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In granular or fibrous materials, in which the dimensions of the internal

structure can be of the same order of magnitude as major flaws or holes, classical

elasticity theory does not consistently provide accurate models of the large stress

gradients that may develop. With the incorporation of additional rotational degrees

of freedom, the development of micropolar elasticity theory offers promise for the

modeling of these phenomena.

The principal objective of this investigation was to develop a plane-strain,

dynamic, finite element method for the dynamic response of micropolar elastic

media. For purposes of analysis, an eight-node isoparametric, quadrilateral element

was used, and the dynamic finite element model was verified by comparing its

output, including both displacement and microrotational solutions, with analytic

solutions for micropolar plate material subject to shear loads. In addition, plates

with circular holes under dynamic loads were analyzed. The results obtained for a

special case of a classically elastic material were in good agreement with previously

obtained analytical solutions. Materials with significant micropolar behavior were

found to cause significant reductions in the dynamic stress concentrations caused by

the diffraction of plane dilatational waves adjacent to circular holes. Similar trends

were observed from the analysis of plates with elliptical holes subject to suddenly

applied loads.



Finally, two cases were considered: 1) A stationary crack subject to dynamic

loads, and 2) a crack propagating at a constant velocity while under constant load.

The method for the calculation of dynamic energy release rates, and node releasing

techniques for the simulation of crack propagation, were developed for micropolar

elastic materials. In both cases, materials with strong micropolar properties were

found to have significantly lower dynamic energy release rates than classically elastic

material counterparts.
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Dynamic Finite Element Analysis of

Micropolar Elastic Materials

1. INTRODUCTION

The classical theory of elasticity is based on the ideal assumptions that all

balance laws are valid for every part of a body, however small that body may be,

and that all material bodies possess continuous mass densities. It follows that load

transfers through a surface element situated within the interior ofa body occur only

by means of the force stress vector. Based upon these assumptions, body strain can

be described in terms of symmetric stress and strain tensors. Below the elasticity

limit of the material, the behavior of numerous structural materials can be explained

from these factors. However, essential differences have been observed between

theory and experimentation in a number of cases. This is primarily true of states of

stress in which large stress gradients occur. Stress concentrations around holes or in

the proximity of cracks in granular or fibrous materials are typical examples of this

state. Therefore, the classical theory of elasticity provides only an inadequate repre-

sentation of the behavior of such materials as granular bodies with large molecules

(polymers), composite fibrous materials, or liquid crystals, and the theory of oriented

media must be incorporated to analyze these types of materials. Thus, micropolar

theory has been one of the alternatives used to describe the behavior of these types

of material.



1.1 Review of Micropolar Elasticity Theory and the Dynamic Finite Element Method

Micropolar elasticity theory, as introduced and developed by Eringen and

Suhubi [1,2], incorporates the properties of the microstructure of a material within

the continuum framework. This theory is applicable for the analysis of phenomena

where the material microstructure has a strong influence upon the response of a

structure to external load factors. This is likely to occur in granular or fibrous

materials near areas of large stress gradients; for example, occurrence is frequent in

the near proximity of holes or cracks. The widespread use of various types of com-

posite materials, in which the microstructure is known to control mechanical proper-

ties, has stimulated interest in this theory. Accordingly, Eringen [3,4] presented the

linear theory of micropolar elasticity.

In linear theory, a micropolar continuum may be regarded as a classical con-

tinuum, each point of which, in addition to translation, is assigned a second con-

tinuum with an added rotational degree of freedom. Thus, the deformation of a body

is described by the displacement vector Uk and an independent microrotation vector

In addition, micropolar materials experience the couple stress m& as well as the

force stress tik, resulting in nonsymmetric stress and strain tensors. In general, the

additional degree of freedom makes the performance of stress analysis on structures

composed of micropolar materials more difficult than for classical elastic materials.

Frequently, only approximate solutions can be obtained for the micropolar case,

where closed form solutions are available in the case of classical elasticity.

Stress concentrations around circular holes in plates have been analyzed by

Mindlin [5], who developed the indeterminate couple-stress theory, a special case in

general micropolar theory. Based upon micropolar elasticity, Kaloni and Ariman [6]

investigated same problem and compared their results to those obtained by Mindlin
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[5]. In turn, Kim and Eringen [7] presented an analytical solution for the stress con-

centration around elliptical holes. En addition, a number of studies have involved the

analysis of cracks in micropolar materials. Through numerical solution of integral

equations, based upon application of indeterminate couple stress [5], Sternberg and

Muki [8] computed the stress intensity factors around cracks. Atkinson and Lep-

pington [9] presented limited numerical results for stress intensity factors and energy

release rates for semi-infinite cracks in micropolar materials. By solving a Fredhoim

integral equation, Paul and Sridharan [10] determined the effects of couple stresses

upon the stress field around a penny-shaped crack. Sladec and Sladec [11] then

developed an approximate solution for the penny-shaped crack. In each of these

studies, the response of the micropolar materials was considered only in static terms.

The development of finite element analysis for micropolar materials has been

limited in extent. Malcolm [12] developed a finite element procedure for micromor-

phic materials and used it to compute the stress field around holes in plates under

tension. Hermann [13] used mixed variational equations to investigate and compare

four mixed finite elements for plane couple stress elasticity, considering the stress

concentration problem for straight-sided isoparametric elements with either four or

eight nodes. Nakamura et al. [14] used triangular elements to model stresses around

holes in anisotropic micropolar materials, whereas Kennedy and Kim [15] used quad-

rilateral elements to study fractures in micropolar materials. Nakamura and Lakes

[16] addressed a similar problem, but for the case of blunt-edged notches with ellip-

tic contours. Using first order stress functions, Wood [17] developed a finite ele-

ment procedure for plane linear elastic couple-stress theory, solving for stress con-

centrations around circular holes in plates. For each of these finite element analyses,

again only the static responses of the materials were considered.



The dynamic response of materials containing defects to impulse loading has

been of interest in a variety of technological circumstances. In recent years, num-

erous studies have been performed in the area of classical dynamic fracture mechan-

ics, many of which have been summarized in comprehensive review articles by Sih

[18], Williams and Knauss [19], Kanninen and Popelar [20], and Parton and Boris-

kovsky [21,22]. However, due to the complexities of micropolar elastodynamic

problems, to date the extent of this research has been limited. Some of the funda-

mental problems in micropolar elastodynarnics were summarized by Nowacki [23].

lesan [24] examined dynamic energy release rates for micropolar elastodynamic

crack propagation, while Rao [25] investigated the problem of longitudinal wave

propagation in micropolar wave guides. Vukobrat [26] derived path-independent

integrals, originally introduced by Rice [27], for micropolar elastodynamics, using

the Noether theorem to study the case of steady-state crack propagation. Recently,

through the numerical solution of singular integral equations, Han et al. [28] devel-

oped a solution for the diffraction of plane dilatational waves in the proximity of

moving cracks in unbounded micropolar materials. However, this solution proved to

be valid only for small values of time and the peak values of responses could not be

calculated.

For the past two decades, investigative efforts have been undertaken in the

area of dynamic finite element methods within the classical continuum framework,

and it has become common practice for the structural analyst to calculate the

response of structural systems to transient loads. The prediction of displacement,

velocity, acceleration, and stress-time histories at nodes and elements of the finite

element model has been among the results achieved in this research direction. In

addition, it has been noted that the use of direct time integration as a solution pro-

cedure for finite element semidiscretizations may be advantageous for linear systems.
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5

The characteristics of the time integration procedure can have a critical impact on the

feasibility of the calculation. The wrong choice of time integrator may result in an

impractical methodology, or may lead to excessive errors in simulations. For this

reason, direct time integration has continued to be an active area of research.

The fundamental characteristic of any direct time integration algorithm is that

it is either explicit or implicit. Belytschko et al. [29] provided an elegant summary

of the stability criteria and the solution properties for explicit central difference

integration. Implicit schemes possess stability characteristics superior to those for

explicit schemes, which because of the stability problem often require very small

time-steps. Initially, Houbolt [30] presented a three-step, second-order implicit

scheme, but from the viewpoint of both the damping ratios and the period errors, the

method seems to have had too great an effect upon the low modes. In turn, New-

mark [31] proposed an unconditionally stable second-order time integration scheme,

if -y 1/2 and 3 + 1/2)2/4. The 0-method of Wilson et al. [32] is a modifi-

cation of Newmark's algorithm in which a linear variation of acceleration is assumed

within a time-step. By combining aspects of the Newmark method and the Wilson

0-method, Hilber et al. [33] introduced the a-method to improve the numerical

damping properties of the Newmark method without degrading the order of accura-

cy, followed by development of the collocation method [34]. In addition, the p-

method of Bazzi and Anderheggen [35] can be viewed as an extension of the New-

mark method.

Among more recent developments, particularly for nonlinear problems, the

algorithm proposed by Park [36] was based on a combination of the mathematical

approximations contained in the Gear two-step and three-step methods [37]. The

shortcoming of this method is that it requires special starting procedures. Zienkie-

wicz et al. [38] presented a unified formulation of single-step methods, enabling the



implementation of different methods within a single program. In addition, so-called

implicit-explicit procedures, which were an attempt to apply different operators to

different parts of a structure, dependent upon the range of frequencies excited, were

investigated by Belytschko and Mullen [39], Hughes and Liu [40], and Liu and Bely-

tschko [41]. Zienkiewicz [42] and Wood [43] developed the weighted residual

method, which used a Galerkin form of discretization in the time domain. In addi-

tion to the development of these essential algoritms, considerable effort has been

concentrated in this area to improve both the accuracy and the stability criteria for

integration schemes. In the end, the choices of method are strongly problem-

dependent and must be based on experience. For this area of interest, comprehen-

sive reviews and guidelines may be found in Belytschko [42], Bathe [43], Cook [44],

Hughes [45], Bickford [46], and Zienkiewicz [47].

In dynamic finite element analysis, a mass matrix accounting for inertia, is an

important factor affecting solutions. It is generally acknowledged that Archer

[48,49] was the first to point out the correctness of a consistent mass which at cer-

tain points, when compared to the physical lumping of the structural mass, can be

generated with shape functions that are identical to those used for an element stiff-

ness matrix. When a central difference algorithm is concerned, a diagonal mass

matrix obtained by a lumping technique is preferred since it does not require solution

of a set of algebraic equations for each time-step. For higher order elements or

those of irregular shape, systematic lumping schemes are necessary. Hinton et al.

[50] developed a special lumping technique which always produces positive-diagonal

lumped masses. Fried and Malkus [51] developed rules of optimal quadrature for

triangular elements, in which the mass matrix may contain zero or negative diagonal

quantities and often requires special solution treatments. Malkus and Plesha [52],

and then Malkus et al. [53], discussed the zero or negative masses of optimally

6



lumped mass matrices. In the row-sum technique [45], the elements in each row of

a consistent mass matrix are summed and lumped on the diagonal. However, among

the various methods of generating mass matrices, there is no single solution which

will satisfy every problem. The choice of mass is solely problem-dependent, and

matched methods are generally recommended [44,45]. For example, for central dif-

ferences and a lumped mass, the Newmark method [31] in conjunction with a consis-

tent mass would be an appropriate match.

For application of finite element methods to dynamic fracture mechanics,

there are two distinct types of problems for which the forces of inertia must be in-

cluded in the equations of motion for the cracked body: 1) The initiation of crack

growth under impact loading and 2) rapid crack propagation under fixed loading.

Kanninen [54] subjected the application of numerical methods to dynamic fracture

mechanics to a critical appraisal in 1978. At that time, since the relevant singulari-

ties could be modeled for the crack tip elements, the finite element method was

believed to be the most suitable method for the analysis of stationary cracks under

dynamic loads, whereas it was believed to be unsuitable for the analysis of dynamic

crack propagation because of the numerical difficulties involved in advancing the

crack in a discrete manner. However, in the intervening period the state of the art

for the application of finite element methods to dynamic fracture mechanics has

greatly advanced.

Recent advances in the application of finite element methods to dynamic frac-

ture mechanics were considered by Atluri and Nishioka [55] and by Liebowitz and

Moyer [56], and may be summarized as follows. Henshell and Shaw [57] and Bar-

soum [58] noted that by the displacement of the midside node of an eight-node quad-

rilateral element to a quarter-point position, the element strain field naturally exhib-

ited a square root singularity. In addition, Barsoum [59] observed that when the ele-



ment was collapsed into a triangular shape, predicted angular strain variations were

increasingly accurate. Mall [60] demonstrated that extensions of the quarter-point

element to transient dynamic analysis were automatic, and Murti and Valliappan [61]

investigated the application of the quarter-point element to dynamic crack analysis.

Morgan et al. [62] conducted one of the initial attempts to implement a special

dynamic cracked element, but neglected incompatibilities along the boundary with

conventional elements.

The first attempts at developing finite element methods for the calculation of

stress intensity factors for propagating cracks were conducted by Aoki et al. [63],

Bazant et al. [64], and King and Malluck [65]. Special singular elements were pro-

posed for modeling crack growth, and successive applications were formulated by

Atluri and Nishioka [55,66], Nishioka and Atluri [67,68,70,71], and by Nioshioka et

al. [69,72]. For the hybrid elements developed for these investigations, more than a

single eigenfunction for the propagation of cracks was included as a displacement

basis function and in the least-squares sense, displacement compatibility between the

singular element and its surrounding conventional elements was achieved. These

methods were based upon a moving mesh procedure, in which the singular element

containing the crack tip was translated for each time-step in the direction of crack

growth, while the regular elements surrounding the moving singular element were

continuously distorted. Insofar as these approaches encompassed the development of

path-independent integrals for elastodynamically propagating cracks, Kishimoto et al.

[73] derived a path-independent integral .1 for spatially fixed paths, which is equi-

valent to the energy release rate for only stationary cracks in solids under dynamic

motion. Overall, these methods have been successfully applied to a number of

dynamic problems, but the problem they pose lies in the complexity of the formula-

8



tion for each implementation as well as the necessity of remeshing without any

evidence of computational improvement.

In addition, based upon the employment of only conventional elements, a

great deal of work has been accomplished in the area of elastodynamic fractures,

primarily directed at the prediction of dynamic stress intensity factors or dynamic

energy release rates for running cracks. For consideration of crack propagation in

double cantilever beam and pipeline problems, Owen and Shantaram [74] used stan-

dard isoparametric elements for dynamic transient stress analysis, changing the loca-

tion of the crack-tip from one node to the next node along the crack axis in a time-

step employed within a time integration scheme. Sudden increases in crack length,

accompanied by the release of displacement constraints, induced spurious high fre-

quency oscillations in finite element solutions. Keegstra et al. [75] overcame this

difficulty by releasing the nodes gradually over a period of time, using non-zero

hold-back forces for more than a single node behind the advancing crack-tip. For

conventional elements, the use of non-zero hold-back (i.e., node releasing) force for

a single node behind the advancing crack-tip and gradual release techniques were de-

veloped by Malluck and King [76], Rydhoim et al. [77], and Kobayashi et al. [78].

In the first two studies, relationships between the releasing force and the original

reaction force at same node were nonlinear, while linear relaxation was proposed in

the third study. Malluck and King [79] compared two releasing mechanisms. Linear

relaxation, investigated by Kobayashi et al. [78] and Hodulak et al. [80], was subse-

quently considered for an eight-node element by Atluri and Nioshioka [55]. Mall

and Luz [81] investigated the simultaneous release of both the corner and the midside

nodes for eight-node isopararnetric elements.

The crack closure integral for calculation of strain energy release rates, based

upon infinitesimal and virtual crack length increments, was originally derived by

9
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Irwin [82]. Subsequently, Sih and Hartranft [83] provided an equivalent relationship

for three dimensional crack-front configurations and a modified crack closure inte-

gral, enabling computation of strain energy release rates from nodal forces and dis-

placements obtained from finite element solutions, was presented by Rybicki and

Kanninen [84]. Finally, Jih and Sun [85] extended the crack closure method for the

calculation of dynamic strain energy release rates, comparing their results to those

obtained for path independent integrals as well as a number of other methods.

1.2 Objective of the Investigation

From the evidence presented in section 1.1, considerable progress has been

achieved in the application of dynamic finite element as well as finite element

methods to the solution of problems of classical dynamic fracture mechanics. How-

ever, there are no indications that dynamic finite element methods have been applied

to micropolar elastodynamic theory. In addition, stationary cracks under impact

loads and the dynamic propagation of a finite cracks in micropolar elastic media have

not been subject to numerical solutions based upon finite element methodology.

Thus, the objective of the current investigation is to develop the dynamic fin-

ite element method in accordance with micropolar elastodynamic theory, analyzing

problems of stress concentration in micropolar elastic materials. Based upon the

work of Eringen [4] and Nowacki [23], micropolar elastodynamic theory is consid-

ered in Chapter 2. In Chapter 3, based upon a virtual work principle, the formula-

tion of a dynamic finite element method for the solution of crack problems in micro-

polar elastodynamics is presented. To verify the solution, the problem of a half-

space whose surface is subject to a shear stress uniform in space and harmonic in

time is solved and compared to the analytical solution proposed by Nowacki [23]. In
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Chapter 4, a method for the calculation of dynamic energy release rates for both sta-

tionary and propagating cracks is developed and node release techniques are discus-

sed. Chapter 5 describes the results of numerical example problems, as follows:

1) Stress concentration around a circular holes in a plate subject to a plane-strain

condition; 2) stress concentration around an elliptical hole within a plate; 3) a sta-

tionary crack in a finite plate subject to mode-I impact load and a plane-strain condi-

tion; and 4) a crack propagating at a constant velocity in a body subject to static ten-

sion load. For each example problem, classical solutions are obtained when the mic-

ropolar moduli are set to zero; therefore, this investigation confirms that with the

suppression of micropolar moduli, classical elasticity is a special case of micropolar

elasticity. Compared to classical media, as the effect of micropolar properties is

increased, dynamic stress concentration and the dynamic energy release rate become

smaller. The findings of this investigation are summarized and discussed in Chap-

ter 6.



2. MICROPOLAR ELASTICITY THEORY

The basic equations for micropolar elasticity theory are presented in this chap-

ter. Homogeneous, isotropic, and centrally symmetric elastic bodies, the characteris-

tics of which are known from classical elasticity, are considered, and the tensor

equations from micropolar elasticity theory [1-4] are developed in terms of the indi-

vidual components for a rectangular coordinate system. The notation used is identi-

cal to that provided by Eringen [1-4].

2.1 Equations of Equilibrium and Motion

The equations of motion used in micropolar elastodynamics theory can be

derived from the laws of conservation of linear momentum and angular momentum.

In the absence of body force and body couple, the component form of these equa-

tions are:

pUk tlk,l (2.1)

and

= + (2.2)

where tik is the force stress tensor, rn/k is the couple stress tensor, p is the mass

density, j is the microinertia density, e,,,,, is the permutation symbol, Uk is the

displacement vector, and k represents three microrotation components. These

equations are the Cauchy first and second laws of motion; whereas the first is

12



and

3m.. ôrn..x_+
äx YX.

When the time derivative terms of equations (2.3)(2.5) are dropped, the static case

for balance equations (i.e., equilibrium equations) may be obtained as

(2.6)

and

ay

3x ôy
(2.7)

(2.8)
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identical to the case for classical elastodynamics, the second differs from the clas-

sical case.

In rectangular coordinates, and under two-dimensional plane-strain conditions,

equations (2. 1) and (2.2) can be expanded as

pux = +
3x 3y

0t
pu = __ +

+ + -t =0.
ôx 3)'

xy yx

From equation (2.8), it is apparent that for the shear stresses and t, , classical

balance is eliminated by the effect of couple stresses. Consequently, the stress ten-

sors are not symmetric in micropolar elasticity.

(2.3)

(2.4)

(2.5)
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2.2 Constitutive Equations

The constitutive equations for linear, isotropic, homogeneous, and centrosym-

metric elastic bodies can be formulated on the basis of such principles of thermody-

namics as the energy balance and inequality equations [86]. Thus, defining the elas-

tic properties of micropolar materials, the constitutive equations consist of a stress

constitutive equation, involving both displacements and microrotations, and a couple

stress constitutive equation, involving the gradients of microrotation.

The stress constitutive equation is written as

tkl = XE,.rôkl + (+Ic)k1 + PQk (2.9)

where X, , and K are micropolar moduli and 3kl is the Kronecker delta. The

asymmetric strain tensor kl is defined as

= Ulk - ekl,fl, (2.10)

where the comma denotes partial differentiation. Once again, it should be noted that

equation (2.10) reflects both displacement and microrotation schemes, differing from

classical elasticity in that the latter contains only the displacement component. The

microrotation vector /,, is independent of the displacement vector Uk; that is,

4 differs from the classical elasticity macrorotation vector w,, defined as

= .- e,,,/A. Uk! (2.11)

Of a possible total of nine equations, equation (2.9), when placed within a rectangu-

lar coordinate system, leads to four constitutive stress equations under two-dimen-

sional plane-strain condition,



and

= (X2K) xy,

= Xe + (X +2 +x)

tyx IJ..l + (+K) (2.15)

Equation (2.10) may then be rewritten for a two-dimensional plane-strain condition

in rectangular coordinates as

3u (2.16)

and

or

0u
= y_,I_.

:y

3ti=-+
8)'

(2.12)

(2.13)

(2.14)

(2.17)

(2.18)

(2.19)
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The couple stress constitutive equations, which have no counterpart in

classical elasticity, may be written in two forms:

"1k1 = CI)r,rôkl + LIk,l Yl,k (2.20)



and

xt7 = -- öx
(2.25)

(2.26)

The difference between isotropic micropolar elasticity and classical elasticity is noted

by the presence of four extra mod uli, in addition to the Lamé constants X and from

classical elasticity; that is, K, a, 3, and -y. When these moduli are set to zero, equa-

tions (2.9) and (2.20) revert to 1-looke's law of linear isotropic elastic solids. For

two-dimensional plane-strain micropolar elasticity, four of a total of six micropolar

moduli must be considered; that is, X, , K, and 'y. Six components of force and

couple stresses, from equations (2. 12)(2. 15) and (2.23)(2.24), are shown for

two-dimensional Cartesian coordinates in Figure 2.1.

16

ax,.,. ökl Xlk + 'Y Xkl (2.21)

where a, j3, and -y are additional micropolar moduli, and Xkl is a torsion tensor,

defined as

Xkl 1,k (2.22)

For rectangular coordinates, subject to the two-dimensional plane-strain

condition, equations (2.20) and (2.22) may be represented as:

=
3cbz (2.23)

'llyz = (2.24)



m

tyy

yx

txy

m

Figure 2. 1 Force stress and couple stress orientations.
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2.3 Equations of Motion for Displacement and Microrotation

The field equations for linear micropolar elasticity are obtained by combining

the constitutive equations with the balance laws. Substituting equations (2.9) and

(2.20) into equations (2.1) and (2.2), using equation (2.10), yields:

(X+)ullk + (/2+K)Ukil + icekim ,n,i = PUk

For plane-strain problems (i.e., u

(2.28) can be written as

and

ax

+
ay

.9du
=p

at2

au,+__ +
ay

9

=p
at -

= = 0), equations (2.27) and

(a+ic)

(ic)
3x2

+

(2.27)

(2.29)

(2.30)
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and

(a +f) '1i,1k + Y k, ii eJ1fl Um1 - 2K 4k PJ k (2.28)

Equations (2.27) and (2.28) result in six partial differential equations for six un-

known quantities: three displacements for Uk and three microrotations for



82
I au

-
.!J (2.31)

-y

a
I

+K1_._x y 0x - z = P1
22 a2

2.4 Compatibility Conditions and Restrictions on Micropolar Elastic Moduli

Compatibility equations are used to assure compatibility among displacements

and microrotations within specific micropolar elastic solutions. Following the

prescription of the six quantities, Uk and k the microstrain field is uniquely

determined from equation (2. 10) by substitution. Nonetheless, since the system is

overdetermined, specifications of Eki are not sufficient to determine displacement

and microrotation uniquely. To assure maintenance of single values and continuity

within the displacement and microrotation fields, constraints must be applied to

k1 and k1 These constraints, known as the compatibility conditions, are given

by

Eikr - + - erkfl,cb,flj = 0 (2.32)

and

= (2.33)

For rectangular coordinates under two-dimensional plane-strain conditions, equations

(2.32) and (2.33) may be expanded into three equations, as follows:

3 3x
(2.34)
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Additional compatibility equations may be obtained for plane-strain problems

by the examination of equations (2.23) and (2.24). The differentiation of equation

(2.23) with respect to y and the differentiation of equation (2.24) with respect to x

yields

ain (2.37)
8)' Ox

The stability of the material requires that stored elastic energy be nonnegative.

This condition has important implications with regard to stability problems, wave

propagations, and the uniqueness of solutions. Thus, it is necessary and sufficient

that the material moduli satisfy the following restrictions:

O3X+2+K , ,
(2.38)O-y.

Among the restriction in equation (2.38), Eringen [3] presented an incorrect inequali-

ty

0 (2.39)

which was subsequently corrected in 1968 [4]. Cowin [87] corrected the thermody-

namic restrictions for Eringen's incorrect inequality, equation (2.39), and stated that

the modulus j differed from the classical Lamé shear modulus. If the classical Lamé

20

-2'=o (2.35)
8)' ox ay

and

a2z - (2.36)



shear modulus is denoted by G, then the use of the symbol [3} can be denoted as

follows:

G = p. + (2.40)

The thermodynamic restrictions require that

G0, (2.41)

or 2p. 0, which is included in equation (2.38).

It is convenient to define additional quantities for the micropolar moduli as

follows:

E= ,
(2p.+K) (3X+2p.+K) X

(2.42)
=

2(2/.L +K) ' K(2p. +K)

where E is Young's modulus, p is Poisson's ratio, and b and c, the material proper-

ties associated with the scale of the microstructure, are characteristic lengths [4]. If

the ratio of the smallest dimension of a body to these characteristic lengths is large,

then in accordance with micropolar elasticity theory, the effect of couple stresses is

negligible. However, when high strain gradients exist, and when the body dimen-

sions approach the characteristics lengths, the micropolar effects may be of apprecia-

ble magnitude. For the sake of convenience in numerical experimentation, the coup-

ling factor N is defined as follows [87]:

and 0 1. When N = 0, the classical case is recovered, and when

N = 1 , the result is the same as that for indeterminate couple stress theory [5}.

21

N= borN=-
C

(2.43)K

2(p.+K)



Since the incorrect inequality equation (2.39) was used, rather than the inequality

equation given in equation (2.38), Han et al. [28J used an unnecessarily limited

range, 0 1//, as the coupling factor.
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3. FINITE ELEMENT ANALYSIS

The essential feature of the finite element method is the ability to represent a

given structure at interest by a number of elements, such that each element covers a

relatively small piece of the structure. A single type of element has been developed

for this study; that is, the two-dimensional, eight-node isoparametric quadrilateral

element. For dynamic, plane-strain micropolar elasticity analysis, the dynamic finite

element method, which accounts for both inertia and a time integration effects, is

formulated upon the basis of virtual work principles.

3.1 Virtual Work Principle for Micropolar Elasticity

In this section, a principle of virtual work for micropolar elastic materials is

developed for application to the finite element method. First, the body at issue is

subjected to the virtual displacement öUk and virtual microrotation ôk, respec-

tively, the virtual increments of the diplacement Uk and the microrotation 4k It

is assumed that the quantities 6k are infinitesimal and arbitrary, are continu-

ous functions, and are compatible with the geometric boundary conditions. Multiply-

ing equation (2. 1) by ôuk and equation (2.2) by k' adding the products of the

multiplication, and then integrating over the volume gives

.{,J (puiuk PJiktk)dV

- J U
(tii 1bk +

(3.1)
ek,fl,1 t,nn '4k) dV 0
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and
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Once again, note that the body force and body couple were ignored. Applying the

Green-Gauss divergence theorem to the first two terms in the second integral of

equation (3.1) results in

Jf,J tlk,lâUkdV
= j J

PâudA
- J [,J

t1ôUj,1dV (3.2)

and

J,{,J m/,ôctdv
=

JJ M&/ - J ,J
mfl&/,idV (3.3)

where the applied surface force k and surface couple Mk are defined as

= 1lkl (3.4)

Mk = 11kl (3.5)

Then, substituting equations (3.2) and (3.3) into equation (3.1), and recalling equa-

tion (2.10),

J{,J [Pukouk PJkkJ'' j,J
tôc + mlkk,lIdV

= L
J {Pk&tk + Mkk}dA

(3.6)

In the absence of couple stresses and microinertia density, equation (3.6) constitutes

the principle of virtual work for classical dynamic elasticity.

If equation (3.6) is specialized for the case of plane-strain

= = = 0), then
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J, j {iü Ou

{' I
+ + t oE

(3.7)

_-_- + in _-_ dV

jJ {P Ou P, Ou., + M dA

in which u and are displacements in the x and y directions, and is

microrotation perpendicular to the xy plane.

3.2 Finite Element Formulation

For dynamic, plane-strain micropolar elasticity analysis, an eight-node iso-

parametric, quadrilateral element is developed, with three degrees of freedom at each

node, as shown in Figure 3. 1. This element is similar to those used for classical

theory, with the exception that there is an additional rotational degree of freedom

4 (i.e., microrotation) at each node. A set of functions is chosen to define the

state of displacement within each element with respect to nodal displacement and

rotation. Thus,

{u} = [N]{q} (3.8)

where {N] is a set of interpolation functions, called the shape functions, {u} is the

displacement vector, and { q } is the vector for nodal displacement and rotation of

the element. The isoparametric family consists of a group of elements in which the

same shape functions are used to define both the geometric and displacement fields.

Similar to the classical case, the natural coordinates and ?J , in the range +1 to



y

U

Figure 3. 1 Two-dimensional eight-node isoparametric quadrilaterial
element.
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1, are introduced. The x and y coordinates, which define the location of any point

within the element, may be written as

8

y(E,?1) = N(E,)y
i=1

(3.9)

where x, and y represent the various nodal coordinates, and the two-dimensional

quadratic shape functions, N1(,rj), are defined as:

N1(,) =

=

N3(,) =

=

N5(,rj) =

N6(q) =

=

=

Similar functions are introduced to represent the displacements

and u(E), and the microrotation within the element as

(3.10)



=

=

=

i=1

where (us), and (u) are the nodal displacements, and (4) is the nodal microro-

(3.11)

The basic equations for micropolar theory are then rewritten for the case of

plane-strain in matrix form. Thus, the kinematic equations (2.16)(2.19) and

(2.25)(2.26) become

28

tation at node i. These re'ations can be expressed in matrix form as

8

{ti} = 2 [\T]{q} (3.12)

i=1

where

N1(,) 0 0

0 0 (3.13)

0 0 N,(E,n)

and

(u)
(3.14)

{q}1 (u)



{} =

{c} =

3ux

ax

t3u

ay

t9u
y

0x '1's

au

az

3cbz

az

The constitutive equations (2. 12)(2. 15) and (2.23)(2.24) are then written as

= [DJ{}

where [D] is the matrix of micropolar elastic constants given by

(3.15)

(3.16)

29



matrix form:

J tJ
{(I}T}{jj}dv

+ J .[J
{3}T{g}dV

= jJ{ou}T{F}dA

where

The virtual work expression for plane-strain, equation (3.7), may then be written in

{u} =

(3.18)

(3.19)

30

[D}=

X+2JL1-K X

X X+2/2+K

0 0

0 0

0 0

0 0

0

0

0

0

0 00
0 00
/L 00

/h+KOO
0 yO
0 Oy

(3.17)

p00
[p1= Op 0 (3.20)

_O 0 pj_

and



Just as for the case of classical elasticity, N are expressed in terms of and j

rather than x and y. This requires the introduction of the Jacobian matrix J(,)

as:

31

Px

{F}= Py
(3.21)

M

Thus, equation (3.18) is similar in form to the virtual work principle adopted for use

in classical theory.

To obtain strains from the nodal displacements, equation (3.12) is substituted

into equation (3.15), resulting in

8

{} [B}1{q}1 (3.22)

i I

where

=

0 0

0

-N

-N

dN.

(3.23)

ax

0

0

aN

3y

0N

0

o

o

o

o

-_

aN.
__i
ay



The inverse of the Jacobian matrix can be readily obtained by application of a stan-

dard matrix inversion technique:

The chain rule of differentiation is then used to calculate the derivatives of

N1(,n),

dN a 3N 3
dx a dx dn dx

3N oN1 a dN 3n
oy a dy 0n dy

(3.26)

Substituting equations (3.12), (3.16), and (3.22) into equation (3.18) results in the

familiar form of the finite element equation

[Al] {j} + [K] {q} = {Fe} (3.27)

where [M] is the mass matrix, [K] is the stiffness matrix, and {Fe} are applied

nodal forces or couples

[Al]
= J J

[N]'"[p] [N] dV, (3.28)

32

[Jf1 =

a dr1

ax ax

a dn
a)) a)'

1

dy _dy
a a

dx dx

a a

(3.25)

det J

[J]=

dx dy

a a

dx 3y

8n

3N 3Nx. y.
dN dNxi y

(3.24)
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[A]
= J {,J

[B]T[D1[B]dV, (3.29)

and

=
[J\TJT{F}dA (3.30)

and the integration equations (3.28)(3.29) are carried out in natural coordinates,

using nine-point Gauss quadrature (Appendix A). It follows that equation (3.27) is

the system of second-order differential equations governing the linear dynamic

response of a system of finite elements.

3.3 Solution Procedure

For equation (3.27), which is called the semidiscrete equation of motion,

there are a number of implicit and explicit time-integration techniques available for

solution. Explicit methods are most efficient when a lumped (i.e., a diagonal) mass

matrix is used, but these methods are only conditionally stable and often require very

small time-steps. A number of implicit methods are unconditionally stable, but at

the same time may require more computational effort per time-step than explicit

methods. With respect to each other, each method has its strengths and weaknesses.

Therefore, selection of a method should be based upon the physical problem to be

solved, the degree of accuracy required, and the stability criterion. For this investi-

gation, the central different method (i.e., an explicit method) and the Newmark

method (i.e., an implicit method), combined with either a lumped or a consistent

mass, were compared.



3.3.1 Time-Integration Methods

For wave propagation problems, in which it is known that a large number of

frequencies are excited in the system, such explicit methods as the central difference

method have been subjected to wide usage. The central difference method approxi-

mates velocity and acceleration by

M

1t

1= - ({q},,+1 - (q}_i)2t

= - [K] {q},,

(3.31)

+ I I (2{q},1 - {q},2_i) (3.33)
Lt2I

which may be solved for {q},11. To solve equation (3.33), special starting pro-

cedures are required, that is,

= {q}0 - + {}o2
(3.34)
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and

= - - 2 {q} + {q}-_i) (3.32)

where the subscript n denotes the time-step. Substituting equation (3.32) into

equation (3.27) results in

and

= [M]'({Fe}0 - [K]{q}0) (3.35)

in which {q}0 and {} are, respectively, initial displacements and velocities. It is

noteworthy that a matrix solver for the solution of equation (3.33) is not required if

there is a diagonal mass matrix. In addition, this advantage may reduce the time

required to reach a solution. However, this method poses several shortcomings.



First, the method is conditionally stable, thus the time-step & should be smaller

than the critical time-step &cr [29],

2
(3.36)

max

where 'max is the highest frequency of the discrete mesh. Second, this method is

effective only when used with a diagonal mass matrix. Third, the method does not

provide useful algorithmic damping effect properties to suppress undesired high fre-

quency oscillations, in the current investigation for certain types of wave problems

(Appendix B), it was observed that the central difference method produced results

which were less accurate, when used with either lumped mass (i.e., HRZ special

lumped mass) or consistent mass matrices, than the Newmark method.

The Newmark method is based upon an extension of the average acceleration

method (i.e., the Trapezoidal rule), which is unconditionally stable. In this method,

displacement and velocity are assumed to be

= {q} + ((1 -2/3) {},, {},i+1) (3.37)

and

= zr((l-'y){ij},, + (3.38)

where /3 and 'y are parameters for the determination of the stability and accuracy

characteristics of the algorithm under consideration. This method will remain uncon-

ditionally stable so long as the parameters /3 and y are chosen to satisfy 'y 0.5

and /3 = (y+O.5)214, and these values provide characteristics of maximal high-

frequency numerical dissipation [45]. If y = 0.5 and /3 = 0.25, then the algorithm

is in correspondence to the average acceleration method originally proposed by New-

mark [31]. The use of this method provides second-order accuracy and uncondi-

35



Ii
1

+
1/2

-
/3

(3.40)

Solving for {q},11 from equation (3.40), then substituting for {}n+1 in equation

(3.37), is obtained; similarly, {'i}flft may be obtained from equation (3.38)

with {ij}. These procedures are repeated for each time-step.
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tional stability, but at the same time it does not reflect algorithmic damping proper-

ties for the suppression of spurious oscillations. Though wave propagation problems

may include a number of frequencies, the higher modes may reflect significant errors

due to spatial discretization. Therefore, unconditionally stable methods with appro-

priate numerical damping properties are to be preferred. By selecting y > 1 / 2 to

accommodate high-frequency dissipation, the order of accuracy of this method is

degraded to first-order. For the current study, several values for the damping para-

meters have been tried and analyzed (Appendix C). From a series of numerical

experiments, it was observed that the Newmark method, with the use of the parame-

ters /3 = 0.36 and y = 0.7 in conjunction with a consistent mass matrix, provided

the closest agreement with the analytical solution for the problem of the diffraction

of a plane wave by a cylindrical cavity [991 (Appendix C).

For the solution of displacements at the time (n+l)&, equation (3.27), in

addition to equations (3.37) and (3.38), is rewritten as

[MIJ{ij},11 + [K]{q},,1 = {Fe}n+i (3.39)

where nl denotes the (fll)thl time-step. Then, substituting equations (3.37) and

(3.38) into equation (3.39), and rearranging,

2' + [K] {q},1+1 {Fe},i+i



For the current investigation, the Newmark method was selected and applied

for reason of the simplicity of its computer implementation, as well as the uncondi-

tional stability and favorable properties of accuracy for linear systems. In the New-

mark method, it is noteworthy that the explicit central difference scheme may be

recovered by setting -y = 1/2 and j3 = 0.

3.3.2 Mass Matrices and Time-Step Estimates

For wave propagation problems, several studies have examined methods of

estimating time-step size, the effect of mesh sizes, and the influence of the mass

matrices in use [89-98]. However, these studies have not been in agreement on the

best method of approach, and it is apparent that optimal selection tends to be

problem-dependent.

A uniform grid is recommended for use in wave problems, unless spurious

wave reflection occur between element interfaces which are nonexistent in the con-

tinuum [92]. However, for certain types of physical problems, such as stress con-

centrations around a circular hole or a crack, the use of variably sized finite elements

cannot be avoided. The consequence is that sudden changes in the mesh sizes of

neighboring elements can lead to severe spurious oscillations. Thus, gradually

changing element sizes should be used to reduce these undesired oscillations. Spuri-

ous wave reflections are less pronounced among higher order elements (e.g., eight-

node quadrilateral elements) and for consistent rather than lumped masses [7,17,181.

If the largest element size in the domain is larger than the smallest desired wave

length, then the element size will act as a low pass filter which prevents the passage

of the desired wave length through the larger element. Therefore, the size of the

largest element must be smaller than the largest desired frequency component

[89,90,98], and it is recommended that
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'st. Cd
pc=

/1

(3.42)

where h is the smallest element dimension, Cd is the dilatation wave velocity, and

is the Courant number. The time-step /i/ c11 , called the characteristic time-

step, is equal to the transit time for a wave moving at unit speed to traverse one

element of size h. The range of p. used for the current investigation is

0.3 0.9. Though both Tedesco [96] and Bathe [43] provided a time-step

wave propagation criterion for the eight-node quadrilateral element as

where Le is the distance between element integration points in the direction of wave

propagation, with p. close to 0.38 when three-point Gauss integration is used, such

38

H 1/8 srnaI1 (3.41)

be used, where smafl is the smallest desired wave length for the slowest body wave

and H is the largest element size.

In the present study, it was observed, contrary to the arguement presented by

Bazant [91], that the consistent mass produced slightly better results than the lumped

mass. Mullen [93] demonstrated that the lumped mass matrix introduces severe dis-

persion for directions which do not coincide with the mesh lines. Laturelle [97] pre-

sented a thorough discussion of this issue for problems of two-dimensional wave pro-

pagation.

Appropriate selection of the time-step size was considered in a number of the

studies cited, but without determination of a singular general approach. When the

unconditionally stable Newmark method for time integration is adopted, then only

the Courant condition [100] need be considered:

L,
(3.43)

C1
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larger sized time-steps as p. = 0.7 0.8, produced better results, including fewer

spurious oscillations (Appendix D). However, the use of smaller time-steps does not

always contribute to more accurate results. It is possible for smaller time-steps to

violate the discrete maximum principle [101], thus leading to physically unreasonable

results. Moreover, smaller time-steps could reduce the desired damping algorithms,

thus increasing spurious oscillations [97]. For problems of wave propagation, the

use of an optimal time-step is known to yield the best results and the optimization

process is dependent upon experience.

A list of programs which include the use of a consistent mass and the New-

mark integration technique is provided in Appendix F.

3.4 Verification Problem

To verify that the micropolar effects were correctly modeled in the finite ele-

ment program developed for the current study, the results obtained were compared to

those from an independent solution method for a dynamic problem in micropolar

elasticity. The problem selected is presented in Figure 3.2, showing a half-space,

the surface of which is subject to a shear stress that is uniform in space and harmon-

ic in time. This case was selected for reason of its relative simplicity and the fact

that solutions for both microrotation and couple stress are developed. By applying

u = 0 and d/3y = 0 (i.e., u, and are dependent only upon the

x-coordinate), the governing equations for this case may be obtained from equations

(2.29) (2.31):

and

dv 9v
+ K) - K-

ox2 Ox
(3.44)



Figure 3.2 Shear loading of a micropolar half-space.
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where v denotes u, and denotes . The boundary and initial conditions are

t, = (/K) - = -T0sinwr at x=0 (3.46)

and

= = 0 at x=0 (3.47)

+ 3v
2K = pj.-_- K- -

0x2 0x 3t2

= =-- =0.
01 01

(3.45)

for t=0 (3.48)

Nowacki [23] provided a steady-state solution for this problem (Appendix E).

However, an analytical solution for the transient case has not been developed and,

due to the complexity of the solution required, the generation of an analytical solu-

tion would not appear to be an easy process. To generate a transient solution for the

current study, a numerical approach independent of the finite-element analysis was

developed. Using the second-order central difference method in both space and

time, equations (3.44) and (3.45) may be readily written in the difference form:

(
,, ,, I , I n--1 n n-1\

(J2+K)
- + v_1)

K
kj+i i-iJ kVj - + V j (349)

2x

and
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kvi+i -v_1) n
2K,b.

2zx I

-2'

where index i refers to space discretization in the x-direction and n refers to discreti-

zation in the time domain. Equations (3.46)(3.48) may then be expressed as

and

Ii fl

(+K) K0 = -T0 sin wt
v -v_1)

2x

/ 1

\1 -1) = 0,
2&

0 0
Vj = = 0

/ 1 -1v. -V.\I 1 =0,
2&

= 0,
2t

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

where subscript "0" refers to x = 0, and superscript "0" refers to the initial time-

step. These equations were thus solved and their long-time solution was found to be

in agreement with the steady-state solution presented by Nowacki [231. Using

dimensions of sufficient length in the x-direction, the steady-state response was

+
ii-!

)
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obtained at x = 0 (i.e., at the surface) following approximately 2,900 time-steps

at & = 0.5 sec. Due to the physical properties of the micropolar continuum, a

considerable length of time was required to reach steady-state.

From Nakamura et al. [14] and Gauthier [102], the following values were

used: X = 14.29 MPa; = 6.9 MPa; K = 6.9 MPa; 'y = 1.71 N; p = 2192

Kg/m3; j = 1.935 x l0 m2; p 0.29; b = 2.032 x i0 m; and N = 0.5; in

addition, zx 6.35 x i0 m; T0 = 4.45 N; and w 5 X l0 sec1 were used

for the finite difference calculations. The finite difference program is listed in

Appendix G.

As indicated in Figures 3.3 and 3.4, the displacement and microrotation

values obtained from use of the finite difference method were in good agreement

with the steady-state analytical solution (Appendix E). It should be noted that in

comparison to the finite difference solution, the displacement v from the analytical

solution shifted vertically by 9. 13 x 10-8 meter. This discrepancy existed since the

steady-state harmonic solution presented by Nowacki [23] was based upon the as-

sumption that v was a harmonic function; for the solution proposed in this investiga-

tion, v was expressed only in terms of derivatives and thus the constant term in v

could not be obtained.

A two-dimensional finite element mesh for the problem given in Figure 3.5,

with the boundaries of the mesh sufficiently far from the point of origin (i.e., point

A, Fig. 3.5) that wave effects from the boundaries were not a factor during the time

period of interest, was also constructed. For the finite element calculations, 300 ele-

ments and 981 nodes were used, with an element size of 1.27 X iO4 m for the uni-

form mesh. The two phase velocities for the coupled transverse shear wave were,

respectively, 64.57 and 83.59 rn/sec. Again, to satisfy the Courant condition, it

should be reiterated that the time-step t was chosen to adequately represent the
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Figure 3.5 Finite element mesh for a micropolar half-space.

input frequency (i.e., more than 20 points per cycle) and to travel approximately

(where £ = element length) per time-step. A comparison of the transient solu-

tions from the finite element calculations and from the finite difference calculations

is given in Figures 3.6 and 3.7, indicating displacements and microrotation at the

origin as functions of time. It may be seen that these two solutions are in close

agreement; that is, they were within 5 percent.
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4. CALCULATION OF DYNAMIC ENERGY RELEASE RATE

The parameters most commonly used for the fracture analysis of brittle mater-

ials are either the energy release rate G or the stress intensity factor K. For classical

elastic materials, there is a simple relationship between these two parameters. How-

ever, their relationships has not been determined for micropolar elastic materials.

From the viewpoint of computation requirements, it is simpler to perform an accur-

ate calculation of the energy-based criterion G than it is to determine the stress-based

parameter K for reason of the difficulty of accurately modeling stress near the crack

tip. Thus, for the current investigation, G has been calculated for crack problems.

In this chapter, two dynamic fracture problems are considered, whereas prob-

lems of stress concentration are considered in the following chapter. The first dy-

namic fracture problem is concerned with a stationary crack in a body subject to

dynamic, mode-I loading. The second problem is concerned with a statically loaded

body containing a crack that is subject to sudden propagation at a constant velocity.

Techniques for the calculation of the dynamic energy release rates for these two

cases are presented in the following two sections.

4.1 Dynamic Energy Release Rate for a Stationary Crack

To calculate the energy release rate for the case of a stationary crack under

dynamic load, the method proposed by Jih and Sun [85] for the case of classical elas-

ticity is extended to the case of micropolar elasticity. This approach is based upon

the crack-closure integral presented by Irwin [82], which followed from the concept
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that when a crack is extended by a small amount, t5a , the energy released in the

process is equal to the work required to close the crack to its original length. For

the case of classical elasticity with mode-I loading, the energy release rate is then

given as

G= lim - t
1 Jba

, (x,O) u(x,O)dx , (4. 1)

where the x,y-coordinate system has its origin at the crack tip prior to the virtual

crack extension, t, x,O) is the normal stress just ahead of the crack tip prior to

extension, and u(x,O) is the vertical displacement just behind the crack tip follow-

ing extension. For the plane-strain case of micropolar elasticity, the couple stress

mvz, in addition to the force stress t, must also be taken into account; that is

1 ôa
G urn

-s-- J
{t,(x,O)u,(x,O) + m(x,O) i(x,O)]dx

The implementation of this procedure for calculating G for a finite element

analysis with eight-node quadrilateral elements employs the original concept of deter-

mining the amount of work required to close the crack by the small amount a

Ordinarily, this would require two complete finite element analyses: one prior to

virtual crack extension and one following virtual crack extension. In Figure 4.1, the

region near the crack tip is illustrated, modeling only the upper part of the body due

to symmetric requirements. it is convenient to maintain an identical element size

along the plane of the crack. The vertical force F and the moment M on nodes C

and D are calculated prior to the virtual crack extension (Fig. 4. la). The vertical

displacement u, and the microrotation for nodes C and D are then calculated

following virtual crack extension (Fig. 4. ib). With respect to finite element

representation, the energy release rate can then be expressed by

(4.2)
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Figure 4. 1 Finite element model near the crack tip: a) before virtual
crack extension; b) after virtual crack extension.

crack tip
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G
FyC Uvc + Mc zC + "vD UyD + MD 4zD (4.3)

5a

As suggested by Jih and Sun [85], advantage may be drawn from the fact that the

displacements and microtations of nodes A and B, given in Figure 4. la, are approxi-

mately equal to the displacements and microtations of nodes C and D, given in Fig-

ure 4.lb, and can be written as

G
UyA zA + FYD UyB 4zB (4.4)

ôa

This formulation provides the advantage that it requires only a single finite

element analysis to determine G, while at the same time providing acceptably accur-

ate results. Moreover, this approach offers particular convenience for cases of

dynamic crack propagation since the crack closure operation can be performed con-

tinuously, trailing the propagating crack tip.

4.2 Dynamic Energy Release Rate for a Propagating Crack

Modeling a propagating crack using finite elements requires the sequential

release of nodes along the plane of the crack. In the first applications of the finite

element method to dynamic crack propagation, conducted prior to 1978, crack tip

motion was modeled by discontinuous jumps. This was accomplished by changing

the location of the crack tip from one node to the next along the crack axis at time

intervals & employed in the time integration scheme. In general, since crack pro-

pagation velocity is significantly smaller than wave velocity, the crack tip could take

positions between any two successive nodal points. If the finite element mesh was

not subject to change with time (i.e., a stationary mesh), then the kinematic bound-

ary conditions in front of the crack tip would be violated, unless the tip was at one
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of the nodal points. This approach induced spurious high-frequency oscillations and

inaccuracies in finite element solutions.

To overcome these problems, over a period of time several attempts at the

gradual release of the nodes were undertaken [75-80]. As the crack tip was moved

from one node to the next, the condition of the released node was smoothly relaxed

from zero displacement to the zero external nodal force normal to the crack plane

over a period of time. This negative work was accomplished by diminishing the

force at the released node assumed to represent the energy release mechanism of a

propagating crack. This process is modeled in Figure 4.2. Again, for reasons of

symmetry, only the upper portion of the body for opening mode (i.e., mode-I) frac-

ture problems can be modeled. During the time interval in which the crack tip

passed the node A location and proceeded to the node B location, the releasing force

F and the releasing moment M were prescribed as the decay, respectively, from the

reactions F0 and M0, computed at the instant prior to the release of node A, to

zero at the point the crack tip reached node B.

To accomplish this procedure, several different mathematical forms have been

proposed. Rydholm et al. [77] proposed the relation

1/2

F0 d
(4.5)

where F is the value of the nodal force at the current time step, F0 is the original

value of the nodal force when the crack tip was at that node, b is the distance that

the crack tip has propagated along the element, and d is the length of nodal distance.

Malluck and King [76] used the relation



and

crack tip

A

IM-'
d

Figure 4.2 Finite element model near the tip of a propagating crack.

F' = 11_a 3/2

For the current study, the linear release of nodal force proposed by Kobayashi et al.

[78], together with the linear release of nodal torque for the case of micropolar elas-

ticity, is used:

L= i- (4.7)
F0 d
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Al
= 1 -- (4.8)

M0 d

where M is the value of the nodal torque at the current time step and M0 is the ori-

ginal value of the nodal torque when the crack tip was at that node. Equations (4.7)

and (4.8) provide the intermediate characteristics of two nonlinear relations, equa-

tions (4.5) and (4.6). Investigation of the differences obtained from the use of the

three models, equations (4.5)(4.7), indicated only slight variations for opening

mode crack propagation in linearly elastic isotropic bodies [79,80].

The values for the dynamic energy release rates for a running crack problem

are calculated as prescribed in section 4. 1. For finite element implementations, it

may be noted that the total number of unknown variables determined changes as the

crack tip is released successively. Thus, though recomputation of element stiffness

and the mass matrices is unnecessary, the advantage of the equation resolution facil-

ity implied from use of the frontal technique, which is the matrix solver used for this

investigation, is lost.
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5. RESULTS OF THE NUMERICAL COMPUTATIONS

In this chapter, the dynamic finite element procedure developed for this

investigation is applied to the following problems:

A suddenly applied normal stress a on the surface of a plate contain-

ing a circular hole;

A suddenly applied normal stress cr0 on the surface of a plate contain-

ing an elliptical hole;

A stationary crack in a body subject to dynamic mode-I loading; and

A statically loaded body containing a crack that suddenly begins to

propagate at a constant velocity.

5.1 Circular Holes

As shown in Figure 5. 1, an analytical solution to the case of a dynamic stress

concentration around a circular hole, with radius a, in an infinite body of classical

material was presented by Baron and Matthews [99]. This solution serves as a base

case for assessment of the accuracy of the finite element model developed for the

current study.

The effect of a dynamic load is to generate elastic waves, which are propagat-

ed throughout the body and diffracted when passed through geometric discontinuities,

such as cavities, resulting in the amplification of the dynamic signal. This wave dif-

fraction constitutes the plane-strain problem, which requires the determination of the



Figure 5.1 Circular hole in an infinite medium subject to suddenly
applied pressure waves.
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state of stress around a circular hole in a plate loaded dynamically by a wave pulse,

resulting in the suddenly applied load tensor

= a0 (5.1)

and

=
(5.2)

where a0 is the applied load and ii is the Poisson's ratio. Equations (5.1) and

(5.2) include the components of incoming waves with plane-wave fronts (i.e.,

= 0), as shown in Figure 5.1.

The finite element mesh proposed for the problem under consideration is

shown in Figure 5.2, in which only one-half of the body needs to be considered due

to symmetric requirements. Eight-node quadrilateral isoparametric elements, each

node with three degrees of freedom (i.e., two displacements, u, u, and the micro-

rotation çb), were used, employing a total of 128 elements and 433 nodes. The

upper half of the body was restrained against motion in the y-direction, resulting in

the lateral normal stress = p1(1 -v) a0 in the wave, where o0 is the applied

load. The two cases considered by Baron and Mathews [99], (t = aW3 and

= 0), can be duplicated by setting p 0.25 and ii = 0, respectively. The size

of the body, 3.566 x 10 meters in width by 1.778 x i0 meters in length, was

selected to eliminate the effects of wave reflection from the boundaries during the

time period of interest. The size of the hole radius was 2.54 x iO4 meters. The

time period selected was the time required for the stress at the edge of the hole (at x

= 0, y = a) to reach peak value. Thus, maximum stress concentration was not

affected by the boundaries of the body, and the suddenly applied tensile load-

ing a0 was 6.8966 x l0 Pa.
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Figure 5.2 Finite element mesh for a circular hole with a Ic 0.25
and v = 0.25.

In Figure 5.3, the nondimerisionalized normal stress t lao at the edge of the

hole (x = 0, y = a) is shown as a function of nondirnensionalized time, (Cdt)/2a

(where is the dilatational wave speed), for ri/c = 0.25 (where c is a micro-

polar characteristic length, as detined in Chapter 2) and for v = 0.25. The micro-

polar material properties for these cases are listed in Table 5.1. The mass density

(p) and the niicroinertia density (j) of the materials were, respectively, 2192 Kg/rn3

and 1.935 x l0 rn2, and the hole size was fixed at 2.54 X 10 meters. Results

are given for several different coupling factor values, ranging from N = 0 to N =

0.9; that is, N = 0.0, 0.25, 0.5, 0.75, and 0.9. For the purpose of numerically

comparing each case, the time step .j = (3.9077/7l)ICd was selected, where Cd

represents dilatational wave velocity. From Eringen [4], for micropolar elasticity,

= V(X+2-K)Ip . Then, substituting , = 0 into equations (2.12) and

(2.13),
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Figure 5.3 Stress versus time at the edge of a circular hole,
a Ic = 0.25 and p = 0.25.
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(5.4)

corresponding to a wave with a plane wave front identical to that for the classical

case (equation (5.2)).

For N = 0, behavior is identical to that for classical elastic material, and the

finite element calculations are close to those for the analytical solution [99] (i.e., in

Fig. 5.3, peak stresses are within one percent). As N is increased, the micropolar

properties of the material become more pronounced and a significant reduction in

peak stress occurs (i.e., when N = 0.9, peak stress is reduced by 30 percent), an

apparent indication that the micropolar properties of the material assist in the alle-

viation of stress concentrations. For this reason, the coupling factor N is designated

as a measure of the influential strength of the micropolar effects.
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Table 5.1 Material properties used for the analysis of a circular hole in a
micropolar body (a Ic = 0.25, = 0.25, a = 2.54 X i0 m).

N
X

(N/rn2) (N/m2)
K

(N/rn2) (N)
E

(N/rn2)

o 10.345 x 106 10.345 x 106 0.0 0.0 3.231 x 10

0.25 51.725 X 106 48.276 X 106 6.897 X 106 13.350 7.225 X i07

0.5 10.345 x 106 6.897 x 106 6.897 x 106 10.680 3.231 X 10'

0.75 2.682 x 106 -0.766 x 106 6.897 >< 106 6.230 1.645 x i07

0.9 0.809 X 106 -2.639 X 106 6.897 )< 106 2.715 0.904 X i0

x (5.3)
+ 2 + K

From equation (2.42), equation (5.3) may then be expressed as
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These finite element calculations were repeated for a/c = 1.0 and

a/c = 4.0, and the results are shown in Figures 5.4 and 5.5. For both cases, the

Poisson's ratio was 0.25. For a I c = 1.0, there was a significant reducation in

stress concentration (i.e., for N = 0.9, an approximate 25 percent reduction),

whereas for a/c = 4.0, the micropolar effects were slight (i.e., for N = 0 through

N = 0.9, reductions were within 10 percent). This indicates that micropolar effects

are important only for those holes whose size is not significantly larger than the mic-

ropolar characteristic length c, which in turn is related to the microstructural dimen-

sions; that is, to grain or particle size. If the ratio of the smallest dimension of the

body to c is large, then the effect of couple stress is in theory negligible.

The numerical results for a/c = 0.25, 1.0, and 4.0, when v 0.0, are

shown in Figures 5.6-5.8, respectively, and are provided only for purposes of com-

parison. Substituting v = 0 into equation (5.4) results in = 0, indicating that

the incoming stress wave has only a component of t = a0 , where a0 is the

suddenly applied tensile load. The case of N = 0 is then reduced to the case of

classical elasticity, and the maximum stress concentration factors for the finite ele-

ment calculations and the results provided by Baron and Matthews [99] are in agree-

ment within a range of one percent, as shown in Figure 5.6. The micropolar mater-

ial properties for a / c = 0.25, with v = 0.25 are provided in Table 5.2. The

results indicated in Figure 5.6 show that as the micropolar coupling factor N in-

creased from 0.0 to 0.9, the maximum stress concentration factor declined by 45

percent. Similarly, 38 and 10 percent reductions in the stress intensity factor are

shown, respectively, in Figures 5.7 and 5.8. These trends were identical to those

observed for v = 0.25.
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Figure 5.4 Stress versus time at the edge of a circular hole,
a Ic = 1 and v = 0.25.
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Figure 5.5 Stress versus time at the edge of a circular hole,
a/c = 4andv =0.25.
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Figure 5.6 Stress versus time at the edge of a circular hole,
a Ic = 0.25 and i' 0.
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Figure 5.7 Stress versus time at the edge of a circular hole,
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Figure 5.8 Stress versus time at the edge of a circular hole,
a Ic = 4 and v = 0.

10

67



68

5.2 Elliptical Holes

The case where the hole is elliptical in shape, with a major axis of length a1

and a minor axis of length a7, is now considered. The analytical solution for a

micropolar material with a static load for this case was presented by Kim and

Eringen {7] for the parameters c = coth' (a1 Ia7) and R = (a1 +a2)/2, where

a0 represents the shape of the ellipse and R is the radius of a circle from which the

ellipse is considered to be generated by boundary perturbations. Moreover, Ric

indicates the ratio of the size of the elliptic hole to the characteristic length of the

micropolar material. Identical parameters were used for the current investigation.

For a numerical study of a micropolar material, a strip 3.556 mm in width by

3.556 mm in length was considered. In Figure 5.9, the finite element mesh subject

to analysis, with dimensions a1 = 0.254 mm and a2 = 0.193 mm (i.e.,

a11a2 = 1.32 and a0 = 1.0), which takes advantage of symmetry as in the cir-

cular hole case, is shown. The total number of elements was 162, and 541 nodes

were employed. Similar to the generation of the t, component in the case of

circular holes, the top plane of the mesh represents a restrained boundary condition

Table 5.2 Material properties used for the analysis of a circular hole in a
micropolar body (a Ic = 0.25, v = 0, a = 2.54 x i0 m).

N
X

(N/rn2) (N/rn2)
K

(N/rn2)
-y

(N)
E

(N/rn2)

0 0.0 10.345 x 106 0.0 0.0 2.638 x i07

0.25 0.0 48.276 x 106 6.897 x 106 13.350 5.899 x i07

0.5 0.0 6.897 x 106 6.897 x 10 10.680 2.638 x i07

0.75 0.0 -0.766 x 106 6.897 x 106 6.230 1.343 x i0

0.9 0.0 -2.639 x 10 6.897 X 10 2.715 0.738 x i07



for y-direction movements. Two different values for Ric , 1.0 and 0.29, were

compared, and the material properties for the case Ric = 1.0 are listed in Table

5.3. For the Poisson's ratio = 0.25, the time step z.t was selected to allow a

dilatational wave to travel the distance of 5.08 m in 200 time steps. The mass den-

sity p was 2192 Kg/rn3 with a microinertia of 1.935 X i0 m2. The numerical

results for N = 0.0, 0.25, 0.5, 0.75, and 0.9 are shown in Figure 5.10, with the

nondimensionalized normal stress Ia0 at the edge of the hole (x 0, y = a1)

shown as a function of nondimensionalized time Cdt /2R, where a0 is a suddenly

applied tensile load and C(1 is the dilatational wave speed.

Figure 5.9 Finite element mesh for an elliptical hole in a micropolar
body, a0 = I.
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Figure 5. 10 Stress versus time at the edge of an elliptic hole,
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Insofar as no prior investigations of dynamic stress concentrations around an

elliptical hole in a micropolar elastic solid have been conducted, the results obtained

from this investigation cannot be compared to a known analytical solution. Howev-

er, similar to the case of circular holes, there was a substantial reduction in stress as

the micropolar coupling factor was increased (i.e., from N = 0.0 to 0.9). For N =

0.9, the reduction in maximum stress was approximately 30 percent. To observe the

effect of Ric, the case Ric = 0.29, (where cx0 = 1.0 and v = 0.25) was ana-

lyzed with results as given in Figure 5. 11. These results indicate that the micropolar

effects were increasingly dominant in proportion to the decrease in the value of

Ric. For N = 0.9 and Ric = 0.29, the reduction of maximum stress was

approximately 35 percent, or larger than the results obtained for RIc 1.0.

A secondary purpose of these numerical experiments was to determine the

effect of c. When a is reduced in size, the ellipse narrows and higher stress

concentrations may be expected. The finite element mesh used for analysis of the

case a0 = 0.5, where a1 Ia7 = 2.16, is shown in Figure 5.12, and the material

properties for a = 0.5, RI C = 1.0 and p = 0.25 are listed in Table 5.4. Results

for the various values of N are given in Figure 5.13. As expected, the narrower

Table 5.3 Material properties used for the analysis of an elliptical hole in a
micropolar body (a0 = 1, ii = 0.25, R Ic = 1, R = 2.237 x 10 m).

N
x

(N/rn2)
IL

(N/rn2)
K

(N/rn2)
7

(N)
E

(N/rn2)

o 10.345 x 10 10.345 x 106 0.0 0.0 3.231 X i07

0.25 51.725 X 106 48.276 X 106 6.897 X 106 6.475 x 10-1 7.225 X i07

0.5 10.345 x 10 6.897 x 10 6.897 X 10 5.180 X 10' 3.231 x i0

0.75 2.682 X 10 -0.766 x 10 6.897 x 106 3.021 x 10 1.645 x 1O

0.9 0.809 x 10 -2.639 x 106 6.897 X 10 1.317 x itT1 0.904 X i07
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Figure 5.11 Stress versus time at the edge of an elliptic hole,
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Figure 5.12 Finite element mesh for an elliptic hole in a micropolar
body, for = 0.5.
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Figure 5.13 Stress versus time at the edge of an elliptic hole,
= 0.5, R Ic = 1, and v = 0.25.
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ellipse (i.e., c = 0.5) produced higher stress concentrations than the previous case

(a0 = 1). Once again, it may be observed that the micropolar properties resulted

in a significant reduction of peak stress, in this case by approximately 40 percent for

N=0.9.

For purposes of comparison, identical procedures were repeated for

= 0.0. Similar to the case for circular holes at the same value, the incoming

stress wave generated by the sudden application of a tensile load (oh) carried

= a0 and = 0. Traction-free boundary conditions were applied to the top

geometric plane for the finite element mesh. The material properties for = 1

R/c = 1 , and v = 0.0 are listed in Table 5.5. The trends observed were similar

to those for p = 0.25, and the results for c = 1, RIc = 1, and v = 0.0 are

shown in Figure 5. 14, indicating that as N was varied from 0.0 to 0.9, there was an

approximate 40 percent reduction in stress. In Figure 5.15, even more significant

reductions in maximum stress concentration (i.e., approximately 50 percent) are

indicated for R/c = 0.29, a 1 , and p = 0. In Figure 5.16, for compari-

son with the results indicated in Figure 5. 14, the narrower ellipse (a0 = 0.5) was

Table 5.4 Material properties used for the analysis of an elliptical hole in a
micropolar body (a( = 0.5, p = 0.25, R Ic 1, R = 1.857 X 10 m).

N
X

(N/rn2)
/1

(N/rn2)
K

(N/rn2)
y

(N)
E

(N/m2)

0 10.345 X 10 10.345 x 106 0.0 0.0 3.231 x i0

0.25 51.725 X 10 48.276 x 106 6.897 X 10 4.461 X 10' 7.225 X i07

0.5 10.345 X 10 6.897 x 10' 6.897 X 10 3.569 X 101 3.231 x i0

0.75 2.682 x 106 -0.766 X l0 6.897 X 10 2.081 X 10 1.645 x i07

0.9 0.809 x 10 7639 x 106 6.897 x 106 0.907 X 10 0.904 X i0
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employed for R/c = 1.0 and v = 0.0 , and as N was varied from 0.0 to 0.9, the

peak stress was reduced by approximately 45 percent.

From the results obtained, it may be concluded that micropolar properties

serve to release stress concentrations in the direction along which stress is highly

concentrated, while at the same time building stress in other directions. Similar to

the results obtained for circular holes, maximum stress was reduced significantly

when the micropolar effects were strong; that is, when N was increase in size or

when Ric was reduced in size. As expected, higher stress concentrations were

observed when a narrower ellipse was employed.

5.3 Stationary Cracks

The third case considered was that of a central stationary crack of length 2a

in a body subject to dynamic loads. Sih and Embley [103] used classical elasticity

theory and integral transforms to examine cracks in an infinite body where a uniform

pressure o- was suddenly applied to the face of cracks. When this case is superposed

with that for a plane dilatational wave of uniform tension r passing through an

uncracked body in a direction perpendicular to the plane of the crack, the case of a

Table 5.5 Material properties used for the analysis of an elliptical hole in a
micropolar body ( 1, = 0, R/c = 1, R = 2.237 X 10 m).

N
X

(N/rn2) (N/rn2)
K

(N/ni2)
'V

(N)
E

(N/rn2)

o o.o 10.345 X I0 0.0 0.0 2.638 x i07

0.25 0.0 48.276 x 106 6.897 X 106 6.475 x 101 5.899 x 1O

0.5 0.0 6.897 X 10 6.897 X 106 5.180 x 10 2.638 x i07

0.75 0.0 -0.766 x 10' 6.897 X 106 3.021 x 10-1 1.343 X i0

0.9 0.0 -2.639 x l0 6.897 x 106 1.317 x 10' 0.738 x i07
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plane dilatational wave diffracted by a crack is obtained. For the current investi-

gation, this problem is considered for a micropolar elastic body. The finite element

mesh for this case is shown in Figure 5. 17, only one-quarter of the body of which

needs to be modeled due to symmetry. It may be noted that the boundaries were re-

moved a sufficient distance from the crack so that the wave reflection effects from

the boundaries were minimized during the time period under consideration.

The finite element mesh was 52 mm in width by 44 mm in length, with a

half-crack of length a at 12 mm, and employed 192 eight-node elements and 637

nodes (Fig. 5. 17). Unform compressive loading of 1 Pa was applied to the crack

surface, while the ratio of the crack element length to the crack length was 0.021.

The mass density p was 2450 KgIm3, the microplar inertia] was 1.935 X i0 m2,

and the Poisson's ratio was 0.286. The micropolar properties used for the case

a/c = 0.25, where c was a previously defined micropolar characteristic length,

are listed in Table 5.6. Time step size was selected so that the dilatational wave

traveled the distance 7.3a in 97 time steps. In the classical case presented by Sih

and Embley [103], this distance corresponded to the elapsed time for the shear wave

to travel the distance 4a.

The numerical results for a/c at the values 0.25, 1.0, and 4.0 are shown,

respectively, in Figures 5.18-5.20. In Figure 5.18, calculations for several differ-

ent coupling factor values, in a range from N 0 to N = 0.9, are given, and the

results are plotted as a function of normalized time Cd rI a, where Cd is the dila-

tational wave speed and t is time. Energy release is normalized by dividing it by the

energy release rate for the case of static-load classical elasticity,



Figure 5. 17 Finite element mesh for the stationary crack.
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Figure 5. 19 Energy release rate versus time for a Ic = 1.
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E

where E is the Young's modulus. For purposes of comparison, the results of the

stress intensity factors presented by Sih and Ernbley [103] were converted to cones-

ponding energy release rates, using

G = (lv2)K2
E /

which is the known relationship between the mode-I stress intensity factor K1 and

the mode-I energy relase rate. It should be noted that for dynamic fracture mechan-

ics, equation (5.6) may be used as long as the crack is stationary.

For N = 0, the body behaves as a classical material. When the case N = 0

is compared to the results obtained by Sili and Embley [103], it may be observed that

the peak values of the energy release rate are within approximately 2 percent of each

other, as indicated in Figure 5. 18. As N was increased, the micropolar effects of the

material became more pronounced and a significant reduction in peak energy release

rate was observed (i.e., approximately 55 percent at N = 0.9). This is an indication

(5.5)

(5.6)
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Table 5.6 Material properties used for the stationary crack (a Ic = 0.25,
v = 0.286).

N
x -

(N/rn2) (N/rn2)
IC

(N/rn2) (N)
E

(N/m2)

o 3.929 X 1O'° 2.940 x 1010 0.0 0.0 7.562 X 10

0.25 19.646 x 1010 13.720 x 1010 1.960 x 1010 8.467 x i07 37.808 X

0.5 3.929 x 1010 1.960 x 1010 1.960 X 1010 6.774 X 1O 7.562 x 1O

0.75 1.019 X 1010 -0.218 x 10'° 1.960 X 1010 3.951 x 10 1.960 X 1010

0.9 0.307 X 1010 -0.750 x i° 1.960 x 1010 1.716 x iø 0.591 x 1010
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that the classical theory of elasticity may overestimate the energy release rate for a

crack in material in which the microstructure and the micropolar properties of the

material contribute to a favorable distribution of stress around the crack.

The results for a/c = 1.0, given in Figure 5.19, indicate a significant

reduction in peak energy rate (i.e., approximately 50 percent for N = 0.9), though

not to the same extent as the reduction for a/c = 0.25. For a/c = 4.0, the mic-

ropolar effects had a significantly smaller influence upon the reduction of the peak

value of the energy release rate (Fig. 5.20), approximately 27 percent as N was var-

ied from 0.0 to 0.9. This finding was similar to that observed for a plane dilatation-

al wave diffracted by a circular hole, indicating that micropolar effects are important

primarily for those cracks which are not much larger than the characteristic length c.

The latter length is related to the dimensions of the microstructure, that is, to grain

or particle size.

To model crack problems with finite element methods, the use of very small

elements near the crack tip, which serve to account for the singularity of the crack

tip, is inevitable. To satisfy equation (3.42), this factor mandates the use of ex-

tremely small sized time steps (an issue discussed in Chapter 3). The time step t

used for the cases shown in Figures 5.18-5.20 violated this condition for crack tip

elements insofar as the dilatation wave passed the crack tip elements within the stated

time step. To date, no investigations have been conducted to provide useful rules for

the analysis of dynamic crack problems. For the current study, a smaller time step,

one-quarter of that indicated above for the satisfaction of equation (3.42), was em-

ployed. Figures 5.21-5.23, showing the results, respectively, for a/c at values

of 0.25, 1.0, and 4.0, indicate that the energy release rate values are nearly identical
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Figure 5.21 Energy release rate versus time for a Ic = 0.25.
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to those given in Figures 5.18-5.20, with the exception that the the results indicated

in Figs. 5.21-5.23 include undesirable high-mode oscillations while requiring great-

er lengths of computation time (e.g., approximately 100 hours of 386-based PC time

were required to yield the results shown in Fig. 5.21, which is nearly four times the

requirement for calculation of the results shown in Fig. 5. 18). From these results, it

may be concluded that the selection of an optimal time step is strongly problem-

dependent and should be based upon experience.

5.4 Propagating Cracks

The final problem considered for this study is the case of a center-cracked

body with dimensions 80 mm by 80 mm under uniform tension, where the crack

suddenly begins to propagate at a constant velocity. This problem is similar to that

analyzed by Broberg [104], with the exception that the Broberg crack opened from

an initial length of zero. For the case considered in the current study, the finite

element mesh is shown in Figure 5.24 (once again, note that only one-quarter of the

model is displayed due to symmetry). For this problem, the half-width L was 40

mm, the initial half-length of the crack was 8 mm, and 237 eight-node elements and

798 nodes were used. The mass density of the material was 2450 Kg/rn3, the mic-

roinertiaj was 1.935 x i0 and the Poisson's ratio ' was 0.286. The micro-

polar material constant for the case a/c = 0.25 are listed in Table 5.7. It was

assumed that a time-independent tensile stress acted along the edge of the panel

parallel to the crack axis. To generate this load, displacement fields obtained from

static finite element analysis and zero initial velocities were used as the initial condi-

tions.
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The linear node release technique (discussed in Chapter 4) was used to simu-

late the problem of a propagating crack. The time step & was selected so that the

crack tip would pass one element at four time steps; that is, the crack tip node was

released gradually. Three different crack speeds, Cd at 0.11, 0.219, and 0.328,

and three micropolar values, a0 ic at 0.25, 1.0, and 4.0, were considered.

As the crack propagated from the original half-length a = 0.2L to the final

half-length a = 0.3L, where 2L is the width of the body, the energy release rate

was calculated at the end of each increiiental extension (Figures 5.24 and 5.25).

This rate was normalized by dividing it by given in equation (5.5), where

the crack length given in equation (5.5) was used as the corresponding length for the

propagating crack. In Figure 5.25, the normalized energy release rate is plotted as a

function of the normalized crack half-length alL for a0 Ic = 0.25 at various

values of N for a crack propagating velocity of C1 = 0. 11. The Broberg [1041

analysis of a classical elastic material is also given in this figure for the crack

speed Cd = 0.11, which generated a result of 0.829. For N = 0 (i.e., a value

identical to that for the case of classical elasticity), agreement between the finite

element solution and the analytical solution was not quite as good as for the

Table 5.7 Material properties used for the propagating crack
(a Ic = 0.25, u 0.286).

N
X

(N1m2) (Nim2)
K

(N1m2) (N)
E

(N/rn2)

0 3.929 x 1010 2.940 X iü1° 0.0 0.0 7.562 X 1010

0.25 19.646 x 1010 13.720 x 1010 1.960 x 1010 2.352 x 106 37.808 x 1010

0.5 3.929 x 1010 1.960 x 10 1.960 X 1010 1.882 X 106 7.562 x 1010

0.75 1.019 x 1010 -0.218 X 10 1.960 x 1010 1.098 x 106 1.960 X 1010

0.9 0.307 X EO -0.750 x 1010 1.960 x 1010 0.477 X 106 0.591 X l0



Figure 5.24 Finite element mesh for the propagating crack.
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stationary crack considered in section 5.3. However, the level of accuracy of the

solution was approximate to that obtained by Malluck and King [76] and by Jih and

Sun [85]. Once again, the energy release rate became small in proportion to the

degree that the micropolar properties were more pronounced (i.e., as N increased).

These calculations were repeated for a0 Ic = 1 and a0 Ic 4 and the results are

given in Figure 5.26 and 5.27. As indicated in Figure 5.26, the micropolar effects

maintained substantial influence in lowering the energy release rate for a0 Ic = 1;

for a0 Ic = 4, the micropolar effects were slight (Fig. 5.27).

Identical calculation procedures were also completed for two additional crack

propagation velocities, 0.219 C(/ and 0.328 Cd, for each case of a0Ic (i.e.,

0.25, 1.0, and 4.0). Figures 5.28-5.30 show the results for each case at

Cd = 0.219. Once again, it was observed that as N was enlarged from 0.0 to 0.9,

the energy release rate was red uced, and as i Ic was increased from 0.25 to 4.0,

the micropolar effects decreased. Figures 5.3 1-5.33 show the results for a0/c at,

respectively, 0.25, 1.0, and 4.0 at the crack speed 0.328 Cd, indicating that the

micropolar effects can scarcely be recognized.

From these numerical analyses, it may also be observed that the micropolar

effects decrease in dominance in proportion to the increase in crack propagation

velocity, or as the crack propagation approached its limiting velocity, which is gen-

erally recognized as the characteristic Rayleigh wave speed of the material at issue.
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Figure 5.27 Energy release rate versus crack length for a crack
propagating at the velocity 0. 11 Cd, ac/c = 4.



1.8

1.6

1.4

1.2

1

0 0.8

0.6

0.4

0.2

BROBERG'S SOLUTION

-E- N=O --- N=O.25 N=O.5

-B-- N=075 -+-- N=09

0
02

Figure 528 Energy release rate versus crack 'ength for a crack
propagating at the velocity 0.219 C(j, aWc 0.25.

97

0.22 0.24 0.26 0.28 03
a/L



0.22 0.24 0.26 0.28
alL

Figure 5.29 Energy release rate versus crack length for a crack propa-
gating at the velocity 0.219 Cd, a0/c = 1.

98



1.8

1.6

1.4

1.2

1

50.8

0.6

0.4

0.2

0

BROBERG'S SOLUTION

-E- N=0 -- N=0.25 -91E--- N =0.5

- N=0.75 -4--- N=O.9

Figure 5.30 Energy release rate versus crack length for a crack
propagating at the velocity 0.219 Cd, açj/c = 4.

03

99

02 0.22 0.24 0.26 0.28
a/L



1.8

BROBERG'S SOLUTION

--
N=0

N=0.25
-
N =0.5

N =0.75

N=0.9

0
02 03

100

0.22 0.24 0.26 0.28

alL

Figure 5.31 Energy release rate versus crack length for a crack
propagating at the velocity 0.328 Cr1, aWc 0.25.

1.6

1.4

1.2

1

ç 0.8

0.6

0.4

0.2



1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

BROBERG'S SOLUTION

N=0

N=0.25

N =0.5

N = 0.75

N=0.9

0
02

Figure 5.32 Energy release rate versus crack length for a crack
propagating at the velocity 0.328 Cr1, aç,Ic = 1.

03

101

0.280.22 0.24 0.26

a/L



102

1.8

1.6 BROBERG'S SOLUTION

1.4
--
N=0

1.2
N =0.25

N=0.5

N =0.75

0.8 -f--
N=0.9

0.6

0.4

0.2

0 r 1 I I

02 0.22 0.24 0.26
a/L

Figure 5.33 Energy release rate versus crack length for a crack
propagating at the velocity 0.328 Cr1, a0Ic 4.

0.28 03



6. CONCLUSIONS AND DISCUSSION

For the current study, a dynamic finite element method for plane-strain micro-

polar elasticity theory was developed, based upon the use of a virtual work principle

for a two-dimensional, eight-node, isoparametric quadrilateral element, with three

degrees of freedom (i.e., two displacements and one microrotation independent of

displacements) for each node. The Newmark time integration scheme and a consis-

tent mass matrix were employed in the development of the finite element program.

The effects of micropolar elasticity could be of considerable importance where large

gradients in stress occur over distances that are of the same order of magnitude as

the internal structure of the material. This is a likely occurrence in particulate com-

posites, or in other fibrous materials containing small flaws or holes.

The feasiblity of this program was examined by comparing its predictive abil-

ities to finite difference solutions for the problem of micropolar half-spaces, the sur-

faces of which were subject to shear stresses that were uniform and harmonic in

time. Transient solutions obtained by the application of two different methods were

observed to be in very close agreement.

The occurrence of a suddenly applied, normal stress on the surface of a plate

containing circular or elliptical holes was considered. When the micropolar coupling

factor N was zero, the solution was almost identical to the case of classical elasticity.

The peak stress rate obtained from application of the dynamic finite element method

was within one percent of the analytical solution obtained by Baron and Matthews

[99]. It was observed that as the influence of the micropolar properties was streng-

103
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thened (i.e., N became larger, while a/c and RIc, respectively, for the case of

circular and elliptical holes, became smaller), dynamic stress concentration at the

edges of the hole was reduced significantly. Furthermore, as expected in the case of

an elliptical hole, larger stress concentrations were obtained in proportion to the nar-

rowness of the elliptical opening.

The method for the calculation of dynamic energy release rates and the linear

node-releasing technique were extended to the case of micropolar elasticity. In addi-

tion, a stationary crack in a body subject to dynamic, mode-I loading, as well as a

body with a static load containing a crack suddenly propagating at constant veloci-

ties, were examined. The micropolar effects were found to be most pronounced in

those cases where the crack length was not significantly larger than the characteristic

dimensions of the material microstructure; that is, a/c was small. For the case of

a dynamically loaded stationary crack, it was determined that the micropolar effects

influenced the reduction of the dynamic energy release rate by as much as 55 percent

(a/c = 0.25, N = 0.9). The maximuii-i energy release rate obtained by applica-

tion of the dynamic finite element program for the case N = 0 (i.e., identical to the

case of classical elasticity) was compared to a known analytical solution [103], re-

sulting in agreement within a range of two percent. Moreover, increase in the coup-

ling factor N resulted in the lowering of the maximum dynamic energy release rate.

For the case of a crack propagating at a constant velocity, the micropolar effects

exercise an equally dramatic influence in reducing the energy release rate for a low

velocity crack. However, these effects became less pronounced in proportion to the

increase in the velocity of crack propagation. The significance of these results can

be assessed only by the development of a comprehensive method for the analysis of

relationships between micropolar elastic constants and microstructural properties.
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The following recommendations for areas of further study are included. The

full understanding of relationships between micropolar elastic moduli and microstruc-

tural properties will be derived only from further experimentation. To date, the de-

termination of the properties of micropolar materials has been the subject of several

investigations [102,105-108]. However, additional experimental inquiry will be re-

quired for full evaluation of the usefulness of the theory of micropolar elasticity as a

model for materials with relatively large internal structures. In the area of dynamic

fracture mechanics in micropolar elasticity, methods for the evaluation of dynamic

stress intensity factors, and the determination of the relationship between dynamic

energy release rates and stress intensity factors, should be the subject of further

study. Finally, it is recommended that improved and increasingly accurate methods

for the simulation of propagating cracks be developed.
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Appendix A

Two-Dimensional Gaussian Quadrature

In the finite element method, certain integrals must be evaluated, including

equations (3.28)(3.30), which are, respectively, the mass matrix, the stiffness mat-

rix, and applied nodal force. For reason of their inherent advantages with respect to

analytical integration procedures, Gauss quadrature routines were used with two- or

three-point integration rules. It should be noted that an n-point rule integrates any

polynomial of the degree x2"1, or less, exactly.

For two dimensions, the integration of a certain function f( , ), with respect

to and then with respect to , using the n-point rule, may be expressed as

1 1
11 Ii

1
J J f(, ) / / = E Wk W1 f(Ek, l)
-1 -1 k=1 1=1

(A.1)
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where and j represent the natural coordinates, Wk and W1 are the weighting fac-

tors, k is the coordinate of the kth Gauss point, and is the coordinate of the

ith Gauss point. For the three-point rule, the weighting factors are 5/9, 8/9, and 5/9,

respectively, for the three Gauss points -/0.6, 0, and %Iö. For the two-point

rule, the weighting factor was I for both Gauss points (i.e., ± 1 /I).
The finite element mesh shown in Figure 5.2 was used to compare the effects

of the use of either the two- or three-point rule. The size of the mesh was 0.356 m in

width and 0. 178 m in height, with a hole radius of 0.025 m; the Young's modulus

was 68.96 GPa, the Poisson's ratio was 0.25, and the mass density was 2768 Kg/rn3.

The Newmark parameters 1 and y were, respectively, 0.25 and 0.5, indicating that



algorithmic damping was not applied. A time-step size of 1 microsecond was used

and the results are shown in Figure A.!. The use of four-point integration (i.e., the

two-point rule in two-dimensional space) caused more high frequency oscillations than

the use of nine-point integration (i.e., the three-point rule in two-dimensional space).

Thus, the three-point rule was adopted for use in this study.

3.5
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2.5
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0.5

0

-0.5
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Time step

Figure A. I Comparisons between 9-point and 4-point integration.
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Appendix B

Examples of Explicit vs. Implicit Time Integration
and Consistent Mass vs. Lumped Mass

Examples of comparisons between the use of explicit (i.e., the central differ-

ence method) and implicit time integration schemes (i.e., the Newmark method) with

either lumped or consistent mass matrices are considered.

Figure B. 1 shows the finite element mesh used for the first example, in which

a plate, 0.254 m in width and 0. 152 m in height, under suddenly applied normal har-

monic loads (magnitude = 44.5 N, frequency = 1.0 x i05 sec1) was considered.

The Young's modulus was 3.79 GPa, the Poisson's ratio was 0.4, and the dilatational

wave speed was 1926 rn/sec. A time-step of 3 microseconds was selected to satisfy

the conditions described in Chapter 3.

''T,sinwt

Figure B. 1 Finite element mesh for a plate under normal harmonic loads.
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The results of vertical displacements at point A are shown in Figure B.2 for three

cases: 1) The Newmark method with consistent mass in the absence of algorthmic

damping (i.e., = 0.25 and y = 0.5); 2) the explicit method with consistent mass

matrix; and 3) the explicit method with lumped mass matrix.

4
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F,
0.5

0

-0.5
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0
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x
(3)EDILM

><
D

I -I

20

Figure B.2 Vertical displacements using: 1) Newmark time integration
and consistent mass; 2) Explicit time integration and consistent
mass; 3) Explicit time integration and lumped mass.
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Among the three cases considered in Figure B.2, the combination of the New-

mark integration scheme and a consistent mass matrix generated the results which

were closest to those obtained for a known analytical solution (i.e., a maximum value

of 3.05 x i0 m); the use of the explicit method with a lumped mass generated the

least favorable results. Since, for reason of the stability problem, the explicit method

requires smaller time steps than the implicit method, a smaller time step (i.e., 0.3

microseconds) was used for the second and third cases. The corresponding Courant

number was 0.023 and approximately 200 point per cycle of applied load were used.

Figure B.3 indicates that for these cases, compared to the values used for Figure B. 1,

there was no solution improvement.

To determine the effect of mass matrices (i.e., a consistent mass matrix and a

special lumped mass matrix) when used with the Newmark time integration method,

the problem outlined in Appendix A, for p = 0.0, was considered. As shown in Fig-

ure B.4, the results obtained with the lumped mass were close to those obtained with

a consistent mass. When compared to the known analytical solution (i.e., maximum

value = 3.28) of Baron and Matthews [99], the lumped mass matrix produced fewer

spurious oscillations and yielded magnified maximum value. However, since the use

of a lumped mass with the Newmark method requires a matrix solver, this approach

resulted in no savings in computational time.

The procedures to generate a lumped mass matrix (i.e., using the HRZ special

lumping technique [50]) are as follows: 1) Compute only the diagonal coefficients of

the consistent mass matrix and calculate the total mass for the element, m; 2) compute

a number s by adding the diagnonal coefficients nih. associated with translational

degrees of freedom that are mutually perpendicular in the same direction; and 3) scale

all diagonal coefficients by multiplication by the ratio rn/s. These procedures produce

a reliable positive diagonal mass matrix.
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Figure B.3 Vertical displacements using smaller time step size.
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Figure B.4 Consistent vs. lumped mass (applied with the Newmark method).
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Appendix C

Effect of Newmark Parameters for Stress Concentrations
Around a Circular Hole

Three sets of Newmark parameters were tested for the solution of the problem

proposed in Appendix A: 1) = 0.25 and -y = 0.5 (i.e., in the absence of algorith-

mic damping); 2) 3 = 0.3025 and 'y = 0.6; and 3) = 0.36 and -y = 0.7. From

Figure C. 1, the use of option 3 produced the most apparently favorable results with-

out degradation of accuracy. Thus, it was concluded that the use of a proper damping

algorithm is necessary for the suppression of undesired spurious oscillations, an effect

which was readily apparent in option 1.
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Figure C. 1 Comparison of three damping ratios: 1) (3 0.25 and 'y =
0.5 ; 2) (3 = 0.3025 and -',' = 0.6 ; and 3) (3 = 0.36 and y =
0.7.
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Appendix D

Examples of Time Step Sizes for the Newmark Method

Since the Newrnark method is unconditionally stable, only the Courant condi-

tion, equation (3.42), need be considered. As shown in Figure 5.2, the problem of

stress concentration around a circular hole was analyzed. The size of the mesh was

35.56 mm width and 17.78 mm height, with a hole radius of 2.54 mm. The dilata-

tional wave speed (C(1) was 126.37 rn/sec and three different time step sizes were con-

sidered: & at 1, 2, and 3 microseconds. The smallest element (h) was 0.51 mm,

thus the corresponding Courant numbers (pr. = (C'd &)/h) were, respectively,

0.25, 0.5, and 0.75.

The results, as shown in Figure D. 1, indicated that there were no significant

differences among the three outputs, although the case of t = 3 microseconds pro-

duced slightly fewer spurious oscillations at the early time steps. It should be noted

that a second-order scheme of time integration accuracy was used since algorithmic

damping was not employed for this experiment.
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t= 0.000001 sec

At = 0.000002sec

At=O.000003sec

I F U

6 8 10 12
Cdt/a

Figure D. 1 Three time steps used for the problem of stress concen-
tration around a circular hole in the absence of damping.
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Appendix E

Nowacki's Steady-State Solution

Nowacki [23] investigated the problem of the coupled transverse shear wave in

a micropolar elastic half-space (section 3.4, Figure 3.2), the field equations for which

are:

.2 7dv äc/
( +K)__ - K-;--- =

3x2 dx 3t2
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and

y + K - 2K4. = pj
8x2 dx 8t2

where , i, and -y are micropolar elastic constants, p and j, respectively, are

density and microinertia, v is displacement in the y-direction, and is microrotation

perpendicular to the xy-plane. The boundary conditions on the plane x = 0 are

= ( - K = _Toe(t

and

Iflxz =
= 0

where T0 and w are the magnitude and frequency of applied harmonic force.



and

Harmonic solutions for the wave equation,

V = (E.5)

= 'f' e i(w r -kx) (E.6)

are immediately considered. Substituting equations (E.5) and (E.6) into equations

(E.1) and (E.2) and rearranging gives

- k2)V - isk = 0

and

ipk v
+

(a - k2 - 2p) = 0

where s = K), p = KIT, O7 = wIc7, LT4 = o/c4, C2 = V'(i.t +K)/p

and c4 = /yIpj . Equations (E.7) and (E.8) are then written in matrix form as

2 ,(o7-k) -isk iv
ipk (a -k2 2)

The determinant of equation (E.9) should be zero for a nontrivial solution of

Vand :

k4 - (a + + p (s -2) ) k2 + a - 2p) = 0. (E. 10)

Solving the biquadratic equation (E. 10) results in

10

to
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(E.9)



2 112 2= .. [a7+a4+p(s-2)

and

±

The phase velocity v is defined by

0.,U =-
13

and two positive values for k1 and k2 can be obtained from equation (E. 11) if the

following condition is satisfied:

2 . 7 2
04 - 2p > 0 , (i.e., w >

where the critical frequency w is /2KIpj

Solutions for equations (E. 1) and (E.2) may be expressed by the linear

superposition s:

v=V1e -i(wt-k,x) (E.13)

1,2

4 + (E.14)

Substituting equations (E. 13) and (E. 14) into equations (E.1) and (E.2), and equating

each part, respectively, results in

(E.11)
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isk11 = 0
(E.15)

(k -a)V7 isk22 = 0
(E.16)



and

where

and

V = V1e' isk7 -i(wt-k-,x)47e
9 7-

57 - k7

(a-k)
V1e

(wt kx) +

tsk1 -

is k9
-

- 7 7(o -kj)

(E.19)

(E.20)

(E.22)

Equations (E. 19) and (E.20) are the harmonic displacement and microrotation solu-

tions for the field equations (E. 1) and (E.2), and the force and couple stresses,

respectively, t,, t, and nit.,, ni may be computed by equations (2.9) and

(2.20).
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ipk1 V1 + (a -2p =0, (E.17)

and

ipk2 v2 + - - = 0
(E.18)

Substituting boundary conditions, equations (E.3) and (E.4), into equations (E.1) and

(E.2), based upon equations (E. 15)(E. 18), provides the solutions

- T0 k1 p=

(k2-ki)(()(a-2p+kik2) +2ap)
(E.21)
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Note that the transient solution for equations (E. 1) and (E.2) may be obtained

from the use of both the boundary conditions and the initial conditions, which are not

considered in this harmonic solution procedure. A transient solution is not available

from the literature, nor would such a solution appear to be easy to generate.



Appendix F

Dynamic Finite Element Program for Plane-Strain
Micropolar Elasticity Theory

PROGRAM DYCOUPLE
C
C PROGRAM DYCOUPLE.FOR
C Dynamic finite element method for micropolar elasticity theory.
C This program includes crack closure integral algorithm to
C calculate dynamic energy release rate.
C Note: 1) Each node has three-degrees of freedom in
C two-dimensional space.
C 2) Plane-strain condition is applied.
C 3) Step pressure type load is used.
C
C

INCLUDE 'JEIBI.INC'
DIMENSION TITLE(80)
COMMON/ENERGY/NSEL( 4) , DLC

OPEN(1,FILE='FILE1',STATUS='NEW',FORM='UNFORMATTED')
OPEN(2, FILE= 'FILE2' , STATUS 'NEW' , FORM= 'UNFORMATTED')

OPEN(3, FILEr' FILE3' , STATUS= 'NEW' , FORM= 'UNFORMATTED')

OPEN(4,FILE='FILE4',STATUS='NEW',FORM='UNFORMATTED')
OPEN(5,FILE='DYCOUP.DAT',STATUS='OLD')
OPEN(6,FILE='DYCOUPl.otJT',STATUS='NEW')
OPEN(7,FILE='FILE7',STATUS='NEW',FQRM='UNFORMATTED')
OPEN(9,FILE='DYCOUP2.OUT' ,STATUS='NEW')
OPEN(lO,FILE='DYCOUP3.oUT' ,STITUS='NEW')
OPEN(11,FILE='DYCOUP4.OUT',STATUS='NEW')
OPEN(12,FILE='DYCOUP5.OUT' ,STATUS='NEW')
READ(5,900) NPROB

900 FORMAT(I5)
WRITE(6,905) NPROB

905 FORMAT(1HO,5X,23HTOTAL NO. OF PROBLEMS =,15)
DO 20 IPROB=l,NPROB

READ(5,910) TITLE
910 FORMAT(80A1)

WRITE(6,915) IPROB,TITLE
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REWIND (1)
REWIND (2)
REWIND (3)
REWIND (4)
REWIND (7)



915 FORMAT(/////,6X,12HPROBLEM NO. ,13,1OX,80A1)
C
C CALL THE SUBROUTINE WHICH READS MOST OF
C THE PROBLEM DATA
C

CALL INPUT
C

C NEXT CREATE THE EFFECTIVE ELEMENT STIFFNESS FILE
C

CALL STIEPS
DO 10 ISTEP=1,NSTEP

C

C COMPUTE LOADS, AFTER READING THE RELEVANT
C EXTRA DATA
C

IF(ISTEP.EQ.1) THEN
DO 100 IELEM=1,NELEM
DO 100 IEVAB=1,NEVAB

100 ELOAD(IELEM, IEVAB)=0.0
IGISH=0
DO 110 IPOIN=1,NPOIN
DO 110 IDOFN=1,NDOFN
IGISH=IGISH+3.

ASDISH(IGISH)=0. 0
ASVELH(IGISH)=0.O
ASACCELH(IGISH)=o.O

110 CONTINUE
ELSE
CALL LOADPS
ENDIF

C

C MERGE AND SOLVE THE RESULTING EQUATIONS
C BY THE FRONTAL SOLVER
C

CALL FRONT
C
C COMPUTE THE STRESSES IN ALL THE ELEMENTS
C

CALL STREPS
10 CONTINUE
20 CONTINUE

STOP
END

C

SUBROUTINE INPUT
C

C TO READ ALL INPUT DATA EXCEPT LOADS
C

INCLUDE 'JEIBI.INC'
COMNON/ENERGY/NsEL (4) , DLC

C
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C READ THE FIRST DATA CARD, AND ECHO IT
C IMMEDIATELY
C

READ(5,900) NPOIN,NELEM,NVFIX,NSTEP,NTYPE,
NNODE,NDOFN,NMATS,NPROP,NGAUS,NDIME,NSTRE

900 FORNAT(12I5)
C

C READ ELEMENT NUMBER OF WHICH STRESS OUTPUT IS NEEDED
C

READ(5, 777) NWANT, (IWANT(I) , I=l,NWANT)
777 FORMAT(11IS)

NEVAB=NDOFN* NNODE
WRITE(6,905) NPOIN,NELEM,NVFIX,NSTEP,NTYPE,
NNODE,NDOFN,NMATS,NpROP, NGAUS,NDIME,

,NSTRE,NEVAB
905 FORMAT(//8H NPOIN =,I4,4x,8H NELEM =,14,

4X,8H NVFIX =,14,4X,8H NSTEP =,14,4X,
8H NTYPE =,14//8H NNODE =,14,4X,
8H NDOFN =,I4,4X,8H NMATS =,14,4X,
8H NPROP =,14,4X,BH NGAUS =,I4//
8H NDIME =,I4,4X,8H NSTRE =,I4,4X,
8H NEVAB =,I4)

READ(5,906) BETA,DELTA,DTIME
906 FORMAT(4X,F6.4,4X, F6.4, 6X,E14.6)

WRITE(6,800) BETA,DELTA,DTIME
800 FORMAT(/7H BETA =,F6.4,4X,8H DELTA =,F6.4,

4X,8H DTIME =,E14.6)
C

C CALCULATE THE COEFFICIENTS AO THROUGH A7
C

A0=1 .0/ (BETA*DTIME*DTIME)

A1=DELTA/ (BETA*DTIME)
A2=l .0/ (BETA*DTIME)

A3=1 .0/(2. 0*BETA)_l .0

A4=DELTA/BETA-1 .0

A5=DTIME* (DELTA/BETA-2 .0)/2 .0
A6=DTIME* (1 . 0-DELTA)

A7=DELTA*DTIME
C

C NODES FOR THE CALCULATION OF ENERGY RELEASE RATES
C

READ(5,902) (NSEL(I) ,I=1,4) ,DLC
902 FORMAT(4I5,FlO.5)

CALL CHECK1
CALL CHECK1

C

C READ THE ELEMENT NODAL CONNECTIONS, AND
C THE PROPERTY NUMBERS
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C

WRITE(6, 910)

910 FORNAT(//8H ELEMENT,3X,8HPR0PERTY,6X,
12HNODE NUMBERS)

DO 10 IELEM=1,NELEM
READ(5,900) NUMEL,MATNO(NUMEL),
(LNODS(NUMEL,INODE),INODE=1,NNODE)

10 WRITE(6,915) NUMEL,MATNO(NUMEL),
(LNODS(NUMEL,INODE), INODE=1,NNODE)

915 FORMAT(1X, 15,19, 6X,815)
C

C ZERO ALL THE NODAL COORDINATES, PRIOR
C TO READING SOME OF THEM
C

DO 20 IPOIN=1,NPOIN
DO 20 IDIME=1,NDIME

20 COORD(IPOIN,IDIME)=O.o
C

C READ SOME NODAL COORDINATES, FINISHING
C WITH THE LAST NODE OF ALL
C

WRITE(6,920)
920 FORMAT(//25H NODAL POINT COORDINATES)

WRITE(6,925)
925 FORMAT(6H NODE,7X,1HX,9X,1HY)
30 READ(5,930) IPOIN,(COORD(IP0IN,IDIME),

IDIME=1,NDIME)
930 FORNAT(I5,5F15.9)

IF(IPOIN.NE.NPOIN) GO TO 30
C

C INTERPOLATE COORDINATES OF MID-SIDE NODES
C

IF(NDIME.EQ.1) GO TO 40
CALL NODEXY

40 CONTINUE
DO 50 IPOIN=1,NPOIN

50 WRITE(6,935) IPOIN, (COORD(IPOIN,IDIME),
IDIME=1,NDIME)

935 FORMAT(1X,I5,5F15.9)
C

C READ THE FIXED VALUES,
C

WRITE(6,94O)
940 FORMAT(//17H RESTRAINED NODES)

WRITE(6,945)
945 FOP.MAT(5H NODE,1X,4HCODE,6X,

12HFIXED VALUES)
IF(NDOFN.NE.3) GO TO 70
DO 60 IVFIX=1,NVFIX
READ(5,950) NOFIX(IVFIX),(IFPRE(IVFIX,
IDOFN),IDOFN=1,NDOFN),(PREsC(IVFIX,IDOFN),
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IDOFN=1,NDOFN)
60 WRITE(6,950) NOFIX(IVFIX),(IFPRE(IVFIX,

IDOFN),IDOFN=1,NDOFN),(PRESc(IVFIX,IDOFN),
IDOFN=1,NDOFN)

950 FORMAT(1X, 14,2X, 311,3F10. 6)
GO TO 90

70 DO 80 IVFIX=1,NVFIX
READ(5,955) NOFIX(IVFIX),(IFPRE(IVFIX,
IDOFN),IDOFN=1,ND0FN), (PRESC(IVFIX,
IDOFN),IDOFN=1,NDOFN)

80 WRITE(6,955) NOFIX(IVFIX),(IFPRE(IVFIX,
IDOFN),IDOFN=1,NDOFN), (PRESC(IVFIX,
IDOFN),IDOFN=1,NDOFN)

955 FORNAT(1X,14,2x,3I1, 3F10.6)
90 CONTINUE

C

C READ THE AVAILABLE SELECTION OF ELEMENT
C PROPERTIES
C

WRITE(6, 960)
960 FORMAT(//21H MATERIAL PROPERTIES)

WRITE ( 6, 965

965 FORNAT(8H NUMBER, 7X, 1OHPROPERTIES)
DO 100 IMATS=1,NMATS
READ(5,*) NUMAT,(PROPS(NUMAT,IPROP),
IPROP=1,7)

READ(5, *) (PROPS(NUMAT, IPROP) , IPROP8,9)
975 FORMAT(5F14.6)
100 WRITE(6,970) NUMAT,(PROPS(NTJMAT,IPROP),

IPROP=1,5)
WRITE(6,980) (PROPS(NUMAT,IPROP),IPROP=6,9)

970 FORMAT(I4,4X,.9E14.6)
980 FORMAT(8X,5E14.6)

C

C SET UP GAUSSIAN INTEGRATION CONSTANTS
C

CALL GAUSSQ
CALL CHECK2
RETURN
END

C

SUBROUTINE NODEXY
C

C LOOP OVER EACH ELEMENT
C

INCLUDE 'JEIBI.INC'
DO 30 IELEM=1,NELEM

C

C LOOP OVER EACH ELEMENT EDGE
C

DO 20 INODE=1,NNODE,2



C

C COMPUTE THE NODE NUMBER OF THE FIRST NODE
C

NODST=LNODS ( IELEM, INODE)

IGASH=INODE+2
IF(IGASH.GT.NNQDE) IGASH=1

C
C COMPUTE THE NODE NUMBER OF THE LAST NODE
C

NODFN=LNODS (IELEM, IGASH)
MIDPT=INODE+ 1

C
C COMPUTE THE NODE NUMBER OF THE
C INTERMEDIATE NODE
C

NODMD=LNODS(IELEM,MIDPT)
TOTAL=ABS (COORD (NODMD, 1) ) +

ABS(COORD(NODMD,2))
C
C IF THE COORDINATES OF THE INTERMEDIATE
C NODE ARE BOTH ZERO INTERPOLATE BY A
C STRAIGHT LINE
C

IF(TOTAL.GT.0.0) GO TO 20
KOUNT= 1

10 COORD(NODMD,KOUNT)=(COORD(NODST,KOUNT)+
COORD(NODFN,KOUNT))/2.0

KOUNT=KOUNT+ 1
IF(KOUNT.EQ.2) GO TO 10

20 CONTINUE
30 CONTINUE

RETURN
END

C

SUBROUTINE GAUSSQ
C
C SET UP GAUSS POINTS FOR INTEGRATION IN SPACE
C

INCLUDE 'JEIBI.INC'
IF(NGAUS.GT.2) GO TO 10
POSGP(1)=-0. 577350269190
WEIGP(1)=1.0
GO TO 20

10 POSGP(1)=-0.774596669241
POSGP(2)=0.0
WEIGP(1)=0. 555555555556
WEIGP(2 )=0.888888888889

20 KGAUS=NGAUS/2
DO 30 IGASH=1,KGAUS
JGASH=NGAUS+ 1- IGASH

POSGP(JGASH)=-POSGP(IGASH)
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C

WEIGP(JGASH)=WEIGP( IGASH)
30 CONTINUE

RETURN
END

SUBROUTINE DBE
C

C CALCULATES (D-MATRIX) x (B-MATRIX)
C

INCLUDE 'JEIEI.INC'
DO 10 ISTRE=1,NSTRE
DO 10 IEVAB=1,NEVAB
DBMAT(ISTRE, IEVAB)=0.0
DO 10 JSTRE=1,NSTRE
DBMAT( ISTRE, IEVAB) =DBMAT( ISTRE, IEVAB) +

,DMATX(ISTRE,JSTRE)*BMATX(JSTRE, IEVAB)
10 CONTINUE

RETURN
END

SUBROUTINE SFR2 (S,T)
C
C CALCULATES SHAPE FUNCTIONS AND THEIR
C DERIVATIVES FOR 2D ELEMENTS
C

INCLUDE 'JEIBI.INC'
S2=S*2 .0

T2=T*2 .0

SS=S*S
TT=T*T
S T= S * T
SST=S*S*T
STT=S*T*T
ST2=S*T*2 .0

C

C SHAPE FUNCTIONS
C

SHAPE(1)=(-1 . 0+ST+SS+TT-SST-STT) /4.0

SHAPE(2)=(1.0-T-ss+SST)/2 .0
SHAPE(3)=(-]..0-ST+SS+TT_SST+STT)/4.O
SHAPE(4)=(1.0+5-TT-STT)/2.Q
SHAPE(5)=(-1.O+ST+SS+TT+SST+STT)/4.O
SHAPE(6)=(1.0T-5s-SST)/2.0
SHAPE(7)=(-1. 0-ST+SS+TT+SST-STT)/4.o
SHAPE(8)=(1.0-5-TT+STT)/2.Q

C

C SHAPE FUNCTION DERIVATIVES
C

DERIV(1, 1)=(T+S2_ST2_TT)/4 .0
DERIV(1,2)=-s+ST
DERIV(1, 3)=(-T+S2-sT2+TT)/4 .0
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DERIV(1,4)=(1.O-TT)/2.Q
DERIV(1, 5)=(T+S2+Sr2Tr)/4 .0
DERIV(1,6)=-s-ST
DERIV(1, 7)=(-T+S2+ST2-TT)/4. 0
DERIV(1, 8)=(-1.O+TT)/2 .0

DERIV(2, 1)=(S+T2-ss-ST2) /4.0

DERIV(2,2)=(-1.O+SS)/2.O
DERIV(2, 3)=(-ST2-sssT2) /4.0
DERIV(2 , 4)=-T-ST

DERIV(2, 5)=(S+T2+SS+ST2) /4.0

DERIV(2,6)=(1.O-S5)/2.O
DERIV(2, 7)=(-S+T2+SS-ST2) /4.0
DERIV(2,8)=-T+ST
RETURN
END

C

SUBROUTINE JACOB2 (IELEM, DJACB, KGASP)
C

C CALCULATES COORDINATES OF GAUSS POINTS
C AND THE JACOBIAN MATRIX AND ITS DETERMINANT
C AND THE INVERSE FOR 2D ELEMENTS
C

INCLUDE 'JEIBI.INC'
DIMENSION XJACM(2, 2) ,XJACI (2,2)

C

C CALCULATE COORDINATES OF SAMPLING POINT
C

DO 10 IDIME=1,NDIME

GPCOD(IDIME,KGASP)=0. 0
DO 10 INODE=1,NNODE
GPCOD ( IDIME, KGASP) =GPCOD ( IDIME, KGASP)+

ELCOD(IDIME,INODE)*SHAPE(INODE)
10 CONTINUE

C

C CREATE JACOBIAN MATRIX XJACM
C

DO 20 IDIME=1,NDIME
DO 20 JDIME=1,NDIME

XJACM(IDIME,JDIME)=0.0
DO 20 INODE=1,NNODE

XJACM(IDIME,JDIME)=XJACM(IDIME,JDIME)+
DERIV(IDIME,INODE)*ELCOD(JDIME,INODE)

20 CONTINUE
C
C CALCULATE DETERMINANT AND INVERSE OF
C JACOBIAN MATRIX
C

DJACB=XJACM(1,1)*XJACM(2,2)_XJACM(1,2)*
XJACM(2,1)

IF(DJACB.GT.0.0) GO TO 30
WRITE(6,900) IELEM
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STOP

30 XJACI(1,1)=XJACM(2, 2)/DJACB
XJACI (2,2) =XJACM( 1, 1) /DJACB

XJACI(1, 2)=-XJAcM(1, 2)/DJACB
XJACI(2, 1)=-XJACM(2, 1)/DJACB

C
C CALCULATE CARTESIAN DERIVATIVES
C

DO 40 IDIME=1,NDIME
DO 40 INODE=1,NNODE
CARTD(IDIME, INODE)=0. 0
DO 40 JDIME=1,NDIME

CARTD(IDIME, INODE)=CARTD( IDIME, INODE)+

XJACI(IDIME,JDIME)*DERIV(JDIMEINODE)
40 CONTINUE

900 FORMAT(//,24HPROGRAM HALTED IN JACOB2,
/,11X,22F1 ZERO OR NEGATIVE AREA,!,
1OX,16H ELEMENT NUMBER ,15)

RETURN
END

C

SUBROUTINE BMATPS
C

C THIS SUBROUTINE CALCULATE DERIVATIVES OF
C B-MATRIX
C

INCLUDE 'JEIBI. INC'
KGASH=0
DO 10 INODE=1,NNQDE
MGASH=KGASH+ 1
NGASH=MGASH+ 1
KGASH=NGASH+ 1

BMATX(1,MGASH)=CARTD(1, INODE)
BMATX(1,NGASH)=O.o
BMATX(1,KGA5H)=Q. 0
BMATX(2 ,MGASH)=0.0

BMATX(2,NGASH)=CARTD(2, INODE)
BMATX(2,KGASH)=O.O
BMATX(3,MGASH)=0.0
BMATX(3,NGASH)=CARTD(1, INODE)
BMATX(3, KGASH)=-SHAPE( INODE)

BMATX(4,MGASH)=CARTD(2, INODE)
BMATX(4,NGASH)=o.o
BMATX(4, KGASH) =SHAPE ( INODE)

BMATX(5,MGASH)=O. 0
BMATX(5,NGAsH)=O.o
BMATX(5 ,KGASH)=CARTD (1, INODE)

BMATX(6,MGASH)=O. 0
BMATX(6,NGASH)=o.o
BMATX(6, KGASH) =CARTD (2, INODE)

10 CONTINUE
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C

RETURN
END

SUBROUTINE MODPS (LPROP)
INCLUDE 'JEIBI.INC'
YOUNG=PROPS (LPROP, 1)

POISS=PROpS (LPROP, 2)
RAMDA=PROPS (LPROP, 4)

XXMUI=PROpS (LPROP, 5)

CAY=PROPS(LPROP, 6)
GAM=PROPS(LPROP, 7)
DO 10 ISTRE=1,NSTRE
DO 10 JSTRE=1,NSTRE
DMATX(ISTRE,JSTRE)=0.0

10 CONTINUE
C

C D MATRIX FOR PLANE STRAIN MICROPOLAR ELASTICITY CASE
C

DMATX(1, 1)=RAMDA+2. *XXTJI+y
DMATX(2, 2) =RAMDA+2. *XXMUI+CAy

DMATX (1,2 ) =RAMDA

DMATX (2, 1) =RAMDA

DMATX(3, 3)=XXMUI+CAY
DMATX(4, 4)=XXMUI4-CAY

DMATX (3, 4) =XXMUI

DMATX(4,3)=XXMUI
DMATX (5, 5) =GAM

DMATX(6, 6)=GAM
30 CONTINUE

RETURN
END

C

SUBROUTINE STIEPS
C

C TO GENERATE ELEMENT MASS MATRIX
C AND ELEMENT STIFFNESS MATRIX,
C ALSO ASSEMBLE EFFECTIVE STIFFNESS MATRIX
C FOR NEWMARK METHOD
C

INCLUDE 'JEIBI.INC'

DIMENSION ESTIF(24,24),EMAsS(24,24)
C

C LOOP OVER EACH ELEMENT
C

DO 70 IELEM=1,NELEM
LPROP=MATNQ( IELEM)

C
C EVALUATE THE COORDINATES OF THE ELEMENT
C NODAL POINTS
C

DO 10 INODE=1,NNODE
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LNODE=LNODS(IELEM, INODE)
DO 10 IDIME=1,NDIME

10 ELCOD(IDIME, INODE)=COORD(LNODE,IDIME)
C

C EVALUATE THE D-MATRIX
C

CALL MODPS(LPROP)
THICK=PROPS (LPROP, 3)

DENSE =PROPS (LPROP, 8)

DINERTIA=PROPs(LPROP, 9)
C
C INITIALIZE THE ELEMENT STIFFNESS MATRIX
C

DO 20 IEVAB=1,NEVAB
DO 20 JEVAB=1,NEVAB
ESTIF(IEVAB,JEVAB)=0.0

20 EMASS(IEVAB,JEVAB)=0.0
KGASP=0

C
C ENTER LOOPS FOR AREA NUMBERICAL INTEGRATION
C

DO 50 IGAUS=1,NGAUS
DO 50 JGAUS=1,NGAUS
KGASP=KGASp+ 1

EXISP=POSGP ( IGAUS)
ETASP=POSGP (JGAUS)

C

C EVALUATE THE SHAPE FUNCTIONS,ELEMENTAL
C VOLUME,ETC.
C

CALL SFR2(EXISP,ETASP)
CALL JACOB2 (IELEM, DJACB, KGASP)

DVOLU=DJACB*WEIGp ( IGAtJS) *WEIGP (JGAUS)

IF(THICK.NE.0.0) DVOLU=DVOLU*THICK
IF(DENSE.NE.0.0) DMASS=DVOLU*DEN5E
IF(DINERTIA.NE.Q.0) DROT=DVOLU*DINERTIA

C

C EVALUATE THE B AND DB MATRICES
C

CALL BMATPS
CALL DBE

C

C CALCULATE THE ELEMENT STIFFNESSES
C

DO 30 IEVAB=1,NEVAB
DO 30 JEVAB=IEVAB,NEvAB
DO 30 ISTRE=1,NSTRE

30 ESTIF(IEVAB,JEVAB)=ESTIF(IEVAB,JEVAB)+
BMATX(ISTRE, IEVAB)*DBMAT(ISTRE,
JEVAB)*DVOLU
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C

C STORE THE COMPONENTS OF THE DB MATRIX FOR
C THE ELEMENT
C

DO 40 ISTRE=l,NSTRE
DO 40 IEVAB=1,NEVAB

40 SMATX(ISTRE,IEVAB,KGASP)=DBMAT(ISTRE,IEVAB)
C
C CONSTRUCT THE CONSISTENT ELEMENT MASS MATRIX
C

DO 65 INODE=l,NNODE
DO 65 JNODE=I,NNODE
DO 63 IDOFN=l,NDQFN
DO 63 JDOFNr1,NDOFN
IEVAB=3* (INODE-1 )+IDOFN
JEVAB=3* (JNODE-1)+JDOFN

IF(IDOFN.EQ.3.AND.JDOFN.EQ. 3) THEN
EMASS (IEVAB, JEVAB) =EMASS ( IEVAB, JEVAB)+

,SHAPE(INODE)*SHAPE(JNODE)*DROT
ELSE

EMASS(IEVAB,JEVAB)=EMASS(IEVAB,JEVAB)+
,SHAPE(INODE)*SHAPE(JNODE)*DMASS
ENDIF

IF(IDOFN.NE.JDOFN) EMASS(IEVAB,JEVAB)=0.0
63 CONTINUE
65 CONTINUE
50 CONTINUE

C

C CONSTRUCT THE LOWER TRIANGLE OF THE
C STIFFNESS MATRIX
C

DO 60 IEVAB=l,NEVAB
DO 60 JEVAB=1,NEVAB

60 ESTIF(JEVAB,IEVAB)=ESTIF(IEVAB,JEVAB)
C
C CONSTRUCT THE EFFECTIVE ELEMENT STIFFNESS MATRIX
C

DO 67 IEVAB=l,NEVAB
DO 67 JEVAB=1,NEVAB

67 ESTIF(IEVAB,JEVAB)=ESTIF(IEVAB,JEVAB)+A0*EMASS(IEVAB,JEVAB)
C
C STORE THE EFFECTIVE STIFFNESS MATRIX,MASS MATRIX,
C STRESS MATRIX AND SAMPLING POINT COORDINATES FOR EACH
C ELEMENT ON DISC FILE
C

WRITE(l) ESTIF
WRITE(7) EMASS
WRITE(3) SMATX,GPCOD

70 CONTINUE
RETURN
END
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C

SUBROUTINE STREPS
C

C TO CALCULATE ELEMENT STRESSES AT GAUSS POINTS
C OR NODES
C

INCLUDE 'JEIBI.INC'
DIMENSION ELDIS(3,8) ,STRSG(6)

C

C NOTE: IF HEADING FOR STRESS OUTPUT IS NECESSARY USE THIS.
C WRITE(6,900) ISTEP
C WRITE(6,905)
C 905 FORAT(1H0,4HG,P.,2X,8HX-COORD.,2X,
C , 8HY-COORD. , 3X, 8HX-STRESS,4X,8HY-STRESS,
C , 3X,9HXY-STRESS,2X,9HYX-STRESS,3X,
C , 9HXZ-COUPLE,3X,9HYZ-COUPLE)

KGAST=O
REWIND (3)

C
C LOOP OVER EACH ELEMENT
C

DO 60 IELEM=1,NELEM
LPROP=MATNO ( IELEM)

POISS=PROPS(LPROP, 2)
C

C READ THE STRESS MATRIX, SAMPLING POINT
C COORDINATES FOR THE ELEMENT
C

READ(3) SMATX,GPCOD
C

C PRINT ELEMENT NUMBER OF WHICH OUTPUT IS WANTED
C DO 444 IWAN=1,NWANT
C IF(IELEM.EQ.IWANT(IWAN)) WRITE(6,910) IELEM
C 444 CONTINUE
C

C IDENTIFY THE DISPLACEMENTS OF THE
C ELEMENT NODAL POINTS
C

DO 10 INODE=1,NNODE
LNODE=LNODS ( IELEM, INODE)

NPOSN=(LNODE-1) *NDOFN
DO 10 IDOFN=1,NDOFN
NPOSN=NPOSN+ 1

ELDIS ( IDOFN, INODE) =ASDIS (NPOSN)
10 CONTINUE

KGASP=0
C

C ENTER LOOPS OVER EACH SAMPLING POINT
C

DO 50 IGAUS=1,NGAUS
DO 50 JGAUS=1,NGAUs
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C

KGAST=KGAST1
KGASP=KGASP+J.

C

C COMPUTE THE ChRTESThN STRESS COMPONENTS
C AT THE SAMPLING POINTS
C

DO 20 ISTRE=1,NSTRE
STRSG( ISTRE) =0.0

KGASH=O
DO 20 INODE=1,NNQDE
DO 20 IDOFN=1,NDOFN
KGASH=KGASH+J.

STRSG(ISTRE)=STRSG(ISTRE)+SMATX(ISTRE,
KGASH,KGASP)*ELDIS(IDOFN,INODE)

20 CONTINUE
C

C OUTPUT THE STRESSES FOR THE SELECTED GAUSS POINT
C OF THE SELECTED ELEMENTS
C

C DO 45 IWA=1,NWANT

IF(IELEM.EQ.IWANT(1)) THEN
IF(KGASP.EQ.1) THEN
WRITE(9,915) KGASP,(GPCOD(IDIME,KGASP),
,IDIME=1,NDIME), (STRSG(ISTR1) , ISTR1=1,NSTRE)
END IF

IF(KGASP.EQ.7) THEN
WRITE(10,9J.5) KGASP, (GPCOD(IDIME,KGASP),

,IDIME=1,NDIME),(STRSG(ISTR1)ISTR11NSTRE)
END IF

ENDIF
IF(IELEM.EQ. IWANT(2)) THEN
IF(KGASP.EQ.1) THEN
WRITE(11,915) KGASP,(GPCOD(IDIME,KGASP),
IIDIME=1,NDIME),(STRSG(ISTR1),ISTR11,NSTRE)
END IF

IF(KGASP.EQ. 7) THEN

WRITE(12,915) KGASP(GPCOD(IDIME,KGSP),
IIDIME1,NDIME),(STRSG(ISTR1),ISTR11,NSTRE)
END IF

END IF

C 45 CONTINUE
50 CONTINUE
60 CONTINUE

900 FORMAT(/,10X,8H ISTEP =,13,4X,8HSTRESSES,/)
910 FORMAT(/,5X,12HELEMENT NO.=,I5)
915 FORMAT(I1,2F15.9,6(1x,E12.5))

RETURN
END

C

SUBROUTINE LOADPS
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C TO GENERATE INPUT LOADS
C

INCLUDE 'JEIBI.INC'
DIMENSION TITLE(80),P0INT(3),PREss(3,3),PGASH(2)
,DGASH(2) ,TEMPE(300) ,STRAN(3) ,STRES(3) ,NOPRS(3) ,EMASS(24,24)
IF(ISTEP.GT.2) GO TO 715
DO 10 IELEM=1,NELEM
DO 10 IEVAB=1,NEVAB

10 ELOAD1 ( IELEM, IEVABy0.0

READ(5,900) TITLE
900 FORMAT(80A1)

C
C READ DATA CONTROLLING LOADING TYPES
C TO BE INPUT
C

READ(5,910) IPLOD,IGRAV,IEDGE,ITEMP
WRITE(6,910) IPLOD,IGRAV,IEDGE,ITEMP

910 FORMAT(415)
C

C READ NODAL POINT LOADS
C

IF(IPLOD.EQ.0) GO TO 500
20 READ(5,915) LODPT,(POINT(IDOFN),IDOFN=

1,NDOFN)

WRITE(6,915) LODPT, (POINT(IDOFN) ,IDOFN=
1,NDOFN)

915 FORNAT(I5,3F10.3)
C

C ASSOCIATE THE NODAL POINT LOADS WITH
C AN ELEMENT
C

DO 30 IELEM=1,NELEM
DO 30 INODE=1,NNODE
NLOCA=LNODS ( IELEM, INODE)

IF(LODPT.EQ.NLOCA) GO TO 40
30 CONTINUE
40 DO 50 IDOFN=1,NDOFN

NGASH= ( INODE-1) *NDOFN+IDOFN
50 ELOAD(IELEM,NGASH)=POINT(IDOFN)

IF(LODPT.LT.NPOIN) GO TO 20
500 CONTINUE

IF(IGRAV.EQ.0) GO TO 600
600 CONTINUE

IF(IEDGE.EQ.0) GO TO 700
C
C DISTRIBUTED EDGE LOADS SECTION
C

READ(5,930) NEDGE
930 FORMAT(15)

C WRITE(6,935) NEDGE
C 935 FORMAT(1H0,5x,21HN0. OF LOADED EDGES ,I5)
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C WRITE(6,940)
C 940 FORMAT(1HO,5x,
C , 38HLI5T OF LOADED EDGES AND APPLIED LOADS)

NODEG=3
C

C LOOP OVER EACH LOADED EDGE
C

DO 160 IEDGE=1,NEDGE
C

C READ DATA LOCATING THE LOADED EDGE AND
C APPLIED LOAD
C

READ(5,945) NEASS,(NOPRS(IODEG),IODEG=
1,NODEG)

945 FORMAT(4I5)
C WRITE(6,950) NEASS,(NOPRS(IODEG),IODEG=
C , 1,NODEG)
C 950 FORMAT(I10,Sx,3I5)

READ(5,955) ((PRESS(IODEG, IDOFN),IODEG=
1,NODEG),IDOFN=1,NDOFN)

C WRITE(6,955) ((PRESS(IODEG, IDOFN),IODEG=
C , 1,NODEG),IDOFN=1,NDOFN)

955 FORMAT(6F].0.3,3p'6.3)
ETASP=-1.0

C

C CALCULATE THE COORDINATES OF THE NODES
C OF THE ELEMENT EDGE
C

DO 100 IODEG=1,NODEG
LNODE=NOPRS ( IODEG)
DO 100 IDIME=1,NDIME

100 ELCOD(IDIME,IODEG)=COORD(LNODE,IDIME)
C

C ENTER LOOP FOR LINEAR NUMERICAL INTEGRATION
C

DO 150 IGAUS=1,NGAUS
EXISP=POSGP( IGAUS)

C
C EVALUATE THE SHAPE FUNCTIONS AT THE
C SAMPLING POINTS
C

CALL SFR2 (EXISP,ETASP)
C
C CALCULATE THE COMPONENTS OF THE EQUIVALENT
C NODAL LOADS
C

DO 110 IDOFN=1,2
PGASH(IDOFN)=O.0
DGASH(IDOFN)=0.0
DO 110 IODEG=1,N0DEG

PGASH( IDOFN) =PGASH ( IDOFN) +PRESS ( IODEG,
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IDOFN) *SHAPE(IODEG)

110 DGASH(IDOFN)=DGASH(IDOFN)+ELCOD(IDOFN,
IODEG)*DERIV(1,IODEG)

DVOLU=WEIGP ( IGAtJS)

PXCOM=DGASH( 1) *PGASH(2 ) -DGASH (2) *PGASH( 1)

PYCOM=DGASH( 1) *PGASH( 1) +DGASH(2) *PGASH(2)
POCOM=0. 0

C
C ASSOCIATE THE EQUIVALENT NODAL EDGE
C LOADS WITH AN ELEMENT
C

DO 120 INODE=1,NNODE
NLOCA=LNODS (NEASS, INODE)

IF(NLOCA.EQ.NOPRS(1)) GO TO 130
120 CONTINUE
130 JNODE=INODE+NODEG-1

KOUNT=0
DO 140 KNODE=INODE,JNODE
KOUNT=KOUNT+ 1

NGASH=(KNODE-1) *NDOFN+1
MGASH= (KNODE-1) *NDOFN+2

KGASH=(KNODE-1) *NDQFN+3
IF(KNODE GT. NNODE) NGASH=1
IF(KNODE.GT.NNODE) MGASH=2
IF(KNODE.GT.NNODE) KGASH=3
ELOAD1(NEASS,NGASH)=ELOAD1(NEASS,NGASH)+
SHAPE(KOUNT)*PXCOM*DVOLU
ELOAD1(NEASS,MGASH)=ELOAD1(NEASS,MGASH)
SHAPE(KOUNT) *PYCOM*DVOLU

140 ELOAD1(NEASS,KGASH)ELOAD1(NEASS,KGASH)
SHAPE(KOUNT)*POCOM*DVOLU

150 CONTINUE
160 CONTINUE
700 CONTINUE

IF(ITEMP.EQ.0) GO TO 800
800 CONTINUE

C WRITE(6,970)
C 970 FORNAT(1HO,5x,
C , 36H TOTAL NODAL FORCES FOR EACH ELEMENT)
C DO 290 IELEM=1,NELEM
C 290 WRITE(6,975) IELEM, (ELOAD1(IELEM,IEVAB),
C , IEVAB=1,NEvAB)
C 975 FORMAT(1X,I4,5x,8E12.4/(10x,8E12.4)/(10X,8E12.4))

715 CONTINUE
C
C CONSTRUCT THE EFFECTIVE DYNAMIC LOADS
C

DO 725 IELEM=1,NELEM
DO 725 IEVAB=1,NEVAB
ELOAD(IELEM, IEVAB)=0.0
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725 ELOAD2(IELEM,IEvAB)=O.O
NGISH=0
DO 730 IPOIN=1,NpQIN
DO 730 IDOFN=1,NDQFN
NGISH=NGISH+1
ASDISH(NGISH)=ASDIS(NGISH)
ASVELH(NGISH)=ASVEL(NGISH)
ASACCELH (NGI SH) =ASACCEL (NG I SH)

ASDIST(NGISH)=A0*ASDISH(NGISH)+A2*ASVELH(NGISH)+
,A3*ASACCELH(NGISH)

730 CONTINUE
REWIND (7)
DO 745 IELEM=1,NELEM
READ(7) EMASS
DO 745 IEVAB=1,NEVAB
DO 750 INODE=1,NNODE
DO 750 IDOFN=1,NDOFN
NPOSI= ( INODE-1) *NDOFN+IDOFN

LOCNO=LNODS ( IELEM, INODE)

ICOLUMN= (LOCNO-1) *NDOFN+IDOFN
ELOAD2 (IELEM, IEVAB) =ELOAD2 (IELEM, IEVAB) +

,EMASS(IEVAB, NPOSI) *ASDIST( ICOLUMN)
750 CONTINUE

ELOAD(IELEM, IEVAB)=ELOAD1(IELEM, IEVAB)+ELOAD2(IELEM, IEVAB)
745 CONTINUE

RETURN
END

C

SUBROUTINE FRONT
C

C MATRIX SOLVER
C

INCLUDE 'JEIBI.INC'
DIMENSION FIXED(3000),EQUAT(200),VECRv(3000),
GLOAD(200) ,GSTIF(20100) ,ESTIF(24,24),

IFFIX(3000),NACVA(200),LOCEL(24),NDEST(24)
COMMON/ENERGY/N SEL (4) , DLC

NFUNC(I ,J)(J*J_J)/2+I
MFRON=200
MSTIF=20100

C

C INTERPRET FIXITY DATA IN VECTOR FORM
C

NTOTV=NPOIN*NDOFN
DO 100 ITOTV=1.NTOTV
IFFIX(ITOTV)=0

100 FIXED(ITOTV)=O. 0
DO 110 IVFIX=1.NVFIX

NLOCA=(NOFIX(IVFIX)_1)*NDOFN
DO 110 IDOFN=1,NDOFN
NGASH=NLOCA+ IDOFN

147



IFFIX(NGASH)=IFPRE(IVFIX, IDOFN)
110 FIXED(NGASH)=PRESC(IVFIX, IDOFN)

C
C CHANGE THE SIGN OF THE LAST APPEARANCE
C OF EACH NODE
C

DO 140 IPOIN=1,NPOIN
KLAST=0
DO 130 IELEM=1,NELEM
DO 120 INODE=1,NNODE

IF(LNODS(IELEMIINODE).NE.IPOIN) GO TO 120
KLAST=IELEM
NLAST= INODE

120 CONTINUE
130 CONTINUE

IF(KLAST.NE.0) LNODS(KLAST,NLAST)=-IPOIN
140 CONTINUE

C

C START BY INITIALIZING EVERYTHING THAT
C MATTERS TO ZERO
C

DO 150 ISTIF=1,MSTIF
150 GSTIF(ISTIF)=0.0

DO 160 IFRON=1,MFRQN
GLOAD(IFRON)=0.0
EQUAT(IFRON)=0.0
VECRV(IFRON)=0.0

160 NACVA(IFRON)=O
C

C AND PREPARE FOR DISC READING AND WRITING
C OPERATIONS
C

REWIND (1)
REWIND (2)
REWIND (3)
REWIND (4)

C

C ENTER MAIN ELEMENT ASSEMBLY-REDUCTION LOOP
C

NFRON=0
KELVA= 0

DO 380 IELEM=1,NELEM
KEVAB=0
READ(1) ESTIF
DO 170 INODE=1,NNODE
DO 170 IDOFN=1,NDOFN
NPOSI=( INODE-1) *NDOFN+IDOFN
LOCNO=LNODS ( IELEM, INODE)

IF(LOCNO.GT.0) LOCEL(NPQSI)=(LOCNQ-1)*
NDOFN+IDOFN
IF(LOCNO.LT.0) LOCEL(NPOSI)=(LOCNO+1)*
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NDOFN-IDOFN
170 CONTINUE

C
C START BY LOOKING FOR EXISTING DESTINATIONS
C

DO 210 IEVAB=1,NEVAB
NIKNO=IABS(LOCEL(IEVAB))
KEXIS=0
DO 180 IFRON=1,NFRON

IF(NIKNO.NE.NACVA(IFRON)) GO TO 180
KEVAB=KEVAB+ 1
KEXIS=1
NDEST(KEVAB) =IFRON

180 CONTINUE
IF(KEXIS.NE.0) GO TO 210

C

C WE NOW SEEK NEW EMPTY PLACES FOR
C DESTINATION VECTOR
C

DO 190 IFRON=1,MFRON
IF(NACVA(IFRON) .NE. 0) GO TO 190
NACVA(IFRON)=NIKNO
KEVAB=KEVAB+1
NDEST(KEVAB)=IFRQN
GO TO 200

190 CONTINUE
C

C THE NEW PLACES MAY DEMAND AN INCREASE
C IN CURRENT FRONTWIDTH
C

200 IF(NDEST(KEVAB) .GT.NFRON) NFRON=NDEST(KEVAB)
210 CONTINUE

C

C ASSEMBLE ELEMENT LOADS
C

DO 240 IEVAB=1,NEVAB
IDE ST=NDEST ( IEVAB)

GLOAD ( IDEST) =GLOAD ( IDEST) +ELOAD ( IELEM, IEVAB)
C
C ASSEMBLE THE ELEMENT STIFFNESSES
C - BUT NOT IN RESOLUTION
C

IF(ISTEP.GT.1) GO TO 230
DO 220 JEVAB=1,IEVAB
JDEST=NDEST(JEVAB)
NGASH=NFUNC( IDEST, JDEST)
NGISH=NFUNC(.JDEST, IDEST)

IF(JDEST.GE.IDEST) GSTIF(NGASH)=
GSTIF(NGASH)+ESTIF(IEVAB,JEVAB)
IF(JDEST.LT.IDEST) GSTIF(NGISH)=

,GSTIF(NGISH)+ESTIF(IEVAB, JEVAB)
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220 CONTINUE
230 CONTINUE
240 CONTINUE

C
C RE-EXAMINE EACH ELEMENT NODE, TO
C ENQUIRE WHICH CAN BE ELIMINATED
C

DO 370 IEVAB=1,NEVAB
NIKNO=-LOCEL ( IEVAB)

IF(NIKNO.LE.0) GO TO 370
C

C FIND POSITIONS OF VARIABLES READY
C FOR ELIMINATION
C

DO 350 IFRON=1,NFRON

IF(NACVA(IFRON).NE.NIKNO) GO TO 350
C
C EXTRACT THE COEFFICIENTS OF THE
C NEW EQUATION FOR ELIMINATION
C

IF(ISTEP.GT.1) GO TO 260
DO 250 JFRON=1,MFR0N
IF(IFRON.LT.JFRON) NLOCA=NFUNC(IFRON,JFRON)
IF(IFRON.GE.JFRON) NLOCA=NFUNC(JFRON,IFRON)
EQUAT (JFRON) =GSTI F (NLOCA)

250 GSTIF(NLOCA)=0.0
260 CONTINUE

C

C AND EXTRACT THE CORRESPONDING RIGHT
C HAND SIDES
C

EQRHS=GLOAD( IFRON)
GLOAD(IFRON)=Q.Q
KELVA=KELVA+ 1

C

C WRITE EQUATIONS TO DISC OR TO TAPE
C

IF(ISTEP.GT.1) GO TO 270
WRITE(2) EQUAT,EQRHS, IFRON,NIKNO
GO TO 280

270 WRITE(4) EQRHS

READ(2) EQUAT,DUMMY,IDUMM,NIKNO
280 CONTINUE

C
C DEAL WITH PIVOT
C

PIVOT=EQrJAT ( IFRON)

EQUAT(IFRON)=0.O
C
C ENQUIRE WHETHER PRESENT VARIABLE IS
C FREE OR PRESCRIBED
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C

IF(IFFIX(NIKNO).EQ.0) GO TO 300
C

C DEAL WITH A PRESCRIBED DEFLECTION
C

DO 290 JFRON=1,NFRON
290 GLOAD(JFRON)=GLOAD(JFRON)_FIXED(NIKNO)*

EQUAT(JFRON)
GO TO 340

C

CZ ELIMINATE A FREE VARIABLE - DEAL WITH
C THE RIGHT HAND SIDE FIRST
C

300 DO 330 JFRON=1,NFRON

GLOAD (JFRON) =GLOAD (JFRON) -EQUAT (JFRON) *
EQRHS/PIVQT

C

C NOW DEAL WITH THE COEFFICIENTS IN CORE
C

IF(ISTEP.GT.1) GO TO 320
IF(EQUAT(JFRON).EQ.O.0) GO TO 330
NLOCA=NFUNC (0, JFRON)
DO 310 LFRON=1,JFRON
NGASH=LFRON+NLOCA

310 GSTIF(NGASH)=GSTIF(NGASH)_EQUAT(JFRON)*
EQUAT(LFRON)/PIVOT

320 CONTINUE
330 CONTINUE
340 EQUAT( IFRON) =PIVOT

C

C RECORD THE NEW VACANT SPACE, AND REDUCE
C FRONTWIDTH IF POSSIBLE
C

NACVA( IFRON)=0
GO TO 360

C
C COMPLETE THE ELEMENT LOOP IN THE FORWARD
C ELIMINATION
C

350 CONTINUE

360 IF(NACVA(NFRON).NE.0) GO TO 370
NFRON=NFRON- 1

IF(NFRON.GT.0) GO TO 360
370 CONTINUE
380 CONTINUE

C

C ENTER BACK-SUBSTITUTION PHASE, LOOP
C BACKWARDS THROUGH VARIABLES
C

DO 410 IELVA=1,KELVA
C
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C READ A NEW EQUATION
C

BACKSPACE (2)
READ(2) EQUAT,EQRHS, IFRON,NIKNO
BACKSPACE (2)
IF(ISTEP.EQ.1) GO TO 390
BACKSPACE (4)
READ(4) EQRHS
BACKSPACE (4)

390 CONTINUE
C
C PREPARE TO BACK-SUBSTITUTE FROM THE
C CURRENT EQUATION
C

PIVOT=EQTJAT ( IFRON)

IF(IFFIX(NIKN3) .EQ.1) VECRV(IFRON)=
FIXED(NIKNO)

IF(IFFIX(NIKNO) .EQ.0) EQUAT(IFRON)=0.0
C

C BACK-SUBSTITUTE IN THE CURRENT EQUATION
C

DO 400 JFRON=l,MFRON

400 EQRHS=EQRHS-VECRV(JFRON) *EQUAT(JFRON)
C

C PUT THE FINAL VALUES WHERE THEY BELONG
C

IF(IFFIX(NIKNO) .EQ.0) VECRV(IFRON)=
EQRHS/PIVOT

IF(IFFIX(NIKNQ).EQ.1) FIXED(NIKNO)=-EQRHS
ASDIS(NIKNO)=VECRV( IFRON)

410 CONTINUE
C

C CALCULATE ACCELERATION AND VELOCITY
C

NGISH=O
DO 700 IPOIN=1,NPOIN
DO 700 IDOFN=1,ND0FN
NGISH=NGISH+1

ASACCEL(NGISH)=A0*(ASDIS(NGISH)_ASDISH(NGISH))_
,A2*ASVELH(NGISH)_A3*ASACCELH(NGISH)
ASVEL(NGISH)=ASVELH(NGISH)+A6*ASACCELH(NGISH)+
,A7*ASACCEL(NGISH)

700 CONTINUE
C

C NOTE: IF DISPLACEMENT OUTPUT IS NEEDED USE THIS SECTION.
C DISPLACEMENTS & REACTIONS AT EACH TIME STEP
C WRITE(6,900)
C 900 FORMAT(1HO, SX, 13HDISPLACEMENTS)
C WRITE(6,910)
C 910 FORNAT(1HO,5X,4HNODE,5X,7HX.DISP.,
C , 7XI7HY-DISP.17X,SHROTATION)
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C

C PRINT DISPLACEMENT OUTPUT AT SELECTED NODES
C

C DO 450 IPOIN=l,NPOIN
C NGASH=IPOIN*NDOFN
C NGISH=NGASH-NDQFN+l
C IF(IPOIN.EQ.115) THEN
C WRITE(].0,920) IPOIN, (ASDIS(IGASH),IGASH=
C , NGISH,NGASH)
C ENDIF
C IF(IPOIN.EQ.117) THEN
C WRITE(ll,920) IPOIN,(ASDIS(IGASH),IGAS}3=
C , NGISH,NGASH)
C ENDIF
C 920 FORMAT(Il0,3E14.6)
C 450 CONTINUE
C

C CALCULATE ENERGY RELEASE RATE USING
C CRACK CLOSURE METHOD (i.e.,SINGLE ANALYSIS)
C note: only for a horizontal crack
C

NGISH1=NSEL( 1) *NDOFN
NGISH2=NSEL(2) *NDOFN

NGISH3=NSEL ( 3) *NDOFN
NGISH4=NSEL(4) *NDOFN
NGISH5=NGISH1-1
NGISH6=NGISH2-1
NGISH7NGISH3-1
NGISH8=NGISH4-1
DOA=ASDIS(NGISH1)
DOB=ASDIS(NGISH2)
DMC=FIXED (NGISH3)
DMD=FIXED (NGISH4)
DDA=ASDIS(NGISH5)
DDB=ASDIS(NGISH6)
DFC=FIXED(NGISH7)
DFD=FIXED (NGISHS)

ENER=_(DDA*DFC+DDB*DFD+DOA*DMC+DOB*DMD) /DLC
WRITE(6,926) ENER

926 FORMAT(1HO,5X,5H Gcc=,E14.7)
C
C IF REACTION OUTPUT IS NEEDED USE BELOW
C WRITE(6,925)
C 925 FORMAT(1HO,5X,9HREACTIONS)
C WRITE(6,925)
C 925 FORNAT(1HO,SX,9HREACTIONS)
C WRITE(6,935)
C 935 FORMAT(1H0,SX,4HNODE,5X,7HX-FORCE,7X,
C , 7HY-FORCE,7X,6HCOUPLE)
C DO 510 IPOIN=1,NPOIN
C NLOCA= ( IPOIN-1) *NDOFN
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C DO 490 IDOFN=1,NDOFN
C NGUSH=NLOCA+IDOFN
C IF(IFFIX(NGUSH).GT.0) GO TO 500
C 490 CONTINUE
C GOTO51O
C 500 NGASH=NLOCA+NDOFN
C NGISH=NLOCA+1
C WRITE(6,945) IPOIN,(FIXED(IGASH),IGASH=
C , NGISH,NGASH)
C 510 CONTINUE
C 945 FORMAT(I10,3E14.6)
C

C POST FRONT = RESET ALL ELEMENT CONNECTION
C NUMBERS TO POSITIVE VALUES FOR SUBSEQUENT
C USE IN STRESS CALCULATION
C

DO 520 IELEM=l,NELEM
DO 520 INODE=1,NNODE

520 LNODS(IELEM,INODE)=IABS(LNODS(IELEM,INODE))
RETURN
END

C

SUBROUTINE CHECK1
C

C TO CRITICIZE THE DATA CONTROL CARD AND
C PRINT ANY DIAGNOSTICS
C

INCLUDE 'JEIBI.INC'
DO 10 IEROR=1,24

10 NEROR(IEROR)=O
C
C CREATE THE DIAGNOSTIC MESSAGES
C

IF(NPOIN.LE.0) NEROR(1)=1
IF(NELEM*NNODE.LT.NPOIN) NEROR(2)=1
IF(NVFIX.LT. 1.OR.NVFIX.GT.NPOIN) NEROR(3)=1
IF(NSTEP.LE.0) NEROR(4)=1
IF(NTYPE.LT. 0.OR.NTYPE.GT. 2) NEROR(5)=1
IF(NNODE.LT. 3.OR.NNODE.GT.8) NEROR(6)=1
IF(NDOFN.LT.2 .OR.NDOFN.GT.3) NEROR(7)=1
IF(NMATS.LE.0.OR.NMATS.GT. NELEM) NEROR(8)=1
IF(NPROP.LT. 3.OR.NPROP.GT.9) NEROR(9)=1
IF(NGAUS.LT. 2 .OR.NGAUS.GT. 3) NEROR(10)=1
IF(NDIME.LT. 1.OR.NDIME.GT.2) NEROR(11)=1
IF(NSTRE.LT.2.OR.NSTRE.GT. 6) NEROR(12)=1

C
C EITHER RETURN,OR ELSE PRINT THE ERRORS
C DIAGNOSED
C

KEROR=0
DO 20 IEROR=1,12
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C

C

IF(NEROR(IEROR) . EQ. 0) GO TO 20
KEROR=1
WRITE(6, 900) IEROR

900 FORMAT(//24H DIAGNOSIS BY CHECK1,
6H ERROR,I3)

20 CONTINUE
IF(KEROR.EQ.0) RETURN

C
C OTHERWISE ECHO ALL THE REMAINING DATA
C WITHOUT FURTHER COMMENT
C

CALL ECHO
END

SUBROUTINE ECHO
INCLUDE 'JEIBI.INC'
DIMENSION NTITL(80)
WRITE(6,900)

900 FORMAT(//25H NOW FOLLOWS A LISTING OF,
25H POST-DISASTER DATA CARDS/)

10 READ(5,905) NTITL
905 FORMAT(80A1)

WRITE(6,910) NTITL
910 FORMAT(20X,80A1)

GO TO 10
END

C

SUBROUTINE CHECK2
C

C TO CRITICIZE THE DATA FROM SUBROUTINE INPUT
C

INCLUDE 'JEIBI.INC
DIMENSION NDFRO(300)
MFRON=2 00

C

C CHECK AGAINST TWO IDENTICAL NONZERO
C NODAL COORDINATES
C

DO 10 IELEM=1,NELEM
10 NDFRO(IELEM)=0

DO 40 IPOIN=2,NPOIN
KPQIN=IPOIN-1
DO 30 JPOIN=1,KPOIN
DO 20 IDIME=1,NDIME

IF(COORD(IPOIN,IDIME).NE.COORD(JPOIN,
IDIME)) GO TO 30

20 CONTINUE

NEROR ( 13) =NEROR ( 13) +1

30 CONTINUE
40 CONTINUE
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C CHECK THE LIST OF ELEMENT PROPERTY NUMBERS
C

DO 50 IELEM=1,NELEM
50 IF(MATNO(IELEM).LE.0.OR.MATNO(IELEM)GT

NMATS) NEROR(14)=NEROR(14)+1
C

C CHECK FOR IMPOSSIBLE NODE NUMBERS
C

DO 70 IELEM=1,NELEM
DO 60 INODE=1,NNODE

IF(LNODS(IELEM,INODE).EQ.0) NEROR(15)=
NEROR(1S)+1

60 IF(LNODS(IELEM,INODE).LT.0.OR.LNODS(IELEM,
INODE).GT.NPOIN) NEROR(16)=NERoR(16)--J.

70 CONTINUE
C
C CHECK FOR ANY REPETITION OF A NODE
C NUMBER WITHIN AN ELEMENT
C

DO 140 IPOIN=1,NPOIN
KSTAR=O
DO 100 IELEM=1,NELEM
KZERO=0
DO 90 INODE=1,NNODE

IF(LNODS(IELEM,INODE).NE.IPOIN) GO TO 90
KZERO=KZERO+ 1

C IF(KZERO.GT. 1) NEROR(17)=NEROR(17)+1
C

C SEEK FIRST,LAST AND INTERMEDIATE
C APPEARANCES OF NODE IPOIN

IF(KSTAR.NE.0) GO TO 80
C

KSTAR= IELEM
C

C CALCULATE INCREASE OR DECREASE IN
C FRONTWIDTH AT EACH ELEMENT STAGE
C

NDFRO ( IELEM) =NDFRO ( IELEM) +NDOFN
80 CONTINUE

C
C AND CHANGE THE SIGN OF THE LAST
C APPEARANCE OF EACH NODE
C

KLAST= IELEM
NLAST=INODE

90 CONTINUE
100 CONTINUE

IF(KSTAR.EQ.0) GO TO 110
IF(KLAST.LT.NELEM) NDFRO(KLAST+1)=
NDFRO(KLAST+1) -NDOFN

LNODS(KLAST, NLAST)=-IPQIN
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GO TO 140
C
C CHECK THAT COORDINATES FOR AN UNUSED
C NODE HAVE NOT BEEN SPECIFIED
C

110 WRITE(6,900) IPOIN
900 FORMAT(/15H CHECK WHY NODE,14,

14H NEVER APPEARS)
NEROR ( 18) =NEROR ( 18) +1

SIGMA=0.0
DO 120 IDIME=1,NDIME

120 SIGMA=SIGMA+ABS(COORD(IPOIN,IDIME))
IF(SIGMA.NE.0.0) NEROR(19)=NEROR(19)+1

C

C CHECK THAT AN UNUSED NODE NUMBER IS NOT
C A RESTRAINED NODE
C

DO 130 IVFIX=1,NVFIX
130 IF(NOFIX(IVFIX).EQ.IPOIN) NEROR(20)=

NEROR(20)+1
140 CONTINUE

C

C CALCULATE THE LARGEST FRONTWIDTH
C

NFRON=0
KFRON= 0

DO 150 IELEM=1,NELEM
NFRON=NFRON+NDFRO( IELEM)

150 IF(NFRON GT. KFRON) KFRON=NFRON
WRITE(6,905) KFRON

905 FORMAT(//28HMAX FRONTWIDTH ENCOUNTERED =115)
IF(KFRON.GT.MFRON) NEROR(21)=1

C
C CONTINUE CHECKING THE DATA FOR THE
C FIXED VALUES
C

DO 170 IVFIX=1,NVFIX

IF(NOFIX(IVFIX).LE.0.OR.NOFIX(IVFIX)
.GT.NPOIN) NEROR(22)=NEROR(22)+1
KOUNT= 0

DO 160 IDOFN=1,NDOFN

160 IF(IFPRE(IVFIX,IDOFN).GT.0) KOUNT1
IF(KOUNT.EQ. 0) NEROR(23)=NEROR(23)+1
KVFIX=IVFIX-1
DO 170 JVFIX=1,KVFIX

170 IF(IVFIX.NE.1.AND.NOFIX(IVFIX) .EQ.
NOFIX(JVFIX)) NEROR(24)=NEROR(24)+1

KEROR=0
DO 180 IEROR=13,24

IF(NEROR(IEROR).EQ.0) GO TO 180
KEROR= 1
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WRITE(6,910) IEROR,NEROR(IER0R)
910 FORMAT(//30H*** DIAGNOSIS BY CHECK2, ERROR,

13,6X,18H ASSOCIATED NUMBER,I5)
180 CONTINUE

IF(KEROR.NE.0) GO TO 200
C
C RETURN ALL NODAL CONNECTION NUMBERS TO
C POSITIVE VALUES
C

DO 190 IELEM=1,NELEM
DO 190 INODE=1,NNODE

190 LNODS(IELEM,INODE)=IABS(LNODS(IELEM,INODE))
RETURN

200 CALL ECHO
END

C END OF PROGRAI4 DYCOUPLE.FOR
C
C Next is the INCLUDE file which contains common-blocks
C for the whole program. (File name = JEIBI.INC)
C

COMNON/CONTRO/NPOIN,NELEM,NNODE,NDOFN,NDIME,NSTRE,NTYPE,NGAUS,
NPROP,NMATS,NVFIX,NEVAB, ISTEP,NSTEP,ITEMP,IPROB,NPROB,
DTIME,NWANT

COMMON/LGDATA/CQQRD( 1000,2), PROPS( 10,9) , PRESC(111, 3) ,ASDIS(3000),

ELOAD(300,24),STRIN(6,2700),NOFIX(111),IFPRE(111,3),
LNODS(300,8),MATNO(300),AsVEL(3000),ASACcEL(3000),ASDIsH(3000),
ASDIST(3000),ASVELH(3000),ASACCELH(3000),IWANT(10),
ELOAD1( 300 , 24 ) , ELOAD2 ( 300, 24)

COMNON/WORK/ELCOD(2,8) ,SHAPE(8),DERIV(2,8),DMATX(6,6),
CARTD(2,8) ,DBMAT(6,24) ,BMATX(6,24) ,SMATX(6,24,9),POSGP(3),
WEIGP(3) ,GPCOD(2,9) ,NEROR(24)

COMNON/CONSTA/BETA,DELTA,A0,A1,A2,A3,A4,A5,A6,A7
C END OF THE INCLUDE-FILE.
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Appendix G

Finite Difference Program for a Micropolar Body Subject to
Harmonic Surface Shear Loads

PROGRAM FDMICRO
C

C Finite difference methods for to solve coupled transverse
C wave problem which was introduced in Chapter 3.4.
C (Case of one-dimensional micropolar elasticity)
C

C

INTEGER*4 ITIHE,NTIME,M, I
REAL*8 L,A,B, C,D,E,T,W,TO, DT, DX,AMU,AKA,RHO,AJ,GAM,

VN(1602),vc(1602),VH(1602),PN(1602),PC(1602),PH(1602),
SIG(1602),coU(l602)

OPEN(5,FILE=FDM.DAT',STATUS'OLD')
OPEN(6,FILE='FDM.OUT')

C
C Setup program parameters:
C L=length of dimension; M=number of space discretization;
C DT=time step size; NTIME=total number of time step used;
C TOthe magnitude of tangential surface loads;
C W=the frequency of loads; AMU,AKA, and GAN are micropolar
C material moduli; RHO=material mass density;
C AJ=microinertia density
C

READ(5,*)L,M,DT,NTIME,TO,W
READ(5, *yAMU,AKA,RHQ,AJ,GAM
DX=L/M
A=DT*DT* (AMIJ+AKA) / (RHO*DX*DX)

B=DT*DT*AKA/ (2. *pjiQ*Dx)

C=DT*DT*GAM/ (AJ*DX*DX)
D=DT*DT*AKA/ (2 . *AJ*DX)

E=DT*DT*2. *AKA/AJ
C
C Initial conditions VC(*) & PC(*) are specified
C Right end boundary conditions (i.e,fixed at M+2) are included.
C

IT IME= 1

DO 10 I=l,M+2
VN(I)=0.0
VC(I)=O.0
VH(I)=O.0
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PN(I)=0.0
PC(I)=0.0

10 PH(I)=0.0
1=2

T=0 .0

(AKA*PC(2)_TO*SIN(w*T)))
PN(2)=0.5*(C*pC(3)+(2._2*C_E)*pC(2)+C*pC(3)+
(D*2*DX/(AMU+AKA))*(AKA*pC(2)_TO*SIN(W*T)))

DO 20 I=3,M4-1

VN(I)=0.5*(A*VC(I+1)+2*(1._A)*VC(I)+A*VC(I_1)_
B*PC(I+1)+B*pC(I_1))

PN(I)=0.5*(C*pC(I+l)+(2._2*C_E)*pC(I)C*pC(I_1)+
D*VC(I+1)_D*VC(I._1)

20 CONTINUE
DO 25 I=3,M+1

SIG(I)=(ANU+AKA)*(VN(I+1)_VN(I...1) )/(2*DX)_AKA*PN(I)
25 COU(I)=GAM*(PN(I+1)_PN(I_1) )/(2*DX)

WRITE(6, 100)ITIME,VN(2) , PN(2)

C
C Now find next time step solutions.
C Index 1=2 represents the surface of body.
C

DO 30 ITIME=2,NTIME
DO 40 I=2,M+].
VH(I)=VC(I)
VC(I)=VN(I)
PH(I)=PC(I)

40 PC(I)=PN(I)
1=2

T=(ITIME-1)*DT
VN(2)=2*A*VC(3)+2*(1._A)*VC(2)_VH(2).

C*PC(3)_PH(2)_(D*2*DX/(AMU+AKA))*TO*SIN(W*T)
DO 50 I=3,M+1

VN(I)=A*VC(I+1)+2*(1._A)*VC(I)+A*VC(I_1)_B*pC(I+1)_
VH(I)+B*pC(I_1)

PN(I)=C*PC(I+1)+(2._2*C_E)*pC(I)+C*pC(I_1)+
D*VC(I+1)_PH(I)D*vc( I-i)

50 CONTINUE
DO 55 I=3,M+1

SIG(I)=(AMU+AJcA)*(VN(I+l)_VN(I_1) )/(2*DX)_AKA*PN(I)
55 COU(I)=GAfl*(pN(I+1)_pN(I_1) )/(2*DX)

WRITE(6, 100)ITIME,VN(2) , PN(2)

30 CONTINUE
100 FORMAT(I5,6(1x,E13.7))

STOP
END
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