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A common problem in energy allocation problems is managing the trade-off between 

selling surplus energy to maximize short term revenue, versus holding surplus energy to 

hedge against future shortfalls. For energy allocation problems, this surplus represents 

resource flexibility and is quantified as the surplus energy after meeting the demand. The 

decision maker has an option to sell or hold the flexibility for future use.  As a decision in 

the current period can affect future decisions significantly, future risk evaluation of 

negative shocks (or uncertainties) is recommended for the current decision in which a 

traditional robust optimization is not efficient. Therefore, an approach to Flexible-Robust 

Optimization has been formulated by integrating a Real Options Model with the Robust 

Optimization framework. Real options analysis is an efficient economic model for risk 

evaluation in investment problems. In the energy problem, the real options model evaluates 

the future risk, and provides the value of holding flexibility, whereas the robust 

optimization quantifies uncertainty and provide a robust solution (i.e. a solution which is 

generally insensitive to uncertainties) of net revenue by selling flexibility. This integration 

or models has introduced compatibility issues which have been discussed extensively in 

the literature. However, the limitations have been overcome successfully by implementing 

bi-level programming in this work. Therefore, a complete general mathematical 

formulation of Bi-Level Flexible-Robust Optimization model is presented and results 

shown to provide an efficient decision making process in energy sectors.       
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CHAPTER 1 

GENERAL INTRODUCTION 

 

In the modern era, renewable energy is a boon in any developed countries. There are 

various sources of renewable energy like Solar, Hydro, Wind, etc. With the help of 

advanced technologies, we can convert these energies efficiently into electricity. Electricity 

plays one of the key roles in our daily life, from operation of fans, lights, vehicles to 

operations of large machines in industries. Without electricity, the rapid development of 

human advancement will come to a halt. This is why renewable sources of energy are very 

important. Day by day, the population is increasing significantly which leads to an increase 

in the use of electricity. Therefore, research has been conducted on how to increase the 

efficiency of generation of electricity from these renewable resources and to allocate it 

optimally. This will increase the revenue of the energy sectors, and also minimize power 

failures. In this thesis, we will focus on one particular renewable source of energy: Hydro 

energy. Like all the renewable sources, Hydro energy also has many sources of uncertainty, 

thereby making the energy allocation problem very complex. For example, we have low 

uncertainty in water level and demand in the initial time period as we will have a good idea 

of the inflows and demands on the present day; however, we are not as sure about that in 

the future dates, and therefore uncertainty in the system increases. This could make a 

significant impact in the decision making of optimal allocation of electricity generated 

from hydro energy. Thus, the Robust Optimization approach is mandatory in these 

problems to quantify uncertainty in the system. Though Robust Optimization quantifies 

uncertainty in the system, it does not have an efficient method to value resource flexibility. 

Resource flexibility is the defined as the surplus hydro energy after meeting the demand, 

and is expressed in energy units (MWh.). As we will focus only on resource flexibility in 

the thesis, we will simply call this flexibility. The value of flexibility refers to the 

economic value created by the ability to move this hydro energy generation from one 

time period to another. The Robust Optimization approach provides a robust solution of 

the optimal generation of electricity; however, in energy allocation problems considering 

all the uncertainties, we need to decide whether to allocate the flexibility in the current 
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period or to hold it for the future to overcome any negative shocks (i.e. uncertainties) in 

the energy market. Therefore, the valuation of flexibility is required to realize such 

decisions of selling or holding the flexibility which standalone Robust Optimization is not 

capable of providing.  

To summarize, the list of research challenges is provided below: 

1. Integration of the Real Options model with Robust Optimization to resolve the 

trade-off between getting revenue now versus holding water to overcome future risks. 

Others work consider either standalone Robust Optimization or only Real Option 

Analysis. 

2. Implementation of the bi-level programing in the model to enforce the complex 

operation constraints and to enable estimation of the outflows for the entire reservoir 

system to meet target flexibility allocations. 

3. Computation efficiency of solving the problem. We have resolved partially by 

formulating constraints to manage search size space and also by choosing efficient 

algorithm after being compared by running the model with different algorithms like 

SQP, GA. However, a more efficient solution will be considered for future research.   

The first two challenges are the main focuses in the next chapters and have been resolved 

successfully. For general allocation problems, economic valuation is done by various 

economic models for any optimal decision making in investment problems. This valuation 

helps in making choices on whether to invest now or later. We can relate this similar 

scenario to our problem, where during each period we are making choices whether to use 

the flexibility or hold it for future. Therefore, an approach to bi-level Flexible-Robust 

Optimization for optimal energy allocation problems has been presented by integrating an 

economic model to evaluate flexibility with Robust Optimization framework. Chapter 2 

focuses on the mathematical formulation of a simplified Flexible-Robust Optimization 

model (Figure 1) to assess the feasibility of the Flexible-Robust Objective. Chapter 3 talks 

about the limitations of the simplified model presented in Chapter 2 and introduces a Bi-

Level programming method as a way to resolve the issues in the solving the flexible-robust 

optimization problem. Chapter 3 presented a mathematical formulation of Bi-level 

Flexible-Robust Optimization (Figure 2) for any generalized energy allocation problem. 
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FIGURES OF CHAPTER 1 

 

 

Figure 1. High-Level Structure of Flexible-Robust Optimization Framework 

 

 

Figure 2. Implementation of Bi-level programming into Flexible-Robust 

Optimization Framework 
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ABSTRACT 

Though Robust Optimization has proven useful in solving many design problems with 

uncertainties, it is not suitable for certain problems which have sequential options in the 

decision making process. In this work, an integration of a Real Option model with the 

Robust Optimization technique is presented. This approach aims to eliminate the 

shortcomings of robust optimization for sequential decision making problems. We provide 

an example of applying this new integrated model to the operational control of a single 

reservoir of the Oregon-Washington Columbia River system by optimizing the flexibility of 

the system. Flexibility for an engineering system is the ease with which the system can 

respond to uncertainty in a manner to sustain or increase its value delivery through 

decision-making. In this paper, we define flexibility as the amount of water left in the 

storage reservoir to produce electricity after meeting demand. Real Option analysis is an 

economic tool which helps to value the multiple courses of actions in a decision: that is to 

either sell the flexibility or hold it for future use based upon the future value of flexibility. 

Selling flexibility causes one to lose some future value because one may be forced to 

repurchase that flexibility from the market at higher prices later due to shortages; Real 

Options analysis values future purchases to support decision-making. Robust optimization 

focuses on for selling the flexibility in a daily market and gives an optimal result by 

maximizing net revenue, considering all the physical and operational constraints of the 

reservoir to avoid floods or other environmental calamities. Net revenue is defined as cost 

of selling and cost of future purchase of the flexibility. We provide an optimization result of 

27 random inflow scenarios which gives high, medium and low flexibility to allocate using 

the integrated model. We compare the optimal solutions given by the integrated model with 

that given by robust optimization. The integrated real option-robust optimization model 

improves the revenue from allocating flexibility as much as 40 percent over the robust 

optimization result.  

 

1. INTRODUCTION 

Renewable energy, such as hydropower, is one of the major sources for electricity 

generation for power sectors. Over many decades, there has been continuous development 
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of water resource management for the economic benefit of electricity industries. Various 

studies are being conducted in wide range of domains, such as water allocation, 

infrastructure capacity expansion, water quality, drought control mitigation, flood control 

and conservation of aquatic ecosystems [1]. A key consideration for the power sector is 

identifying optimal strategies for buying and selling electricity, thereby using the water 

optimally to increase their revenue and also meet the demands. Fundamental ideas of 

engineering have been studied in the water allocation optimization problem; literature 

related to hydro-economic optimization models are available [1]–[3]. The problem of water 

allocation is complicated by uncertainty. Generally, several factors are uncertain in river 

system and energy markets, such as water inflows, weather, market demands and prices. 

Therefore, in an optimization model, these parameters cannot be expressed as deterministic 

values. Pulido-Velazquez [1] presented a scholastic hydro-economic optimization model 

where optimal allocation of water is provided based on the water values and the objective 

was addressing water scarcity and reducing water conflicts considering environmental 

constraints. The valuation of water is calculated based on its availability; it is generally 

assumed that the value of water increases in future time periods due to having greater 

uncertainty for a shortage. Under such an assumption, it is very likely that the future value 

of water will dominate the present value of water. Therefore, there will be a tendency to 

save water for future time periods due to the potential of a water shortage, even when the 

market price for the water in the present time period is much higher than the future value 

of water. However, it would be more profitable if the optimal decision is made to allocate 

water comparing the present market value and the future value of water considering all the 

uncertainties.  

The main premise of this paper is to present an optimization model using a flexible-

robust objective function and applying it to a single reservoir in Columbia River System as 

a case study. The model integrates the real options concept for the valuation of flexibility 

with the robust design optimization framework to find a robust solution. The objective is 

to maximize revenue considering the future value of flexibility to provide an optimal 

decision to allocate flexible water (i.e. water not needed to satisfy contracted demand). 

Robustness for an engineering design is the state when the design is minimally sensitive to 
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factors causing uncertainties. Flexibility for an engineering system is the ease with which 

the system can respond to uncertainty in a manner to sustain or increase its value delivery. 

In this paper, we define flexibility as the amount of water left in the storage to produce 

electricity after meeting contracted demand. This flexibility allows us to take multiple 

courses of actions; for example, to sell water or to hold water for future use. If used wisely, 

flexibility also helps one to cope the unplanned shortages of electricity during natural 

calamities, sudden rises in demands, or sudden decrease of electricity generation due to 

turbine failure. We determine the future value of flexibility using Real Options Analysis. 

However, robustness in the design of our project will ensure insensitiveness to the course 

of action taken, considering the uncertainties in inflows, demand, forecast, market price of 

electricity.  

 

2. BACKGROUND 

To implement a method to optimize operations and formulate the flexible-robust objective, 

real options analysis and robust optimization are investigated. 

 

Real Options in Valuing Flexibility in Large Scale Systems 

The structure of energy markets, which face an increase in competition and an goal of 

improved economic efficiency, face various risks and uncertainties. As the level of risk and 

uncertainty increases, traditional deterministic discounted cash flow (DCF) modeling 

approaches used for capacity investment planning need to be complemented by other, more 

sophisticated methods to deal with the potential fluctuations in both demand and price, 

among others. The real options (RO) approach to investment decision planning provides 

an attractive opportunity to evaluate investment alternatives in power generation in a 

deregulated market environment [4]. Kumbaroğlu et al. [4] presented a policy planning 

model which can guide policy planning in the electricity supply sector, and is based on the 

real options approach to investment. Several other studies have been conducted using the 

real options approach to investment problems in power sectors for the valuation of flexible 

renewable energy where uncertainties are high  [5], [6]. Marreco and Carpio present a 

valuation study of operational flexibility using Real Option Theory in order to determine 
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the fair premium to be paid by the thermal capacity installed and applied in the complex 

Brazilian Power System, considering uncertainties in natural affluences [7].  

In the case of renewable energy facilities (e.g. hydroelectric), the system is highly 

dependent on hydrological conditions; therefore, uncertainties such as inflows, weather 

forecast, market electricity demands and prices, chances of negative shocks are high.  It 

has been a problem for decision makers in these facilities to determine how to allocate 

remaining water after meeting the contracted demands. This can lead to a wrong decision 

which can decrease revenue significantly and, in a worst scenario, can cause environmental 

damage. For example, if a facility empties storage due to high market prices and suddenly 

there are shortages in the next days, they have to forcefully buy electricity from the market 

to meet the demand, which will decrease revenue. Also, if they decide to allocate the 

flexibility later, and if inflows suddenly increase due to unpredicted rain, reservoirs may 

spill and cause flooding. Thus valuing the flexible water is necessary to address potential 

negative impacts. In other words, it is beneficial for these facilities to understand the future 

value of allocated flexibility to help them determine better scheduling plan: whether to 

generate and sell the electricity now with the flexible water or to hold the water for future 

use. Real Option Theory is an appropriate technique to determine the value of flexibility.      

In this paper, a Real Option (RO) model is proposed for valuation of the flexible water, 

by adopting real option theory. This real option model is integrated with a stochastic 

optimization framework as part of the objective function in the proposed Flexible-Robust 

Objective. Details of flexible robust objective will be explained in section 4. 

 

Robust Optimization 

In this section, we provide a brief discussion about robust optimization and why it is 

necessary in hydropower generation projects. As noted in the previous section, there are 

multiple sources of uncertainty in hydropower generation, and the optimal operational 

decisions should provide consistent results, even when there are variations of the uncertain 

parameters from the expected value. Robust optimization is the best approach for these 

types of problems, where the decision can be made based on the risk attitude of the decision 

maker. Much literature is available which presents a stochastic model for solving problems 
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in the energy market to deal with uncertainties, and to provide an optimal result with 

minimal risk  [8]–[10]. Robustness has also been studied extensively in the design literature 

as a means to account for uncertainty. Robustness is defined as the ability of a given system 

configuration to perform well over a wide range of conditions over the product lifecycle, 

such as the occurrence of faults and resulting functional losses. Taguchi-based approaches 

[11]–[14] utilize an optimization framework in which the system design is optimized based 

on an objective which considers both the mean and variance of the system performance. 

Variance in the system performance can result from multiple sources of random noise, both 

external and internal to the system. Robustness has also been investigated in the biological 

network literature, with principles for achieving robustness defined as system control, 

redundancy, diversity, modularity, and decoupling [15].  McIntire et al. applied a Robust 

Design Optimization framework to the Columbia River System to provide an optimal 

outflow for maximizing expected revenue considering the inflow uncertainties. The 

probabilistic framework results in lower risk solution than the deterministic approach, 

when uncertainties are accounted for [16]. 

 

3. FLEXIBLE-ROBUST OPTIMIZATION FRAMEWORK  

In the previous section, we discussed the application of the robust optimization framework 

in large-scale systems. In previous work by McIntire et al. [16], it was assumed that the 

market selling price is constant throughout the optimization period. Therefore, the optimal 

decision is to empty the reservoir each day for electricity generation and to sell the 

remaining electricity after meeting the demand. However, in reality the market prices are 

always variable. In such cases, a better result could be possible by holding the flexible 

water for future use when the market prices will be higher. In our model, we consider price 

changes every time period, which is one day in our model. Although robust optimization 

provides insensitiveness to uncertain factors, it does not provide the value of flexibility 

which is required to address potential water shortfalls due to negative shocks. For example, 

robust optimization in hydropower generation does not value flexible water, and therefore 

if the market price is substantially higher on Day 2 than in Day 4, but Day 4 has greater 

uncertainty, the robust optimization may still provide an optimal result to sell the water on 
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Day 2 based upon higher revenue for that day. However, the value of flexibility will be 

higher on Day 4 due to higher uncertainties. So, in the case of negative shocks on Day 4 

(i.e. uncertainty leads to shortage of water), the facility will need to forcefully buy 

electricity to meet contracted demand, thus decreasing total revenue. Thus, valuing 

flexibility is necessary to better manage risks.  

Several papers have been published based on the optimization of flexibility using real 

Option Model. Martínez-Cese˜na, and Mutale [17] and Yang and Blyth [18] provided an 

optimization model for investment planning in renewable energy generation projects using 

Real Options Theory. Hu and Solana [19] presented an optimization of operational options 

of a hybrid diesel-wind generation plant using real option analysis maximizing the value 

of flexibility. However, in the case of projects such as the optimal water allocation problem 

for hydropower generation, only maximizing the value of flexibility does not provide the 

best solution. As an example, if future days have higher uncertainty, the probability of a 

negative shock is higher on future days. Therefore, the value of flexibility of future days 

will be more compared to the present day in an optimization period. Thus, the optimizer 

will provide a solution to hold the flexible water for the future, irrespective of the higher 

market price at the present day. This result may be overly risk-averse as there might, in 

fact, be no realized negative shocks on future days, and the hydropower facilities will have 

to sell the flexible water on those days at a cheaper price to fulfill operational constraints 

such as storage capacity, etc. To overcome such limitations and to solve the optimum 

allocation of flexible water problem, it is necessary to have an objective to maximize the 

revenue based on the daily market prices and an objective to maximize the value of 

flexibility to address any negative shocks to lower the chances of losing revenue. The first 

objective can be quantified using the robust optimization technique, while the second 

objective quantification requires real options analysis. This integration of Real Options 

Theory into the Robust Optimization is the Flexible-Robust Optimization framework.  

Detailed description of our proposed model incorporating this Flexible-Robust 

Optimization framework along with a case study is discussed in the remainder of this paper.  

In order to illustrate the concept of the flexible-robust optimization framework and the 

importance of the integration of real option analysis and robust optimization in a 
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framework to solve the optimal water allocation problem for hydropower generation 

facilities, we created a generalized model for any large-scale system. However, in this 

paper, we have limited our case study to single reservoir of Columbia River system: Grand 

Coulee which is managed by Bonneville Power Administration (BPA). The descriptions of 

Grand Coulee are provided by BPA.   

 

Lower Columbia River: Grand Coulee Reservoir  

An optimization model is proposed which takes into account the reservoirs of Columbia 

River system according to the problem description that follows. We propose a multi-stage 

optimization method to model the system. Similar approaches have been studied 

previously. van der Weijde and Hobbs proposed an optimization model that captures the 

multistage nature of transmission planning under uncertainty and use it to evaluate 

interregional grid reinforcements in Great Britain where transmission decisions are 

modelled as a two-stage, bi-level game. Transmission planners take the first step and 

commit to certain investment options, to which the generators react. Subsequently, a wide 

range of future realizations could occur. After a decision and response, transmission 

planners can again make decisions followed by a market response, but the set of 

alternatives available at this next time step is constrained by the first-period decisions [20].  

In our approach, we utilize a two-stage optimization approach. In the Stage 1 

optimization, we identify the maximum generation available, given the current state and 

constraints on the system. In Stage 2, we optimally allocate available flexibility. The two-

stage optimization is described in detail as follows: 

 

Stage 1 Optimization 

In the first stage of optimization, the goal is to maximize electricity generation capacity 

while maintaining the physical and operational constraints, such as Water Balance 

Constraints, Reservoir WSE Constraints, Turbine Flow Constraints, output constraints, and 

reservoir WSE Constraints on the end of the period or optimization. Detailed information 

about the objective function and constraints are detailed below. The Stage 1 optimization 

will provide a robust solution of the maximum power that can be generated each time step 
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given the uncertainties in the inflows and satisfying the physical and operational constraints 

of reservoir. This is helpful for BPA to know the flexibility they will have each day during 

the optimization period after meeting the demands. This information will be treated as input 

in the Stage 2 optimization and also to calculate the total predicted flexibility throughout 

the optimization period. 

Note:  

In the below mathematical formulation, 

 Variables having the overscript ~ are uncertain variables.  

 Variables without the overscript ~ are deterministic variables. 

 Variables having superscript * are optimal solutions. 

 

Model Input:  

Inflows, 𝑄̃𝑖𝑛 

 

Model Decision Variables:   

The total outflows of GCL reservoir at each time step are defined as decision variables in 

the optimization. We have considered an optimization period of 14 days with daily a time-

step; therefore, the number of the decision variables is 14 for the single reservoir and is 

given as an array of flow rate, 𝑄 
𝑜𝑢𝑡,𝑆𝑡𝑎𝑔𝑒1

decision variables as follows:  

 

[𝑄𝑜𝑢𝑡,1 𝑄𝑜𝑢𝑡,2 . . . . . . . . . . . . . . . . . . . . .  𝑄𝑜𝑢𝑡,14] 

 

Model Objective:   

Maximize Energy generation capacity,  

 

max
𝑄𝑜𝑢𝑡,𝑡

∑ ẽt(𝑄𝑜𝑢𝑡,𝑡, ℎ𝑑̃𝑡(𝐹𝐵̃𝑡,  TWt), ξ𝑡)14
𝑡=1                                           (1), (2) 

Where, 

ẽt =  𝜂 ∗ 9.81 ∗ ℎ𝑑̃𝑡(𝐹𝐵̃𝑡,  TWt) ∗ 𝑄𝑜𝑢𝑡,𝑡 ∗ 8.6310 ∗ 10−3 ∗ ξ𝑡 
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In this equation, ẽt is the energy generation at each time step t in MWh, where 𝜂 is the 

efficiency of the reservoir, taken as 0.75; ξ𝑡 is considered as 1 hour; ℎ𝑑̃𝑡 is the head in ft. 

and is calculated as below:  

 

ℎ𝑑̃𝑡=𝐹𝐵̃𝑡(𝑆̃𝑡 (𝑄̃𝑖𝑛,𝑡, 𝑄̃𝑖𝑛,𝑡−1, 𝑄𝑜𝑢𝑡,𝑡, 𝑄𝑜𝑢𝑡,𝑡−1, deltt) ) − TWt  (3) 

                                                                              

𝐹𝐵̃𝑡 is the reservoir water level in ft at time t which is a function of is reservoir storage 𝑆̃𝑡; 

TWt is the tailwater in ft which is considered as constant for single reservoir. For multiple 

reservoir system, the tailwater will be subject to be an uncertain variable where the 

uncertainty will propagate from Inflows. 

 

Subject to: 

Model Constraints:  

a. Water Balance Constraints  

 

0 ≤  𝑆̃𝑡 (𝑄̃𝑖𝑛,𝑡, 𝑄̃𝑖𝑛,𝑡−1, 𝑄𝑜𝑢𝑡,𝑡, 𝑄𝑜𝑢𝑡,𝑡−1, deltt) ≤  𝑆𝑚𝑎𝑥   (4), (5) 

Where, 

𝑆̃𝑡+1   = ((𝑄̃𝑖𝑛,𝑡 + 𝑄̃𝑖𝑛,𝑡+1)/2 − (𝑄𝑜𝑢𝑡,𝑡 + 𝑄𝑜𝑢𝑡,𝑡+1)/2). deltt  + 𝑆̃𝑡 

 

In these equations, 𝑆̃𝑡 is reservoir storage in kcfs-day. 𝑆𝑚𝑎𝑥 is the maximum storage 

capacity, 𝑄̃𝑖𝑛 and 𝑄𝑜𝑢𝑡 are inflow and outflow to reservoir in kcfs, respectively, and deltt 

is time (day) between each time step. At this stage, the water leakage and natural water loss 

is not considered We consider Eq. (4) as a Reliability Constraint. Therefore, equation 4 

becomes:  

𝑃𝑟{0 ≤  𝑆̃𝑡 (𝑄̃𝑖𝑛,𝑡, 𝑄̃𝑖𝑛,𝑡−1, 𝑄𝑜𝑢𝑡,𝑡, 𝑄𝑜𝑢𝑡,𝑡−1, deltt) ≤  𝑆𝑚𝑎𝑥  } ≥  𝑅, 

0 ≤ 𝑅 ≤ 1 

where R is the reliability factor.    

  

b. Reservoir Water Surface Elevation (WSE) Constraints  

𝐹𝐵𝑚𝑖𝑛 ≤   𝐹𝐵̃𝑡(𝑆̃𝑡)  ≤  𝐹𝐵𝑚𝑎𝑥   (6), (7) 



14 

                                                                                                                                                                    

  

 

Where, 

𝐹𝐵̃𝑡 =  𝑐1 ∗ ( 𝑆̃𝑡)2  +  𝑐2 ∗ ( 𝑆̃𝑡 )  +  𝑐3 

 

where 𝐹𝐵̃𝑡 is the reservoir water level in ft at time t; 𝐹𝐵𝑚𝑖𝑛 and 𝐹𝐵𝑚𝑎𝑥 are the allowable 

minimum and maximum reservoir water elevation respectively; 𝑐1 = -3.63*10-6, 𝑐2 = 

0.0406 and  𝑐3 =1208. The constants are determined by fitting actual forebay elevation 

observations with a polynomial regression model. 

  

c. Turbine Flow Constraints  

  

𝑄𝑡𝑏−𝑚𝑖𝑛  ≤  𝑄𝑡𝑏,𝑡  ≤  𝑄𝑡𝑏−𝑚𝑎𝑥  (8) 

 

In this constraint,  𝑄𝑡𝑏,𝑡 is turbine flow for power generation in kcfs at each time step 

and 𝑄𝑡𝑏−𝑚𝑖𝑛 and 𝑄𝑡𝑏−𝑚𝑎𝑥 are allowed minimum and maximum discharge respectively. 

Since we are not ignoring spill flow, Turbine flow and Outflow will be same. Therefore, 

we can re-write equation 8 as below: 

 

𝑄𝑡𝑏−𝑚𝑖𝑛  ≤  𝑄𝑜𝑢𝑡,𝑡  ≤  𝑄𝑡𝑏−𝑚𝑎𝑥  (9) 

  

d. Power Output Constraints  

  

𝑁𝑑−𝑚𝑖𝑛  ≤  𝑁̃𝑑,𝑡(𝑄𝑜𝑢𝑡,𝑡, ℎ𝑑̃𝑡)  ≤  𝑁𝑑−𝑚𝑎𝑥         (10), (11) 

Where, 

𝑁̃𝑑,𝑡 =  𝜂 ∗ 9.81 ∗ ℎ𝑑̃𝑡(𝐹𝐵̃𝑡,  TWt) ∗ 𝑄𝑜𝑢𝑡,𝑡 ∗ 8.6310 ∗ 10−3 

In the output constraint, 𝑁̃𝑑,𝑡 is power output in MW at time t. 𝑁𝑑−𝑚𝑖𝑛 and 𝑁𝑑−𝑚𝑎𝑥 are the 

minimum and maximum output capacity respectively.  

 

 e. Reservoir Water Surface Elevation (WSE) Constraints on the end-of-period  

The optimization is conducted for 14 days, which is a relatively short term for the reservoir 

operation. To be consistent with middle-term or long-term operation, the water surface 
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elevation (WSE) in the reservoir at the end of optimization period is expected to stay within 

a target WSE to fulfill future requirements. In the example problem we have formulated, 

the historical data from the actual operation scheme is used as the target WSE for the 

optimization model. To avoid equality constraints, a small range on the target WSE is used 

to restrain the WSE on the end-of-period to be close to the target WSE: 

  

𝐹𝐵𝑡𝑎𝑟,𝑒𝑛𝑑  −  𝛥 ≤  𝐹𝐵̃𝑡(𝑉̃𝑡)  ≤  𝐹𝐵𝑡𝑎𝑟,𝑒𝑛𝑑  +  𝛥       (12) 

  

where 𝐹𝐵𝑡𝑎𝑟,𝑒𝑛𝑑 is the target WSE on the end-of-period and Δ is the deviation from the 

target WSE. The Δ is set as 1% in the model and 𝐹𝐵𝑡𝑎𝑟,𝑒𝑛𝑑 is taken as 1280 ft.  

 

Model Output: 

 

• Maximum energy generation capacity 𝐸̃𝑚𝑎𝑥,1 = [ 𝑒̃1
𝑚𝑎𝑥,1, 𝑒̃2

𝑚𝑎𝑥,1, … . . , 𝑒̃14
𝑚𝑎𝑥,1] 

 

Stage 2 Optimization 

In the Stage 2 optimization, we need to know how much water is available after meeting 

demand and other obligations; this is the available flexibility. Thus the Stage 1 optimization 

will provide the maximum electricity generation capacity each day. Once we deduct the 

daily demand and obligations, we will quantify the flexibility for each day. The purpose of 

the Stage 2 optimization is to determine how to allocate the flexibility and provide an 

optimal decision on a particular day: whether to sell the flexibility (and how much) to 

maximize revenue of BPA, or to hold because the value of the flexibility (value of holding 

the water) to BPA is greater than the market value. Thus, holding it on that day and using 

that on future when the market value will be greater than value of flexibility will give more 

profit to BPA, thus increasing the revenue. The robustness in the objective will account for 

the uncertain parameters, thereby ensuring the insensitiveness of the optimal allocation of 

flexibility each day to the uncertainty.  

The objective of Stage 2 optimization is to maximize the profit of selling flexible water. In 

this step, few constraints are specified such as the minimum and maximum storage 
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constraints, flexibility at the end of period etc. The decision variable will be the allocated 

flexibility, ℎ𝑡each time step. 

 

Model Input:  

• Demand, D = [𝑑1, 𝑑2, … … … … , 𝑑14] 

• Flexibility each day 𝐹̃=  𝐸̃𝑚𝑎𝑥,1 - D = [ 𝑒̃1
𝑚𝑎𝑥,1 – 𝑑1, 𝑒̃2

𝑚𝑎𝑥,1 – 𝑑2, … … . . ] = 

[𝑓1, 𝑓2 … … … 𝑓14] 

• Total Flexibility in 14 days’ period, 𝐹̃𝑡𝑜𝑡𝑎𝑙  =  ∑ 𝑓𝑡
14
𝑡=1   

• Price, P 

 

Model Decision Variables:   

We propose the decision variable to be the allocated flexibility H. Since it is daily-based 

model, the number of the decision variables is 14 for a single reservoir, given as an array 

of decision variables, H:  

[ℎ1, ℎ2, . . . . . . . . , ℎ14]  

 

Model Objective: 

The objective has two components: maximizing expected revenue and the minimizing the 

value of flexibility of holding the water: 

(1) Maximize Expected Increase in Net Revenue through allocation: 

 

max
ℎ𝑡

∑ ((p𝑡 ∗ (h𝑡 − 𝑓𝑡(𝑒̃𝑡
𝑚𝑎𝑥,1, 𝑑𝑡))) ∗ 24 )14

𝑡=1                      (13) 

𝑓𝑡 is the flexibility obtained in period t in MWh; p𝑡 is the price/ MWh to sell electricity in 

each day over 14 days period; and h𝑡 is the allocated flexibility in period t in MWh.  

 

(2)  Valuation of Flexibility 

The above equation (13) does not consider the scenario that, after allocating flexibility on 

a certain day, if there are any unplanned shortages of power on future days, BPA will need 

to buy that power from the market at a potentially higher price to meet the demand. Since 

BPA controls a significant portion of the electricity market, when there is a shortage of 
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power, the market prices will tend to rise, and thus BPA may potentially have to buy power 

with higher prices than the prices they have sold. Therefore, flexibility has value and we 

will treat this value of allocated flexibility V(ℎ𝑡) as the dollar value to BPA that they have 

to spend to buy power ℎ𝑡 from the market in the future to meet demand, considering 

probabilities stemming from the uncertainties in inflows and other potential sources. Thus, 

along with the objective function of maximize profit (13), we propose to integrate the 

valuation of allocated flexibility, V(ℎ𝑡), leading to the flexible-robust objective. 

 

 The Real Option Model to compute V(𝒉𝒕) 

Given the future economic value of flexibility (one value for each future time point), we 

need to figure out the current value of flexibility so that it is directly comparable to the 

current sales revenue. This is accomplished using option theory. To facilitate illustration, 

we start with a simplified, discretized model. 

As shown in Figure 1, the realization of past uncertainties leads us to the current state, 

denoted by the red dot. We can sell ℎ amount of flexibility now and get current revenue. 

Or we can hold it on to the future. Depending on the realization of future uncertainties, we 

may evolve to different states in period 𝑡 + 1 along different future paths as denoted by the 

broken lines. The different realizations of uncertainties generate different future scenarios 

with different flexibilities. The probability distribution is given by the blue line in the 

figure. As discussed earlier, this probability distribution also stipulates the probability of 

energy shortage as denoted by the shaded area. If provided with the information about the 

market supply function, we can derive 𝑉(ℎ, 𝑡 + 1), the future value of flexibility for period 

𝑡 + 1. Following the same procedure, we can derive 𝑉(ℎ, 𝑡 + 2), the future value of 

flexibility for period 𝑡 + 2 and so on.  

As flexibility can only be used once, the opportunity cost of selling ℎ in the current period 

can only take one value in 𝑉(ℎ, 𝑡 + 𝑘). It must be the one that gives the highest current 

value, that is,  

𝑉(ℎ) = max
𝑘

 𝑟−𝑘𝑉(ℎ, 𝑡 + 𝑘)   for 𝑘 = 1, 2, … , 14,               (14) 

where 𝑟 is the interest rate. Given that the time step in this project is daily, 𝑟 ≈ 1. 
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Next, we need to convert all the possible future values of flexibility into one single value, 

the value of holding ℎ in the current period, or equivalently the foregone opportunity cost 

of selling ℎ in the current period 𝑡. This can be accomplished using option theory. For the 

discrete case as shown in Figure 2, the current value of the foregone opportunity cost can 

be derived using the multi-period multinomial option price model as described in Madan 

et al. [21] and Lee and Lee [22].  

The example shown in Figure 2 generates a classical multi-period binomial option model 

(Cox et al., 1979) as represented in Figure 3. Figure 2, 3 is a binomial decision tree structure 

for a three-period option. Given the flexibility in the current period t, there are two possible 

scenarios associated with different levels of flexibility in period t+1: shortage and no 

shortage. Due to the uncertainties in the system, the incidence of shortage is governed by 

the probabilistic event 𝑓𝑡+1 < 0, which occurs with the probability given by the blue-

shaded area in the Figure 2. Conditional on the realization of flexibility in period t+1, there 

are two possible scenarios for the period t+2. This structure can be extended to multiple 

periods. The cost of doing so is the increase in computing time. In the current period 𝑡, we 

can either sell the h amount of flexibility for sales revenue or hold on the flexibility as an 

option to use it in future periods. Depending on the realization of uncertainties, the option 

value of holding ℎ amount of flexibility to period t+1 may equal either 𝑉1(ℎ, 𝑡 + 1) or 

𝑉2(ℎ, 𝑡 + 1). Then conditional on the amount of flexibility in period 𝑡 + 1, we may have 

two additional possible scenarios corresponding to the incidence of shortage in period 𝑡 +

2. Depending on the uncertainties in period t+2, the value of holding h amount flexibility 

to period t+2 may have different values denoted as 𝑉1(ℎ, 𝑡 + 2), 𝑉2(ℎ, 𝑡 + 2), 𝑉3(ℎ, 𝑡 + 2), 

and 𝑉4(ℎ, 𝑡 + 2). The determination of the option value for each period 𝑉𝑘(ℎ, 𝑡 + 𝜏)  (𝜏 =

1, 2, … , 𝑇) uses the backward induction scheme. Starting from the last period T (T=t+2 in 

case 3-day optimization period decision tree structure as shown in Figure 2, 3), if the 

flexibility h is held to the last period, its value equals the purchase cost saved if shortage 

occurs: 

𝑉(ℎ, 𝑇) = − min(0, max(−ℎ𝑡, 𝑓𝑇)) × 𝑃𝑇 = {
− max(−ℎ𝑡, 𝑓𝑇) × 𝑃𝑇 , 𝑖𝑓 𝑓𝑇 < 0

0 𝑖𝑓 𝑓𝑇 ≥ 0
  (15) 

Note: shortage occurs when 𝑓𝑇 < 0. 
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Similarly, we can calculate the value of using h to avoid purchase cost if shortage occurs 

in period T-1, denote the value as: 𝑉̂(ℎ, 𝑇 − 1): 

𝑉̂(ℎ, 𝑇 − 1) = − min(0, max(−ℎ𝑡, 𝑓𝑇−1)) × 𝑃𝑇−1 =

{
− max(−ℎ𝑡, 𝑓𝑇−1) × 𝑃𝑇−1, 𝑖𝑓 𝑓𝑇−1 < 0

0 𝑖𝑓 𝑓𝑇−1 ≥ 0
                                                 (16) 

The discounted expected value of the last period option value 𝑉(ℎ, 𝑇) is then compared 

with 𝑉̂(ℎ, 𝑇 − 1), the option value of using h in period T-1. The larger value is taken as the 

option value for period T-1. This reflects the defining feature of American Option that it 

can be exercised any time before the expiration date: 

𝑉(ℎ, 𝑇 − 1) = max (𝑉̂(ℎ, 𝑇 − 1), 𝛿𝐸𝑉(ℎ, 𝑇))                                  (17) 

This is done for each of the possible scenarios in period T-1. Then, taking the period T-1 

as the final period and using this procedure iteratively. The option value at the current time 

𝑉(ℎ, 𝑡) can be calculated. In our problem, the decision tree includes a 14- day period. That 

is T=t+13.  

 

(3) The Flexible-Robust Objective: 

As discussed in the previous section, integrating the Real Option Model with Robust 

Optimization technique, we modify Eq. (13) into flexible-robust objective:  

 

max
ℎ𝑡

∑ (((p𝑡 ∗ (h𝑡 − 𝑓𝑡(𝑒̃𝑡
𝑚𝑎𝑥,1, 𝑑𝑡))) ∗ 24) −  Ṽ(h𝑡 ∗ 24) )14

𝑡=1        (18) 

 

𝑓𝑡 is the flexibility obtained in period t in MWh; p𝑡 is the price/Mwh to sell electricity in 

each day over 14 days period; and h𝑡 is the allocated flexibility in period t in MWh. 

Ṽ(h𝑡 ∗ 24) is the value of the allocated flexibility (h𝑡 ∗ 24) in MW-day. Uncertainty of the 

Value of allocated flexibility is incorporated from actual availability of flexibility in future 

periods. Thus during optimization, there will be a comparison between the revenue 

generated by the allocated flexibility, and the expected loss of dollar value due to the 

allocated flexibility, i.e., the value of holding or the future value of allocated flexibility. 

The constraints in Stage 2 are as follows: 

 



20 

                                                                                                                                                                    

  

 

Model Constraints: 

1. Maximum Storage Constraint: 

 

𝐴̃𝑡(𝐴̃𝑡−1, h𝑡−1, 𝑓𝑡) − Pmax ≤   𝛿      (19, 20) 

Where, 

𝐴̃𝑡  =  𝐴̃𝑡−1  – h𝑡−1  + 𝑓𝑡 

 

𝐴̃𝑡 is the actual availability of flexibility in MWh after allocating flexibility for t-1 days as 

per decision made and h𝑡−1 is the allocated flexibility on Day (t -1) in MWh, 𝑓𝑡 is the 

flexibility obtained in period t in MWh, δ is the maximum tolerance of the violation and is 

set as 1 MWh. Pmax  is the maximum flexibility generated in Mwh for the maximum 

amount of water a given reservoir can store. In the next chapter, we will modify the storage 

constraint in terms of units of volume. We consider Eq. (19) as a Reliability Constraint, 

thus becoming: 

 

 𝑃𝑟{ 𝐴̃𝑡(𝐴̃𝑡−1, h𝑡−1, 𝑓𝑡) − Pmax  ≤   𝛿 } ≥  𝑅,   0 ≤ 𝑅 ≤ 1  

 

where R is the reliability factor.   

     

2.    Maximum Allocation of Flexibility 

This constraint is applied to validate that allocated flexibility is less than the actual 

availability of flexibility each day. It is unrealistic to allocate more flexibility than actually 

will have on a day.  

 

h𝑡 –  𝐴̃𝑡(𝐴̃𝑡−1, h𝑡−1, 𝑓𝑡)   ≤  𝛿              (21) 

δ is the maximum tolerance of the violation and is set as 1 MWh. We consider Eq. (21) as 

a Reliability Constraint. Therefore, equation 21 becomes:  

𝑃𝑟{ h𝑡 – 𝐴̃𝑡(𝐴̃𝑡−1, h𝑡−1, 𝑓𝑡)   ≤  𝛿 } ≥  𝑅,   0 ≤ 𝑅 ≤ 1  

 

where R is the reliability factor.    
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Model Output: 

• Optimal allocated flexibility H* 

• Maximum Net Revenue in selling the Flexibility, 𝑅̃𝑚𝑎𝑥  

 

4. SOLUTION METHODOLOGY 

Figure 4 shows a high level flowchart of the framework, along with the optimization 

technique and methodology applied to convert the problem described in previous section 

to investigate the efficiency of flexible-robust objective.  For stage 1 optimization, a 

gradient based nonlinear constrained optimization algorithm (SQP) is used. For stage 2 

optimization, stochastic optimization is used, more specifically a Genetic Algorithm (GA). 

Utility theory has been applied with a risk-averse attitude to find out the expected utility of 

the objective function to address the robust optimization. Uncertainty quantification was 

done using Full Tensor Numerical Integration (FTNI) and the validation of probabilistic 

constraints is handled using the Inverse Reliability method. 

 

Uncertain Parameters 

We considered inflows, 𝑄̃𝑖𝑛, each day as uncertain parameters for Stage 1. Thus, we 

consider 14 uncertain parameters in Stage 1 for the two-week optimization period with 

daily time steps. The model will provide the results of maximum hydroenergy, ẽt from 

Stage 1, which has uncertainty due to uncertainty on inflows; the maximum energy 

generation each day, ẽt  results in uncertainty in flexibility, 𝑓𝑡, each day after deducting 

estimated demand from ẽt In the Real Option analysis, the probabilities of shortages are 

calculated from the uncertainty of flexibility. In the future, we will also consider prices and 

demands as uncertain parameters. In this example, we consider 14 uncertain parameters, 𝑓𝑡 

in the Stage 2 optimization. 

Techniques used for improving the optimization  

Though the model created with the previously described approach is successful in 

providing an optimum allocation of flexibility, it does not prove computationally efficient. 

The primary issue is in the numerical integration of uncertainty in each iteration. In the 
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FTNI method used for numerical integration, we used 3 nodes to represent uncertainty in 

each of the 14 decision variables, which resulted in 314 (4782969) calculations for 

quantification of uncertainty of the objective function in each population of the Genetic 

Algorithm. Therefore, the method proves computationally too expensive. Therefore, in the 

calculation of expected value, we ignore all the calculations which add very little to the 

total value. Consequently, we ignore any set of data which has a weight of less than 𝛿. We 

considered 𝛿 as 10-6. This reduces the calculations to approximately 3000, which reduces 

¾ of the previous computational time. The accuracy of the result was shown to be very 

good with this approximation 

 

Convergence Criteria 

 For Stage 1, the convergence criteria are step size tolerance, constraint violation 

tolerance, function tolerance; all set as ξ = 10−5 and maximum function evaluations set  

as 40000. For Stage 2, the convergence criteria are maximum number of generations set by 

the users.  

  

5. RESULTS FOR THE SINGLE RESERVOIR MODEL 

In this section, we show the decisions provided by the model with and without the 

consideration of Real Option Analysis. We use this approach to show the effect of 

including the real option model as part of the objective (i.e. the flexible-robust objective). 

We therefore have two model policies to evaluate: 

a) Policy 1 in which the Real Option valuation is ignored (equation 13). 

b) Policy 2 in which the Real Option valuation is included (equation 18).  

We will demonstrate the results of two policies on two sample scenarios:  

a) Scenario 1 in which there is large amount of total flexibility in the 14 days optimization 

period, i.e., low chance of water shortage. 

b) Scenario 2 in which there is small amount of total flexibility, i.e, greater chance of a 

shortage.  

The following figures show the results for the two policies and the two scenarios. 
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In the Figures 5 and 6, the blue lines are the flexibility after Stage 1 optimization, while 

the green lines are the optimal decisions for rescheduling the operations by allocating 

flexibility. The red dashed line shows the actual availability of flexibility each day. As we 

cannot allocate more flexibility more than available: the green line will always be under 

the red dashed line. Figures 7 and 8 are the graphs of price each day and the uncertainty 

each day as quantified by the variance in flexibility. 

In Figures 5A and 6A (which represent Policy 1), we see that the optimal decision has been 

made to allocate more flexibility on day 8 than day 12, since the price on day 8 is higher. 

However, the uncertainty of available flexibility is higher on Day 12 than on Day 8. 

Therefore, when we considered the Real Option valuation in our optimization (Policy 2), 

we see that the optimal decision is to allocate less on Day 8 and hold the flexibility to 

allocate on Day 12 (Fig 5B) Also, we see a greater amount of flexibility to allocate on Day 

14 despite that it has a lower selling price than day 8 (Fig 6B). Thus, it is seen that inclusion 

of the Real Option valuation in Policy 2 provides additional weightage to the uncertainties 

than just robust optimization in both Scenarios 1 and 2, resulting in decisions which hold 

onto the water until later in the time period. The effect is greater in Scenario 2, which has 

lower flexibility, and thus has a greater chance of having a water shortage. It is clear that 

there is a trade-off between the two objectives: whether to sell the flexibility or to hold it 

for future use. One of the objectives will dominate the decision process depending on 

different conditions such as market price, uncertainty, and the availability of total 

flexibility. 

The revenue for the different policies and scenarios is shown in Table 1. The Net Revenue 

in Table 1 is defined as the cost of selling the allocated flexibility minus the cost of 

purchase. The cost of purchase is the expected power that needs to be purchased from 

markets due to a probability of shortages, as quantified using the Real Option Model. Also, 

we consider the revenue BPA will attain by selling the flexible water after meeting daily 

demand; that is, it does not consider the revenue attained by selling the electricity to meet 

daily demands, only that from selling flexibility. 

Table 1 shows the increase in Net Revenue which results by integrating the Real Option 

model with the Robust Optimization framework (Policy 2) for both scenarios. We can see 
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the percentage of increase by implementing Policy 2 is greater in Scenario 2 (25%) than 

that in Scenario 1 (13%). This is reasonable since there are higher probabilities of shortages 

due to low flexibility in Scenario 2, and the real option model will tend to provide more 

value in holding the flexibility. Thus real option analysis will have greater benefit when 

there is less flexibility, i.e., in dry seasons. However, it provides a significant profit increase 

even when there is large amount of flexibility available. 

In Figure 9, we show the optimum allocation of flexibility in terms to optimal outflows, 

Qout, for Scenario 1. The blue line is the optimal outflow after Stage 1 optimization, i.e., 

the optimal outflow to generate maximum electricity without violating any constraints. The 

red and green lines are the optimal outflow after Stage 2 optimization following Policy 1 

and 2, respectively. We know from figure 5A that in Policy 1, the optimal decision is to 

allocate more flexibility on day 8 than on Day 12. Thus, we see a higher release of water 

on Day 8. Integrating the real option analysis in the robust optimization (Policy 2) changes 

the decision (Fig 5B). Thus, we see higher release of water on Day 12 and 14 respectively. 

Figure 10 represents the corresponding storage of water. The blue line is the storage each 

day at the optimal decision following Policy 1 and the green line is the same for Policy 2. 

We see in Fig 9, the optimal decisions in both Policy1 during the first 7 days are mostly to 

hold water, therefore, the storage increases on Day 7 as shown in Fig 10. However, there 

is a large amount of water released on Day 8 and Day 12 which causes a sharp decrease in 

storage on these days. The same is true for Policy 2, where we see the storage increases 

until Day 12 and then goes down sharply due to high release of water on future days. (Fig 

9, Fig 10). We also validate the rescheduling of operation in Stage 2 optimization did not 

violate the physical storage constraint of the dam, Grand Coulee. 

Figures 11 show the results of the 14 day period from the optimization with 27 different 

inflow scenarios. Fig. 11A shows the increase in Net Revenue BPA will attain by selling 

flexibility following Policy 2 instead of Policy 1 (i.e., considering the Real Option 

analysis). Fig. 11B shows the increase (percentage) for the respective 27 scenarios. We can 

see the percentage increases are generally in the range of 2% to 40% which is roughly 10 

to 80 thousand dollars. However, when there are very high inflows and BPA needs to sell 

water to avoid floods, the real option model will not provide any valuation, since the future 
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value of water is dominated by the constraints such as the storage constraint. Therefore, we 

can see in the graph a few scenarios where there is no increase in revenue, since the storage 

constraint is active. 

 

6. CONCLUSION 

We presented a new approach to large-scale system optimization, using a flexible-robust 

objective, by successfully integrating Real Option theory with Robust Optimization. Based 

on the results shown, we can conclude that valuation of flexible water is beneficial in 

managing operations of large system and can minimize the risk of shortages in electricity 

and maximize the profit of power sectors. While we have demonstrated the concept, we 

will be addressing the future work. The first issue is that this is a simplified version of the 

system model and we must scale our work to address the entire reservoir system. Our next 

task is to include more physical and operational constraints in Stage 2 to provide more 

realistic results. Currently, we assume that the inflows are independent and normally 

distributed. In the future, we will focus on executing our model with the actual distribution 

of the inflows which can be estimated from historic data provided by BPA. We will also 

quantify uncertainty more accurately by considering dependence among the inflows. Also, 

we will incorporate price and demand uncertainty; the real option valuation will provide 

better results with a better characterization of uncertainty. One of the drawbacks in the 

Stage 2 stochastic optimization is that the decision variables are discrete. Our future work 

will be to eliminate that restriction and the Stage 2 optimization can work with continuous 

random decision variable. Also, our future research interest will focus on including 

different Robust Optimization techniques which will provide fast convergence, better 

solutions and handle the decision variable and constraints more efficiently. 
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TABLES OF CHAPTER 2 

 

Scenario 1 

Net Revenue ($) Policy 1 $ 551450 

Policy 2 $ 622958 

Increase in Net Revenue ($)  $ 71508 

Percentage Increase  13 % 

Scenario 2 

Net Revenue ($) Policy 1 $ 48005 

Policy 2 $ 59980 

Increase in Net Revenue ($)  $ 11975 

Percentage Increase  25 % 

Table 1: Summary of Results 
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FIGURES OF CHAPTER 2 

 

 

Figure 1. Evolution of States 

 

 

Figure 2. Possible Future States 

 

 

Figure 3. Binomial Option Model 
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Figure 4. Overall Flexible-Robust Approach 
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Scenario 1 
 

 

 

 

 

 

 

 

 

 

 

 

Policy 1 

 
Figure 5A. Optimal Decision of Allocated Flexibility 

 

 

 

 

 

 

 

 

 

 

 

 

Policy 2 

 
Figure 5B. Optimal Decision of Allocated Flexibility 
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Scenario 2 
 

 

 

 

 

 

 

 

 

 

 

 

Policy 1 

 
Figure 6A. Optimal Decision of Allocated Flexibility 

 

 

 

 

 

 

 

 

 

 

 

 

Policy 2 

 
Figure 6B. Optimal Decision of Allocated Flexibility 
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Figure 7. Price of Electricity Each Day 

 

 

Figure 8. Uncertainty on Available Flexibility Each Day  
 

 

Figure 9. Optimal Outflows Comparison 
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Figure 10. Storage Comparison at Optimal Outflows 

 

 

Figure 11A. Increase in Revenue ($) by selling flexibility with Real Option 

 

 

Figure 11B. Increase in Revenue (%) by selling flexibility with Real Option 
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CHAPTER 3 

A BI-LEVEL OPTIMIZATION APPROACH FOR ENERGY ALLOCATION 

PROBLEMS 

 

ABSTRACT 

In our previous chapter, we have integrated the Robust Optimization framework with the 

Real Options model to evaluate flexibility, introducing the Flexible-Robust Objective. 

Flexibility is defined as the energy left to allocate after meeting daily demands. This 

integration proved more efficient in risk evaluation in energy allocation problems. 

However, the integration has some limitations in applying operational and physical 

constraints of the reservoirs. In this paper, an in-depth analysis of all the limitations is 

discussed. To overcome those limitations and ensure a conceptually correct approach, a 

bi-level programming approach has been introduced in the second stage of the model in 

solve the energy allocation problem. We define the proposed model in this paper as Two-

Stage, Bi-Level Flexible-Robust Optimization. Stage 1 provides the maximum total 

flexibility that can be allocated throughout the optimization period. Stage 2 uses bi-level 

optimization. The Stage 2 upper level sets the target allocation of flexibility in each 

iteration and maximizes net revenue along with the evaluation of allocated flexibility by 

the real options model. The Stage 2 lower level minimizes the deviation between the level 

1 target and the achievable solution, ensuring no violation in physical and operational 

constraints of the reservoirs. Some compatibility issues have been identified in integrating 

the two levels, which have been discussed and solved successfully; the model provides an 

optimal achievable allocation of flexibility by maximizing net revenue and minimizing 

violation of constraints. Uncertainty in the objective function and constraints has been 

handled by converting into a robust objective and probabilistic constraints, respectively. 

Both classical methods (SQP) and evolutionary methods (GA) with continuous decision 

variables have been applied to solving the optimization problem, and the results are 

compared. It is shown that SQP provides much faster and better results. Also, the result 

has been compared with the simplified version in previous chapter, which was limited to 

randomly generated discrete decision variables. The new results provided an 8% 

improvement over the previous simplified model. 
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1. INTRODUCTION 

 In real world complex design problems for large scale systems, multidisciplinary 

optimization has been utilized and plays a key role in design research. In large-scale 

complex systems, it is often difficult to optimize for the whole system in a single level 

consisting of large numbers of design variables, objective functions and constraints. 

Therefore, it is desirable to break down the system into several components or subsystems. 

It is easier to optimize each of the subsystems which guarantee an optimal solution to the 

main system. This idea arises in the multidisciplinary optimization framework, where the 

optimization of a large-scale system is done by optimizing each of the subsystems, which 

are coupled with each other. Analytical Target Cascading (ATC) and Collaborative 

Optimization (CO) are the two methods of MDO. Several studies have been done in recent 

years in MDO [23], [24]. McAllister and Simpson [25] presented a CO framework for an 

Internal Combustion Engine. Another emerging approach in the area of Multi-disciplinary 

optimization is the Bi-Level Optimization method. Details of Bi-Level Optimization with 

literature reviews will be described in the later sections.  

In the field of river systems and hydropower energy sectors, uncertainties play a key 

role in terms of quantifying inflows, weather forecasts, market prices and demands for 

electricity. To incorporate these uncertainties in design, Robust Optimization is the best 

approach for managing such uncertainties. Much literature is available on Robust 

Optimization, where robustness has been studied extensively to handle uncertainties in 

several design areas, including hydropower energy sectors [16], [26].  Robustness is 

defined as the ability of a given system configuration to perform well over a wide range of 

conditions over the product lifecycle, such as the occurrence of faults and resulting 

functional losses. Taguchi-based approaches [11]–[14] utilize an optimization framework 

in which the system design is optimized based on an objective which considers both the 

mean and variance of the system performance. Variance in the system performance can 

result from multiple sources of random noise, both external and internal to the system. 

Robustness has also been investigated in the biological network literature, with principles 

for achieving robustness defined as system control, redundancy, diversity, modularity, and 
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decoupling [15]. McIntire et al. applied a Robust Design Optimization framework to the 

Columbia River System to provide optimal outflows for maximizing expected revenue, 

considering the inflow uncertainties. The probabilistic framework results in lower risk 

solution than the deterministic approach, when uncertainties are accounted for [16]. 

This paper is premised upon a Two-Stage Robust Bi-level Optimization approach for 

Complex Large Scale Systems integrated with a Real Option model to evaluate flexibility 

in allocation of energy. For the simplicity of this paper, we will start with single reservoir 

of Lower Columbia river as an example. However, the mathematical model described in 

later sections is also applicable for multiple reservoirs. However, the result for multiple 

reservoirs is out of scope for this paper and will be considered in future. A detailed 

description of the problem will be presented in a separate section.  

 

2. AN OVERVIEW ON BI-LEVEL OPTIMIZATION 

Bi-level optimization is a certain type of optimization where one problem is embedded 

(nested) within another. The outer optimization task is commonly referred to as the upper-

level optimization task, and the inner optimization task is commonly referred to as the 

lower-level optimization task. The lower level optimization acts as a constraint in the upper 

level. These problems involve two kinds of variables, referred to as the upper-level 

variables and the lower-level variables [27]. The lower level optimization, also referred to 

as follower’s optimization problem, is solved first. The upper level optimization, also 

referred as leader’s optimization problem, considers the optimal solution of the follower. 

Therefore, the optimal solution of the upper level optimization problem will guarantee 

optimality also in the lower level optimization problem. Bi-level optimization was first 

realized in the field of game theory by a German economist Heinrich Freiherr von 

Stackelberg in 1934 that described this hierarchical problem. 

A simple formulation of Bi-Level Optimization can be written below as: 

𝐦𝐢𝐧
𝒙

𝑭(𝒙, 𝒚)  (Upper Level) 

s.t (Upper Level Constraints) 

𝐺𝑖(𝑥, 𝑦) ≤ 0 𝑓𝑜𝑟 𝑖 = {1,2 … 𝑁} 

min
𝑦

𝑓(𝑥, 𝑦) (Lower Level) 
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s.t (Lower Level Constraints) 

𝑔𝑗(𝑥, 𝑦)  ≤ 0 𝑓𝑜𝑟 𝑗 = {1,2 … 𝑛} 

 

Where x and y are upper and lower level decision variables, respectively; 𝑮𝒊 and 𝒈𝒋 are the 

𝒊𝒕𝒉 and 𝒋 𝒕𝒉 inequality constraints in upper and lower level, respectively. 

Papers have been published attempting Bi-Level programming in various design 

problems. This approach has been extensively applied in the field of transportation and 

defense strategy. Labbe, Marcotte and Savard in 1998 proposed a bilevel model of taxation 

and its application in toll-setting problem in highways. In this bi-level model the leader 

wants to maximize revenue from taxation schemes, while the follower rationally reacts to 

those tax levels [28]. Chen and Subprasom in 2006 [29] formulated a stochastic bi-level 

programming model for a Build-Operate-Transfer (BOT) road pricing problem under 

demand uncertainty. Braken and McGill in 1973 [30] proposed a bi-level optimization 

model in defense applications which includes strategic force planning problems and two 

general purpose force planning problems. In recent years, this approach has been accepted 

and is being widely used in strategic bomber force structure, and allocation of tactical 

aircraft to missions. Roghanian, Sadjadi and Aryanezhad in 2006 [31] presented a bi-level 

multi-objective programming model in enterprise wide supply chain planning problem 

considering uncertainties on market demand, production capacity and resource availability. 

The bi-level programming method has also been applied in water resource allocation 

planning problems [32], [33]. 

 

3. PROBLEM DESCRIPTION 

In this section, we will provide an overview of our problem and introduce the bi-level 

optimization approach for optimal hydropower scheduling in energy sectors. In the 

hydropower scheduling problem, the main sources of uncertainties are the inflows, market 

price, and market demand of electricity. Huang in 2010 [32] and Xu in 2013 [33] attempted 

a bi-level optimization technique for a water allocation problem; however, the uncertainties 

were handled in a fuzzy random environment in both works. Also, the operational 

constraints of the reservoirs were not considered in the model, which leads to a complex 
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design. In our paper, we will handle the uncertainties with an approach to Flexible-Robust 

Optimization framework as discussed in Chapter 2. Flexibility is defined in this case as the 

option to either sell the remaining electricity to market after meeting daily demand or to 

hold it for future use to address any negative shocks. Evaluation of flexibility is done using 

Real Option (RO) analysis. RO analysis has been used previously in bi-level programming 

in the FACTS investment problem [34]. However, the model was not integrated within a 

robust optimization framework.  In Chapter 2, we have described why both robust 

optimization and real options analysis are simultaneously necessary in hydropower 

scheduling problems: the robust optimization framework focuses on maximizing revenue 

and minimizing future risks based on the evaluation of the RO model by allocating 

flexibility in the current period accounting inflow uncertainty. We have provided a 

formulation of the integrated model along with the details of RO analysis for future risk 

evaluation of flexibility. The benefit of integration of RO model with the Robust 

Optimization framework (Flexible-Robust Optimization) is demonstrated by applying it to 

a single reservoir in the Lower Columbia River System; the results demonstrate a better 

revenue by optimal allocation of flexibility by as much as 40% when compared with 

standalone Robust Optimization. However, there are some limitations in the integrated 

model. Also, the problem mentioned in our previous paper in Stage 2 did have limited 

constraints. In this paper, we target to address those limitations in the previously simplified 

model.  

We will discuss in this section the necessity of Bi-level programming as an approach 

to overcoming the limitations in the mathematical model in Chapter 2, in a conceptually 

sound manner. In the scheduling of hydropower, the decision makers need to know optimal 

water releases at each period from the reservoir which will generate total optimal allocated 

energy in each period. The total optimal allocated energy is the sum of energy to meet 

demand and the optimal allocated flexibility in each period. It will not be useful to them to 

know only the total optimal allocation of energy, as they will ultimately need to understand 

how much water needs to be released from each reservoir to achieve the total allocation. 

This was the limitation in the model presented in our previous paper, where we assumed 

that it is sufficient to provide the total optimal allocation of flexibility as the output of the 
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model, and the optimal outflows for each reservoir can be calculated separately. Also, the 

model in Stage 2 had limited constraints, the completion of which were part of the future 

work. A particular challenge for constraints is that in a real scenario, the storage of water 

for future use will affect the physical and operational constraints of the reservoirs. 

Therefore, the new version of the previous simplified model addresses this limitation by 

introducing bi-level programming.  

In our approach, the Stage 2 optimization has a flexible-robust objective function where 

evaluation of allocation of flexibility is done by RO analysis. The RO analysis considers 

different decision scenarios with respect to allocation of flexibility. Therefore, in the RO 

analysis, allocated flexibility should be a deterministic quantity because it is unreasonable 

as a part of RO analysis to evaluate the value of a decision which has randomness. This is 

a limitation of RO analysis in that it cannot value any uncertain variables. Therefore, we 

choose allocated flexibility as a decision variable which is deterministic to be valued 

successfully. However, the decision makers also need to know the optimal solution in terms 

of outflows to achieve the desired energy; however, putting outflows as the decision 

variable will cause allocated flexibility to be an uncertain variable. As noted, it is not 

desirable to use an uncertain decision variable. Also, we cannot use both outflows and 

allocated flexibility as the decision variable in the same stage, as the later will be treated 

as a dependent variable of outflows with uncertainties a result of inflow uncertainty. 

Additionally, this will highlight a limitation of the RO analysis of allocated flexibility in 

that it can be done in terms of energy but not in terms of outflows. Therefore, we need to 

formulate a solution which will fulfill all the requirements of the decision makers while 

making sure the integrated model is conceptually correct.  

This problem of allocation (upper level) versus strategy or design (lower level) is 

present is many design problems. In such scenarios, we need to focus on the design using 

both an economic standpoint that considers cost of manufacturing and labor etc. while also 

finding a safe and feasible design. To model a design problem of different criteria, one 

approach is to optimize each criteria of design individually. In our problem of scheduling 

of hydropower, we adopt the same idea of focusing on maximizing economics in one level 

and finding a feasible strategy, or design, in the other level to ensure safety and technical 
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feasibility. Therefore, a bi-level optimization method is used in our model to apply this 

concept as a remedy to overcome all the limitations in the previous simplified version of 

the model. The upper level will strictly focus on maximizing revenue and the lower level 

will ensure a safe feasible design. Also, the two levels in Bi-level programming can have 

different decision variables as shown in the general formulation. This addresses the 

limitations in RO valuation. Thus, we provide a complete Two-Stage Bi-Level Flexible-

Robust Optimization model as an approach to a general Hydropower Scheduling problem 

of large scale systems. In this paper, we have limited our case study to single reservoir of 

Columbia River system: Grand Coulee which is managed by Bonneville Power 

Administration (BPA). The descriptions of Grand Coulee are provided by BPA. 

  

Lower Columbia River: Grand Coulee Reservoir  

An optimization model is proposed which considers the reservoirs of the Columbia River 

system per the problem description below. We will have a similar approach as our previous 

paper where we started with a two-stage model. The goal of the first stage of optimization 

is to provide an optimal robust solution of maximum energy generation capacity for each 

time period for each reservoir. Previously this kind of multi-stage model has been presented 

[35] in optimization of Real-time Hydrothermal system operations where 3 sub-models 

(hourly, daily and monthly) have been coupled with different time-steps (hourly, daily and 

monthly) and optimization period (daily, monthly and yearly) with an objective to 

maximize revenue. The optimal result of the monthly model acts as a boundary constraint 

to the daily model and the optimal result of the daily model is applied as a boundary in the 

hourly model. In our model, Stage 1 optimization helps BPA to know the maximum total 

flexibility that can be generated during the optimization period. This total flexibility acts 

as a boundary constraint in Stage 2 optimization and is allocated optimally for better 

revenue and to address any negative shocks. Bi-level programming is introduced in the 

Stage 2 model. 

 

Stage 1 
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In the first stage of optimization the goal is to maximize electricity generation capacity 

keeping the physical and operational constraints of Water Balance Constraints, Reservoir 

WSE Constraints, Turbine Flow Constraints, output constraints and reservoir WSE 

Constraints on the end of the period. The decision variable for Stage 1 model is total 

outflow as each time-step. We have considered daily time-steps and an optimization period 

of 14 days in both stages of the proposed model. The Stage 1 model will provide maximum 

energy generation capacity at each time period as the output. Detailed information about 

the formulation of the objective function, constraints for Stage 1 is already presented in 

Chapter 2 and is not repeated here. 

We will now provide a detailed mathematical formulation of the Stage 2 Flexible-

Robust Optimization with Bi-Level Programming.  

 

Stage2 (Bi- level Optimization): 

In this section, we will discuss the goals of the two levels of Stage 2 model and how they 

are integrated by presenting the mathematical formulation. The Stage 1 optimization 

provides the maximum power generation capacity, 𝐸̃𝑚𝑎𝑥,1, and thereby the maximum total 

flexibility and also the maximum flexibility can be achieved each day; the Stage 2 

optimization is designed to provide a solution of optimally allocating the flexibility for 

better revenue. The Stage 2 optimization is divided into two levels: The Upper Level 

provides decisions of allocating flexibility which are set as the target allocation. To 

guarantee the target meets the physical and operational constraints of the reservoir, the 

Lower Level optimization is introduced which is treated as a constraint in the Upper level. 

The objective function is to minimize the deviation of allocation of flexibility (results from 

lower level) from the target allocated flexibility set in the upper level. The lower level 

optimization will be solved first and will provide us an achievable solution of allocated 

flexibility closest to the target set in the upper level satisfying all the physical and 

operational constraints. The objective function of the upper level is to find the optimal 

target by maximizing the net revenue through allocation of flexibility, and to minimize the 

value of holding the flexibility for future use. The valuation is done by the Real Option 

model as described in Chapter 2. A few probabilistic constraints (described in mathematical 
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formulation below) are included in the upper level to ensure the targets are not unrealistic. 

Also, the same probabilistic constraints which were used in the upper level are included in 

the lower level to ensure the outflow solution does not violate those constraints. This will 

guarantee that lower level results are also optimal to the upper level. Thus, the bi-level 

optimization is formulated to handle two different purposes of the problem. The upper level 

strictly focuses on the economic part, whereas the lower level aims at the feasible designs 

and operations of the problem, i.e. the set of actual reservoir outflows to achieve the desired 

energy target. 

Note:  

In the below mathematical formulation, 

 Variables having the overscript ~ are uncertain variables.  

 Variables without the overscript ~ are deterministic variables. 

 Variables having superscript * are optimal solutions. 

  

Upper Level Optimization Problem:  

Model Input:  

• Demand, D = [𝑑1, 𝑑2, … … … … , 𝑑14] 

• Flexibility each day 𝐹̃=  𝐸̃𝑚𝑎𝑥,1 - D = [ 𝑒̃1
𝑚𝑎𝑥,1 – 𝑑1, 𝑒̃2

𝑚𝑎𝑥,1 – 𝑑2, … … . . ] = 

[𝑓1, 𝑓2 … … … 𝑓14] 

• Total Flexibility in 14 day period, 𝐹̃𝑡𝑜𝑡𝑎𝑙  =  ∑ 𝑓𝑡
14
𝑡=1   

• Price, P 

 

Model Decision Variables:   

We propose the decision variable to be the allocated flexibility H. Since it is daily-based 

model, the number of the decision variables is 14 for a single reservoir, given as an array 

of decision variables, H:  

[ℎ1, ℎ2, . . . . . . . . , ℎ14]  

 

Model Objective:   

The Flexible-Robust Objective:  
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Maximize Expected Increase in Net Revenue through allocation: 

 

max
ℎ𝑡

∑ (((p𝑡 ∗ (h𝑡 − 𝑓𝑡(𝑒̃𝑡
𝑚𝑎𝑥,1, 𝑑𝑡))) ∗ 24) −  Ṽ(h𝑡 ∗ 24) )14

𝑡=1           (1) 

 

where 𝑓𝑡 is the flexibility obtained in period t in MWh; p𝑡 is the price/MWh to sell 

electricity in each day over 14 days period; and h𝑡 is the allocated flexibility in 

period t in MWh. Ṽ(h𝑡 ∗ 24)  is the value of the allocated flexibility (h𝑡 ∗ 24) in MW-day. 

Uncertainty of the value of allocated flexibility is incorporated from actual availability of 

flexibility in future periods i.e. 𝐴̃𝑡+1, 𝐴̃𝑡+2, … which is a result of inflow uncertainty. Thus 

during optimization, there will be a comparison between the revenue generated by the 

allocated flexibility, and the expected loss of dollar value due to the allocated flexibility, 

i.e., the value of holding or the future value of allocated flexibility. 

 

Subject to: 

Model Constraints: 

1. Maximum Allocation of Flexibility (does not require lower level optimization):  

This constraint is applied to validate that allocated flexibility is less than or equal to the 

actual availability of flexibility each day. It is unrealistic to allocate more flexibility than 

actually will be available on a given day:  

 

h𝑡 –  𝐴̃𝑡(𝐴̃𝑡−1, h𝑡−1, 𝑓𝑡)   ≤  𝛿        (2, 3) 

where, 

𝐴̃𝑡  =  𝐴̃𝑡−1  – h𝑡−1  + 𝑓𝑡, 

 

𝐴̃𝑡 is the actual availability of flexibility after allocating flexibility for t-1 days as per 

decision made in MWh, and h𝑡−1 is the allocated flexibility on Day (t -1) in MWh, 𝑓𝑡 is 

the flexibility obtained in period t in MWh, δ is the maximum tolerance of the violation 

and is set as 1 MWh. We treat equation 2 as a Reliability Constraint. Therefore, equation 

2 becomes:  
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𝑃𝑟{ h𝑡 – 𝐴̃𝑡(𝐴̃𝑡−1, h𝑡−1, 𝑓𝑡)   ≤  𝛿 } ≥  𝑅,   0 ≤ 𝑅 ≤ 1  

 

where R is the reliability factor (i.e., the probability of meeting the constraint).    

 

2. Total Flexibility (does not require lower level optimization): 

This constraint is applied to validate that the total allocation of flexibility during the 

optimization period is equal to the maximum total flexibility we get from Stage 1 

optimization results. It is unrealistic to allocate more flexibility than is actually available 

during the optimization period. Also, it is not beneficial economically to BPA if we keep 

some flexibility without allocating at the end of optimization period.  Storing extra water 

will increase water level in storage and forebay elevation which needs to be at a fixed range 

at the end of optimization period, as given by: 

 

 0 ≤   ∑ (𝑓𝑡(𝑒̃𝑡
𝑚𝑎𝑥,1, 𝑑𝑡)14

𝑡=1  −  ∑ h𝑡
14
𝑡=1  ≤  𝑡𝑜𝑙                          (4) 

 

where 𝑡𝑜𝑙 is maximum allowable deviation and is set as 5% of total flexibility ∑ 𝑓̃𝑡
14
𝑡=1 . In 

future we can further tighten the allowance. We consider equation 4 as 

a Reliability Constraint. Therefore, equation 4 becomes:  

 

𝑃𝑟{  0 ≤   ∑(𝑓𝑡(𝑒̃𝑡
𝑚𝑎𝑥,1, 𝑑𝑡)

14

𝑡=1

 −  ∑ h𝑡

14

𝑡=1

 ≤  𝑡𝑜𝑙  } ≥  𝑅,   0 ≤ 𝑅 ≤ 1  

 

where R is the reliability factor.  

 

3. Minimum Allocation of Flexibility (does not require lower level optimization): 

We assume that there will be sufficient energy generation each period to meet the demands 

at a minimum: the energy sectors must meet contracted demand. They cannot hold the 

water for future use without meeting current demand. Therefore, there will not be instances 

of negative flexibility, as quantified by: 
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h𝑡  ≤  𝑑𝑡 +   𝛿                   (5) 

 

where  h𝑡 is the allocated flexibility in MWh; 𝑑𝑡 is the demand on Day t in MWh; and  𝛿 

is a very small value set as 1 MWh. We decided to constrain to have a minimum allocated 

flexibility h𝑡 ≥ 𝛿 (instead of h𝑡 ≥ 0) so that in the lower level optimization, we do not 

encounter any negative achievable allocated flexibility ( h`̃𝑡 < 0).  

 

4. Deviation from target allocation (requires result of lower-level optimization): 

This constraint is given by: 

| (h𝑡 – h`̃𝑡(ẽt, 𝑑𝑡)) |  ≤  𝛿            (6), (7) 

where, 

  h`̃𝑡 =  ẽt(𝑄𝑜𝑢𝑡,𝑡, ℎ𝑑̃𝑡(𝐹𝐵̃𝑡,  TWt), ξ𝑡)– 𝑑𝑡 

 

 h`̃𝑡 is the achievable allocated flexibility in MWh closest to the target h𝑡   satisfying all the 

constraints (Physical, Operational and other Probabilistic constraints) in the Nested 

Optimization with reliability factor R. δ is the maximum deviation from the target and is 

set as 1 MWh. We consider equation 6 as a Reliability Constraint. Therefore, equation 6 

becomes:  

 

𝑃𝑟{ |(h𝑡 – h`̃𝑡(ẽt, 𝑑𝑡)) |  ≤  𝛿 } ≥  𝑅,   0 ≤ 𝑅 ≤ 1  

 

where R is the reliability factor.  

Below we describe the Lower Level Optimization mathematical formulation to achieve 

h`̃𝑡(ẽt, 𝑑𝑡) 

 

Lower Level Optimization 

Model Inputs:  

• Demand, D = [𝑑1, 𝑑2, … … … … , 𝑑14] 

• Maximum energy generation capacity 𝐸̃𝑚𝑎𝑥,1 = [ 𝑒̃1
𝑚𝑎𝑥,1, 𝑒̃2

𝑚𝑎𝑥,1, … . . , 𝑒̃14
𝑚𝑎𝑥,1] 

• Allocated Flexibility (target), H = [ℎ1, ℎ2, . . . . . . . . , ℎ14]  
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• Price 

• 𝑄̃𝑖𝑛 

 

Model Decision Variables:   

The total outflows of GCL reservoir at each time step are defined as decision variables in 

the optimization. We have considered an optimization period of 14 days with daily a time-

step; therefore, the number of decision variables is 14 for the single reservoir and is given 

as an array of flow rate, 𝑄` 
𝑜𝑢𝑡,𝑆𝑡𝑎𝑔𝑒2

, decision variables as follows:  

[𝑄𝑜𝑢𝑡,1 𝑄𝑜𝑢𝑡,2 . . . . . . . . . . . . . . . . . . . . .  𝑄𝑜𝑢𝑡,14] 

 

Model Objective:   

 Minimize the total deviation from target: 

min
𝑄𝑜𝑢𝑡,𝑡

∑  (ed,t(ht, dt)  – ẽt(Qout,t, hd̃t(FB̃t,  TWt), ξ𝑡))2 14
t=1                 (8, 9, 10) 

Where, 

ed,t  =  ht  +  dt  ; 

 

ẽt =  𝜂 ∗ 9.81 ∗ ℎ𝑑̃𝑡(𝐹𝐵̃𝑡,  TWt) ∗ 𝑄𝑜𝑢𝑡,𝑡 ∗ 8.6310 ∗ 10−3 ∗ ξ𝑡 

 

In this equation, ed,t is the target energy in MWh should be generated to meet the target 

allocation of flexibility on day t, ẽt is the actual energy generated in MWh on day t, ht is 

the target allocation of flexibility in MWh, dt is the demand on day t in MWh, 𝜂 is the 

efficiency of the reservoir, taken as 0.75, ℎ𝑑̃𝑡 is the head in ft, and ξ𝑡 is taken as 1 hour. 

 

Subject to: 

Model Constraints:  

a. Water Balance Constraints  

 

0 ≤  𝑆̃𝑡 (𝑄̃𝑖𝑛,𝑡, 𝑄̃𝑖𝑛,𝑡−1, 𝑄𝑜𝑢𝑡,𝑡, 𝑄𝑜𝑢𝑡,𝑡−1, deltt) ≤  𝑆𝑚𝑎𝑥         (11, 12) 

Where,  
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𝑆̃𝑡+1   = ((𝑄̃𝑖𝑛,𝑡 + 𝑄̃𝑖𝑛,𝑡+1)/2 − (𝑄𝑜𝑢𝑡,𝑡 + 𝑄𝑜𝑢𝑡,𝑡+1)/2). deltt  + 𝑆̃𝑡 

   

In these equations, 𝑆̃𝑡 is reservoir storage in kcfs-day. 𝑆𝑚𝑎𝑥 is the maximum storage 

capacity, 𝑄̃𝑖𝑛 and 𝑄𝑜𝑢𝑡 are inflow and outflow to reservoir in kcfs, respectively, and deltt 

is time (day) between each time step. At this stage, the water leakage and natural water loss 

is not considered. We consider equation 11 as a Reliability Constraint. Therefore, equation 

11 becomes:  

 

𝑃𝑟{0 ≤  𝑆̃𝑡 (𝑄̃𝑖𝑛,𝑡, 𝑄̃𝑖𝑛,𝑡−1, 𝑄𝑜𝑢𝑡,𝑡, 𝑄𝑜𝑢𝑡,𝑡−1, deltt) ≤  𝑆𝑚𝑎𝑥  } ≥  𝑅,   0 ≤ 𝑅 ≤ 1 

 

where R is the reliability factor.    

  

b. Reservoir Water Surface Elevation (WSE) Constraints  

 

𝐹𝐵𝑚𝑖𝑛 ≤   𝐹𝐵̃𝑡(𝑆̃𝑡)  ≤  𝐹𝐵𝑚𝑎𝑥      (13, 14) 

Where, 

 𝐹𝐵̃𝑡 =  𝑐1 ∗ ( 𝑆̃𝑡)2  +  𝑐2 ∗ ( 𝑆̃𝑡 )  +  𝑐3 

 

where 𝐹𝐵̃𝑡 is the reservoir water level in ft at time t; 𝐹𝐵𝑚𝑖𝑛 and 𝐹𝐵𝑚𝑎𝑥 are the allowable 

minimum and maximum reservoir water elevation respectively; 𝑐1 = -3.63*10-6, 𝑐2 = 

0.0406 and  𝑐3 =1208. The constants are determined by fitting actual forebay elevation 

observations with a polynomial regression model. 

  

c. Turbine Flow Constraints  

  

𝑄𝑡𝑏−𝑚𝑖𝑛  ≤  𝑄𝑡𝑏,𝑡  ≤  𝑄𝑡𝑏−𝑚𝑎𝑥  (15) 

 

In this constraint,  𝑄𝑡𝑏,𝑡 is turbine flow for power generation in kcfs at each time step 

and 𝑄𝑡𝑏−𝑚𝑖𝑛 and 𝑄𝑡𝑏−𝑚𝑎𝑥 are allowed minimum and maximum discharge respectively. 
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Since we are not ignoring spill flow, Turbine flow and Outflow will be same.  Therefore, 

we can re-write equation 15 as below: 

 

𝑄𝑡𝑏−𝑚𝑖𝑛  ≤  𝑄𝑜𝑢𝑡,𝑡  ≤  𝑄𝑡𝑏−𝑚𝑎𝑥  (16) 

  

d. Output Constraints  

𝑁𝑑−𝑚𝑖𝑛  ≤  𝑁̃𝑑,𝑡(𝑄𝑜𝑢𝑡,𝑡, ℎ𝑑̃𝑡)  ≤  𝑁𝑑−𝑚𝑎𝑥           (17, 18) 

Where, 

𝑁̃𝑑,𝑡 =  𝜂 ∗ 9.81 ∗ ℎ𝑑̃𝑡(𝐹𝐵̃𝑡,  TWt) ∗ 𝑄𝑜𝑢𝑡,𝑡 ∗ 8.6310 ∗ 10−3 

 

In the output constraint, 𝑁̃𝑑,𝑡 is power output in MW at time t. 𝑁𝑑−𝑚𝑖𝑛 and 𝑁𝑑−𝑚𝑎𝑥 are the 

minimum and maximum output capacity respectively.  

  

e. Reservoir Water Surface Elevation (WSE) Constraints on the end-of-period  

The optimization is conducted for 14 days, which is a relatively short term for the reservoir 

operations. To be consistent with middle-term or long-term operation, the water surface 

elevation (WSE) in the reservoir at the end of optimization period is expected to stay within 

a target WSE to fulfill future requirements. In the example problem we have formulated, 

the historical data from the actual operation scheme is used as the target WSE for the 

optimization model. To avoid equality constraints, a small range on the target WSE is used 

to restrain the WSE on the end-of-period to be close to the target WSE: 

  

𝐹𝐵𝑡𝑎𝑟,𝑒𝑛𝑑  −  𝛥 ≤  𝐹𝐵̃𝑡(𝑉̃𝑡)  ≤  𝐹𝐵𝑡𝑎𝑟,𝑒𝑛𝑑  +  𝛥     (19) 

   

where 𝐹𝐵𝑡𝑎𝑟,𝑒𝑛𝑑 is the target WSE on the end-of-period and Δ is the deviation from the 

target WSE. The Δ is set as 1% in the model and 𝐹𝐵𝑡𝑎𝑟,𝑒𝑛𝑑 is taken as 1280 ft.  

 

f. Maximum Allocation of Energy  
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Though a similar type of constraint (2) has been applied in the main problem, we still need 

to place this constraint on the lower level to ensure that the deviated solution from the target 

still satisfies the constraint: 

 

ẽt(Qout,t, hd̃t, ξ𝑡) – 𝐸̃𝐴,𝑡(𝐸̃𝐴,𝑡−1, ẽt−1, 𝑒̃𝑡
𝑚𝑎𝑥,1)   ≤  𝛿         (20, 21)                          

Where, 

𝐸̃𝐴,𝑡  =  𝐸̃𝐴,𝑡−1  – ẽt−1  +  𝑒̃𝑡
𝑚𝑎𝑥,1

 

 

𝐸̃𝐴,𝑡 is the actual availability of energy in MWh at day t after allocating achievable 

flexibility for t-1 days obtained from lower level optimization, ẽt−1 is the energy generated 

in MWh on Day (t-1), 𝑒̃𝑡
𝑚𝑎𝑥,1

 is the maximum energy that can be generated in MWh on 

day t, δ is the maximum tolerance for violation and is set as 1 MWh. We consider equation 

20 as a Reliability Constraint. Therefore, equation 20 becomes:  

 

𝑃𝑟{ ẽt(Qout,t, hd̃t, ξ𝑡) – 𝐸̃𝐴,𝑡(𝐸̃𝐴,𝑡−1, ẽt−1, 𝑒̃𝑡
𝑚𝑎𝑥,1)   ≤  𝛿} ≥  𝑅,   0 ≤ 𝑅 ≤ 1  

 

where R is the reliability factor.    

 

g. Total Energy during the Optimization period 

 

0 ≤  ∑ ed,t(ht, dt)14
𝑡=1  −   ∑ ẽt(Qout,t, hd̃t, ξ𝑡) 14

𝑡=1   ≤  𝑡𝑜𝑙                   (22) 

 

𝑡𝑜𝑙 is maximum allowable deviation and is set as 0.2% of total energy ∑ ed,t
14
𝑡=1 . We 

consider equation 22 as a Reliability Constraint. Therefore, equation 22 becomes:  

 

𝑃𝑟{ 0 ≤  ∑ ed,t(ht, dt)

14

𝑡=1

 −   ∑ ẽt(Qout,t, hd̃t, ξ𝑡) 

14

𝑡=1

≤  𝑡𝑜𝑙 } ≥  𝑅,   0 ≤ 𝑅 ≤ 1  

 

where R is the reliability factor.  



49 

                                                                                                                                                                    

  

 

h. Deviation from target: 

 

| ed,t(ht, dt)– ẽt(Qout,t, hd̃t, ξ𝑡)|  ≤  𝛿                      (23) 

 

where ed,t is the target energy in MWh should be generated to meet the target allocation of 

flexibility on day t, ẽt is the actual energy generated in MWh on day t, δ is the maximum 

deviation from the target and is set as 1 MWh. We consider equation 23 as 

a Reliability Constraint. Therefore, equation 23 becomes:  

 

𝑃𝑟{ | ed,t(ht, dt)– ẽt(Qout,t, hd̃t, ξ𝑡)|  ≤  𝛿 } ≥  𝑅,   0 ≤ 𝑅 ≤ 1  

 

where R is the reliability factor.  

 

Lower Level Optimization: Model Output: 

• Optimal Outflow corresponding to achievable allocation of flexibility, 

𝑄`∗
𝑜𝑢𝑡,𝑆𝑡𝑎𝑔𝑒2     

• Deviation from target allocated flexibility, 𝜀ℎ  = 

[( ed,1 – ẽ1) , ( ed,2 – ẽ2) , … … . , ( ed,14 – ẽ14)] = 

[(h1 – h`̃1), (h2 –  h`̃2), … … … , (h14 – h`̃14) ] ;  (from equation 15) 

• Achievable allocated flexibility 𝐻`̃ closest to the target allocation H, 𝐻`̃   = 

[h`̃1, h`̃2, ……. h`̃14] 

 

Upper Level Optimization: Model Output: 

• Optimal Outflow corresponding to achievable allocation of flexibility, 

𝑄`∗
𝑜𝑢𝑡,𝑆𝑡𝑎𝑔𝑒2 

• Achievable allocated flexibility 𝐻`̃  closest to the optimal target allocation H*;  𝐻`̃ 

= [h`̃1, h`̃2, ……. h`̃14] 

• Maximum Net Revenue in selling the Flexibility, 𝑅̃𝑚𝑎𝑥  
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4. SOLUTION METHODOLOGY 

Figure 1 shows the complete structure of our proposed model. In this section, we will 

discuss in detail the methodology used and the convergence criteria of the model. Also, we 

will talk about some compatibility issues raised during the formulation of the model and 

how they have been solved. The methodology and the convergence criteria for the Stage 1 

model has already been discussed in Chapter 2. In this paper, we will focus on the 

methodology of Stage 2 for the model which uses bi-level programming. 

 

Stage2 (Upper Level) 

We have applied Robust Optimization for the Stage 2 upper level optimization, converting 

the objective function (Eq.1) into robust objective and handled all the Constraints (Eq -2, 

4,6) as Probabilistic Constraints. For the risk aversion coefficient, we used a value of 10e5 

(this parameter can be set by the user). Another limitation of the RO analysis is the 

assumption of no uncertainty in the current state. Therefore, in the objective function (Eq. 

1), to evaluate the value of allocated flexibility in the current period, the only uncertainty 

considered is for the available flexibility in the future periods i.e. 𝐴̃𝑡+1, 𝐴̃𝑡+2, …. No 

uncertainty has been considered for the available flexibility in the current period i.e 𝐴̃𝑡. 

However, there is uncertainty in the current period and, therefore, we handle the 

uncertainty of the current period outside the RO model by converting Eq. 1 into a Robust 

Objective function. While the RO model evaluates the future risks based on the uncertainty 

of the future available flexibility, uncertainty on current available flexibility is quantified 

using a Full Tensor Numerical Integration (FTNI) method. The Probabilistic constraints 

are handled by Inverse Reliability Method and the Reliability factor can be set by the user, 

such as 50% or 99 %. We applied Sequential Quadratic Programming (SQP) to solve the 

optimization problem. The convergence criteria are step size tolerance, constraint violation 

tolerance, function tolerance, which are all set as ξ = 10−5, and maximum function 

evaluations set to 40000. Though Bi-level programming has been criticized for being 

computationally expensive and hard to solve, particularly using classical methods due to 

difficulties such as non-linearity, discreteness, non-differentiability, non-convexity etc. 

[36]. However, SQP is probably one of the best tools for solving non-linear programming 
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model using classical methods. It has been a hot topic over the years for researchers to 

overcome this drawback, and an evolutionary algorithm has been attempted as a solution 

[37]. Therefore, we will solve our problem using a Genetic Algorithm as well and compare 

the results in terms of computational cost and accuracy of optimal solutions.   

 

Stage2 (Lower Level) 

We have handled the uncertainty of the objective function by quantifying it using a 

Gaussian Quadrature method and converting into a robust objective and we have handled 

the Constraints (Eq -11, 20, 22, 23) as Probabilistic constraints. The algorithm used for 

Stage 2 lower level optimization is Sequential Quadratic Programing (SQP). The 

convergence criteria are step size tolerance, constraint violation tolerance, function 

tolerance; all set as 𝜉 = 10−5 and maximum function evaluations set as 40000. We have 

also set 𝜉 = 10−8 to see if we get better results; that is, less deviation of achievable 

allocated flexibility from the specified target allocated flexibility. The objective function 

at the optimal point observed in both the cases is similar; however, when 𝜉 = 10−8, the 

number of iterations and function evaluations are 46 and 841, respectively, whereas for 

𝜉 = 10−5, they are 37 and 701, respectively. Thus, by tightening the convergence criteria 

we get the same result with increased computational cost which is not desirable. Therefore, 

we have used 𝜉 = 10−5. 

 

Techniques used for reducing the computational cost 

As bi-level programming is generally computationally expensive, we have used some 

simplifications in the mathematical formulation to provide a faster solution. Since we set a 

target in the upper level, we want to know in the lower level how close we can get to the 

set target without violating any physical and operational constraints. Therefore, we can 

reduce our design space close to the set target, with some allowance. Thus, we use 

constraint Eq. 23. This constraint will reduce the design space as it bounds the feasible 

region close to the target, thereby helping to find the optimal feasible solution quickly (if 

there is one) by exploiting the advantage of classical methods like SQP, reducing the 

computational cost. Also, this constraint avoids the chances of local convergence far from 
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the target. As we are using SQP, which is fast but does not guarantee global convergence 

(only guaranteed to find a local optima), this constraint proved significantly useful to 

provide a fast and accurate solution. However, we are doing further research to make the 

model more computationally efficient, and this is one of our future works for the project. 

 

Challenges in the integration of two levels 

In the Stage 2 upper level optimization, the allocated flexibility ht is a decision variable 

and is a deterministic value. This allocated flexibility is set as the target when we pass this 

value as input in the lower level optimization. In the lower level optimization, the 

achievable allocated flexibility closest to the target value ht is an uncertain variable, h`̃𝑡. 

The uncertainty in  h`̃𝑡actually comes from the uncertainty in inflows 𝑄̃𝑖𝑛. Inflows create 

uncertainty in Storage 𝑆̃𝑡, Forebay 𝐹𝐵̃𝑡, Head hd̃t, energy ẽt and finally in h`̃𝑡 which is the 

function of ẽt. Due to the uncertainty, we cannot treat h`̃𝑡 as a decision variable and use 

this achievable flexibility to calculate the objective function in the upper level. Also, this 

will again highlight the limitations RO analysis which has been discussed previously in the 

problem description. Therefore, we use the target value ht as the decision variable in the 

upper level, and h`̃𝑡 is the achievable flexibility in the lower level. This raises another issue 

in that h`̃𝑡  ensures a feasible solution in terms of operations of reservoir, not ht. So how 

can we solve this compatibility issue in the integration of two levels?  

In answer to the above issues, we have provided a solution to ensure the mathematical 

model is conceptually correct. We have applied a probabilistic constraint (Eq. 6) to bind 

the maximum allowable deviation of the feasible solution from the target solution by a 

small value δ, so that the deviated solution will have negligible effect on the net revenue. 

Anything beyond that small deviation with less than the desired Reliability factor will be 

an infeasible solution. Thus, we can still use the target value as the decision variable in the 

upper level optimization to calculate the objective function, as the deviated value will meet 

the target at a desired reliability level (e.g. 95%, 99%). We will show in our result that the 

achievable allocated flexibility, h`̃𝑡 has negligible effect in the Real Option valuation and 

also on Net Revenue when compared with its respective target allocated flexibility, ht. We 

need to validate this new probabilistic constraint for every iteration in the upper level 
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instead of only for the optimal target allocated flexibility. This is because the achievable 

feasible solution closest to the optimal target may be beyond the maximum allowed 

deviation δ. Thus the deviated solution will affect the net revenue significantly as this is 

too far away from the target and no longer guarantee san optimal solution in terms of 

revenue. Therefore, we will lose the actual optimal solution which maximizes the revenue 

ensuring feasibility. Therefore, in this approach, an optimal target of allocated flexibility 

from upper level optimization will help us to provide an optimal feasible allocated 

flexibility very close to target (≤ δ) and its respective optimal outflow in the lower level 

optimization. 

 

5. RESULTS FOR THE SINGLE RESERVOIR MODEL 

In this section, we will show the results of the Two-Stage Bi-Level Flexible-Robust 

Optimization model having daily time steps for the 14 day optimization period. In this 

paper, we will show the results for a Single Reservoir, Grand Coulee.  We will compare 

the results of our Model using non-linear constrained gradient algorithm, SQP, and using 

an evolutionary algorithm, a GA.  

Figure 2 shows the optimal decisions for achievable allocation of flexibility using SQP, 

as denoted by the green line. The blue lines in the figure are the flexibility after Stage 1 

and the dashed red line is the maximum availability flexibility (cumulative) at each day, 

which can be allocated or held for future use. In our example problem, we have considered 

the highest price to be on Day 8. We assume the uncertainty increases each day; therefore, 

the highest uncertainty is on Day 14.  Based on these assumptions, it is reasonable to have 

most of the allocation on Day 8 as this is the highest selling price, and on Day 14 as this is 

the highest uncertainty and is most highly valued by the Real Option Model. Figure 3 

shows the deviation of the achievable allocated flexibility obtained in the lower level from 

the optimal target allocated flexibility in the upper level. We can see the maximum 

deviation is 0.65 MWh from the target, which is very close. The changes in the Real Option 

value and the Net Revenue due to the difference between the optimal target allocated 

flexibility and the respective achievable allocated flexibility is shown in Table 1. We can 

see there is a slight decrease in Net Revenue ($1577) and RO value ($573), respectively, 
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in the achievable solution. This is because the achievable solution provided a robust 

solution, thereby, not allocating the entire total flexibility at the end of the optimization 

period. On the other hand, the target solution is deterministic and uses all the flexibility as 

the end of optimization period; however, we can see the difference ($1577) is very 

negligible to BPA or any large energy sectors as they deal in millions of dollars. Therefore, 

it holds to our assumption that the slight deviation from target allocated flexibility does not 

affect the optimal solution. Table 2 shows the comparison of the optimization result using 

SQP and GA. We can clearly see the number of function evaluation for SQP is much lower 

than that for GA. Even with so many function evaluations, the GA provides much a worse 

result than the SQP result. Therefore, we confirm that SQP is the best choice in this 

problem, even considering the bi-level programming.  Figure 4 shows the optimal outflows 

that will provide the optimal allocation of flexibility as shown in Figure 2.  Figure 2 

provides an in-depth understanding of the model and the significance of Flexible Robust 

Objective by integrating Real Option model; however, Figure 4 will be useful for the 

operators as they require the actual water release information for each reservoir to obtain 

the Maximum Net Revenue provided by the bi-level programming.  Also, unlike in the 

simplified model in the previous chapter, the bi-level programing in Stage 2 of the proposed 

model of this paper took care of the operational constraints of the complex river system, 

and provided an optimal robust solution. Also, this model is not restricted to only discrete 

decision variables in Stage 2 and considers continuous decision variables in both the levels 

of Stage 2. Table 3 shows the significant improvement (8 %) in the solutions when 

compared the results with our previous chapter. This improvement is likely due to gaining 

more design points due to continuous decision variables. This shows the current model is 

not only able to handle the constraints better using bi-level programming, but is also highly 

efficient in providing better solutions. 

 

Note: In the Tables, the Net Revenue is the Net revenue achieved from selling the 

flexibility only. The Total Net Revenue is the Net revenue achieved from selling the 

flexibility and the demand. 
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6. CONCLUSION 

An approach to solve the challenges in the integration of Robust optimization with the Real 

Option Model and to introduce more practical constraints of reservoirs (operational and 

physical constraints) has been presented; we have adopted a bi-level programming 

technique and proposed a Two-Stage Bi-Level Flexible-Robust Optimization model. 

The proposed model proved more efficient than the simplified version of Chapter 2. 

Although Bi-level optimization is computationally expensive in general, we have made 

this model efficient using good mathematical formulation and inheriting the computational 

efficiency of one of the best tools for classical methods, SQP. However, the problem solved 

is a simplified solution and if will be considered as a future scope to increase the 

computational efficiency of the model.  Though evolutionary algorithms are encouraged 

over SQP for Bi-level optimization in the literature, we have shown that SQP is more 

efficient in this problem, in terms of providing faster and better solutions. The GA fails is 

inferior to SQP in terms of speed and solution quality. As future scope, we will consider 

more accurate distribution of uncertainties and incorporate price and demand uncertainties. 

Also, we will consider in future to run the model for the entire Lower Columbia River 

system (multi-reservoir system) instead of the single reservoir, Grand Coulee.  
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TABLES OF CHAPTER 3 

Optimal Decision 

Optimal Target (Upper Level 

D.V) 

Achievable (Lower Level 

Solution) 

RO 

Value $ 

Net Revenue $ (A) RO 

Value $ 

Net Revenue $ (B) 

$ 10591 $ 673325 $ 10018 $ 671748 

Difference in Net Revenue $ (A 

– B)  

Percentage %  

((A – B) * 100) / A 

$ 1577 0.2 % 

Table 1. Comparison of Real Option Value and Net Revenue between target (Upper 

Level) and Achievable (Lower Level) optimal allocation of Flexibility 

 

Algorithm Fun 

Eval 

Net Revenue $ Total Net Revenue $ 

SQP 405 $ 671748 $ 13103244 

GA 36296 $ 308084 $ 12739580 

Table 2. Comparison of Optimization Results using SQP and GA algorithm 

 

 Net 

Revenue 

$ 

Increase in 

Net 

Revenue $ 

Percentage of 

Increase 

Proposed Model (Bi-

Level Programming) 

$ 671748 $ 48790 8 % 

Simplified Model 

(Chapter 2) 

$ 622958 

Table 3. Comparison of Optimization Results between Previous Model (Chapter 2) 

and Proposed Model (Chapter 3) 
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FIGURES OF CHAPTER 3 

 

Figure 1. Bi-Level Flexible Robust Optimization Approach 
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Figure 2. Optimal Decision of Achievable Allocated Flexibility 

 

 
Figure 3. Deviation of Optimal Achievable Allocated Flexibility (Lower Level) from 

the Optimal Target (Upper Level) 

 

 
Figure 4. Optimal Outflows to provide optimal allocation of flexibility  
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CHAPTER 4 

GENERAL CONCLUSION 

 

A Multilevel Flexible Robust Optimization method has been presented to optimize the 

allocation of flexibility by maximizing revenue and minimizing the value of holding the 

flexibility, ensuring the solution also minimizes physical and operational violation of the 

reservoir. Chapter 2 shows a better optimal solution by integration of Real Option analysis 

with the Robust Optimization framework. Chapter 3 successfully eliminated the limitations 

of the simplified model of Chapter 2 by introducing Bi-level Programing, where the Upper 

Level focuses on maximizing net revenue and the lower level ensures the feasibility of the 

target solution in each iteration. There were some compatibility issues and limitations 

identified with the introduction of Bi-Level programming in handling the uncertain 

parameters. However, the challenges have been overcome successfully and the evidence 

has been provided for the justification of any assumptions made. Though the approach has 

been inplemented on single reservoir, the mathamatical formulation is not restricted to a 

single reservoir and can be applicable to the entire river system. This is a future scope of 

the research: to test the model on multi-reservoir systems. Due to the large complexity of 

the system, the computational cost of the model will eventually increase to increase the 

accuracy of result. In energy allocation problems, as the operators are requied to run the 

model in a daily or hourly basis due to the changes in the input data over time, they need a 

model result in limited time period. Therefore it is likely for them to place more importance 

on the computational time rather than accurac, as a few hundred or thousand dollars of loss 

will not impact much in their million dollar net revenue. Therefore, future research will be 

focussed on reducing the computational cost of the model while enuring the loss in 

accuracy does not provide a significant negative impact on the revenue obtained for the 

energy sector.   
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