Bias MSE Infinities

.2 -0. 102930 . 109266 -0. 117488 . 125381 0

.4 -0. 005277 . 092315 -0. 020229 108249 0

.6 . 046235 . 103198 03 0743 119126 0

. 091978 . 143013 . 077618 . 163290 0

1. 0 . 143651 . 238688 130762 . 275350 0

1. 2 184370 . 26447 2 . 171897 299642 0

1, 4 . 237424 .402362 . 224737 .431.008 0

1. 6 .340754 1. 143442 .333584 1.345357 0

1. 8 . 446684 1. 348540 . 442795 1. 559691 0

2. 0 . 551392 1. 748920 . 554368 2. 035708 2

m n = 40

Conditional MLE MLE No. of
InfinitiesBias MSE Bias MSE

.2 -0. 100861 043925 -0. 112769 . 049370 0

.4 -0. 033072 031692 -0. 045500 . 036054 0

.6 . 002180 036400 -0. 009964 041279 0

8 . 031380 046556 019607 052349 0

1. 0 . 041104 . 0486 23 . 030269 . 055355 0

1. 2 . 060149 052870 . 049394 059362 0

1.4 . 083009 . 057707 . 072034 . 062747 0

1. 6 124200 . 086178 113573 092733 0

1. 8 . 149761 099 250 139728 105733 0

2. 0 189836 131121 179928 . 136032 0



Table X. Two IFR maximum likelihood estimators of the
F failure rate when true distributions are Weibull.

These results are based on 200 simulations using
e c

F(t) - e
-t and G(t) =1- e-44t where 9 =1, c =3.

66

The minimum

m n =

t

MSE for each t is underlined.

10

Conditional MLE MLE No. of
InfinitiesI3ias MSE Bias MSE

.2 -0.65853 . 023631 -0. 068375 . 022811 0

.4 -0.100425 . 125825 -0. 124801 .1211.30 0

.6 -0.018754 . 448518 -0. 076209 .467853 0

.8 .027736 1. 062344 -0. 080042 1. 086036 0

1.0 .547145 5. 267537 . 400952 5.937668 0

1. 2 5.071730 901. 707627 4. 836420 894. 425326 5

1. 4 11.364133 1264. 879704 10. 776984 1215. 139534 56
1.6 21.220150 3560. 699075 20. 274914 3282. 564486 158
1.8 20.163981 3563. 656241 19. 188605 3282. 535260 195
2. 0 17.883981 3476. 906885 16. 908605 3200. 233620 200

m = n = 20

t Conditional MLE MLE No. of
Bias MSE Bias MSE Infinities

.2 -0. 052403 018129 -0. 054036 . 017801 0

.4 -0. 026936 . 098378 -0. 038235 . 096938 0

6 -0. 003348 191405 -0. 028267 .195796 0

.8 . 093783 647476 . 046461 .649311 0

1. 0 . 286951 1. 470937 . 213431 1. 479089 0

1. 2 811075 5. 475432 . 715024 5. 428643 0

1. 4 10. 564663 3650. 108902 10. 627350 3912. 321928 16

1. 6 27. 422457 7760. 333511 27. 293115 7873. 969649 99
1. 8 35. 374923 15283. 120859 35. 216670 15388. 270795 178
2. 0 33. 094923 15127. 009606 32. 936670 15232. 881181 198

m =n =-- 40

Conditional MLE MLE No. of
Bias MSE Bias MSE Infinities

.2 -0. 0489 07 .012111. -0. 049913 . 011990 0

.4 -0. 057734 . 047817 -0. 063527 .047852 0

.6 -0. 043211 105853 -0. 057782 . 107287 0

.8 -0. 024377 . 288506 -0. 052370 .285083 0

1. 0 044941 . 561182 . 003191 .559230 0

1. 2 . 481255 2. 747607 . 421909 2.682831 0

1. 4 2. 658527 119. 691958 2. 576705 116.733859 0

1. 6 21. 307618 9002. 516407 21. 184001 9001.582587 53

1. 8 30. 749555 10614. 132569 30. 537163 10571,681484 154

2. 0 28. 778694 10482. 581628 28. 563312 10440.918018 194



Table XI. Two IFR maximum likelihood estimators
F failure rate when true distributions are Weibull.

These results are based on 200 simulations using

F(t) =1 - e-tc and G(t) = 1- e-etc where 0=3, c =1.

of the 67

The
m = n

t

minimum MSE for each t is underlined.
= 10

Conditional MLE MLE No. of
InfinitiesBias MSE Bias MSE

.2 -0. 112054 191522 -0. 329539 .259888 0

.4 . 032686 195451 -0. 191950 . 209319 0

,6 . 133641 . 276660 -0. 068336 . 251630 0

.8 . 247398 . 400891 076653 . 346371 0

1. 0 384073 1. 081049 . 232909 .989920 0

1. 2 . 746924 20. 460775 610063 20. 343462 3

1. 4 982177 23. 370477 . 856218 23. 259032 5

1. 6 2.904931 374. 249 279 2. 793729 374. 143143 13

1. 8 3. 207199 377. 012106 3. 102148 376. 909568 25

2. 0 3. 693290 387. 305008 3. 595196 387. 200394 42

m = n = 20

t Conditional MLE MLE No. of
Bias MSE Bias MSE Infinities

.2 -0. 040773 083362 -0. 193370 . 111839 0

.4 . 036409 090693 -0. 109776 . 093724 0

.6 . 095842 113588 -0. 035262 100606 0

.8 148876 . 153033 . 032800 . 127382 0

1. 0 208937 . 203797 . 10299 8 166378 0

1, 2 . 371284 2. 327480 . 277600 2. 289528 0

1, 4 . 395997 2. 351634 .310693 2.315802 1

1. 6 . 466210 2. 619430 . 384073 2. 544228 2

1. 8 1.475024 58. 262123 1. 403201 58. 194091 5

2. 0 1. 625729 59. 835761 1. 556787 59. 769597 12

m =n =40

t Conditional MLE MLE No. of
Bias MSE Bias MSE Infinities

2 -0, 051982 039203 -0. 153905 .060382 0

.4 . 006680 . 033686 -0. 089156 .042308 0

.6 . 052202 045667 -0. 036800 045656 0

.8 . 088641 . 058824 . 010138 .053577 0

1. 0 117321 065386 . 045135 .057047 0

1. 2 .165340 113841 . 101483 102536 0

1.4 . 198120 . 131467 . 140424 .119187 0

1. 6 . 239595 . 204860 . 187050 . 194551 0

1. 8 . 286716 . 262742 . 239905 253452 0

2. 0 . 511505 5. 038156 . 469477 5. 029031 1



Table XII. Two I Fli maximum likelihood estimators of the
F failure rate when true distributions are Weibull.

These results are based on 200 simulations using
c

F(t) = 1 e
-t and G(t) -1- e

_ 9t
where 8 =3, e =3.

The minimum MSE for each t is underlined.
m n = 10

t Conditional MLE

.2

. 4

.6

. 8

1. 0
1. 2
I. 4
1. 6
1. 8
2. 0

Bias
-0. 054814
-0. 035902

. 062948

. 288815
1. 100842

12. 689519
26. 153085
47. 513944
45. 619662
43. 339662

m = n = 20

t

MSE
016904
138316

. 477582
1. 730615

27. 787878
6486. 379895

11587. 866827
51897. 277165
51707. 330718
51504. 503449

Conditional MLE
Bias MSE

. 012419
080326
239004

. 616392
2. 553476

1002. 656459
5848. 576732

10129. 651805
10333. 707002
10481. 363667

. 2

4
. 6
. 8

1. 0
1. 2
1, 4
1. 6
1. 8
2. 0

-0. 042445
. 010408

-0. 001622
. 110124
. 554456

5. 042380
20. 946820
28. 382147
28. 300899
27. 230103

m -n =40
t

MLE

Conditional MLE
Bias MSE

009411
. 040625

104575
. 270902
. 874311

. 2
4

. 6
. 8

1. 0
1.2

-0. 019031
, 001292
. 012291

130793
. 160171
. 393453 4. 474137

1.4 27. 595407 84236. 950431
1. 6 92. 739775 500130. 605621
1. 8 116. 752326 613773. 416610
2. 0 114. 472326 613246. 224456

Bias

- 0.070742

-0.131811

- 0.168923

-0.032209

.870431

12.524690

26.023763

47. 392521
45. 503558
43. 223558

M SE
. 013919
. 119256
. 419600

1. 651099
27. 893885

6483. 278612
11584. 492825
51894. 291625
51704. 761552
51502. 463720

MLE
Bias

-0. 052892
- 0. 056034
-0. 133781
-0. 083411

400895
4. 968023

20. 908349
28. 357319
28. 277380
27. 206584

No. of
Infinities

0

0
0

0
1

24
108
175
194
199

No. of
MSE Infinities
011054 0

. 069624 0

. 229202 0

. 560406 0

2.427489 0

1002.559103 3

5848.547674 49

10129.662422 138
10333.803173 190
10481.567082 199

MLE
Bias MSE

-0. 026517 . 008664
-0. 0353 84 . 037314
- 0. 066282 098605

. 017844 241759
071889 849777

.351045 4.,470226
27. 581422 84236. 926879
92. 732845 500130. 593742

116. 746486 613773. 421249
114. 466486 613246. 255722

No. of
Infinities

0
0

0
0
0

0
10

104
181
200
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where

-1AF (s) = k p. for s E (t 'tk],1 I. k-1 k

1-[6i+(1-6i.)/8] /Ni(/)}

Two estimators based on CIFR and rIFR are considered,

where

and

FCIFR(s)

FIFR(s) =

s

exPr. 1:\CIFR(u)dul

s

exP[-J .'1FR(u)du].
0

Although the estimators of the reliability functions are compared at

the same points as the failure rate function, it must be recognized
A

that FCIFR and FIFR

69

are based on estimates of the cumulative

failure rate function, and therefore, reflect the cumulative properties

of rCIFR and rIFR
of the previous section.

respectively, rather than the point properties

The following conclusions are appropriate to the data presented

in Tables XIII-XX.

1. The MSE for all estimators decrease approximately at the

rate of n-1.

2. Both F and FIFR have greater MSE for 0 = 3 than
/*._

for 0 = 1; while FCIFR has a smaller MSE for 0 = 3,

than for 0 = 1 when c = 1, but is greater when c = 3.



Table XIII. The bias of four maximum likelihood estimators of the
F reliability function when true distributions are Weibull.

These results are based on 200 simulations using
-te C

F(t) 1 - e and G(t) e-et where 0 =1 , c = 1 .

The maximum bias for each t is underlined.
m n - 10

t

A

FM

A

F
A

F
C I FR

F1FR No. of
Infinities

. 2

. 4

. 6

. 8

-0. 002730
. 002179
. 006688
. 007671

-0. 000415
005245

. 011894

. 013585

. 070102
. 078957
. 075059
. 067177

. 075769 0

0

0

0

091306
. 092904
. 088989

1. 0 . 015620 015697 . 055198 . 079321 0

1. 2 . 006805 . 003950 041294 . 066064 0

1. 4 . 002903 -0. 001382 . 027537 . 051617 0

1. 6 . 003603 . 001123 015686 . 038146 1
1. 8 . 002201 -0. 000091 . 006415 . 026716 2

2. 0 . 001664 -0. 000506 -0. 001125 . 016646 5

m - = 20
A A A A No. of

t Fe FCIFR F IFR Infinities
2 -0. 000230 -0. 006850 . 049216 051393 0

.4 -0. 010070 -0. 013751 . 050705 . 055098 0

.6 -0. 001311 -0. 007820 043212 . 049387 0

.8 -0. 004078 -0. 009375 . 033 294 . 040661 0

1. 0 -0. 000379 -0. 004627 024114 032199 0

1. 2 -0. 004194 -0. 003563 015964 024338 0

1. 4 -0. 002596 -0. 003981 008966 . 017279 0

1.6 -0. 003396 -0. 004986 . 002737 . 010704 0

1. 8 -0. 002798 -0. 004130 -0. 002708 . 004651 0

2. 0 -0. 006085 -0. 005055 -0. 007433 -0. 000849 2

m n =40
A A No. of

t FM Fc FCIFR IFR Infinities
.2 -0. 000730 . 002178 . 040249 . 042012 0

. 4 . 003304 . 004340 . 043445 . 046781 0

. 6 001063 . 003684 . 038884 043268 0

8 . 000921 002457 . 031.820 . 036842 0

1. 0 . 001370 , 001485 . 025255 . 030585 0

1. 2 . 001805 . 001297 . 019500 024892 0

1. 4 . 006403 004861 . 014367 019653 0

1. 6 002978 . 002844 . 009422 . 014465 0

1. 8 . 002326 . 002414 . 004987 . 009686 0

2. 0 -0. 000835 . 000165 . 001443 1. . 005737 0
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Table XIV. The bias of four maximum likelihood estimators of the
F reliability function when true distributions are Weibull.

These results are based on 200 simulations using
c

F(t) =1 - e
-t and G(t) =1 - e-9t where 9 -1, c =3 .

The maximum bias for each t
n =m = 10

FM FC

is underlined.

A

PCIFR
F IFR

No. of
Infinities

.2 -0. 001531 -0. 002236 . 005240 005347

.4 -0. 008005 -0. 005413 . 019408 . 021860

.6 -0. 012735 -0. 007041 . 033061 041731 0

8 -0. 001295 -0. 003395 . 035799 .053296 0

1. 0 018620 .015034 028215 . 051624
I. 2 -0. 004639 -0. 002024 000429 . 018949
1.4 -0. 000812 . 000118 -0. 010042 -0. 001463 56
1. 6 -0. 004639 -0. 003555 -0. 005259 -0. 002808 158

1. 8 -0. 001432 -0. 001026 -0. 000390 .000296 195

2. 0 -0. 000335 -0. 000335 . 000459 ,000710 200

n =m = 20
A No. of

t FM
FC FCI FR

FIFR Infinities
. 2 -0. 002281 -0. 001058 . 004927 .005023 0

. 4 -0. 001005 -0. 003429 016691 . 017791 0

6 -0. 009985 -0. 010933 . 016346 . 020314 0

. 8 -0. 013545 -0. 014007 . 011274 018976 0

1. 0 -0. 012629 -0. 011570 003836 013762
1. 2 -0. 006389 -0. 007272 -0. 005630 002741 0

1. 4 -0. 007062 -0. 004398 -0. 010307 -0. 006127 16

1. 6 -0. 002139 -0. 002188 -0. 005937 -0. 004788 99

1. 8 -0. 000182 -0. 000377 -0. 000776 -0. 000541 178

2. 0 -0. 000335 -0. 000197 . 000261 .000323 198

n =m = 40
A No. of

t FM
FC FCIFR

F
IFR Infinities

. 2 000343 . 000501 . 004760 .004802 0

. 4 . 001870 002240 014360 . 0149 89

. 6 -0. 000110 002072 019665 . 021892
. 8 . 004954 . 005024 021755 .026060

1.0 001745 . 003004 . 014036 019524 0

1. 2 . 001985 -0. 000176 003200 . 007821 0

1. 4 -0. 000062 -0. 000746 -0. 002991 -0. 000555
1. 6 0009 85 000828 -0. 002989 - 0.002284 53

1.8 .000692 . 000372 -0. 000867 -0. 000731 154

2. 0 -0. 000335 -0. 000093 . 000016 ,000043 194
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Table XV. The bias of four maximum likelihood estimators of the
F reliability function when true distri butions are Weibull,

These results are based on 200
csimulations

using
c

F(t) -1 - e-t and G(t) - e-At where 8 =3 , c =1 .
The maximum bias for each t is underlined.

m =n= 1.0

t 1M

A

FC "CIFR FIFE No. of
Infinities

. 2 001269 016122 . 054997 . 085654 0

. 4 . 006179 . 026748 056327 115134 0

6 . 010688 . 027015 . 044557 .119163 0

,8 010671 018440 . 0289 03 . 108537 0

1. 0 . 014120 . 012950 012274 . 089027 0
1. 2 002805 -0. 000153 -0. 000022 . 070132 3

1.4 . 007903 . 001223 -0. 009263 . 052998 5

1, 6 010603 004352 -0. 016845, . 036751 13

1. 8 . 011201 . 005038 -0. 021698 . 024040 25
2, 0 010664 005510 -0. 025428 . 012999 42

m = n = 20
A

Pm
A

FC
A

F CIFR
F1FR

No. of
Infinities

. 2 -0. 000230 . 006894 . 035703 . 059100 0

.4 -O. 006320 003743 032217 . 073225 0

. 6 -0. 001311 . 007501 022339 . 072172 0

8 -0. 000328 . 002399 . 012464 064802 0

1. 0 -0. 004379 -0. 002504 . 002092 052734 0

1. 2 -0. 000944 -0. 001794 -0. 007244 . 039152 0

1.4 000153 -0. 001778 -0. 013755 . 027486 1

1.6 002853 . 000209 -0. 017426 018513 2

1. 8 . 000701 -0. 001935 -0. 021286 009183 5

2. 0 . 000164 -0. 002216 -0. 022875 002732 12

m =n =40

t FM
FC

A

FCIFR P
I FR

No. of
Infinities

2 . 005269 . 004495 . 027656 . 044054 0

. 4 . 007179 . 006412 026525 . 054279 0

.6 . 005813 . 007262 019692 . 053340 0

. 8 001296 . 005369 . 011490 . 0469 86 0

1. 0 -0. 001004 002077 . 003628 . 038317 0

1. 2 001055 . 001878 -O. 003512 . 028807 0

1.4 -0. 001846 -0. 002540 -0. 009337 019674 0

1.6 -O. 001146 -0. 001346 -0. 013905 . 011556 0

1. 8 -0. 002548 -0. 004074 -0. 016876 . 005096 0

2. 0 -0. 004460 -0. 005326 -0. 018970 -0. 000332 1

72



Table XVI. The bias of four maximum likelihood estimators
F reliability function when true distributions are Weibull.

These results are based on 200 simulations using
cF(t) =1 e-tc and G(t) - e-et where , c = 3 .

The maximum bias for each t is underlined.
m =n = io

of the 73

t
PM Fe FC

IFR
FIFR

No. of
Infinities

2 -0. 004531 . 000051 . 005254 .005945 0

. 4 005495 002510 017644 .027389 0

. 6 -O. 011735 . 002359 017218 .052894

.8 -0. 004795 . 006715 . 008831 . 071852
1. 0 . 017120 . 014363 -0. 001353 . 059572 1

1. 2 . 006860 . 001802 -0. 019239 .013254 24
1. 4 -0. 004812 -0. 007396 -0. 018682 -0. 007939 108
1. 6 -0. 002139 -0. 003163 -0. 005216 -0. 002176 175
1. 8 000067 -0. 000361 . 000835 .001896 194

2. 0 . 000164 000161 001059 .001478 199

n = 20
A A No. of

t
F'

m
Fc FC

IFR
F

IFR Infinities
. 2 -0. 004781 -0. 000553 . 003976 . 004510 0

.4 - 0.007505 -0. 003315 008434 . 015553

.6 -0. 003985 -0. 000978 . 008442 . 03 0644 0

. 8 001954 . 004871 . 009073 046530
1. 0 -0. 005879 -0. 002309 -0. 003795 .032855
1. 2 -0. 000889 -0, 003599 -0. 015753 004195 3

1.4 . 003937 002084 -0. 012731 0. 005989 49
1. 6 001860 001250 -0. 003377 0. 001604 138
1. 8 -0. 000182 -0. 000345 . 000184 .000618 190
2. 0 -0. 000085 -0. 000091 . 000524 .000649 199

m = n = 40
A A No. of

t
Fc FC

IFR /'I FR Infinities
. a -0. 000156 -0. 000462 003155 . 003510 0

.4 -0. 002380 -0. 003673 . 003816 . 008111 0

.6 -0. 008360 -0. 001705 005745 018550 0

.8 -0. 011170 -0. 003195 -0. 000134 021277 0

1. 0 -0. 004254 -0. 002372 -0. 004569 . 016263
1. 2 . 001735 -0. 000999 -0. 006116 . 005914
1. 4 -0. 000437 -0. 001897 -0. 008425 - 0.004149 10

1.6 - 0.000639 -0. 001062 -0. 005893 -0. 005050 104
1.8 -0. 000432 -0. 000467 -0. 001016 -0. 000864 181

2. 0 -0. 000335 -0. 000335 . 000127 .000165 200



Table XVII. The MSE of four maximum likelihood estimators of
the F reliability function when true distributions are Weibull.

These results are based on 200 simulations using

F(t) =1 - e-tc and G(t) =1 - e etc where 0 , e =1 .

The minimum MSE for each t
m = 10

t I
M

FC

is underlined.

iT'
CI FR

F
I FR

No. of
Infinities

.2 . 013551 . 008435 . 008541 . 009567 0

. 4 022098 . 015308 . 015754 . 019188 0

. 6 . 024214 . 018731 . 020182 . 025959 0

. 8 . 025509 . 022250 . 022152 . 029539 0

1.0 . 023821 . 020865 . 020947 . 029100 0

1.2 . 017482 . 016802 . 017823 . 025618 0

1.4 . 015008 . 013781 . 014827 . 021608 0

1.6 . 013432 . 011735 . 012454 . 018246 1

1.8 . 011798 . 009948 . 010148 . 014740 2

2.0 . 010333 . 008735 . 008336 . 011950 5

m n = 20

t

A

F
M

A

Pc
A

FC 'FR

A

FI FR
No. of

Infinities
. 2 . 008157 . 005538 . 004987 . 005416 0

. 4 . 013358 . 010086 . 008584 . 009822 0

. 6 . 014230 . 010026 . 009954 . 011799 0

. 8 . 014281 . 010769 . 010249 . 012360 0

1.0 . 013543 . 010471 . 010007 . 012121 0

1.2 . 012108 . 008897 . 009 09 8 . 011002 0

1.4 . 010720 . 008320 . 007659 . 009465 0

1.6 . 008309 . 006675 . 006518 . 007811 0

1.8 . 007076 . 005934 . 005328 . 006336 0

2.0 . 005118 . 004679 . 004274 .005034 2

m =n =40
A

t T '
M

A

F
C

A

FCIFR
A

PI FR
No. of

Infinities
. 2 . 003532 . 002468 . 002678 . 002887 0

. 4 . 005424 .003533 . 004135 . 004655 0

. 6 . 005941 . 004635 . 004669 . 005431 0

. 8 . 005344 . 004444 . 004755 . 005659 0

1.0 . 005406 . 004730 . 004658 . 005603 0

1.2 . 005519 . 004712 . 004334 . 005248 0

1.4 . 005175 . 004079 .003790 . 004606 0

1.6 . 004238 . 003585 . 003208 . 003892 0

1.8 . 003222 . 003016 . 002639 . 003185 0

2.0 .002691 . 002337 . 002148 . 002570 0
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Table XVIII. The MSE of four maximum likelihood estimators of 75
the F reliability function when true distributions are Weibull.

These results are based on 200 simulations using

F(t) = 1 - e
-tc and G(t) - e-Otc where 0 =1 , c =3.

The minimum MSE for each t is underlined.
m n = 10

No. of
t F

m
.17.

C
F

CI FR
F

I FR Infinities
. 2 .000862 . 000601 . 000088 . 000087 0

.4 . 006164 . 003373 . 001979 . 001994 0

. 6 . 015613 . 009739 . 007946 . 008525 0

. 8 . 022497 . 019753 . 017522 . 020045 0

1. 0 . 022314 . 019166 . 019375 . 023785 0

1.2 . 014892 . 013054 .0117/16 . 014715 5

1.4 . 005718 . 004725 . 003577 . 004688 56
1. 6 . 001177 . 000975 . 000481 . 000676 158
1. 8 . 000149 . 000162 . 000039 . 000062 195
2. 0 . 000000 . 000000 . 000006 . 000011 200

m = n = 20
A A A

17
m 1-i c

No. of
t FCI

FR
F

I FR Infinities
. 2 . 000437 . 000229 . 000065 . 000063 0

. 4 . 003232 . 001950 . 001439 . 001448 0

. 6 . 009794 . 006186 . 004799 . 005006 0

. 8 . 012367 . 008960 . 007925 . 008696 0

1.0 . 010694 . 009721 . 009414 . 010639 0

1.2 . 007276 . 005486 . 005071 . 005796 0

1.4 . 002609 . 002051 . 001589 . 001809 16

1.6 . 000644 . 000389 . 000228 . 000258 99

1. 8 . 000129 . 000072 . 000018 . 000021 178
2. 0 . 000000 . 000001 . 000002 . 000002 198

m =n =40
A A A No. of

t FM
Fc

FCI FR
F IFR Infinities

. 2 . 000163 . 000091 . 000047 . 000047 0

. 4 . 001416 . 000723 . 000726 . 000740 0

. 6 . 004015 . 002551 . 002551 . 002665 0

. 8 . 005175 . 003798 . 003792 . 004146 0

1. 0 . 005527 . 004256 . 004096 . 004532 0

1. 2 . 0033 85 . 0029 02 . 002804 . 003 083 0

1.4 . 001596 . 001208 . 001140 . 001240 0

1. 6 . 000468 . 000337 . 000219 . 000238 53
1. 8 . 000084 . 000053 . 000015 . 000017 154
2. 0 . 000000 . 000002 . 000000 . 000000 194



'Fable XIX. The MSE of four maximum likelihood estimators of 76
the F reliability function when true distributions are Weibull,

These results are based on 200 simulations using
c

F(t) =1- e-t and G(t) =1- e-9t where 0=3, c =1 .
The minimum MSE for each t
m n = 10

A A

1-11/1t Fc

is underlined.

A

Pc I FR
F FIl

No. of
Infinities

.2 . 012601 . 008637 . 006823 . 010630 0

. 4 . 018935 . 015734 . 013557 . 023597 0

. 6 . 022923 . 020624 . 018005 . 031766 0

. 8 . 023113 . 023636 . 019707 . 034401 0

1 . 0 . 024975 . 021852 . 019761 . 032964 0

1. 2 . 021091 . 020962 . 018156 . 029334 3

1.4 .017742 .01.7`274 .016046 .025397 r0
1.6 . 014806 . 014153 . 013593 . 021267 13

1.8 . 014223 .013317 . 011245 . 017619 25

2.0 . 012597 . 011568 . 008920 . 013959 42

m = n = 20

't PM
FC IC

IFR
1

I FR
No. of

Infinities
. 2 . 006607 . 003503 . 003 033 . 005087 0

. 4 . 010268 . 007120 . 005844 . 010076 0

. 6 . 012095 . 010150 . 007953 . 012962 0

. 8 . 013099 . 011499 . 009202 . 014139 0

1. 0 . 012536 . 011938 . 009417 . 013661 0

1. 2 . 010813 . 010446 . 008893 . 012179 0

1. 4 . 009976 . 009543 . 007962 . 010486 1

1.6 . 007623 . 007406 . 006836 . 008791 2

1.8 . 006319 . 006159 . 005981 , 007498 5

2.0 . 005639 . 005526 . 005006 . 006219 12

m =n =40

t PM Pc FC
IFR

FI FR
No. of

Infinities
. 2 . 002958 . 001468 . 001543 . 002734 0

. 4 . 004845 . 003049 . 002770 . 005192 0

. 6 . 005303 . 004318 . 003496 . 006346 0

. 8 . 005429 . 004658 . 003803 . 006458 0

1. 0 . 004913 . 004713 . 003709 . 005882 0

1. 2 . 004614 . 004487 . 003484 . 005113 0

1.4 . 004194 . 003970 . 003111 . 004240 0

1.6 . 003600 .003448 . 002743 . 003512 0

1.8 . 003168 .003076 . 002424 .002972 0

2.0 . 002832 . 002791 . 002107 . 002489 1



Table XX. The M SE of four maximum likelihood estimators of
the F reliability function when true distributions are Weibull.

These results are based on 200 simulations using
-te -9tF(t) -1 - e and G(t) =1 e where , c =3 .

The minimum MSE for each t

m n = 10
n A

F
M

Ft C

is underlined.

A

FC.1
FR

n
F

I FR
No. of

Infinities
2 . 001114 . 0001.82 . 000058 . 000054 0

.4 . 005487 . 002291 . 001.707 . 001804 0

. 6 . 018301 . 009672 . 007774 . 009626 0

.8 . 025242 . 022626 . 018994 . 025675 0

1. 0 . 023468 . 023642 . 021877 030795 1

1. 2 . 015556 , 015212 . 012385 . 016846 24
1. 4 . 005432 . 005046 . 003146 . 004280 108
1. 6 . 001644 . 001415 . 000405 . 000623 175
1. 8 . 000291 . 000219 . 000058 . 00009 8 194
2. 0 . 000049 . 000049 . 000011 . 000020 199

m = n = 20
A A A No. ofIt FM c -E.CIFR PI FR Infinities

. 2 . 000647 . 000127 . 000049 . 000046 0

. 4 . 003751 . 001215 . 000861 . 0009 04 0

. 6 . 0069 00 . 004850 . 004296 . 004975 0

. 8 . 012939 . 010760 . 009295 . 012037 0

1. 0 . 012890 . 012820 . 010322 . 013079 0

1. 2 . 007572 . 007301 . 006735 . 0079 81 3

1. 4 . 003419 . 003253 . 002400 . 002799 49
1. 6 . 000936 . 000878 . 000364 . 000443 138
1. 8 . 000154 . 000135 . 000032 . 000041 190
2. 0 . 000012 . 000011 . 000003 . 000004 199

m =n =40
A

I. 1t M

A

FC
A

i'CT
FR

A

FI
FR

No. of
Infinities

. 2 . 000212 . 000060 . 000036 . 000035 0

. 4 . 001.370 . 000622 . 000505 . 000517 0

. 6 . 004191 . 002108 . 001862 . 002136 0

. 8 . 005711 . 004299 . 0039 25 . 004525 0

1. 0 . 004698 . 004652 . 004394 . 005019 0

1. 2 . 003149 . 002986 . 00279 8 . 003155 0

1. 4 . 001342 . 001285 . 001.169 . 001299 10
1. 6 . 000388 . 000369 . 000201 . 000219 104
1. 8 . 000062 . 000061 . 000012 . 000013 181
2. 0 . 000000 . 000000 . 000000 . 000001 200
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3. For c = 3 all three estimators generally have smaller MSE.

4. Using MSE as the basis of comparison, FCIFR is the best

estimator of F, since it is uniformly better than all other

estimators except for Fc, which is slightly better for

some values in the case c = 1, 0 = 1, m = 10. Fc is gen-
."

erally the next best estimator, but is inferior to FIFR for

some values of t in the case c = 3, 0 = 3. FIFR and

FM are competitive with FIFR generally better when

c = 3.

5. Thus both F and F CIFR
are better estimators than

Fm, with FCIFR being the superior estimator provided

the failure rate is nondecreasing (IFR).

A possible explanation for the poor performance of FIFR is

that the bias of FIFR is almost uniformly greater than the bias of

FCIFR. Although the bias of IFR is only slightly greater than the

bias of rCIFR' the cumulative effect makes a dramatic difference

between FIFR and FCIFR.

It is instructive to compare the maximal invariant ML equation,

that is
NEi=ln

i
0MI /(mi +0MIni) = n, (2. 2)

with an equation equivalent to the final equation of the K-T conditions,



E. Ob. r
i

= n
1=1 1+1

which, before constraining the vector r, may be written as

EN nie`' /(m.+Er n.) = n.i=2 i IFR IFR
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(3. 1)

Equation (3. 1) is the same as (2.2) except that the first term of (2. 2)

is not in (3. 1). This term, incidentally, is deleted by the require-

ment that r0 = 0, given in Section 2.5. Thus, the unconstrained

estimate 0IFR must be greater than Omi. From the empirical

work we observe that both the bias and variance of constrained esti-
^

mate 0 IFR are less desirable than the bias and variance of Omi,

leading us to the conclusion that the ML method is not suitable for

estimating 0 in the IFR case.

If the difficulty is generated by the omission of the weight given

by the term On 1/(m 1
+Gni), then one might consider either the con-

ditional procedure that we use in the IFR case, or perhaps consider a

modified MLE scheme in which the term Ern1 /(ml+Tn.
1

) is added to

the left side of Equation (3. 1). It would be interesting to see if the

latter scheme would provide better estimators than the conditional

procedure.

Some insight may be gained from the DFR case. We did not

include the DFR case in the empirical study because the number of
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applications for the DFR case appears to be fewer than for the IFR

case. However, it would also be interesting to see if the ML esti-

mators are superior to the conditional ML estimators using 8w,

since the appropriate equations have the same number of terms.
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4. TESTS FOR PROPORTIONAL FAILURE RATE FUNCTIONS

4. 1. Introduction

The use of any estimation procedure given in Chapter 2 is con-

tingent upon satisfying the assumption of proportional failure rate

functions, or equivalently that (F, G) E IC. When sufficient data

are available, graphical procedures are an appropriate means to

assess the propriety of the proportionality assumption. If a hypothesis

test is deemed necessary, then perhaps the standard approach is to

consider a more general model than simple proportionality, from

which, a Neyman C-a test, a local test, or a likelihood ratio test

could be constructed. In any such test, it is desirable to remove as

many nuisance parameters as possible, especially values of the dis-

tribution functions at the order statistics.

In our research for this dissertation we considered a more

general model where distribution functions F and. G are related

by in G = (0 In F)N. We tried to develop a locally best rank test of the

hypothesis H
0

= 1, but we were unable to find an explicit form for

the expected value of a particular function of the order statistics.

Although the integration could be done numerically for a grid of values

of 0, m and n, the cost was considered to be too great.

Professor Cox considers a generalized model which generates

a straight forward test procedure using the likelihood ratio method.
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For the uncensored case, the test procedure is based on the rank

order statistics, and therefore has the desirable property which we

seek.

A likelihood ratio test using a coarser grid than the order

statistics is described in Section 4.3. A test procedure established

by Thomas (1969) is described in Section 4.5.

4.2. Graphical Methods

The maximum likelihood method of estimation, as used in Chap-

ter 2, can be regarded as a very general procedure since it does not

assume a functional form for the failure rate function. However, this

procedure may have severe difficulties. All the methods of Chapter

2 require an overlap of at least one observation (the IFR procedure

require an overlap of two) to obtain a nontrivial solution. Since the

MLE's of 0 depend principally upon the observations in the interval

of overlap, the procedures are at their best when the overlap between

the samples is large, which is the case when 0 is close to one.

When the overlap is small a second difficulty is encountered if no

functional form is assumed; namely, how can one given credulence to

the proportionality assumption? Certainly the data will be of little

help when the basis of comparison is restricted to a short interval of

overlap. Perhaps on this question, one should be willing to use

graphical methods which will utilize certain functional forms for the
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cumulative failure rate. For example, if the estimators of both cumu-

lative failure rate functions are approximately linear with the same

intercept, it would be appropriate to assume proportionality in this

case even if the interval of overlap is small.

The following are some graphical procedures which may be use-

ful for certain situations to determine the adequacy of the proportion-

ality model.

1. Comparison of a two-sample estimator of a reliability func-

tion with a one-sample estimator. Suppose that the (two

sample) MLE of F and G have been obtained with respect

to a particular class, and suppose also, that the correspond-

ing one-sample MLE's of F and G are available. Then

a straight forward graphical procedure to check the appro-

priateness of the proportionality hypothesis is to plot both

estimators of I and 6 versus t. A discrepancy in

the model of proportional failure rate functions will be

detected by any large deviation between the two estimators of

the reliability function. Cox (1971) uses this procedure with

his two sample estimator of F, G on some medical

data. If (F, G) are assumed to belong to a class such as

IFR' then single sample IFR-MLE of F and G would

be used if only the proportionality is in question, and perhaps,

the product limit estimates if both proportionality and. IFR
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assumptions are in question.

2. A method using the cumulative failure rate function. A vari-

ation of 1. is to plot estimates of the cumulative failure

rate function R(t) = - ln(1-F(t)) versus t. Under the

model of proportional failure rate functions, the estimators
A

R(t1G)/8, R(tiF), and. R(tIFc) would all be estimating
1/8 -1 n -1 el _1

the same function of t. Plotting (G ) , F and F
C

on semi-log graph paper would be a suitable method.

3. A method using F and. G. Using the terminology of Wilk

and Gnanadesikan (1968),a percent (P-P) plot of the

empirical reliability functions may be used to assess the

adequacy of the model. If for various values of t the sam-

ple percentiles of F and G are plotted on log-log paper,

then a linear graph would be indicative of proportional failure

rate functions. The slope of the line is an estimate of e.

This method is only suitable if there is considerable overlap

of the samples.

Residual analysis. If we consider the random walk of the

sample distribution described in Section 2.4, we might plot
/\ A- /_ 1

the residual between G(F (X(0) and G(F (X(i))10) for

/0\where G(u1/8) = , 0 < u <1.

If 8.6--1(x.
(i

))) - G(IFX(i))1( lif)) is plotted for each i,



85

then either a large residual or perhaps a trend in the resi-

duals would lead to a rejection of the proportionality model.

This method would be most suitable for the situation in which

m and n are large and 0 is close to one.

4. 3. Likelihood Ratio Test for Proportionality of Failure Functions

Suppose that we have random samples x and
1 m

yP6..)
1 Yn

from distribution functions F and. G respectively.

If the time axis is divided into k intervals (T1' T
2

(T2' T31' ,(Tk,co)

where k > 3 and T
1

= inf {T: F(T) > 0 or G(T) > 01. Let m.(n.)

denote the number of F(G) items in the risk set at T., i = k.

Then if (F, G) E we define p0 = q0 = 1,

so that

and,

X
1

p.
1

= P(X >T.
1+1

I >T. ),

qi = P(Y >Tin. Y >Ti),

P(T. < X < T. ) =
i-

1+1 3=0

i-1P(r. <Y< T. ) =
1+1 3=0

i = 1,...,k-1,

i = 1,...,k-1,

p.( 1 -p. )
3

q.(1-q.)

for i = 1, ...,k-1. We can write the likelihood function in terms of

these conditional probabilities by



L(m,n1.2,2.

where

Now,

m. m -m n. n. -n.
k- 1 i- 1 1+1 i i+1 i-1 i+1 1 1+1

= n. Un. p.} (1 -pi) {ni,ogi}3=0 3

(m.-. ) n (n.-n.
1

)k 1 m
i+ 1

m1+1
i+1 +1

ni=i {Pi (1-Pi) qi ( 1 -qi) }

pk = qk =-- 0.

In L(m, = Eki 11{min. In pi+ (mi-mi.+1) in (1-pi)

+ ni+1 In qi+ (ni-ni+i) In (1-qi.)}

is a nonnegative sum of concave functions so that In L(m,n12,a)

a concave function. To find the vector (n) which maximizes
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is

In L(m,n12,a) we must consider those points interior to the param-

eter set for which the gradient is zero, and also those points on the

boundary,

Setting the gradient equal to zero we obtain

/\
nrnA

1+1
pi imi and q.

1+1
in i

, i = 1, ...,k-1.

Those solutions obtained on the boundary of the parameter set are also

described by these formulas, where

and

pi(ii) = 0 if mi+i(ni+i) = 0

/\
mp.(q

i ) = 1 if m.
1

.(n. =n.)
1+1



Thus

max L(m, n12,2) = L(rn, La,a)

-1E.k=1
1

{m.
+1 In /1\i3 + (M1 . --M . ) ln( 1 4?).)

pi, qi
1 1+1

0,1
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(4. 1)

+ ni+1 ln qi+ ln( 1 -slid}

If (F, G) E cfc then we may write q. = d(Ti+1)/G(Ti) =

i = 1, , k-1, to obtain the constrained logarithmic likelihood func-

tion

In L(m,n1.2, 0) = Eki 11 (mi+i+0ni+1) In pi + (mi-mi+i) In 1-pi)

0+ (ni-ni+1) ln(1-pi ).

Provided that for all i, m. and n. are both not zero, also
1 1

(m. -m. ) and (n. -n. ) are both not zero, then 0 < pi < 1.
1 1+1 1 1+1

Furthermore, if there are at least two intervals in which there are

observations from both distributions, then a necessary condition for

A
(k, 0) to be optimal is for V In L = 0.

ainL
Dpi P.,A (mi+1+'6ni+1)/li " (1-pi)i 1

a lnL
80

A
A 0 - 1

A

0(n. -n.
1+1

)p
i /1 -pi = 0, i = 1, ... ,k-1

k - 1 Ag "
= Ei=i /(1-pi )11n pi = 0. (4.2)



Since E 0 then

is a solution to

is a solution to these equations iff

gi(2., 0) = m. + On. - (m. -m.
1+1

)p. 1(1-pi)
1+1 1+1 1

0 0/(1-pi ) = 0, i = 1,...,k-1,

k
1

gic(2., 0) =
1= {ni+1 -(n. )pie /(1- .

0 )} In pi = 0.
1 1+1
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(4. 3)

To solve Equations (4.3) one could for given nO sequentially solve

each of the first k-1 equations for a unique p, because

ag.

api ,0P

A
A = -(m.1 -m. )/(1-p.) 2 -

1+1

A-1 A/o 2n.-n.
1+1 1

)p. /(1 -pi ) < 0.

Then considering the p's fixed, one could solve gk(i, ) =

n+J.Aunique 0 since

agk
80

k- 1 A A 1,')

= Zi=1 {(ni-ni+1)(1n pi)
Zp 6)2} < O.

for a

Although a solution will be obtained, the algorithm is very slow to

converge.

A version of Newton's method is proposed although the suffi-

ciency conditions for convergence have not been established for

Equation (4. 2). Since we have available a good initial estimate of 0,

/\,
namely 0 = 0MI' we may solve the first k-1 equations of (4.2)



1 A A
for p., i = 1,...,k-1, to obtain the vector (2, 0). We may then

1 A Ause (2, 0) to start Newton's method in which

n+1(p/ 6)t
9) 8))

-1f(ri(p, g))

where J is the Hessian matrix, and

J is of the form

where

and. J -1 equals

f(2, 0) = V In L

k 1

S

bl . bk
- 1

ln La. api

a
2 ln L

b. 4.80

c =
82 In L

a e
2

(b.b. Se
L+

a.a. a.
1 1

b.t_

a.

bl

bk
- 1

1

89
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where

so that,

S = c -
b

2
k - 1

J =1 a.

n+ in
b.

nn 1 k -1 n n n n A A 1 n n
Pi Pi a. {Zj= j

i
1 a. f.( 0» fk( 0» a} f.( 0))

. 1

3
1

n+1A nn 1 k-i n n
0 = 0 + tE. f ( 0)) fk(nei,g»}.s 3=1 a. j

We have the constraints 0 < pi < 1 and 0 > 0 on the

maximization problem. It is possible to change variables by the

logit-transformation for pi, that is si = / (1-pi)} or

pi = e
si

/(1+e
si

), and by using w = In 0 to obtain an unconstrained

maximization problem. Thus

n+1 n 1
bi k-li n n ns.

1 S a.s. - i=1 a fj a( s, w)) fk((s, w))} f.(
1

s, ))
.

1 3
1

n+1 n 1w = w +
b .

1 fj (n(s, w)) f (n(s, w))}J =1 a. k
J

Si Si

e /(1+e
S.

where, if we write as Pi
Wand e as 0

S.
f, = [m.

1+1
-(m.-m i+1 1

)e 1 + 0{n,
+1 1

-(n.-n.
+1

)p.e}]/(1-pie), i = 1, , k-1,

k -1 0
0 }f

k =
i=1

In
1+1 1

-(n.-n.
+1

)p.0 /(1-p, ) ,
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a
2 in L s. S.

0a.
as 2

-{m.e e -(n.-n.
1+1

)fp i /(1-pi )1
1 (61+1 1

.
1

S. s.
{e 1-0/(1-p.°)1D/(1+e 1)2 ,

a
2 ln

s.

awasL = 0[n. -(n.-n.
+1 i

b. -
1

)13 /(1-p 0 ){1+0 p. 1(1-pi )}] /(1+e 1),
1 . 1+1 .

2

c =
a2 in L

=
k
=1
-10in p. [n.

+1 1
-(n.-n. +1

)p.13 /(1-pie){1+01npi/(1-pe )il.
1 1aw

When the solution vector (s4 ,wA

(4. 2) we obtain

is substituted into Equations

A A
In L(m, nip., 0) = max In L(m, n 2., 0),

so that we can define the likelihood ratio statistic

ALR = -2(ln L(m, n1^,A2.) - In L(m, n12, 0))

for testing the assumption of simple proportionality. It is reasonable

to expect that when (F, G) E ctc LR will be distributed asymp-

totically as a chi-square distribution with k-2 degrees of freedom.

4.4. Cox's Likelihood Ratio Test

Cox (1971) gives, in a preliminary draft of a paper, a general

model for studying continuous distribution functions whose failure rate

functions are related by
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r(tjZ) = r0(t)eZ2,

where r (t) is a failure rate function under standard conditions, p

is a p x 1 vector of unknown parameters, Z is an n x p matrix

where the jth row (z.) contains the realization of the variables3
associated with the jth individual. For two sample problem, z.J
consists of only one variable equalling 0 or 1 so that,

HO 0) = r0(t)

r(t1 1) = r0(t)e13.

For this example, the indicator variable z. in Cox's notation equals

1-5. in our notation of Chapter 2.

If the time dependent component LIAO, being a known, function

of t, is contained in z, that is,

then

z. = (0, 0) if jth individual is from the standard distribution,3
= (1, i(t)) if jth individual from related distribution,

r(tI (0, 0)) = r0(t)

r(tI (1 = ro(t)eO1LP(t) (4. 3)

Cox suggests using this model for testing the consistency of the simple

model of proportionality. He suggests for the case 4i(t) = t to



-ey+131(t-t*)}
reparameterize (4. 3) to ro(t)e
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, (4.4) where t* is an

arbitrary constant somewhere near the overall mean. This param-

eterization is to avoid the more extreme non-orthogonalities of fitting.

We use Cox's argument to develop a test for proportionality of

the failure rate functions. Let x
1,

...,xm and y1, .. , yn be

random samples from distribution functions F and G having

zrespective failure rate functions ro(t) and r
0

(t)e---; and, let

t
1

, . ,tm+n be the vector of ordered failure times with associated

matrix Z having row vectors

z. = (0, 0) if F observation

= (1, t) if G observation.

Let R(t.) denote the risk set, the items on test at time t.. Since

the failure times are distinct, then conditionally on the risk set R(t.)

the probability that individual j is observed is

exp(V)
expt)

Eft ER(t.) z --/(3

3

Thus the required conditional log likelihood is

L(13) = En. z.13 - En In {E exp (z i3)} .
j=1 ER(t.)

If we use the parameterization in (4.4) then

(4. 5)
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L(y, pi) = EIJ:11(1- j){y+P 1(ti -t*)} - ln [mj+ni exp{y+131(ti-t*)} ],

where 5, = 1(0) if F(G) observation, N = m+n, m
j

= EN .5.

and n.
3

= E
1=3

.(1-5.). Let d. = m, + n. exp[y+Pi(ti-t*)}. By differ-
J

entiation we obtain

ay = EN
1
(1-5.) - n. exp{y+P

1
(t.-t*)} id.

3

aL EN - n.(t.-t*) expty+13
1

(tj-t*)}
Id.

1
J 3

2a L , , 2
- EN n.m exp{y+P (t -t*)1 /da2 3=1 3j lj j

82 L
ap12

- EN
1

n.m.(t.-t*) exp{y+P (t-t*)1 /d. 2

3= 3

a2L
E\T n.m.(t.-t*) exp{y+Pi(ti-t*)} /d.2.

ap lay 3=1 J J J

Lemma 4. For the log likelihood function L(y, (3i), there is a

unique solution vector

Ex."1
1=1 i

(1-5 ) n.

provided. Em i
i m and

i=1

Proof: The Hessian matrix H(y, P1) associated with L(y, (31)

is negative semi definite since for V 2.
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r
q

tH(y,
p 1)9. ---= -2.3

N
1iq 1

2+2q q
2
(t.-t*)+q2

2 (t.-t*) 2 }

2
X n.m. exply+P

1
(t.-t*)} /d. < 0.

J J J

Thus L(y, (1) is a concave function, moreover by the same

argument as in the proof of Theorem 2.3 L(y, (31) has limiting value

-00 as y or pi tend to +00 or A necessary and sufficient

condition for (ji,) to maximize L(y, (3) is for v L(Y, il) = O.

(Newton's method is suitable for finding the solution vector.)

To test the adequacy of the assumption of proportional failure

rate functions one may consider the hypothesis test H0: R1 = 0.

Rejection of H0 would indicate that the relationship between the fail-

ure rate functions is a time dependent. The proposed test statistic is

Ct = -2(ln L(c,r3)- In L(, 0)).

Cox assumes that asymptotically Ct will have a chi-square distri-

bution with 1 degree of freedom. This assumption is checked in a

Monte Carlo study. A statistic related to Ct is also studied,

namely, Ct, where by substituting 11)(t) = In t in (4. 3) we obtain

and

r(t1(0, 0)) = r0(t)

131 PO
r(t1 (1, q(t)) = ro(t)t e .

This relationship between the failure rate functions is of the Weibull
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form where the two distributions differ in both shape and scale

parameters.

4.5. Paired Observation Test

As an application of property (vi) of Chapter 1, Thomas (1969)

proposes a conditional test of exact size for H
0

:G = 1 - (1 -F)0, for

some 0, 0 < 0 < co for the case of equal sample size. Let

xi, , xn and yr ,yn be random samples from F and G

respectively. After pairing arbitrarily, we obtain Be rnolli random

variables 6
1

... 6
n Siwhere . = 1(0) if the minimum of the pair

is an x(y). Then under H D = En 6 has a binomial distribution
0 i=1 i

where D is a sufficient statistic. Suppose the minimum of the pairs

are divided into two groups of size n1 and n-n
1

and Z is the

sum of the 6's in the first group. Then the conditional distribution

of Z for given D is hypergeometric with

Z

(D Dz)(nn-iz)

P(Z =z IH D)0'
(nD)

...,min(D
'n 1 ) < n, D < n.

Randomization is necessary to construct a test of exact size for

given (D, n , n). For example, let n = 20, n1 = 10 and let a = . 1 0 .
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From the tables of Owen we need to solve for y, .05 = Pz-1 + ypz

z-1where Pz -1 = Ei=0 P(z=i), z > 1, and pz = P(Z=z). The following

table gives for each D and z the randomization probability y

corresponding to pz in the lower critical region. By symmetry,

-y is the randomization probability for corresponding value of z

in the upper critical region. For any trial for which m = n = 20,

2 < D < 18, the rejection rule for a size a = .10 test is

reject H0, if Z < z or if Z > z';

reject H
0

with probability y, if Z = z or if Z = z1;

retain H0, otherwise.



Table XXI. Randomization probabilities associated with z and z'
for the paired observation test, n = 20.

Y 0

98

2 0 2 .250000 11. 4 7 .310000
3 0 3 .475000 12 4 8 .653333
4 1. 3 .184375 13 5 8 .322222
5

1 4 .357143 14 5 9 .760710
6 1. 5 .760710 15 6 9 .357143
7- 2 5 .322222 16 7 9 .184375
8 2 6 .653333 17 7 10 .475000
9 3 6 .310000 18 8 10 .250000

10 3 7 .626747
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5. COMPARISON OF TESTS BASED ON A MONTE CARLO STUDY

5.1. Description of Program Used for Empirical Study

The system of programs used to compare the test statistics of

the tests for proportional failure rate functions was similar to the

system described in Section 3.1. The main program, the ordering

subroutine, and the maximal invariant subroutine were retained,

while two subroutines for calculatin.g the test statistics replaced the

remaining subroutines. Both of the likelihood ratio statistics derived

from Cox's paper were calculated in the same subroutine, the first
/stage of which, used MI to calculate L(N, 0), and then used.

A A A
0MI to start the iterative procedure to find L(y, (3

1)
for both the

statistics Ct and Ct'
Some difficulties were encountered in the subroutines for the

LR statistic. Only three intervals were used for the procedure, so

that to try to satisfy the necessary condition that at least two intervals

contain observations from both distributions, the following scheme was

used. The first (t1) and last (tN) observation as well as the

combined sample median (t ,) were found. Division points were

placed at (t1+2tm,) /3 and (2tm,+tN) /3 and a check of the counts

was made; if two of the three cells did not have observations from

both distributions, the first mark was moved to t If the neces-

sary condition was still not satisfied, the sample was rejected. Also,
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if the iterative scheme for this subroutine did not converge the sample

was rejected. A count of the total number of such rejections was

recorded. A .count- of the number of simulations in which there

was no overlap of the samples was also recorded.

Our first objective in the empirical stud.y was to ascertain if the

null distributions of the statistics were approximately chi-square for

moderate sample size. Our second. objective was to estimate the

power of tests for different values of the parameter and for different

sample size.

Simulated samples were drawn from Weibull distributions

F(t) = 1 -e -t and G(t) = 1 - e 0 t Sample sizes of 10 and 20

constituted the majority of the study, however, some samples of size

40 were used for the case c
1

= 2, c
2

= 1. Most of the combinations

of c
1

and c
2

were repeated for both 0 = 1 and 0 = 3.

5.2. Empirical Size of the Test Statistics

The following combinations of c
1

= c
2

and 0 were consid-

ered: (0 = 1, c
1

= c
2

= 1), (0 = 3, c
1

= c2 = 1) and

(0 = 3, c
1

= c2 = 3). Each combination was used for both sample sizes

of 10 and 20. Table XXII contains a summary of the sample distribu-

tions based. on 200 simulations. Rejects of type 0 and L corres-

pond to the rejections for no overlap and likelihood ratio criterion,

respectively.
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Table XX11, Empirical size of three tent statistics for 11 G------1-(1-F)0,
0. -te

0r,(0,co), based on 200 simulations from Weibull distributions F(t)=1-e

and

Asym
Size

G(t)-- 1-e

'11

1

C Ct R

Rejects
0 I C C LH

Rejects
0 1,

. 01

.05

.10

.15

.20

.25

3

3

1

3

I

a

3

10

20
10

20

10

20
11)

20

10

20
10

20

10

20
10

20

JO

20
10

20

10
20

10

20

.035

.010

.080

.035

.145

.110

.205

.170

.270

.245

.310

.245

.035
.005

.095

.025

.165

.065

.210

.125

.260

.165

.320

. 210

.040

.005

.100

.035

.165

.095

.215

.155

.270

.205

.305

. 275

1,
0,

1,
0,

1,
0,

1,
0,

1,
0,

1,
0 ,

1

0

1

0

1

0

0

1

0

1

0

.01

.015

.010

.005

.065

.035

.065

.055

.130
.065
.120
.110

160
.130
.165
.155

.220

.180
, 215
.190

.260

. 210

.285

.245

.005

.010

.010

.010

.070

.040

.070

.050

.125

.090

.130

.100

.185

.120

.160

.150

.270

.170

.235

.185

.270

.215

.295

. 220

.005

.015

.035

.010

.075
035

.100

.050

.125

.065

.155

.125

.220

.110

.210

.220

.285

.150

.250

.305

.215

.185
.325
. 350

4, 0
0, 0

13, 4
0, 1

4, 0
0, 0

13, 4
0, 1

4, 0
0, 0

13, 4
0, 1

4, 0
0, 0

13, 4
0, 1

4, 0
0, 0

13, 4
0.

4, 0
0, 0

13, 4
0 , 1
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From the empirical size of the statistics given in Table XXII,

it is fair to conclude that the null distribution of the test statistics is

close to the asymptotic distribution and relatively insensitive to mod-

erate changes in C
1

c2 and 0. The best approximation is given

by Ct, and the worst by LR.

5.3. Empirical Power of the Test Statistics

Our objective in the empirical study was to compare the power

of the test statistics when the sample size is increased, when the

ratio of cl /c
2

is increased, and when 0 is changed from 1 to

3. A summary of the empirical power is given in Table XXII and

Table XXIV. The following conclusions are appropriate.

1. Even for samples as small as 10, the statistics Ct and C t'
have appreciable power when c1 /c2 = 2.

2. C t' is the best statistic in terms of both empirical power

and empirical size. This result is not surprising since Ct'

is constructed to have a failure rate function of Weibull form.

If other distributions are used for simulation, then Ct' may

not be superior to Ct.

3. There is a considerable drop in power when 0 is changed

from 1 to 3.

It is worthwhile to look at two other tests, the paired comparison

test and Thoman's test (1969). Thoman gives a scale invariant test
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Tnhic XXIII. Em pirictlpower of three test stufistics for (1-F) (4,

bush] on 200 simuintions

OtOM- 1-e

A sym m,n
ize

from Weibull distributions,

0

e
-t

=

and

C
t

C
t`

J,1
Rejects

C
t

C
t

LR
Rejects

0 L 0 L

10 180 . 185 105 3 0 . 040 . 060 100 36, 18
0.1 2 I 20 .350 .435 .300 0, 0 .125 .220 .115 7,4

40 .775 .805 .575 0, 0 455 .620 .330 1,1

10 .405 .410 .280 3 , 0 .100 .190 .220 36,18
05 2 1 20 .585 .690 .495 0, 0 .300 .435 .325 7,4

40 .885 .905 .750 0, 0 .660 .820 .570 1,1

10 . 535 . 585 . 430 3 , 0 180 . 300 . 275 36, 18
.10 20. .715 .780 .610 0, 0 .415 .555 .440 7,4

40 .935 .960 .840 0, 0 .785 875 .675 1,1

10 .620 .680 .515 3 , 0 , 260 .330 .305 36,18
.15 2 1 20 .785 .820 .680 0, 0 .485 .625 490 7,4

40 .950 .965 .876 0, 0 .845 .900 .715 1,1

10 .675 .730 .590 3, 0 .295 .420 .335 36.18
.20 20 .815 .870 .755 0, 0 .545 .700 .545 7,4

40 .970 .985 .895 0, 0 .855 .920 .760 1,1

10 .705 .750 .615 3, 0 .345 .475 .355 36,18
. 25 2 1 20 .840 .885 .770 0, 0 .605 .710 .590 7, 4

40 .975 .985 .920 0, 0 .880 .945 .785 1,1
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Table XXIV. Kmpirical power of three test staUstics
O

4' (1-1;')0,

tbased on 200 simulations from Weibull distributions, F(t),- 1_e and

G(t)

Asym
Size

of 2
1 --e

c2 nr,n Ct
Rejects

et et , I A
Rejects

0 I, 0

.01 3 1 20 .72 .88 .635 8, 0 .420 .520 .370 15, 8

1 20 .975 .975 .850 8, 0 .640 .750 .590

.10 3 1 20 .990 .995 .900 8 , 0 .760 .805 .650 15, 8

.15 3 1 20 1. 00 .995 .935 8, 0 .790 .880 .710 15, 8

.20 3 1 20 1. 00 1. 00 .965 8, 0 .830 .910 .735 15,

.25 3 1 20 1. 00 1. 00 . 975 8, 0 .860 .910 .770 15, 8

Table XXV. Empirical power for Thoman' s test. Empirical power for the
paired comparison test based on 200 samples from Weibull distributions.
Size of each test is .10.

Cl
2

M
Thoman Paired comparison
Power Power (0=1) Power (0=3)

2 1 10 .55
2 1 20 .85 .435 .230
3 1 20 .98 . 700 . 235
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for the equality of the shape parameters in two Weibull distributions

with unknown scale parameters. We compare the estimated power of

both tests in Table XXV. It is clear that the paired comparison test

has smaller power than the other tests considered. An interesting

point is that Ct' is competitive with Thoman's test when 0 = 1,

although Ct, is quite inferior when 0 = 3.



6. SUMMARY

This study is directed towards comparing various inference

procedures associated with the class = {(F,G):G = 1 (1 -F)8,
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0 > 0, where F and G are continuous}, which is equivalent to the

class of pairs of continuous distributions having proportional failure

rate (hazard) functions. The dissertation divides naturally into three

parts, estimation of 0, estimation of the reliability function

F(x) = 1 F(x) using samples from both F(x) and G(x), and a

comparison of statistics for testing the adequacy of the simple pro-

portionality model. Consideration is restricted to the method of

maximum likelihood estimation, which becomes a constrained

optimization problem when the failure rates are assumed to be either

increasing (IFR) or decreasing (DFR).

To clarify the meaning of nonparametric maximum likelihood

estimation, we modify Kiefer and Wolfowitz's generalized definition

of MLE for the two sample situation. This generalized definition

specifies the form of the MLE's w. r. t. particular classes of pairs of

distributions, and consequently allows a meaningful two-sample like-

lihood function to be expressed for the "combined-sample" case, the

IFR case, and the DFR case. Algorithms are given to find the values

of parameters which maximize these two sample likelihood functions,

and consequently MLE's of 8 and of F(t) (or a(t)) are obtained.
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Two other MLE's of 0 are available, neither of which are obtained

from a two-sample likelihood function; 0MI is a function of the rank

order statistics, and 0
A is a function of the single-sample empiri-

calcal distributions corresponding to F and G.

Weibull distributions having failure rate functions with different

degrees of "increasingness" were chosen for the Monte Carlo study.

The most significant result from the Monte Carlo study, is that
Aalthough the distributions had IFR, MI is superior, to 0IFR by

having smaller bias and smaller variance. In fact, 0MI is the best

is the worst. An explanation for
A

of the four estimators and 0IFR

the poor performance of IFR is in Section 3.4. Although 0
A

MI
A

and 0 are derived from the same assumptions, it is to be expected

that 0MI is the superior, since m+n nuisance parameters (F(x.)

and G(y.)) need to be estimated for C.
Another important result coming from the Monte Carlo study, is

that the combined sample estimators of F( ) generally have

smaller MSE than the single-sample empirical estimator of the F-

sample, with FIFR( ) being the occasional exception. FCIFR( ),

which is the IFR-MLE of I A
( ) for given 0MI (and consequently

called a conditional IFR-MLE), is the best estimator of F( ) on the

basis of MSE Because of the IFR nature of the simulated distributions,/
the superiority of FCIFR over F is as expected.

The superiority of FCIFR over FIFR in the Monte Carlo
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study suggests that it may be advisable, in practical applications, to

estimate the proportionality constant first, and then use any failure

rate assumptions to estimate either one of the reliability functions.

There does not seem to be a theoretical justification for using the

conditional IFR procedure in preference to the true IFR procedure.

If in general, the given conditional method of estimating F( ) gives

better results for both the IFR and DFR cases, then perhaps a the-

oretical justification can be given by means of an invariance argument.

Testing the adequacy of the simple proportionality model was

the core of the third part of this study. Cox constructs a class of test

statistics based on a method of conditional likelihood ratio. Two such

test statistics which were used in a Monte Carlo study, had empirical

size close to the asymptotic size and appreciable power for even small

(m = n = 10) sample sizes. Their power, however, was affected by

large deviations of 0 from 1.
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