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Abstract—This paper introduces a simple yet effective shape analysis mechanism for geometry processing. Unlike traditional shape

analysis techniques which compute descriptors per surface point up to certain neighborhoods, we introduce a shape analysis

framework in which the descriptors are based on pairs of surface points. Such a pairwise analysis approach leads to a new class of

shape descriptors that are more global, discriminative, and can effectively capture the variations in the underlying geometry.

Specifically, we introduce new shape descriptors based on the isocurves of harmonic functions whose global maximum and minimum

occur at the point pair. We show that these shape descriptors can infer shape structures and consistently lead to simpler and more

efficient algorithms than the state-of-the-art methods for three applications: intrinsic reflectional symmetry axis computation, matching

shape extremities, and simultaneous surface segmentation and skeletonization.

Index Terms—Shape analysis, pairwise harmonics, intrinsic symmetry, shape correspondence, segmentation and skeletonization

Ç

1 INTRODUCTION

SHAPE analysis is essential in a wide range of geometry
processing applications such as content-based shape

matching and retrieval, part recognition, and shape editing
[1], [2]. An effective, numerically robust, and computation-
ally tractable shape descriptor is key in shape analysis. Most
existing shape descriptors, such as the curvature map [3],
mesh saliency [4], and spin images [5], are defined in terms
of shape features extracted in local surface regions.
Consequently, they are often not sufficient to abstract more
global structures in the shape, such as global symmetry.

In recent years, more global shape descriptors have been
introduced. The shape diameter function [6], for instance, is
a scalar quantity based on the local thickness of the shape
around each measurement point and is robust against noise
and pose variations. A number of approaches [7], [8], [9]
exploit the spectrum of the eigenspace of heat diffusion
operators to define signatures around each surface point
which capture isometrics. The intrinsic maps [10], [11], [12]
define surface embedding in low-dimensional conformal
spaces where the search for correspondence mappings
becomes more tractable. These descriptors defined for each
surface point are either expensive to compute or are
designed for specific applications (e.g., shape correspon-
dence, symmetry computation), therefore are not easy to
generalize directly.

We introduce pairwise harmonics, in the context of
manifold surfaces, for generic shape processing at global
scales. At the core of our approach is the notion of pairwise

analysis (Section 2). Unlike previous approaches that mostly
focus on processing the whole surface in a pointwise
manner, our approach analyzes the shape in a pairwise
manner and computes shape descriptors for pairs of surface
points. Specifically, the shape descriptors are defined in
terms of properties of isocurves uniformly sampled from
pairwise harmonic fields.

Defining descriptors for a point pair offers several
benefits over traditional descriptors defined in terms of
one point. First, pairwise descriptors can provide not only
insights about the geometry between the point pair, but also
their relationship. This makes the analysis framework more
global and discriminative in revealing shape structures,
such as symmetry. Second, pairwise analysis constrains the
measurements over point pairs (in our case along a local
geodesic path), and thus can reveal shape structures at
different scales for different point pairs. It naturally
encapsules multiscale analysis into a single framework
with no additional cost. Further, exploring shape geometry
in both global and local scales can tolerate partially missing
information when matching different shape parts. Third,
pairwise descriptors often overlap (see the isocurves on
right legs of the Armadillo in Fig. 1), making a sparse set of
pairwise descriptors sufficient in representing the under-
lying geometry. This property greatly decreases the
computation complexity for applications that require ex-
amining global shape properties (e.g., part recognition,
skeletionization, shape matching, and so on.).

Inferring inter-shape correspondence and understanding
the symmetry structure are known to be challenging
problems due to the nature of the computation difficulties
in recovering such high-level shape information from the
geometry alone. Hence, the state-of-the-art approaches for
computing the symmetry and correspondence often employ
rather complicated and computationally expensive techni-
ques based on statistics [13], [14], heat diffusion [7], [8], [9]
and conformal maps [10], [11], [12], and so on. These
sophisticated mechanisms are often costly in computation.
Recently, Xu et al. [14] discover intrinsic reflectional
symmetry axis by narrowing down the search space
through a series of tests. However, their approach can still
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take up to hours to compute the symmetry axis. We show
that the pairwise harmonics can lead to simpler and more
efficient solutions for these problems (Sections 3.1 and 3.2).

We demonstrate the effectiveness of the pairwise harmo-
nics with three applications: intrinsic reflectional symmetry
axis computation, shape correspondence, and simultaneous
skeletonization and segmentation. We compare the results
with the state-of-the-art techniques and show that the
pairwise harmonics enable simpler and more efficient
algorithms. Additionally, focusing on computing the pair-
wise global properties of the shape can lead to algorithms
that are more robust toward local surface noise, pose
variations, and shape topology.

2 PAIRWISE HARMONICS

Previous work on shape descriptors. Shape descriptors (or shape
signatures) have been extensively researched in the context
of shape retrieval and shape matching [1]. Shape descrip-
tors provide informative abstractions of the surface contents
and offer effective means for similarity matching. Different
descriptors reveal different shape information, e.g., the
curvature map described the curvature distribution and
the average geodesic distance reveals the protrusions in the
surface [15], and surface visibility helps interior and
exterior classification [16].

Shape descriptors are often defined in terms of feature
vectors or histograms (e.g., the spin image [5]). Graph-based
descriptors [17] or statistical-based descriptors [18] have
also been employed. There exists a wealth of shape
descriptors in the domain of shape retrieval and matching;
we refer readers to [1], [19] for reviews on the state-of-the-
art shape descriptors, and to [7], [8], [9], [20] for the more
recently proposed descriptors based on the spectrum of
Laplace-Beltrami operators.

Recently, Tevs et al. [21] presented a geodesic-fan-like
[22] shape descriptor for surface matching. The descriptor is
defined as the distribution of the lengths of equally
distanced geodesic rings propagating from a single point.
They show that the descriptor has strong discriminating
power in dissimilarity measurements among points, and

employ a landmark-based algorithm to find surface

correspondences. Our descriptor resembles their form in

the sense that it is also defined on properties of propagating

isocurves. However, to our best knowledge, there have been

no previous descriptors proposed based on harmonic fields

of point pairs.
Shape descriptors from pairwise harmonics. Harmonic func-

tion is a well-established mathematical concept and has

been widely applied in geometry processing [23], [24], [25]

due to its desirable hamonicity properties, such as smooth-

ness and local extrema coinciding with the singularities in

the harmonic field. We exploit the harmonic functions

coupling with a pairwise analysis mechanism for geometry

analysis. The shape descriptors are defined on isocurves of

harmonic functions for point pairs. To our knowledge, this

is the first time harmonic field is examined in such a

manner which can resolve the complexity of existing shape

analysis algorithms.
We now formally describe the pairwise harmonics. On a

mesh surface, a harmonic function f defines a scalar field

that satisfies the Laplace equation �f ¼ 0, subject to certain

Dirichlet boundary constraints. Given a pair of points ðp; qÞ
on the mesh surface, the pairwise harmonic for ðp; qÞ, which

we denote as fp;q, is defined as the harmonic field with

Dirichlet boundary constraints fðpÞ ¼ 0 and fðqÞ ¼ 1. The

discretization leads to a sparse linear system Lf ¼ b, with L

denoting the Laplacian matrix with the cotangent weights

[26] (we weight each vertex i with its one-ring voronoi

area). We use the cotangent-weight because it is simple,

approximates well a pure harmonicity [27], and has a set of

desirable properties including inherent smoothness, iso-

metric invariance and insensitive to noise and tessellation

(see Fig. 2).
Notice that such functions have a range between 0 and 1.

We consider the levelsets of this function on the surface.

Close to p and q, the levelsets can be approximated by disks

on the surface. Away from p and q, the geometry and

topology of the levelsets can become more complex

(e.g., multiple connected components, critical points). This

motivates us to quantify similarity measurements using the

properties of the function levelsets, in particular the length

of the isocurves and their average distance to the end points

p and q, as our shape descriptors.
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Fig. 1. Two examples of pairwise harmonics and the histogram
visualization of the extracted shape descriptors: the perimeter descriptor
R (top histograms) and the distance descriptor D (bottom histograms).
Notice the near symmetry of both distributions if the two points are
symmetry (left).

Fig. 2. A pairwise harmonic field defined by two points (one on each
hand) and the uniformly sampled isocurves. Observe that the perimeter
descriptor R and the distance descriptor D are insensitive to pose
variation, tessellation, and surface noise.



We uniformly sample K isocurves between the interval
½0; 1� (see Fig. 1). This set of isocurves is the key ingredient
of our shape analysis algorithms. From the isocurves, we
extract two types of descriptors and demonstrate their use
in different applications.

The perimeter descriptor is defined as the distribution of
the length of the isocurves between the pair ðp; qÞ:

Rpq ¼
�
r1
pq; r

2
pq; . . . ; rKpq

�
; ð1Þ

where ripq is the length of the ith isocurve. Fig. 1 shows two
examples of the perimeter distribution. This distribution
reveals the shape variation between the point pair, hence
facilitates shape matching. The perimeter descriptor also
captures symmetry of shape. Indeed, if the local geometry
near the point pairs are similar, the perimeter distribution
of the isocurves will demonstrate similarity (Fig. 1(left)).

We define another descriptor, called distance descriptor,
which captures shape information orthogonal to the
perimeter descriptor:

Dpq ¼
�
d1
pq; d

2
pq; . . . ; dKpq

�
; ð2Þ

where dipq is the average geodesic distance from points on
the isocurves to either p (for first half of isocurves) or q (for
second half of isocurves); i.e., dipq ¼ geoði; sÞ where s ¼ p if
i < K=2 and s ¼ q otherwise. This distance can be viewed
as horizontal geodesic information along the medial axis
connecting centers of isocurves. Fig. 1 also shows two
examples of the distance distribution.

We will show that the two descriptors can reveal
symmetries of the shape between a point pair. Intuitively,
if two points merit an intrinsic symmetry, then both
descriptors exhibit nearly symmetric profiles. Specifically,
the distribution histograms of both descriptors are sym-
metric if the two points ðp; qÞ are geometrically symmetric,
i.e., rip;q ¼ rK�iq;p and dip;q ¼ dK�iq;p for any 0 � i < K. In
Section 3.1, we combine the two descriptors to define a
path intrinsic symmetry (PIS) measure which is capable of
capturing both symmetry and partial symmetry of shapes.

Thanks to the inherent smoothness of the cotangent-
weighted harmonic fields, the computed pairwise descrip-
tors are insensitive to surface noise and isometric deforma-
tion (Fig. 2). These desirable properties lead to robust
algorithms we shall present in the next sections.

3 APPLICATIONS

We now show the practical benefits of our pairwise
harmonics and their corresponding shape descriptors with
three applications.

Updating a pairwise harmonic is superlinear [28];
however, computing the harmonic for every surface point
pair would still be computational prohibitive. Therefore,
surface sampling to identify a sufficient small number of
good pairwise harmonics for specific applications is
essential in our solutions. Our shape descriptors are defined
on the diffusion path constrained by two points. Conse-
quently, the isocurves extracted from different fields
constrained by different point pairs can overlap with each
other, (e.g., in Fig. 1, the isocurves from one leg to another
leg overlap with those from one leg to an ear), leading to the

descriptors having redundancy geometry information. This
characteristic allows sampling of only sparsely distributed
points for applications like shape matching and skeletoni-
zation where isocurves tautly encircling the surface regions
suffice. For symmetry axis computation, more samples are
required to identify and validate possible candidate
symmetry pairs.

3.1 Intrinsic Reflectional Symmetry Axis

Previous work on symmetry. Symmetry is one of the most
fundamental phenomena in nature and man-made objects.
It is also a crucial element for human recognition in many
domains, such as arts, biology, mechanical design, and
architecture [29], [30]. In computer graphics, symmetry has
also been well examined and has been used in shape
processing applications like remeshing [31], beautification
[32], and shape editing [2].

Previous approaches on symmetry computation can be
divided into two classes. One class focuses on computing
the explicit symmetry, especially the euclidean reflectional
and translational symmetries [33], [34] or parts symmetry
under rigid transformations [13]. The other class focuses on
computing intrinsic shape symmetries (isometric home-
omorphism between the shape surface and itself, nonrigid
and possibly only partially) [8], [11], [12], [35].

Recently, algorithms have been proposed to find
structures that characterize intrinsic symmetries [36], [37].
We also focus on computing such symmetry structures
without explicitly establishing the point-to-point symme-
tries. We show that the pairwise harmonics can be naturally
exploited to compute intrinsic reflectional symmetry axis as
of Xu el al. [36]. In their method, a series of geometric filters
were designed to first filter out redundant pairs and then a
symmetry-support voting mechanism is employed to
summarize the symmetry on mesh points and vote for the
final symmetry axes. Promising results were obtained;
however, it usually takes substantial time (up to hours) to
compute intrinsic symmetries. As reported in their paper,
the complexity of their algorithm is Oðn4Þ where n is the
sample size (typically 2k� 10k).

Our approach. Since the descriptors extracted from
pairwise harmonics contain intrinsic symmetry information
(Fig. 1 left), our main challenge here is to identify good
candidate point pairs efficiently to reduce the search space.

Exhaustive search over the entire model for possible
good symmetry point pairs proves to be prohibitive given
its Oðn4 lognÞ complexity. Hence, surface sampling is
essential in reducing the search space at the outset. A naı̈ve
sampling strategy may lead to potentially good candidates
being missed out or too many error pairs introduced in the
final symmetry computation. Our goal is to reduce the
amount of computation during this search while still
ensuring that prominent symmetry pairs can be identified.
We leverage the fact that if a point pair is found to merit
good intrinsic symmetry, the region along the field
propagation path is likely to contain many good symmetry
pairs. Hence, if a pair with good symmetry is found, the
symmetry of the region along the path is well represented
which significantly reduces the samples needed to validate
the established symmetry as required in [14], allowing us to
devise a simpler and more efficient method.
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To benefit our goal of sampling potentially good
symmetry pairs, we adopt a sampling strategy that utilizes
the geodesic entropy proposed by Tevs et al. [21]. They
define a likelihood of point i being equal to point j
as follows:

�ij ¼ e�
kgi�gjk2

2�2 ; ð3Þ

where k:k denotes the L2 distance, � is the standard
derivation, and gi is the geodesic descriptor of point i
defined as the lengths of the geodesic rings propagating
from point i at equal distances. We do not normalize gi and
gj as did in [21] because we wish to generate as many
distinct points as possible. For example, points on a hand
have profiles of geodesic descriptors that are rather
different from points on a foot, even though as limbs they
have similar appearances. This observation leads to a
probability function for each point. The geodesic entropy
of a point i is defined as the entropy of the probability
function in (3) [21]. Fig. 3a shows such an entropy map for
the Snowman model. The geodesic descriptors possess the
power of clearly distinguishing regions of different seman-
tics (see the distinct regions (warm colored) in Fig. 3a),
leading to potential symmetry regions having similar colors
(note the similar colors in symmetry parts).

We then employ a sampling strategy that strives to cover
all prominent regions of the mesh while encouraging the
points to span the entire mesh surface. The sampling
method iteratively selects the point with the largest
geodesic entropy value, while disallowing any point within
a specified radius of already selected points. Fig. 3b shows
the sampled points for the Snowmen model, which are
distributed throughout the model and many of them are
potential symmetry pairs.

We now describe the pipeline of our algorithm for
intrinsic symmetry identification (Fig. 3). First, we compute
a set of points on the surface as described above, which we
denote by �. Second, we iterate through all point pairs ðp; qÞ
from � and reject pairs that we consider uncorrelated using
two geometric tests (the details of which will be described
later). Denote the set of remaining point pairs by �. Next,
for each point pair p, q in �, we compute a corresponding
pairwise harmonic function (order of p and q is not
important) and extract a uniformly sampled set of isocurves
as described in Section 2. We measure the PIS of the point

pair, denoted as &pq (defined below), and check if it is a good
candidate of symmetric point pair. Finally, we employ a
voting strategy similar to [36] to find the final symmetries.
Instead of using surface points [36], we vote to the surface
faces since the symmetry axes may not exactly pass through
surface points.

The two geometric tests that we use to reject point pairs
are similarity test and geodesic distance test. For the
similarity test, we use the geodesic descriptors of the two
points defined above, i.e., gi and gj. We reject a pair of
points if their distance  ðgi; gjÞ is larger than a threshold %
(0.01 in our experiment).  ð:Þ is defined as

 ðgi; gjÞ ¼
1

n

Xn

k¼1

gki � gkj
gki þ gkj

�����

�����

(n ¼ 16 is the number of geodesic rings [21]). To omit close
point pairs, the geodesic distance test rejects a point pair if
their geodesic distance is shorter than 1=5 of the maximum
geodesic distance among any sampled pairs.

We define the PIS between a pair of points ðp; qÞ, denoted
&pq, as follows:

&pq ¼ �
K=2
j¼1L

�
rjpq; r

Kþ1�j
pq

�
L
�
djpq; d

Kþ1�j
pq

�
; ð4Þ

where L is defined as

Lðx; yÞ ¼ 1þ jx� yj
xþ y : ð5Þ

Such a definition introduces consistent penalty for intrinsic
symmetry measurements. The value of &pq increases
dramatically as the number of nonsymmetry isocurves
rises. For example, if one corresponding pair of the
isocurves has a large value of Lðx; yÞ, it will lead to an
increase in the magnitude of the value of &pq. For a perfect
symmetry point pair ðp; qÞ, we have &pq ¼ 1. We reject a
point pair as a symmetry candidate if its &pq value is larger
than a user-defined threshold � (2.0 in experiments).

Before voting, we convolve all the computed PIS values
by a Gaussian function to boost those pairs with strong
symmetries. Specifically, we compute a new & 0pq as

& 0pq ¼ e�&
2
pq=ð2�2Þ; ð6Þ

where � ¼ �=2. For each candidate point pair, we compute
its symmetry axis as in [36] and let the point pair vote to the
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Fig. 3. The main flow of our intrinsic symmetry axis computation algorithm. Based on the vertex geodesic entropy [21] (a), we sample the surface
(b) and define a pairwise harmonic for each valid point pair (c). We measure the symmetry of each point pair and let it vote for the symmetry axes.
Votes are accumulated at surface faces (d); observe that those lying in the symmetry regions receive large amounts of votes (d). Final symmetry
axes (three here) are extracted based on the votes (e).



axis curve by sending a score to the faces on the symmetry
axis. Each mesh face can receive multiple votes if it is
passed by multiple axes. Finally, the symmetry axes are
iteratively selected using a greedy algorithm considering
the average votes of all faces they pass through. We ignore a
new axis curve if it intersects any previous selected ones.

Results and evaluation. Fig. 3 shows a result of our
algorithm. Note that the algorithm is able to find intrinsic
symmetries using a relatively small set of sample points (we
use 300 in this example). This demonstrates the strength of
our pairwise descriptors in terms of both effectiveness and
computational efficiency. Our algorithm runs at a much
faster rate than the method of Xu et al. [14]. The whole
process typically takes under 5 minutes for a sample rate of
up to 500 vertices for moderate mesh size (30k), and the
complexity basically grows quadratically with the sample
size. We use the fast Choleskey factorization updating
schemes as in [38] to speed up the computation of the
harmonic fields.

Fig. 4 shows some results from more challenging models.
Our algorithm consistently locates symmetry axes in
desired regions. For the menmento model, our method
finds only one symmetry axis, even though there are three.
This is because the three symmetry axes intersect each other
and our greedy method simply ignores the other two. The
interleaved strategy employed in [36] can solve this
problem, but at the cost of a significant time complexity.
As our algorithm works well for most models, for
simplicity, we did not implement that strategy.

It is interesting to note that only a relatively small set of
samples (<1;000) usually suffices. This is because our
sampling strategy is effective in locating potential symme-
try points (Fig. 11). The pairwise harmonics also render the
method simpler and more efficient. The symmetry informa-
tion encoded in the isocurves along the propagation path
lends itself to an effective way of measuring shape
symmetry within a surface region. Such information serves
naturally as symmetry evidence to a symmetry axis,
without requiring any localized support voting scheme to
validate a found symmetry as done in [36], hence
significantly reduces the complexity.

3.2 Matching Shape Extremities

In this section, we describe our algorithm that uses the
pairwise harmonics to establish a correspondence between

two sets of shape extremal points on two given shapes. The
shapes may have rather different surface details as well as
poses and may even be only partially matchable. After
establishing a correspondence between the shape extremi-
ties, a denser correspondence can be found using the
landmark algorithm of Tevs et al. [21].

Previous work on shape correspondence. Finding a corre-
spondence in a pair of models is a well-researched area. In
general, shape correspondence is a more difficult problem
than shape retrieval, since shape retrieval mainly seeks to
measure the similarity between two shapes (e.g., by
comparing shape descriptors in the same domains) while
shape correspondence addresses the problem of establish-
ing a one-to-one concrete mapping between two sets of
shape points. Recently, various methods achieving com-
pelling results have been proposed for finding correspon-
dence between isometric shapes, shapes with different
surface details and large deformations, or even only
partially matchable shapes [10], [12], [39], [40], [41], [42],
[43]. These methods commonly leverage low-dimensional
spaces (e.g., conformal mappings [12]) or effective repre-
sentations (e.g., shape skeleton [42]) to reduce exponential
searching complexities, and subsequently employ efficient
searching algorithms to narrow down the search space
while retaining good mapping candidates. Correspon-
dences are established either between a dense subset or
complete set of surface points [10], [12], a sparse set of
surface extreme points [41], [40], nodes on skeletons [42] or
shape parts [43].

Despite the complex matching frameworks, the under-
lying key ingredients of these matching systems are the
descriptors and combinatorial measurements (e.g., trans-
formation cost [10], [41]) to compare the similarities among
the elements to be matched. Most of the above-mentioned
methods employ rather complicated techniques and are
time-consuming even when finding a correspondence for
dozens of points [10], [41], [12]. The recent approach of Au
et al. [42] gains a much faster speed for matching the ending
and junction nodes of two skeletons. A search tree is
iteratively spanned whose nodes eventually vote for the
best correspondence. As a drawback, computing shape
skeletons can be an overhead. Further, it often fails for
shapes with no well-defined skeletons, such as tables or
chairs in Fig. 8.

Our approach. Our method finds correspondence between
two sets of shape extreme points [41] (a typical size < 20).
Let us denote the two sets of points as P ¼ fp1; p2; :::; pmg
and Q ¼ fq1; q2; . . . ; qng. Without loss of generality, we
assume m � n.

For each extreme point pi (qi), we first compute a
pairwise harmonic field from pi (qi) to each other extreme
point pj (qj) and compute the set of descriptors from all
these fields, denoted by Hi ¼ f:::; hij; . . .gj 6¼i, where hij is
defined as follows:

hij ¼ ðRij; gijÞ: ð7Þ

Here, Rij is the perimeter distribution vector in (1) and gij
denotes the normalized geodesic distance from points i to j
(normalized to the range ½0; 1� by the maximum geodesic
distance among all pairs). We then define the point-to-point
difference between two point pair p 2 P and q 2 Q, denoted
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Fig. 4. More examples on partial intrinsic symmetry computation. Our
method consistently locates the symmetry axes at desired regions.
For the rightmost model, our method finds only one symmetry axis
due to intersection with the other symmetry axes (see detailed
discussion in Section 3.1). The middle model is coupled with
30 percent Gaussian noise.



by Dðp; qÞ, as the minimum distance between two sets of
corresponding descriptors Hp and Hq. This computes the
minimum sum of pairwise distances of any injective
mappings between the two sets. We solve it using a fast
implementation of the Hungarian algorithm [44], where the
difference between any two hijs is defined by the distance
metric E:

Eðhij; hklÞ ¼
1

K

XK

m¼1

jrmij � rmkl j
rmij þ rmkl

þ jg
M1ði; jÞ � gM2ðk; lÞj
gM1ði; jÞ þ gM2ðk; lÞ : ð8Þ

Fig. 5(right) visualizes the values of D(.) of two feature sets
as a distance matrix, which clearly illustrates the discrimi-
nate power of the pairwise descriptors. In particular, one
can see that the arms, legs, and heads are clearly classified
(shown in similar blue colors).

Now, we consider the correspondence problem. For any
mapping between two subsets of P and Q, f : ði1; i2; . . . ;
i�Þ � P 7! ðj1; j2; . . . ; j�Þ � Q, we define the mapping error
(in terms of the set of descriptors defined at the relevant
extreme points) as follows:

�f ¼
X�

k¼1

X�

l¼1;l6¼k
Eðhikil ; hjkjlÞ: ð9Þ

Given the definition of �, our task is to search through a
space of possible mappings between different subsets of P
and Q to find the best one. A naı̈ve search in the entire
space clearly leads to exponential complexity [42]; hence,
we first filter out obvious invalid mappings before
searching (using the computed point-to-point difference
Dð:Þ, see details below). Next, we formulate the searching
as a priority-driven graph search problem. We let each
point pair pi 2 P and qi 2 Q be a graph node and connect
each pair of graph nodes by an edge to obtain a complete
graph G (see an example in Fig. 6). A path in the graph then
represents a possible correspondence mapping (e.g., the
green path in Fig. 6). The goal of our algorithm is to find a
best path in the graph.

An exhaustive search for a best path is computationally
prohibitive. Our goal of exploring all potential good paths is
similar to the famous travelling salesman problem. We
design an algorithm that operates like the well-known ant
colony system (ACS) [45] and runs in polynomial time.

More specifically, we start by placing one ant at each
graph node and let them probe simultaneously. An ant on
each graph node finds several possible nodes to probe in the

next step. Only those next possible nodes whose inclusion
form paths that represent valid correspondences are con-
sidered. To limit the search space, at each node, we consider
only the top k best quality nodes. The quality is measured as
the path compatibility of the new node to all previously
found nodes (i.e., by comparingEð:Þs, see details below). The
ants-probing process is summarized in Algorithm 1.

Algorithm 1. Our ant probing algorithm.

Require: The complete graph G formed from two point

sets P and Q. Assume jP j ¼ m � n ¼ jQj.
Ensure: A best graph path denoting a correspondence;

1: Place an ant on each graph node;
2: for each ant do

3: while The ant still have possible nodes to go do

4: Find the set of next top k quality nodes it can

move to;

5: if the set is not empty then

6: move to one next node with the best quality;

7: Compute the mapping error � of the path just

probed and record the path if its length equals
m and has the least � value among all paths

probed so far;

8: if � � leastcost probed so far then

9: move back to the previous node;

10: end if

11: else

12: move back to the previous node;

13: end if

14: end while

15: end for

16: Find the least-cost graph path with length m among all

ants, denoted as bestPath;

17: return bestPath;

Each ant probes in a DFS manner to first find a valid
path, then it backtracks along the path to look for other
possible paths that have not been probed. This is achieved
by recording only the best k possible next nodes at each
graph node of the path. Each ant records the best path (of
length m) during probing, by measuring the mapping
error � (9) of the current path. Probing into a specific
node is terminated if the mapping error introduced by the
node is already larger than the best mapping error found
so far since � is monotonically increasing. The probing
stops when an ant returns to its starting node and all its k
best next nodes have been probed. Finally, the path with
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Fig. 5. Visualization of the feature-to-feature distance matrix for the two
human shapes. Our pairwise descriptors have a strong distinguishing
power to classify these features. For example, points on arms in one
model are most similar to points on arms in the other model.

Fig. 6. The graph model for our matching framework. Each pair of
points corresponds to a graph node. The green path shows a
possible correspondence.



the best quality recorded among all ants is selected as the
final correspondence.

We apply several tests in our algorithm to reduce the
search complexity. First, before graph construction, we filter
out unrelated extremal point pairs by a similarity test. We
omit ðpi; qjÞ if the difference of their Dð; Þs is larger than a
user-defined threshold � (0.9 in our experiments). Second,
when finding the next possible node for an ant on a node,
we perform the following pruning tests on each of its
adjacent node ðpk; qlÞ in G:

1. If either k or l has already appeared in a previous
node, we omit it. This ensures a 1:1 mapping and
thus a valid correspondence.

2. For each previous node ðpi; qjÞ in the ant’s probed
path, we check the path compatibility of pk � pi with
ql � qj and disregard ðpk; qlÞ if any Eðhij; hklÞ is
greater than a threshold (0.7 in our experiments).

3. If a pair passes the above two tests, we check the
transformation error as defined in [42]. That is, we
perform the T4 spatial configuration pruning test
that filters out configurations with high deformation
cost (such as symmetry switch) by computing the
transformation error when deforming one set of
points to another, based on a given point-to-point
mapping (refer to the paper for details).

Note that in traditional ACS, each ant lays on every node
of the path a certain amount of pheromone during probing,
indicating the likelihood of the node being on a shortest
path. The pheromone will have a certain probability to
evaporate and the path with the most amount of pher-
omone will increasingly be more likely visited in later
iterations and finally form an ideal shortest path (may not
be the global solution). In our framework, we do not
perform this task since the term Eð:Þ is path-dependent for
different ants and hence cannot be aligned by a summar-
ization procedure. In practice, we found our pruning
strategies could significantly reduce the search space.
Coupled with our effective cost function, our algorithm is
able to find the solution that minimizes the mapping error
very quickly.

Results and evaluation. Fig. 8 shows some results of our
correspondence algorithm. Observe that our algorithm is

capable of handling shapes with very different geometry
details as well as only partially matchable shapes. The
examples include shapes with rather different poses (teddy
and ants models), shapes with very different surface details
or topologies (the two dinosaur models, dog and wolf, two
hands, and table and chair), and shapes that are only
partially matchable (two armadillo models). Our correspon-
dence algorithm is tolerant to different shape poses and
surface variation since the harmonic fields are robust to
isometric deformations and the descriptors are computed at
both global and local scales, hence are not sensitive to
differences in local shape details. The descriptors extracted
for each extreme point encode the shape variations along
different propagation paths between the point and all other
extreme points. Such shape information naturally distin-
guish points lying on different parts of the shape (e.g., a
point on a hand from a point on the head in Fig. 5).

We qualitatively analyze our correspondence algorithm
using the most recent protocols of [12]. Specifically, we
collect the animal data (51 meshes) as did in [12] and
compute the sparse correspondence for each model with a
randomly selected model (from the 51 animals, self-
exclusive). We compare the results of our method with
those of the blending method [12] and the Möbius voting
method [10]. Fig. 7 shows the evaluation results. The
geodesic error is computed as the average geodesic error to
the ground-truth correspondences (measured in percen-
tages). Our method performs slightly worse than the
blending method and better than the method of Möbius
voting in finding sparse correspondence. Note that here
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Fig. 7. Benchmark evaluation of our method on the animal data set of
Kim et al. [12]. Our algorithm performs slightly worse than their
blending method while being simpler and more efficient in finding the
sparse correspondences.

Fig. 8. Some correspondence results obtained using our framework. Our
algorithm is able to produce good results for shapes with similar
semantics but may differ in pose, geometry and be only partially
matchable (e.g., Armadillo model).



the curve is slightly different from the ones shown in [12]

since we are using random comparison. In experiments, we

found the blending method performs very well for those

animal models while our method sometimes generates error

in matching small branches like ears or symmetries due to

pose variations. We also apply their method on some

complex models used in our experiments, with topological

changes or missing information as shown in Fig. 9. It is

interesting to observe that our method performs better than

the blending method for models with large difference in

both topology and geometry (chair-table), or twisted

branches (the ants model), or even partially missing

information (the Armadilos), which demonstrates the

effective of the pairwise descriptors in measuring global

shape characteristics. As for the Möbius voting method, we

found that it does not work well for models with two large

geometry differences, like a giraffe and a cat. The evaluation

of our method is slightly better if accepting symmetry flips;

this is because the deformation computation we employed

[42] is not applied in a commonly embedded space (e.g.,

with MDS); hence, if the shape undergoes large deformation

(e.g., a man hugging himself), symmetry flips would be

hard to recognize.
Like many other correspondence algorithms, our method

may fail when the desired correspondence depends more

on the shape semantics rather than the shape geometry,

such as the two dinosaurs shown in Fig. 10. Another

limitation is that our algorithm can fail to identify a

symmetry switch as shown in the right of Fig. 10 where a

front-faced model is matched with a back-faced one. This is

true since such a symmetry switch cannot be sensed by any

purely intrinsic approaches. Nevertheless, our algorithm

runs one to two orders of magnitude faster than the state-of-

the-art algorithm of [10], [41], typically taking under

30 seconds to find the correspondences. For most examples,

we find that only a small number of k suffices to find the

best mapping. We used a sufficiently large number (k ¼ 30)

for all models tested. A detailed evaluation of the parameter

k is presented in Section 4.

3.3 Simultaneous Skeletonization and
Segmentation

Previous work. Shape skeletonization can aid in finding a
rigid segmentation of the underlying shape [46] while
segmentation can be exploited to extract a skeleton [47],
[48]. A large body of recent research has been devoted to
mesh segmentation [49], [50], [51] and skeletonization [46],
[52]. We refer readers to a survey on segmentation
techniques by Shamir [53] and a short review by Taglia-
sacchi et al. [52] on recent skeletonization methods.

Although shape skeletonization algorithms can often be
easily extended to finding shape segmentation and vice
versa, the method of Lien et al. [48] has been, to our
knowledge, the only work that computes them simulta-
neously. It extracts a skeleton from the segmentation
boundaries and iteratively refines the skeleton by further
decomposition of the segmentation. We design a simple
simultaneous decomposition and skeletonization algorithm
that uses the pairwise harmonics. We show that, compared
with their method, ours extracts skeletons that more
resemble those obtained by rigid shape decomposition, with
the junction nodes located at the branching surface and each
skeletal branch corresponds to one rigid shape component.

Our method. Our method is motivated by the dual roles of
the isocurves. Each isocurve of a pairwise harmonic field
encircles the local shape, capturing the cross-sectional
profile. Connecting the centroids of the isocurves produces
a skeletal segment (Fig. 11a). On the other hand, isocurves
are also good candidates for segmentation boundaries.

The outline of our method is shown in Fig. 11. We first
sample the surface to obtain a sparse set of points that
generate pairwise harmonic fields spanning the whole
model. Connecting the centroids of isocurves of each field
produces a skeletal segment. To obtain reliable skeletal
segments from all pairwise harmonics, we first assign node
rigidity at each skeletal node indicating whether that node
lies within a rigid or branching part, and divide the skeletal
segments at nodes with low rigidity. We then employ a
greedy algorithm to select a set of disconnected prominent
skeletal segments, forming a partial skeleton. These chosen
skeletal segments induce an initial segmentation. Next, we
leverage the shape segmentation to guide the completion of
the skeleton. Specifically, we compute center nodes at
junction segmentation regions and connect up the discon-
nected skeletal segments based on segmentation adjacency.
Finally, the segmentation result is refined according to the
completed skeletal structure.

We employ the max-min sampling strategy [10] to get a
set of sparsely distributed points, denoted by �. These
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Fig. 9. Correspondence results from the blending method [12] for some
models in Fig. 8.

Fig. 10. Any correspondence algorithms that purely rely on geometry of
input shapes (including ours) may fail on such ambiguities.



points are mostly located at prominent shape parts (Fig. 11a)
so that the resulting pairwise harmonics populate the entire
mesh surface. For each point pair in �, we compute a
pairwise harmonic and connect the centers of all isocurves
sequentially to form a skeletal segment (Fig. 11a). In this
way, each point pair produces exactly one skeletal segment.

Denote the set of all skeletal segments by � and the set of
all center points (skeletal nodes) by C. Note that there may
be more than one skeletal segment corresponding to a
specific shape component (e.g., arm in (Fig. 11) extracted
from different fields. We define the node rigidity 	 of each
skeletal node j 2 C as follows:

	j ¼
maxf
1; 
2; 
3g

1 þ 
2 þ 
3

; ð10Þ

where 
k is the eigenvalue of the kth principle component
computed on a neighborhood of node j. For this purpose,
we use all points (2 C) within a sphere centered at node j
whose radius equals to the radius of the associated
isocurve (defined as perimeter divided by 2�). A node is
defined to be nonrigid if its 	 value is smaller than 0.9.
Fig. 11b shows all the skeletal nodes, with the colors blue,
green to red indicating increasing rigidity. One can see that
nonrigid nodes are mostly located in the branching parts
of the shape.

Next, for each skeletal segment in �, we divide it into
subsegments at each nonrigid node, resulting in a larger set
�0 of segments. For example, the single skeletal segment in
Fig. 11a would be divided into three subsegments if there
are two nonrigid nodes. We assign a score � to each
resulting segment s indicating its likelihood of being a
constituent of the final skeleton. That is,

�s ¼ 	s � ls; ð11Þ

where 	s denotes the segment rigidity, averaged over all the
nodes on that segment, and ls is the segment length. To
construct the initial partial skeleton, we iterate through all
the segments in �0, each time selecting the segment with
the highest �. We omit any new segment that overlaps with
any already selected one, thereby eliminating nearby

skeletal segments (e.g., only one segment that run along
an arm is selected). Fig. 11c shows the selected skeletal
segments. Note that each segment corresponds to a rigid
shape component, while most nonrigid nodes are in the
junction regions.

The selected skeletal segments induces an initial shape
segmentation. Specifically, we partition the mesh using the
isocurves associated with the two end nodes of each skeletal
segment (Fig. 11c). This produces a segmentation where
each skeletal segment corresponds to a major shape
component, and the remainder components correspond to
either junctions or extrema of a skeleton (Fig. 11d). Next,
to complete the skeleton, we simply compute the centers of
components corresponding to junction or extrema nodes
and connect these centers to adjacent skeletal segments
according to the segmentation adjacency (Fig. 11e).

Finally, we revert to segmentation refinement. First, we
merge a component that corresponds to a skeletal end point
(e.g., hand in Fig. 11d) to its sole adjacent component. We
then exploit the constructed skeleton for further segmenta-
tion refinement at junction parts. In particular, we consider
each skeletal segment that is incident to two junction nodes
(e.g., the body part shown in blue in Fig. 11) and try
merging its associated component with the two adjacent
components (e.g., the blue body part is merged with its
adjacent components corresponding to two junctions
nodes). This process is repeated by selecting the skeletal
segments with the largest component volume until no
further merging is possible. If any component is merged
with a junction node, the junction node is tagged and
removed from further consideration. Fig. 11f shows the
final segmentation. In addition, Fig. 12 shows more
skeletonization and segmentation results. Observe that
the use of the rigidity term and a skeleton in guiding the
segmentation produces a partition that mostly agrees with
the shape’s rigidity without oversegmentation. Hence, our
method generally conforms more to the shape’s articulatory
structure whereas most state-of-the-art segmentation meth-
ods tend not to recover such information.

Results and evaluation. Comparing with the mesh con-
traction algorithm [46], we find that our skeletonization
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Fig. 11. Simultaneous shape segmentation and skeletonization. (a) We sample the shape to get a sparse set of points that generates pairwise
harmonic fields that span the model. Isocurves extracted from each pairwise harmonic produces a potential skeletal segment. (b) Each node is
assigned a rigidity score indicating its likelihood of lying on a rigid part (blue, green to red indicates increasing rigidity); (c) segments with the highest
rigidity are selected as candidate skeletal segments; (d) an initial segmentation is obtained by cutting along the isocurves at two ends of each
selected skeletal segments; (e) the skeleton is completed according to the segmentation adjacency; (f) the segmentation result is in turned refined
according to the completed skeleton.



results are comparable for many models. In some cases,
when a component does not merit a good principle axis,
our algorithm can fail to identify a branch (e.g., the body
part of the teddy shown in Fig. 13). In such cases, the
segmentation results are also affected (see the segmenta-
tion of teddy where the body and head form one
component). Nevertheless, our algorithm is simpler and
more efficient than the method of Au et al. [46] which
involves iteratively solving a large linear system. Note that,
like their method, our algorithm operates directly on mesh
surfaces and preserves shape topology.

For segmentation, we quantitatively evaluate our results
using the protocol of Chen et al. [54]. Since our segmentation
algorithm builds upon skeleton extraction, we exclude the
head, vase, fish and CAD categories whose models do not
have good definition of skeletons. Our method is capable
of handling fairly complex models such as the cow model
(Fig. 12) and the menmento model (Fig. 13) and can deal
with models with different topologies (the chair model).
Observe that our algorithm leads to segmentation results
that divide a shape into near-rigid components, thanks to
the support of the underlying shape skeleton. From the
evaluation results (Figs. 14 and 15), we find that our simple
method produces results comparable with state-of-the-art

algorithms but is much faster. It typically takes under 30
seconds to segment a model. Since our methods are built on
harmonic fields, which are not sensitive to surface noise and
isometric deformation, our results are robust to surface
noise, tessellations, and poses [38].

4 PARAMETERS

In this section, we briefly examine the parameters used in
the three applications.

Intrinsic symmetry detection. The similarity test used in
our intrinsic symmetry computation method is to filter out
uncorrelated point pairs before the harmonics computation.
This is mainly for efficiency and does not affect the final
results if we increase the value, i.e., allow more pairs to pass
through, because they will finally be filtered out by the
user-defined symmetry parameter �. The parameter �
controls the number of voting candidate point pairs.
Although increasing its value may lead to errors in the
final symmetry selection due to more undesired pairs
participating in the voting, we found that the results tend to
be stable against this parameter since true symmetry axes
will still be more likely to receive more votes (Fig. 16). The
range of ½2; 4� produces satisfactory results.
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Fig. 13. Our skeletonization algorithm generates comparable results to
the method of Au et al. [46] for most models. However, when no
obvious principle axis exists in a component, our method may fail
to locate a skeletal segment (e.g., the bottom piece of the menmento
model), leading to a degraded result. The generated skeleton
influences the segmentation results (e.g., the body of the teddy bear
is not segmented from its head). Images in blue frames are results
from the method of Au et al.

Fig. 14. Quantitative analysis of our segmentation results using
protocols of Chen et al. [54]. Our method performs slightly better than
the state-of-the-art methods while being much simpler and efficient.

Fig. 15. By class rand index error from protocols of Chen et al. [54]. Our
method generally performs better than the state-of-the-art methods. For
the teddy category, our method performs worse due to the small
branching parts of the teddy models which can lead to degraded
skeletons (see Fig. 13) since we are using a fixed rigidity threshold.

Fig. 12. Segmentation and skeletonization results of some represen-
tative models.



Shape extremities matching. For our correspondence algo-
rithm, we used five parameters during graph construction
and the pruning tests. The user-defined threshold � and the
geodesic test parameter are to filter out invalid nodes at
the stage of graph construction. A small value of � can
improve the efficiency by reducing the graph size but may
lead to potential candidate pairs being rejected if two
shapes have large variations such as the two dinosaurs
shown in Fig. 8. A large value allows more pairs to pass the
test (hence allowing matching of shapes with very different
geometry) but also decreases the efficiency and may
introduce errors in the final mapping. We find that values
between 0:8� 0:95 tend to give satisfactory results. As for
the value of the spatial configuration parameter (T4) used in
our pruning test during probing, we simply set it to the
same range as the one used in [46].

The last parameter used in our correspondence algo-
rithm is the searching parameter k. When k ¼ 1, each ant
only probes the current best possible node hence may easily
lead to local minima. When k ¼ jGj, the entire space is
explored. Our experiments show that the algorithm con-
verges rather quickly to the global optimum, in other words,
a small k suffices to lead the algorithm to the best solution.
Table 1 shows the value of k used to find the best solution
for the models in Fig. 8. It can be noticed that surfaces with
large variations and many branches may require a larger
value of k to find the best solution. We found that a k value
smaller than 10 could already lead to a good correspon-
dence solution for most models; for complex ones such as
the ants model, a small k value produces results up to some
symmetry switches. Hence, in our experiments, we set k to a
fixed number of 30 for all our examples.

Segmentation and skeletonization. The only parameter used
in our segmentation and skeletonization method is the
threshold to define a stable node. For consistency, we use
0.9 for all our examples in the paper and for the evaluation.
This value of the parameter has rather minor impact on the
final results. Specifically, smaller values of this parameter
can cause more nodes to be classified as being stable, which
can be helpful in some cases to identify less prominent
branches, such as the body of the teddy bear shown in
Fig. 13. On the other hand, larger values lead to less noisy
results. We found that a value between 0.85-0.95 produces
satisfactory results.

All applications. An important parameter used in all three
applications is the number of isocurves extracted from each
harmonic field. Naturally, it would be desirable to sample a
number of isocurves according to the geodesic distance of
the two points. However, for simplicity, we used a constant
number for each application. For symmetry computation
and shape matching applications, we found that a small set

of isocurves suffices to render both algorithms robust, and
we use K ¼ 16. For segmentation and skeletonization, to
faithfully locate desired skeletal nodes in all surface regions,
we sample 50 isocurves per harmonic field.

5 CONCLUSION AND FUTURE WORK

In conclusion, this paper introduces a simple and effective
shape analysis tool based on point pairs on the surface.
Unlike previous shape descriptors that are derived mostly
based on analysis around individual points, in this work,
we define a set of shape descriptors from pairwise
harmonics which is rather simple yet capable of capturing
important shape geometry and global shape structures. We
show the benefits of the pairwise analysis framework with
three applications.

Though the concept of harmonic fields has been widely
adopted by the geometry community, we exploit it in a
rather different context, i.e., in a pairwise manner. We
believe such a coupled way of analyzing a shape will open
up new possibilities for shape analysis in the future. Indeed,
it is interesting to note that in the independent parallel work
of Xu et al. [55] and Kaick et al. [56], point pairs have been
effectively examined and employed for shape analysis. In
the work of Xu et al. [55], intrinsic symmetries at various
scales are detected using point-pair symmetry support
voting and clustering and in the work of Kaick et al. [56],
fuzzy geodesics between point pairs are exploited for
partial shape correspondence and shape retrieval [56]. In
addition to this, we believe such a pairwise analysis method
can be naturally applied to more applications such as shape
coanalysis and part recognition.

The pairwise analysis is capable of sensing the shape
semantics, which is exploited for the first time in this work.
This capability will encourage us to explore more on shape
analysis tools that can capture shape semantics in the
future. For example, it would be interesting to explore the
extension of pairwise analysis to a multiway analysis,
which has the potential of revealing even richer information
in the surface. A natural application is shape matching.
Finally, we wish to explore means to automate the choice of
points in the point pairs in various applications.
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TABLE 1
Number of ks in Finding the Best Solutions

Fig. 16. Increasing the value of � does not affect the results significantly
since true symmetry axes are more likely to receive more votes.
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