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NUMERICAL SOLUTION OF HODGKIN -HUXLEY'S 
PARTIAL DIFFERENTIAL SYSTEM 

FOR NERVE CONDUCTION 

INTRODUCTION 

This thesis has been an attempt to integrate two backgrounds- - 

psychology and applied mathematics (emphasis will be on the latter). 

More specifically, this thesis is concerned with mathematics 

associated with nervous conduction. Although nervous conduction is 

admittedly not a major subdivision of psychology, some of the basic 

ideas associated with neurology and nervous conduction are touched 

upon in courses in general psychology. 

A brief outline of the basic neurology pertinent to this thesis 

will now be reviewed. 

The Neuron 

The basic unit of the nervous system is the nerve cell or neu- 

ron. All of the individual neurons have a cell body and processes, 

but they vary considerably in shape, size, number of processes, and 

manner of branching. For example, cell bodies may vary in diam- 

eter from four to five microns up to 50 to 100 microns; their 

processes vary from a few microns to several feet in length (41, 

p. 65 -66). 

The neuron is a specialized cell in that it exhibits to a 
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comparatively great degree the phenomena of irritability and con- 

ductivity, and it is capable of initiating and transmitting impulses. 

Structurally, the neuron is similar to other cells. 

The cell processes protrude from the cell body. There are two 

basic types -- dendrites and axons. Typically, each nerve cell has 

many dendrites; usually a neuron has only one axon. In general the 

dendrites conduct impulses toward their respective cell bodies and 

exhibit a local graded potential. Although some neurons have two 

axons and can deliver two nonidentical pulse -coded outputs at the 

same time in different directions (21), in general the axon carries 

impulses away from the cell body. The axon exhibits an all -or- 

nothing "spike" potential termed the action potential. 1 Axons may 

or may not be covered by a myelin sheath. Typically, axons of ver- 

tebrates have a myelin sheath, whereas axons of invertebrates do nat. 

Axons end by forming synapses with other neurons or by forming 

motor endings with non -nervous tissue. 

The interior of the cell is electrically negative to the exterior, 

and in resting or nonconducting nerve cells this potential difference 

(termed the steady or resting potential) may amount to 50 to 90 milli- 

volts (mv. ), depending upon the method of recording (41, p. 90). 

It is most widely accepted that the resting potential is the 

1 

See Ochs (70), page 71. 
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result of differences in the concentration of ions in the cell and in the 

extracellular fluid, differences which are attributable to properties 

inherent in the cell membrane (41, p. 90). When a sufficiently 

strong stimulus, either physiological or artificial, is applied, the 

membrane potential undergoes a unique sequence of changes which 

constitutes the action potential. The action potential consists of the 

"spike, " the negative after -potential and the positive after -potential. 

Compared to the spike, the negative and positive after -potentials 

are of considerably lower magnitude. The negative after- potential 

is a relatively prolonged negative electrical charge which may last 

15 milliseconds (41, p. 96); the positive after -potential is of even 

longer duration. 

These after -potentials are probably associated with 
processes of recovery following the passage of nerve 
impulses. The total time of all the changes produced 
by a stimulus may amount to as much as 80 milli- 
seconds. The potential accounts for less than 1 milli- 
second (41, p. 97). 

Two important properties of the action potential are the thresh- 

old phenomena and the all -or- nothing phenomena (74, p. 29). Asso- 

ciated with a single nerve fiber is a minimal strength of stimulus, 

the threshold, which is required to evoke an action potential. An in- 

sufficient stimulus evokes no response, whereas a stimulus equal to 

or greater than the threshold evokes a stereotyped response which 

for a given temperature is fixed in size, shape, duration, and 
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conduction speed. This is termed all -or- nothing behavior. 

Following an action potential, there is a brief period of time 

in which the neuron cannot produce another action potential. This 

absolute refractory period lasts about one one - thousandth of a 

second or more (20, p. 29); during this period, a stimulus, no mat- 

ter how large, will not initiate another action potential. The relative 

refractory period follows the absolute refractory period. During 

this period of time an action potential will be initiated only if the 

stimulus is greater than normal threshold strength. 

The time relations of these excitability changes show 
the period of absolute refractoriness to coincide ap- 
proximately with the rise of the spike potential and 
with its decline to the point where the negative after - 
potential distorts its falling curve. At this point the 
nerve again becomes excitable but has a high threshold, 
and so needs a more intense stimulus before it will 
respond (20, p. 34). 

Although a subthreshold stimulus may not set -off an action po- 

tential, it is possible for a subthreshold stimulus to initiate an action 

potential if it is applied for a sufficiently long time. In addition, 

large above -threshold shocks may fail to excite if applied for suf- 

ficiently brief periods of time. The relationship between the strength 

of stimulus to excite and the duration of the current applied is de- 

scribed by a strength -- duration curve. 
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The Sodium Hypothesis 

The remainder of this thesis will be concerned with aspects of 

the "modern ionic" basis of nervous conduction. 

During the past two decades a technique, commonly called the 

voltage clamp, has provided a considerable amount of quantitative 

information regarding electrical and chemical properties of the nerve 

cell. During a voltage clamp the membrane potential is displaced to 

a new value and held there by electronic feedback. The effects of the 

impressed voltage are at the same time measured with a separate 

amplifier (47). Following extensive research with the voltage clamp 

technique, A. L. Hodgkin and A. F. Huxley formulated what is some- 

times termed the "sodium hypothesis. " The hypothesis states that 

when an above -threshold stimulus is applied, the low permeability of 

the nerve cell membrane to Na+ changes to a higher permeability. 

Since the interior of the cell is electrically negative to the exterior, 

Na+ ions move into the cell, and the cell interior becomes positive 

relative to the exterior of the cell. After a few milliseconds the 

membrane permeability to Na+ decreases and the membrane per- 

meability to K+ increases. The K+ are now driven out of the cell to 

return the potential to its original. level (70, p. 72 - -73). 

Hodgkin and Huxley concluded their series of papers (49, 50, 

51, 52, 53) with an electrochemical -mathematical model of the 



nerve fiber. 

The results described... [in the papers of Hodgkin and 
Huxley referred to above] ... suggest that the behavior 
of the membrane may be represented by the network in 
Fig. 1 [Figure 1 of this paper also] . Current can be 
carried through the membrane either by charging the 
membrane capacity or by movement of ions through 
the resistances in parallel with the capacity. The ionic 
current is divided into components carried by sodium 
and potassium ions (INa and Is), and a small 'leakage 
current' (I1) made up by chloride and other ions 
(53, p. 500). 

outside 

EK 

INa 

Na 

ENa 

6 

RI 

inside 

Figure 1. Hodgkin and Huxley's electrical model of the 
nerve fiber. 

The equation describing this electrical network would be 

I = C mdt+IK+INa+I1, 

where Cm d is the capacitance current; IK, 'Na' and II are 

the ionic currents associated respectively with potassium, sodium, 

K 
- E1 
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and leakage. This is equivalent to 

dV 
I = 

Cm dt gK(V - VK) + gNa(V - VNa) + gl(V - V1), 

where 
gK, gNa, g1 are conductances associated respectively with 

potassium, sodium, and leakage, and VK, VNa, V1 are the mag- 

nitudes of the resting or nonconduction potentials associated with the 

same (53). 

When one is concerned with propagated nerve impulses, the 

cable properties of the axon must be included in the analysis. How- 

ever, the voltage clamp technique simplifies the situation in two 

ways. 

First, all parts of the inside of the axon are connected 
together by a metal wire so that there are, at any rate 
in principle, no complications from current spreading 
along the fibre. In effect, instead of having to deal with 
a cable, the nerve can be treated as an isolated patch of 
membrane. The second simplification is that the experi- 
menter controls the voltage across the membrane and so 
can make it do what he wants (47, p. 56 -57). 

During a voltage clamp, a typical action potential can be ob- 

tained by passing a brief pulse of current through the membrane. 

Since the membrane potential is uniform throughout the length of the 

fibre, this action potential must be distinguished from the propagated 

action potential in which the cable properties of the axon must be 

considered. The action potential obtained during a voltage clamp is 

termed the membrane action potential. 
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The two components of the current, IK and 'Na' vary with 

the concentrations of K+ and Na+ in the surrounding fluid of 

the clamped axon; by changing these concentrations, the ionic cur- 

rent can be separated into its two components. The conductivity of 

the membrane to each ion can then be calculated (47, p. 57 -59). 

After sufficient data had been obtained on the time course of 

the potassium and sodium conductance for different clamping de- 

polarizations, Hodgkin and Huxley proceeded 

. , . to find equations which describe the conductances 
with reasonable accuracy and are sufficiently simple 
for theoretical calculation of the action potential and 
refractory period (53, p. 506). 

The potassium conductance, gK, was assumed to be propor- 

tional to n4 where n is a dimensionless variable which can vary 

between zero and one; it is assumed to satisfy the differential 

equation 

dn 
dt °'n( 1 - n) - (3 nn, 

where an and ßn have been fitted to data derived from voltage 

clamp experiments (53). 2 

These equations may be given a physical basis if we 
assume that potassium ions can only cross the mem- 
brane when four similar particles occupy a certain region 
of the membrane. n represents the proportion of the 
particles in a certain position (for example at the inside 
of the membrane) and 1-n represents the proportion 

2See Figure 4, page 511, of Hodgkin and Huxley (53). 
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that are somewhere else (for example at the outside of 
the membrane). a determines the rate of transfer from 
outside to inside, while p determines the transfer in 
the opposite direction (53, p. 507). 

The sodium conductance was described by the following: 

3 
g m u g gNa' 

dm 
dt 

am( l m) - ßmm, 

du 
dt au(1- u) - ßuu, 

where gNa is a constant and am, ßm, au, and ßu are fitted 

curves3 which are functions of V but not of t (53). A physical 

basis for the equations describing the sodium conductance was like- 

wise described by Hodgkin and Huxley (53). 

The complete Hodgkin - Huxley equations are now listed (33). 

1 
= Cm dt + Kn4(V - VK) + 7Nam3u(V - VNa) + l(V -V 1), (A) 

dt 
= .4)[(1 - n)an(V ) - nß n(V )] , 

dt - 4)[(1 -m)am(V) - mpm(V)], 

du 
dt - (IA( l - u)au(V ) - u ßu(V )] , 

where 

3See Figures 7 and 9, pages 515 and 516 -517 respectively of 
Hodgkin and Huxley (53). 

=-- 

l 

dn 
(B) 

(C) 

(D) 
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0 . 1(V +10) 
a. - n exp[(V +10)/10] - 1 

ß = 
n 

. 125exp(V/80), 

. 1(V + 25) 
°'m exp[(V + 2500] - 1 

pm= 4exp(V/18), 

au = . 07exp(V/20), 

1 

Pu- exp[(V + 30)/10] + l' 

Cm = lµf/cm,2, 

(I) 

3( T - 6. 3)/10 

T = temperature (*C) , 

gK = 36, gNa = 120, gl = 0. 3 (all in mmho/cm.2), 

VK= 12, VNa= -115, V 
1 

= -10.5989 (all in mv. ). 

Under a variety of conditions, Hodgkin and Huxley compared 

the behavior of their nerve model as predicted by the above equations 

to the experimentally observed phenomena. Good agreement was 

obtained with respect to the following phenomena: 

1) the form, amplitude and threshold of a membrane action 

potential; 

2) the form, amplitude and velocity of a propagated action 

potential; 

u 
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3) the form and amplitude of the impedance changes asso- 

ciated with an action potential; 

4) the total inward movement of sodium ions and the total 

outward movement of potassium ions associated with an 

impulse; 

5) the threshold and response during the refractory period; 

6) the existence and form of subthreshold responses; 

7) the existence and form of an anode break response; 

8) the properties of the subthreshold oscillations seen in 

cephalopod axons (53). 

Since their introduction in 1952, the Hodgkin - Huxley equations 

have stood up well under 14 years of investigation. Following their 

classic series of papers, the equations have been investigated by 

various researchers (22, 23, 24, 25, 27, 29, 30, 31, 33, 34, 43, 

44, 54, 66). The range of application of these empirical equations 

has been extended considerably without uncovering any serious or 

fundamental defects (23). 

Statement of Problem 

During a membrane action potential the membrane potential is 

uniform throughout the length of the clamped fibre. That is, there 

is no longitudinal current. Thus, when solving the Hodgkin - Huxley 

equations for a membrane action potential, I equals zero in 



equation A, page 9, and the system of differential equations is 

greatly simplified (53). 

The situation is more complicated in a propagated action 
potential. The fact that the local circuit currents have 
to be provided by the net membrane current leads to the 
well -known relation 

1 r + r2 ax2, 

1 8LV 

where i is the membrane current per unit length, r1 
and r2 are the external and internal resistances per 
unit length, and x is distance along the fibre. For an 
axon surrounded by a large volume of conducting fluid, 
r1 is negligible compared with r2. Hence 

1 32V 
i 

r2 ax2 
or a a2V - , 2R2 ax2 

where I is the membrane current density, a is the 
radius of the fibre and R2 is the specific resistance 
of the axoplasm. Inserting this relation in eqn. (26) 
[same as equation A of this paper] we have 

2 

2R2 Cm a+ gKn4(V v 
VK) + gNam3u(V 

e 
VNa) 

+ 11(V -V1), 4 

12 

(E) 

the subsidiary equations being unchanged (53, p. 522). 

Hodgkin and Huxley felt it impracticable to solve their system 

of partial differential equations for the propagated action potential. 

Assuming that the propagated action potential is a fixed wave 

4In the following, this equation will be referred to as equation 
E. 

a 

I 

- 
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traveling at constant velocity, Hodgkin and Huxley reasoned that 

where O is the velocity of conduction. This assumption enabled 

Hodgkin and Huxley to describe the propagated action potential by a 

system of ordinary differential equations, which has been solved 

numerically (25, 27, 34, 53). 

This thesis presents a numerical solution to the more compli- 

cated partial differential system for the propagated action potential. 

The work was intended as a check on the above assumption and as an 

interesting problem in its own right. In addition several interesting 

related problems have been investigated. 

a2v 1 a 2v 

3x2 e2 at2 
, 
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NUMERICAL METHODS 

In the classroom situation numerical techniques for solving 

differential or partial differential equations are learned by nu- 

merically solving equations with known analytic solutions. The 

numerical solution obtained and the analytic solution are compared, 

and when the numerical solution is the same as (or sufficiently close 

to) the analytic solution, it is generally assumed that the mathe- 

matics and coding associated with the numerical technique are cor- 

rect. In a like manner, one procedure when attempting to numeri- 

cally solve a complicated system of differential or partial differ- 

ential equations with unknown analytic solution is to find another 

system which is similar in form to the given system and whose 

analytic solution is known. The system with known analytic solution 

is then solved numerically, and when the numerical solution coin- 

cides with (or is sufficiently close to) the analytic solution, the 

analyst is fairly certain that the mistakes in the mathematics and the 

mistakes in the computer coding associated with the mathematics 

have been eliminated. The next step is to modify the computer pro- 

gram to correspond to the system with unknown analytic solution. 

This system is then solved. 

Due to lack of success in finding a system similar in form to 

the Hodgkin -Huxley partial differential system (with known analytic 
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solution), it was decided to use two independent methods of solution. 

The obvious advantage of using two methods is that one can be rea- 

sonably certain that the solution obtained is correct if the solutions 

obtained by the two methods are the same. The less obvious ad- 

vantage is that the mathematics associated with each method can be 

mastered and the respective coding can be debugged while using 

short computer runs. The importance of this advantage is realized 

when one considers the large amounts of computer time necessary 

to solve such a system and the expense of using a large computer. 

An Explicit Method 

The first method utilized a formula which expresses one un- 

known pivotal value in terms of other known pivotal values. A 

method such as this is called an explicit method. 

Using conventional notation, 5 the second derivative with 

respect to distance in equation E, page 12, was approximated by 

formula 

2 2 

ax ax h2 
(Vi+1,j ° 2Vij+Vi-1,j) , 

1 J 

5Assuming V is a function of independent variables x and t, 
assuming the x - t plane has been subdivided into sets of equal rec- 
tangles of sides Ax = h and 0 t = k, and letting the coordinates 
(x, t) of the pivot point P be x = ih and t = jk, where i and j are 
integers, then the value of V at P is denoted V = V(ih, jk) = V. i, j 
(15, p. 7). 

1 

i- = 
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where the right -hand side has a leading error of order h2 . 

The first derivative with respect to time in equation E was ap- 

proximated by the forward -difference formula 

ôt -( (7)i k(Vi, j- 1- Vi j). J 

Here the right -hand side has a leading error of order k (15, p. 7). 

Substituting these approximations into equation E and manipu- 

lating terms, the following recursive relation can be obtained. 

where 

V. j+ 1- Vi, j+ C 1 F l, j- 2V. ]+ Vi - l, j) 

- C2n4 j(Vi, ]- VK) - jui, 
C3ml j(Vi, j- VNa) 

kgf 
(Vii 

j 
- V1), 

m 

kg kg 
Cl ak C- , and C3- CNa 

2CmR 2h m m 

(F) 

Noting that V, n, m, and u are the dependent variables of 

the system, it is seen that the system has many nonlinearities. Due 

to the fact that questions of stability and convergence for complicated 

nonlinear systems are largely unsolved (6, p. 250), as a first cut, 

it was assumed that conditions insuring convergence and stability of 

equation F would be similar to conditions insuring convergence and 

stability of the corresponding finite -difference representation of the 

a 

C Cm 

= 

av 
J 

- 
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one -dimensional diffusion equation -- 

a av 

aX2 -6 at ' 

The corresponding finite -difference representation of the above equa- 

tion can be shown to be convergent and stable if and only if k2 5_ . 5. 
vh 

(11, p. 1 -10; 5, p. 92; 15, p. 58-60). 

In the present problem 

C 
i 

o-h 

ak 

2 corresponds to C where 

R 
2 

m : 
- . 336 

k 

h2 

Thus, choosing Ax = h = . 1, for example; A = k must be less than 

or equal to . 0149 if C1 is to be less than or equal to . 5. It is 

seen that this situation forces one to choose a relatively small time 

increment. With this in mind and noting that equations B, C, and D 

(page 9) contain only derivatives with respect to time, it was found 

that the modified Euler method (4, p. 12-14; 8, p. 201) for "predict- 

ing" and "correcting," the values of the dependent variables n, m, 

and u at the pivot points is well suited to the problem. The major 

advantage here is that for a small time increment the calculated 

values of n, m, and u are reasonably accurate, while at the same 

time the simplicity of the method saves an enormous amount of 

computer time. With a partial differential system such as this, 

computer time is a major practical consideration, 

. 

2 

C 



With respect to this problem the modified Euler method uses 

the following approximation to start the solution, 

an 1= 
ni, 

0+( at)i Ok' 9 

18 

(G) 

and similar equations for m and u . This has been derived from 

a Taylor's series expansion whose terms of order k2 and higher 

have been truncated. 

Once the solution has been started, the values of the dependent 

variable n on the (j + 1)th time row can be "predicted" by the 

formula 
an 

ni: J+ 1- ni, 
.J -1+ 2( at )i, j 

(H) 

(and similarly for dependent variables m and u). Here the trunca- 

tion error is 0(k3) where 0(k3) denotes terms containing third and 

higher powers of k . 

Using the equation (called the "corrector") 

ni n. n = n +.5 
, j+ 1 , j 

where 
( 

an) 
ati, + 1 

( ) + ( 

an 
) i,j i,j+l 

k, 

is evaluated using the value of n 
+ I ?J 

(J) 

found pre- 

viously by equation G or equation H, the accuracy of the numerical 

solution is improved and a computational check is performed 

(similar equations for m and u ). In addition, an idea of the ac- 

curacy of the solution is obtained by finding the difference between 

k 

i 
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Neglecting the boundary conditions for the time being, the nu- 

merical solution proceeds as follows. Given starting conditions at 

t = 0 (i. e. V. 
0, n. 0, mi, 0, and u. for i = 0, ... , p), V. is 

calculated using equation F (i = 1, ... , p - 1). Equations G and J are 

then used to calculate ni, 
1, mi, 1, 

and u. 
1, 1 

(i = 1, ... , p - 1). V. 
2 

is now calculated from time row one (i = 1, ... , p - 1), and equations 

H and J are used to calculate ni, 
2' mi, 2' and u. 2(i = 1, ... , p - 1) 

from time rows zero and one. And so on. 

Thus the solution proceeds one time row at a time. To calculate 

the (j + 1)th time row, the previous time row j is used to calculate 

the Vi, 
J + l's . The previous two time rows (assuming the solution 

has gotten past the first calculated time row) and the Vi, + 1 's just 
J 

calculated are then used to calculate the nip 
+ 

1's, the mi 
+ 

1's, and 
J ,J 

the ui 
+ 1 s. J 

6 

Crank - Nicolson Method 

The second method of solution (used only as a check on the 

first method) utilizes for calculating the values of V what is called 

the Crank - Nicolson method. J. Crank and P. Nicolson (3) developed 

a method with certain advantages -- better stability properties and 

smaller truncation error. In addition, this method reduces the total 

volume of calculations. The numerical procedures are more 

6See flow diagrams, Appendices 1 and 2. 

1 



complicated however (15, p. 17). 

a2v Crank and Nicolson replaced by the mean of its finite - 
ax 

difference representation on the (j + 1)th and jth time rows, i. e. 

a2V 1 

ax2 2h2 
(vi+1, j+1 - 2Vi, j+1 +vi- 1, j+1) 

+ 2h2 V . +1, 2Vi, j). 

Substituting the above approximation into equation E (page 12), the 

following equation can be obtained. 

-K1Vi 
1, j+1 +(2K1 +1)Vi,J +I - j+1 - V. 

+ K1(Vi -1 - 2Vi +Vi +1 ) , j ,J ,j 

where 

K1 

- K n4 3 

2 i,j j - VK) - K3mi, Jui, i,j - VNa) 

kgf 
C 

(Vi 
j 

- V1), Cm 

ak kgK 
, K2 

1 

4R2Cmh2 2 Cm , and K3 Cm 

kg 
Na 

20 

(L) 

The quantities on the right -hand side of equation L are known, 

and the quantities on the left -hand side are unknown. Let us assume 

that there are N pivot points on the jth and the (i + 1)th time rows 

2 

1 

- 

- 

= = - 



21 

(i. e. i = 1, ... , N). Given the values of the dependent variables at 

the pivot points on the jth time row, equation L gives N linear 

equations with N unknowns. This necessitates solving a set of 

simultaneous linear equations to determine the values of V at the 

pivot points on the (j + 1)th time row. 

It may be noted that each equation of the system of N linear 

equations contains only three unknowns. A method which is 

especially adaptable for solving a linear system such as this is the 

Gauss elimination method (15, p. 20-23; 16, p. 13-21); accordingly, 

this method was the method used in the problem for solving the 

systems of linear equations. 

At the same time, the previously mentioned modified Euler 

method was used to calculate the values of n, m, and u at the pivot 

points. 

The solution to Hodgkin -Huxley's system proceeded as before. 

After the solution had been started, 7 the values of V at the pivot 

points of the (j + 1)th time row were calculated by the Crank - Nicolson 

procedure. The previous two time rows and the V. 's just 1,j +1 

calculated were then used to calculate n, m, and u at the pivot 

points of the (j + 1)th time row. And the solution proceeded from 

one time row to the next (see flow diagram, Appendix 3). 

7The explicit method was used to start the solution. 
pendix 1. 

See Ap- 
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Boundary and Initial Conditions 

First let us review what the Hodgkin -Huxley partial differential 

equations describe. Suppose an axon of the type studied (49, 50, 51, 

52) is stimulated by an electric shock applied on a finite length of the 

axon. With initial conditions expressing the shock and with appro- 

priate boundary conditions, the Hodgkin - Huxley partial differential 

equations describe the voltage (V), potassium conductance (gKn4), 

and sodium conductance (gNam3u) changes with respect to distance 

(x) along the axon and with respect to time (t). 

As was previously mentioned, although antidromic conduction 

in the axon may occur, in general the nerve impulse travels along 

the axon in the direction away from the neuron soma. It was thus 

assumed that if a shock applied on a finite length of the axon beginning 

at x = h, the boundary condition at x = 0 would be the resting values 

of the dependent variables. That is, it is assumed that a shock at 

x = h leaves the portion of the axon between the cell soma and a 

small distance from the starting point of the shock in the resting 

state. This gives the following boundary condition 

V(0, t) = VO = 0, 

4 n(0, t) = no 
= 1 



r 
m(0, t) ' 

- 3 

u(0,t) = u0 = 
7(33 

1) 8 

7e + 107 

These have been derived from equations A, B, C and D (page 9). 

For example in the resting state V = 0 and dt = 0; therefore 
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dn = 
( I ) [ ( 1 - n) 

. 0 1 ( V + 1 0 ) 
1 25exp(V/80)n] . 

dt exp[(V +10001 - 1 

From this relation n0 
5eß- 1 

follows. 

To start the solution a shock is applied at t = 0. More 

explicitly, 

V(ih, 0) = V Shock = V 
S 

(i = 1, 2,...,p), 

V(x, 0) = 0 

n(x, 0) = no, 

m(x, 0) = m0, 

u(x, 0) = u0 . 

for x < 0; x > ph, 

Let us for definitiveness assume for the time being that the 

shock, VS, is at one pivot point only. That is, in the above p is 

equal to one. With this in mind the boundary condition and initial 

conditions are illustrated in Figure 2, where R will denote not only 

the resting value of V at the designated pivot point but also the 

8 
We draw attention to the error for the resting value of u in 

reference 27. 

= m0 
8e2. 

= - 

= 

+ 
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resting values of the other dependent variables n, m, and u (Rwill 

be defined on page 25). 

7k R 

6k R 

5k R 

t 4k R 

3k R 

2k R 

k R 

R 

. . . t . . - 

R 
, . . . 

R R 
. . . 

. R . R R 
I , 

R R R R 
- - - 

R R R R R 
e , 

R Ti. Ti R 

. 

R R 

. - . . . . 
vs R R 

h 2h 3h 

Figure 2. 

R 

4h 
x 

R R 

5h 6h 

R 

7h 

R 

8h 9h . . . 

R 

R 

R 

R 

R 

R 

R 

Referring to equation E (page 12), when the nerve fiber is at 
2 

rest, V = 0, 
ó 

2 = 0, and t = O. This implies that 
ax`' X 

gKnO(WVK) + gNam0u0(V VNa) + gi(-V1) = 0 

Rewriting equation F (page 16) in an equivalent form, we have 

2V . + Vi Vi = V + C (V V. 
, j+l 1 i +l, -- 

- 1, j 
) 

k 
(V. _ V )+ g m3 u. (V. 

C K i,j i,j K Na i,j i,j i,j 
rn 

VNa) + - 
j V 1 

4 . 4 . 

. 4 

. , 

. 

S 

- 
g` 

- gl(Vi, 
' 



where 

yields 

C 
ak 

1 

2CmR2h2 

Let us consider the value of V at the pivot point (3, 1). 

V3, 
= V3,0 C1(V4,0 - 2V3,0 +V2,0) 

k 
Cm 

L.- 
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4 
gKn3, 0(V3, 0 VK) + gNam3, Ou3, 0(V3, 0 

VNa) + g1(V3, 0 
o 

V1) 

= 0 + C1(0 - 0 + 0) - C (0) 
m 

= 0. 

In a like manner an application of the modified Euler method 

n3, 
1= n0, 

m3, 
1= m0, and 

u3, 
1= u0. 

Repeating the above, one is lead to the conclusion that given 

the above mentioned boundary and initial conditions, if i + 2> j, 

then V. = 0, n. = n , m. = m , and u. = u The situation 
1, j 1, 

. 

0 1, 
. 

0 1, 
. 0 . 

is illustrated in Figure 2 where to avoid confusion with the boundary 

and initial conditions, R now denotes the resting values of the de- 

pendent variables. 

This has important implications with regard to the numerical 

solution. Suppose we are given the same boundary and initial 

- 
m 

- 

. 

j 
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conditions that are illustrated in Figure 2. Suppose further we have 

a rough idea of what the solution is supposed to look like. That is, 

suppose we know that the impulse has an approximate velocity of 

dx 
dt 20m. /sec. = 2cm. /msec. 

Choosing a time increment of k = . 01 msec. and a space increment 

of h = . 02 cm. , after 100 steps of the solution we would be at 

t = 1 msec. However, from what was shown above the dependent 

variables assume their resting values for t = 1 and x 2. 04. 

Assuming that x is in units of centimeters, we see that the impulse 

has at most a velocity of 

dx 
dt 2. 04 cm. /msec. 

This only tells us what we already know from the mathematics 

involved in numerically solving parabolic type partial differential 

equations - -that k must be small compared to h . 

As a first cut, it was decided to choose a time increment of 

k = 005 for the explicit method of solution and a time increment of 

k = . 01 for the implicit method; the space increment of h = . 1 was 

chosen for both methods. 

After relatively short trial runs of the programs coded for the 

two methods, it was seen that the pivot points corresponding to a suf- 

ficient distance ahead of the traveling nerve impulse were relatively 

= 

2 
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unaffected. That is, the calculated values of the dependent variables 

for those pivot points were essentially the respective resting values. 

For example, the following values of V r(V = 0) were obtained 

for the indicated pivot points. 

V8,13- -. 2, 

V9, -. 04, 

V 10, 13 - 007, 

V11, 
13 - 0007, 

-' 00005, v12, 
13 

-. 000002, v13, 13 

-. 00000001. v14, 13 

Let us assume that the solution has proceeded to time row j, 

and i pivot points have been calculated on this time row. Before 

proceeding to the next time row, the last three pivot points ( (i, j), 

(i - 1, j), and (i 2, j)) were checked to see whether or not they were 

sufficiently close to their resting values to warrant the assumption 

that the nerve impulse had not traveled to the distance corresponding 

to the last three pivot points. If the values at the last three pivot 

points were sufficiently close to resting, the next time row would 

also have i pivot points; otherwise, the next time row would have 

i +1 pivot points. 

Consequently, the numerical solution "traveled" in the positive 

13 = 

- 



28 

x direction at the same average velocity as the calculated nerve im- 

pulse. This saved a considerable amount of computer time. 

Computer Programs 

Three CDC 3300 computer programs evolved from the above 

mathematics. The first program (Appendix 1) was used exclusively 

for starting the solution. It contains the explicit approximation for 

equation E (page 12). 

The second program (Appendix 2) used the same explicit ap- 

proximation for equation E as did the first program. At the same 

time however, it has more flexibility. Once the solution has been 

started by the first program, data can be read in and the solution 

carried to any number of steps. The data derived from this run can 

then be read in and the solution can be carried to any additional num- 

ber of steps. Long runs can then be subdivided into several short 

runs. This was a precaution taken to avoid wasting computer time 

due to the possibility of unforeseen problems arising in the coding 

or in the mathematics. 

Although the third program (Appendix 3) was used sparingly 

and only as a check on program two, it has the same flexibility as 

the second program. Once the solution has been started, data can 

be read in and the solution carried to any number of steps. As with 

the second program, long programs may be subdivided into several 
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shorter programs. 

With respect to these programs several points merit attention. 

A close look at the factor 

¡ un exp[(V + 1000] - 
. 01(V + 10) 

in equation B (page 9) reveals that when V = -10, we have the inde- 

terminate form 0 /0. The limit as V goes to -10 can be shown via 

l'Hospital's rule to be . 1. Realizing that the computer is ignorant of 

infinite processes, it was decided to set this factor equal to . 1 

whenever V was in the closed interval - 10 + E , where E = 10 -5. 

Similarly, the factor 

.1(V+25) 
am exp[(V + 25)/10] - 1 

in equation C (page 9) was set equal to one whenever V was in the 

closed interval - 25.E E , where as before E = 10 -5. 

It may be noticed that V1 in equation A (page 9) has been 

changed from Hodgkin- Huxley's -10. 5989 to -10. 598921, As was 

previously mentioned, when the dependent variables assume their 

resting state values, the quantity 

4 3 
gKnO(- VK) gNamOuO(- VNa) + 

-g- (- V1) 

is equal to zero. However, using V1 = -10, 5989 and substituting in 

the resting values of n, m, and u, one arrives at the quantity 

I 
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-6. x 10 -6. Although the change of V1 to -10. 598921 was actually 

unnecessary, the effect of the change is that the above quantity is 

now +9. x 10 -9. 
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RESULTS 

The original numerical work on the Hodgkin - Huxley equations 

was done before the advent of the high -speed computer. There can 

be little doubt that Hodgkin and Huxley considered a numerical solu- 

tion to their partial differential system out of the question. More 

recently (1962), R. Fitzhugh stated (30, p. 12), 

The estimated time required to solve the HH partial 
differential equation with an IBM 704 digital computer 
was too high to make such solutions practical, because 
for each instant of time the HH ordinary equations must 
be solved at a large number of points along the fiber 
(using the usual difference equation approximation to 
the differential equation, with small enough distance 
increments for reasonable accuracy). 

Nevertheless, using on a newer digital computer the techniques 

outlined above, we are enabled to avoid the difficulties anticipated by 

Fitzhugh and make an actual determination of the solution of the 

Hodgkin- Huxley partial differential system. 

The Propagated Action Potential 

Using a time increment of k = . 005 and a space increment of 

h = . 1, reasonably good results were obtained. The solution for the 

propagated action potential is summarized9 in Figure 3, page 32 

9Actually, a closer look was taken by graphing the curves cor- 
responding to the following fixed x's: x = . 1, . 2, . 3, . 4, . 5, . 6, . 7, 
.8, .9, 1. 0, 1. 1, 1. 2, 1. 3, 1. 6, 1.8, 2. 0, 2. 4, 2.8, 3. 2, 3. 6, 
and 4. 0. 



- V
 i

n 
m

vo
lts

 
-V

 i
n 

m
vo

lts
 

- V
 i

n 
m

vo
lts

 

distance = . 4 cm. 

32 

100 

o 

SO distance = 2. 0 cm. 

distance = 3. 6 cm. 

1 

time in msec. 

Figure 3. Numerical solution of Hodgkin -Huxley's partial differential system for the propagated 
action potential. Temperature 18.5 °C. 

_ 
o 

loo 

SO 

0 

i I 

1 2 

- 

0 

I 1 

0 1 2 

100 - 

50 

0 

I 1 

0 2 

> 



33 

(this is the three dimensional analogue of Hodgkin and Huxley's 

Figure 15, page 528 of (53)). The solution was started at t = 0 by 

giving a shock of -100 mvolts over . 5 cm. of axon. Due to the 

nature of the shock the curves for x = . 2, . 3, . 4, and . 5 cm. re- 

semble membrane action potentials. For x equal to or greater than 

1. 2 cm. , the nerve impulse assumed a fixed shape and velocity. A 

transition between a membrane action potential and a propagated 

action potential was seen for x between . 5 cm. and 1. 2 cm. 

Although the solution behaved as a membrane action potential 

for small x (which was to be expected), for values of x greater 

than 1. 2 cm. the solution obtained coincided with the solution ob- 

tained by Hodgkin and Huxley (53) and others (27, 34) for the simpli- 

fied system. Basing calculations on the results for x greater than 

1. 2 cm. , the average velocity obtained was 18. 6 mm. /msec. This 

is approximately the same result as Hodgkin -Huxley's 18.8 mm. /msec. 

(53). 

The three dimensional analogue of Hodgkin -Huxley's Figure 17, 

page 530 of (53) showing the components of the membrance conduc- 

tance during a propagated action potential is seen in Figure 4, page 34. 

Absolute Refractory Period 

By applying at t = .97 msec. the same strong shock which 

started the solution which is illustrated in Figure 3, a three 
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dimensional demonstration of the absolute refractory period is pro- 

vided. The result is summarized in Figure 5, pages 36 and 37. 

Curve A in each frame is the same solution as was illustrated in 

Figure 3. Curve B in each frame is the result of applying the men- 

tioned shock at t = . 97 msec. Here the shock fails to set off 

another nerve impulse, and the membrane is said to be in the abso- 

lute refractory period. Figure 5 is the three dimensional analogue 

of Hodgkin and Huxley's Figure 20, page 534 of (53). 

On Rushton's Hypothesis 

Theoretical evidence supporting Rushton's hypothesis (75) that 

excitation is inadequate to set off a nerve impulse unless a sufficient 

length of nerve is stimulated has been established. Starting the solu- 

tion with a shock of -100 mvolts (the threshold is around -10 mvolts) 

at the point (h, 0) and resting values of the dependent variables at 

the other pivot points along time row zero, the solution summarized 

in Figure 6 (page 38) was obtained. It is seen that a shock many 

times the threshold value has failed to set off an action potential. 

This suggests the three dimensional extension of the strength - 

duration curve to the strength- duration-- spatial surface. 

Summary and Conclusions 

Although as late as 1962 it was stated that a numerical solution 
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to Hodgkin and Huxley's partial differential system was impractical, 

results reasonably in agreement with experimental data have been 

obtained. The solution obtained for the propagated action potential 

is essentially the same result as Hodgkin and Huxley (53) and others 

(27, 34) have obtained using an assumption which simplified the sys- 

tem from a partial differential system to an ordinary differential 

system. Since this analysis originated as an investigation of this 

assumption, it is concluded that the assumption is valid. In addition 

a three dimensional demonstration of the absolute refractory period 

has been presented. Lastly and perhaps most significant, computa- 

tional evidence supporting Rushton's hypothesis has been presented. 
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APPENDIX 1 

EXPLICIT METHOD FOR STARTING SOLUTION 

Summary Flow Diagram for Program PDIFF 

I = index with respect to distance (x = 0 corresponds to 
I = 1). 

JK and JK - 1= the fixed time indices of the time rows whose 
dependent variables are punched out on IBM cards 
for future use. 

L = time row index (t = 0 corresponds to L = 5). 

M = index of last time row. 

N = last pivot point in L th time row 

D0 2 

calculate V 
I, 

by equation (F). 

calculate nI, 
6, mI, 6, and uI, 

6 

by equations (G) and (J). 

WRITE VI, 
6, nI, 6' mI, 6' uI, 6. 

G- 

Y _ 

> 
... , N 



N= N+ 1 

DO 1 

= 7, ... , 

D0 3 

calculate 
VI, 

by equation (F). 

calculate 
nI, L' mI, L' uI, L by 

equations (H) and (J). 

WRITE VI, L' nI, L' mI, L' III, 

IL = JK? yes 

no 

N= N+ 1 

punch on IBM cards 
values of dependent 
variables at pivot 
points (I, JK) and 
(I, 3K - 1) 
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C CONTROL CARDS GO HERE. SEE REFERENCE MANUAL. 
PROGRAM PDIFF 

C WARNING. ALL CONTINUED STATEMENTS SHOULD BE CARRIED TO 
C COLUMN 72. 

DIMENSION V( 600, 3 ),XN(600,3),XM(600,3),XH(600,3) 
101 FORMAT(1H ,3HI= ,I3,2X,3HJ= ,I3,2X,3HV= ,E16.8, /1H , 

19HXN,XNT,DN,2X,3(E16.8,2X), /1H ,9HXM,XMT,DM,2X,3(E16 
2.8,2X),/1H ,9HXH,XHT,DH,2X,3(E16.8,2X),//) 

106 FORMAT( 4E16. 8, 8X ,I3,1X,I3, /4E16.8,8X,I3,1X,I3) 
EX= EXP(1) 
XNO= XN( 2, 1)= XN( 3, 1)= XN (4,1)= XN(5,1) =XN(6,1)= XN(7,1)= 

14. /(5. *EX -1.) 
XMO= XM( 2, 1)= XM( 3, 1)= XM (4,1)= XM(5,1) =XM(6,1) =XM(7,1)= 

15. / (8. #EX'* *2.5- -3. ) 

XHO= XH( 2, 1)= XH( 3, 1)= XH (4,1)= XH(5,1) =XH(6,1)= XH(7,1)= 
1(7. *(EX **3 +1.)) /(7.*EX * *3 +107.) 

C V(2,1) = THIS WILL BE THE SHOCK 
V( 2, 1) =V(3,1)= V(4,1) =V(5,1)= V(6,1)= -100. 

C XK = TIME INCREMENT 
XK =.005 

C H = SPACE INCREMENT 
H =.1 
C= ( 23.8 *XK) / (2. *35.4*H **2 ) 

GK= XK *36. 
GN =XK *120. 
GL =XK *.3 
GLC =GL #10.5989 

C SECOND TIME ROW 
C N = LAST PIVOT POINT IN I TH TIME ROW 

N=7 
L =6 
J =1 
V(1,1) =V(N,i) =V(N +1,1) =0. 
DO 2 I =2,N 
V( I, 2)= V( I, 1)+ C*( V( I+ 1,i)- 2. *V(I,1) +V(I- 1,1))- (GK*XN 

1( I, 1)** 4*( V( I, 1)- 12.) )- (GN *XM(I,i)* *3 *XH(I,1) *(V(I,1 
2) +115.))- (GL *V(I,i)) -GLC 
ZN= XNP(XN(I,J),V(I,J)) 
ZM= XMP(XM(I,J),V(I,J)) 
ZH= XHP(XH(I,J),V(I,J)) 
XNT= XN(I,J) +XK'*ZN 
XMT= XM(I,J) +XK *ZM 
XHT= XH(I,J) +XK *ZH 
XN( I, J+ i)= XN( I, J) +.5*XK*(ZN +XNP(XNT,V(I,J +1))) 
XM( I, J+ 1)= XM( I, J ) +.5 *XK *(ZM +XiMP(XMT,V(I,J +1))) 
XH( I, J+ 1)= XH( I, J) +.5 *XK *(ZH +XHP(XHT,V(I,J +1))) 
DN =XN(I,J +1) -XNT 
DM= XM(I,J +1) -XMT 
DH =XH(I,J +1)-XHT 
WRITE(61, 101) I, L, V( I, J +1),XN(I,J +1),XNT,DN,XM(I,J +1) 
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1,XMT,DM,XH(I,J+1),XHT,DH 
2 CONTINUE 

N=N+1 
V(1,2)=V(N,2)=V(N+1,2)=0. 
XN(N,2)=XN(N,1)=XNO 
XM(N,2)=XM(N,1)=XMO 
XH(N,2)=XH(N,1)=XHO 

C THIRD, FOURTH, ... TIME ROWS 
C M= NUMBER OF TIME STEPS 

M=10 
C JK AND JK-1 ARE THE PUNCHED OUT TIME ROLLS 

JK=21 
J=2 
JJ=J+1 
NN=N-1 
DO 1 L=NN,M 
DO 3 I=2,N 
V(I,3)=V(I,2)+C#(V(I+1,2)-2.#V(I,2)+V(I-1,2))-(GK#XN 
1(I,2)**4#(V(I,2)-12.))--(GN#XM(I,2)##3*XH(I,2)#(V(I,2 
2)+115.))-(GL*V(I,2))-GLC 
ZN=XNP(XN(I,2),V(I,2)) 
ZM=XMP(XM(I,2),V(I,2)) 
ZH=XHP(XH(I,2),V(I,2)) 
XNT=XN(I,1)+2.*XK*ZN 
XMT=XM(I,1)+2.#XK*ZM 
XHT=XH(I,1)+2.*XK*ZH 
XN(I,3)=XN(I,2)+.5#XK*(ZN+XNP(XNT,V(I,3))) 
XM(I,3)=XM(I,2)+.5*XK*(ZM+XMP(XiMT,V(I,3))) 
XH(I,3)=XH(I,2)+.5*XK*(ZH+XHP(XHT,V(I,3))) 
DN=XN(I,3)-XNT 
DM=XM(I,3)-XMT 
DH=XH(I,3)-XHT 

C J IN FORMAT STATEMENT IS A DIFFERENT J 

WRITE(61,101)I,L,V(I,J+1),XN(I,J+1),XNT,DN,XM(I,J+1) 
1,XMT,DM,XH(I,J+1),XHT,DH 
IF(L.EO.JK) 5,3 

5 PUNCH 106, V(I,2),XN(I,2),XM(I,2),XH(I,2),I,J,V(I,3) 
1,XN(I,3),XM(I,3),XH(I,3),I,JJ 

3 CONTINUE 
DO 4 K=2,N 
V(K,1)=V(K,2) 
V(K,2)=V(K,3) 
XN(K,1)=XN(K,2) 
XN(K,2)=XN(K,3) 
XM(K,1)=XM(K,2) 
XM(K,2)=XM(K,3) 
XH(K,1)=XH(K,2) 
XH(K,2)=XH(K,3) 

4 CONTINUE 
N=N+1 
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V(N,2)= V(N +1,2) =0. 
XN(N,2)= XN(N,1) =XNO 
XM(N,2)= XM(N,1) =XMO 
XH(N,2)= XH(N,1) =XHO 

1 CONTINUE 
END 

C FUNCTION SUBPROGRAMS, DATA, AND CONTROL CARDS GO HERE. 
C SEE REFERENCE MANUAL. 



APPENDIX 2 

EXPLICIT METHOD FOR USE AFTER SOLUTION 
HAS BEEN STARTED 

Summary Flow Diagram for Program PDIF2 

I = index with respect to distance (x = 0 corresponds to 
I 1). 

J = index of starting time row. 

J + 1 = index of other starting time row. 

JK and JK - 1= the fixed time indices of the time rows whose 
dependent variables are punched out on IBM cards 
for future use. 

L 

M 

N 

NN 

= time row index (t = 0 corresponds to L = 5). 

= index of last time row. 

= distance index of last pivot point in L th time row. 

= J + 2 = time index of first calculated time row. 

(Read in time rows J and J + 1 

DO 1 

L = NN, .. 

DO 3 

I = 2, ... , N 

52 

= 

, M 



calculate VI, by equation (F). 

calculate nI, L' mI, L' and uI, 
L 

by equations (H) and (J). 

WRITE out for every fifth time row the values 

of VI, nI, L' mI, L' uI, L' gKI, L-1' gNal, L-1 

N= N+ li no 

V 

1L = JK?. yes 

no 

53 

punch on IBM cards 
values of dependent 
variables at pivot 
points (I, JK) and 
(I, JK -1). 

Are values at last three pivot points in 

time row L sufficiently close to the 

resting values? 

yes 

L' 
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C CONTROL CARDS GO HERE. SEE REFERENCE MANUAL. 
PROGRAM PDIF2 

C WARNING. ALL CONTINUED STATEMENTS SHOULD BE CARRIED TO 
C COLUMN 72. 

DIMENSION V( 600, 3), XN (600,3),XM(60O,3),XH(6OO,3) +CK 
1(600),CN(600) 

101 FORMAT(1H ,3HI= ,I3,2X,3HJ= ,I3,2X,3HV= ,E16.8,2X,4H 
1GK= ,E16.8,2X,4HGN= ,E16.8, /1H ,3(E16.8,2X),//) 

105 FORMAT(1H ,3HN= ,I3, //) 
106 FORMAT( 4E16. 8, 8X ,I3,1X,I3, /4E16.8,8X,I3,1X,13) 
120 FORMAT(1H ,3HN= , I3 ,2X,25HV(N- 213),V(N- 1,3),V(N,3) , 

13(E16.8,2X),//) 
500 FORMAT(4E16.8, /4E16.8) 

EX= EXP(1.) 
XN0= 4. /(5. #EX -1.) 
XMO =5./(8. #EX * #2.5 -3.) 
XHO= (7. *(EX * *3 +1.)) /(7. #EX * *3 +107.) 

C XK = TIME INCREMENT 
XK =.005 

C H = SPACE INCREMENT 
H =.1 
C=(23.8*XK)/(2.*35.4*H**2) 
GL =XK #.3 
GLC =GL *10.598921 

C N= LAST PIVOT POINT IN L TH TIME ROW 
C J= STARTING TIME ROW AND J +1= STARTING TIME ROW + 1 

J =198 
JJ =J +1 

C JK AND JK -1 ARE THE PUNCHED OUT TIME ROWS 
JK =304 

C N MUST CORRESPOND TO STARTING TIME ROW +1 

N =45 
DO 400 I =2,N 
READ(60,500) V( I, 1), XN (I,1),XM(I,1),XH(I,1),V(I,2),X 

1N( I, 2),XM(I,2),XH(I,2) 
400 CONTINUE 

N =N +1 
V(N,2)= V(N +1,2)= V(1,2) =0. 
XN(N,2)= XN(N,1) =XNO 
XM(N,2)= XM(N,l) =XMO 
XH(N,2)= XH(N,1) =XHO 

C M= TOTAL NUMBER OF TIME STEPS 
J =2 
JJ =J +1 
M =306 
NN =200 

C L= TIME ROW 
DO 1 L =NN,M 
XL =L 
DO 3 I =2,N 

C CONDUCTANCES IN WRITE OUT ARE FOR PREVIOUS TIME ROW 



CK(I)=36.#XN(I,2)*#4 
CN(I)=120.*XM(I,2)##3*XH(I,2) 
V(Is3)=V(I,2)+C#(V(I+1s2)-2.#V(I,2)+V(I-1,2))--(XK#CK 
1(I)#(V(I,2)-12.))-(XK#CN(I)#(V(I,2)+115))-(GL*V(IO2 
2) )-GL.0 

ZN=.XNPIXN(I,2),V(I,2)) 
ZM=XMP(XM(I,2),V(I,2)) 
ZH=XHP(XH(I,2),V(I,2)1 
XNT=XN(I,1)+2.*XK#ZN 
XMT=XM(I,1)+2.*XK#ZM 
XHT=XH(I,1)+2.*XK#ZH 
XN(I,3)=XN(I,2)+.5*XK#(ZN+XNP(XNT,V(I,3))) 
XM(I,3)=XM(I,2)+.5*XK#(ZM+XMP(XMT,V(I,3))) 
XH(I,3)=XH(I,2)+.5#XK#(ZH+XHP(XHTsV(I,3))) 
IF(FLOAT((L-1)/5).EQ.(XL-1.)/5.) 32,33 

32 DN=XN(I,3)-XNT 
DM=XM ( I , 3 ) --XMT 

DH=XH(I,3)-XHT 
C J IN FORMAT STATEMENT IS A DIFFERENT J 

WRITE(61,101)I,L,V(I,J+1),CK(4),CN(I),DN,DM,DH 
33 IF{(L.EQ.JK) 5,3 
5 IF(I.EQ.N)6,7 
6 WRITE(61,105) N 

7 PUNCH 106, V(I,2),XN(I,2),XM(I,2),XH(I,2),I,J,V(I,3) 
1,XN(I,3),XM(I,3),XH(I,3),I,JJ 

3 CONTINUE 
DO 4 K=2,N 
V(K,1)=V(K,2) 
V(K,2)=V(K,3) 
XN(K,1)=XN(K,2) 
XN(K,2)-XN(K,3) 
XM(K,1)=XM(K,2) 
XM(K,2)=XM(K,3) 
XH(K,1)=XH(K,2) 
XH(K.,2)=XH(K,3) 

4 CONTINUE 
IF(V(N,3).LE..0005.AND.V(N,3).GE.-.0005.AND.V(N-1,3) 

1.LE..0005.AND.V(N-1,3).GE.-.0005.AND.V(N-2,3).LE. 
2.0005.AND.V(N-2,3).GE.-.0005) 30,31 

31 N=N+1 
V(N,2)=V(N+1112)=0. 
XN(N,2)=XN(N,1)=XNO 
XM(N,2)=XM(N,1)=XMO 
XH(N,2)=XH(N,1)=XHO 
GO TO 1 

30 WRITE(61,120) N,V(N-2,3),V(N-1,3),V(N,3) 
1 CONTINUE 

END 
C FUNCTION SUBPROGRAMS, DATA, AND CONTROL CARDS GO HERE. 
C SEE REFERENCE MANUAL. 
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APPENDIX 3 

CRANK - NICOLSON IMPLICIT METHOD 

Summary Flow Diagram for Program CRNC 

I = index with respect to distance (x = 0 corresponds to 
I = 1). 

JK and JK -1 = the fixed time indices of the time rows whose de- 
pendent variables are punched out on IBM cards 
for future use. 

L 

M 

N 

NN 

= time row index (t = 0 corresponds to L = 5). 

= index of last time row. 

= distance index of last pivot point in L th time row. 

= time index of first calculated time row. 

MEAD in time rows J and J + 1 

preliminary calculations 

necessary before iterating 

DO L = NN, ..., M 



calculate 
VN, 

by Gauss elimination method 

calculate nN, L' mN, L' uN, L by equations (H) 

and (J). 

WRITE VN, n mN 
, 

u 

D0 3 

<LL = 3, 

I = N-LL+2-1 

calculate VIA by Gauss elimination method. 

calculate nI, 
L, mI, L, uI, L, by equations (H) 

and (J). 

. . 
i_W RITE VI, L' nI, L' mI, L' uI, L' gKI, L-l' gNal, L-1 

-N+1 no 

Are values at last three pivot 

points in time row L sufficiently 

close to the resting values ? 
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, L' 

... , 

L' 

N,/ r 
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C CONTROL CARDS GO HERE. SEE REFERENCE MANUAL. 
PROGRAM CRNC 

C WARNING. ALL CONTINUED STATEMENTS SHOULD BE CARRIED TO 
C COLUMN 72. 

DIMENSION V( 100, 3), XN (100,3),XM(100,3),XH(100,3)0ALP 
1(300),D( 300), S(600),AOA(600),CK(600),CN(600) 

101 FORMAT(1H ,3HI= ,I3,2X,3HJ= ,I3,2X,3HV= ,E16.8, /1H , 

19HXN,XNT,DN,2X,3(E16.8,2X), /1H +9HXM,XMT,DM,2X,3(E16 
2.8,2X), /1H ,9HXH,XHT,DH,2X,3(E16.8,2X), /1H ,15HCK(J- 
31),CN(J-1),2(E16.8,2X),//) 

107 FORMAT(4E16.8, /4E16.8) 
108 FORMAT(1H ,3HK= , I3, 2X ,21HAOA(K),ALP(K),D(K),SK,2X,4 

1qE16.8,2X).1/) 
109 FORMAT(1H ,6HD(2)= ,E16.8, //) 
110 FORMAT(1H ,3HK= ,I3,2X,6HD(K)= ,E16.8,//) 
111 FORMAT(1H ,3HI= ,I3,2X,3HJ= ,I3,2X,30HV(I,J),XN(I,J) 

1, XM (I,J),XH(I,J),2X,4(E16.8,2X) /1H ,3HI= ,I3,2X,3HJ= 
2 ,I3,34X,4(E16.8,2X)//) 

120 FORMAT(1H ,3HN= , I3 ,2X,25HV(N- 2,3),V(N- 1,3),V(N,3) , 

13(E16.8,2X),//) 
C MAY NEED NEW N TO CORRESPOND TO N IN PDIF2 

N =12 
EX= EXP(1.) 
XNO= XN( N, 1)= XN (N +1,1)= XN(N +1,2)= 4. /(5. *EX-1.) 
XMO= XM( N, 1)= XM( N+ 1, 1)= XM(N +1,2) =5./(8. #EX * *2.5 -3.) 
XHO= XH( N, 1)= XH(N +1,1) =XH(N +1,2) =(7. #(EX * *3 +1.))/(7.# 

1EX * *3 +107.) 
C XK = TIME INCREMENT 

XK =.01 
C H = SPACE INCREMENT 

H =.1 
C C DIFFERENT C THAN IN PDIFF 

A=C=(23.8*XK)/(4.*35.4*H**2) 
ALP(2)= B= 2. *A +1. 
GL =XK *.3 
GLC =GL *10.598921 
V(1,2)= V(1,3) =0. 
V(N +1,2)= V(N +2,2) =V(N +2,3) =0. 
J =10 
JJ =J +1 
DO 1 I =2,N 
READ(60,107) V( I9 1), XN (I,1),XM(I,1),XH(I,1),V(I,2),X 
1N(I,2),XM(I,2),XH(I,2) 
WRITE(61,111) I, J, V( I ,1),XN(19l),XM(I,1),XH(I,1),I,J 

1J ,V(192),XN(I,2),XM(I12),XH(I,2) 
1 CONTINUE 

K =2 
CK(K)= 36. *XN(K,2) * *4 
CN(K)= 120. *XH(K,2)*XM(K,2) * *3 
D( K)= V( K, 2)+ A*( V( K- 1, 2)- 2. *V(K,2) +V(K +1,2))- (XK *CK(K 

1)*( V( K, 2)- 12.))-( XK* CN(K) *(V(K,2) +115.))-GL *V(K,2)- 
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2GLC 
5(K)=D(K) 
WRITE(61,109) D(K) 
N=N+1 
DO 6 K=3,N 
AOA(K)=A/ALP(K-1) 
ALP(K)=8-AOA(K)#C 

11 CK(K)=36.#XN(Kt2)**4 
CN(K)=120.#XH(K,2)yFXM(K,2)#*3 
D(KI=V(K,2)+A#(V(K-1,2)-2.#V(K,2)+V(K+1,2))-(XK#CK(K 
1)#(V(K12)-12.))-(XK*CN(K)#(V(K,2)+115.))-GL#V(K,2)- 
2GLC 

12 5(K)=D(K)+AOA(Kl#S(K-1) 
WRITE(61,108) K,AOA(K),ALP(K),D(K),5(K) 

6 CONTINUE 
J=2 
JJ=3 
M=14 
NN=N-1 
DO 2 L=NN,M 
XL=L 
V(N,3)=5(N)/ALP(N) 
ZN=XNP(XN(N,2),V(N,2)) 
ZM=XMP(XM(N,2),V(N,2)) 
ZH=XHP(XH(N,2),V(N,2)) 
XNT=XN(N,1)+2.#XK*ZN 
XMT=XM(N,1)+2.#XK#ZM 
XHT=XH(N,1)+2.#XK#ZH 
XN(N,3)=XN(N,2)+.5*XK*(ZN+XNP(XNT,V(N,3))) 
XM(N,3)=XM(N,2)+.5*XK*(ZiM+XMP(XMT,V(N,3))) 
XH(N,3)=XH(N,2)+.5*XK*(ZH+XHP(XHT,V(N,3))) 
DN=XN(N,3)-XNT 
DM=XM(N,3)-XMT 
DH=XH(N,3)-XHT 
I=N 
WRITE(61,101)I,L,'V(I,J+1),XN(I,J+1),XNT,DN,XM(I,J+1) 
1,XMT,DM,XH(I,J+1),XHT,DH,CK(I),CN(I) 
DO 3 LL=3,N 
I=N-LL+2 
V(I,3)=(1./ALP(I))*(5(I)+C*V(I+1,3)) 
ZN=XNP(XN(I,2),V(I,2)) 
ZM=XMP(XM(I,2),V(I,2)) 
ZH=XHP(XH(I,2),V(I,2)) 
XNT=XN(I,1)+2.#XK*ZN 
XMT=XM( I,1 )+2.#XK*ZM 
XHT=XH(I,1)+2.*XK#ZH 
XN(I,3)=XN(I,2)+.5*XK*(ZN+XNP(XNT,V(I,3))l 
XM(I,3)=XM(I,2)+.5*XK*(ZM+XMP(XMT,V(I,3))) 
XH(I,3)=XH(I,2)+.5*XK#(ZH+XHP(XHT,V(I,3))) 

32 DN=XN(I,3)-XNT 
DM=XM(I,3)-XMT 
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DH= XH(I,3) -XHT 
C J IN FORMAT STATEMENT IS A DIFFERENT J 

C J IS TIME ROW IN PRINT OUT 
WRITE(619101) I, L, V( I, J +1),XN(I,J +1),XNT,DN,XM(I,J +1) 

1, XMT, DM,XH(I,J +1),XHT,DH,CK(I),CN(I) 
33 CONTINUE 
3 CONTINUE 

DO 4 K =2,N 
V(K,1)= V(K,2) 
V(K,2)= V(K,3) 
XN(K,1)= XN(K,2) 
XN(K,2)= XN(K,3) 
XM(K,1)= XM(K,2) 
XM(K,2)= XM(K,3) 
XH(K,1)= XH(K,2) 
XH(K,2)= XH(K,3) 

4 CONTINUE 
IF(L.EO.M)2,13 

13 IF(V(N,3).LE.. 0005. AND .V(N,3).GE.- .0005.AND.V(N -1,3) 
1.LE..0005. AND. V( N- 1,3).GE.- .0005.AND.V(N- 2,3).LE. 
2.0005.AND.V(N- 2,3).GE.- .0005) 30031 

31 N =N +1 

V(N,2)= V(N +1,2)= V(N +1,3) =0. 
XN(N,2)= XN(N,i) =XNO 
XM(N,2)= XM(N,1) =XMO 
XH(N,2)= XH(N,1) =XHO 
AOA(N) =A /ALP(N -1) 
ALP(N)=B-AOA(N)*C 
GO TO 34 

30 WRITE(61912.0) N,V(N- 293),V(N- 1,3),V(N,3) 
34 K =2 

CK(K)= 36. *XN(K,2) **4 
CN(K)= 120. *XH(K,2) *XM(K,2) * *3 
D( K)= V( K, 2)+ A*( V( K- 1, 2)- 2. *V(K,2) +V(K +1,2))- (XK *CK(K 
1)* (V(K,2)- 12.))-(XK*CN(K) *(V(K,2) +115.))- GL *V(K,2)- 
2GLC 
S(2) =D(2) 
WRITE(61,109) D(K) 
DO 5 K =3,N 

21 CK(K)= 36. *XN(K,2) * *4 
CN(K)= 120.*XH(K,2) *XM(K,2) * *3 
D( K)= V( K, 2)+ A*( V( K- 1, 2)- 2. *V(K,2) +V(K +1,2))- (XK *CK(K 

1)* (V(K,2)- 12.))-(XK *CN(K) *(V(K,2) +115.))- GL *V(K,2)- 
2GLC 

22 S(K)= D(K) +AOA(K) *S(K -1) 
WRITE(61,110) K,D(K) 

5 CONTINUE 
2 CONTINUE 

END 
C FUNCTION SUBPROGRAMS, DATA, AND CONTROL CARDS GO HERE. 
C SEE REFERENCE MANUAL. 
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APPENDIX 4 

FUNCTION SUBPROGRAMS 

C WARNING. ALL CONTINUED STATEMENTS SHOULD BE CARRIED TO 
C COLUMN 72. 

FUNCTION XNP(PN,PV) 
IF(PV.GE. -10. 00001 . AND.PV.LE. -9.99999)2019202 

201 AN =.1 
GO TO 203 

202 AN=(. O1*( PV +10.)) /(EXP((PV +10.) /10.) -1.) 
203 XNP =3. 8202161 *((1.- PN) #AN -PN #.125 *EXP(PV /80.)) 

END 

FUNCTION XMP(PM,PVA) 
IF(PVA.GE.-25.00001.AND.PVA.LE.-24.99999)301,302 

301 AM=1. 
GO TO 303 

302 AM=(.1*(PVA+25.))/(EXP((PVA+25.)/10.)-1.) 
303 XMP=3.8202161#((1.-PM)#AM-PM#4.#EXP(PVA/18.)) 

END 

FUNCTION XHP(PH,PVB) 
XHP =3. 8202161*(( 1.- PH) *.07 *EXP(PVB /20.)- (PH /(EXP((PV 

1B +30.)/10.) +1.))) 
END 


